Как из 75 вольт сделать 12: Повышающий преобразователь напряжения DC DC

Содержание

Как сделать из 12 вольт 3.7 вольта. Как получить нестандартное напряжение. Повышающий преобразователь напряжения

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.


Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора.

ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона

– это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

С помощью данного преобразователя напряжения можно получить 220 вольт от аккумуляторной батареи, напряжением 3.7 вольт. Схема не сложная и все детали доступы, этим преобразователям можно запитать энергосберегающую или светодиодную лампу. К сожалению более мощные приборы подключить не получится, так как преобразователь маломощный и больших нагрузок не выдержит.

Итак, для сборки преобразователя нам понадобится:
  • Трансформатор от старого зарядного устройства для телефона.
  • Транзистор 882P или его отечественные аналоги КТ815, КТ817.
  • Диод IN5398, аналог КД226 или вообще любой другой рассчитанный на обратный ток до 10 вольт средней или большой мощности.
  • Резистор (сопротивление) на 1 кОм.
  • Макетная плата.

Еще естественно понадобится паяльник с припоем и флюсом, кусачки, провода и мульти метр (тестер). Можно конечно изготовить и печатную плату, но для схемы из нескольких деталей не стоит тратить время на разработку разводки дорожек их прорисовку и травление фольгированного текстолита или гетинакса. Проверяем трансформатор. Плата старого зарядного устройства.

Аккуратно выпаиваем трансформатор.

Дальше нам надо проверить трансформатор и найти выводы его обмоток. Берем мультиметр, переключаем его в режим омметра. По очереди проверяем все выводы, находим те которые парой «звонятся» и записываем их сопротивления.1. Первая 0,7 Ом.

2. Вторая 1,3 Ом.

3. Третья 6,2 Ом.

Та обмотка, у которой наибольшее сопротивление была первичной, на нее подавалось 220 В. В нашем устройстве она будет вторичной, то есть выходом. С остальных снималось пониженное напряжение. У нас они будут служить как первичная (та, которая с сопротивлением 0,7 ом) и часть генератора (с сопротивлением 1,3).

Результаты замеров у разных трансформаторов могут отличаться, нужно ориентироваться на их соотношение между собой.

Схема устройства

Как видите она простейшая. Для удобства мы пометили сопротивления обмоток. Трансформатор не может преобразовывать постоянный ток. Поэтому на транзисторе и одной из его обмоток собран генератор. Он подает пульсирующее напряжение от входа (батареи) на первичную обмотку, напряжение около 220 вольт снимается с вторичной.

Собираем преобразователь

Берем макетную плату.

Устанавливаем трансформатор на нее. Выбираем резистор в 1 килоом. Вставляем его в отверстия платы, рядом с трансформатором. Загибаем выводы резистора так чтобы соединить их с соответствующими контактами трансформатора. Припаиваем его. Удобно при этом закрепить плату в каком ни будь зажиме, как на фото, чтобы не возникала проблема недостающей «третьей руки». Припаянный резистор. Лишнюю длину вывода обкусываем. Плата с обкусанными выводами резистора.

Дальше берем транзистор. Устанавливаем его на плату с другой стороны трансформатора, так как на скриншоте (расположения деталей я подобрал так, чтобы было удобнее их соединять согласно принципиальной схеме). Изгибаем выводы транзистора. Припаиваем их. Установленный транзистор. Берем диод. Устанавливаем его на плату параллельно транзистору. Припаиваем. Наша схема готова.

Припаиваем провода для подключения постоянного напряжения (DC input). И провода для съема пульсирующего высокого напряжения (AC output).

Для удобства провода на 220 вольт берем с «крокодилами».

Наше устройство готово.

Тестируем преобразователь

Для того чтобы подать напряжение выбираем аккумулятор на 3-4 вольта. Хотя можно использовать и любой другой источник питания.

Припаиваем провода входа низкого напряжения к нему, соблюдая полярность. Замеряем напряжение на выходе нашего устройства. Получается 215 вольт.

Внимание. Не желательно прикасаться к деталям при подключенном питании.

Это не столь опасно, если у вас нет проблем со здоровьем, особенно с сердцем (хотя две сотни вольт, но ток слабый), но неприятно «пощипать» может.Завершаем тестирование, подключив люминесцентную энергосберегающую лампу на 220 вольт. Благодаря «крокодилам» это несложно сделать без паяльника. Как видите, лампа горит.

Наше устройство готово.Совет.Увеличить мощность преобразователя можно установив транзистор на радиатор.Правда емкости аккумулятора хватит не на долго. Если вы собираетесь постоянно использовать преобразователь, то выберите более емкую батарею и сделайте для него корпус.

kavmaster.ru

Светодиод 3 вольта

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

le-diod.ru

Модуль питания DC-DC, расширяющий возможности платы Arduino Pro mini.Я решил уменьшить габариты и стоимость своей домашней метеостанции на GY-BMP280-3.3 и Ds18b20.

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»


Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения. Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:Схема модуля с микросхемой AMS1117-3.3:
Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.
Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.
В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».
Даташит на микросхему AMS1117А:Удачных покупок!

Стоимость: ~23

Подробнее на Aliexpress

usamodelkina.ru

как сделать в авто с 12 вольт на 3 вольта?

погасить сопротивлением. Вначале переменным резистором, затем, замерив полученное, можно вставлять постоянное.

Схема электродвигатель-генератор.

Поставить стабилизатор на 3 вольта импортную кренку

Я бы просто спаял простейший стабилизатор напряжения: мощный проходной транзистор (например, КТ-805), стабилитрон (если не найдёте на нужное напряжение, то ставите любой другой, делитель и повторитель на транзисторе меньшей мощности) , резистор и парочка электролитических конденсаторов. (Вот типовая схема, электролитические конденсаторы не показаны) . А можно идти по другому пути: в компьютерных магазинах продают преобразователи, втыкаемые в гнездо прикуривателя, на выходе — различные напряжения, как больше, так и меньше 12 вольт (такие приборы используют, например, для питания нетбуков от бортсети) . Не знаю, правда, бывает ли на выходе 3 вольта.

touch.otvet.mail.ru

Делаем DC-DC преобразователь 12>3 Вольт своими руками

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт. Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки, на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.

После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.

Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.

Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Читайте так-же:
Преобразователь напряжения с 12 В на 220 В / 50 Гц
Повышающий преобразователь напряжения.
Питание цифрового фотоаппарата от внешнего аккумулятора
Автомобильное зарядное usb

acule.ru


Ремонт усилителя воспроизведена плейера иностранного производства часто бывает затруднителен из-за использования в нем низковольтной микросхемы, аналог которой найти очень трудно Поэтому приходится делать новую конструкцию на транзисторах или микросхемах отечественного производства, но в этом случае радиолюбитель испытывает определенные затруднения в выборе нужной схемы с низким значением напряжения источника питания. Для примера, при повторении схем, описанных в , необходимо использовать 53 радиодетали в варианте на микросхемах или 72 радиодетали при транзисторном исполнении. Оптимальнее применить упрощенную схему . У этой схемы очевидные преимущества — один активный элемент (микросхема К157УД2), малое количество используемых деталей, достаточно хорошие характеристики. Но есть один существенный и вроде бы непреодолимый для низковольтного плейера недостаток: высокое напряжение питания микросхемы (в данном усилителе 9В). Из создавшегося положения есть выход — использовать преобразователь первичного напряжения питания плейера, обычно 3 В, во вторичное, более высокое, от которого уже и питать усилитель. В таком варианте для конструкции потребуются всего 10 элементов для преобразователя и 21 для усилителя.

Разработанный вариант преобразователя питания усилителя воспроизведения плейера (питание коллекторного электродвигателя осуществляется непосредственно от источника тока) имеет следующие технические характеристики:

Выходное напряжение, В, при выходном токе 15 мА и входном напряжении 2-3 В……………..7 — 10

Коэффициент пульсаций вторичного напряжения, %, не более……………………………………………0,001

Частота преобразования, кГц………………………………………………………… …………………………………100…200

КПД, %, не менее………………………………………………………………………………………………………………… 55

Габариты, мм…………………………………………………………………………………………………………………..14х10х10

Преобразователь напряжения построен по схеме двухтактного генератора (рис. 1), что позволило получить достаточно высокий КПД. Роль переключателей выполняют транзисторы VТ1 и VТ2, которые поочередно открываются и закрываются подобно транзисторам симметричного мультивибратора. Фазировка их работы осуществлена соответствующим включением коллекторных и базовых обмоток трансформатора Т1. Делитель напряжения R2R1 обеспечивает запуск преобразователя. При включении напряжения питания падение напряжение на резисторе R2 (порядка 0,7 В) плюсом приложено к базам транзисторов и открывает их. Вследствие разброса параметров транзисторов токи коллекторов (и токи в коллекторных обмотках трансформатора Т1) не могут быть совершенно одинаковыми, а увеличение тока в одном из плеч генератора приводит к появлению положительной обратной связи на базу данного транзистора и, как следствие, лавинообразному нарастанию тока до его насыщения. При уменьшении скорости нарастания тока в коллекторной обмотке противоЭДС создает положительную связь на базу транзистора другого плеча, ток коллектора в первом плече спадает и лавинообразно увеличивается в цепи коллектора и обмотке другого транзистора. Таким образом, в магни-топроводе трансформатора наводится переменный во времени магнитный поток, который будет создавать во вторичной обмотке (выводы 7-8) ЭДС. Диодный мост VD1 — VD4 переменное напряжение преобразует в пульсирующее, а его сглаживание осуществляется элементами цепи питания усилителя воспроизведения. В устройстве преобразователя конденсатор С1 повышает надежность процесса самовозбуждения.

В конструкции применены самые распространенные транзисторы КТ315, причем можно взять транзисторы с любым буквенным индексом и параметром h 21Э >50. Однако не следует выбирать транзисторы с слишком большим h 21Э, так как при этом падает экономичность устройства. Использование других транзисторов (кроме КТ373Г) нежелательно, так как напряжение насыщения перехода коллектор-эмиттер рекомендованных транзисторов составляет всего 0,4 В, и они обладают небольшими габаритами. Резисторы и конденсатор любые малогабаритные. Тарнсформатор выполнен на кольцевом магнитопроводе К7Х4Х2 из феррита марок 600НН, 400НН. Коллекторная обмотка намотана в два провода (диаметром 0,2 мм) и содержит 11 витков, а базовая (тоже в два провода диаметром 0,13 мм) имеет 17 витков. Вторичная (выходная) обмотка содержит 51 виток провода диаметром 0,13 мм. Намотка производится внавал проводом ПЭВ или ПЭЛ. Вместо диодов КД522Б можно использовать германиевые малогабаритные диоды, при соответствующем изменении числа витков трансформатора. Это даже приведет к повышению КПД преобразователя на 10-15 %. Если в преобразователе применить двухполупериод-ную схему выпрямления с выводом от средней точки вторичной обмотки, то это позволит уменьшить число диодов на два и дополнительно повысить КПД, так как последовательно с нагрузкой (усилителем) будет включен один выпрямляющий диод вместо двух. При этом необходимо произвести перерасчет преобразователя.

Монтаж преобразователя — любой, его детали можно расположить на одной плате с деталями усилителя или оформить в виде отдельного блока. В авторской конструкции был использован второй вариант (рис. 2). Детали преобразователя склеены между собой в объемную конструкцию, состоящую из трех слоев. Слой первый — конденсатор С1 и резисторы R1, R2. Второй — трансформатор и диодный мост, спаянный из VD1- VD4. Третий — транзисторы VТ1, VТ2, спаянные между собой выводами эмиттеров. Перед установкой транзисторов для уменьшения габаритов блока их следует сточить с боков до длины 7 мм. Выводы трансформатора припаяны прямо к выводам деталей. Остальные соединения сделаны тонкими проводниками. После этого следует припаять входные и выходные проводники и проверить работоспособность блока. При использовании исправных элементов и правильно выполненном монтаже конструкция сразу заработает. Если этого не произошло, то надо проверить правильность подключения обмоток трансформатора. После этого всю конструкцию следует залить эпоксидной смолой. Полностью изготовленный и проверенный на работоспособность блок помещают в коробочку из тонкой бумаги, предварительно в ней сделать отверстия для выводов и заполнить объем компаундом.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.


После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.


Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.


Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Преобразователь — Автозапчасти и аксессуары

Усть-Каменогорск, 45-я аптека 5 февр.

Алматы, Жетысуский район 3 февр.

Alex_EXE » Понижающий DC-DC преобразователь на MC34063

Внимание! Статья отправлена на доработку.

Очень часто встаёт вопрос о том, как получить требуемое для схемы питание напряжение, имея источник с отличным от требуемого напряжения. Такие задачи делятся на две: когда: нужно уменьшить или увеличить напряжение до заданного. В этой статье будет рассмотрен первый вариант.

Как правило, можно применить линейный стабилизатор, но у него будут большие потери по мощности, т.к. разность в напряжениях он будет преобразовывать в тепло. Здесь на помощь приходят импульсные преобразователи. Вашему вниманию предлагается простенький и компактный преобразователь на MC34063.

Вид преобразователя

Эта микросхема очень универсальна, на ней можно реализовывать понижающие, повышающие и инвертирующие преобразователи с максимальным внутренним током до 1,5А. Но в статье рассмотрен только понижающий преобразователь, остальные будут рассмотрены позже.

Размеры получившегося преобразователя – 21х17х11 мм. Такие размеры получилось из-за использования совместно выводных и SMD деталей. Преобразователь содержит всего 9 деталей.

Схема

Детали в схеме рассчитаны на 5В с ограничение тока 500мА, с пульсацией 43кГц и 3мВ. Входное напряжение может быть от 7 до 40 вольт.

За выходное напряжение отвечают резисторный делитель на R2 и R3, если их заменить подстроечным резистором где-то на 10 кОм, то можно будет задавать требуемое выходное напряжение. За ограничение тока отвечает резистор R1. За частоту пульсаций отвечают конденсатор C1 и катушка L1, за уровень пульсаций конденсатор C3. Диод может быть заменён на 1N5818 или 1N5820. Для расчёта параметров схемы есть специальный калькулятор — http://www.nomad.ee/micros/mc34063a/index.shtml, где стоит только задать требуемые параметры, он так же может рассчитать схемы и параметры преобразователей нерассмотренных двух типов.

Вид сзади

Платы

Было изготовлено 2 печатные платы: слева – с делителем напряжения на делителе напряжения, выполненном на двух резисторов типоразмера 0805, справа с переменным резистором 3329H-682 6,8кОм. Микросхема MC34063 в корпусе DIP, под ней два чип танталовых конденсатора типоразмера – D. Конденсатор C1 –типоразмера 0805, диод выводной, резистор ограничения тока R1 – на пол вата, при малых токах, меньше 400 мА, можно поставить резистор меньшей мощности. Индуктивность CW68 22мкГн, 960мА.

Осциллограммы пульсаций, R огранич = 0,3 Ом

На этих осциллограммах показаны пульсации: слева – без нагрузки, справа – с нагрузкой в виде сотового телефона, ограничивающий резистор 0,3 Ом, снизу с той же нагрузкой, но ограничивающий резистор на 0,2 Ом.

Осциллограмма пульсации, R огранич = 0,2 Ом

Снятые характеристики (замерены не все параметры), при входном напряжении 8,2 В.

Применение

Этот адаптер был изготовлен для подзарядки сотового телефона и питания цифровых схем в походных условиях.

Схема с переменны резистором

В статье была приведена плата с переменным резистором в качестве делителя напряжения, размешаю к ней и соответствующею схему, отличие от первой схемы только в делителе.

Скачать печатки в формате Sprint Layout

Схема обновлена 15 марта 2011 года

Заправочная колонка Benza 34-12-75 на 12 Вольт, 75 литров в минуту

Benza 34-12-75 — это универсальное топливозаправочное оборудование, максимальное адаптированное к потребностям российских пользователей. Заправочная колонка при минимальном энергопотреблении (работает от автомобильного аккумулятора на 12 В) обеспечивает высокую скорость подачи — 75 л/мин.

ТРК не имеет ограничений по месту установки, а взрывозащита позволяет использовать блок для разного топлива — бензина, керосина или ДТ. Точность установленного счётчика рассчитана на внутрихозяйственное использование, погрешность составляет 1%.

ВАЖНО! Топливораздаточный модуль этой версии имеет ограничения по времени непрерывной эксплуатации. Рабочий цикл — не более 30-ти минут, после чего требуется охлаждение.

Особенности комплектации блока

Колонка открытого типа, но с высокой степенью защиты от пыли и воды. Герметичность конструкции позволяет использовать оборудование не только в закрытом помещении, но и на открытом воздухе.

Основные компоненты собраны на металлической пластине, облегчающей установку комплекса на любую поверхность. В составе:

  • Механический счётчик с точностью 99%. Есть возможность калибровки. 3-разрядная шкала расходомера обнуляется, служит для учета разовых операций. Накопительная не обнуляется, учитывает общее количество отпущенного топлива.
  • Высокопроизводительный лопастной электронасос — самовсасывающий, не требует заправки шлангов перед началом работы. Оснащён байпасным клапаном, что позволяет использовать в комплекте раздаточный пистолет.
  • Топливный кран можно выбрать — ручной либо автоматический, в соответствии с потребностями покупателя.

Заправочная колонка Benza 34-12-75 укомплектована напорным шлангом, проводом питания, выключателем.

Примечание: в комплекте поставки нет всасывающего рукава. Его можно подобрать с учётом условий эксплуатации (место установки, тип топлива) индивидуально.

Важные достоинства ТРК

Благодаря взрывозащищенному и всепогодному исполнению такая заправочная станция универсальна — применяется для разных ГСМ и эффективно работает в любых условиях.

За счёт автономности питания колонка весьма мобильна, может использоваться на любом объекте при невозможности или нецелесообразности поездок на стационарные заправки.

Кроме того, эксперты высоко оценивают надёжность и долговечность модуля. Гарантия на это оборудование — максимально возможная (24 месяца). 

Расчет времени работы инвертора от аккумулятора без запуска двигателя

Наличие в машине автомобильного инвертора преобразующего постоянное напряжение 12 Вольт бортовой сети в переменное 220 Вольт позволяет использовать в дальней дороге привычные бытовые приборы и делает жизнь в походно-полевых условиях более комфортной. Однако тут все зависит от времени работы инвертора. 

В тоже время, если есть такая возможность, то в автомобиль лучше приобрести и использовать электроприборы, способные нормально заряжаться или работать непосредственно от розетки прикуривателя или специальной встроенной розетки 12V. Это не только более удобно, но и позволит сберечь автомобильный аккумулятор и продлить срок его службы.

Или другой случай. Например если есть необходимость в питании для ноутбука, то нет никакого смысла подключать его к бортовой сети автомобиля через инвертор. Зачем сначала преобразовывать постоянное напряжение 12 Вольт в переменное 220 Вольт, а затем с помощью блока питания ноутбука обратно в нужное для его работы постоянное? Более практично будет подключить ноутбук напрямую в розетку прикуривателя через какой то универсальный блок питания-автоадаптер.

Расчет времени работы устройств через инвертор от аккумулятора автомобиля без запуска двигателя.

Теоретически, в каждом конкретном случае это время работы инвертора следует рассчитывать отдельно, исходя из множества величин и условий :

— Емкости автомобильного аккумулятора.
— Его состояния, степень заряда и износа.
— Условий использования, в том числе и погодных.
— Мощности подключаемых устройств и потребляемой ими силы тока.
— Типа нагрузки
— И так далее.

Но даже в этом случае, совершенно точный расчет времени работы инвертора будет невозможен, так как он зависит еще и от множества других объективных и субъективных факторов. Да он и не нужен особо, зачем вообще забивать себе голову такими сложностями? В нашем случае нужны простейшие, пусть даже они и будут очень приблизительными, расчеты. Ведь самое главное, это не разрядить до конца аккумулятор автомобиля..

В дальнейших расчетах времени работы инвертора будем отталкиваться, прежде всего, от емкости аккумулятора. Номинальная емкость аккумуляторной батареи измеряется в ампер-часах и обозначена на ее корпусе. Реальная же емкость аккумулятора зависит от того, насколько он разряжен и, в немалой степени, от температуры окружающей среды.

Расчет времени работы инвертора от аккумулятора без запуска двигателя автомобиля по значениям напряжения.

При использовании автомобильного инвертора для питания устройств непосредственно от аккумулятора автомобиля без запуска его двигателя, надо четко представлять себе время, которое он может проработать без ущерба для аккумуляторной батареи. И не разрядить ее до такого состояния, когда запуск двигателя стартером будет затруднителен или вообще невозможен.

Аккумулятор автомобиля не рекомендуется разряжать более чем на 50% в теплое и более чем на 25% в холодное время года. Иначе могут возникнуть сложности с запуском двигателя. Для определения степени разряженности можно использовать сильно упрощенный метод на основе значений напряжения аккумулятора.

Хотя этот способ и не точный, но зато требует только наличия цифрового вольтметра, способного измерять десятые доли вольта. А такой наверняка будет в любом бортовом компьютере автомобиля. В вольтах, эти значения можно обозначить весьма-весьма приближенно и неточно — для 50% разряженности это будет составлять около 11.6 Вольта, а для 25% — около 12.0 Вольт.

В идеале, автомобильный инвертор должен иметь встроенную функцию информирования о снижении напряжения аккумулятора до критического предела. Если такая функция есть, то следует посмотреть, какие значения напряжения производитель считает предельно низкими.

Дело в том, что на некоторых моделях инверторов эти значения составляют 9,7-10,3 Вольта, а это практически 100 % разряд аккумулятора. Поэтому желательно почаще смотреть на вольтметр или показания бортового компьютера и не давать упасть напряжению ниже 11. 6 Вольт в теплое время года, и 12.0 Вольт — в холодное.

Расчет времени работы инвертора от аккумулятора без запуска двигателя автомобиля по формулам.

Расчет времени работы инвертора от аккумулятора без запуска двигателя по каким то формулам обычно бывает очень и очень не точен. Прежде всего по той причине, что какая то линейная зависимость в падении напряжения АКБ до минимально допустимых значений отсутствует.

По той причине, что в процессе работы инвертора на аккумулятор влияют очень много неизвестных и заранее не прогнозируемых факторов, которые описаны выше. Однако, как бы там не было, расчет времени работы инвертора по формуле вполне возможен.

Для примера и наглядности расчетов времени работы инвертора возьмем следующие данные :

— Емкость аккумулятора 60 ампер-часов.
— Питаемое устройство — ноутбук Lenovo G550. Входное напряжение у которого 19 В, потребляемая сила тока — 3.42 А, и соответственно мощность — 19х3.42 = 64.98 ватт (округлим до 65).
— Автомобильный инвертор обычно имеет КПД около 85% (точнее указано в инструкции), то есть если к нему подключена нагрузка 100 Ватт, то от аккумулятора он будет потреблять 115 Ватт.

Вычисление времени работы производим по формуле T (час) = Ah (ампер-час) х V (вольт) х N (0.85) х K (коэффициент 0.5 или 0.25) / P (ватт), в которой :

T — время работы подключенного устройства в часах.
Ah — емкость аккумулятора автомобиля в ампер-час.
V — минимально допустимое напряжение аккумулятора автомобиля в вольтах.
N — КПД инвертора, берем значение в 85%, в формуле — 0.85.
K — максимальный процент допустимой степени разряженности аккумулятора автомобиля в зависимости от температуры воздуха : 0.5 или 0.25.
P — мощность подключенного к инвертору устройства в ваттах.

В итоге получаем :

— для теплой погоды : Т = 60х11. 6х0.85х0.5/65 = 4.5 или 4 часа 30 минут.
— для холодного времени года : Т = 60х12х0.85х0.25/65 = 2.3 или 2 часа 18 минут.

Все написанное выше, будет верно для устройств, потребляющих постоянную мощность равную номинальной и обозначенной на них. А вот для приборов, потребляющих номинальную мощность, только в момент включения или прикладывания нагрузки, рассчитать время работы от аккумулятора намного сложнее. Потому что процессы сверления, распиливания и т.д. обычно кратковременны, но в любом случае, аккумулятора для них хватит на более продолжительное время работы.

Расчет времени работы инвертора от аккумулятора автомобиля при заведенном двигателе.

Если аккумулятор при работе инвертора разрядился до «нижнего предела», то казалось бы чего проще — завел двигатель и пользуйся инвертором дальше. Теоретически это так, при запущенном двигателе и работающем генераторе, в том случае, если мощность генератора больше или равна мощности подключенной нагрузки — время работы устройств через инвертор практически не ограничена. И зависит лишь от вашего желания или наличия топлива в баке автомобиля.

В принципе, выдаваемую генератором мощность при заведенном двигателе посчитать не проблема. Берем среднее напряжение в 13.6 Вольт и умножаем на ампераж генератора, например 80 А. Получаем 13.6х80 = 1088 Ватт. То есть, теоретически получается, подключай нагрузку к инвертору в 800-1000 Ватт и ни о чем не беспокойся, пока бензин не закончится. Практически же, все немного сложнее.

Дело в том, что автомобильный генератор развивает свою номинальную мощность только при соответствующих оборотах. А достаточное для зарядки аккумулятора напряжение будет выдавать только от 2000 об/мин и выше. Обороты же холостого хода, как правило, 800-900 об/мин. Поэтому рассчитывать на теоретически посчитанные 1088 Ватт не стоит. Кроме того, у генератора будут еще и свои потребители, которым он отдаст часть своей мощности. Да и уже разряженный аккумулятор, если не отключить инвертор с подключенной нагрузкой, скорее будет медленно, но разряжаться, чем полноценно заряжаться.

А постоянно гонять двигатель на оборотах больше 2000 разве оно того стоит? Если же присутствует очень сильная необходимость в длительной работе приборов и устройств через инвертор в автономных условиях, то тогда не лучше ли посмотреть в сторону небольшого бензинового или дизельного генератора на 220 Вольт и необходимой мощности?

Похожие статьи:

Как получить 220 Вольт в вашем автомобиле. Инвертор Neodrive

Введение

Существенная часть мобильных электронных устройств имеют возможность питания или зарядки аккумуляторов от автомобильного прикуривателя. Всем известны и автомобильные кабели для зарядки сотовых телефонов, и блоки питания для ноутбуков и различные аксессуары, питающиеся от автомобильной сети. Но в автомобиле имеется только одно напряжение — 12 Вольт постоянного тока, а это значит, что далеко не все устройства способны питаться от автомобильной сети. К примеру, телевизор, электродрель или даже обычный домашний настольный компьютер потребуют нормальное питание с евро-розеткой с напряжением 220 Вольт и частотой 50 Гц. Когда захочется вам выехать на природу и посмотреть там телевизор, поработать за компьютером и включить электрическую лампу, вы непременно начнёте искать и автомобильный телевизор, и ноутбук и 12-вольтовые светильники. А автомобильные аксессуары стоят намного дороже обычных. Взять хотя бы телевизоры: 15-дюймовый домашний ТВ-приёмник вам обойдётся в несколько раз дешевле автомобильного телевизора с меньшей диагональю экрана и намного худшим звуком. Задача ясна — желательно получить из автомобиля 220 Вольт переменного тока. Вот только как это сделать?

С недавнего времени в продаже начали появляться соответствующие устройства, инверторы. Говоря обычным языком, это преобразователи постоянного тока в переменный с повышением напряжения с 12 В до 220 В. Сегодня мы рассмотрим такое устройство от компании Neodrive, новой компании на Российском рынке, предлагающей покупателям полный ассортимент электронных аксессуаров как для компьютеров, так и для домашнего использования. Так сказать, устройства класса «Home Entertainment».

Принцип работы инвертора

В основе принципа инвертора лежит способность тиристора замыкать и размыкать цепь произвольной по времени подачей импульсов на его управляющий электрод. Теоретически, инвертор может выдать любую частоту на выходе: 50 Гц для России и Европы, 60 Гц для США или даже 400 Гц для промышленных приборов специального назначения. Для нас более интересно получить частоту 50 Гц, на которой работают современные бытовые приборы для рынка России, Азии и Европы. В инверторах имеется возможность повышать напряжение и регулировать его с некоторой точностью. Например, инверторы, применяемые в неоновых подсветках для моддинга, преобразуют постоянный ток напряжением 12 В в переменный ток напряжением несколько тысяч вольт. Обычно КПД инвертора составляет 90-95%, так что эти устройства имеют не очень большие потери на нагрев.

Инвертор на выходе не может дать чистую синусоиду напряжения. Как правило, получается аппроксимированная синусоида, составляемая из множества ступенек. Но этого не стоит опасаться, поскольку практически все бытовые приборы не требуют идеального качества напряжения.

Потребляемые мощности типичных бытовых приборов

Автомобильный инвертор — предмет если не первой необходимости, как аптечка или запаска, то очень полезный. Вполне возможно, в скором времени автомобили будут оснащаться розеткой 220 В по умолчанию, но пока мы имеем возможность самим выбирать, какое устройство нам потребуется подключить в походных условиях. Исходя из того, какую мощность вам потребуется запитать, и надо выбирать инвертор. Ведь совершенно понятно, что к устройству, рассчитанному на 50 Ватт, уже не подключишь киловаттный обогреватель — оно просто сгорит. Но так же и нет смысла покупать слишком мощное устройство, чтобы сэкономить место в автомобиле и даже более того — возможно мощный инвертор будет слишком неудобным для вас. Так что давайте сначала определимся с мощностью, которая вам потребуется.

Типичное энергопотребление современных устройств

Устройство

Потребляемая мощность, Вт

Диктофон / CD — Проигрыватель / Walkman / Бритва

7

Энергосберегающая лампа (эквивалент 100 Вт)

15

Магнитола, кассетный магнитофон

15

Портативный DVD плеер с 7″ цветным экраном 22
Зарядное устройство для видеокамеры 23
Зарядное устройство для мобильного телефона 25
Зарядное устройство для аккумуляторной дрели 35
Видеомагнитофон 38-40
Настольный вентилятор 30-40
Цветной телевизор с диагональю 37 см 50
Цветной телевизор с диагональю 51 см 72
Переносной компьютер 60-80
Галогенная рабочая лампа 100
Паяльник 120
DVD-плеер + 6-канальная акустика 130
Ручной миксер 180
Полировочная машина 230
Водяной насос 250
Настольный персональный компьютер 280
Шлифовальная машина 300
Домашний пылесос от 600
Тепловентилятор 1400

Как видно из таблицы, даже несколько устройств, способных помочь вам на отдыхе, не будут потреблять в сумме более 100 Вт. Как правило, маломощные устройства — это те, которые вы можете использовать постоянно, даже на ходу в машине. К примеру, ваши пассажиры могут работать на ноутбуке, слушать плеер или смотреть переносной DVD плеер, не опасаясь, что аккумуляторы разрядятся. Естественно, электрическая розетка потребуется вам именно в салоне, то есть инвертор должен подключаться в гнездо автомобильного прикуривателя. Но автомобильная проводка, особенно в отечественных машинах, не рассчитана на долговременные большие нагрузки, поэтому чтобы не вывести из строя гнездо прикуривателя, более мощные инверторы подключаются напрямую к клеммам аккумулятора. 

Автомобильные инверторы Neodrive

Компания Neodrive предлагает для пользователей широкий модельный ряд автомобильных инверторов разной мощности от 75 Вт и выше. Инверторы мощностью до 100 Вт включительно подключаются в автомобильный прикуриватель, чтобы было удобно пользоваться простыми бытовыми приборами вроде ноутбука, телевизора, магнитофона или электробритвы.

Более мощные инверторы, которые вы можете использовать уже и для обогревателей и для ручного инструмента, подключаются только к клеммам аккумулятора, чтобы не нагружать автомобильную проводку.

Соответственно, и реализации этих устройств разные: более серьёзный и более мощный выглядит как промышленный прибор и более простой как игрушка инвертор мощностью до 100 Вт. Все автомобильные инверторы Neodrive имеют аппаратную защиту от перегрузок и перегрева, а так же защиту от разряда автомобильного аккумулятора. Инвертор сам сообщит вам о падении напряжения на аккумуляторе (около 10.5 Вольт) и при снижении напряжения на клеммах до 10.1 Вольт инвертор отключит питание, чтобы не разрядить аккумулятор и дать вам возможность завести автомобиль.

Сегодня в нашей тестовой лаборатории томится 300-ваттный инвертор Neodrive, который мы сейчас и рассмотрим.

Инвертор Neodrive 300w

300-Ваттный автомобильный инвертор Neodrive на момент написания обзора был одним из самых мощных преобразователем постоянного тока в переменный из ассортимента компании (есть ещё и 500-ваттные модели). Это устройство поставляется в прозрачном блистере (упаковка из плотного полиэтилена).

В комплекте к инвертору прилагается инструкция пользователя, соединительные провода и предохранитель на 40 Ампер.

Так как это мощный 300-ваттный инвертор, то он подключается только к клеммам аккумулятора мощными кабелями с зажимами типа «крокодильчики».

Сам инвертор имеет алюминиевый корпус размерами 170x120x52 мм и весит почти 750 грамм. На лицевой стороне установлена одна универсальная розетка с заземлением, в которую подключаются как европейские вилки, так и российские. Справа от розетки установлена индикация работы устройства и выключатель. Как мы уже говорили, инвертор имеет защиту от включения на короткое замыкание, от глубокого разряда аккумулятора, от перегрева и перегрузки.

С обратной стороны располагаются клеммы для подключения питания от аккумулятора, предохранитель, защищающий от перегрузки и вентилятор. В инверторе используется знакомый автолюбителям тип предохранителей.

Здесь установлен один 40-амперный предохранитель. В более мощных инверторах их может быть несколько, а в менее мощных предохранители рассчитаны на меньший ток.

Подключаем и делаем выводы

Подключение 300-ваттного инвертора будет настолько же простым, насколько просто добраться до аккумулятора вашего автомобиля. И это имеет свои плюсы и минусы. Например, во многих иномарках аккумуляторы установлены не под капотом, а под одним из сидений или в багажнике. Доступ туда может быть затруднён. Логично было бы комплектовать инверторы двумя типами кабелей питания: от прикуривателя (с ограничением максимального тока) и от аккумулятора. В этом случае, например, чтобы включить телевизор в автомобиле, не придётся тянуть провода из-под капота или багажника в салон. Зато при необходимости можно будет подключить инвертор к аккумулятору и получить полную мощность.

Очень удобно, что инвертор не даст вам разрядить автомобильный аккумулятор. Согласитесь, не приятно будет остаться на природе, когда двигатель не заводится. В инструкции сказано, что некоторые устройства придётся включить несколько раз подряд, прежде чем они заработают в нормальном режиме. Мы подключали магнитофон и телевизор — никаких проблем не возникло. При нагрузке, близкой к максимальной, время от времени придётся заводить двигатель на 10-15 минут, чтобы подзаряжать аккумулятор.

При старте двигателя инвертор следует отключать от аккумулятора, чтобы избежать его повреждений. Так же не рекомендуется включать его под нагрузкой. То есть, сначала подключаете инвертор к аккумулятору, а потом уже к нему подключаете нагрузку.

В общем-то, инверторы Neodrive — это устройства, которые должны быть в вашем автомобиле наряду с аптечкой и запасным колесом. В дороге, на отдыхе или просто в гараже вы всегда сможете получить 220 Вольт переменного тока, чтобы подзарядить аккумуляторы телефонов и фото-видео камер, поработать электроинструментом или посмотреть телевизор.

Мы благодарим компанию NEODRIVE за предоставленный автомобильный инвертор.

Михаил Дегтярёв (aka LIKE OFF)
15/11.2004


Повышающий DC-DC преобразователь. Принцип работы.

Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.

Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.

Принцип работы
Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.

Чтобы было предельно понятно покажу вначале пример для сантехников.

Фаза 1

Заслонка открывается и мощный поток жидкости начинает сливаться в никуда. Смысл лишь в том, чтобы этим потоком как следует разогнать турбину. Накачать ее энергией, передав энергию источника в кинетическую энергию турбины.

Фаза 2

Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.

Фаза 3

Скорость турбины на излете, энергия перешла в давление в аккумуляторе. Сил продавить клапан, подпертный с той стороны набитым давлением уже не хватает. Вот вот и все встанет. Но в этот момент вновь открывается заслонка и турбина вновь разгоняется, набирает энергию из источника, превращая энергию потока в энергию вращающихся масса металла. Потребитель, тем временем, потихоньку жрет из аккумулятора.

Фаза 4

И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.

Назад к схемам
Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.

Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!

Фаза 1

Ключ замкнут. Ток от источника начинает, фактически, работать на катушку. Накачивая ее энергией.

Фаза 2

Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.

Фаза 3

Ключ тем временем замыкается и катушка снова начинает нажирать энергию. В то же время нагрузка питается из конденсатора, а диод не дает току уйти из него обратно в источник.

Фаза 4

Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.

Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:

Uист*Iист = Uпотр*Iпотр

Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).

Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.

Схемотехника
Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере понижающего DC-DC преобразователя.

Работа
Питание через токовый шунт Rsc идет в дроссель L1 оттуда через ключ (SWC/SWE) на землю и через диод D1 на накопительный конденсатор C2. C него на нагрузку. Прям как в схеме приведенной выше. Остальные элементы для задания режима работы микросхемы.

  • SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
  • DRC — коллектор составного транзистора
  • Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
  • TC — вход конденсатора, задающего частоту работы.
  • CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
  • Vcc — Питание схемы
  • GND — Земля

Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:

Конденсатор С1 призван оградить питающую цепь от бросков. Потому и взят побольше. Резистор R1 у меня взят на 1.5кОм, а R2 на 13кОм, что дает нам напряжение выхода в 12 вольт. В качестве диода надо выбирать диод Шоттки. Например 1N5819. У диодов Шоттки заметно ниже падение напряженияна pn переходе, а еще ниже паразитная емкость этого перехода, что позволяет ему работать с меньшими потерями на больших частотах. Микросхема может работать на входном напряжении от 3 вольт.

Опыт
Для примера по быстрому развел микромодульчик, забирающий 5 вольт и выдающий 12 вольт. Схема уже приведена выше, а печатка получилась такой:

Вытравил, спаял…

Запитал от 5 вольт и нагрузил на 12ти вольтовую светодиодную линейку. КПД у моего преобразователя, кстати, получился так себе — не выше 50% т.к. слишком маленькая индуктивность дросселя и большая емкость конденсатора С3, но иного под рукой не оказалось.

Вот так вот. Простая схемка, а позволяет решить ряд проблем.

Калькулятор преобразования электрического напряжения

В в А

Преобразуйте вольт в амперы, указав напряжение и электрическую мощность в ваттах или сопротивление цепи.

Преобразование вольт и ватт в амперы

Преобразование вольт и омов в амперы



Перевести амперы в вольты

Как преобразовать вольты в амперы

Напряжение — это разность потенциалов в электрической цепи, измеряемая в вольтах.Было бы проще представить это как величину силы или давления, проталкивающую электроны через проводник. Чтобы преобразовать вольт в амперы, меру тока, можно использовать формулу, определенную законом Ватта.

Закон Ватта гласит, что ток = мощность ÷ напряжение. Мощность измеряется в ваттах, а напряжение — в вольтах.

Таким образом, чтобы найти ампер, подставьте вольт и ватт в формулу:
Ток (A) = Мощность (Вт) ÷ Напряжение (В)

Например, найти силу тока 100-ваттной лампочки при 120 вольт.

А = Вт ÷ В
А = 100 Вт ÷ 120 В
А = 0,83 А

Преобразование вольт в амперы с помощью сопротивления

Закон Ома предлагает альтернативную формулу для нахождения вольт, если известны ток и электрическое сопротивление. Для расчета ампер разделите напряжение на сопротивление в омах.

Ток (А) = Напряжение (В) ÷ Сопротивление (Ом)

Например, давайте найдем ток цепи 12 В с сопротивлением 10 Ом.

ампер = вольт ÷ ом
ампер = 12 В ÷ 10 Ом
ампер = 1,2 A

Измерения эквивалентных напряжений и ампер

Эквивалентные значения напряжения и тока для различных номинальных мощностей
Напряжение Текущий Мощность
5 В 1 ампер 5 Вт
5 Вольт 2 А 10 Вт
5 Вольт 3 А 15 Вт
5 Вольт 4 А 20 Вт
5 Вольт 5 ампер 25 Вт
5 Вольт 6 ампер 30 Вт
5 Вольт 7 ампер 35 Вт
5 Вольт 8 ампер 40 Вт
5 Вольт 9 ампер 45 Вт
5 Вольт 10 ампер 50 Вт
5 Вольт 11 ампер 55 Вт
5 Вольт 12 ампер 60 Вт
5 Вольт 13 ампер 65 Вт
5 Вольт 14 ампер 70 Вт
5 Вольт 15 ампер 75 Вт
5 Вольт 16 ампер 80 Вт
5 Вольт 17 ампер 85 Вт
5 Вольт 18 ампер 90 Вт
5 Вольт 19 Ампер 95 Вт
5 Вольт 20 ампер100 Вт
12 В 0. 4167 А 5 Вт
12 В 0,8333 А 10 Вт
12 В 1,25 А 15 Вт
12 В 1,667 А 20 Вт
12 В 2,083 А 25 Вт
12 В 2,5 А 30 Вт
12 В 2.917 А 35 Вт
12 В 3,333 А 40 Вт
12 В 3,75 А 45 Вт
12 В 4,167 А 50 Вт
12 В 4,583 А 55 Вт
12 В 5 ампер 60 Вт
12 В 5.417 А 65 Вт
12 В 5,833 А 70 Вт
12 В 6,25 А 75 Вт
12 В 6,667 А 80 Вт
12 В 7,083 А 85 Вт
12 В 7,5 А 90 Вт
12 В 7. 917 А 95 Вт
12 В 8,333 А100 Вт
24 В 0,2083 А 5 Вт
24 В 0,4167 А 10 Вт
24 В 0,625 А 15 Вт
24 В 0,8333 А 20 Вт
24 В 1.042 А 25 Вт
24 В 1,25 А 30 Вт
24 В 1.458 А 35 Вт
24 В 1,667 А 40 Вт
24 В 1,875 А 45 Вт
24 В 2,083 А 50 Вт
24 В 2.292 А 55 Вт
24 В 2,5 А 60 Вт
24 В 2.708 А 65 Вт
24 В 2,917 А 70 Вт
24 В 3,125 А 75 Вт
24 В 3,333 А 80 Вт
24 В 3. 542 А 85 Вт
24 В 3,75 А 90 Вт
24 В 3.958 А 95 Вт
24 В 4,167 А100 Вт
120 В 0,0417 А 5 Вт
120 В 0,0833 А 10 Вт
120 В 0.125 Ампер 15 Вт
120 В 0,1667 А 20 Вт
120 В 0,2083 А 25 Вт
120 В 0,25 А 30 Вт
120 В 0,2917 А 35 Вт
120 В 0,3333 А 40 Вт
120 В 0.375 Ампер 45 Вт
120 В 0,4167 А 50 Вт
120 В 0,4583 А 55 Вт
120 В 0,5 А 60 Вт
120 В 0,5417 А 65 Вт
120 В 0,5833 А 70 Вт
120 В 0. 625 А 75 Вт
120 В 0,6667 А 80 Вт
120 В 0,7083 А 85 Вт
120 В 0,75 А 90 Вт
120 В 0,7917 А 95 Вт
120 В 0,8333 А100 Вт

Ватт в Вольт Калькулятор преобразования электрической энергии

Преобразуйте ватты в вольты, указав мощность и ток в амперах или сопротивление цепи ниже.

Преобразование ватт и ампер в вольты

Преобразование ватт и омов в вольты



Перевести вольт в ватты

Как преобразовать ватты в вольты

Ватты можно преобразовать в вольты, используя ток и формулу закона Ватта, согласно которой ток равен мощности, деленной на напряжение. Мы можем немного изменить эту формулу, используя алгебру, чтобы переформулировать ее, поскольку напряжение равно мощности, деленной на ток.

Это формула для преобразования мощности в напряжение:

Напряжение (В) = Мощность (Вт) ÷ Ток (А)

Мы можем использовать эту формулу, чтобы найти напряжение, разделив мощность на силу тока.

Например, преобразует 20 ватт в вольты, используя цепь постоянного тока с током 4 ампера.

Напряжение (В) = 20 Вт ÷ 4 А
Напряжение (В) = 5 вольт

Преобразование в цепи переменного тока

Преобразование мощности в напряжение в цепи переменного тока очень похоже на преобразование в цепи постоянного тока с небольшим изменением, чтобы учесть коэффициент мощности цепи переменного тока.Для цепей переменного тока напряжение равно ваттам, разделенным на ток, в амперах, умноженных на коэффициент мощности.

Напряжение (В) = Мощность (Вт) ÷ (Ток (А) × PF)

Например, преобразует 1300 ватт в напряжение для электрической цепи переменного тока с током 12 ампер и коэффициентом мощности 0,9.

Напряжение (В) = 1300 Вт ÷ (12 А × 0,9)
Напряжение (В) = 120,4 вольт

Преобразовать ватты в вольты с помощью сопротивления

Вы также можете преобразовать ватты в вольты, если известно сопротивление цепи.Напряжение равно квадратному корню из мощности, умноженной на сопротивление в Ом.

Напряжение (В) = (Мощность (Вт) × сопротивление (Ом))

Например, преобразует 40 Вт в вольты для цепи постоянного тока с сопротивлением 10 Ом.

Напряжение (В) = (40 Вт × 10 Ом)
Напряжение (В) = 400
Напряжение (В) = 20 вольт

Измерения эквивалентных ватт и вольт

Эквивалентные ватты и вольт для различных номинальных значений тока
Мощность Напряжение Текущий
5 Вт 5 Вольт 1 ампер
5 Вт 2. 5 Вольт 2 А
5 Вт 1,667 Вольт 3 А
5 Вт 1,25 Вольт 4 А
10 Вт 10 Вольт 1 ампер
10 Вт 5 Вольт 2 А
10 Вт 3,333 Вольт 3 А
10 Вт 2,5 Вольт 4 А
15 Вт 15 Вольт 1 ампер
15 Вт 7.5 Вольт 2 А
15 Вт 5 Вольт 3 А
15 Вт 3,75 Вольт 4 А
20 Вт 20 Вольт 1 ампер
20 Вт 10 Вольт 2 А
20 Вт 6,667 Вольт 3 А
20 Вт 5 Вольт 4 А
25 Вт 25 Вольт 1 ампер
25 Вт 12. 5 Вольт 2 А
25 Вт 8,333 Вольт 3 А
25 Вт 6,25 Вольт 4 А
30 Вт 30 Вольт 1 ампер
30 Вт 15 Вольт 2 А
30 Вт 10 Вольт 3 А
30 Вт 7,5 Вольт 4 А
35 Вт 35 Вольт 1 ампер
35 Вт 17.5 Вольт 2 А
35 Вт 11,667 Вольт 3 А
35 Вт 8,75 Вольт 4 А
40 Вт 40 Вольт 1 ампер
40 Вт 20 Вольт 2 А
40 Вт 13,333 Вольт 3 А
40 Вт 10 Вольт 4 А
45 Вт 45 Вольт 1 ампер
45 Вт 22. 5 Вольт 2 А
45 Вт 15 Вольт 3 А
45 Вт 11,25 Вольт 4 А
50 Вт 50 Вольт 1 ампер
50 Вт 25 Вольт 2 А
50 Вт 16.667 Вольт 3 А
50 Вт 12,5 В 4 А
55 Вт 55 Вольт 1 ампер
55 Вт 27.5 Вольт 2 А
55 Вт 18,333 Вольт 3 А
55 Вт 13,75 Вольт 4 А
60 Вт 60 Вольт 1 ампер
60 Вт 30 Вольт 2 А
60 Вт 20 Вольт 3 А
60 Вт 15 Вольт 4 А
65 Вт 65 Вольт 1 ампер
65 Вт 32. 5 Вольт 2 А
65 Вт 21,667 Вольт 3 А
65 Вт 16,25 Вольт 4 А
70 Вт 70 Вольт 1 ампер
70 Вт 35 Вольт 2 А
70 Вт 23,333 Вольт 3 А
70 Вт 17,5 В 4 А
75 Вт 75 Вольт 1 ампер
75 Вт 37.5 Вольт 2 А
75 Вт 25 Вольт 3 А
75 Вт 18,75 Вольт 4 А
80 Вт 80 Вольт 1 ампер
80 Вт 40 Вольт 2 А
80 Вт 26,667 Вольт 3 А
80 Вт 20 Вольт 4 А
85 Вт 85 Вольт 1 ампер
85 Вт 42. 5 Вольт 2 А
85 Вт 28,333 Вольт 3 А
85 Вт 21,25 Вольт 4 А
90 Вт 90 Вольт 1 ампер
90 Вт 45 Вольт 2 А
90 Вт 30 Вольт 3 А
90 Вт 22,5 В 4 А
95 Вт 95 Вольт 1 ампер
95 Вт 47.5 Вольт 2 А
95 Вт 31,667 Вольт 3 А
95 Вт 23,75 Вольт 4 А
100 Вт100 Вольт 1 ампер
100 Вт 50 Вольт 2 А
100 Вт 33,333 Вольт 3 А
100 Вт 25 Вольт 4 А

Воспользуйтесь нашим калькулятором закона Ома, чтобы узнать больше формул электрического преобразования.

Вольт в Ватт, Ватт в Ампер, Калькулятор преобразования из Вольт в Ампер

Наш онлайн-калькулятор / средство преобразования может преобразовывать ватты в амперы, из вольт в ватты и из вольт в амперы. Калькулятор работает, заполняя любое из двух из трех полей (вольт амперы ватты) для вычисления значения третьего поля. Этот инструмент может преобразовать любое значение, если вы вводите два других значения.


Пример преобразования

Пример 1: Чтобы преобразовать вольт в амперы для блока питания 24 В VA50, введите 24 В и 50 Вт.Щелкните Рассчитать.

Пример 2: Для преобразования ватт в амперы для блока питания 12 В постоянного тока 500 мА введите 12 В и 0,5 А. Щелкните Рассчитать.


Часто задаваемые вопросы (FAQ)

  1. Как перевести из вольт в ватты?
    Формула для преобразования напряжения в ватты: ватт = ампер x вольт.
  2. Как перевести ватты в усилители?
    Формула для преобразования ватт в амперы при фиксированном напряжении: ампер = ватт / вольт.
  3. Как преобразовать вольты в амперы?
    Формула для преобразования вольт в амперы при фиксированной мощности: ампер = ватт / вольт.
  4. Как перевести ампер в ватт?
    Формула для преобразования ампер в ватты при фиксированном напряжении: ватты = амперы x вольт.

Преобразование ватт в амперы (подробный пример)

Вот один из примеров того, как этот калькулятор обычно используется установщиками систем безопасности в качестве калькулятора усилителя. Установщику необходимо рассчитать расстояние, на которое можно проложить кабель питания от видеорегистратора видеонаблюдения до камеры видеонаблюдения, камеры видеонаблюдения HD и даже одной из новейших камер видеонаблюдения UHD 4K.Сначала им нужно рассчитать, сколько ампер выдает источник питания 24 В переменного тока. Обычно блоки питания 24 В переменного тока имеют номинальные значения ВА (амперы напряжения), а не амперы. Например, источник питания 24VAC50 — это 24 вольт, 50 вольт-ампер (ватты также известны как вольт-амперы). В приведенном выше калькуляторе установщик введет значение 24 в поле вольт и значение 50 в поле ватт.


Определения электрических терминов

Вот несколько полезных терминов, связанных с расчетом из вольт в ватты, из ваттов в амперы и из вольт в амперы.

  • Вольт — единица измерения электрической силы или давления, которая заставляет электрический ток течь в цепи. Один вольт — это давление, необходимое для протекания тока в один ампер против одного ома сопротивления. Концепция аналогична напору воды.
  • Ватт — единица измерения прилагаемой электрической мощности в цепи. Ватты также известны как вольт-амперы и представляют собой электрическую единицу измерения, обычно используемую в цепях переменного тока.Ватты рассчитываются путем умножения силы тока (измеренного в амперах) на электрическое давление (измеренное в вольтах).
  • Ампер (Ампер) — единица измерения силы тока в электрической цепи. Один ампер — это величина тока, когда один вольт электрического давления прикладывается к одному ому сопротивления. Амперы используются для измерения расхода электроэнергии аналогично тому, как GPM (галлоны в минуту) используются для измерения объема протекающей воды.
  • Ом — прибор для измерения сопротивления течению в электрическом токе.Электрические проводники (например, проволока) оказывают сопротивление потоку тока. Это похоже на то, как трубка или шланг оказывает сопротивление потоку воды. Один Ом — это величина сопротивления, которая ограничивает ток до одного ампера в цепи с одним вольт электрическим давлением.
  • Закон Ома — Закон Ома гласит, что когда электрический ток течет по проводнику (например, кабелю), сила тока (в амперах) равна движущей его электродвижущей силе (вольт), деленной на сопротивление проводника.

Онлайн-инструменты и калькуляторы

Пожалуйста, посетите нашу страницу Калькуляторы, конвертеры и инструменты для дополнительных онлайн-приложений.


Об этом инструменте

Этот онлайн-калькулятор был создан Майком Халдасом для профессионалов CCTV Camera Pros. CCTV Camera Pros — прямой поставщик оборудования для видеонаблюдения для дома, бизнеса и правительства. Если у вас есть какие-либо вопросы об этом инструменте или о чем-либо, связанном с системами камер видеонаблюдения, свяжитесь с Майком по адресу mike @ cctvcamerapros.нетто

Упрощенное преобразование ватт в амперы — простой способ преобразования ампер в ватты

Как преобразовать ватты в Амперы или амперы в ватты или из вольт в ватты

Основы

Вы не можете преобразовать ватты в амперы, поскольку ватты — это мощность, а амперы — кулоны в секунду (например, преобразование галлонов в мили). ОДНАКО, если у вас есть хотя бы два из следующих трех: ампер, вольт или ватт, то можно рассчитать недостающий.Поскольку ватты — это амперы, умноженные на вольт, между ними существует простая связь.

Однако в некоторых инженерных дисциплинирует более или менее фиксированное напряжение, например, в домашней электропроводке, автомобильная проводка или телефонная проводка. В этих ограниченных областях техники часто есть диаграммы, которые соотносят ампер с ваттами, и это вызывает некоторую путаницу. Эти диаграммы следует назвать «преобразование ампер в ватты при фиксированной напряжение 110 вольт »или« преобразование ватт в амперы на 13.8 вольт »и т. Д.

Некоторые лакомые кусочки информации, вам может понадобиться напомнить:
Чтобы преобразовать мА в А (миллиамперы в амперы) 1000 мА = 1 А
для преобразования мкА в А (из микроампер в амперы) 1000 000 мкА = 1A
Для преобразователя мкА в мА (микроампер в миллиампер) 1000 мкА = 1 мА
Для преобразования мВт в Вт (милливатт в ватт) 1000 мВт = 1 Вт
Для преобразования мкВт в Вт (микроватты в ватты) 1000000 мкВт = 1Вт

Следующие уравнения можно использовать для преобразования между амперами, вольтами и ваттами.
Преобразование Ватт в амперы

Преобразование ватт в амперы при фиксированной напряжение определяется уравнением Ампер = Ватт / Вольт

Например, 12 Вт / 12 В = 1 ампер
Преобразование ампер в ватты

Преобразование Амперы в Ватты при фиксированном напряжении регулируются уравнением Ватт = Амперы x Вольт

Например, 1 ампер * 110 вольт = 110 Вт

Преобразование ватт в вольты

Преобразование ватт в вольты при фиксированной силе тока регулируется. по уравнению Вольт = Ватт / Ампер

Например, 100 Вт / 10 Ампер = 10 вольт

Преобразование вольт в Вт

Преобразование вольт в ватты при фиксированной силе тока определяется уравнением Ватт = Ампер x Вольт

Например, 1.5 ампер * 12 вольт = 18 Вт

Преобразование Вольт в амперы при фиксированной мощности

Преобразование вольт в Ампер, если известна мощность, определяется уравнением Ампер = Ватт / Вольт

Например, 120 Вт / 110 В = 1,09 А

Преобразование ампер в вольт при фиксированной мощность

Преобразование ампер в вольты, если мощность знать регулируется уравнением Вольт = Ватт / Ампер

Например, 48 Вт / 12 ампер = 4 вольта

Преобразование вольт в амперы при фиксированном сопротивлении

Если вы знаете вольты и нагрузку сопротивления, амперы найдены по закону Ома: Ампер = Вольт / Сопротивление

Преобразование ампер в Вольт при фиксированном сопротивлении

Если вы знаете токи и Сопротивление Закон Ома принимает вид Вольт = Ампер * Сопротивление

Объяснение

Амперы — это сколько электронов проходит мимо определенная точка в секунду. 18 электронов в секунду. Вольт — это мера того, сколько силы каждый электрон находится ниже, что мы называем «потенциалом». Мощность (Вт) в вольтах раз усилители. Несколько электронов под большим потенциалом могут дать много энергии или много электронов с низким потенциалом может обеспечивать такую ​​же мощность. Подумайте о воде в шланге. Галлон в минуту (думаю, амперы) просто вытекает, если он ниже низкого давление (подумайте о низком напряжении). Но если ограничить конец шланга, позволяя при повышении давления вода может иметь больше мощности (например, ватт), даже если это по-прежнему всего один галлон в минуту.На самом деле власть может стать огромной, если давление нарастает до такой степени, что водяной нож может разрезать лист стекла. Точно так же, как увеличивается напряжение, небольшой ток может превратиться в много ватт.

Вот почему увеличение напряжения не обязательно увеличивать доступную мощность. Мощность — это амперы, умноженные на вольт, поэтому, если вы удваиваете вольт, вы уменьшаете вдвое усилители, если что-то в вашей цепи фактически создает энергию, такую ​​как батарея, солнечная панель или атомная электростанция.

Часто задаваемые вопросы о преобразователе напряжения — трансформаторы преобразователя напряжения

14) Преобразователи напряжения преобразуют цикл (Гц)?

Все преобразователи напряжения преобразуют только напряжение, а не цикл, однако большинство приборов и электроники будут правильно работать с ними. В Северной Америке электричество на 110–120 Вольт вырабатывается при частоте 60 Гц. (Циклы) Переменный ток. Большая часть зарубежной электроэнергии 220-240 Вольт вырабатывается при частоте 50 Гц.(Циклы) Переменный ток. Эта разница в циклах может привести к тому, что двигатель у вас будет 60 Гц. Североамериканский прибор работает немного медленнее при использовании на частоте 50 Гц. зарубежная электроэнергия. Эта разница в циклах также приведет к тому, что аналоговые часы и схемы синхронизации, которые используют переменный ток в качестве базы синхронизации, будут поддерживать неправильное время. На большую часть современного электронного оборудования, включая зарядные устройства, компьютеры, принтеры, стереосистемы, кассетные и CD-плееры, видеомагнитофоны / DVD-плееры и т. Д., Разница в циклах не повлияет.

15) Как выбрать трансформатор? На задней панели устройства вы должны найти этикетку с описанием его технических характеристик, включая мощность (Вт) или силу тока (A) устройства.

Пример. Если ваше устройство потребляет 80 Вт, вам потребуется трансформатор AC-100 (мощность 100 Вт) или выше.

Если вы хотите использовать 2 прибора на одном трансформаторе. Один из них потребляет 300 Вт, а другой 130 Вт, тогда вам понадобится AC-500 (мощность 500 Вт) или выше.

16) Как рассчитать мощность прибора? Если на этикетке не указана мощность, но вам известна сила тока (А), вы можете рассчитать ее по следующей формуле:
А (А) x напряжение (В) = Вт

Пример: 3 А x 220 В = 660 Вт
3 А x 110 В = 330 Вт

17) В чем разница между регуляторами напряжения серво и реле?

Регуляторы напряжения серво стабилизируют напряжение, регулируя трансформатор на желаемое выходное напряжение. Это обеспечивает высочайшую точность стабилизации напряжения. Тип реле — все электронное, поэтому точность меньше.

Расчет силы переменного тока в постоянный через инвертор

Итак, у вас есть электроприбор, который нужно запустить, но нет места для его подключения. Когда вам нужно запустить обычное бытовое электрическое устройство в районе, где нет постоянной электросети, этот калькулятор поможет вам выяснить аккумулятор какого размера и инвертор вам нужен!

Добро пожаловать в наш инструмент преобразования постоянного тока в переменный (с инвертором).Этот калькулятор разработан, чтобы помочь вам определить количество потребляемой мощности при преобразовании одной формы мощности в другую с помощью инвертора постоянного тока в переменный.

Просто введите цифры мощности в поля ниже, и мы сделаем расчеты за вас, включая типичную неэффективность и все прочие технические мелочи, которые вы, возможно, не хотите вычислять. Если вы не уверены в своих числах, при вводе чисел взгляните на иллюстрации с пошаговыми инструкциями ниже.

Если вы хотите рассчитать аккумуляторную батарею инвертора, вам сначала нужно определить силу постоянного тока, которую вы будете выдавать из аккумуляторной батареи через инвертор.Этот калькулятор может помочь вам определить потребляемую мощность постоянного тока через инвертор, чтобы вы могли точно рассчитать размер аккумуляторной батареи инвертора.

Введите характеристики устройства переменного тока

Найдите аккумулятор Выберите свой инвертор

Прохождение


Пример
Напряжение переменного тока — Многие приложения имеют диапазон входного переменного напряжения. В США оно может составлять от 100 до 125 В переменного тока. В Европе обычно 200-240.В этом примере мы будем использовать стандарт США 120 В переменного тока.

Пример
AC Amperage — Входная сила тока — это сила тока, потребляемого приложением от сети переменного тока. Это число обычно измеряется в амперах. Если ток измеряется в миллиамперах (мАч), вы можете преобразовать его в амперы, разделив число на 1000. Например, в нашем примере приложение потребляет 300 миллиампер, что равно 0,3 ампера.

Пример
Ваттность — мощность — это общая мощность, потребляемая приложением.Он рассчитывается путем умножения напряжения на силу тока. Следовательно, 120 В переменного тока x 0,3 А равняются 36 Вт.

Пример
Напряжение постоянного тока — выходное напряжение — это номинальное значение вашей аккумуляторной системы, обычно от одной 12-вольтной батареи. Мы используем 12,5 В для аккумуляторных систем на 12 В.

Пример
DC Amperage — Теперь мы знаем, что наше приложение потребляет 36 Вт общей мощности. Если вы возьмете эту мощность от источника постоянного тока 12,5 В, то общая требуемая сила тока увеличится до 3.31 ампер или 3310 миллиампер. Поскольку у аккумуляторов ограниченная емкость или ампер-часы, важно, чтобы размер аккумулятора был достаточно большим, чтобы справиться с потребностью в силе тока для вашего приложения.

Найдите аккумулятор Выберите свой инвертор

Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.

Написано 29 октября 2019 г. в 10:32

Калькуляторы и формулы закона Ома

Прежде чем нажимать на каждом калькуляторе закона Ома для ответа, введите числа в уравнение, которое вы хотите использовать. для расчета тока, мощности, сопротивления или напряжения.* Обновлено 8 января 2011 г., чтобы разрешить / заменить запятые точками для тех, которые используют запятые в качестве десятичных разделителей.

Калькуляторы закона Ома

• Калькуляторы тока (I)
• Калькуляторы мощности (P)
• Калькуляторы сопротивления (R)
• Калькуляторы напряжения (E)

Ваш блокировщик рекламы препятствует правильному отображению этой страницы.

Калькуляторы тока

Рассчитать для тока (I)
I = P / E
I = квадратный корень (P / R)

Калькуляторы мощности

Расчет мощности (P)
P = I 2 x R

Калькуляторы сопротивления

Расчет сопротивления (R)
R = P / I 2

Калькуляторы напряжения

Рассчитать напряжение (E)
E = I x R
E = квадратный корень (P x R)


Следуйте за 12вольт. com
Суббота, 6 февраля 2021 г. • Авторские права © 1999-2021 the12volt.com, Все права защищены. • Политика конфиденциальности и использование файлов cookie

Заявление об отказе от ответственности: * Вся информация на этом сайте (the12volt.com) предоставляется «как есть», без каких-либо гарантий, явных или подразумеваемых, включая, помимо прочего, пригодность для конкретного использования. Любой пользователь принимает на себя весь риск в отношении точности и использования этой информации. Пожалуйста проверьте все цвета проводов и схемы перед применением любой информации.


.

Добавить комментарий

Ваш адрес email не будет опубликован.