Термогенератор, получаем электричество из тепла
Для того, чтобы получить электричество непосредственно от газовой горелки или другого источника тепла, применяется термогенератор. Так же, как и у термопары, его принцип действия основан на эффекте Зеебека, открытом в 1821 году. Упомянутый эффект состоит в том, что в замкнутой цепи из двух разнородных проводников появляется ЭДС, если места спаев проводников находятся при разных температурах. Например, один спай находится в сосуде с кипящей водой, а другой в чашке с тающим льдом.
Эффект возникает от того, что энергия свободных электронов зависит от температуры. При этом электроны начинают перемещаться от проводника, где они имеют более высокую энергию в проводник, где энергия зарядов меньше. Если один из спаев нагрет больше другого, то разность энергий зарядов на нем, больше, чем на холодном. Поэтому, если цепь замкнута, в ней возникает ток, именно та самая термоэдс.
Приблизительно величину термоэдс можно определить по простой формуле:
E = α * (T1 – T2). Здесь α — коэффициент термоэдс, который зависит только от металлов, из которых составлена термопара или термоэлемент. Его значение обычно выражается в микровольтах на градус. Разность температур спаев в этой формуле (T1 – T2): T1 – температура горячего спая, а T2, соответственно, холодного.
Приведенную формулу достаточно наглядно иллюстрирует рис. 1.
Рис. 1. Принцип работы термопары
Рисунок этот классический, его можно найти в любом учебнике физики. На рисунке показано кольцо, составленное из двух проводников А и Б. Места соединения проводников называются спаями. Как показано на рисунке, в горячем спае T1 термоэдс имеет направление из металла Б в металл А. А в холодном спае Т2 из металла А в металл Б. Указанное на рисунке направление термоэдс справедливо для случая, когда термоэдс металла А положительна по отношению к металлу Б.
Как определить термоэдс металла
Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.
Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:
- Сурьма +4,7
- Железо +1,6
- Кадмий +0,9
- Цинк +0,75
- Медь +0,74
- Золото +0,73
- Серебро +0,71
- Олово +0,41
- Алюминий +0,38
- Ртуть 0
- Платина 0
После платины идут металлы с отрицательным значением термоэдс:
- Кобальт -1,54
- Никель -1,64
- Константан (сплав меди и никеля) -3,4
- Висмут -6,5
Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.
Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.
Как создавались термогенераторы
Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рис. 2.
Рис. 2. Термобатарея, схематическое устройство
Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом. В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.
Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.
Полупроводниковые термоэлементы
Подлинную революцию в создании термоэлементов произвели труды академика А.И. Иоффе. В начале 30 – х годов XX столетия он выдвинул идею, что с помощью полупроводников возможно превращение тепловой энергии, в том числе и солнечной, в электрическую. Благодаря проведенным исследованиям уже в 1940 году был создан полупроводниковый фотоэлемент для преобразования световой солнечной энергии в электрическую. Первым практическим применением полупроводниковых термоэлементов следует считать, по-видимому, «партизанский котелок», позволявший обеспечить питанием некоторые портативные партизанские радиостанции.
Основой термогенератора служили элементы из константана и SbZn. Температура холодных спаев стабилизировалась кипящей водой, в то время как горячие спаи нагревались пламенем костра, при этом обеспечивалась разница температур не менее 250…300 градусов. КПД такого устройства был не более 1,5…2,0 %, но мощности для питания радиостанций вполне хватало. Конечно, в те военные времена конструкция «котелка» была государственным секретом, и даже сейчас на многих форумах в интернете обсуждается его устройство.
Бытовой термогенератор
Уже в послевоенные пятидесятые годы советская промышленность начала выпускать термогенератор ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в не электрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.
Внешний вид термогенератора ТГК-3 показан на рис. 3.
Рис. 3. Термогенератор ТГК-3
Конструкция термогенератора
Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества. При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.
Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рис. 4.
Рис. 4. Керосиновая лампа с термоэлектрическим генератором
Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи. Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.
Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.
Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.
Видео
Смотрите также по теме:
Ветрогенератор. Как выбрать, смонтировать и избежать разочарования?
Безлопастной ветрогенератор. Устройство и принцип работы.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
Термоэлектрический генератор — конвертируем тепло в электричество термогенератором
Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.
Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.
Шаг 1: Необходимые детали
- 1х Элемент Пельтье (термоэлектрический преобразователь)
- Алюминиевый радиатор среднего размера (я достал свой из старого ПК)
- Толстый электрический кабель двух цветов (опционально)
- Входные и выходные разъемы/гнезда, предварительно купленные или изготовленные (для ввода и вывода энергии) (опционально)
- Проектный корпус, частично теплозащищенный, если возможно. Используйте изоляционный материал, металл, фольгу и т.д. (опционально)
- Термопаста (опционально), алюминиевая фольга (желательно)
- Резак для резки тонких металлов
- Ножницы по металлу
- Разные отвертки (для закручивания винтов корпуса и входов/выходов)
- Разные винты и болты (для крепления металлических пластин и радиатора)
- Паяльник и припой (опционально) для надежного крепления
- Аккумуляторная батарея низкой или средней мощности (для подзарядки)
- Термоусадочные трубки для защиты проводов от тепла (необходимо)
- 1х блокирующий диод, чтобы предотвратить обратную зарядку.
- 2 алюминиевые банки (металлическая пластина)
- Толстая медная проволока
- Цифровой мультиметр
Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.
Шаг 2: Конструирование
Построить корпус и тепловой генератор электричества довольно просто.
Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.
Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.
Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.
Шаг 3: Тестирование теплогенератора
Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.
Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.
На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т.д.
Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.
ФайлыШаг 4: Улучшения
Возможные следующие модернизации устройства:
- Добавьте еще одну ячейку Пельтье чтобы удвоить выход напряжения.
- Подключите Joule Thief или несколько для небольшого увеличения напряжения.
- Используйте более качественные теплопроводные материалы, больший радиатор и более толстую алюминиевую или медную плиту в качестве основы.
- Можно качественнее закрепить ячейку Пельтье при помощи медной проволоки или термопасты, что улучшит перенос тепла.
- Используйте ракетную печь вместо открытых источников огня. Жар ракетных печей локализован, что будет эффективнее заряжать устройства.
- Используйте несколько связанных друг с другом устройств, соединив их последовательно над источником огня, чтобы увеличить выход напряжения.
- Можно улучшить термоизоляцию на проводах, фольге и изоляционной ленте (ракетные печи, как правило, немного плавят провода)
- Сделать запас компонентов и деталей (если что-то сломается или прогорит, всегда можно будет починить устройство)
90 фото простых и эффективных моделей
Термоэлектрический генератор, сокращенно ТЭГ – это устройство, вырабатывающее электричество, используя эффект возникновения электродвижущей силы (ЭДС), за счет разницы температур проводников. Стоит отметить, что имеется и обратный эффект — получение разницы температур при воздействии электрического тока.
Краткое содержимое статьи:
Что это такое?
Для объяснения принципа работы термоэлектрического генератора, нужно взять разнородные проводники и замкнуть их в цепь. Точки, в которых проводники соединяются, называют спаями. При нагреве одного из спаев цепи энергия свободных электронов на нем возрастает, так как имеет зависимость от температуры.
На нагретом участке электроны имеют более высокую энергию и начинают перемещаться в холодную область, где электроны обладают меньшей энергией, таким образом в цепи возникает ЭДС.
Величина разности потенциалов в такой цепи зависит от температуры, электропроводности и коэффициента термоЭДС ,который также называется коэффициентом Зеебека.
Для разных материалов его значение различно и измеряется относительно коэффициента платины, которой равняется нулю. К примеру, сурьма, железо, кадмий имеют положительный коэффициент, а висмут, никель, кобальт — отрицательный.
Историческая справка
Термоэлектрические эффекты или термоэлектричество, своим открытием обязано нескольким ученым. Впервые явление открыл немецкий физик Томас Иоганн Зеебек, в 1821 году. Оно получило название «Эффект Зеебека».
Обратное свойство – нагревание или охлаждение разнородных проводников воздействием электрического тока, в 1834 году изучил француз Жан Пельтье, его именем назван и сам эффект и термоэлектрический преобразователь, получивший название элемент Пельтье. Свой вклад в исследования внесли, также русский физик Эмилий Ленц в 1838 г. и британец Уильям Томпсон в 1851 г.
ТЭГ пытались создавать с середины 19 века. В 1874 году была разработана батарея Кламона, которая была достаточно мощной, чтобы использоваться в типографии или при гальванизации.
Причина, по которой эти технологии не получили широкого распространения, заключается в низком КПД, при использовании чистых металлических пар — это сотые доли процента. Немногим более эффективными — 1,5-2,0% оказались термоэлементы из полупроводников, которые начали использоваться в середине XX века.
Можно вспомнить довольно известный «партизанский котелок», от которого питались радиостанции. Выпускалась модель термоэлектрического генератора ТГК-3. Фото термоэлектрического генератора ТГК-3 представлены в нашей галерее.
Была отсылка к теме термоэлектрических генераторов и в советской фантастике — в 1930-х годах Роман Адамов написал научно-фантастический роман «Тайна двух океанов», о похождениях подводной лодки «Пионер», источником энергии в которой служила термопара.
Конструктивные особенности и область применения
Основой конструкции термоэлектрического генератора являются термоэлемент, нагреватель, охладитель и нагрузка, это может быть лампа, разъем для подключения устройств — все, что потребляет электричество.
Простота устройства, отсутствие лишних преобразований энергии и минимум движущихся механических узлов делает ТЭГ надежным и долговечным в эксплуатации источником энергии.
Автономные термоэлектрические генераторы
Именно простота и надежность обусловили использование ТЭГ в отдаленных и труднодоступных регионах для автономного энергоснабжения. К примеру, они применяются для питания навигационных маяков и метеорологических станций. Зачастую это разновидность газовых генераторов — ГТЭГ, где для нагревания используется природный газ.
Отдельно стоит упомянуть радиоизотопные ТЭГ, в которых источником тепла является естественный распад изотопов. Автоматическая межпланетная станция Кассини, запущенная к Сатурну в 1997 году была оборудована таким источником.
Для нагрева в РИТЭГ было использовано 32,8 килограмма изотопа плутония-238.
Универсальные термоэлектрические генераторы
К универсальным ТЭГ можно отнести те устройства, которые используют излишки тепла там, где таковые имеются, а также генераторы двойного назначения — для выработки электрической и тепловой энергии.
Область применения довольно широка. Хорошо подходят такие термоэлектрические генераторы для дома — в качестве дополнительного или резервного источника питания. Существуют модели, встраиваемые в систему отопления и позволяющие сделать ее автоматику и циркуляционные насосы практически полностью энергонезависимыми.
Вариант для дома или дачи, даст не только электричество, но и послужит в качестве печи, ниже показан пример такой электрогенерирующей печи.
ТЭГ своими руками
Создание простейшего генератора в домашних условиях не составит больших трудностей по причине его крайней простоты. По сути, все что нужно, это найти элемент Пельтье. Приобрести такой элемент сегодня не составляет труда и не потребует больших затрат.
Для простейшей демонстрации, кроме термоэлемента, достаточно будет двух алюминиевых банок прямоугольной формы, канцелярского зажима, пары проводов, холодной и горячей воды. Нужно поместить элемент Пельтье между корпусами банок, скрепив их зажимом, налить в одну банку кипяток, в другую холодную воду, желательно со льдом.
Теперь, если правильно соблюдена полярность, можно замерить напряжение на выводах элемента, сомнительно, что оно будет больше одного вольта, но, можно считать, что демонстрация удалась.
Чуть более сложной задачей будет сборка термоэлектрического генератора на дровах. Для этого, помимо термоэлемента, понадобиться камера сгорания, в качестве которой подойдет корпус от компьютерного блока питания, радиатор и вентилятор можно использовать от процессора, разъем USB.
Для тех, кто желает получить более высокое напряжение можно порекомендовать инверторы стабилизаторы — все зависит от фантазии. Инструкций и схем на просторах сети достаточно. Ниже приведена фотография подобного устройства.
Заключение
Итак, в статье был дан краткий обзор одному из направлений альтернативной энергетики — энергия, получаемая за счет термоэлектрических эффектов. История развития этого направления еще не написана до конца и не стоит на месте.
Термоэлектрические генераторы совершенствуются и находят новые применения, а следовательно рано сбрасывать со счетов эти простые, но полезные устройства.
Фото термоэлектрических генераторов
радиоизотопные и другие. Принцип работы генераторов энергии промышленного применения. Их устройство
Теплоэлектростанции признаны в мире как наиболее дешевый вариант получения энергии. Но существует альтернатива этому способу, которая отличается экологичностью, – термоэлектрические генераторы (ТЭГ).
Что это такое?
Термоэлектрический генератор – это приспособление, задача которого заключается в превращении тепловой энергии в электричество путем применения системы термических элементов.
Понятие «тепловая» энергия в данном контексте трактуется не совсем верно, так как тепло означает лишь метод превращения данной энергии.
ТЭГ представляет собой термоэлектрическое явление, которое впервые было проиллюстрировано немецким физиком Томасом Зеебеком в 20-ых годах 19 столетия. Результат исследования Зеебека трактуется как электрическое сопротивление в цепи из двух отличающихся материалов, однако весь процесс протекает лишь в зависимости от температуры.
Устройство и принцип работы
Принцип работы термоэлектрического генератора, или, как его еще называют, теплового насоса, основывается на преобразовании энергии тепла в электрическую энергию с использованием термических элементов полупроводников, которые связываются между собой параллельно или последовательно.
В ходе проведения исследований немецким ученым был создан совершенно новый эффект Пелтье, в котором указывается, что абсолютно разные материалы полупроводников при проведении спаивания дают возможность обнаружить отличие температур между их боковыми точками.
Но как же понять, как работает данная система? Все довольно-таки просто, такая концепция основана на определенном алгоритме: когда один из элементов охлаждают, а другой нагревают, то мы получаем энергию силы тока и напряжения. Главная особенность, которая выделяет из остальных именно этот метод, заключается в том, что тут могут использоваться всевозможные источники тепла, среди которых недавно отключенная плита, лампа, костер или даже чашка с только налитым чаем. Ну а охлаждающим элементом чаще всего является воздух или же обычная вода.
Как же устроены эти термические генераторы? Они состоят из специальных термических батареек, которые изготавливают из материалов проводников, и тепловых обменников разнородных температур спаев термобатарей.
Схема электрической цепи выглядит следующим образом: термоэлементы полупроводников, ветви прямоугольной формы n- и p-типа проводимой способности, соединенные пластины холодных и горячих сплавов, а также высокая нагрузка.
Среди положительных сторон термоэлектрического модуля отмечают возможность использовать абсолютно во всех условиях, в том числе и в походах, да и к тому же легкость транспортировки. Более того, в них отсутствуют подвижные детали, которые имеют свойство быстро изнашиваться.
А к недостаткам относят далеко не низкую стоимость, низкий коэффициент полезного действия (приблизительно 2–3%), а также важность еще одного источника, который обеспечит рациональный перепад температур.
Следует отметить, что ученые активно работают над перспективами усовершенствования и устранения всех погрешностей в получении энергии таким способом. Продолжаются эксперименты и исследования по разработке наиболее эффективных термических батареек, которые помогут повысить значение коэффициента полезного действия.
Однако довольно сложно определить оптимальность этих вариантов, так как они базируются исключительно на практических показателях, не имея при этом теоретического обоснования.
Учитывая все недостатки, а именно, несоответствие материалов для сплавов термобатареек, говорить о прорыве в ближайшем будущем довольно сложно.
Существует теория, что на современном этапе физиками будет использоваться технологически новый метод замены сплавов на более эффективные, в отдельности с внедрением нанотехнологий. Более того, возможен вариант использования нетрадиционных исходников. Так, в университете Калифорнии был проведен эксперимент, где термические батарейки заменили синтезированной искусственной молекулой, которая выступала как связующий материал золотых микроскопических полупроводников. Согласно проведенным опытам стало ясно, что результативность нынешних исследований покажет лишь время.
Обзор типов
В зависимости от методов получения электроэнергии, источников тепла, а также от разновидностей задействованных структурных элементов все термоэлектрические генераторы бывают на нескольких видов.
Топливные. Получают тепло от сжигания топлива, который представляет собой уголь, природный газ и нефть, а также тепло, полученное путем сгорания пиротехнических групп (шашек).
Атомные термоэлектрические генераторы, в которых источником выступает тепло атомного реактора (уран-233, уран-235, плутоний-238, торий), зачастую здесь термический насос — вторая и третья ступени превращения.
Солнечные генераторы формируют тепло от солнечных коммуникаторов, которые известны нам в повседневной жизни (зеркала, линзы, тепловые трубы).
Утилизационные генерируют тепло из всевозможных источников, в результате чего выделяется отходное тепло (выбросные и топочные газы и прочее).
Радиоизотопные получают тепло путем распада и расщепления изотопов, данный процесс характеризуется неконтролируемостью самого расщепления, и результатом выступает момент полураспада элементов.
Градиентные термоэлектрические генераторы базируются на перепаде температур без каких-либо вмешательств извне: между окружающей средой и местом проведения эксперимента (специально оснащенным оборудованием, промышленным трубопроводом и т. д.) с использованием исходного отправного тока. Приведенный тип теплоэлектрического генератора был использован с утилизацией полученной электрической энергии от эффекта Зеебека для превращения в тепловую энергию согласно закону Джоуля-Ленца.
Сферы применения
Из-за низкого коэффициента полезного действия термоэлектрические генераторы широко используются там, где отсутствуют какие-либо другие варианты источников энергии, а также во время процессов со значительной нехваткой тепла.
Дровяные печи с электрогенератором
Данное устройство характеризуется наличием эмалированной поверхности, источника электроэнергии, в том числе и обогревателя. Мощности такого приспособления может хватить для того, чтобы зарядить мобильное устройство или же другие девайсы с помощью гнезда прикуривателей для автомобилей. Исходя из параметров, можно сделать вывод, что генератор способен работать без обычных условий, а именно, без наличия газа, отопительной системы и электричества.
Термоэлектрические генераторы промышленного производства
Фирмой BioLite была представлена новая модель для походов – портативная печка, которая позволит не только разогреть еду, но и зарядить ваше мобильное устройство. Все это возможно благодаря встроенному в это приспособление термоэлектрическому генератору.
Данное устройство отлично вам послужит в походах, на рыбалке или же в любом месте, отдаленном от всех условий современной цивилизации. Работа генератора BioLite характеризуется сжиганием топлива, которое последовательно по стенкам передается и вырабатывает электричество. Получаемая электроэнергия позволит зарядить телефон или же подсветить светодиод.
Радиоизотопные термоэлектрические генераторы
В них источником энергии выступает тепло, которое образуется в результате расщепления микроэлементов. Они нуждаются в постоянном снабжении топливом, поэтому имеют превосходство над другими генераторами. Однако их существенный недостаток заключается в том, что при работе необходимо соблюдать правила безопасности, так как имеет место излучение ионизированными материалами.
Несмотря на то что запуск таких генераторов может быть опасен, в том числе и для экологической ситуации, их использование довольно распространено. Например, их утилизация возможна не только на Земле, но и в космосе. Известно, что радиоизотопные генераторы применяются для заряда навигационных систем, чаще всего в местах, где отсутствуют системы связи.
Термические микроэлементы
Термобатарейки выступают как преобразователи, а также их конструкцию составляют электроизмерительные приборы, калиброванные в Цельсиях. Погрешность в таких приборах обычно приравнивается к 0,01 градусам. Но необходимо отметить, что данные устройства разработаны для использования в диапазоне от минимальной черты абсолютного нуля и до 2000 градусов по Цельсию.
Термические электрогенераторы в последнее время получили широкую популярность при работе в труднодоступных местах, которые полностью лишены систем связи. К этим локациям относится и Космос, где данные устройства все чаще используются в виде альтернативных источников электропитания на борту космических средств.
В связи с развитием научно-технического прогресса, а также углубленными исследованиями в физике получает популярность применение термоэлектрических генераторов в транспортных средствах для восстановления энергии тепла, чтобы переработать вещества, которые извлекают из вытяжных систем автомобилей.
В следующем видео представлен обзор современного термогенератора электричества для похода BioLite energy everywhere.
О термоэлектрическом генераторе: изготовление термоэлектрогенератора своими руками
Современное пользовательское электрооборудование нуждается в постоянной подкачке электричества, источники которого не всегда имеются «под рукой» (в длительном пешем путешествии, например). С этой точки зрения, традиционные автомобильные аккумуляторы (АКБ) очень тяжелы для переноски и не годятся для классических походных условий. Их может заменить такое удобное в эксплуатации и транспортировке устройство, как термоэлектрический генератор своими руками изготовленный из подсобных элементов (общий вид ТЭГ приведён на фото ниже).
Общий вид ТЭГ
Несмотря на свои внушительные размеры, этот агрегат имеет малый вес и может быть разборным, то есть вполне подходит для транспортировки во время похода. Ознакомимся с принципом работы термоэлектрического генератора более детально.
Эффект Пельтье, его обратимость
Изготовление автономных термических генераторов электричества стало возможным благодаря открытию известного из курса физики эффекта Пельтье, состоящего в следующем. Оказывается, что разнородные по структуре проводники при протекании через зону их спайки электрического тока обнаруживают интересное свойство, состоящее в появлении разницы температур между их пограничными точками.
На основании этого открытия был разработан специальный элемент «Пельтье», состоящий их двух разнесённых на некоторое расстояние пластин из керамики с помещённой между ними биметаллической прокладкой. При пропускании через такие системы электрических зарядов одна из этих обкладок нагревается, а другая, напротив, – охлаждается, что в принципе позволяет делать на их основе холодильные установки.
Важно! При изменении направления тока через стык проводников (при прямом эффекте) меняется вектор градации температуры на стыках.
На размещённом ниже рисунке изображены модули различного типа и размера, чаще всего применяемые в технических изделиях этого класса.
Разнообразие модулей «Пельтье»
Как и многие другие электродинамические явления, этот эффект является полностью обратимым. Последнее означает, что при нагревании одной стороны пластин Пельтье и охлаждении другой на стыке между ними появится ЭДС, а через контактную зону и подключённую нагрузку потечёт небольшой ток (эффект Зеебека).
По этому принципу и функционирует рассматриваемый в этом обзоре генератор на элементах Пельтье, который вполне может работать на открытом воздухе (на рыбалке или в походе, например).
При проявлении эффекта Зеебека наблюдается та же зависимость от полярности происходящих изменений, а именно: если менять охлаждаемый и нагреваемый стыки местами, будет меняться и направление тока во всей системе. Таким образом, обратный элемент Пельтье как генератор электроэнергии представляет собой достаточно универсальное устройство, имеющее возможность регулировки величины и направления получаемой ЭДС.
Физическое объяснение
Причина возникновения разницы температур (в случае эффекта Пельтье) заключается в энергетике контактных зон, образующихся в местах стыка двух разнородных веществ (висмута и сурьмы, например). Особенности этих образований могут быть представлены следующим образом:
- Из-за различной концентрации положительных и отрицательных зарядов в границах полярных зон (в центре размещается одно вещество, по краям – другое) между ними образуются собственные разнонаправленные электрические поля;
- При протекании тока через контакт, в котором направление внешней и внутренней ЭДС совпадают, на поддержание перемещения электронов (на совершение работы в поле той же полярности) будет расходоваться внутренняя энергия вещества. Из основ физики известно, что такое явление соответствует остыванию материала в этом месте;
- Соответственно этому, во второй контактной зоне, где направление приложенной ЭДС противоположно внутреннему полю, электроны будут тормозиться, и внешнему источнику придётся затрачивать дополнительную энергию по их перемещению. Согласно тем же физическим законам, указанный эффект соответствует забору энергии или нагреву материала в точке стыковки (смотрите фото ниже).
Пограничные явления в зонах Пельтье
Обратите внимание! Напряжённости таких полевых образований максимальны на пограничных участках двух неоднородных сред (полупроводников разной проводимости, например), вследствие чего здесь этот эффект проявляется с особой силой.
Среди работающих по этому принципу устройств наиболее известны термические модули (ТЭМ), состоящие из разных типов полупроводников с размещённой между ними медной токопроводящей прокладкой.
Особенности функционирования ТЭМ
Принцип действия и конструкция
При рассмотрении особенностей функционирования ТЭМ, работающих по тому же принципу, что генератор Пельтье, необходимо обратить внимание на следующие моменты:
- В одном таком элементе имеется четыре перехода, которые образуются в пограничных зонах между краями металлической прокладки и двумя разнородными полупроводниковыми пластинами;
- При образовании замкнутой цепочки поток электронов перемещается по направлению от минуса источника питания к его плюсу, проходя через каждый переход;
- На границе первого по порядку барьера (полупроводник p-типа – медь) разогнанные во внешнем поле электроны переходят в состояние с меньшими энергиями разгона, вследствие чего происходит тепловыделение;
- На следующем переходе наблюдается поглощение энергии (то есть охлаждение материала), что объясняется её расходом на работу по перемещению из зоны проводимости типа «p»;
- На третьем пограничном переходе они попадают в зону полупроводника «n» со значительно большей, чем в прокладке из металла энергией, из-за чего здесь наблюдается её поглощение. Это приводит к охлаждению материала полупроводника на границе данного стыкового образования;
- В последнем переходе вследствие попадания электронов в зону с меньшими энергиями наблюдается обратный процесс, связанный с тепловыделением.
Поскольку каждый из рассмотренных барьеров в границах ТЭМ располагается в разных плоскостях, такая конструкция с одной из сторон будет иметь более низкую температуру, а с другой – более высокую. На их основе создаются недорогие и лёгкие термогенераторы.
Дополнительная информация. В большинстве промышленных образцов ТЭМ функцию полупроводников выполняют соединения кремния и висмута.
В готовом к практическому использованию элементе содержится большое количество рассмотренных ранее переходов, что позволяет получать вполне ощутимые по величине температурные перепады. Используя обратный эффект (охлаждая одну из его сторон и нагревая другую) удаётся получить электрогенератор, энергии от которого будет хватать для зарядки мобильного телефона, например.
Достоинства и недостатки
К преимуществам модулей типа ТЭМ, используемых в режимах охлаждения и нагрева, можно отнести их универсальность, небольшие габариты и лёгкость, что особо важно в походных условиях.
Их существенным недостатком является высокая стоимость, сравнительно низкий КПД (всего 2-3%), а также необходимость в стороннем источнике, позволяющем получить требуемый перепад температур.
Обратите внимание! Все перечисленные достоинства и недостатки относятся и к элементам ТЭМ, используемым как термоэлектрогенератор (смотрите рисунок ниже).
Модуль ТЭМ
Несмотря на присущие им недостатки, все эти изделия довольно часто применяются в различных сферах, где уровень энергозатрат не имеет решающего значения.
Самостоятельное изготовление
Комплект необходимых деталей
Перед тем, как собрать ТЭГ Пельтье своими руками, обязательно нужно учесть следующие важные моменты:
- Для получения электричества за счёт разницы температур подходят далеко не все представленные ранее модули ТЭМ, а лишь те из них, что рассчитаны на нагрев до 300-4000 градусов;
- Определенный запас по температуре гарантирует, что преобразовательные пластины не выйдут из строя при случайном перегреве рабочих контактов;
- Из всего многообразия представленных изделий предпочтение следует отдать элементам типа ТЕС1-12712, изготавливаемых в виде квадратов с разными размерами сторон: от 40 до 60 мм (смотрите рисунок ниже).
Термоэлементы типа TEC
Дополнительная информация. Для сборки устройства, рассчитанного на минимум потребляемой мощности, вполне может хватить одного элемента с максимальным размером.
Помимо этого, для изготовления генератора потребуется электронный преобразователь, позволяющий поддерживать выходное напряжение на уровне 5 Вольт. Необходимость в этой схеме объясняется тем, что генерируемая системой ЭДС непостоянна, так как разность температур всё время меняет своё значение при нагреве и охлаждении отдельных зон.
Стабилизатор напряжения придётся использовать фирменный (самостоятельно изготовить его могут только профессионалы). Для заявленных целей подойдёт устройство от зарубежного производителя марки «MAX 756» или отечественные изделия (3.3В/5В ЕК-1674), оснащённые USB разъёмом.
В качестве нагревателя могут использоваться как костёр (мини-печка), так и свеча, сухой спирт или самодельная лампа. Роль охладителя на природе чаще всего играет холодная вода, а в зимнее время – снег.
Сборка
Для формирования сред с разной температурой потребуются небольшие металлические ёмкости типа кружек или кастрюль из дюралюминия с отпиленными ручками. По своему размеру посуда подбирается так, чтобы одну ёмкость можно было вставить в другую, и чтобы между стенками оставался зазор, достаточный для размещения элементов TEC (они крепятся с двух сторон на термическую пасту).
Затем к каждой из сторон надёжно закреплённого модуля припаиваются хорошо изолированные провода, ведущие к преобразователю (стабилизатору). Для повышения отдачи системы (её КПД) днища металлических ёмкостей, непосредственно контактирующих с элементами ТЭГ, предварительно полируются, а на их донные части наносится тонкий слой термостойкого герметика (фото ниже).
Самодельный термогенератор
Последняя операция обеспечит концентрацию тепла в зоне расположения модуля и не позволит ему рассеиваться на близко расположенных охлаждаемых деталях. Для проверки работоспособности получившейся конструкции во внутреннюю (меньшую по объёму) ёмкость наливается вода, или закладывается снег, после чего она ставится на огонь. По истечении некоторого времени можно будет проверить наличие выходного напряжения 5 Вольт посредством мультиметра.
В заключение отметим, что из-за не очень высокого КПД этого устройства применять его в походе целесообразно только с целью зарядки телефона или для энергоснабжения не очень мощного фонарика с подсевшей батарейкой. Благо, что на природе имеются все условия, необходимые для создания нужной разности температур (холодная вода из реки и тепло от костра).
Видео
Термогенератор своими руками — порядок работ
Количество цифровых гаджетов постоянно увеличивается. К сотовому телефону добавились мобильная радиостанция, GPS-навигатор и фотоаппарат.
Таскать с собой полный котелок запасных аккумуляторов для всей этой электронной братии тяжело, а в холодное время года еще и бессмысленно – их емкость и мощность при низких температурах сильно сокращаются.
Поэтому каждый путешественник хотел бы обзавестись устройством, преобразующим в электричество доступную в походе энергию.
Весьма практичными оказались термогенераторы – источники, для работы которых необходимо тепло. На чем основан принцип их работы и как можно сделать термогенераторы электричества своими руками – об этом пойдет речь в этой статье.
Как определить термоЭДС металла?
Термоэлектродвижущая сила возникает в замкнутом контуре при соблюдении двух условий:
- Если он состоит хотя бы из двух проводников, изготовленных из различных материалов.
- Если все входящие в состав контура разнородные участки имеют различную температуру (хотя бы в области соединения).
В физике данное явление называют эффектом Зеебека.
Величина термоЭДС зависит от вида материалов и разности их температур.
Определяют ее по формуле:
Е = к (Т1 – Т2),
- Где Т1 и Т2 – температура проводников;
- К – коэффициент Зеебека.
Наибольшей производительностью обладают контуры, состоящие из разнородных полупроводников (обладающих р- и n-проводимостью). В металлах эффект Зеебека проявляется незначительно, за исключением некоторых переходных металлов и их сплавов, например, палладия (Pd) и серебра (Ag).
Теплообменники широко применяются в быту. Довольно легко можно сделать теплообменник своими руками – инструкция по сборке представлена в статье.
Пошаговая инструкция по облицовке камина своими руками представлена тут.
Знаете ли вы, что напряжение всего в 12 Вольт может служить источником тепла? По ссылке https://microklimat.pro/otopitelnoe-oborudovanie/obogrevateli/12-volt-svoimi-rukami.html инструкция по изготовления обогревателя 12 Вольт своими руками.
Принцип работы
Решать задачу по производству электричества из тепловой энергии приходится, как принято говорить в науке, от обратного. Противоположным эффекту Зеебека является эффект Пельтье, который состоит в изменении температур двух объединенных в замкнутый контур разнородных полупроводников при пропускании через них постоянного тока: один из них нагревается, второй – остывает.
Если направление тока изменить, изменится и направление теплового потока: первый полупроводник будет остывать, а второй – нагреваться. В качестве полупроводников чаще всего применяют твердую смесь кремния с германием и теллурид висмута.
Эффект Пельтье
Эффект, открытый Жаном Пельтье, получил широкое применение в различных сферах человеческой жизнедеятельности, где требуются холодильные машины, но нет возможности применить компрессорный тепловой насос на фреоне. Поэтому именно его именем назвали выпускаемые для этой цели устройства – элементы Пельтье.
Но если на такой элемент или, как его еще называют, термоэлектрический охладитель оказать воздействие с противоположной стороны, то есть создать на его полупроводниках разность температур, то мы получим эффект Зеебека: элемент Пельтье превратится в источник постоянного тока.
Конструкция термогенератора
Итак, идея термогенератора довольно проста: необходимо взять элемент Пельтье и сильно нагреть одну из его поверхностей. В генераторах заводского изготовления для этого применяются газовые горелки. Но создать такой прибор в домашних условиях довольно сложно – трудно обеспечить стабильное горение пламени в течение длительного времени.
Поэтому народные умельцы отдают предпочтение более простой версии термогенератора, о которой мы сейчас и расскажем.
Изготовление своими руками
Схематично устройство самодельной термоэлектростанции можно представить так:
- Элемент Пельтье положим на дно глубокой посудины – миски или кружки.
- Далее в эту посудину вставим еще одну: если используются миски, то понадобится такая же; если ваш выбор пал на кружки, то вторая должна быть чуть меньше первой.
- К выведенным от элемента Пельтье проводам присоединим преобразователь напряжения.
- Внутреннюю посудину заполним снегом или холодной водой, после чего всю конструкцию поставим на огонь.
Через какое-то время снег растает, превратится в воду и закипит. Производительность генератора при этом понизится, но зато турист получит возможность выпить горячего чайку. После чаепития можно будет заправить генератор новой порцией снега.
Чем больше термоэлементов (их еще называют ветвями) будет у приобретенного вами элемента Пельтье, тем лучше. Можно применить прибор марки TEC1-127120-50 – их у него 127. Данный элемент рассчитан на токи до 12А.
Порядок работ
Теперь рассмотрим процесс создания самодельного термогенератора в деталях:
- Поверхность каждой посудины в месте контакта с элементом Пельтье следует выровнять и зачистить, что обеспечит максимальный теплообмен. Для идеального прилегания можно отполировать донышки смазанным пастой ГОИ куском войлока, закрепленным в шпинделе электродрели.
- Присоединяем к контактам элемента Пельтье провода от электроплиты, снабженные термостойкой изоляцией. За неимением таковых можно применить, к примеру, провод МГТФЭ-0,35, обернув его термостойкой тканью.
- Смазав дно одной из посудин термопроводящей пастой, например, КПТ-8, укладываем на него элемент Пельтье. Подсоединенные к нему провода следует расположить так, чтобы их концы оказались вне емкости.
- Сверху элемент Пельтье снова смазываем термопастой и вставляем в нашу кружку или миску вторую емкость подходящего размера (у кружки нужно будет отрезать ручку).
- Пространство между емкостями необходимо заполнить термоустойчивым герметиком (можно купить в автомагазине состав для ремонта выхлопных труб). Он послужит теплоизоляцией между горячей и холодной сторонами генератора и дополнительной защитой для проводов.
Походный генератор электричества
Выступающие концы проводов можно приклеить к бортику кружки матерчатой изолентой.
Изготовление преобразователя
В ходе эксперимента установленный на электроплитку термогенератор при наличии снега во внутренней емкости обеспечил ЭДС в 3В и ток в 1,5А. После превращения снега в воду и ее закипания мощность генератора упала в три раза (напряжение составило 1,2В).
Чтобы использовать такой прибор в качестве зарядного устройства для телефона или другого гаджета, которому требуется стабильное напряжение в 5 В или 6,5 В, его необходимо оснастить преобразователем напряжения.
Рассмотрим два варианта.
Вариант 1
Проще всего применить в качестве преобразователя микросхему КР1446ПН1, снабженную DIP-корпусом.
Производится она в России и ее легко можно найти в магазине радиодеталей или на радиорынке.
Воспользоваться не возбраняется и более мощными аналогами, но все они выпускаются в миниатюрных корпусах для поверхностного монтажа, так что придется помучиться с распайкой.
На вход микросхемы подается напряжение с элемента Пельтье, а сама она включается в режиме «5 Вольт» (штатный). Параллельно с элементом Пельтье на вход преобразователя напряжения следует припаять достаточно мощный шунтирующий диод. Он предотвратит движение тока в обратном направлении, если на генератор будет оказано противоположное температурное воздействие.
К примеру, будучи заполненным горячей водой он может быть по неосторожности установлен на какую-нибудь холодную поверхность.
К выходу преобразователя нужно припаять кабель от старого зарядного устройства, подходящего для нашей модели телефона или фотоаппарата, а также светодиодный индикатор на 5 В.
Недостаток этого варианта: предложенная в качестве преобразователя микросхема ограничивает мощность генератора, поскольку ток на ее выходе не превышает 100 мА. Таким образом, элемент Пельтье используется приблизительно на 20%, чего будет достаточно только для телефонов устаревших моделей.
Чтобы иметь возможность заряжать более мощные устройства, необходимо применить усложненную версию преобразователя напряжения.
Вариант 2
Более мощный преобразователь можно собрать по двухкаскадной схеме с применением пары микросхем MAX 756. Чтобы при отключении потребителя генерируемый ток не пропадал зря, оснастим преобразователь встроенными аккумуляторами. Соединенные последовательно, они включены в нагрузку первого каскада через выключатель, диод и токоограничивающий резистор. Сам каскад настроен на режим выхода «3,3 Вольт».
К выходу каскада №1 подключаем каскад №2, настроенный на режим выхода «5 Вольт». Оба каскада реализованы согласно схеме, приведенной в документации на микросхему MAX 756 (опубликована в Сети). Единственное отличие – цепь обратной связи каскада №2 (между выходом каскада и ногой №6 его микросхемы) дополняется последовательностью из 3-х кремниевых диодов, расположенных анодом к выходу.
Простейший походный термогенератор
Такое усовершенствование позволит получать на холостом ходу напряжение величиной 6,5 В (требуется для зарядки некоторых электронных устройств).
Чтобы упростить схему, можно применить микросхему MAX 757, которая снабжена отдельным выходом обратной связи.
Интерфейс этого преобразователя соответствует типу USB Type A. Но если к нему предполагается подключать USB-устройство, то последовательность диодов из цепи обратной связи 2-го каскада лучше убрать, чтобы выходное напряжение вернулось на уровень 5 В.
Эту версию преобразователя нельзя подключать к портам типа USB-Host.
Вариация на тему…
Элемент Пельтье можно просто прикрепить к колышку, втыкаемому в землю поблизости от костра.Чтобы создать достаточный температурный градиент, обе его поверхности нужно оснастить ребристыми радиаторами.
На поверхности со стороны пламени радиатор должен иметь увеличенную площадь, а его ребра устанавливаются горизонтально.
На противоположной стороне элемента установлен меньший радиатор, а его оребрение – вертикальное.
Батареи отопления могут устанавливаться по-разному в зависимости от типа отопительной системы – однотрубной или двухтрубной. Схемы подключения радиаторов отопления и советы по месту их установке – читайте внимательно.
Как отремонтировать циркуляционный насос своими руками? Основные типы поломок и методы их устранения представлены в этой статье.
Видео на тему
устройство, принцип работы и применение
Термоэлектрический генератор (термогенератор ТЭГ) — это электрическое устройство, использующее эффекты Зеебека, Томсона и Пельтье для выработки электроэнергии за счет термо-ЭДС. Эффект термо-ЭДС был открыт немецким ученым Томасом Иоганном Зеебеком (эффект Зеебека) в 1821 г. В 1851 году Уильям Томсон (позже лорд Кельвин) продолжил термодинамические исследования и доказал, что источником электродвижущей силы (ЭДС) является температурный перепад.
В 1834 году французский изобретатель и часовщик Жан Чарльз Пельтье открыл второй термоэлектрический эффект, установил, что разность температур происходит на стыке двух различных типов материалов под воздействием электрического тока (эффект Пельтье). В частности, он предсказал, что ЭДС возникает внутри одного проводника, когда присутствует температурный перепад.
В 1950 году русский академик и исследователь Абрам Иоффе открыл термоэлектрические свойства полупроводников. Термоэлектрический генератор энергии стали использовать в системах автономного электроснабжения в недоступных районах. Изучение космического пространства, выход человека в космос дали мощный толчок для бурного развития термоэлектрических преобразователей.
Радиоизотопный источник энергии был впервые установлен на космических кораблях и орбитальных станциях. Их начинают использовать в крупной нефтегазовой отрасли для антикоррозионной защиты газопроводов, в исследовательских работах на Дальнем Севере, в сфере медицины в качестве электрокардиостимуляторов, в жилищном хозяйстве как автономные источники электроснабжения.
Термоэлектрический эффект и перенос тепла в электронных системах
Термоэлектрические генераторы, принцип работы которых основан на комплексном использовании эффекта трех ученых (Зеебека, Томсона, Пельтье), получили свое развитие почти через 150 лет после открытий, намного опередивших свое время.
Термоэлектрический эффект заключается в следующем явлении. Для охлаждения или генерации электричества используется «модуль» состоящий из электрически связанных пар. Каждая пара состоит из полупроводникового материала р (S> 0) и n (S<0). Эти два материала соединены проводником, термоэлектрическая мощность которого считается равной нулю. Две ветви (p и n) и все остальные пары, составляющие модуль, соединены последовательно в электрической цепи и параллельно в термической. ТЭГ (термоэлектрический генератор) с такой компоновкой создает условия, чтобы оптимизировать тепловой поток, который проходит через модуль, преодолевая его электрическое сопротивление. Электрический ток воздействует таким образом, что носители заряда (электроны и дырки) движутся от холодного источника к горячему источнику (в термодинамическом смысле) в двух ветвях пары. При этом они способствуют переносу энтропии от холодного источника к горячему, к тепловому потоку, который будет противостоять теплопроводности.
Если выбранные материалы обладают хорошими термоэлектрическими свойствами, этот тепловой поток, создаваемый движением носителей заряда, будет больше теплопроводности. Поэтому система передаст тепло от холодного источника к горячему и будет действовать как холодильник. В случае генерации электричества тепловой поток вызывает смещение носителей заряда и появление электрического тока. Чем больше разность температуры, тем больше электричества можно получить.
Эффективность ТЭГ
Оценивается коэффициентом полезного действия. Мощность термоэлектрогенератора зависит от двух критических факторов:
- Объема теплового потока, который может успешно перемещаться через модуль (тепловой поток).
- Дельты температур (DT) – разница температур между горячей и холодной стороной генератора. Чем больше дельта, тем эффективнее он работает, поэтому конструктивно должны быть обеспечены условия, как для максимальной подачи холода, так и максимального отвода тепла от стен генератора.
Термин «эффективность термоэлектрических генераторов» аналогичен термину, применяемому в отношении всех других типов тепловых двигателей. Пока он очень низкий и составляет не более 17 % эффективности Карно. КПД генератора ТЭГ ограничен эффективностью Карно и на практике достигает лишь несколько процентов (2-6 %) даже при высоких температурах. Это происходит из-за низкой теплопроводности в полупроводниковых материалах, что не способствует эффективной выработке электроэнергии. Таким образом, нужны материалы с низкой теплопроводностью, но в то же время с максимально высокой электропроводностью.
Полупроводники лучше справляются с этой задачей, чем металлы, но пока еще очень далеки от тех показателей, которые вывели бы термоэлектрический генератор на уровень промышленного производства (хотя бы с 15 % использованием высокотемпературного тепла). Дальнейшее повышение эффективности ТЭГ зависит от свойств термоэлектрических материалов (термоэлектрики), поиском которых сегодня занят весь научный потенциал планеты.
Разработки новых термоэлектриков относительно сложные и затратные, однако в случае успеха они вызовут технологическую революцию в системах генерации.
Термоэлектрические материалы
Термоэлектрики состоят из специальных сплавов или полупроводниковых соединений. В последнее время для термоэлектрических свойств применяются электропроводящие полимеры.
Требования к термоэлектрикам:
- высокая эффективность, которая обусловлена низкой теплопроводностью и высокой электропроводностью, высоким коэффициентом Зеебека;
- устойчивость к высоким температурам и термомеханическим воздействиям;
- доступность и безопасность окружающей среды;
- устойчивость к вибрациям и резким перепадам температур;
- долгосрочная стабильность и дешевизна;
- автоматизация процесса изготовления.
В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД ТЭГ. Термоэлектрический полупроводниковый материал представляет собой сплав теллурида и висмута. Он был специальным образом изготовлен, чтобы обеспечить отдельные блоки или элементы с различными характеристиками «N» и «P».
Термоэлектрические материалы чаще всего изготавливаются путем направленной кристаллизации из расплавленной или прессованной порошковой металлургии. Каждый способ изготовления имеет свое особое преимущество, но наиболее распространены материалы с направленным ростом. В дополнение к теллуриту висмута (Bi 2 Te 3) существуют другие термоэлектрические материалы, в том числе сплавы свинца и теллурита (PbTe), кремния и германия (SiGe), висмута и сурьмы (Bi-Sb), которые могут использоваться в конкретных случаях. Пока термопары висмута и теллурида лучше всего подходят для большинства ТЭГ.
Достоинства ТЭГ
Достоинства термоэлектрогенераторов:
- выработка электричества происходит по замкнутой одноступенчатой схеме без использования сложных передающих систем и применения движущих частей;
- отсутствие рабочих жидкостей и газов;
- отсутствие выбросов вредных веществ, бросового тепла и шумового загрязнения окружающей среды;
- устройство длительного автономного функционирования;
- использование отработанного тепла (вторичные источники теплоты) с целью экономии энергоресурсов
- работа в любом положении объекта независимо от среды эксплуатации: космос, вода, земля;
- выработка постоянного тока при малом напряжении;
- невосприимчивость к короткому замыканию;
- неограниченный срок хранения, 100 % готовность к работе.
Сферы применения термоэлектрического генератора
Преимущества ТЭГ определили перспективы развития и его ближайшее будущее:
- изучение океана и космоса;
- применение в малой (бытовой) альтернативной энергетике;
- использование тепла от выхлопных труб автомобилей;
- в системах переработки мусора;
- в системах охлаждения и кондиционирования;
- в системах тепловых насосов, для мгновенного разогрева дизельных двигателей тепловозов и автомобилей;
- нагрев и приготовление пищи в походных условиях;
- зарядка электронных устройств и часов;
- питание сенсорных браслетов для спортсменов.
Термоэлектрический преобразователь Пельтье
Элемент Пельтье (ЭП) — это термоэлектрический преобразователь, работающий с использованием одноименного эффекта Пельтье, одного из трех термоэлектрических эффектов (Зеебека и Томсона).
Француз Жан-Шарль Пельтье соединил провода меди и висмута друг с другом и подключил их к батарее, создав таким образом пару соединений двух разнородных металлов. Когда батарея включалась, один из переходов нагревался, а другой охлаждался.
Устройства, основанные на эффекте Пельтье, чрезвычайно надежны, поскольку они не имеют движущихся частей, не нуждаются в техническом обслуживании, не имеют выбросов вредных газов, компактны и имеют возможность двунаправленной работы (нагрев и охлаждение) в зависимости от направления тока.
К сожалению, они малоэффективны, имеют низкий КПД, выделяют довольно много тепла, что требует дополнительной вентиляции и увеличивает стоимость устройства. Такие устройства потребляют довольно много электроэнергии и могут вызвать перегрев или конденсацию. Элементы Пельтье с размерами более 60 мм x 60 мм практически не встречаются.
Область применения ЭП
Внедрение передовых технологий в области производства термоэлектриков привело к удешевлению производства ЭП и расширению доступности рынка.
Сегодня ЭП широко применяется:
- в переносных охладителях, для охлаждения небольших приборов и электронных компонентов;
- в осушителях для извлечения воды из воздуха;
- в космических аппаратах для уравновешивания воздействия прямого солнечного света на одну сторону корабля, рассеивая тепло на другую сторону;
- для охлаждения фотонных детекторов астрономических телескопов и высококачественных цифровых камер, чтобы минимизировать погрешности наблюдения, возникающих из-за перегрева;
- для охлаждения компьютерных компонентов.
В последнее время широкое применение он получил и для бытовых целей:
- в устройствах кулеров, питающихся через USB-порт для охлаждения или нагрева напитков;
- в виде дополнительной ступени охлаждения компрессионных холодильников с понижением температуры до -80 градусов для одноступенчатого охлаждения и до -120 для двухступенчатого;
- в легковых автомобилях для создания автономных холодильников или обогревателей.
Китай наладил производство элементов Пельтье модификаций TEC1-12705, TEC1-12706, TEC1-12715 стоимостью до 7 евро, которые могут обеспечить по схемам «тепло-холод» мощность до 200 Вт, сроком службы до 200 000 часов, работающих в температурной зоне от -30 до 138 градусов Цельсия.
Ядерные батарейки РИТЭГ
Радиоизотопный термоэлектрический генератор (РИТЭГ) представляет собой устройство использующее термопары для преобразования тепла, выделяемое при распаде радиоактивного материала, в электричество. Этот генератор не имеет движущихся частей. РИТЭГ использовался в качестве источника энергии на спутниках, космических аппаратах, удаленных объектах маяков, построенных СССР для Полярного круга.
РИТЭГы, как правило, являются наиболее предпочтительным источником энергии для устройств, которым требуется несколько сотен Ватт мощности. В топливных элементах, батареях или генераторах установленных в местах, где солнечные элементы являются неэффективными. Радиоизотопный термоэлектрический генератор требует соблюдения строгих мер осторожного обращения с радиоизотопами в течение долгого времени после окончания его срока службы.
В России насчитывается порядка 1 000 РИТЭГов, которые использовались в основном для источников питания на средствах дальнего действия: маяках, радиомаяках и других специальных радиотехнических средствах. Первым космическим РИТЭГом на полонии-210 стал «Лимон-1» в 1962 году, затем «Орион-1» мощностью 20 Вт. Последняя модификация была установлена на спутниках «Стрела-1» и «Космос-84/90». «Луноходы»-1,2 и «Марс-96» использовали РИТЭГ в системах обогрева.
Устройство термоэлектрогенератора своими руками
Столь сложные процессы, которые протекают в ТЭГ, никак не останавливают местных «кулибиных» в стремлении присоединится к мировому научно-техническому процессу по созданию ТЭГ. Использование самодельных ТЭГ применяется уже давно. Во время Великой Отечественной войны партизаны делали универсальный термоэлектрогенератор. Он вырабатывал электрический ток для зарядки рации.
С появлением на рынке элементов Пельтье по доступными для бытового потребителя ценам возможно сделать ТЭГ самому, выполнив следующие шаги.
- Приобрести два радиатора в магазине IT и применить термопасту. Последняя облегчит соединение элемента Пельтье.
- Разделить радиаторы любым теплоизолятором.
- Сделать отверстие в изоляторе для размещения элемента Пельтье и проводов.
- Собрать конструкцию, и поднести источник тепла (свеча) к одному из радиаторов. Чем дольше нагрев, тем больше тока будет вырабатываться из домашнего термоэлектрического генератора.
Работает такой прибор бесшумно, и имеет небольшой вес. Термоэлектрический генератор ic2 в зависимости от размера, может подключить зарядку мобильного телефона, включить небольшой радиоприемник и светодиодное освещение.
В настоящее время многие известные мировые производители начали выпуск различных доступных гаджетов с применением ТЭГ для автолюбителей и путешественников.
Перспективы развития термоэлектрической генерации
Ожидается, что спрос на бытовое потребление ТЭГ вырастет на 14 %. Перспективы развития термоэлектрической генерации опубликовал Market Research Future, издав документ «Глобальный отчет по исследованию рынка термоэлектрических генераторов — прогноз до 2022 года» — анализ рынка, объем, доля, ход, тенденции и прогнозы. Доклад подтверждает перспективу ТЭГ в утилизации автомобильных отходов и системах совместного производства электроэнергии и тепла для бытовых и промышленных объектов.
Географически глобальный рынок термоэлектрических генераторов был разделен на Америку, Европу, Азиатско-Тихоокеанский регион, Индию и Африку. АТР считается самым быстрорастущим сегментом в области внедрения рынка ТЭГ.
Среди этих регионов Америка, по оценкам экспертов, является основным источником доходов на глобальном рынке ТЭГ. Ожидается, что увеличение спроса на экологически чистую энергию повысит спрос на него в Америке.
Европа также будет демонстрировать относительно быстрый рост в течение прогнозируемого периода. Индия и Китай будут наращивать потребление значительными темпами из-за увеличения спроса на транспортные средства, что приведет к росту рынка генераторов.
Компании по производству автомобилей такие, как Volkswagen, Ford, BMW и Volvo в сотрудничестве с NASA, уже приступили к разработке мини-ТЭГ для системы регенерации тепла и экономии топлива в автомобиле.
Термоэлектрический генератор (ТЭГ) «Генераторы« Электроэнергия
»Определение
Термоэлектрический генератор (ТЭГ) вырабатывает электричество при наличии термоградиента между двумя разнородными проводниками.
источник: Сбор термоэлектрической энергии Дон Скансен 2011-10-26
С точки зрения непрофессионала, когда два металла (проводника) помещаются вместе (термопара) и холод прикладывается к одной стороне, а горячий — к другой (градиент температуры), вырабатывается электричество.Это форма термоэлектрического эффекта, известного как эффект Зеебека (названный так в честь Томаса Иоганна Зеебека, который обнаружил это явление в 1821 году). Подобно диффузии горячего воздуха в холодный (2-й закон термодинамики), градиент температуры в двух разнородных проводниках создает поток тепла — поток носителей заряда или электронов — создавая разность напряжений, то есть электричество!
Современные термоэлектрические генераторы по-прежнему имеют КПД только около 5-8%, но, как и ожидалось, исследования постоянно увеличивают это число.Современные термоэлектрические генераторы сейчас создаются с использованием высоколегированных полупроводников, что делает их намного менее громоздкими, чем более ранние версии, созданные с использованием биметаллических переходов.
источник: Physics.stackexchange.com
Приложения
Если взять описание одного из ведущих экспертов в области ТЭГ, Gentherm, о том, как они проектировали свои системы для производства электроэнергии в больших масштабах:
Термоэлектрический генератор преобразует тепло непосредственно в электричество.Когда тепло движется от газовой горелки через термоэлектрический модуль, оно вызывает электрический ток.
В основе каждого ТЭГ GPT лежит герметичный термоэлектрический модуль, называемый термобатареей. Он содержит массив полупроводниковых элементов. Прочный модуль обеспечивает химически стабильную среду для термоэлектрического материала и обеспечивает длительный срок службы. Горелка поддерживает высокую температуру на горячей стороне, в то время как охлаждающие ребра охлаждают другую сторону. Разница температур на термобатареи создает стабильное электричество постоянного тока без движущихся частей.
Отдельные генераторыGPT имеют выходную мощность от 15 до 550 Вт и идеально подходят для приложений, требующих мощности до 5000 Вт.
Другой мастер, Энн Макосински изобрела фонарик, который работает на тепле человеческой руки, используя термоэлектрический эффект плиток Пельтье.
Автомобильные термоэлектрические генераторы(ATEG) предназначены для улавливания огромных потерь тепла двигателя, рекуперации его в виде электричества, что приводит к снижению нагрузки на электрогенератор, который приводится в действие за счет нагрузки двигателя.Таким образом, использование ATEG снижает расход топлива.
.Home-Термоэлектрический генератор teg-модулей
Технология TEG Generator POWER имеет свои сильные стороны. Поскольку плотность мощности очень велика, можно производить небольшие термоэлектрические генераторы. Например, сборка ТЭГ на 100 Вт может уместиться примерно в двадцатую часть пространства, необходимого для эквивалентной солнечной батареи. Кроме того, производительность составляет 24 часа в сутки, пока есть источник тепла и сторона отвода холода. Таким образом, фактическая выходная мощность может в 6-7 раз превышать мощность 100-ваттной солнечной батареи.Чтобы сделать технологию дешевой в эксплуатации, необходимо сбросное тепло, которое по определению является бесплатным. Ключевые слова: «Энергогенератор WASTE HEAT TEG». Чтобы извлечь максимальную эффективность и термоэлектрическую мощность из современных полупроводниковых материалов. Рекомендуется иметь температуру горячей стороны от 50 до 320 ° C (122-608 ° F) для материалов BiTe с дельта-температурой (DT) не менее 50 ° C или выше. Некоторые приложения могут работать на низкопотенциальном тепле в диапазоне 50 ° C (122 ° F), если объем отходящего тепла велик и имеется достаточное количество холодной воды или воздуха.В настоящее время Bi2Te3 наиболее эффективен при комнатной температуре. Такие материалы, как PbTe и CMO, также использовались при температурах от 350 до 600 ° C (702-1112 ° F). И Bi2Te3, и PbTe являются зрелыми материалами, их характеристики и рабочие характеристики хорошо задокументированы и широко используются в коммерческих целях. Однако PbTe до сих пор практически невозможно купить отдельно в модульной форме. С 1 июня 2014 года PbTe будет предлагаться как гибридный термоэлектрический модуль, сочетающий в себе лучший в классе Bi2Te3 P-тип с лучшим материалом PbTe N-типа в классе, чтобы сформировать первые гибридные модули TEG, классифицируемые как модуль серии TEG1-PB.Свойства PbTe лучше подходят для температур выше 300 ° C, поэтому комбинация хорошо работает в диапазоне от 300 ° C до 360 ° C. И теперь PbTe / TAGS до 12% эффективности. Мы также производим CMO, которые работают при очень высоких температурах от 500 ° C до 900 ° C (932 ° F — 1652 ° F) и выпускаются как в одномодульном исполнении, так и в каскадном (штабелированном) с Bi2Te3 на холодной стороне, чтобы использовать преимущества более низких диапазон температур после прохождения более высокой температуры через материал CMO. Эти каскады дают общий КПД от ~ 6 до 7%.
.
Информационный сайт TEG PowerСайт TEG Power предоставлен вам компанией Tegpro, разработчиками термоэлектрических генераторов; устройства, преобразующие тепло (перепады температур) в электричество. Здесь, в TEG Power Info, мы фокусируемся на обучении вас различным применениям термоэлектрических генераторов, которые предлагают практические альтернативные энергетические решения для промышленных, коммерческих, военных и потребительские приложения.Возможность преобразовывать тепло в полезное электрическая энергия позволяет использовать множество новых источников энергии. Расширение наших энергетических возможностей за счет использования генераторов TEG открывает двери для автономного питания многих устройств и позволяет нам использовать бесчисленное количество отработанного тепла. Термоэлектрические генераторы производства СШАTegpro в настоящее время производит AmeriTEG, единственный термоэлектрический генератор для дровяных и газовых плит, который производится в США с термоэлектрическими модулями американского производства.В моделях AmeriTEG с водяным и воздушным охлаждением используется запатентованная технология магнитной муфты с запатентованной технологией управления энергопотреблением, которая включает приоритизацию мощности, отслеживание точки максимальной мощности (MPPT) и беспроводную телеметрию (включая производительность печи) через Bluetooth / Wi-Fi. Tegpro также производит Stove Lite, термоэлектрический генераторный фонарь, который также будет производиться на их заводе в США в Рэндолфе, штат Вирджиния. Stove Lite можно приобрести в Tegmart. Выше представлены продукты американского производства Tegpro.Обратите внимание на магнитные термоэлектрические генераторы с водяным и воздушным охлаждением!
Большинство модулей термоэлектрического генератора Компании-производители используют множество термоэлектрических пар, которые зажаты между двумя частями неэлектропроводящего материалы. Также необходимо, чтобы этот материал был термически проводящие для обеспечения хорошей теплопередачи, обычно две тонкие керамические пластины используются для формирования так называемого термоэлектрического модуля. Каждый модуль может содержать десятки пар термоэлектрические пары, называемые модулями термоэлектрических генераторов, Модули ТЕС, а иногда и модули Пельтье или Зеебека, которые просто обозначает, используются ли они для выработки электроэнергии (Зеебек) или производят тепло или холод (Пельтье).Функционально разницы нет между двумя. Оба они способны производить тепло и холод или производство электроэнергии, в зависимости от того, используется ли тепло или электрический ток. Однако есть различия в производительности между различными модулями в зависимости от того, для чего они были изготовлены. За Например, если модуль изготавливается для использования в 12 В постоянного тока автомобильный охладитель термоэлектрические пары будут более толстыми и так будет провод, соединяющий модули с источником питания 12 В постоянного тока.В в большинстве случаев сам модуль довольно большой. Это просто потому, что модуль будет проводить большую нагрузку по току и должен иметь возможность справиться с нагрузкой. Хотя модули этого типа можно использовать для производства электричество они не подходят для этой задачи, потому что у них высокий внутреннее сопротивление (снижение мощности) и более низкотемпературный припой, может расплавиться при использовании в целях Зеебека. Значение электрического подключения может выйти из строя, когда более высокая температура необходима для производства значительного количества на модуль подается электричество. Если термоэлектрический модуль изготовлен для использования в термоэлектрическом генераторе, он имеет свой уникальный требования. Во-первых, они должны иметь самое низкое внутреннее сопротивление и высокотемпературный припой, например, из сивлера, для соединения проводов. Также необходимо использовать проволоку с покрытием из ПТФЭ или стекловолокна, чтобы выдерживать высокие температуры. Гильзы из стекловолокна Silicoon можно надевать на провода, что обеспечивает дополнительную защиту от высоких температур. Что такое генератор энергии ТЭГ?TEG — это аббревиатура от «термоэлектрический генератор». ТЭГ — это устройство, использующее одну или несколько термоэлектрических моделей в качестве первичный компонент / ы, за которым следует система охлаждения, которая может быть либо пассивный или активный. Радиатор на открытом воздухе, радиатор с вентилятором или Системы охлаждения гидроники являются примерами способов охлаждения термоэлектрических генераторов . Эти компоненты затем собираются в сборку для функционируют как одно целое, называемое ТЭГ.Часто, когда требуется активная система охлаждения, электроника и прошивка необходимы для определения приоритетов питания, чтобы обеспечить надлежащее охлаждение системы. Продукты, подобные этой, предлагаемые в Tegmart, разработаны таким образом, чтобы всегда отдавать приоритет активной системе охлаждения, прежде чем можно будет использовать какой-либо чистый прирост мощности. Это также позволяет некоторым устройствам запускаться от собственного источника энергии, а не от батареи для запуска, особенно если система батарей полностью разряжена. Когда нагревается горячая сторона ТЭГ, электричество производится.Практически любой источник тепла можно использовать для генерации электричество, такое как солнечное тепло, геотермальное тепло, даже тело высокая температура! Кроме того, эффективность любого устройства или машины, которая генерирует тепло как побочный продукт может быть значительно улучшено за счет рекуперации энергии потеряно как тепло. Многие компании сейчас осознают потенциал термоэлектрических генераторов в системах отопления, чтобы снизить потребность в сети, а также обеспечить автономное питание устройства в случае отключения электроэнергии.
Практически любой источник тепла может быть использован для выработки электричества, свечей, домашних систем отопления, обогревателей, лодочных моторов с водяным охлаждением, газовых / пропановых водонагревателей, промышленных отходов литейного производства, газовых фонарей и многого другого!
Термоэлектрический домТермоэлектрические генераторы могут обеспечивать дополнительной электроэнергией домовладельцев, которые используют дровяные / биотопливные печи или печи.Видео ниже отражает только один из возможные термоэлектрические домашние электростанции, которые могут быть установлены с использованием ТЭГ Силовые модули. Следует отметить, что всего 250 Вт термоэлектрической мощность, добавленная к дровяной / пропановой печи, как показано ниже, может производят почти 6 кВт / ч электроэнергии в день, что достаточно для снижения средний счет за электроэнергию в Вермонте более чем на треть. Большинство из новой древесины горящие печи / печи теперь используют технологию газификации, которая производит чистые сжигание газообразного водорода, что делает их чрезвычайно эффективным и чистым сжиганием.Утвержденные EPA дровяные печи / печи имеют право на получение федеральных налоговых льгот. Вот пример новой системы генератора энергии ТЭГ для преобразования тепла в электричество от дровяной печи.
Потребность в энергии термоэлектрического генератораЭлектричество — необходимость. Если вам когда-либо приходилось страдать от длительного отключения электроэнергии, вы бы знали, что это такое любят терять всю пищу в холодильнике. Если вы живете в холодном климате, ваш дом был холодным, потому что у вас нет тепла, так как большинству систем отопления требуется мощность для работы.Каждый миллион людей был в таком положении, когда зимний шторм отключил электричество. на больших площадях. Солнечные панели — отличный источник возобновляемой энергии источник, но они производят энергию только в дневное время. Их суточная выработка значительно снижается в более короткие дни в зимние месяцы. Использование генераторов ТЭГ в холодном климате в сочетании с солнечной, может обеспечить все потребности вашего дома в энергии. Модули питанияTEG vs.Генераторы ТЭГЭто Неправильно называть силовой модуль ТЭГ «Генератором ТЭГ». Модули термоэлектрического генератора — это всего лишь один электрический компонент. Они эквивалентны светодиоду в осветительном приборе. Для выработки термоэлектрической энергии вы должны спроектировать / построить генератор энергии ТЭГ, который включает в себя теплоотводящие / теплоотводящие пластины, теплопроводящие материалы, такие как графит, радиаторы / радиаторы для преобразования термоэлектрический модуль в термоэлектрический генератор.Некоторые системы требуют активного охлаждения с помощью блока электроники с микроуправлением. Tegpro специализируется на системах активного контроля охлаждения. |