Газогенератор на дровах для автомобиля: Газогенератор на дровах своими руками для авто – чертежи, устройство

Содержание

Принцип работы газогенератора на дровах для автомобиля

Если вы хотите узнать когда выйдет очень подробный видеокурс как самому сделать чтобы автомобиль ехал на дровах (древесине) который я сейчас готовлю — оставляйте в комментариях емаилы — я вас оповещу. Или напишите мне сюда [email protected]

В 1990-х годах водород рассматривали в качестве альтернативного топлива будущего. Затем большие надежды возлагались на биотопливо. Позже большое внимание привлекло развитие электрических технологий в автомобилестроении. Если и эта технология не получит дальнейшего продолжения (тому есть объективные предпосылки), тогда наше внимание вновь сможет переключиться на газогенераторные автомобили.

Несмотря на высокое развитие промышленных технологий, использование древесного газа в автомобилях, представляет интерес с экологической точки зрения, по сравнению с другими альтернативными видами топлива. Газификация древесины несколько более эффективна, по сравнения с обычным сжиганием древесины, так как при обычном сжигании теряется до 25 процентов содержащейся энергии. При использовании газогенератора в автомобиле возрастает потребление энергии в 1,5 раза по сравнению с автомобилем работающем на бензиновом топливе (включая потери на предварительный нагрев системы и увеличение веса самой машины). Если принять к сведению, что необходимая для нужд энергия транспортируется, а затем вырабатывается из нефти то и газификация древесины остается эффективна по сравнению с бензином. Так же следует учитывать, что древесина является возобновляемым источником энергии, а бензин нет.

Преимущества газогенераторных автомобилей

Самое главное преимущество газогенераторных автомобилей заключается в том, что в нем используется возобновляемое топливо без какой-либо предварительной обработки. А на преобразование биомассы в жидкое топливо, такое как этанол или биодизель, может расходоваться энергии (в том числе и СО2) больше, чем содержится в изначальном сырье. В газогенераторном автомобиле для производства топлива энергия не используется, за исключением порезки и рубки древесины.

Газогенераторный автомобиль не нуждается в мощных химических аккумуляторных батареях и это является преимуществом перед электромобилем. Химические аккумуляторы имеют свойство саморазряжаться и нужно не забывать их заряжать перед эксплуатацией. Устройства, вырабатывающие древесный газ являются, как бы, натуральными аккумуляторами. Отсутствует необходимость в высокотехнологичной обработке отработавших и неисправных химических аккумуляторных батарей. Отходами работы газогенераторной установки является зола, которая может быть использована в качестве удобрения.

Правильно сконструированный автомобильный газогенератор значительно меньше засоряет воздушное пространство, чем бензиновый или дизельный автомобиль.

Газификация древесины значительно чище, чем непосредственное сжигание древесины: выбросы в атмосферу сопоставимы с выбросами при сжигании природного газа. При эксплуатации электромобиль не засоряет атмосферу, но позже, для зарядки аккумуляторов нужно приложить энергию, которая, пока что добывается традиционным путем.

Недостатки газогенераторных автомобилей

Несмотря на многие преимущества в эксплуатации газогенераторных автомобилей, следует понимать, что это не самое оптимальное решение. Установка, производящая газ, занимает много места и весит несколько сотен килограммов – и весь этот «завод» приходится возить с собой и на себе. Газовое оборудование имеет большой размер из-за того, что древесный газ имеет низкую удельную энергию. Энергетическая ценность древесного газа составляет около 5,7 МДж / кг, по сравнению с 44 МДж / кг у бензина и 56 МДж / кг у природного газа.

При работе на газогенераторном газе не удается достигнуть скорости и ускорения, как на бензине. Так происходит потому, что древесный газ состоит примерно из 50 процентов азота, 20 процентов окиси углерода, 18 процентов водорода, 8 процентов двуокиси углерода и 4 процента метана. Азот не поддерживает горение, а углеродные соединения снижают горение газа. Из-за высокого содержания азота двигатель получает меньше топлива, что приводит к снижению мощности на 30-50 процентов. Из-за медленного горения газа практически не используются высокие обороты, и снижаются динамические характеристики автомобиля.

Автомобили с небольшим объемом двигателя тоже можно оборудовать генераторами древесного газа (например, Opel Kadett на рисунке выше), но все же лучше оснащать газогенераторами большие автомобили с мощными двигателями. На маломощных двигателях, в некоторых ситуациях, наблюдается сильная нехватка мощности и динамики двигателя.

Сама газогенераторная установка может быть изготовлена и меньшего размера для небольшого автомобиля, но это уменьшение не будет пропорциональным размеру автомобиля. Были сконструированы газогенераторы и для мотоциклов, но их габаритные размеры сопоставимы с мотоциклетной коляской. Хотя этот размер значительно меньше, чем устройства для автобуса, грузовика, поезда или корабля.

Удобство использования газогенераторного автомобиля

Еще одна известная проблема газогенераторных автомобилей заключается в том, что они не очень удобны в использовании (хотя и значительно улучшились по сравнению с технологиями, используемыми во время войны). Тем не менее, несмотря на улучшения, современному газогенератору требуется около 10 минут, чтобы выйти на рабочую температуру, поэтому не получится сесть в автомобиль и немедленно уехать.

Кроме того, перед каждой последующей заправкой необходимо извлечь лопаткой золу – отработку предыдущего горения. Образование смол уже не так проблематично, чем это было 70 лет назад, но и сейчас это очень ответственный момент, так как фильтры должны очищаться регулярно и качественно, что требует дополнительного частого обслуживания. В общем, газогенераторный автомобиль требует дополнительных хлопот, полностью отсутствующих в работе бензинового автомобиля.

Высокая концентрация смертельного угарного газа требует дополнительных мер предосторожности и контроля от возможной протечки в трубопроводе. Если установка находится в багажнике, то не следует экономить на датчике СО в салоне автомобиля. Нельзя запускать газогенераторную систему в помещении (гараже), так как при запуске и выходе на рабочий режим должно быть открытое пламя (рисунок слева).

Все транспортные средств, описанные выше, построены инженерами любителями. Можно предположить, если бы было решено выпускать газогенераторные автомобили профессионально в заводских условиях, то, скорее всего, многие недостатки были бы устранены, а преимуществ стало бы больше. Такие автомобили могли бы выглядеть более привлекательно.

Например, в автомобилях Volkswagen, выпускаемых в заводских условиях во время Второй мировой войны, весь газогенераторный механизм был скрыт под капотом. С передней стороны в капоте находился только люк для загрузки дров. Все остальные части установки не были видны.

Еще один вариант газогенераторного автомобиля выпускаемого в заводских условиях – Mercedes-Benz. Как видно на фотографии ниже, весь механизм газогенератора скрыт под капотом багажника.

К сожалению, увеличение использования древесного газа и биотоплива может привести к образованию новой проблемы. И массовое производство газогенераторных автомобилей может усугубить эту проблему. Если начать значительно увеличивать количество автомобилей, использующих древесный газ или биотопливо, то в таком же количестве начнут снижаться запасы деревьев, а сельскохозяйственные земли будут принесены в жертву для выращивания культур, перерабатываемых на биотопливо, а это может привести к образованию голода. Использование газогенераторной техники во Франции во время Второй мировой войны стало причиной резкого уменьшения лесных запасов. Так же и другие технологии производства биотоплива приводят к уменьшению выращивания полезных для человека растений.

Хотя, наличие газогенераторного автомобиля может привести к более умеренному его использованию:
прогревать в течении 10 минут газогенератор или использовать велосипед для перемещения в магазин за продуктами – скорее всего выбор будет сделан в пользу последнего;

рубить в течении 3-х часов дрова для поездки на пляж или воспользоваться поездом – вероятно выбор будет в пользу последнего.

Как бы там ни было, газогенераторные автомобили не могут равняться с бензиновыми и дизельными автомобилями. Только глобальная нехватка нефти или очень большое удорожание ее сможет заставить нас пересесть на газогенераторный автомобиль.

Газогенера́торный автомоби́ль — автомобиль, двигатель внутреннего сгорания которого получает в качестве топливной смеси газ, вырабатываемый газогенератором.

Содержание

Технологический процесс [ править | править код ]

В качестве топлива могут использоваться дрова, угольные брикеты, торф и т. п. Принцип работы газогенератора основан на неполном сгорании углерода. Углерод при сгорании может присоединить один атом кислорода или два, с образованием соответственно монооксида (угарный газ) и диоксида (углекислый газ). При неполном сгорании углерода выделяется практически треть энергии от величины полного сгорания. Таким образом, полученный газ обладает гораздо меньшей теплотой сгорания, чем исходное твёрдое топливо. Кроме того, в газогенераторе при газификации древесины, а также при газификации угля с добавлением воды (как правило в виде пара) идёт эндотермическая реакция между образующимся монооксидом углерода и водой с образованием водорода и углекислого газа. Эта реакция снижает температуру полученного газа и повышает КПД процесса до величины 75-80 %. В случае же если нет необходимости перед использованием охлаждать газ, то КПД газификации составит 100 % [

источник не указан 703 дня ] . То есть фактически будет осуществлено двухстадийное полное сжигание твёрдого топлива.

Калорийность полученного газа достаточно низкая вследствие разбавления его азотом. Но поскольку для его сгорания требуется значительно меньше воздуха, чем для сгорания углеводородов, то калорийность рабочей смеси (газ + воздух) лишь незначительно ниже чем у традиционных топливовоздушных смесей. Основной причиной снижения мощности транспортных двигателей используемых для работы на газе без переделки является уменьшение величины заряда рабочей смеси, поскольку добиться удовлетворительного охлаждения газа на подвижной технике затруднительно. Но эта проблема не имеет существенного значения для стационарных двигателей, где масса и габариты охладителя мало ограничены. На двигателях, специально изменённых или специально разработанных для работы на генераторном газе, посредством повышения степени сжатия и незначительного наддува газогенератора, достигаются равные с бензиновыми двигателями литровые мощности.

Газогенератор обычно применяется при наличии уже имеющихся ДВС (как бензиновых, так и дизельных) и отсутствии основного жидкого (бензин, солярка) топлива для них.

История [ править | править код ]

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. В 1801 году Лебон взял патент на конструкцию газового двигателя, однако в 1804 году он был убит, не успев воплотить в жизнь своё изобретение.

В 1860 г. бельгийский официант и, по совместительству, инженер-любитель Этьен Ленуар создал и запатентовал двигатель внутреннего сгорания, работающий на светильном газе.

В 1862—1863 гг. газогенераторная силовая установка мощностью до 4 л.с. была установлена на восьмиместный открытый омнибус. КПД двухтактного двигателя Ленуара достигал всего 5 %. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, поэтому, когда на Парижской всемирной выставке 1878 г. публике был продемонстрирован четырёхтактный газовый двигатель немецкого инженера Николаса Отто с КПД 16 %, слава пионера газогенераторного двигателестроения, к сожалению, быстро померкла.

В 1883 г. английский инженер Э. Даусон впервые сформулировал концепцию сочетания газогенератора и двигателя внутреннего сгорания в едином блоке, который целиком мог быть установлен на транспортной или иной машине. Значение этой работы было настоль велико, что в течение некоторого времени полуводяной газогенератор повсеместно назывался «газом Даусона». Первый классический газогенераторный автомобиль, использующий в качестве топлива древесные чурки и древесный уголь, был построен Тейлором в 1900 г. во Франции (патент в России выдан в 1901 г.).

В 1891 году отставной лейтенант Российского флота Евгений Яковлев построил завод газовых и керосиновых двигателей в Санкт-Петербурге на Большой Спасской улице, однако конкуренцию с нефтяными и бензиновыми двигателями его продукция не выдержала.

В 1916 г. начались регулярные рейсы газогенераторного автобуса между Парижем и Руаном (протяжённость маршрута по разным данным составляла от 125 до 140 км).

В 1919 г. французский инженер Георг Имберт создал газогенератор прямоточного (обращённого) типа, в котором топливо и газифицирующий агент при газификации движутся в одном направлении. В 1921 был создан автомобиль с газогенератором на этом принципе. При этом древесина пиролизуется не в цилиндрах (как у Форда, Круппа или Порше), а в котле, где древесина «сжигалась» при недостатке кислорода (частичнозамещённый пиролиз), что являлось большим шагом вперед по сравнению с полукоксованием от Круппа. Это позволило настолько улучшить качество газогенераторов, что газогенераторные двигатели снова стали реальными конкурентами бензиновых и дизельных двигателей.

В Германии во время войны стали делать газогенераторы не только дровяные, но и на брикетах из буроугольной крошки и пыли, так как этого топлива там было достаточно много. Грузовики с газогенераторами ездили не быстро — 20 км в час — на низкокалорийном газе, в который превращались в газогенераторе дрова. В некоторых странах мира и в настоящее время используют такие автомобили (в очень небольших количествах), довольно много их в сельской местности Северной Кореи [1] .

В 1938 г. в Европе насчитывалось около 9 тыс. автомашин, работавших на газогенераторном горючем. К 1941 г. это количество увеличилось почти в 50 раз. В том числе в Германии их число достигло 300 тыс.

Первое в СССР испытание автомобиля на шасси ФИАТ-15 с газогенераторной установкой В. С. Наумова состоялось в 1928 году. В 1934 году проведён первый испытательный пробег газогенераторных автомобилей по маршруту Москва — Ленинград — Москва, в котором участвовали ГАЗ-АА и ЗИС-5 с установками, спроектированными в НАТИ [2] .

В СССР в 1936 г. было принято постановление СНК СССР о производстве газогенераторных автомобилей и тракторов.
В 1936 году выпущена первая партия газогенераторных грузовиков ЗИС-13, а затем — ЗИС-21 и на Горьковском заводе — ГАЗ-42. В начале 1941 года выпускались работавшие на древесных чурках газогенераторные установки для автомобилей ЗИС, тракторов ЧТЗ и ХТЗ. Они имели существенные недостатки: небольшую мощность, быстрый износ металла, заводские дефекты, приводившие к большим простоям. Однако газогенераторные автомобили и трактора стали большим плюсом во время Великой Отечественной войны — они активно использовались в тылу.

В трудные годы войны все машины Колымы были переведены на газогенераторное топливо, или, проще говоря, на обыкновенную деревянную чурку. Были специальные комбинаты по заготовке и сушке «чурочки» — так ласково называли её шофёры. Уходя в рейс, водитель брал шесть-восемь мешков чурки, которые по мере необходимости засыпал в специальный бункер. Дерево сгорало, образовавшийся газ «двигал» машину.

Ясное дело, что «газген» появился не от хорошей жизни — не хватало бензина. Первая конструкция газогенераторного устройства была неудачной… Рационализаторы Аткинской автобазы решили заставить «газген» работать лучше. И они добились своего: сделали надёжным «газген» на трассе, грузоподъёмность его повысили до семи тонн. А опытные шофёры на такую машину брали прицепы до восьми тонн. На ВДНХ в 1945 году колымские «газгены» заняли первое место.

В поисках альтернативного источника энергии пришло понимание, что не обязательно добывать газ в шахтах, чтобы затем сжигать его в котлах и двигателях внутреннего сгорания, горючий газ можно добывать из отходов производства и древесины. Газогенератор или как его еще называют генератор газов путем сжигания местного топлива – дров, торфа, древесного угля, опилок и других отходов древесины, а также иногда других органических остатков способны выделять/генерировать горючие газы, такие как СО, СН4, Н2 и другие. Вариантов использования полученного газа несколько, но в любом случае в основу каждого устройства положен принцип газогенератора. О том, как работает газогенератор, из каких элементов он состоит, а также какие процессы проходят внутри него, мы расскажем в данной статье. Также рассмотрим варианты дальнейшего использования полученного газа и места, где можно устанавливать подобные агрегаты.

Итак, какие же существуют варианты использования газа, полученного в газогенераторе?

Первый – горючий газ направляется к газовой плите на кухне и используется для приготовления пищи. Второй – горючий газ сжигается сразу же в пиролизном котле отопления с газогенератором, соответственно, используется для отопления дома или теплиц. Кстати, подобные котлы могут называться газовым котлом на дровах, твердотопливным пиролизным котлом, газогенераторным котлом на дровах. Все они могут использоваться как для бытовых нужд, так и для отопления огромных производств и цехов или предприятий. Третий – горючий газ может направляться в двигатель внутреннего сгорания, который служит приводом насосной станции или генератора электроэнергии. Газовый генератор на дровах позволяет получать электроэнергию в тех регионах, где нет возможности провести линии электропередач, выполнить прокладку газопровода и затруднен подвоз газа в баллонах. Помимо автономности у газогенераторов есть и другие преимущества, которые мы раскроем ниже.

Преимущества и недостатки генераторов газа

В качестве примера рассмотрим преимущества и недостатки газогенераторных котлов отопления. Пиролизные котлы относятся к категории твердотопливных, но существенно отличаются от обычных печей на дровах или угле, где происходит обычный процесс сгорания топлива.

Преимущества газогенераторных котлов:

  • КПД газогенераторных котлов находится в диапазоне 80 – 95 %, в то время как КПД обычного твердотопливного котла редко превышает 60 %.
  • Регулируемый процесс горения в газогенераторном котле – одна закладка дров может гореть от 8 до 12 часов, для сравнения в обычном котле горение длится 3 – 5 часов. В газогенераторных котлах с верхним горением сгорание дров длится до 25 часов, а уголь может гореть 5 – 8 дней.
  • Топливо сгорает полностью, поэтому чистить зольник и газоход приходится не часто.
  • Благодаря тому, что процесс горения можно регулировать (мощность регулируется в диапазоне 30 – 100 %), работу котла можно автоматизировать, как например, газового или жидкотопливного.
  • Выброс вредных веществ в атмосферу из газогенератора минимален.
  • Газогенераторные котлы экономнее обычных.
  • Топливо для газогенераторов не обязательно должно быть подсушено до 20 % влажности, существуют модели котлов, в которых можно использовать древесину до 50 % влажности и даже свежесрубленную.
  • Возможность загрузки в котел неколотых поленьев до 1 м длиной и даже больше.

  • Помимо дров и отходов древесной промышленности в пиролизных котлах можно утилизировать резину, пластмассу и другие полимеры.
  • Высокая безопасность котла по сравнению с обычным твердотопливным котлом обеспечивается автоматикой и материалами, из которых изготовлен агрегат, а в особенности камеры сгорания.

Если говорить о газогенераторах, которые используются для производства электроэнергии, то они обладают точно такими же достоинствами, такими как экологичность, экономичность, высокий КПД, высокое октановое число 110 – 140, универсальность в плане используемого топлива и большая эффективность в зимнее время.

Недостатки газогенераторных котлов:

  • На газовый генератор цена в 1,5 – 2 раза выше, чем на обычный твердотопливный котел.
  • В большинстве своем газогенераторы энергозависимы, так как для подсоса воздуха используется вентилятор, но также существуют модели, которые могут работать и без электричества.
  • Если использовать газогенераторный котел на мощности ниже 50 %, то наблюдается нестабильное горение – как результат выпадение в осадок дёгтя, который скапливается в газоходе.
  • Температура обратки отопления не должна быть ниже 60 °С, иначе в газоходе будет выпадать конденсат.
  • Обычно газогенераторы требовательны к влажности топлива, но как уже писалось выше, есть модели, в которых можно сжигать даже свежесрубленную древесину.

Других существенных недостатков газогенераторов не выявлено.

Кстати, газогенераторы – не такое уж и новое изобретение. Еще в середине прошлого века, когда большая часть нефтяных ресурсов Германии шла на вооружение, в качестве топлива для автомобилей использовались дрова. Даже на грузовые автомобили устанавливались газогенераторы. Современные агрегаты не слишком далеко ушли в своей конструкции, но, тем не менее, основательно усовершенствованы.

Принцип работы газового генератора – газогенератора

В генераторе газов или газогенераторе из твердого топлива добывается горючий газ. Основной секрет заключается в том, что в камеру сгорания подается воздух, объема которого недостаточно для полного сгорания топлива, при этом соблюдается высокая температура порядка 1100 – 1400 °С. Полученный газ охлаждается и направляется к потребителю или двигателю внутреннего сгорания, если, например, планируется добывать электричество. Более детально принцип работы газогенератора рассмотрим ниже, уточнив какой процесс в каком элементе агрегата происходит.

Устройство газового генератора на древесине

Рассмотрим устройство газогенератора бытового назначения. Сразу хотелось бы отметить, что пиролизные котлы с газогенератором отличаются от предложенной схемы, так как сгорание газа происходит внутри котла во второй камере сгорания. Мы же рассмотрим лишь сам газогенератор, на выходе из которого получается горючий газ.

Схема газогенератора:

Корпус газогенератора изготовлен из листовой стали и имеет сварные швы. Самая распространенная форма корпуса – цилиндрическая, но она вполне может быть и прямоугольной. К нижней части корпуса приварено днище и ножки, на которых будет стоять газогенератор.

Бункер или камера заполнения служит для загрузки внутрь газогенератора топлива. Он также имеет цилиндрическую форму и изготовлен из малоуглеродистой стали. Бункер установлен внутри корпуса газогенератора и закреплен болтами. На крышке люка, ведущего в бункер, на кромках использован асбестовый уплотнитель или прокладка. Так как асбест запрещен для использования в жилых помещениях, то существуют модели газогенераторов, уплотнители крышки которой изготовлены из другого материала.

Камера сгорания находится в нижней части бункера и изготовлена из жаропрочной стали, иногда внутренняя поверхность камеры сгорания отделывается керамикой. В камере сгорания происходит горение топлива. В нижней ее части происходит крекинг смол, для чего там установлена горловина, изготовленная из жаропрочной хромистой стали. Между корпусом и горловиной находится прокладка – уплотнительный асбестовый шнур. В средней части камеры сгорания находятся фурмы для подачи воздуха. Фурмы представляют собой калиброванные отверстия, которые соединяются с воздухораспределительной коробкой, связанной с атмосферой. Фурмы и распределительная коробка также изготавливаются из жаропрочной стали. На выходе из воздухораспределительной коробки установлен обратный клапан, который препятствует выходу горючего газа из газогенератора. Чтобы повысить мощность двигателя или иметь возможность использовать дрова повышенной влажности (более 50 %), перед воздухораспределительной коробкой можно установить вентилятор, который будет нагнетать внутрь воздух.

Колосниковая решетка служит для того, чтобы поддерживать раскаленные угли. Она располагается в нижней части газогенератора. Через отверстия решетки зола от сгоревших углей проваливается в зольник. Чтобы колосниковую решетку можно было очищать от шлака, ее средняя часть сделана подвижной. Для поворота чугунных колосников предусмотрен специальный рычаг.

Загрузочные люки оснащены герметично закрывающимися крышками. Например, верхний загрузочный люк откидывается горизонтально и уплотнен асбестовым шнуром. В креплении крышки есть специальный амортизатор – рессора, которая приподнимает крышку в случае избыточного давления внутри камеры. Сбоку корпуса есть также два загрузочных люка: один сверху – для добавления топлива в зону восстановления, второй снизу – для удаления золы. Отбор газа производится в зоне восстановления, поэтому чаще всего в верхней части газогенератора, но также возможно отведение газа и из нижней части агрегата. Отбор газа производится через патрубок, к которому приварены трубы газопровода. Не обязательно сразу же выводить газ за пределы корпуса газогенератора, пока он горячий, его можно использовать для подогрева и подсушивания дров или другого топлива в камере загрузки. Для этого отводящий газопровод проводится по кольцевой вокруг камеры, между корпусом газогенератора и бункером.

Фильтр «Циклон» и фильтр тонкой очистки располагаются за корпусом газогенератора. Они изготовлены из труб, наполненных фильтрующими элементами.

Прежде чем поступить в фильтр тонкой очистки, газ проходит через охладитель. А после фильтра тонкой очистки очищенный газ поступает в смеситель, где смешивается с воздухом. И только затем газо-воздушная смесь поступает в двигатель внутреннего сгорания.

Более наглядно последовательность движения горючего газа, после того как он вышел из газогенератора, показана на схеме ниже.

Дрова или другое топливо горит в камере сгорания, окисляясь воздухом, поступающим в камеру сгорания через фурмы из воздухораспределительной коробки. Полученный горючий газ поступает в фильтр Циклон, где очищается. Затем охлаждается в фильтре грубой очистки. Затем уже охлажденный газ поступает в фильтр тонкой очистки, а затем в смеситель. Из смесителя полученная смесь поступает в двигатель.

Процесс превращения топлива в газ

И все же: как из твердого топлива получается газ? Внутри газогенератора происходит некий процесс превращения, который разбит на несколько этапов, происходящих в разных зонах:

Зона подсушки находится в верхней части бункера. Здесь температура порядка 150 – 200 °С. Топливо подсушивается горячим газом, который движется по кольцевому трубопроводу, как было описано выше.

Зона сухой перегонки расположена в средней части бункера. Здесь без доступа воздуха и при температуре 300 – 500 °С топливо обугливается. Из древесины выделяются кислоты, смолы и другие элементы сухой перегонки.

Зона горения находится внизу камеры сгорания в зоне, где расположены фурмы, через которые поступает воздух. Здесь при подаче воздуха и температуре 1100 – 1300 °С обугленное топливо и элементы сухой перегонки сгорают, в результате чего образуются газы СО и СО2.

Зона восстановления находится выше зоны горения между колосниковой решеткой и зоной горения. Здесь газ СО2 поднимается вверх, проходит через раскаленный уголь, взаимодействует с углеродом (С) угля и на выходе образуется газ СО – окись углерода. В данном процессе также участвует влага из топлива, поэтому помимо СО образуется СО2 и Н2.

Зоны горения и восстановления называются зоной активной газификации. В результате генераторный газ состоит из нескольких компонентов:

  • Горючие газы: СО (оксид углерода), Н2 (водород), СН4 (метан) и СnНm (непредельные углеводороды без смол).
  • Балласт: СО2 (углекислый газ), О2 (кислород), N2 (азот), Н2О (вода).

Полученный газ охлаждается до температуры окружающей среды, затем очищается от муравьиной и уксусной кислоты, золы, взвешенных частиц и смешивается с воздухом.

Типы газогенераторов

Различают три типа газогенераторов: прямого процесса газогенерации, обратного и горизонтального.

Газогенераторы прямого процесса могут сжигать уголь полукокс и антрацит – топливо небитуминозное. Конструктивное отличие данного типа агрегатов в том, что воздух поступает через колосниковую решетку снизу, а забор газа производится сверху. В газогенераторах прямого процесса влага из топлива не попадает в зону горения, поэтому ее подводят специально. Обогащение генераторного газа водородом из воды повышает мощность генератора.

Газогенераторы опрокинутого или обращенного процесса предназначены для сжигания смолистого топлива – дров, древесного угля и отходов. Их конструктивное отличие в том, что воздух подается в среднюю часть – в зону горения, а забор газа производится ниже зоны горения – в зольнике. Обычно в агрегатах такого типа отобранный горячий газ используется для подогрева топлива в бункере.

Газогенераторы горизонтального или поперечного процесса газификации отличаются тем, что воздух в них подводится сбоку – в нижней части корпуса, причем подается он с высокой скоростью дутья через фурмы. Отбор газа производится напротив фурмы через газоотборную решетку. Активная зона газификации в газогенераторе горизонтального процесса очень мала и сосредоточена между концом фурмы и газоотборной решеткой. Время пуска такого генератора намного меньше, также он легко приспосабливается к смене режимов работы.

Место установки газового генератора

Газогенераторы и газогенераторные котлы отопления можно устанавливать как внутри жилых помещений, например, в подвалах и цокольных этажах, так и на улице.

Так называемые пеллетные котлы чаще всего устанавливают в доме, так как их загрузка не сопряжена с большим количеством мусора, а также мешки с пеллетами весят немного и могут храниться где-то рядом с котлом.

Газогенераторы на дровах, а в особенности на дровах большой длины, имеет смысл устанавливать на улице недалеко от места хранения дров. Так можно будет подвезти дрова на тачке непосредственно к котлу или газогенератору и не спускать их в подвал дома. Стоящий на улице котел избавляет от грязи и золы в подвале. Особенно это актуально для деревянных домов, где повышенные нормы пожаробезопасности. Внешний корпус котла изготавливается из нержавеющей стали, которая не подвержена коррозии. Также котлы теплоизолированы насыпной теплоизоляцией, чтобы температура окружающей среды минимально влияла на процесс газификации и скорость пуска котла. Система регулирования размещается в стальном кожухе под крышкой, чтобы на нее не попадали осадки. Дымовая труба имеет двойные стенки. Если вас интересует, как подключить газовый генератор, если он стоит на улице, то ответ прост – трубы прокладываются в земле, чтобы они минимально охлаждались, если это котел отопления. Трубы отопления подходят к котлу снизу, а сам котел устанавливается так, чтобы при длительных перерывах в использовании он не замерзал.

Кстати, как уже отмечалось, длительность процесса горения топлива в котле может быть от 12 часов и достигать 25 часов. В зависимости от мощности котла и площади отапливаемого помещения, его придется топить раз в два дня, а иногда и раз в неделю. Чтобы сохранить вырабатываемое котлом тепло на столь длительный период, используется теплоаккумулятор.

Дровяной газовый генератор своими руками

В том чтобы изготовить газогенератор своими руками, нет ничего сверхсложного. Многие используют такой агрегат для бытовых нужд или устанавливают на автомобиль. Перед тем как начать изготавливать газогенератор самостоятельно, необходимо ознакомиться с принципом его действия и выбрать подходящую для себя схему работы.

Понадобятся – бочка, трубы или старая батарея радиаторов, фильтры тонкой и грубой очистки газа, вентилятор. С другой стороны набор элементов может быть самым разным, все зависит от фантазии исполнителя.

Ниже посмотрите видео пример газогенератора самостоятельного изготовления.

Схема газогенратора:

В интернете можно найти как фото, так и чертежи по монтажу газовых генераторов и пиролизных котлов. Есть даже умельцы, которые берут за основу готовый проверенный котел и полностью повторяют его в домашних условиях. Получается дешевле намного.

Схема газогенераторного котла:

Отличие пиролизного котла от обычного газогенератора в том, что он состоит из двух камер сгорания: в одной сгорает топливо и образуется газ, а в другой – сгорает газ и находится теплообменник. Устройство и принцип работы газогенератора мы уже рассмотрели, добавьте в него только вторую камеру сгорания, которая должна располагаться вверху, и теплообменник сверху. Иногда теплообменник располагают сбоку. Также не забудьте о разных типах газогенераторов, так что вторая камера сгорания может находиться не только сверху.

При сборе дымохода постарайтесь собирать его в последовательности, обратной движению дыма, так на его стенках будет меньше оседать всякой гадости. Сам дымоход лучше сделать легкоразбираемым, чтобы его можно было легко и быстро чистить. Пространство вокруг котла отопления должно быть свободным, так как он нагревается в процессе работы. После монтажа котла придется изучить его «повадки» и подобрать оптимальный для себя режим работы, при котором сгорают все смолы.

Хотелось бы отметить, что газогенератор может рассматриваться не только как сжигатель полезной древесины, но и как утилизатор отходов. В нем можно сжигать остатки линолеума, пакетов, мешков, резины, пластиковых бутылок и другого бытового мусора.

Газогенератор — автомобиль на дровах! — вотэто — любопытно!

Газогенератор в автомобиле

Цена бензина ну и дизельного горючего быстро уходт ввысь, как уходит  космическая ракета со стартовой площадки. С таковой же скоростью сокращаются припасы углеводородов. Другие источники энергии — водород и электричество с переменным фуррором внедряются в серийные авто. Но, как оказалось, есть и другая, отлично позабытая кандидатура — газогенератор, а если по обычному — в качестве горючего употребляются простые дрова!

Во время 2-ой мировой войны в Европе практически каждое тс было переоборудовано на внедрение дров в качестве горючего.
Авто, работающие на древесном газу (также еще именуемые газогенераторные авто) хоть и теряют свою элегантность во наружном виде, но очень эффективны, по сопоставлению со своими бензиновыми собратьями, в плане экологичности и могут приравниваться с электромобилями.
Рост цен на горючее приводит к возобновлению энтузиазма к этой практически позабытой технологии: в мире, 10-ки любителей разъезжают по улицам городов на собственных самодельных газогенераторных автомобилях.

Авто на дровах,газген,Газогенератор в автомобиле,синтез газа, автомобиль на дровах, авто газогенератор, газагенератор своими руками

Процесс образования газогенераторного газа (синтез газа), при котором органический материал преобразуется в горючий газ, начинает происходить под воздействием тепла при температуре 1400 ° C .

1-ое внедрение древесной породы для образования горючего газа начинается с 1870 года, тогда его использовали для уличного освещения и изготовления еды.

В 1920-х годах, германский инженер Жорж Эмбер разработал генератор, вырабатывающий древесный газ для мобильного использования. Получаемый газ очищался, незначительно охлаждался, а потом подавался в камеру сгорания мотора автомобиля, при всем этом, движок фактически не нуждался в переделке.

С 1931 года началось общее создание генераторов Эмбера. В конце 1930-х годов, уже около 9000 тс использовали газогенераторы только в Европе.
2-ая глобальная война
Газогенераторные технологии стали обыденным явлением в почти всех европейских странах во время 2-ой мировой войны, из-за ограничения и недостатка ископаемых и водянистых видов горючего. В одной только Германии, к концу войны, около 500.000 автомобилей были дооборудованы газогенераторами для эксплуатации на древесном газу.

Газогенераторные штатские авто времен 2-ой мировой войны

Было выстроено около 3000 «заправочных станций», где водители могли запастись дровами. Не только лишь легковые авто, да и грузовые авто, автобусы, трактора, байки, корабли и поезда были обустроены газогенераторными установками. Даже некие танки были оборудованы газогенераторными установками, хотя для военных целей немцы производили водянистые синтетические горючего (изготовленные из дерева либо угля).

500.000 газогенераторных штатских автомобилей к концу войны в Германии

В 1942 (когда разработка еще не достигнула пика собственной популярности), насчитывалось около 73000 газогенераторных автомобилей в Швеции, во Франции 65000, 10000 в Дании, 9000 в Австрии и Норвегии, и практически 8000 в Швейцарии. В Финляндии числилось 43000 газогенератрных машин в 1944 году, из которых 30000 были автобусы и грузовые авто, 7000 легковые авто, 4000 тракторов и 600 лодок.

Газогенераторные авто также появилась в США и в Азии. В Австралии насчитывалось около 72000 газогенераторных автомобилей. В общей трудности более миллиона автомобилей использующих древесный газ находилось в эксплуатации во время 2-ой мировой войны.

После войны, когда бензин стал вновь доступен, газогенераторные технологии практически одномоментно канули в лету. Сначала 1950-х годов, в Западной Германии осталось только около 20000 газогенераторов.
Программка исследовательских работ в Швеции

Рост цен на горючее и глобальное потепление привело к возобновлению энтузиазма к дровам, как к конкретному горючему. Многие независящие инженеры по всему миру занялись переоборудованием стандартных автомобилей на внедрение древесного газа в качастве авто горючего. Типично, что большая часть этих современных газогенераторов разрабатывается в Скандинавии.

В 1957 году правительство Швеции сделало исследовательскую программку для подготовки к способности резвого перехода автомобилей на внедрение древесного газа, в случае неожиданной нехватки нефти. Швеция не имеет припасов нефти, но у нее есть большие лесные массивы, которые могут употребляться в качестве горючего. Целью этого исследования была разработка усовершенствованной, стандартизированной установки, которая может быть приспособлена для использования на всех видах тс. Это исследование поддерживалось производителем автомобилей Volvo. В итоге исследования работы автомобилей и тракторов на протяженности 100.000 км пробега, были получены огромные теоретические познания и практический опыт.

Некие финские любители инженеры использовали эти данные для предстоящего развития технологии, к примеру Юха Сипиля (на изображении слева).

Газогенераторная установка вырабатывающая древесный газ, смотрится как большой подогреватель воды. Эту установку можно расположить на прицепе (хотя это затрудняет парковку автомобиля), в багажнике автомобиля (занимает практически все багажное отделение) либо на платформе в фронтальной либо задней части автомобиля (более пользующийся популярностью вариант в Европе). На американских пикапах, генератор помещается в кузове. Во время 2-ой мировой войны, некие авто были обустроены интегрированным генератором, стопроцентно сокрытым от глаз.
Горючее для газогенератора

Горючее для газогенераторных автомобилей состоит из древесной породы либо щепы (фото слева). Древесный уголь также может быть применен, но это приводит к потере до 50 процентов энергии, содержащейся в уникальной биомассе. С другой стороны, уголь содержит больше энергии за счет более высочайшей калорийности, так что диапазон топлив может быть разнообразен. В принципе, хоть какой органический материал может быть применен. Во время 2-ой мировой войны, уголь и торф использовались, но лес был главным видом горючего.

Голландская Volvo 240

Один из более успешных газогенераторных автомобилей был построен в 2008 году голландцем Джоном. Многие авто, оборудованные газогенераторами, имели массивную конструкцию и не очень симпатичный вид. Голландская Volvo 240, укомплектована современной газогенераторной системой из нержавеющей стали, и имеет современный стильный вид.

“Получить древесный газ не так тяжело”, гласит Джон, намного сложнее получить незапятнанный древесный газ. У Джона есть много приреканий на авто газогенераторные установки, потому что производимый ими газ содержит много примесей.

Джон из Голландии твердо уверен, что газогенераторные установки вырабатывающие древесный газ намного перспективнее использовать стационарно, к примеру, для отопления помещения и для бытовых нужд, для производства электроэнергии, и для схожих производств. Газогенераторный автомобиль Volvo 240 рассчитан сначала для демонстрации способностей газогенераторной технологии.

Около автомобиля Джона и около схожих газогенераторных автомобилей всегда собирается много восхищенного и заинтересованного народа. Все же авто газогенераторные установки для идеалистов и на время кризиса – считает Джон.
Технические способности

Газогенераторная Volvo 240 добивается наибольшей скорости 120 км в час (75 миль / ч) и может поддерживать крейсерскую скорость 110 км / ч (68 миль / ч). “Топливный бак” может содержать 30 кг (66 фунтов) древесной породы, этого довольно для приблизительно 100 км пробега (62 миль), что сопоставимо с электромобилем.

Если заднее сиденье загрузить мешками с древесной породой, то дальность пробега возрастает до 400 км (250 миль). Снова же, это сопоставимо с электромобилем, если место для пассажира приносится в жертву для установки дополнительных батарей, как в случае с Tesla Roadster либо электромобилем Mini Cooper. (В газогенераторе дополнительно ко всему, временами необходимо брать мешок с древесной породой из заднего сиденья и вываливать в бак).

Существует принципно другой подход к переоборудованию автомобилей газогенераторными системами. Это метод размещения газгена на прицепе. Таковой подход выбрал Веса Микконен. Последняя его работа – это газогенераторный Lincoln Continental 1979 Mark V, большой тяжкий южноамериканский автомобиль класса купе. Lincoln потребляет 50 кг (110 фунтов) древесной породы на каждые 100 км пробега(62 миль) и является существенно наименее экономичным, чем Volvo Джона. Вес Микконен также переоборудовал Тоета Camry, более экономный автомобиль. Этот автомобиль потребляет всего 20 кг (44 фунтов) древесной породы при таком же пробеге. Но прицеп остался практически таким же огромным, как и сам автомобиль.

Оптимизация электромобилей может происходить за счет уменьшения размеров и облегчения общего веса. С двоюродными братьями газогенераторными автомобилями таковой метод не подходит. Хотя со времен 2-ой мировой войны газогенераторные авто стали намного совершеннее. Авто военных времен могли проезжать 20 – 50 км на одной заправке, имели низкие динамические и скоростные свойства.

Газогенераторный древесный автомобиль Джоста Конина

«Передвигаться по миру с помощью пилы и топора», – под таким лозунгом голландец Джост Конин (Joost Conijn) на собственном газогенераторном автомобиле с прицепом, сделал двухмесячное путешествие по Европе, полностью не беспокоясь о заправочных станциях (которых он не лицезрел в Румынии).

Хотя прицеп в данном автомобиле употреблялся для других целей, для хранения дополнительного припаса дров, по этому увеличивалось расстояние меж «заправками». Любопытно то, что Джост использовал древесную породу не только лишь в качестве горючего автомобиля, да и как строительный материал для самого автомобиля.

В 1990-х годах водород рассматривали в качестве альтернативного горючего грядущего. Потом огромные надежды возлагались на биотопливо. Позднее огромное внимание завлекло развитие электронных технологий в автомобилестроении. Если и эта разработка не получит предстоящего продолжения (тому есть конкретные предпосылки), тогда наше внимание вновь сумеет переключиться на газогенераторные авто.

Невзирая на высочайшее развитие промышленных технологий, внедрение древесного газа в автомобилях, представляет энтузиазм с экологической точки зрения, по сопоставлению с другими другими видами горючего. Газификация древесной породы несколько более эффективна, по сопоставления с обыденным сжиганием древесной породы, потому что при обыкновенном сжигании пропадает до 25 процентов содержащейся энергии. При использовании газогенератора в автомобиле растет потребление энергии в 1,5 раза по сопоставлению с автомобилем работающем на бензиновом горючем (включая утраты на подготовительный нагрев системы и повышение веса самой машины). Если принять к сведению, что нужная для нужд энергия транспортируется, а потом вырабатывается из нефти то и газификация древесной породы остается эффективна по сопоставлению с бензином. Так же следует учесть, что древесная порода является возобновляемым источником энергии, а бензин нет.
Достоинства газогенераторных автомобилей

Самое главное преимущество газогенераторных автомобилей состоит в том, что в нем употребляется возобновляемое горючее без какой-нибудь подготовительной обработки. А на преобразование биомассы в жидкое горючее, такое как этанол либо биодизель, может расходоваться энергии (в том числе и СО2) больше, чем содержится в изначальном сырье. В газогенераторном автомобиле для производства горючего энергия не употребляется, кроме порезки и рубки древесной породы.

Газогенераторный автомобиль не нуждается в массивных хим аккумуляторных батареях и это является преимуществом перед электромобилем. Хим батареи имеют свойство саморазряжаться и необходимо не забывать их заряжать перед эксплуатацией. Устройства, вырабатывающие древесный газ являются, вроде бы, натуральными аккумами. Отсутствует необходимость в сверхтехнологичной обработке отработавших и неисправных хим аккумуляторных батарей. Отходами работы газогенераторной установки является зола, которая может быть применена в качестве удобрения.

Верно сконструированный авто газогенератор существенно меньше засоряет воздушное место, чем бензиновый либо дизельный автомобиль.

Газификация древесной породы существенно чище, чем конкретное сжигание древесной породы: выбросы в атмосферу сравнимы с выбросами при сжигании природного газа. При эксплуатации электромобиль не засоряет атмосферу, но позднее, для зарядки аккумов необходимо приложить энергию, которая, пока добывается обычным методом.
Недочеты газогенераторных автомобилей

Невзирая на многие достоинства в эксплуатации газогенераторных автомобилей, следует осознавать, что это не самое наилучшее решение. Установка, производящая газ, занимает много места и весит несколько сотен кг – и весь этот «завод» приходится возить с собой и на для себя. Газовое оборудование имеет большой размер из-за того, что древесный газ имеет низкую удельную энергию. Энергетическая ценность древесного газа составляет около 5,7 МДж / кг, по сопоставлению с 44 МДж / кг у бензина и 56 МДж / кг у природного газа.

При работе на газогенераторном газе не удается добиться скорости и ускорения, как на бензине. Так происходит поэтому, что древесный газ состоит приблизительно из 50 процентов азота, 20 процентов окиси углерода, 18 процентов водорода, 8 процентов двуокиси углерода и 4 процента метана. Азот не поддерживает горение, а углеродные соединения понижают горение газа. Из-за высочайшего содержания азота движок получает меньше горючего, что приводит к понижению мощности на 30-50 процентов. Из-за неспешного горения газа фактически не употребляются высочайшие обороты, и понижаются динамические свойства автомобиля.

Опель Кадет, снаряженный газогенераторной установкой

Авто с маленьким объемом мотора тоже можно оборудовать генераторами древесного газа (к примеру, Опель Kadett на рисунке выше), но все таки лучше оснащать газогенераторами огромные авто с сильными движками. На маломощных движках, в неких ситуациях, наблюдается мощная нехватка мощности и динамики мотора.

Сама газогенераторная установка может быть сделана и наименьшего размера для маленького автомобиля, но это уменьшение не будет пропорциональным размеру автомобиля. Были сконструированы газогенераторы и для байков, но их габаритные размеры сравнимы с мотоциклетной коляской. Хотя этот размер существенно меньше, чем устройства для автобуса, грузовика, поезда либо корабля.
Удобство использования газогенераторного автомобиля

Еще одна популярная неувязка газогенераторных автомобилей состоит в том, что они не очень комфортны в использовании (хотя и существенно стали лучше по сопоставлению с технологиями, применяемыми во время войны). Все же, невзирая на улучшения, современному газогенератору требуется около 10 минут, чтоб выйти на рабочую температуру, потому не получится сесть в автомобиль и немедля уехать.

Не считая того, перед каждой следующей заправкой нужно извлечь лопаткой золу – отработку предшествующего горения. Образование смол уже не так проблематично, чем это было 70 годов назад, да и на данный момент это очень ответственный момент, потому что фильтры должны очищаться часто и отменно, что просит дополнительного нередкого обслуживания. В общем, газогенераторный автомобиль просит дополнительных морок, вполне отсутствующих в работе бензинового автомобиля.

Высочайшая концентрация смертельного угарного газа просит дополнительных мер предосторожности и контроля от вероятной протечки в трубопроводе. Если установка находится в багажнике, то не следует сберегать на датчике СО в салоне автомобиля. Нельзя запускать газогенераторную систему в помещении (гараже), потому что при запуске и выходе на рабочий режим должно быть открытое пламя (набросок слева).
Общее создание газогенераторных автомобилей

Газогенераторный Фольксваген Beetle, выпускаемый на заводе

Все транспортные средств, описанные выше, построены инженерами любителями. Можно представить, если б было решено выпускать газогенераторные авто мастерски в промышленных критериях, то, вероятнее всего, многие недочеты могли быть устранены, а преимуществ стало бы больше. Такие авто могли бы смотреться более презентабельно.

К примеру, в автомобилях Фольксваген, выпускаемых в промышленных критериях во время 2-ой мировой войны, весь газогенераторный механизм был укрыт под капотом. С фронтальной стороны в капоте находился только лючок для загрузки дров. Все другие части установки не были видны.

Очередной вариант газогенераторного автомобиля выпускаемого в промышленных критериях – Мерседес-бенз. Как видно на фото ниже, весь механизм газогенератора укрыт под капотом багажника.

Газогенераторный Мерседес-бенз 230, выпускаемый на заводе

 Вырубка леса

К огорчению, повышение использования древесного газа и биотоплива может привести к образованию новейшей задачи. И общее создание газогенераторных автомобилей может ухудшить эту делему. Если начать существенно наращивать количество автомобилей, использующих древесный газ либо биотопливо, то в таком же количестве начнут понижаться припасы деревьев, а сельскохозяйственные земли будут принесены в жертву для выкармливания культур, перерабатываемых на биотопливо, а это может привести к образованию голода. Внедрение газогенераторной техники во Франции во время 2-ой мировой войны стало предпосылкой резкого уменьшения лесных припасов. Так же и другие технологии производства биотоплива приводят к уменьшению выкармливания нужных для человека растений.

Хотя, наличие газогенераторного автомобиля может привести к более умеренному его использованию:

  • прогревать в течении 10 минут газогенератор либо использовать велик для перемещения в магазин за продуктами – вероятнее всего выбор будет изготовлен в пользу последнего;
  • рубить в течении 3-х часов дрова для поездки на пляж либо пользоваться поездом – возможно выбор будет в пользу последнего.

На пуск и разогрев газогенератора необходимо издержать минимум 10 минут времени

Вроде бы там ни было, газогенераторные авто не могут приравниваться с бензиновыми и дизельными автомобилями. Только глобальная нехватка нефти либо очень огромное удорожание ее сумеет вынудить нас пересесть на газогенераторный автомобиль.

Комментирование и размещение ссылок запрещено.

Автомобили на дровах — достойная альтернатива электрокарам?

В последнее время на фоне электрокаров бензиновые двигателя стали казаться несколько устаревшими, которые вот-вот канут в лету. Однако есть автолюбители, которые переводят свои автомобили на топливо, которое, казалось бы, осталось вообще давно в прошлом — на дрова. В январе соцсети облетела информация о том, что житель села под Винницей уже несколько лет
заправляет свою старенькую “Волгу” исключительно дровами и ездит практически бесплатно. Идея настолько понравилась его соседям, что они стали просить умельца сделать соответствующее оборудования и для их автомобилей. Но, конечно, речь не идет ни о каких паровых моторах с низким КПД. Мотор в автомобиле остается родной, и вообще изменений в конструкцию вносится минимальное количество. А если задуматься о преимуществах такого решения, то можно прийти к выводу, что дровяные автомобили могут стать альтернативой электрокарам, которая в чем-то им уступает, а в чем-то и выигрывает.

Автомобиль ГАЗ 31029, переоборудованный для езды на дровах

Как заставить бензиновые двигатель работать на дровах

В автомобили с бензиновыми двигателями часто устанавливают газобаллонное оборудование (ГБО), которое позволяет ездить на пропане или метане. Автомобиль с таким оборудованием работает точно так же, как и на бензине, с той лишь разницей, что в качестве горючей смеси подается газ. По такому же принципу работают и автомобили на дровах. Только газ подается в двигатель не из баллона, а из газогенератора, где он образуется в результате медленного горения дров. Принцип такой же, как в популярных в последнее время газогенераторных печах типа “Булерьян”, которые отличаются более высоким КПД, чем обычные твердотопливные печи.

В процессе медленного горения дров, которое происходит в условиях ограниченного количества кислорода, выделяется смесь горючих газов, состоящая из углерода СО и водорода Н2. Она способна воспламеняться от свечной искры и вполне подходит для работы в ДВС. Правда, мощность при этом несколько снижается, в результате чего уменьшается максимальная скорость и несколько ухудшатся динамика. Но, в сельской местности экономия гораздо важнее скорости и динамики.

Схема газогенераторного оборудования, позволяющего заправлять автомобиль дровами

Как правило газогенератор представляет собой вертикальный цилиндр, в который доверху засыпается топливо — дрова, уголь, прессованные опилки и т.д. Внизу происходит процесс горения, в результате чего температура повышается до 1500 градусов, при которой из древесины начинает выделяться газ. Но в двигатель он подается не сразу. Вначале проходит грубую и тонкую очистку, затем охлаждается, после чего смешивается с воздухом. Соответственно, установка кроме газогенератора содержит еще несколько элементов — фильтры грубой и тонкой очистки, охладители, а также электровентилятор, который принудительно нагнетает воздух. Установка при этом клапана или краника на топливный (бензиновый) шланг, позволяет в любой момент открыть подачу жидкого топлива и использовать автомобиль на бензине.

Автомобиль ЗИС с газогенераторной установкой

История автомобилей на дровах

Использование газогенераторной установки в автомобиле — далеко не новое изобретение. Популярность это решение обрело в СССР в 30-е и 40-е годы на лесоповале. С бензином возникали трудности, зато дров было неограниченное количество. Чтобы компенсировать потерю мощности на грузовиках, зачастую вносили в их конструкцию достаточно серьезные изменения — повышали степень сжатия в двигателе, чтобы улучшить наполнение цилиндров, использовали турбонаддувы. Также устанавливали более мощные генераторы, так как устанавливали мощные вентиляторы для нагнетания воздуха. К слову, первые электромобили тоже возникли на заре автомобилестроения.

До ВОВ машины переделывали на предприятиях Министерства лесной промышленности. Иногда партии автомобилей с газогенераторным оборудованием выпускались на самих заводах-изготовителях. Как правило, такие установки ставили на “полуторки” ГАЗ-АА и трехтонные грузовики ЗИС-5. Иногда на дрова переводили автобусы, выполненные на базе этих же грузовиков. Как утверждают некоторые специалисты, в СССР было выпущено более 33 тыс. “полуторок” ГАЗ-42 на дровах и более 16 тыс. грузовиков марки “ЗиС”. В российской глубинке грузовики на дровах встречались вплоть до 70-х годов прошлого века.

Немецкий военный автомобиль на дровах Volkswagen Тур 82

Надо сказать, что газогенераторные установки использовали не только в СССР. Во время Второй Мировой войны Германия испытывала дефицит топлива. В результате по заданию от правительства были разработаны и выпущены в серийное производство сразу два автомобиля на дровах — Volkswagen Beetle и Mercedes-Benz 230. Особенность серийных автомобилей заключалась в том, что установка не выпирала за пределы кузова, то есть визуально они не отличались от обычных бензиновых машин.
Компания Volkswagen даже разработала опытный образец военного автомобиля Volkswagen Тур 82.

В чем плюсы и минусы автомобилей на дровах

Изначально газогенераторные установки стали использовать по той причине, что жидкое топливо попросту отсутствовало в тех условиях, где эксплуатировались некоторые автомобили. Сейчас АЗС имеются на каждом шагу, однако цены на бензин регулярно повышаются даже в России, не говоря уже о странах, которые импортируют топливо. Поэтому на сегодняшний день основное преимущество такого решения — дешевизна эксплуатации.

Как рассказывает Олег Семенюк, он уже три года ездит на автомобиле практически бесплатно. Расход топлива составляет примерно мешок дров на 100 км. Запас хода от одной заправки около 50 км. Поэтому при езде на дальние расстояние ему приходится брать с собой дрова. Максимальная скорость его Волги составляет порядка 100 км/ч. На оборудование автомобиля было потрачено около 100 долларов США.

Волга на дровах разгоняется до 100 км/ч

Но, кроме финансовой выгоды автомобили на дровах имеют и другое достоинство — это экологичность. Древесина является возобновляемым источником энергии. Для заправки можно использовать отходы деревоперерабатывающих производств, мебельной промышленности и т.д. Кроме того, выхлопы «дровяного” двигателя гораздо меньше загрязняют окружающую среду, чем, к примеру, бензинового или дизельного. Правда, напомню, что абсолютно экологичных автомобилей не существуют, одни покрышки чего стоят, о чем мы рассказывали ранее.

Подписывайтесь на наш Пульс Mail.ru, где вы найдете еще больше интересных материалов.

В плане экологичности автомобили на дровах могут посоревноваться даже с электрокарами. Да, последние вообще не имеют выхлопов, но зато они содержат батареи с токсичными веществами, которые серьезно загрязняют окружающую среду. С распространением таких автомобилей вопрос их утилизации может стать серьезной проблемой.

Что касается недостатков автомобиля на дровах помимо снижения мощности — это громоздкость установки и небольшой запас хода. Газогенератор выпирает за пределы автомобиля. Однако это касается самодельного оборудования. При выпуске серийных автомобилей, немцам в 40-х годах эту проблему, как было сказано выше, решить удалось. Поэтому автомобили на дровах вполне могли бы стать экологичной и более дешевой в эксплуатации альтернативой электрокарам, особенно в условиях энергетического кризиса, с которым столкнулась Европа.

по Беларуси катается УАЗ, работающий на дровах » BigPicture.ru

А вы говорите, экономичный режим, гибриды, электромобили. Тут по Бресту катается УАЗ, работающий на дровах! Для лучшего понимания расхода этой машины стоит процитировать Сергея, автовладельца и, можно сказать, конструктора: «Однажды заехал в лес по грибы и обнаружил, что закончились дрова для растопки. Что делать? Граблями накидал в ведро шишек, забросил их в котел и поехал дальше». Одним словом, УАЗ может ехать «за бесплатно» везде, где есть древесина, где есть то, что горит. Проблемы могут возникнуть разве что в пустыне.

Спонсор поста: электродвигатели
Источник: Авто-Онлайнер

Из истории

Сергей всегда увлекался историей, в частности военной. Потому с ходу рассказывает о временах, когда подобные газогенераторы были на пике технологий:

«Угольный газ использовался еще пещерными людьми. Известный факт, что в свое время освещение во всем Санкт-Петербурге обеспечивали именно газогенераторные установки. Современная история этого устройства начинается с 1919 года, когда германско-французский инженер Георг Имберт, вернувшись с Первой мировой, собрал газогенератор на древесном угле. Проходит два года, и изобретатель представляет автомобиль, чей мотор работает по этому же принципу, только с усовершенствованием».

«Камера Имберт обращенного типа» работала так, что пиролиз проходил не в цилиндрах (как у Форда или Порше), а в котле, который устанавливался за кабиной водителя. Пиролиз в нашем случае — это горение древесины при недостатке кислорода с выделением газа, который и крутит поршни двигателя (но об этом чуть позже). Так вот, Имберт достиг таких высот, что здание его компании Imbert Generatoren GmbH стояло рядом с заводом Форда в Кельне, как бы напоминая о конкуренции. В 30-х годах газогенераторы инженера ставили на немецкие грузовики, автомобили Opel и Mercedes. К моменту, когда созрел международный конфликт, вылившийся в итоге во Вторую мировую войну, Имберт придумал, как оборудовать своей установкой танки! И усовершенствованные бронированные машины действительно ездили и даже стояли на вооружении — в основном в «учебках» и частях вспомогательной полиции (по-простому — у полицаев).

Технология получила распространение не только в Германии. В конце 20-х — начале 40-х годов в СССР тоже активно использовали грузовики с газогенераторами. Серийно их устанавливали на АМО, ЗиС-21 (выпущено более 15 тыс. моделей), Урал-ЗиС. В те времена Союз испытывал нехватку нефти, а автомобилизацию останавливать было нельзя. Почему бы не «топить» машины дровами? Во время Великой Отечественной войны такие транспортные средства сильно пригодились благодаря нулевым затратам. Есть свидетельства, что именно на газогенераторных автомобилях прорывали блокаду Ленинграда.

Массовая добыча нефти началась в 50-60-х годах, и в итоге новое топливо понемногу вытеснило разработки ученых образца начала века. Газогенераторы снимали с машин и попросту отправляли в металлолом. Сейчас мы видим обратную тенденцию — отказ от ДВС, использование возобновляемых источников энергии. Например, по данным СМИ, в Швеции владельцев автомобилей, ездящих на дровах, поощряют на государственном уровне субсидиями. Для скептиков стоит пояснить, что газогенератор можно оборудовать на раме прицепа — в таком варианте он наиболее эстетичен.

Проект Сергея

В частном музее, который базируется в Бресте, стоит действующий ЗиС-5. Нескольким любителям автомобильной истории однажды пришла в голову лихая идея: а почему бы не поставить на «дедушку», который выпускался с 1933 года, газогенератор. Должно получиться — ведь в 1939-м подобный эксперимент с 21-й моделью закончился успешно. И Сергей решил повторить. Но почти 90-летний грузовик — раритет, антиквариат, поэтому мужчина не решился переделывать всю топливную систему столь редкого ныне образца советского автомобилестроения. Для пробы, освоения технологии он взялся за преобразование более современной техники — всем известного и довольно простого уазика. Модель была выбрана исходя из увлечений Сергея: трофи, бездорожье, 4×4.

Наверное, большинство читателей, только узнав о способе сборки газогенератора, махнули бы на эту затею рукой. Дело в том, что Сергей не стал покупать готовый образец или собирать его по схемам и чертежам. Он «высчитал» установку по формулам из книг 30-х годов.

«В библиотеке, в сети нашел нужную литературу, — вспоминает конструктор. — Пришлось прочесть немало. Среди авторов есть и знаменитые фамилии: Токарев, Панютин. Но готового рецепта по сборке нигде не обнаружил. Есть только формулы. Создать газогенератор по ним — как заново сделать карбюратор. Нужно было высчитать скорость дутья, газификацию, объем нужного газа, материальный баланс — для двигателей разных объемов предусмотрены разные значения. Признаться, до сих пор не помню наизусть таблицу умножения, но эту штуку все же собрал. Ответами на вычисления по формулам стали размеры деталей установки и, собственно, сам чертеж. Ну а сборку производил из того, что было под рукой. На все ушел год».

Как это работает?

Топливом для газогенераторной установки (а в данном случае речь идет о монораторе) служат небольшие деревянные чурки. Причем совсем необязательно, чтобы они были сухими, сгорит и влажная древесина (до 60 процентов влажности) — в этом и отличие моноратора от обычного газогенератора. За задним рядом пассажирских сидений в машине Сергея лежат два мешка таких чурок. Говорит, что одного хватает на 100 километров пути. В пересчете на массу получается, что расход равен 20 кг дров на сотню. Естественно, постоянно подбрасывать дровишки в печь не нужно. Закинул в начале пути — и поехал.

«А это мой заправочный пистолет. Всегда вожу с собой», — шутит мужчина и демонстрирует топор.

Судя по его историям, «пистолет» может и не пригодиться — по хвойному лесу можно спокойно ехать на шишках. В любом случае экологичность установки неоспорима. Так как Сергей — человек идейный, экология для него не пустое слово.

Топливо загружается в бак через крышку, расположенную наверху камеры газификации (на фото — черная бочка в центре). Во время работы оттуда непрерывно идет дым. Крышка его не пропускает — таким образом, издалека машина не выглядит как паровоз. Перед запуском двигателя нужно подождать около 5-10 минут, чтобы туда поступил газ.

«Внизу камеры газификации дрова тлеют, — Сергей описывает механику работы установки. — Запуск горения — от спички или факела. Всего в камере протекают три процесса: термическое разложение топлива, окисление, восстановление. При горении топлива с обедненным количеством кислорода (пиролизе) протекают реакции окисления угля и углеводородов: С + О2 = CO2, 2h3 + O2 = 2h3O с выделением тепла. Потом идет реакция восстановления (при прохождении через слой раскаленных углей): С + CO2= 2СО, С + h3O = CO + h3 с потреблением тепла. Топливо в системе обращенного моноратора практически полностью разлагается. Для конденсата предусмотрена отдельная трубка, его можно слить».

Газ попадает в фильтр грубой очистки (на фото — перевернутый конус слева от камеры), который заканчивается банкой, куда оседает сажа, потом проходит через охлаждающую систему труб под днищем УАЗа. Если поджечь газ на этом этапе, пламя будет красным.

Для фото система подключена в обход фильтра тонкой очистки

Если «грязный» газ запустить в двигатель, его детали быстро покроются налетом, снизится их ресурс. Потому далее топливо поступает в фильтр тонкой очистки (на фото — зеленая бочка справа от камеры). Фильтрующим элементом выступают простые опилки. Их нужно менять через каждые 2 тыс. км пробега. После прохождения через этот фильтр газ горит синим пламенем.

Очищенный газ поступает непосредственно в цилиндры 2,4-литрового мотора, там вспышками сгорает, приводя в движение весь агрегат, а следовательно, и весь автомобиль. Выхлопная система штатная, но выбрасывает она углекислый газ (как и люди при выдохе). То есть никакого тебе токсичного угарного газа, оксидов азота, углеводорода, альдегидов и прочих веществ, против которых выступают экологи. По той же причине масло в двигателе нужно менять только после 30 тыс. км пробега.

В плане комфорта «дровяной» УАЗ не особенно радует — в принципе, как и все машины этой модели (даже те, что работают на бензине). После поездки на одежде остается легкий аромат костра (не раздражающий), «печка» работает жарче обычного. В салоне за подачу газа отвечает рычаг заслонки, спрятавшийся слева от руля.

В УАЗах предусмотрено два топливных бака для бензина: с левой и правой сторон кузова (специально на случай, если один из них будет прострелен). Чтобы развеять сомнения в работоспособности моноратора и показать, что доступ к обоим бакам перекрыт, Сергей демонстрирует рычаг в салоне — он находится в нейтральном положении. При необходимости баки можно заполнить бензином — тогда получится своеобразный гибрид.

Напоследок — о безопасности. В устройстве соседствуют открытый огонь и газ, что настораживает. По словам Сергея, риск пожара или взрыва минимален, потому как газ не находится под большим давлением. «Тот же бензиновый автомобиль легче воспламенить, чем эту машину», — заверяет мужчина.

Проблем с официальной регистрацией транспорта тоже нет — как видно на фото, УАЗ стоит на учете, на нем установлены номера. Техосмотр тоже пройден: по документам газогенератор — навесной груз. Его можно снять и, залив немного бензина, пройти линию ТО.

«Самый волнительный момент был — когда впервые запускали мотор, — вспоминает конструктор-любитель. — Признаться, с первого раза не вышло. Потом сидел и ломал голову, что же не так? В сети нашел несколько таких же российских и украинских фанатов, как и я. К тому моменту уже был создан форум, где ребята обменивались нюансами работы газогенераторов, способами решения проблем. Как видите, в итоге все у меня получилось: УАЗ работает, уверенно едет по болотам и бездорожью, разгоняется на трассе до 70 км/ч. Скажу больше: систему можно спрятать в прицепе и установить на любой автомобиль с ДВС. Это по моим расчетам обойдется примерно в 300 долларов в эквиваленте. Можно сказать, эксперимент удался. Но напомню — это был лишь опытный образец. Основной проект — ЗиС-5 родом из 30-х годов. Сейчас я с командой продолжаю работу над ним. Планируем закончить к 9 мая и выкатить обе машины на парад: проедут по улицам города, как дедушка и внук. Ну а дальше обязательно придумаем что-нибудь этакое к 1000-летию Бреста».

Смотрите также: 12 самых странных автомобилей, которые видел мир

А вы знали, что у нас есть Яндекс Дзен и Telegram?

Подписывайтесь, если вы ценитель красивых фото и интересных историй!

Автомобиль на дровах — как он работает?

Автомобиль с газогенераторной установкой. Фото wikipedia.org

Это похоже на анекдот. Но тем, кто работал на лесоповале в тайге в 30-х, было не до смеха. Нет бензина — ехали на дровах. Да и по сей день эта технология до сих пор используется. Как устроены такие авто? Разбираем в деталях.

Оговоримся сразу: если автомобиль ездит на дровах, это не значит, что он — паровоз без рельсов. Низкий КПД паровой машины с ее отдельной топкой, котлом и цилиндрами двойного-тройного расширения оставил паровые автомобили в числе забытой экзотики. А сегодня мы поговорим о «дровяном» транспорте с привычными нам ДВС, моторами, сжигающими топливо внутри себя. Разумеется, затолкать дрова (или нечто подобное) в карбюратор вместо бензина пока еще никому не удавалось, а вот идея прямо на борту авто получать из древесины горючий газ и подавать его в цилиндры как топливо прижилась на долгие годы. Речь идет о газогенераторных автомобилях, машинах, чей классический ДВС работает на генераторном газе, который получают из древесины, органических брикетов, или угля. От привычного жидкого топлива, кстати, такие машины тоже не отказываются — они способны работать и на бензине.

Святая простота
Генераторный газ — это смесь газов, состоящая в основном из окиси углерода СО и водорода Н2. Получить такой газ можно, сжигая размещенную толстым слоем древесину в условиях ограниченного количества воздуха. На этом несложном принципе работает и автомобильный газогенератор, простой по сути агрегат, но громоздкий и конструктивно осложненный дополнительными системами.
Также, помимо собственно производства генераторного газа, автомобильная газогенераторная установка охлаждает его, очищает и смешивает с воздухом. Соответственно, конструктивно классическая установка включает в себя сам газогенератор, фильтры грубой и тонкой очистки, охладители, электровентилятор для ускорения процесса розжига и трубопроводы.

НПЗ вожу с собой
Простейший газогенератор имеет вид вертикального цилиндра, в который почти доверху загружается топливо — дрова, уголь, торф, прессованные пеллеты и т.п. Зона горения расположена внизу, именно здесь, в нижнем слое горящего топлива создается высокая температура (до 1 500 градусов по Цельсию), необходимая для выделения из более верхних слоев будущих компонентов топливной смеси — окиси углерода СО и водорода Н2. Далее горячая смесь этих газов поступает в охладитель, который снижает температуру, повышая таким образом удельную калорийность газа. Этот довольно крупный узел обычно приходилось помещать под кузовом машины. Расположенный следом по ходу газа фильтр-очиститель избавляет будущую топливную смесь от примесей и золы. Далее газ направляется в смеситель, где соединяется с воздухом, и окончательно приготовленная смесь направляется в камеру сгорания двигателя автомобиля.

Схема автомобиля ЗИС-21 с газогенератором

Как видите, система производства топлива прямо на борту грузовика или легковушки занимала довольно много места и немало весила. Но игра стоила свеч. Благодаря собственному — и к тому же дармовому — топливу свой автономный транспорт могли себе позволить предприятия, расположенные за сотни и тысячи километров от баз снабжения ГСМ. Это достоинство долго не могло затмить все недостатки газогенераторных автомобилей, а их было немало:

  • существенное сокращение пробега на одной заправке;
  • снижение грузоподъемности автомобиля на 150-400 кг;
  • уменьшение полезного объема кузова;
  • хлопотный процесс «дозаправки» газового генератора;
  • дополнительный комплекс регламентных сервисных работ;
  • запуск генератора занимает от 10-15 минут;
  • существенное снижение мощности двигателя.
ЗиС 150УМ, опытная модель с газогенераторной установкой НАМИ 015УМ

В тайге заправок нет
Древесина всегда являлась основным топливом для газогенераторных автомобилей. В первую очередь, конечно, там, где дров в избытке, — на лесозаготовках, в мебельном и строительном производстве. Традиционные технологии лесопереработки при промышленном использовании древесины в эпоху расцвета «газгенов» около 30% от массы леса отпускали в отходы. Их и использовали как автомобильное топливо. Интересно, что правилами эксплуатации отечественных «газгенов» строжайше запрещалось использование деловой древесины, так как и отходов лесной промышленности было с избытком. Для газогенераторов годились как мягкие, так и твердые породы дерева.
Единственное требование — отсутствие на чурках гнили. Как показали многочисленные исследования, проведенные в 30-е годы в Научном автотракторном институте СССР, лучше всего в качестве топлива подходят дуб, бук, ясень и береза. Чурки, которыми заправлялись котлы газогенераторов, чаще всего имели прямоугольную форму со стороной 5-6 сантиметров. Сельскохозяйственные отходы (солома, лузга, опилки, кора, шишки и пр.) прессовали в специальные брикеты и также «заправляли» ими газогенераторы.
Главным недостатком «газгенов», как мы уже говорили, можно считать малый пробег на одной заправке. Так, одной загрузки древесными чурками советским грузовикам (см. ниже) хватало не более чем на 80-85 км пробега. Учитывая, что «заправляться» руководство по эксплуатации рекомендует при опустошении бака на 50-60%, то и вовсе пробег между заправками сокращается до 40-50 км. Во-вторых, сама установка, вырабатывающая генераторный газ, весит несколько сотен килограммов. К тому же двигатели, работающие на таком газе, выдают на 30-35% меньше мощности, чем их бензиновые аналоги.

Фото depositphotos.com

Доработка автомобилей под дрова
Для работы на генератором газе автомобили приходилось приспосабливать, но изменения не были серьезными и порой были доступны даже вне заводских условий. Во-первых, в моторах повышали степень сжатия, чтобы не так существенна была потеря мощности. В некоторых случаях для улучшения наполнения цилиндров двигателя применялся даже турбонаддув. На многие «газифицированные» авто устанавливался генератор электрооборудования с повышенной отдачей, поскольку для вдувания воздуха в топку использовался достаточно мощный электровентилятор.
Для сохранения тяговых характеристик, в особенности это касалось грузовиков, при снизившейся мощности двигателя передаточные числа трансмиссии делали более высокими. Скорость движения падала, но для автомобилей, использующихся в лесной глуши и прочих пустынных и отдаленных районах это не имело решающего значения. Чтобы компенсировать изменившуюся из-за тяжелого газогенератора развесовку, в некоторых машинах усиливали подвеску.
Помимо того, из-за громоздкости «газового» оборудования отчасти приходилось перекомпоновывать автомобиль: менять, сдвигать грузовую платформу или урезать кабину грузовика, отказываться от багажника, переносить выхлопную систему.

Золотая эра «газгена» в СССР и за границей
Эра расцвета газогенераторных автомобилей пришлась на 30-40-е года прошлого века. Одновременно в нескольких странах с большими потребностями в автомобилях и малыми разведанными запасами нефти (СССР, Германия, Швеция) инженеры крупных предприятий и научных институтов взялись за разработку автотранспорта на дровах. Советские специалисты больше преуспели в создании грузовых автомобилей.
С 1935 года и до самого начала Великой Отечественной войны на разных предприятиях Министерства лесной промышленности и ГУЛАГа (Главное Управление ЛАГерей, увы, реалии той поры) «полуторки» ГАЗ-АА и «трехтонки» ЗИС-5, а также автобусы на их базе переделывались для работы на дровах. Также отдельными партиями газогенераторные версии грузовиков производились самими заводами-изготовителями машин. Например, советские автоисторики приводят цифру 33 840 — столько было выпущено газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и ЗИС-21 в Москве выпущено более 16 тыс. единиц.

ЗИС-21

За довоенное время советскими инженерами было создано более 300 различных вариантов газогенераторных установок, из которых 10 дошли до серийного производства. Во время войны серийными заводами были подготовлены чертежи упрощенных установок, которые могли изготавливаться на местах в автомастерских без применения сложного оборудования. По воспоминаниям жителей северных и северо-восточных регионов СССР, грузовики на дровах можно было встретить в глубинке вплоть до 70-х годов ХХ века.
В Германии во время Второй Мировой войны наблюдался острый дефицит бензина. КБ двух компаний (Volkswagen и Mercedes-Benz) получили задание разработать газогенераторные версии своих популярных компактных машин. Обе фирмы в довольно сжатые сроки справились с поставленной задачей. На конвейер встали Volkswagen Beetle и Mercedes-Benz 230. Интересно, что у серийных авто дополнительное оборудование даже не выступало за стандартные габариты «легковушек». В Volkswagen пошли еще дальше и создали опытный образец «дровяного» армейского Volkswagen Тур 82 («кюбельваген»).

Volkswagen Тур 82

Дровяные машины сегодня
К счастью, главное достоинство газогенераторных автомобилей — независимость от сети АЗС, сегодня стало малоактуальным. Однако в свете современных экологических веяний на первый план вышло другое достоинство автомобилей на дровах — работа на возобновляемом топливе без какой-либо его химической подготовки, без дополнительной траты энергии на производство топлива. Как показывают теоретические расчеты и практические испытания, мотор на дровах меньше вредит атмосфере своими выбросами, чем аналогичных двигатель, но уже работающий на бензине или солярке. Содержание выхлопных газов очень схоже с выбросами ДВС, работающих на природном газе.

ГАЗ-52

И тем не менее тема с автомобилями на дровах утратила свою былую популярность. Забыть о газогенераторах не дают в основном инженеры-энтузиасты, которые ради экономии на топливе или в качестве эксперимента переоборудуют свои личные машины для работы на генераторном газе. На постсоветском пространстве есть удачные примеры «газгенов» на базе легковушек АЗЛК-2141 и ГАЗ-24, грузовика ГАЗ-52, микроавтобуса РАФ-2203 и пр. По словам конструкторов, их творения могут проезжать на одной заправке до 120 км со скоростью 80-90 км/ч.
К примеру, переведенный житомирскими инженерами в 2009 году на дрова ГАЗ-52 расходует около 50 кг древесных чурок на 100 км пробега. По словам конструкторов, подкидывать дровишки нужно каждые 75-80 км. Газогенераторная установка традиционно для грузовиков расположилась между кабиной и кузовом. После розжига топки должно пройти около 20 минут, прежде чем ГАЗ-52 сможет начинать движение (в первые минуты работы генератора выработанный им газ не имеет нужных горючих свойств). По расчетам разработчиков, 1 км на дровах обходится в 3-4 раза дешевле, чем на дизельном топливе или бензине.

Единственная на сегодняшний день страна, в которой массово используются автомобили на дровах, — это Северная Корея. В связи с тотальной мировой изоляцией там наблюдается определенный дефицит жидкого топлива. И дрова снова приходят на выручку тем, кто оказался в нелегком положении.

Источник: КОЛЁСА.RU

Читайте также

Wood Gas Vehicles: Автомобили, работающие на дровах

В начале 19 века, помимо угля и природного газа, людям стал доступен новый вид топлива. Он назывался синтетическим газом (или синтетическим газом) и был доступен во многих различных формах, таких как угольный газ, древесный газ и водяной газ. Синтетический газ производится путем преобразования биомассы или других углеродосодержащих материалов, таких как древесина и уголь, в газообразный продукт путем их нагревания в среде, лишенной кислорода. Образовавшийся газ содержит смесь водорода, угарного газа и метана, которые легко воспламеняются и могут сжигаться с выделением тепла и света.

Автомобиль с газогенератором на прицепе в Виктории, Австралия.

Первые угольные газы были получены из угля и торфа и использовались для освещения и приготовления пищи. Лондон получил свой первый уличный фонарь, работающий на угольном газе, в 1807 году, и вскоре после того, как угольный газ (также называемый городским газом) стало доступно в большинстве промышленно развитых городов до конца 19 века, когда его заменили электрическим освещением. Синтез-газ продолжал использоваться в доменных печах и на заводах до 1920-х годов.

В 1920 году французский инженер Жорж Имбер построил мобильный генератор древесного газа, который работал на древесной щепе и производил чистый сухой газ, который можно было подавать непосредственно в двигатель внутреннего сгорания автомобиля с небольшими модификациями самого двигателя. В конце 1930-х годов в Европе использовалось около 9000 автомобилей, оснащенных генераторами Imbert. Это число увеличилось в геометрической прогрессии во время Второй мировой войны, когда бензина стало не хватать. Только в Германии к концу войны в эксплуатации находилось около 500 000 автомобилей, работающих на угольном газе.К ним относились частные автомобили, грузовики, автобусы, тракторы, мотоциклы и даже корабли, поезда и цистерны, которые были оснащены установкой для газификации древесины. Была создана сеть из примерно 3000 дровяных пунктов, где водители могли запастись дровами.

Лондонский автобус с газогенератором на прицепе.

В 1942 г. в Швеции было около 73 000 автомобилей, работающих на древесном топливе, во Франции — 65 000, в Дании — 10 000, в Австрии и Норвегии — по 9 000 и в Швейцарии — почти 8 000.В 1944 году в Финляндии было 43 000 «деревомобилей», из которых 30 000 автобусов и грузовиков, 7 000 частных автомобилей, 4 000 тракторов и 600 лодок. Вудмобили также появились в США, Азии и особенно в Австралии, где 72 000 автомобилей работали на древесном газе. Всего во время Второй мировой войны было использовано более миллиона автомобилей на древесном газе.

Древесный газ состоит примерно из 50 % азота, 27 % окиси углерода, 14 % водорода, 3 % метана и 4 % окиси углерода со следовыми количествами кислорода. Азот и углекислый газ составляют более половины всех составляющих газа, и они инертны по отношению к двигателю внутреннего сгорания.А угарный газ — медленно горящий газ. Это означает, что древесный газ имеет очень низкую плотность энергии. Энергетическая ценность древесного газа составляет около 5,7 МДж/кг по сравнению с 44 МДж/кг бензина и 56 МДж/кг природного газа.

Автомобиль с древесно-газовым генератором: Берлин 1946

Тот же автомобиль, вид спереди. Труба, идущая от задней части автомобиля, переходит в отстойник спереди. Труба не проходит через салон автомобиля, так как даже небольшая утечка угарного газа была бы очень опасной.После отстойника газ поступает в охладитель, установленный прямо над ним и имеющий вид радиатора.

Однако высокоэффективный процесс газификации может превратить около 75% топлива в горючий газ. Даже в этом случае автомобиль, работающий на древесном топливе, потребляет примерно в полтора раза больше энергии, чем автомобиль, работающий на бензине. Другими словами, автомобиль, сжигающий 1000 кг древесного топлива, проедет столько же, сколько автомобиль, сжигающий 365 литров бензина, что впечатляет, поскольку производство бензина или бензина значительно дороже.Кроме того, автомобиль, работающий на древесном газе, имеет значительно меньший выброс выхлопных газов, чем автомобиль, работающий на бензине. При сгорании древесного газа не образуются твердые частицы и очень мало углекислого газа, что полезно для окружающей среды.

Наиболее очевидным недостатком вудмобиля является размер необходимого топливного бака. Газогенератор занимает много места и легко может весить несколько сотен килограммов пустым. Поскольку древесный газ сгорает медленно и имеет низкую энергетическую ценность, транспортное средство не получает достаточно энергии от сжигания древесного газа, что ограничивает его скорость и ускорение.Генераторам также требуется до 10 минут, чтобы нагреться до рабочей температуры, поэтому вы не можете прыгнуть в машину и сразу же уехать.

После окончания войны бензин снова стал доступен, а технология устарела.

Мотоцикл, работающий на древесном газе.

Автомобиль с газогенератором на прицепе, 1943 г.

Голландский мотоцикл с древесно-газовым генератором.

Заправка газогенератора в Австралии.

Каталожные номера:
# Автомобили на древесном топливе: дрова в топливном баке, Журнал Low Tech
# Автомобили на древесном топливе , Музей ретро-техники

Почему мы больше не используем дерево в качестве топлива наши машины

Когда речь заходит об альтернативных видах топлива, обычно обсуждают сжатый природный газ или биотопливо, такое как этанол или биодизель.

Но еще до того, как появилась концепция низкоуглеродного или углеродно-нейтрального топлива, несколько первых производителей и отчаянных водителей попробовали нечто совершенно иное.

Они питали свои транспортные средства дровами, тем же топливом, которое использовалось для питания многих из первых транспортных средств, работающих на внутреннем топливе, включая железнодорожные локомотивы и пароходы.

Автомобили с двигателями на дереве ненадолго обрели известность в начале 20 века, но есть веские причины, по которым мы не используем дерево для двигателей сегодня, отмечается в недавней статье на эту тему в Hemmings Daily .

Эти автомобили полагались на газификацию, процесс, при котором газы, образующиеся при сжигании древесины, направляются в цилиндры двигателя для сжатия и воспламенения, как смесь бензина с воздухом в обычных автомобилях.

Генераторы древесного газа для автомобилей стали популярными в Европе как сразу после Первой мировой войны, так и во время Второй мировой войны, согласно  Hemmings , в первую очередь из-за нехватки бензина.

Сначала первые автопроизводители привлекли внимание к использованию энергии дерева, но в конечном итоге они отказались от этой идеи.Вместо этого компании вторичного рынка продавали комплекты для модернизации существующих автомобилей.

Непосредственными проблемами были вес систем генератора древесного газа, тот факт, что они снижали мощность двигателя, и огромное количество древесины, которое им требовалось.

Согласно руководству, опубликованному в конце 1930-х годов, средний грузовик должен сжигать 220 фунтов древесины каждые 62 мили.

Заправка была не такой простой, как рубка деревьев.

Для большинства систем требовалась древесина кусками не более 3 дюймов в длину и 2 дюймов в диаметре, которая хранилась не менее шести месяцев для полного высыхания.

Твердые породы дерева, такие как береза ​​и дуб, работали лучше всего, и следует избегать древесины с высоким содержанием смолы. Некоторые системы были настроены на сжигание древесного угля, что имело свой недостаток: высокую чувствительность к влажности.

Большинство систем включало в себя печь для сжигания топлива, а также охладитель и фильтр для производимых газов, соединенных сетью труб.

Управление транспортным средством на дровах также было довольно трудоемким — даже по меркам первых автомобилей.

Хеммингс рассмотрел систему, установленную на Ford Model A с печкой, которая требовала топки как дровами, так и древесным углем, последний использовался для фильтрации газа на пути к фильтру/радиатору, установленному впереди.

Во время запуска водитель должен был проверить, достаточно ли чист газ для использования в двигателе, что иногда приводило к возникновению огненного шара.

Учитывая все это, возможно, неудивительно, что автомобили с дровяным двигателем так и не прижились.

Ежедневно получайте истории, которые
расширяют возможности и поднимают настроение .

К счастью, сегодняшнее биотопливо — большинство из которых начинается с растений или сельскохозяйственных материалов — все больше предназначено для «заправки» существующих транспортных средств и топливных систем с гораздо меньшими модификациями.

Первоначально эта история появилась в GreenCarReports .

Древесный газ в качестве моторного топлива

Веса Микконен является председателем Ассоциации экологических автомобилистов Финляндии. За последние 15 лет он проехал более 110 000 км на древесном газе и призвал многих водителей в Финляндии построить свои собственные топливные системы на древесном газе.

Книга Vesa Wood Gas for Mobile Applications представляет собой подробное и подробное руководство по созданию топливной системы на древесном газе для вашего автомобиля.Книга, впервые опубликованная на финском языке в 1999 году, сейчас находится в третьем англоязычном издании, состоящем из 307 страниц, щедро иллюстрированных сотнями фотографий, диаграмм, строительных чертежей и перечней деталей.

Первая часть книги представляет собой подробный обзор концепции древесного газа, принципов ее работы, а также создания и использования газификатора; вторая часть посвящена строительству нескольких комплексных систем древесного газа, проверенных и проверенных на практике в дороге. Эти системы может построить любой опытный домашний механик.Если вы заинтересованы в древесном газе для независимости от топлива, это лучший ресурс.

Древесный газ для мобильных устройств — брошюра и содержание:
http://www.ekomobiili.fi/Tekstit/Bookbrochure.pdf

Возобновляемые источники энергии для жилья и транспорта — веб-сайт Весы Микконен Английский):
http://www.ekomobiili.fi/Tekstit/english_etusivu.htm

Электронная почта: Веса Микконен

Финская ассоциация экологичных автомобилей (ассоциация автомобилей, работающих на древесном топливе) (на финском языке)
http://www.ekoautoilijat.fi/

Автомобили, работающие на древесном топливе, в Финляндии (много), с фотографиями США:
http://www.woodgas.net/
Включая собственный 5,0-литровый грузовик Ford F-250 Джонатана 1990 года выпуска с системой впрыска топлива, опубликованный в майской статье 2008 года в Lincoln Journal Star, «Форд Мартелла работает на дровах, а не на газе». « :
http://www.journalstar.com/articles/2008/05/29/news/
local/doc483de2c0af079325623826.txt

The Gengas Page — Топливный газ, получаемый путем восстановления угля и торфа, использовался для отопления еще в 1840 г. Европе, а к 1884 году он был адаптирован для двигателей в Англии. Нехватка нефти во время Второй мировой войны привела к широкому применению газогенераторов в транспортной отрасли Западной Европы. (Такси, работающие на древесном угле, родственное приложение, все еще были распространены в Корее еще в 1970 году.) В этом отчете предпринята попытка сохранить знания о газификации древесины, которые применялись на практике во время Второй мировой войны. В этом отчете представлены подробные пошаговые процедуры по созданию упрощенной версии генератора древесного газа Imbert времен Второй мировой войны. Полный текст онлайн.
http://www.gengas.nu/byggbes/index.shtml

Древесный газ в качестве моторного топлива, Отдел механических изделий из дерева, Отдел лесной промышленности, Департамент лесного хозяйства ФАО, 1986, ISBN 92-5-102436-7
пагубное влияние высоких и растущих цен на нефть на экономику и усилия в области развития развивающихся стран-импортеров нефти стало очевидным.В результате возрос интерес к местным возобновляемым источникам энергии, из которых биомасса в виде древесины или сельскохозяйственных отходов является наиболее доступной во многих развивающихся странах. Во многих развивающихся странах, особенно в сельской местности, двигатели внутреннего сгорания широко используются в стационарных целях, таких как производство электроэнергии и работа водяных насосов и мельниц. Поэтому особое значение имеют такие технологии, как газификация, которые позволяют использовать в таких двигателях топливо из биомассы после минимальной подготовки.Краткое изложение современной технологии газификации древесины и экономики ее применения в двигателях внутреннего сгорания. Полный; текст онлайн.
http://www.fao.org/DOCREP/T0512E/T0512e00.htm

Изготовление газогенератора Källe Торстеном Калле, Шведская королевская инженерная академия, 1942 г. (Перевод на английский язык, 2000 г., Йоаким Перссон — Угольный газификатор Torsten Källe несколько опередил свое время.Он был очень популярен благодаря простоте обслуживания и экономии топлива.Возможно, некоторые черты этого газификатора нашли свое отражение в современной технологии газификации; среди многих вещей он был своего рода предшественником того, что сегодня так называемый «циркулирующий псевдоожиженный слой».Газификаторы на древесном угле, как правило, были более популярны, чем газификаторы на древесине, в эпоху генераторного газа в Швеции во времена Второй мировой войны, даже когда конструкция газификаторов на древесине улучшилась. Древесный газ был дешевле, но газификаторы на древесном угле были намного проще в обращении.
http://www.hotel.ymex.net/~s-20222/gengas/kg_eng.html

Самодельное моторное топливо… Из дров — Новости Матери-Земли, март/апрель 1981 г.
http://www. .motherearthnews.com/library/1981_March_April/
Самодельное_Motor_Fuel___From_Firewood

Дровяной грузовик МАТЕРИ — Проехав 1500 миль на бесплатном топливе, мы обнаружили, что можно управлять грузовиком, используя дрова в качестве топлива.Эта статья включает подробные схемы, фотографии и информацию о том, как был сконструирован дровяной/газовый генератор. — Новости Матери-Земли, май/июнь 1981 г.
http://www.motherearthnews.com/Alternative_Energy/1981_May_June/
Mother_s_Woodburning_Truck

Wood-Gas Update — Подробнее о дровяном грузовике МАТЕРИ и электростанции в доме; включая подробные схемы процесса преобразования в разрезе. — Новости Матери-Земли, сентябрь/октябрь 1981 г.,
http://www.motherearthnews.com/Alternative_Energy/
1981_September_October/Wood_Gas_Update

По Швеции с дровами в баке — «Мы начали строить машину в канун Нового года, и весной было пожертвовано много дней, вечеров и ночей, чтобы дровяной газ и работа автомобиля.Мы получили мешанину шведского культурного наследия, которая свидетельствует о традиционном шведском автомобилестроении, жесткой войне и «фермерской находчивости».Машина проехала 5420 км за 20 дней, израсходовав 7 квадратных метров дерева.» Как это работает, автомобиль, путешествие, блог о путешествиях, блог о строительстве и многое другое.
http://www.vedbil.se/indexe.shtml

Производитель дровяного газа — австралийская одиссея древесного газа: «Мы составляет около 2000 км на тонну древесины (2 км/кг). Это должно быть улучшено за счет добавления пара к ожидаемым 2500-3000 км на тонну. Количество используемой воды примерно равно галлонам бензина, которые будут израсходованы». Подробное описание с рисунками. http://members.tripod.com/~highforest/woodgas/woodfired.html

«Маломасштабные газификаторы биомассы для производства тепла и электроэнергии — глобальный обзор» , Хьюберт Э. Стассен, Технический документ Всемирного банка № 296, 1995 г., 88 страниц — Много информации о древесном газе. 3,5 Мб pdf:
http://www.woodgas.net/files/
World%20bank%20tech%20paper%20296.pdf

Альтернативы двигателям/генераторам, работающим на ископаемом топливе , Клиффорд В. Моссберг — Древесный газ для двигатели и мощность — из журнала Homepower.Файл Acrobat, 176 КБ

History of Woodgas , Том Рид из Фонда энергии биомассы
http://www.woodgas.com/History.htm

Автомобили VW с двигателями Woodgas и другие автомобили
http://www2 .whidbey.net/
лайтхук/woodgas.htm

6 Biofuels EN Español — Биокустиблические библиотеки Биодизель
Библиотека биотоплива
Биотопливные материалы и поставщики

BioSiesel
Сделайте свой собственный биодизель
Mike Pelly’s Recipe
Двухступенчатая биодизель
Водостойкий биодизель процесс
Процессоры биодизеля
Биодизель в Гонконг
Выбросы оксидов азота
Глицерин
Биодизельные ресурсы в Интернете
Есть ли будущее у дизелей?
Выход и характеристики растительного масла
Стирка
Биодизель и ваш автомобиль
Еда или топливо?
Натуральное растительное масло в качестве дизельного топлива

Этанол
Ресурсы по этанолу в Интернете
Энергоэффективен ли этанол?

Может ли машина работать на древесном газе? – Джанет Паник.ком

Может ли машина работать на древесном газе?

Древесину можно использовать для питания автомобилей с обычными двигателями внутреннего сгорания, если присоединить газификатор древесины. Это было довольно популярно во время Второй мировой войны в нескольких странах Европы, Африки и Азии, потому что война препятствовала легкому и рентабельному доступу к нефти.

Может ли дизельный двигатель работать на древесном газе?

Самый простой способ запустить дизель на древесном газе — использовать двухтопливный режим. Вы также можете вынуть форсунки и заменить их свечами зажигания, а также настроить зажигание и синхронизацию для их запуска.Это часто рассматривается как слишком большое усилие, поэтому двигатель работает в двухтопливном режиме.

Безопасны ли газификаторы древесины?

Дровяные газификаторы проверенной конструкции и тщательно проверенной конструкции считаются безопасными для использования на открытом воздухе или в частично закрытом помещении, например, под навесом, открытым воздуху с двух сторон; их также можно считать относительно безопасными для использования в очень хорошо проветриваемых (например, с отрицательным давлением) помещениях, не …

Насколько горяч горит древесный газ?

Большинство видов древесины начинают гореть при температуре около 300 градусов Цельсия.Газы горят и повышают температуру древесины примерно до 600 градусов по Цельсию (1112 градусов по Фаренгейту). Когда древесина выпустила все свои газы, она оставляет древесный уголь и пепел.

Почему древесину можно использовать для топлива автомобилей?

Правильно работающий генератор древесного газа также меньше загрязняет воздух, чем автомобиль, работающий на бензине или дизельном топливе. Газификация древесины значительно чище, чем сжигание древесины: выбросы сравнимы с выбросами при сжигании природного газа.

При какой температуре горят древесные газы?

Большинство видов древесины начинают гореть при температуре около 300 градусов Цельсия.Газы горят и повышают температуру древесины примерно до 600 градусов по Цельсию (1112 градусов по Фаренгейту).

Газификатор древесины производит древесный уголь?

Генератор древесного газа представляет собой установку для газификации, которая преобразует древесину или древесный уголь в древесный газ, генераторный газ, состоящий из атмосферного азота, монооксида углерода, водорода, следов метана и других газов, который после охлаждения и фильтрации может быть использован для питания двигателя внутреннего сгорания или для других …

OffGrid48 — газификация древесины

газификация древесины — обзор

газификация древесины использует процесс, называемый пиролизом, для расщепления органического вещества на его основные элементы, углерод и газы.Этот процесс выполняется при высокой температуре и ограниченном доступе кислорода, чтобы расщепить древесину на ее основные элементы. Затем газ извлекается, охлаждается и фильтруется и может использоваться в качестве топлива для прямого нагрева или в качестве топлива для стандартного двигателя внутреннего сгорания. Газ, получаемый при газификации древесины, состоит из водорода, метана и двуокиси углерода, также называемого «синтез-газом» (синтетический газ). Он имеет свойства, аналогичные природному газу, но не считается природным газом. Синтез-газ имеет другое соотношение воздух-топливо, которое необходимо учитывать при использовании в качестве топлива для стандартного двигателя внутреннего сгорания.

Синтез-газ также имеет более низкую номинальную мощность, чем природный газ (50%-60%), что также необходимо учитывать при выборе размера двигателя или генератора для производства электроэнергии. Например, пропановый генератор мощностью 10 кВт фактически будет производить около 6 кВт мощности при работе на древесном газе.



Газификация древесины — история

Деревянная газификация — бесплатная мощность

с использованием проверенных и эффективных конструкций, сегодняшних генераторов древесины может производить чистые, обильные и бесплатно топливо для многих применение, включая производство тепла, домашние энергосистемы и системы аварийного электроснабжения, когда традиционные виды топлива недоступны или слишком дороги.Позвольте нам помочь вам использовать энергию древесины для создания бесплатной энергии в вашей системе возобновляемых источников энергии.

Процесс производства энергии методом газификации используется уже более 180 лет. Раньше для питания этих электростанций использовались уголь и торф. Первоначально разработанный для производства городского газа для освещения и приготовления пищи в 1800-х годах, он был заменен электричеством и природным газом, он также использовался в доменных печах, но большую роль он играл в производстве синтетических химикатов, где он использовался с 1800-х годов. 1920-е годы.

Во время обеих мировых войн, особенно во время Второй мировой войны, потребность в топливе, полученном путем газификации, вновь возникла из-за нехватки нефти.[6] Генераторы древесного газа, называемые Gasogene или Gazogene, использовались в Европе для питания автомобилей. К 1945 году появились грузовики, автобусы и сельскохозяйственные машины, работавшие на газификации. По оценкам, во всем мире на генераторном газе работало около 9 000 000 автомобилей.

Газификация древесины также обрела популярность в 1970-х годах во время нефтяного эмбарго, которое привело к острой нехватке бензина в США.Кажется, что газификация — это то, что набирает популярность во время энергетического кризиса, чтобы о нем забыли, когда кризис пройдет. Затем его необходимо заново открыть и заново изучить, когда возникнет следующий энергетический кризис. Сегодня газификация широко используется в коммерческих целях и набирает популярность как жизнеспособная система для производства электроэнергии в домашних условиях и систем аварийного резервного питания.

Благодаря обучению и использованию возобновляемых источников энергии

 

Немецкий автомобиль 3т с генератором на древесном газе, распределение MAC 72065 (200x)

Немецкий автомобиль 3t с генератором на древесном газе, распределение MAC 72065 (200x) база данных | менеджер тайника
Логин

MAC Distribution | Нет.72065 | 1:72

Факты

Марка Марка:
MAC Распределение
Название MAC
Название:
Немецкий 3T Автомобиль с древесным газовым генератором
номер:
72065
Масштаб:
1:72
Тип:
Полный комплект
Выпущено:
200x | Rebox (Обновлено / Новые части)
Тема:
Тема:
Opel Blitz »Грузовики (Транспортные средства)

Маркировка

Opel Blitz
Opel Blitz A 3T
WAFFEN SS (1933-1945)
Wehracht Heer (немецкая армия 1935-1945)
  • WH-744981
  • WH-754966
  • WH-862954
  • WH-862035
    1945 — Prague

    1945 — Прага

    1945 — Prague
    песок, оливковый зеленый
Wehrmacht Luftwaffe (немецкий ВВС 1935-1945)
  • WL-75625
  • 1./NJG 1 WL-86259
    1944
    Песок

Содержимое коробки

Пластиковый литник, Пластиковый литник (Clear), Фототравление, Фотопленка, Декаль (водная)

Хронология продукта 30357

Полная история SKU для распространения MAC 72065 :
MAC72065 | MACD72065

Примечание. Цены и наличие являются ориентировочными. Также проверьте, действительно ли продукт соответствует!

Сопутствующие товары

Все сопутствующие товары » (всего 13)

Отзывы в коробке

Внешние отзывы

) из дистрибутива MAC.

Галерея

Opel Blitz

Справочный материал
Opel Blitz Грузовики 1, 1,5, 2, 2,5 тонны

Камера ON Nr. 24

Alan Ranger

2021

Все книги » (всего 12) Все обходы » (всего 1)

68.000+ пластиковых моделистов используют нас Горячие наборы (Грузовики в масштабе 1:72) Подробнее »© 2010-2022 Scalemates | конфиденциальность | реклама

Мы используем файлы cookie, чтобы предоставить вам отличный и бесплатный опыт.

Добавить комментарий

Ваш адрес email не будет опубликован.