Генератор тока схема: Стабилизатор тока и стабилизатор напряжения.

Содержание

Стабилизатор тока и стабилизатор напряжения.

Стабилизатор тока и стабилизатор напряжения.

     Эта статья является продолжением статьи «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения».

     Как одно превратить в другое.

     ***

     Временами я просматриваю статистику посещаемости моего сайта в Яндекс Метрике. Там же можно увидеть по каким запросам читатели приходят на ту или иную статью. Так вот на статью о генераторах тока зачастую читатели попадают, набирая запросы такого характера:

     — Как из стабилизатора напряжения сделать генератор тока?

     — Как источник тока переделать в стабилизатор напряжения?

     Ну и тому подобное.

     Раньше у меня такие вопросы вызывали только улыбку. Но сейчас я решил, что нужно вполне серьёзно на них ответить. Рассказать, чем же отличается схемотехника стабилизаторов тока и стабилизаторов напряжения. Вместо слова стабилизатор можете подставить генератор или источник.

     Итак, для начала нам нужно твёрдо себе уяснить основное различие источников тока и напряжения:

     Идеальный источник тока создаёт в нагрузке ток стабильной, неизменной величины.

     Идеальный источник напряжения создаёт на нагрузке напряжение стабильной неизменной величины.

     Далее я буду употреблять в тексте слова стабилизатор, генератор, источник. Все они будут являться синонимами словосочетания «Идеальный источник». Не пугайтесь слова «идеальный». Практически любой бытовой источник напряжения является условно идеальным, до того момента пока вы не нарушите условий его эксплуатации. Ну не включите, например слишком большую нагрузку, или не закоротите накоротко.

     Исключение составляют зарядные устройства. Но там разговор особый.

     Таким образом если мы изменяем сопротивление нагрузки у источника напряжения, то напряжение на нагрузке остаётся стабильным, а ток, протекающий через нагрузку, изменяется.

     Uн → const,

     Iн → var.

     Если мы изменяем сопротивление нагрузки у источника тока, то ток, протекающий через нагрузку, остаётся неизменным, а напряжение на нагрузке изменяется.

     Uн → var.

     Iн → const,

     Сразу оговорюсь что никакие химические, фотоэлектрические, электромеханические и т.д. и т.п. источники электроэнергии, не оснащённые специальными схемами стабилизации выходных характеристик, не могут рассматриваться ни как источник напряжения ни как источник тока. Они нечто среднее между тем и другим так как и ток и напряжение на выходе у них изменяются и при изменении сопротивления нагрузки, и с течением времени и по разным другим причинам. Такие источники являются источниками ЭДС.

     Итак, чем же различаются схемы стабилизаторов тока и стабилизаторов напряжения?

     Рассмотрим для начала что такое стабилизатор вообще. Функциональная схема любого стабилизатора выглядит так как показано на Рис.

1.


Рис. 1 Функциональная схема стабилизатора.

     Здесь:

     — УМ — усилитель мощности. Надо понимать, что несмотря на грозное название усилителем мощности может послужить обычный транзистор. Внутри интегральных микросхем таких усилителей мощности пруд пруди.

     — УО — расшифровывается не как умственно отсталый, а как усилитель ошибки.

     Как это работает.

     Вход подключен к какому-либо источнику питания. На выходе начинает протекать ток, который создаёт некоторое падение напряжения на сопротивлении подключенной нагрузки. УО включен в цепь глубокой отрицательной обратной связи

(ОС).

     Выходной параметр, ток или напряжение подаётся на один из входов УО. Ко второму входу подключен некий эталон. Если величина параметра на выходе УМ не совпадает с величиной эталона, то образуется некоторая разница между первым и вторым входом. Эта разница называется ошибкой.

     УО усиливает эту ошибку во много раз и выдаёт на УМ в виде управляющего сигнала, этот сигнал заставляет УМ изменить свои характеристики так чтобы выходной параметр (ток или напряжение) пришёл в соответствие с эталоном.

     Думаю, должно быть понятно, что для того, чтобы поддерживать минимальную разность между выходным параметром и эталоном УО должен обладать очень большим коэффициентом усиления

(Ку).

     Теперь давайте посмотрим, как это всё можно реализовать на практике.

     Начнём с простейшего стабилизатора напряжения, Рис. 2. Кстати, схемы, построенные по такому принципу в основном и были распространены примерно до 1980 года.

     Для начала немного о терминологии.

     — Эталон теперь будет называться опорным напряжением (Uоп). Независимо от того стабилизатор чего мы строим тока или напряжения, на вход 1 УО будет подаваться напряжение.

     — ИОН — источник опорного напряжения.


Рис. 2 Схема простого стабилизатора напряжения.

     В этой схеме роль УМ выполняет биполярный транзистор структуры n-p-n. В качестве ИОН задействован стабилитрон VD1. Остаётся вопрос — а где же УО? Роль УО выполняет p-n переход база-эмиттер транзистора. Вход 1 это эмиттер, на нём присутствует выходное напряжение. Роль входа 2 выполняет база транзистора, на неё подано опорное напряжение с катода VD1.

     Действительно, переход Б-Э это фактически включенный в прямом направлении полупроводниковый диод. А как известно на p-n переходе диода при прямом включении возникает некоторое довольно стабильное падение напряжение. И это напряжение очень слабо зависит от протекающего через диод тока. Стабильность напряжения Б-Э зависит от крутизны вольтамперной характеристики этого диода. Чем круче характеристика, тем меньше влияние тока протекающего через диод на падение напряжения на нём, что эквивалентно большому Ку усилителя ошибки.

     Напряжение на нагрузке вычисляется по следующей формуле:

     Uн = Uоп — Uбэ

     Так как Uоп и Uбэ стабильны то и Uн также стабильно. Причём, при идеальных Uоп и Uбэ, Uн не будет зависеть ни от изменения питающего напряжения, ни от изменения сопротивления нагрузки. В разумных пределах, конечно.

     Тот, кто читал мою статью «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения», тот думаю сам сможет оценить эти самые пределы.

     Теперь давайте подумаем, как нам этот стабилизатор напряжения переделать в стабилизатор (генератор) тока.

     На самом деле всё очень просто.

     Так как ток, протекающий через нагрузку, течёт от источника питания к коллектору транзистора, а затем в эмиттер, то следовательно ток в нагрузке практически точно соответствует току, протекающему через коллектор.

     Если вместо Rн запаять постоянный резистор тогда величина тока, протекающего через коллектор, будет постоянна и не будет зависеть от изменения напряжения питания, Рис. 3.


Рис. 3

     Вычисляться этот ток будет по следующей формуле:

     Iк = Uэ / R2 = (Uоп — Uбэ) / R2

     Вот мы, собственно говоря, уже и получили генератор (источник) тока. Правда работать он будет сам на себя, а потому в таком виде никому не нужен.

     Преобразовать его в полноценный генератор тока совсем просто. Нужно оторвать коллектор транзистора от цепи питания и включить в разрыв нагрузку, Рис. 4.


Рис. 4 Схема простого генератора (стабилизатора) тока.

     В этой схеме ток в нагрузке будет стабильным и не будет зависеть от напряжения питания и сопротивления нагрузки, опять же — в разумных пределах. Как эти пределы рассчитать я рассказывал в предыдущей статье.

     Таким образом стабилизатор напряжения (Рис. 2) я преобразовал в генератор тока (Рис. 4). Но в этих схемах есть один недостаток — очень низкий коэффициент стабилизации. Связано это как малой стабильностью ИОН на стабилитроне VD1, так и с низкой стабильностью Uбэ.

     В предыдущей статье я приводил такой пример схемы генератора тока, Рис. 5.

Рис. 5 Схема генератора тока с операционным усилителем в цепи обратной связи.

     В этой схеме ИОН может быть построен на стабилитронах или на более современных компонентах, например трёхвыводная микросхема TL431 или её аналог.

     Операционный усилитель ОУ выполняет роль усилителя ошибки. Такое построение схемы позволяет получить очень высокую стабильность выходных характеристик. Здесь резистор Rэ выполняет роль датчика тока (ДТ). Падение напряжения на этом датчике тока изменяется пропорционально изменению протекающего через него тока.

     Ну и как вы уже, наверное, поняли её также легко превратить в стабилизатор напряжения, Рис. 6.

Рис. 6 Схема стабилизатора напряжения с операционным усилителем в цепи обратной связи.

     ИОН обычно выдаёт Uоп в районе (2 — 5) Вольт. Делителем R1R2 устанавливают требуемое выходное напряжение. Чем больше коэффициент деления делителя, тем больше выходное напряжение.

     Что можно сказать по поводу этих двух схем.

     Генераторы тока по схеме изображённой на Рис. 5 вполне себе строятся так как от генераторов тока обычно не требуется большая мощность. Обычно они питают различные резистивные датчики температуры, давления, освещённости. В этих случаях требуется высокая стабильность генератора тока, а не мощность.

     Стабилизаторы напряжения в наше время в основном представляют из себя импульсные источники питания. Это позволяет получить высокий КПД и хорошие массогабаритные характеристики. Но в некоторых случаях не обойтись и без аналоговых стабилизированных источников питания. Например, там, где предъявляются высокие требования к уровню высокочастотных помех. Все импульсные источники довольно сильно фонят.

     Применение.

     Стабилизаторы напряжения окружают нас со всех сторон. Ни один компьютер или телевизор не может обойтись без них. Даже мобильник нужно время от времени заряжать через зарядное устройство, которое представляет собой ничто иное как стабилизированный источник напряжения.

     Генераторы тока для нас не так заметны. Но могу вас уверить что вы их постоянно неосознанно используете.

     Практически каждая интегральная микросхема содержит внутри себя генератор тока (источник стабильного тока). В больших интегральных микросхемах их сотни если не тысячи.

     Но также находят применение и мощные генераторы тока, вот два примера.

     Специализированные зарядные устройства для мощных аккумуляторов.

     Как известно заряд аккумулятора нужно проводить стабильным током. Для этого используют мощный источник питания, в который встроены две цепи обратной связи, одна по напряжению, она не даёт выходному напряжению превысить некоторый установленный уровень. Другая по току ограничивающая выходной ток устройства, а следовательно, и ток заряда.

     Таким образом когда вы подключаете разряженный аккумулятор к зарядному устройству возникает режим перегрузки. Обратная связь по току реагирует на это и ограничивает ток на выходе. Напряжение на выходных клеммах при этом падет. В дальнейшем по мере заряда аккумулятора напряжение растёт, ток при этом остаётся неизменным.

     Это означает что зарядное устройство работает в режиме генератора тока.

     Вторым примером может служить полупроводниковый сварочный аппарат. Здесь та же ситуация, а вернее даже ещё хуже, так как в начале процесса сварки на выходе аппарата вообще создаётся короткое замыкание. Но обратная связь по току не даёт току вырасти до опасной величины и сбрасывает уровень выходного напряжения. Дальше уже в процессе сварки эта же обратная связь следит за постоянством тока в электрической дуге, выходное напряжение при этом будет колебаться. Таким образом сварочный аппарат работает в режиме генератора тока.

     То есть и сварочный аппарат, и зарядное устройство если правильно организовать обратные связи и ввести соответствующие переключатели, можно использовать по прямому назначению, то есть в режиме генератора (стабилизатора) тока, а также как стабилизированные источники напряжения.

     Всё зависит от того откуда снимается сигнал для ОС. Если непосредственно с выхода, то получаем стабилизатор напряжения. Если с датчика тока, то получим генератор тока.

     Правда если говорить о современных источниках питания, то они представляют собой стабилизированные источники напряжения со схемой ограничения по току.

     То есть в них присутствуют обе обратные связи: и по напряжению, и по току. Но обратная связь по току включается в работу только в случае перегрузки. Именно поэтому большинство современных источников питания способны выдерживать даже длительные короткие замыкания на выходе.


Источники тока на полевых и биполярных транзисторах

Схемы генераторов тока, разновидности токовых зеркал, Онлайн калькулятор
расчёта элементов источников тока.


На сегодняшнем мероприятии, посвящённом открытию «Культурно-досугового центра Лоховского муниципального образования», поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
- Если напряжение можно понять умом, то ток только чувством! — начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
- Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц — как суммы знаний, физических умений и врождённых навыков.
«Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?» — станет темой нашего научного коллоквиума.

Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:

«Источник тока — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока…» — учит нас Википедия.

Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.

Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация — это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.

Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.


Рис.1

Схема источника тока на биполярном транзисторе — самая плохая. В ней присутствует полный букет недостатков — и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.

Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток — практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.

Генераторы тока на операционных усилителях (инвертирующий слева, неинвертирующий справа) — вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Единственное, но существенное в отдельных случаях «но» состоит в том, что нагрузка является «плавающей», т. е. не подключённой никаким боком к земле.
Ток через нагрузку практически с 100% точностью описывается формулой Iн= Uвх/R1.

Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.

Рис.2

Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо — источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб.
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать — максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1.
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.


Рис.3


Про схему токового зеркала, изображённую на Рис. 3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.

Здесь ток   Ik1, задаваемый резистором R1:
Iк1≈(Eп-0,7)/(R1+ Rэ1),
а ток, протекающий в нагрузке:
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).


Рис.4


Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.

Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).


Рис.5


Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.

Все формулы аналогичны предыдущему описанию:
Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).


Рис.6


Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.

И опять — всё то же самое:
Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Легко заметить, что для всех типов приведённых токовых зеркал формула для расчёта выходного тока — одна и та же. Формула приблизительная, не учитывающая влияние на расчётные показатели незначительных величин базовых токов транзисторов, однако дающая возможность с погрешностью, не превышающей 5-7%, рассчитать величины токозадающих элементов.


При необходимости сгенерить ток обратного направления, следует перевернуть схему вверх ногами и заменить n-p-n транзисторы на полупроводники обратной проводимости.

И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.

РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.

Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.

Рис.6

Проектировать источники тока на дискретных полевых транзисторах — занятие, на мой взгляд, довольно нецелесообразное.
Другое дело — специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.

Рис.7

Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.

А на следующей странице продолжим тему — посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.

 

РадиоКот :: Генераторы ВЧ

РадиоКот >Обучалка >Аналоговая техника >Жучки, передатчики и приемники: что о них надо знать >

Генераторы ВЧ

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать.

В нашем ненаглядном Интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем эту уйму.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

«Классика жанра».

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Индуктивная трехточка.

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора,

R2 – задает смещение базы,

C1, L1 – колебательный контур,

C2 – кондер ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности.

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Этот диод ускоряет перезаряд C2, что приводит к увеличению мощности генерируемого сигнала. Однако, вместе с тем, это вносит в сигнал нелинейные искажения, так что на выходе придется ставить фильтры НЧ для подавления паразитных гармоник.

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовай ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Вот он

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков 🙂

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Смотрим:

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера ( DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.

Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.

Серии ТТЛШ: К555, К531, КР1533
Например, микросхема К1533ЛН1 – 6 инверторов.
Серии КМОП: КР1554, КР1564 (74 AC , 74 HC ), например – КР1554ЛН1
На крайний случай – старая добрая серия К155 (ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.

Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя 🙂

Дальше мы немного поговорим об усилителях и займемся модуляторами.

⚡️Генератор тока повышенной мощности | radiochipi.ru

На чтение 7 мин. Опубликовано Обновлено

Для проверки работоспособности и настройки источников питания, стабилизаторов напряжения постоянного тока, измерения ёмкости аккумуляторных батарей, зарядки аккумуляторов стабильным током и в других случаях необходим мощный генератор стабильного тока.

Схема мощного генератора стабильного тока, собранного на биполярных транзисторах, с использованием отечественных комплектующих, показана на сайте смотрите рис.1. Устройство для своей работы не требует дополнительного источника питания, имеет защиту от перегрузки и переполюсовки входного напряжения. Диапазон входных напряжений устройства 3…75В постоянного тока, максимальная рассеиваемая мощность 150 Вт, максимальный рабочий ток 10 А. Такой генератор пригодится также для регулировки тока осветительных или нагревательных устройств.

Конструкция содержит встроенные аналоговые амперметр и вольтметр. Вход устройства подключают к источнику напряжения постоянного тока в соответствии с указанной полярностью. Плавкий предохранитель FU1 защищает конструкцию и источник питания от перегрузки. Диод VD1 защищает генератор тока нагрузки от переполюсовки напряжения питания. На высоковольтных транзисторах VT1, VT2, резисторах R4, R5, R6 и светодиоде HL2 собран индикатор наличия входного напряжения. Транзисторы этого узла включены как генератор стабильного тока около 1.5 мА, который будет протекать через светодиод HL2, практически не изменяясь от изменения входного напряжения в несколько раз.

Регулируемый генератор стабильного тока собран на транзисторах VT3-VT8. Регулируют ток переменным резистором R13. Генератор тока имеет два диапазона регулировки потребляемого тока: при разомкнутых контактах SA1 ток можно регулировать в диапазоне 0.2…1.5А; при замкнутых контактах SA1 потребляемый ток регулируется в диапазоне 1.5…10 А. Транзисторы VT3, VT5, VT6-VT8 включены как мощный составной транзистор с большим коэффициентом усиления по току. Маломощный транзистор VT4 управляет величиной тока, потребляемого устройством. При перемещении движка переменного резистора R13 вверх по схеме, протекающий через транзисторы VT3, VT5, VT6-VT8 ток увеличивается.

Транзисторы VT6-VT8 для увеличения нагрузочной способности включены параллельно, их выводы эмиттеров подключены к минусовому проводу питания через мощные токовыравнивающие резисторы R15-R17. Стабилизация тока осуществляется следующим образом: например, при увеличении входного напряжения, ток через транзисторы VT6-VT8, резисторы R15-R17, резистор R14 и, при замкнутых контактах SA1, через резисторы R18-R20 стремится увеличиться. Следовательно, увеличивается падение напряжения на выводах резистора R14.

Это ведёт к тому, что также возрастает ток база- эмиттер VT4, этот транзистор открывается сильнее и шунтирует переход база-эмиттер транзистора VT3. Ток коллектор-эмиттер VT3 уменьшается, следовательно, будет уменьшаться ток через переходы транзисторов VT5-VT8.

Конденсатор С1 и резистор R8 предотвращают самовозбуждение узла на транзисторах VT3-VT8. Резистор R10 защитный для транзистора VT4. РА1 – стрелочный амперметр со встроенным шунтом. Если на его месте будет применён миллиамперметр без встроенного шунта, то дополнительно устанавливают мощный резистор R2.

РА1 – вольтметр со встроенным токоограничительным резистором. Если на его месте будет применён микроамперметр без встроенного резистора, то устанавливают дополнительный резистор R3. На резисторе R1, диодах VD1-VD4 и светодиоде HL1 собран индикатор перегорания плавкого предохранителя FU1. При зарядке аккумулятора последний включается последовательно с амперметром РА 1, т.е. в разрыв провода «+» от внешнего источника питания.

Конструкция и детали. Большинство деталей конструкции смонтировано на плате размерами 150×95 мм навесным монтажом (рис.2). Все сильноточные цепи должны быть выполнены медным монтажным проводом с сечением по меди не менее 1.5 мм². Все детали устройства смонтированы в корпусе размерами 255x150x110 мм (рис.3). Маломощные постоянные резисторы типов МЛТ, РПМ, С1-4, С2-23, С2-33. Переменный резистор R13 проволочный ППБ-ЗА, ППБ-1А сопротивлением 100…220 Ом. Качество переменного резистора должно быть безупречным, поскольку при плохом контакте подвижного контакта ток через генератор тока неконтролируемо увеличится.

Мощный резистор R14 типа С5-37 мощностью 10 Вт, под корпусом этого резистора в монтажной плате просверлены вентиляционные отверстия диаметром 5 мм. Вместо такого резистора подойдут другие проволочные мощностью 10 или 15 Вт, например, С5-35В-10, ПЭВ-10, 1ПЭВ-10. Резисторы R18-R20 самодельные проволочные, намотаны высокоомным проводом диаметром 0.68 мм на керамических трубках длиной 45 мм и диаметром 8 мм, можно использовать керамические трубки большего размера.

Для уменьшения количества межвитковых замыканий самодельные проволочные резисторы промазаны силикатным клеем. Вместо этих резисторов можно установить проволочные резисторы промышленного изготовления мощностью 15…25Вт, например, ПЭВ-20, ПЭВ-25 или удвоенное количество резисторов С5-37-10 сопротивлением 2.4 Ом. Под этими резисторами в монтажной плате также просверливают вентиляционные отверстия.

Регистры R15-R17 самодельные проволочные с одинаковым сопротивлением 0.1…0.25 Ом, по конструкции аналогичны резисторам R18-R20, установлены рядом с мощными транзисторами на дополнительной монтажной планке. Явно избыточная мощность постоянных проволочных резисторов необходима для того, чтобы уменьшить их нагрев, тем самым, повысив стабильность их сопротивления.

Конденсатор С1 плёночный импортный на рабочее напряжение не менее 100 В, можно заменить конденсатором типа К73-15, К73-16. К73-17, К73-24, К73-9. Маломощные диоды КД522А можно заменить любыми из серий КД503, КД510, КД521, 1 N914, 1N4148. Диод Д215 можно заменить любым из Д214, Д231А, Д232, Д242, Д242А, Д243, Д243А, серий КД203, 2Д203, КД206, 2Д213, КД213, 2Д231, HFA15PB60, HFA16TA60C и другими выпрямительными на обратное рабочее напряжение не менее 100 В и прямой рабочий ток не менее 10 А.

Светодиоды любого типа общего применения, желательно с повышенной светоотдачей, например, из серий КИПД21, КИПД36, КИПД40, КИПД66. Транзисторы КТ940Б можно заменить любыми из серий КТ940, КТ969, КТ9179, 2SC2330, 2SC2383, 2SC2310. Вместо транзистора КТ851А можно установив КТ851Б, КТ851В. КТ816Г, КТ8167А, КТ8167Г, 2SA1249, 2SA1306 с коэффициентом передачи тока базы не менее 100 при токе коллектора 50 мА. Этот транзистор установлен на дюралюминиевый теплоотвод с площадью охлаждения 6 см² (одна сторона).

Транзистор КТ850А можно заменить КТ850Б. КТ850В, КТ863В, КТ817Г, 2SD1407, 2SD1474, 2SD669A с коэффициентом передачи тока базы не менее 80 при токе коллектора 1 А. Этот транзистор установлен на дюралюминиевый теплоотвод размерами 50x45x3 мм. Транзисторы КТ808АМ можно заменить другими аналогичными, выполненными в металлостеклянном корпусе КТ-9 (ТО-3), например, тремя однотипными КТ808БМ, КТ808ВМ, КТ808А, КТ819ГМ, КТ864А, 2N3442, 2N3773, MJ3281 с коэффициентом передачи тока базы не менее 40 при токе коллектора 3 А.

Эти транзисторы установлены на общий массивный ребристый дюралюминиевый теплоотвод с площадью охлаждающей поверхности около 800 см² (одна сторона). Корпуса транзисторов изолированы от теплоотвода тонкими слюдяными прокладками. С таким теплоотводом генератор тока может рассеивать непрерывно до 60 Вт мощности при пассивном воздушном охлаждении или до 150 Вт кратковременно или при принудительном воздушном охлаждении с помощью вентилятора. Из этого следует, например, что при входном напряжении 37В максимальный постоянный ток не должен превышать 4А.

Этот теплоотвод также выполняет функцию задней стенки корпуса. Лучшим выбором в качестве мощных транзисторов VT6-VT8 будут транзисторы типа MJ3281A, которые имеют максимальную рассеиваемую мощность до 250 Вт каждый и гарантированный минимальный коэффициент передачи тока базы не менее 45 при токе коллектора 8 А.

Транзистор КТ3107Г можно заменить любым из серий КТ502, КТ3107, КТ361, SS9015, 2SB1116. Амперметр и вольтметр применены готовые типа М4200 со встроенными резисторами и готовыми шкалами. Кнопка SA1 типа KDC-A04-1 с зависимой фиксацией положения, можно заменить аналогичной с переключаемыми контактами, рассчитанными на коммутацию тока 10 А или более.

Свободные группы контактов соединяют параллельно. От сопротивления резистора R12 зависит максимальная величина тока, который можно установить переменным резистором. Внешний вид устройства показан на фото в начале статьи. Верхняя и нижняя крышки корпуса – металлические с вентиляционными отверстиями, с электрическими цепями устройства не соединены.

При проверке работоспособности следует учитывать, что измерительные щупы цифровых мультиметров, несмотря на значительную внешнюю толщину проводов, могут иметь крайне малое сечение провода по меди и значительно влиять на результаты измерений при токе более 1 А и низком выходном напряжении источника питания.

Генератор пилообразного напряжения.Часть 2.Стабилизаторы тока

Всем доброго времени суток. В предыдущей статье я описывал простейший генератор пилообразного напряжения и приводил его расчет. Данная статья продолжает первую часть, сегодня вы узнаете, как улучшить параметры генераторов и какие для этого применяются схемы.

Как известно из предыдущей статьи основными параметрами для оценки качества генератора пилообразного напряжения являются коэффициент нелинейности и коэффициент использования напряжения питания. Первый коэффициент характеризует нестабильность тока, который заряжает конденсатор, поэтому для обеспечения коэффициента нелинейности ξ интегрирующие цепи наиболее линейный заряд конденсатора происходит в начальный период времени (примерно первые 10 % от времени заряда). Поэтому для лучшей линейности в простейших генераторах пилообразного напряжения с зарядным (или разрядным) резистором приходится использовать напряжение питания в несколько десятков раз выше, чем амплитуда выходного импульса.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Простой стабилизатор тока

Стабилизатор тока (источник тока, генератор тока) называется устройство, которое автоматически поддерживает заданный ток в нагрузке под действием дестабилизирующих факторов. В качестве основного элемента в генераторе тока в большинстве случаев используется биполярный транзистор. В простейшем случае схема представляет собой однокаскадный усилитель, который показан ниже



Простейшая схема стабилизатора тока.

Работает схема следующим образом. Делитель напряжения R1R2 создаёт на базе транзистора VT1 напряжение UB, которое может быть представлено, как сумма напряжений UBE (напряжение на переходе база-эмиттер) и UE – напряжение на эмиттере VT1, тогда

[math]U_{E} = U_{B} — U_{BE}[/math]

При этом напряжение на базе выбирается в пределах UB ≈ (0,3…0,5)* EПИТ

А ток эмиттера будет равен

[math]I_{E} = \frac{U_{E}}{R3} = \frac{U_{B} — U_{BE}}{R3}[/math]

Так как ток коллектора транзистора практически такой же, как и ток эмиттера, то, если ток эмиттера поддерживать постоянным, то ток коллектора также будет постоянным, несмотря на изменение напряжения на коллекторе. Данная схема является основой для различных источников постоянного тока. При расчёте данной схемы необходимо, чтобы ток делителя R1R2 был в 5…10 раз больше, чем базовый ток транзистора, то есть

[math]I_{R1R2} \ge (5…10)*I_{B} = \frac{(5..10)*I_{E}}{1 + h_{21e}}[/math]

Данная схема достаточно эффективна во многих случаях, но иногда возникают проблемы в связи с нестабильностью источника питания и по этой причине возможно изменение напряжения на базе транзистора UB, как следствие и тока эмиттера IE.

Расчёт простого стабилизатора тока

Необходимо рассчитать источник тока, обеспечивающий IС = 10 мА, напряжение источника питания ЕПИТ = 10 В.

  1. Выберем транзистор типа КТ315 со следующими параметрами: UCEmax = 30 В, ICmax = 100 mA, ICBO = 1 mkA, fh31e = 250 МГц, h21e = 20…90 (примем h21e = 50).
  2. Рассчитаем сопротивление эмиттера R3 [math]R3 = \frac{U_{E}}{I_{E}} = \frac{U_{B} — U_{BE}}{I_{E}}[/math]

    где UBE = 0,6 – 0,8 B,

    [math]U_{B}=(0,3…0,5)*E_{PIT} = (0,3…0,5)*10 = 3…5 B[/math]

    Примем UB = 3 В, тогда

    [math]R3 = \frac{3 — 0,7}{0,01} = 230 Om[/math]
  3. Расчитаем сопротивление резисторов R1 и R2. [math]I_{R1R2} \ge (5…10)*I_{B} = \frac{(5..10)*I_{E}}{1 + h_{21e}} = \frac{(5..10)*0,01}{1 + 50} \approx 0,98…1,96 mA[/math]

    Примем IR1R2 = 1 мА

    [math]R1 + R2 = \frac{E_{PIT}}{I_{R1R2}} = \frac{10}{0,001} = 10 kOm[/math]
    [math]\frac{R2}{R1 + R2} = \frac{U_{B}}{E_{PIT}} = \frac{3}{10} = 0,3[/math]
    [math]R2 = 10 * 0,3 = 3 kOm[/math]
    [math]R1 = 10 — 3 = 7 kOm[/math]

    Примем R1 = 6,8 кОм, R2 = 3,3 кОм

Стабилизатор тока с диодным смещением

Как указывалось выше простой стабилизатор тока вследствие нестабильности напряжения питания, может иметь невысокую стабильность тока коллектора, кроме того через делитель напряжения R1R2 протекает достаточно большой ток, что приводит к потере мощности. Поэтому для уменьшения влияния этих факторов применяется диодная стабилизация (или диодное смещение) напряжения на базе. Схема, иллюстрирующая диодное смещение приведена ниже



Стабилизатор тока с диодным смещением.

Работает данная схема, как и предыдущая, но с учётом того, что напряжение на базе транзистора VT1 создается стабилитроном. Расчёт данной схемы выполняется также как и предыдущей, только с учётом параметров стабилитрона, то есть напряжения стабилизации UНОМ и ток стабилизации ICT. При выборе стабилитрона источника тока необходимо руководствоваться следующими ограничениями

  • максимальное напряжение стабилизации стабилитрона
    [math]U_{ST} \le \/E_{PIT} — I * R_{HMAX}[/math]
    где EPIT – напряжение питания источника тока,
    I – расчётный ток источника тока
    RНmax – максимальное сопротивление коллекторной нагрузки.
  • минимальное напряжение стабилизации не должно быть меньше, чем напряжение насыщение база-эмиттер [math]U_{ST} \ge \/U_{BE}[/math]

В данной схеме по возможности необходимо использовать стабилитроны с небольшим значением напряжения стабилизации, потому что при напряжении стабилизации стабилитрона(UСТ.НОМ) близком к Ust уменьшается значение сопротивления резистора R1, что в свою очередь приводит к увеличению потребляемой мощности этим резистором.

Расчёт стабилизатора тока с диодным смещением

Необходимо рассчитать источник тока, обеспечивающий IС = 10 мА на нагрузке Rн = 150 Ом, напряжение источника питания ЕПИТ = 10 В.

  1. Выберем транзистор типа КТ315 со следующими параметрами: UCEmax = 30 В, ICmax = 100 mA, ICBO = 1 mkA, fh31e = 250 МГц, h21e = 20…90 (примем h21e = 50).
  2. Выберем стабилитрон [math]U_{ST} \le \/E_{PIT} — I * R_{HMAX} = 10 — 0,01 * 150 = 10 — 1,5 = 8,5 B[/math]
    [math]U_{ST} \ge \/U_{BE}[/math]

    Выберем стабилитрон типа КС139Г со следующими параметрами Uст.ном. = 3,9 В, Iст.ном. = 5 мА.

  3. Рассчитаем сопротивление резистора R1
    [math]R1 = \frac{E_{PIT} — U_{CT.HOM}}{I_{CT.HOM}}[/math]

    Примем R1 = 1,2 кОм

  4. Рассчитаем сопротивление резистора R2
    [math]R2 = \frac{U_{E}}{I_{E}} = \frac{U_{ST} — U_{BE}}{I_{E}} = \frac{3,9 — 0,7}{0,01} = 320 Om[/math]

    Выберем R2 = 330 Ом

Токовое зеркало (отражатель тока)

Как указывалось выше, уменьшение напряжения стабилизации стабилитрона приводит к уменьшению потребляемого тока. Как известно минимальное напряжение на базе транзистора для его работы в качестве усилителя составляет UBE = 0,7 В – падение напряжения на p-n переходе база-эмиттер. Чтобы обеспечить такое напряжение достаточно между базой и эмиттером транзистора включить обычный диод, но лучше всего использовать транзистор с закороченным коллекторным переходом, причём необходимо стараться подобрать пару транзисторов с очень близкими параметрами (h21e, ICBO и т.д.). Такая схема, показанная ниже, называется токовым зеркалом или отражателем тока



Схема токового зеркала (отражатель тока)

Рассмотрим работу схемы, основными элементами которой являются резистор R1 и транзисторы VT1 и VT2. Коллектор и база транзистора VT1 соединены, и поэтому данный транзистор выполняет роль диода. Коллекторный ток VT1 ограничен резистором R1, а как известно напряжение UBE и ток эмиттера IE транзистора связывает логарифмическая зависимость

[math]U_{BE} = U_{T} *ln (\frac{I_{E}}{I_{EO}})[/math]
[math]I_{E} \approx \/I_{C}[/math]

где UT – напряжение на p-n переходе зависящее от температуры,
IEO – обратный ток насыщения эмиттера.

Таким образом, если транзисторы VT1 и VT2 имеют одинаковые параметры, то падение напряжение UBE транзистора VT1 вызовет такое же падение напряжения UBE транзистора VT2, а следовательно и коллекторный ток транзистора VT2 будет примерно равным коллекторному току транзистора VT1. Таким образом, коллекторный ток VT2 с большой степенью точности задаётся («программируется») коллекторным током VT1.

[math]I_{CVT2} \approx \/I_{CVT1} = \frac{E_{PIT} — U_{BE}}{R1}[/math]

Генератор пилообразного напряжения со стабилизатором тока

От схем стабилизаторов тока пора перейти к применению стабилизаторов в генераторах пилообразного напряжения. Тут всё достаточно просто, необходимо вместо зарядного (разрядного) резистора вставить в схему стабилизатор тока. Для примера возьмём стабилизатор тока с диодным смещением и добавим его в схему простого генератора пилообразного напряжения. Получившаяся схема изображена ниже



Схема генератора пилообразного (линейно растущего) напряжения со стабилизатором тока.

Данная схема состоит из стабилизатора тока на транзисторе VT1, стабилитроне VD1 и резисторах R1, R2, а также разрядного транзистора VT2 и конденс

Генератор высокого напряжения своими руками

   Прежде чем мы перейдём к описанию предлагаемого для сборки источника высокого напряжения, напомним о необходимости соблюдать общие меры безопасности при работе с высокими напряжениями.

Хотя это устройство даёт выходной ток чрезвычайно малого уровня, оно может быть опасным и вызовет довольно неприятный и болезненный удар, если случайно каснуться в неположенном месте. С точки зрения безопасности, это один из самых безопасных высоковольтных источников, поскольку выходной ток сравним с током обычных электрошокеров.

 Высокое напряжение на выходных клеммах — постоянного тока около 10-20 киловольт, и если подключить разрядник, то можно получить дугу 15 мм.

Схема источника высокого напряжения

   Напряжение может регулироваться изменением количества ступеней в умножителе, например, если вы хотите, чтобы оно зажгло неоновые лампы — можно использовать одну, если хотите, чтобы работали свечи зажигания — можно использовать две или три, и если нужно более высокое напряжение — можно использовать 4, 5 и более. Меньше каскадов означает меньшее напряжение, но больший ток, что может увеличить опасность этого устройства. Парадокс, но чем больше напряжение, тем менее сложным будет нанести ущерб из-за питания, поскольку ток падает до пренебрежительно малого уровня.

Как это работает

   После нажатия кнопки, ИК-диод включается и луч света попадает на датчик оптрона, этот датчик имеет выходное сопротивление около 50 Ом, что достаточно для включения транзистора 2n2222. Этот транзистор подаёт энергию батареи для питания таймера 555.

Частоту и скважность импульсов можно регулировать изменением номиналов компонентов обвязки. В данном случае частота может регулироваться с помощью потенциометра. Эти колебания, через транзистор BD679, усиливающий импульсы тока, поступают на первичную катушку.

Со вторичной снимается переменное напряжение, увеличенное в 1000 раз, и выпрямляется ВВ умножителем.

Детали для сборки схемы

   Микросхема — любой таймер серии КР1006ВИ1. Для катушки — трансформатор с отношением сопротивления обмоток  8 Ом :1 кОм. Первое, на что необходимо обратить внимание при выборе трансформатора — это размер, так как количество энергии, которое они могут обрабатывать, пропорционально их размерам. Например размером с большую монету даст нам больше энергии, чем небольшой трансформатор.

   Первое, что необходимо сделать для его перемотки, это удалить ферритовый сердечник для доступа к самой катушке. В большинстве трансформаторов две части склеиваются клеем, просто держите трансформатор плоскогубцами над зажигалкой, только осторожно, чтоб не расплавить пластик. После минуты клей должен расплавиться и надо разломить его на две части сердечника.

   Учитывайте, что феррит очень хрупкий и трескается довольно легко. Для намотки вторичной катушки использовался эмалированный медный провод 0,15 мм. Намотка почти до заполнения, чтоб потом хватило ещё на один слой более толстого провода 0,3 мм — это будет первичка. Она должна иметь несколько десятков витков, около 100.

   Почему здесь установлен оптрон — он обеспечит полную гальваническую развязку от схемы, с ним не будет электрического контакта между кнопкой замыкания питания, микросхемой и высоковольтной частью. Если случайно пробьёт высокое напряжение по питанию, то вы будете в безопасности.

   Сделать оптрон очень легко, любой ИК-светодиод и ИК-датчик вставьте в термоусадочную трубку, как показано на картинке. В крайнем случае, если не хочется усложнять дело, уберите все эти элементы и подавайте питание замкнув К-Э транзистора 2N2222.

   Обратите внимание на два выключателя в схеме, так сделано потому, что каждая рука должна быть задействована чтобы активировать генератор — это будет безопасно, уменьшает риск случайного включения. Также при работе устройства вы не должны прикасаться к чему-либо еще, кроме кнопок.

   При сборке умножителя напряжения не забудьте оставить достаточный зазор между элементами. Обрежьте все торчащие выводы, поскольку они могут привести к коронным разрядам, которые сильно снижают эффективность.

   Рекомендуем изолировать все оголенные контакты умножителя с термоклеем или другим аналогичным изоляционным материалом и, после этого, обернуть в термоусадочную трубку или изоленту. Это не только уменьшит риск случайных ударов, но и повысит эффективность схемы путем уменьшения потерь через воздух. Также для страховки добавили кусок пенопласта между умножителем и генератором.

   Потребляемый ток должен быть примерно 0,5-1 ампер. Если больше — значит схема плохо настроена.

Испытания генератора ВН

   Было испытано два различных трансформатора — оба с отличными результатами. Первый имел меньший размер ферритового сердечника и, следовательно, меньше индуктивность, работал на частоте 2 кГц, а в другом около 1 кГц.

   При первом запуске сначала проверьте генератор NE555, работает ли он. Подключите маленький динамик к ноге 3 — при изменении частоты вы должны услышать звук, исходящий из него.

 Если все сильно нагревается можно увеличить сопротивление первичной обмотки, намотав её проводом потоньше. И небольшой радиатор для транзистора рекомендуется.

Да и правильная частота настройки является важной, чтобы избежать этой проблемы.

   Схемы блоков питания

Источник: https://elwo.ru/publ/skhemy_blokov_pitanija/istochnik_vysokogo_naprjazhenija/7-1-0-743

Высокое напряжение и не только

 Наверное самый первый и самый простой девайс всех радиолюбителей со школьной скамьи является Блокинг Генератор.

 HV блокинг-генератор (высоковольтный блок питания) для опытов-его можно купить в интернете или сделать самому. Для этого нам понадобится не очень много деталей и умение работать паяльником. 

  • Для того чтобы его собрать нужно: 
  • 1. Трансформатор строчной развертки ТВС-110Л, ТВС-110ПЦ15 от ламповых ч/б и цветных телевизоров (любой строчник)
  • 2. 1 или 2 конденсатора 16-50в — 2000-2200пФ 
  • 3. 2 резистора 27Ом и 270-240Ом 

4. 1-Транзистор 2Т808А КТ808 КТ808А или схожие по характеристикам. + хороший радиатор для охлаждения 

  1. 5. Провода 
  2. 6. Паяльник 
  3. 7. Прямые руки  

И так берем строчник разбираем его аккуратно, оставляем вторичную высоковольтную обмотку, состоящую из множества витков тонкой проволоки, ферритовый сердечник. Наматываем свои обмотки эмалированной медной проволокой на вторую свободную сторону феритового сердечника предварительно сделав из плотного картона трубку вокруг ферита. 

Первая: 5 витков примерно 1.5- 1.7 мм диаметром 

Вторая: 3 витка примерно 1.1мм диаметром 

Вообще, толщина и количество витков можно варьироваться. Что было под рукой – из того и сделал. 

В кладовке были найдены резисторы и пара мощных биполярных n-p-n транзисторов – КТ808а и 2т808a. Радиатор делать не захотел – ввиду больших размеров транзистора, хотя в последствии опыт показал – что большой радиатор обязательно нужен. 

Для питания всего этого я выбрал 12В трансформатор, можно запитать и от обычного 12 вольтового 7А акк. от UPS-а.(чтобы увеличить напругу на выходе, можно подать не 12 вольт а например 40 вольт но тут уже надо думать о хорошем охлаждении транса, и витков первичной обмотки можно сделать не 5-3 а 7-5 например).

  • Если собираетесь использовать трансформатор то понадобится диодный мост чтобы выпрямить ток с переменного в постоянный, диодный мост можно найти в блоке питания от компьютера, там же можно найти конденсаторы и резисторы + провода. 
  • в итоге мы получаем 9-10кВ на выходе. 

Всю конструкцию я разместил в корпусе от БП. получилось довольно таки компактно. 

  1. Итак, мы имеем HV Блокинг генератор который дает нам возможность ставить опыты и запускать Трансформатор Тесла. 
  2. Можно сразу испытать блокинг генератор на любой лампочке или приблизить контакты выходов HV друг к другу получить жгучую дугу на выходе. 
  3. К лампочке и разряднику подключаем только 1 провод, второй провод от HV блокинга землим на батарею. 

Такой блок питания способен зажигать любые газонаполненные лампы и т.д. 

Блокинг генератор для жизни не опасен, но неприятные ощущения при касании контактов вам обеспечены. 

продолжение следует… 

Обсудить на Форуме

Источник: http://x-shoker.ru/news/vv_bp/2013-02-26-176

Генератор высокого напряжения

Иногда возникает необходимость получения высокого напряжения из подручных материалов. Строчная развертка отечественных телевизоров и есть готовый высоковольтный генератор, мы лишь чуток переделаем генератор.
Из блока строчной развертки нужно выпаять умножитель напряжения и строчный трансформатор. Для нашей цели был использован умножитель УН9-27.

  • Строчный трансформатор подойдет буквально любой.

Строчный трансформатор сделан с огромным запасом, в телевизорах используется лишь 15-20% мощности.

Строчник имеет высоковольтную обмотку, один конец которого можно увидеть прямо на катушке, второй конец высоковольтной обмотки находится на стенде, вместе с основными контактами внизу катушки (13-ый вывод). Найти высоковольтные выводы очень легко, если взглянуть на схему строчного трансформатора.

  1. Используемый умножитель имеет несколько выводов, ниже представлена схема подключения.
  2. Схема умножителя напряжения

После подключения умножителя к высоковольтной обмотке строчного трансформатора, нужно думать о конструкции генератора, который будет питать всю схему. С генератором не мудрил, решил взять готовый. Была использована схема управления ЛДС с мощностью в 40 ватт, иными словами просто балласт ЛДС.

Балласт китайского производства, можно найти в любом магазине, цена не более 2-2,5$. Такой балласт удобен тем, что работает на высоких частотах (17-5кГц в зависимости от типа и производителя).

Единственный недостаток заключается в том, что выходное напряжение имеет повышенный номинал, поэтому мы не можем напрямую подключить такой балласт к строчному трансформатору. Для подключения используется конденсатор с напряжением 1000-5000 вольт, емкость от 1000 до 6800пкФ.

Балласт может быть заменен на другой генератор, он не критичен, тут важен только разгон строчного трансформатора.

ВНИМАНИЕ!!!
Выходное напряжение от умножителя составляет порядка 30.000 вольт, это напряжение в некоторых случаях может быть смертельно опасным, поэтому просим быть предельно осторожными.

После выключения схемы в умножителе остается заряд, замыкайте высоковольтные выводы, чтобы полностью разрядить его. Все опыты с высоким напряжением делайте вдали от электронных устройств.

Вообще вся схема находится под высоким напряжением, поэтому не дотрагивайтесь компонентов во время работы.

  • Установка может использоваться в качестве демонстрационного генератора высокого напряжения, с которым можно проводить ряд интересных опытов.

Loading…

Источник: https://all-he.ru/publ/svoimi_rukami/ehlektronika/generator_vysokogo_naprjazhenija/2-1-0-203

Источник высокого напряжения за 5 минут

Из данной статьи вы узнаете как получить высокое напряжение, с высокой частотой своими руками. Стоимость всей конструкции не превышает 500 руб, при минимуме трудозатрат.

Для изготовления вам понадобится всего 2 вещи: — энергосберегающая лампа (главное, чтобы была рабочая схема балласта) и строчный трансформатор от телевизора, монитора и другой ЭЛТ техники.

Энергосберегающие лампы (правильное название: компактная люминесцентная лампа) уже прочно закрепились в нашем быту, поэтому найти лампу с нерабочей колбой, но с рабочей схемой балласта я думаю не составит труда.

Электронный балласт КЛЛ генерирует высокочастотные импульсы напряжения (обычно 20-120 кГц) которые питают небольшой повышающий трансформатор и т.о. лампа загорается.

Современные балласты очень компактны и легко помещаются в цоколе патрона Е27.

Балласт лампы выдает напряжение до 1000 Вольт. Если вместо колбы лампы подключить строчный трансформатор, то можно добиться потрясающих эффектов.

Немного о компактных люминесцентных лампах

Блоки на схеме:
1 — выпрямитель. В нем переменное напряжение преобразуется в постоянное.
2 — транзисторы, включенные по схеме push-pull (тяни-толкай).
3 — тороидальный трансформатор
4 — резонансная цепь из конденсатора и дросселя для создания высокого напряжения

5 — люминесцентная лампа, которую мы заменим строчником

КЛЛ выпускаются самой различной мощности, размеров, форм-факторов. Чем больше мощность лампы, тем более высокое напряжение нужно приложить к колбе лампы. В данной статье я использовал КЛЛ мощностью 65 Ватт.

Большинство КЛЛ имеют однотипную схемотехнику. И у всех имеется 4 вывода на подключение люминесцентной лампы. Необходимо будет подсоединить выхода балласта к первичной обмотке строчного трансформатора.

Немного о строчных трансформаторах

Строчники также бывают разных размеров и форм.

Основной проблемой при подключении строчника, является найти 3 необходимых нам вывода из 10-20 обычно присутствующих у них. Один вывод — общий и пара других выводов — первичная обмотка, которая будет цепляться к балласту КЛЛ.
Если сможете найти документацию на строчник, или схему аппаратуры, где он раньше стоял, то ваша задача существенно облегчится.

Внимание! Строчник может содержать остаточное напряжение, так что перед работой с ним, обязательно разрядите его.

Итоговая конструкция

На фото выше вы можете видеть устройство в работе.

И помните, что это постоянное напряжение. Толстый красный вывод — это «плюс». Если вам нужно переменное напряжение, то нужно убрать диод из строчника, либо найти старый без диода.

Возможные проблемы

Когда я собрал свою первую схему с получением высокого напряжения, то она сразу же заработала. Тогда я использовал балласт от лампы мощностью 26 Ватт.
Мне сразу же захотелось большего.

Я взял более мощный балласт от КЛЛ и в точности повторил первую схему. Но схема не заработала. Я подумал, что балласт сгорел. Обратно подключил колбы лампы и включил в сеть. Лампа загорелась. Значит дело было не в балласте — он был рабочий.

Немного поразмыслив я сделал вывод, что электроника балласта должны определять нить накала лампы. А я использовал только 2 внешних вывода на колбу лампы, а внутренние оставил «в воздухе». Поэтому я поставил резистор между внешним и внутренним выводом балласта. Включил — схема заработала, но резистор быстро сгорел.

Я решил использовать конденсатор, вместо резистора. Дело в том, что конденсатор пропускает только переменный ток, а резистор и переменный и постоянный. Также, конденсатор не нагревался, т.к. давал небольшое сопротивление на пути переменного тока.

Конденсатор работал великолепно! Дуга получилась очень большой и толстой!

Итак если у вас не заработала схема, то скорее всего 2 причины:
1. Что-то не так подключили, либо на стороне балласта, либо на стороне строчного трансформатора.

2. Электроника балласта завязана на работе с нитью накала, а т.к. ее нет, то заменить ее поможет конденсатор.

Используйте конденсатор на соответствующее напряжение! У меня был на 400 Вольт, взятый из балласта другой энергосберегающей лампы.

При проведении опытов с высоким напряжением будьте предельно осторожны! Высокое напряжение опасно для жизни!

Лампа мощностью 65 Ватт, обеспечивает ток порядка 65 мА (65Ватт/1000В). А сила тока более чем 50 мА, смертельна опасна для жизни и вызывает остановку сердца!

Оригинал статьи

Источник: https://cxem.net/tesla/tesla1.php

Высоковольтный генератор для коптильни своими руками | Блог Виталия Павлова | Блог Виталия Павлова

  • ==================================================================
  • Высоковольтный генератор (ВВГ) с питанием 5 вольт:
  • Высоковольтный генератор (генератор высокого напряжения) предназначен для создания электростатического поля внутри коптильни, и позволяет в десятки раз сократить время копчения и расход щепы.

Такой генератор выдает на выходе порядка 20 кВ ПОСТОЯННОГО (не импульсного) напряжения при токе нагрузки около 25 мкА, при этом имеет двойную гальваническую развязку от сети переменного тока 220В (при питании от сетевого блока питания). При питании от литий-ионного аккумулятора, такой вопрос вообще не стоит..
Про питание от аккумулятора и про циклический таймер будет в следующих статьях.

Токоограничение высоковольтной цепи (резистор 10 мОм на выходе генератора) не позволяет образовываться сильным электрическим дугам и разрядам в коптильне, что предотвращает появление большого количества озона и снижает негативные последствия от поражения высоковольтным электрическим разрядом до минимума (в случае касания ВВ частей).

Хотя при правильной конструкции и грамотной эксплуатации коптильни такой удар вообще маловероятен, тем не менее, забывать о мерах безопасности не стоит, особенно людям с заболевания сердца, кардиостимуляторами и т.д..

Высоковольтный заряд на выходе генератора самостоятельно исчезает через 20-30 сек. после выключения ВВГ.

  1. Схема высоковольтного генератора для электростатического копчения
  2. Весь процесс сборки показан в видео — высоковольтный генератор для электростатического копчения своими руками
  3. Для самостоятельной сборки ВВ генератора :

Внимание: иногда, при ПЕРВОМ нажатии,  ссылка может открыться некорректно (браузер (особенно Mozilla firefox), направит вас на неправильную страницу Aliexpress, не соответствующую нужной ссылке). Пож-ста, нажмите на ссылку повторно. Если это не поможет, попробуйте скопировать ссылку и вставить ее в др. браузер.

  • Наборы   генератора http://ali.pub/2a4ps2
  • — с платой  http://ali.pub/2heb1j
  • Импульсные блоки питания AC-DC http://ali.pub/1zx9u5
  • — блок питания  100-240 V (AC)  —   5V, 2А (DC)  http://ali.pub/2gdpaq
  • Высоковольтные конденсаторы
  • — 30 кВ 680 пф   http://ali.pub/2caleq
  • — 20 кВ (разная емкость)   http://ali.pub/219hnc
  • Высоковольтные диоды 2CL77  http://ali.pub/1z9g3e
  • Резистор высоковольтный 10 мОм 3 Вт  http://got.by/3kzh3f
  • Резистор высоковольтный 10 мОм 5 Вт  http://got.by/3kzh7o
  • Транзистор D880 http://ali.pub/2gdqy8
  • Конденсатор 0,01мкФ 100В  http://ali.pub/2emik9

Резистор 10 мОм 1Вт   http://ali.pub/37p6b5   (они там разные, надо выбрать —  10М). Таких резисторов нужно 4 шт, соединяем их по 2 шт  параллельно и 2 таких цепочки — последовательно.

В итоге получим 2Вт 10мОм   Или, еще лучше  — сделать 3 цепочки по 3 резистора (всего 9  шт). Эти сборки надо будет  залить термоклеем или эпоксидной смолой.

  1.                   
  2. Шланг (трубка) для аквариума 6 мм http://ali.pub/254pse
  3. Пистолет для термоклея http://ali.pub/1m9g6v
  4. Супер паяльник http://ali.pub/2i8y1t
  5. Вентилятор DC 5V для охлаждения генератора http://ali.pub/2gdrpn

При заливке (пропитке)  ВВ катушек парафином, я использовал самодельный вакуумный насос (на базе вот такого насоса http://ali.pub/fw9hv). Он подключен через MT3608  http://ali.pub/2ve5uv к литий-ионному аккуму на 3,7В.

Важно: т.к. далеко не все имеют опыт работы с радиоэлектронными компонентами, и т.к. мы имеем дело с продукцией из «поднебесной», где очень часто попадается брак, рекомендую покупать комплектующих в 2-3 раза больше, чем требуется для сборки одного устройства!

Так же см. — что может пригодиться для коптильни:  http://vitaliypavlov.ru/?p=1528

ВНИМАНИЕ ! Соблюдайте меры электробезопасности при работе с высоким напряжением!

  • Вы можете купить готовые устройства:
  • —  разборная переносная, автономная электростатическая коптильня ЭВК-100
  • —  высоковольтные генераторы для электростатической коптильни
  • ==========================

Зарегистрируйтесь здесь http://epngo.bz/cashback_index/5f740 и покупайте на AliExpress дешевле
Станьте партнером AliExpress http://epngo.bz/epn_index/5f740

Источник: http://vitaliypavlov.ru/komplektuyushhie-s-aliexpress-aliekspress/komplektuyushhie-dlya-sborki-vysokovoltnogo-generatora-koptilni.html

Источник высокого напряжения

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания.

В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к.

для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС.

Давайте посмотрим схему:

Схема высоковольтного генератора

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;
  • Остальные компоненты вопросов думаю не вызывают.
  • Файл печатной платы: ir2153.lay6[0,03MB]
  • В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор ~30kV 470pf – 2.2n и выходной токоограничительный резистор.

Источник: https://humka.ru/istochnik-vysokogo-napryazheniya

Схема высоковольтного генератора

Я как любитель всяких импульсных и особенно высоковольтных устройств решил сделать высоковольтный генератор (идея вообще-то была сделать люстру Чижевского). Подошел я к этому весьма творчески. Т.е. как всегда чужую готовую схему повторять неинтересно — надо что-то сочинить свое. Сначала я правда перепробовал кучу схем.

На транзисторах делал — мне что-то не понравилось, да и транзисторы грелись сильно. Сделал обычную схему на тиристорах — трансформатор сильно трещит (можно его конечно залить эпоксидкой, но возиться не хотелось). Частота низкая импульсы короткие. Да и напряжения высокого какого хотел (а хотелось по больше) я не получил.

И я решил пойти другим путем — чтобы треск или свист не был слышен, я решил поднять частоту за пределы слышимости, т.е. килогерц 20-30 и при этом сделать генератор на тиристоре. У меня для этого было несколько высокочастотных тиристоров ТЧ63. Мощная штука — частота до 33кГц, ток постоянный 63А, а импульсный ток килоампера полтора, т.е.

для импульсных устройств подходит идеально.

Попробовал я сначала вот эту схему (с этим тиристором):

Но почему-то я не смог выжать с однопереходного транзистора больше 10 кГц, ну а свист — кому понравится. Хотя в принципе схема не плохая. Хотя недостаток был еще один — резистор R3 греется очень сильно, причем мне пришлось ставить два проволочных остеклованных по 7 Ватт каждый, и все равно нагрев чрезмерно большой. Меня это не устроило.

Хотя на выходе получил достаточно большое напряжение — пробивало зазор в несколько миллиметров. К сожалению напряжение померить было нечем — проверял на глазок по ширине пробивного зазора. В разной литературе указывается по разному, но в большинстве принято считать для переменного напряжения примерно 1 мм на 1 кВ, а для постоянного 1 мм на 3 кВ.

Хотя это зависит от частоты (для переменного тока) и от влажности и давления. У меня ширина пробоя оказалась миллиметров 10-12 для переменного тока (почему-то при попытке выпрямить или пропустить через умножитель напряжение падало настолько сильно, что зазор уменьшался почти до нуля). Меня все это совершенно не устроило.

Вот тут я и ступил на путь создания «высоковольтного монстра».

Во-первых я собрал задающий генератор по стандартной, годами проверенной схеме. На двух транзисторах разной проводимости. Это позволило без труда сделать генератор коротких импульсов с частотой изменяемой в широких пределах от 1 кГц до 50-70 кГц. Трансформатор на ферритовом колечке диаметром 10-12 мм.

Затем порывшись в груде книг и учебников я выбрал другое включение конденсатора-тиристора-трансформатора (именно так кстати делается в электронных тиристорных схемах зажигания) ее преимущество в том, что этот вариант включения практически не боится короткого замыкания на выходе:

И самое главное вместо так непонравившегося мне греющегося резистора я поставил дроссель Др1 (кстати пусковой дроссель от лампы дневного света). Дроссели Др2 и Др3 в принципе защитные (по 16 витков на феррите), но можно их наверное не ставить (хотя Др3 — влияет на резонанс).

Когда я все это включил, то начал с минимальной частоты и напряжения питания вольт 30-50. Сначала я услышал писк и на выходе пробивало зазор в пару миллиметров. Затем я стал повышать частоту и при приближении к 18-20 кГц писк не стал слышен. А вот дальше произошло самое интересное. В какой-то момент система попала в резонанс.

Я услышал мощное шипение, и между выходными проводами образовалась дуга длиной миллиметров в 45, причем это было не просто потрескивание с синей искрой — это была дуга с высокой энергией ярко сиреневого цвета — такой плазменный жгут или шнур. И это все при напряжении питания в 60 вольт (если честно, я больше 80 В дать просто побоялся).

Я решил проверить как обычно на пробой плотного листа бумаги (с предыдущими схемами я баловался — симпатичные такие дырочки получались). Сказать, что ее пробило — это ничего не сказать — бумага вспыхнула сразу при касании к дуге. Т.е. энергия была очень высокой.

Если я концы провода подносил ближе друг к другу — они на концах начинали плавиться (тут мне и пришла мысль, что сварочник надо делать именно на тиристорах и где-то на этой же частоте). Пробивался даже фторопласт.

Причем в этой схеме я использовал строчный трансформатор от цветного лампового усилителя, а выходная обмотка там имеет мало витков и при обычно схеме на выходе получалось небольшое напряжение (у ч/б телевизоров строчник с более большим коэффициентом трансформации). Я подумал, а что если напряжение питания поднять до 220В — сколько будет тогда на выходе (хотя скорее всего пробило бы трансформатор).

Когда улеглись первые восторги, я начал замечать и недостатки это конструкции. Во-первых, через пару минут работы (а то и меньше) начинал разогреваться трансформатор (и довольно сильно) затем тиристор и даже диод (мощность-то прокачивалась ого-го).

Во-вторых система оказалась очень чувствительна к изменениям частоты генератора (все-таки схема-то резонансная). Так же на резонанс влияло и изменение нагрузки. Но что хуже всего — при такой высокой частоте колебаний — я нигде не смог это применить.

Выпрямить невозможно — пробовал ставить на выходе высоковольтные (12 кВ, 300 мА, исправные) диоды — они начинали нагреваться даже, если припаяны одним концом, а второй просто висит в воздухе (в пространство что ли излучают).

Даже при подключении высоковольтного кабеля длиной всего сантиметров 20 — напряжение падало в десятки раз (может резонанс сбивается и регулировка частоты не помогает). Пробовал собрать умножитель на выходе — с тем же результатом.

Где применить такое я не знаю.

Думал даже электрошокер сделать, но схема у меня работала вольт от 16-20 не меньше, да и мощность потребляла большую и размеры были приличные (тиристор довольно внушительных размеров, дроссель, мощный конденсатор, строчный трансформатор — это будет не миниатюрное устройство, а «ранцевый» вариант, если учесть, что батареек надо к нему штук 16), к тому же в шокере на выходе должно быть постоянное напряжение (а если все-таки переменка, то на маленькую частоту). Да и вообще я такое побоюсь применить — убьет еще кого ненароком или пробьет изоляцию и мне достанется. Короче забросил я этого монстра. Хотя идея была красивая.

Источник: http://radiolub.chat.ru/Monstr/monstr.htm

Источник: https://www.qrz.ru/schemes/contribute/constr/monstr.shtml

Регулируемый генератор высокого напряжения

Регулируемый генератор высокого напряжения на NE555 и ТВС-90

В жизни иногда не хватает драйва и зрелищности — с хаотичным и загадочным потрескиванием разрядника и с зашкаливающей стоящей рядом радиоаппаратурой.

Всё это может дать вам генератор высокого напряжения!
Но если без рекламы и серъезно, то для некоторых опытов такой генератор — вещь незаменимая.
Вот и мне такой однажды понадобился, причём не просто какой-то там повышающий транс на 1000V, а на 5-20 kV.

Но главное требование — возможность регулирования выходного высокого напряжения.
Порывшись в нете и не найдя подходящей схемы, мне пришлось изобретать свою родимую.

Для задающего генератора взял самую распостранённую мелкосхему — NE555, а в качестве транса — ТВС-90 (купил на радиорынке за копейки).
Для стабилизации напряжения питания задающего применил не менее распостранённый ШИМ — LM7809.

Принцип действия схемы простой: задающий генератор выбаратывает прямоугольные импульсы с разной скважностью — от неё то и зависит наше выходное высокое напряжение.
Скважность регулируется R3 и подаётся на выходной ключ на MOSFET-транзисторе. Последний возбуждает первичную обмотку ТВС, а на вторичной мы получаем высокое напряжение.

  • Регулировкой R3 мы можем получить как маленькую искру в доли миллиметра, так и искру длиной в пару сантиметров.
  • Некоторые моменты на которые стоит обратить внимание
  • Выходной ключ нужно поставить на радиатор, т.к. при больших выходных напряжениях ток через него может превышать 5-8А.
  • Желательно, чтобы корпус устройства быть металлическим (я использовал корпус от компьютерного БП), где минус питания был бы с ним соединён.
  • Напряжение питания можно увеличить до 15-20 Вольт и получить ещё более мощную искру, но в этом случае обязательно нужно пространственно разнести блок задающего генератора и трансформатор.
    Саму задающую схему потребуется заэкранировать, т.к. сильные наводки могут повредить полупроводниковые элементы.

Замены

Высоковольтный трансформатор подойдёт, в принципе, любой из серии ТВС, ТДКС. Главное — найти задающую обмотку.
Это можно делать «методом тыка» при максимальной скважности задающего генератора (минимальная длина импульсов накачки) и минимальном напряжении питания.
Выходной ключ также может быть любым мощным MOSFET-транзистором с большим паспортным током сток-исток, например IRFP260.
Стабилизатор напряжения LM7809 можно заменить на отечественный — КР142ЕН8А.

Ещё схемы

Довольно простой маломощный высоковольтный генератор, с искрой в 1..2мм, можно собрать всего на одном транзисторе.
Он рассчитан на небольшой по размерам ТВС марки ТВС-90П4. Схема подключения изображена на следующем рисунке.
Трансформатор показан со стороны его выводов.
Транзистор лучше всего подходит 2SC2625.

Автор также рекомендует ознакомиться с генератором высоковольтных импульсов на одном mosfet-транзисторе.
Его схемотехника такая же простая и он может работать с любой индуктивной нагрузкой.

Источник: http://Gorchilin.com/articles/scheme/hv-generator

Высоковольтный генератор своими руками

Многие из нас хоть раз в жизни видели в интернете или в реальной жизни фотографии Высоковольтных генераторов, или сами их делали.

Многие представленные в интернете схемы довольно мощные, их выходное напряжение составляет от 50 до 100 Киловольт. Мощность, как и напряжение тоже довольно высокая. Но их питание – главная проблема.

Источник напряжения должен быть подобающей генератору мощности, должен уметь отдавать долговременно большой ток.

  • Есть 2 варианта питания ВВ генераторов:
  • 1)аккумулятор,
  • 2)сетевой источник питания.

Первый вариант позволяет запустить устройство далеко «от розетки».

Однако, как раннее было замечено, устройство будет потреблять большую мощность и, следовательно, аккумулятор должен обеспечивать эту мощность (если вы хотите, чтобы генератор работал «на все 100»).

Аккумуляторы такой мощности довольно большие и автономным устройство с таким аккумулятором не назовёшь. Если осуществлять питание от сетевого источника, то об автономности тоже говорить не придётся, так как генератор буквально «не оторвёшь от розетки».

Моё же устройство вполне автономно, так как потребляет от встроенного аккумулятора не так уж и много, однако вследствие низкого потребления мощность тоже не велика – около 10-15W. Но дугу с трансформатора получить можно, напряжение около 1 Киловольта. С умножителя напряжения по выше – 10-15 Кв.

Ближе к конструкции…

Так как этот генератор для серьёзных целей не планировал, я поместил все его «внутренности» в картонную коробку (как бы смешно это не звучало, но это так. Я прошу не судить строго мою конструкцию, так как высоковольтной технике я не специалистL).

У моего устройства присутствуют 2 Li-ionаккумулятора, ёмкостью 2200 мА/ч. Их зарядка осуществляется с помощью линейного стабилизатора на 8 вольт: L7808. Он также находится в корпусе. Также имеется два зарядных устройства: от сети (12 в., 1250 мА/ч.

) и от прикуривателя автомобиля.

  1. Сама схема генерации высокого напряжения состоит из нескольких частей:
  2. 1)фильтр входного напряжения,
  3. 2)задающий генератор, построенный на мультивибраторе,
  4. 3)силовые транзисторы,
  5. 4)высоковольтный повышающий трансформатор (хочу отметить, что сердечник не должен иметь зазор, наличие зазора приводить к увеличению тока потребления и вследствие выход из строя силовых транзисторов).

Также к высоковольтному выходу можно подключить «симметричный» умножитель напряжения или… люминесцентную лампу, тогда ВВ генератор превращается в фонарь. Хотя на самом деле изначально это устройство планировалось сделать как фонарь. Схема преобразователя выполнена на макетной плате, при желании можете создать печатную плату.

Максимальное потребление схемы – до 2-3 Ампера, это стоит учитывать при выборе выключателей. Стоимость устройства зависит от того, где вы брали компоненты. Я большую половину комплектации нашёл у себя в ящике или в коробке для хранения радиодеталей.

Купить мне пришлось всего лишь линейный стабилизатор L7808, ИВЛМ1-1/7 (на самом деле сюда вставил ради интереса, а купил из любопытства J), также мне пришлось купить электронный трансформатор для галогенных ламп (из него я взял всего лишь трансформатор).

  Провод для намотки вторичной (повышающей, высоковольтной) обмотки  взял из давно сгоревшего строчного трансформатора (ТВС110ПЦ), и Вам советую делать тоже самое. Так провод в строчных трансформаторах высоковольтный и с пробоем изоляции проблем быть не должно. С теорией вроде бы разобрались – теперь перейдём к практике…

  • Внешний вид…
  • Рис.1 – вид на управляющую панель:
  • 1)индикаторы работоспособности
  • 2)индикатор присутствия зарядного напряжения
  • 3)вход от 8 до 25 вольт (для зарядки)
  • 4)кнопка включения заряда аккумулятора (включать только при подключённом зарядном устройстве)
  • 5)переключатель аккумуляторов (верхнее положение – основной, нижнее — запасной)
  • 6)выключатель ВВ генератора
  • 7)высоковольтный выход

На лицевой панели присутствуют 3 индикатора работоспособности.

Их здесь такое количество, потому что семисегментный индикатор является моим инициалом (на нём светиться первая буква моего имени: «А»J), светодиоды над выключателем и переключателем изначально планировались быть дополнительными индикаторами заряда батареи, но со схемой индикации возникла проблема, а отверстия в корпусе уже были сделаны. Пришлось поставить светодиоды, но уже в качестве просто индикаторов, дабы не портить внешний вид.

  1. Рис.2 – вид на вольтметр и индикатор:
  2. 8)вольтметр – показывает напряжение на аккумуляторе
  3. 9)индикатор – ИВЛМ1-1/7
  4. 10)предохранитель (от случайного включения)
  5. Вакуумно-люминесцентный индикатор установил ради интереса, так как это мой первый индикатор такого типа.
  6. Рис.3 – внутренний вид:
  7. 11)корпус
  8. 12)аккумуляторы (12,1-основной, 12,2-запасной)
  9. 13)линейный стабилизатор 7808 (для зарядки аккумуляторов)
  10. 14)плата преобразователя
  11. 15)теплоотвод с полевым транзистором КП813А2
  12. Тут, думаю нечего пояснять.
  13. Рис.4 – зарядные устройства:

16)от сети 220 в. (12 в., 1250 мА.)

  • 17)от прикуривателя автомобиля
  • Рис.5 – нагрузки для АВВГ:
  • 18)9W люминесцентная лампа
  • 19)«симметричный» умножитель напряжения 
  • Рис.6 – принципиальная схема:
  • USB1 – стандартный выход USB
  • BAT1, 2 – Liion 7,4 в. 2200 мА/ч (18650 Х 2)
  • R1, 2, 3, 4 – 820 Ом
  • R5 – 100 КОм
  • R6, 7 – 8,2 Ом
  • R8 – 150 Ом
  • R9, 12 – 510 Ом
  • R10, 11 – 1 КОм
  • L1 – сердечник от дросселя из энергосберегающей лампы, 10 витков по 1,5 мм.
  • C1 – 470 мкФ 16 в.
  • C2, 3 – 1000 мкФ 16 в.
  • C4, 5 – 47 нФ 250 в.
  • C6 – 3,2 нФ 1,25 Кв.
  • C7 – 300 пФ 1,6 Кв.
  • С8 – 470 пФ 3 Кв.
  • С9, 10 – 6,3 нФ
  • C11, 12, 13, 14 – 2200 пФ 5 Кв.
  • D1 – красный светодиод
  • D2 – АЛ307ЕМ
  • D3 – АЛС307ВМ
  • VD1, 2, 3, 4 – КЦ106Г
  • HL1 – ЗЛС338Б1
  • HL2 – NE2
  • HL3 – ИВЛМ1-1/7
  • HL4 – ЛДС 9W
  • IC1 – L7808
  • SB1 – кнопка 1А
  • SA1 – выключатель 3А (ONOFF с неоновой лампой)
  • SA2 – переключатель 6А (ONON)
  • SA3 – выключатель 1А (ONOFF)
  • PV1 –М2003-1
  • T1 – повышающий трансформатор:

ВВ обмотка: 372 витков ПЭВ-2 0.14мм. R=38.6ом

Первичная обмотка: 2 по 7 витков ПЭВ-… 1мм. R=0.4ом

  1. VT1 – КТ819ВМ
  2. VT2 – КП813А2
  3. VT3, 4 – КТ817Б
  4. Общее количество компонентов: 53.
  5. Без чего МОЖЕТ работать эта схема, на самом деле много без чего: IC1, R1, 2, 3, 4, 5, 8, C1, 2, 3, 4, 5, 7, 8,
  6. Пояснения к схеме:

Минус общий, идёт от входа USB до платы преобразователя.  Плюсы от аккумуляторов идут к переключателю, от него уже один вывод к выключателю (SA1), а от него к преобразователю.

Также плюс идет к вольтметру (PV1), через резистор к катоду индикатора и к анодам светодиодов (для каждого светодиода отдельный резистор).

Зарядка осуществляется после того как на вход USB подаётся напряжение от 8 до 25 вольт, а также после нажатия кнопки (SB1), светодиод (D1) загорается после того как подаётся напряжение для зарядки (контролировать процесс заряда можно с помощью вольтметра PV1).

Переключение между основным и запасным аккумуляторами осуществляется с помощью переключателя (SA1), дальше силовой плюс идёт к выключателю (SA2)  (через выключатель SA3) ВВ генератора, неоновая лампа (HL2) находится внутри выключателя.

Дальше силовые выводы поступают на блок конденсаторов и задающий генератор, построенный на мультивибраторе(VT3, 4. C9, 10.

 R9, 10, 11, 12), транзисторы КТ817Б можно заменить на любые другие аналоги, от него импульсы поступают на базу и затвор транзисторов(VT1, VT2), транзисторыможно использовать менее или более мощные аналоги.

Здесь использованы полевой и биполярный транзисторы, сделано это для того, чтобы снизить потребление. После трансформатора высокое напряжение поступает на группы анодов-сегментов вакуумно-люминесцентного индикатора, а после на ВВ выход.

Потребление (как фонарь): за 1 минуту схема разряжает аккумулятор на 0,04 В. (40 милливольт.). Если генератор будет работать 25 минут, следовательно, разрядится на 1 вольт (25*0,04).

  • Вот фотообзор:
  • Ну как в наше трудное время без видеоролика
  • {youtube}KMvxOHsOFVQ{/youtube}
  • Автор — Алексей Киселёв

Источник: http://vip-cxema.org/index.php/home/bloki-pitaniya/294-avtonomnyj-vysokovoltnyj-generator

Лучшая схема двигателя-генератора — Отличные предложения на схемы двигателя-генератора от глобальных продавцов схем двигателя-генератора

Отличные новости !!! Вы попали в нужное место для схемы мотор-генератора. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая схема двигателя-генератора в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели схему двигателя-генератора на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в схеме двигателя-генератора и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести motor generator circuit по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

LM317 / LM338 / LM350 Калькулятор и схемы регулятора тока


Калькулятор регулятора тока LM317 / LM338 / LM350

Вы можете использовать этот калькулятор регулятора тока, чтобы изменить значение программного резистора (R 1 ) и рассчитать выходной ток из семейства LM317 / LM338 / LM350, состоящего из трех клеммных регулируемых стабилизаторов.Этот калькулятор регулятора тока будет работать со всеми регулируемыми стабилизаторами интегральной схемы с опорным напряжением (В REF ) 1,25. Дополнительные сведения об этих регуляторах напряжения см. На странице «Калькулятор регуляторов напряжения LM317 / LM338 / LM350», «Информация и схемы».

Рисунок 2: Схема калькулятора регулятора тока LM317 / LM338 / LM350

Калькулятор регулятора тока LM317 / LM338 / LM350

Чтобы определить выходной ток регулятора, введите значение программного резистора (R 1 ) в омах и нажмите кнопку «Рассчитать».Это позволит рассчитать выходной ток в амперах и количество мощности, рассеиваемой через R 1 в ваттах.

ПРИМЕЧАНИЕ: для этого онлайн-калькулятора текущего регулятора требуется, чтобы в вашем браузере был включен JavaScript.

Калькулятор регулятора тока LM317 / LM338 / LM350

ОБНОВЛЕНИЕ — калькулятор регулятора напряжения LM317 / LM338 / LM350 перемещен на свою страницу, калькулятор регулятора напряжения LM317 / LM338 / LM350. Пожалуйста, обновите свои закладки.


Лист данных — 3-контактный регулируемый регулятор LM317 / LM338 / LM350


Цепи регулятора тока LM317 / LM338 / LM350

Следующие схемы показывают некоторые из основных применений регуляторов напряжения серии LM317 / LM338 / LM350, когда они сконфигурированы как регулятор тока или источник постоянного тока (CCS).

Рисунок 2: Схема стабилизатора тока 1 А для LM317 / LM338 / LM350

Рисунок 3: Схема прецизионного ограничителя тока для LM317 / LM338 / LM350

Рисунок 4: Схема зарядного устройства постоянного тока 50 мА для LM317


Ссылки регулятора напряжения

Planet Analog — Принципы схемы функционального генератора, Часть 2: Функциональные генераторы источника тока (FG)

Интегратор-гистерезис-переключатель первого поколения FG были заменены проектной схемой второго поколения с использованием источников тока.Контур FG на основе интегратора можно улучшить, управляя интегрирующим операционным усилителем током и исключив временные резисторы. Кроме того, если переключатель гистерезиса выбирает между двумя источниками биполярного тока в качестве входа, то источники могут быть настроены на точные амплитуды тока, и амплитуды меньше зависят от динамики переключения. Третье и важное изменение заключается в отказе от интегратора операционного усилителя, поскольку источник тока, управляющий синхронизирующим конденсатором, также будет генерировать треугольную волну, причем быстрее.Результатом этих изменений является ФГ источника тока. Базовая схема представлена ​​ниже.

Источник тока положительной или отрицательной полярности переключается (переключателем DPDT) на синхронизирующий конденсатор C. Результирующее линейное изменение буферизуется усилителем напряжения × 1 для вывода треугольной волны. Он вводится в переключатель гистерезиса, который выводит прямоугольный сигнал. Он также выбирает полярность синхронизирующего тока.

Реализация схемы, основанная на этой общей схеме (и использовавшейся в HP8082A), показана ниже.

Переключатель гистерезиса состоит из Q1, Q2 и Q4. Обратная связь с Q2 от Q4 делает схему бистабильной, а Q3 буферизует прямоугольную волну, чтобы установить уровень напряжения на входе диодного моста. Когда уровень высокий, D3 проводит, D1 и D4 выключаются, и ток от источника высокого напряжения течет в C через D2. Конструкция этого контура генератора оптимизирована больше для скорости, чем для точности. Это проявляется в относительно низком входном сопротивлении гистерезисного переключателя BJT, Q1. Гистерезисный компаратор оптимизирован для скорости и может быть реализован с использованием клапана ECL.Пороговые напряжения компаратора определяются R0, RL1, R1 и R2 вместе с падениями BJT-перехода — не самый точный определитель уровней. Следовательно, частотный диапазон для данного C не будет таким много десятилетий, как для прецизионного FG, но этот FG будет иметь возможность генерации высоких частот 100 МГц или более.

Вариант FG источника тока, который упрощает переключение с переключателя DPDT на переключатель SPDT, показан ниже.

Один из источников не переключается, и для компенсации его тока другой источник выполнен по величине 2x I .Два источника должны быть сбалансированы в соотношении для симметрии формы сигнала, но переключение проще.

Другой вариант переключателя — сделать его дифференциальным и использовать обе полярности выхода гистерезисного компаратора, как показано ниже.

Токовые переключатели представляют собой пары BJT diff-amp, которые могут быстро переключаться, в то время как ток синхронизации устанавливается источниками, которые управляют их эмиттерами. Другой выход каждой из пар диффузионного усилителя управляет другим входом другого диффузионного усилителя, тем самым ускоряя переключение.

Хотя генераторы сигналов произвольной формы и цифровые синтезаторы заменяют некоторые аналоговые генераторы генераторов, обнаруженные в них схемы стоит помнить и использовать. Поскольку аналоговый по своей сути быстрее, чем цифровой, аналоговая генерация функций останется конкурентом цифровых, обеспечивая большее временное разрешение и даже амплитудное разрешение для чистых реализаций. Прошлые усилия Intersil, затем Exar, а затем (намного позже) Maxim по интеграции интегральной схемы FG заслуживают внимания и, надеюсь, не являются окончательными.Оптимальным FG может быть аналоговый FG на основе микроконтроллера, такой как более ранний пример HP3314A. Комбинируя лучшие функциональные характеристики цифровых и аналоговых, генераторы генераторов должны оставаться привлекательными инструментами для работы с электроникой. Зная схемы FG, инженер лучше понимает возможности схем в проектах, требующих таких функций.

Векторная диаграмма, эквивалентная цепь переменного тока и шаг-фактор

(3) Нагрузочные характеристики синхронного генератора:

Пока возбуждающее течение и скорость остаются постоянными, напряжение на клеммах изменяется вместе с током нагрузки в якоря и отношения между напряжением на клеммах и током нагрузки Генератор известен как его нагрузочные характеристики.

Когда ток якоря увеличивается, падение напряжения на клеммах. В основном это связано с

(а) Сопротивление и реактивность обмотка якоря, а

(б) Реакция якоря.

Нагрузочные характеристики Генератор показан на рисунке.

Диаграмма синхронного генератора при трех типах опережающих состояний:

Упрощенная эквивалентная схема переменного тока (на фазу) для синхронного генератора:

ПО КОЭФФИЦИЕНТУ МОЩНОСТИ ОТСТАВКА:

(А) Когда R A очень маленький:

α = угол крутящего момента

P = 3 В φ E 0 sin α / X с

Индуцированный крутящий момент,

T ind = 3 В φ E 0 sin α / X s ω м

, где ω м = скорость.

(B) Общие корпус:

P = 3 E 0 / Zs [E 0 cosθ — V (cosθ + α)]

где cosθ = R a / Z s

:. Маленький R a подразумевает θ = 90.

Для максимальная выходная мощность:

cosφ = E 0 / √ (E 2 0 + V 2 φ)

α = 90 0

3-пол. макс. = (3 Vφ I макс. E 0 ) / √ (E 2 0 + V 2 φ) = 3 В φ E 0 / X с

% PDF-1.4 % 4682 0 объект > endobj xref 4682 117 0000000016 00000 н. 0000009875 00000 н. 0000010055 00000 п. 0000010101 00000 п. 0000010130 00000 п. 0000010180 00000 п. 0000010241 00000 п. 0000010746 00000 п. 0000011275 00000 п. 0000011797 00000 п. 0000011849 00000 п. 0000011901 00000 п. 0000011953 00000 п. 0000012005 00000 п. 0000012084 00000 п. 0000012264 00000 п. 0000015579 00000 п. 0000015885 00000 п. 0000016260 00000 п. 0000017776 00000 п. 0000019241 00000 п. 0000019299 00000 п. 0000019377 00000 п. 0000020828 00000 п. 0000021813 00000 п. 0000023268 00000 н. 0000024629 00000 п. 0000026011 00000 п. 0000027312 00000 п. 0000028133 00000 п. 0000028954 00000 п. 0000029775 00000 п. 0000030357 00000 п. 0000031178 00000 п. 0000031255 00000 п. 0000031418 00000 п. 0000033467 00000 п. 0000033743 00000 п. 0000034123 00000 п. 0000047256 00000 п. 0000047297 00000 п. 0000087044 00000 п. 0000087085 00000 п. 0000308892 00000 н. 0000369990 00000 н. 0000689292 00000 н. 0000744533 00000 н. 0000744594 00000 н. 0000744714 00000 н. 0000744796 00000 н. 0000744847 00000 н. 0000744949 00000 н. 0000745114 00000 п. 0000745223 00000 п. 0000745394 00000 н. 0000745565 00000 н. 0000745666 00000 п. 0000745777 00000 н. 0000745953 00000 н. 0000746080 00000 н. 0000746236 00000 п. 0000746341 00000 п. 0000746468 00000 н. 0000746642 00000 н. 0000746737 00000 н. 0000746908 00000 н. 0000747020 00000 н. 0000747183 00000 н. 0000747288 00000 н. 0000747411 00000 н. 0000747562 00000 н. 0000747666 00000 н. 0000747848 00000 н. 0000748005 00000 н. 0000748109 00000 н. 0000748213 00000 н. 0000748366 00000 н. 0000748482 00000 н. 0000748604 00000 н. 0000748750 00000 н. 0000748872 00000 н. 0000748996 00000 н. 0000749149 00000 п. 0000749253 00000 н. 0000749351 00000 п. 0000749514 00000 н. 0000749632 00000 н. 0000749800 00000 н. 0000749920 00000 н. 0000750066 00000 н. 0000750172 00000 н. 0000750292 00000 н. 0000750486 00000 н. 0000750602 00000 н. 0000750770 00000 н. 0000750924 00000 н. 0000751060 00000 н. 0000751166 00000 н. 0000751325 00000 н. 0000751460 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *