Как не надо перепаивать конденсаторы
Даа….даете вы ребята, собрались обсуждать, что лучше выполнить работу кое-как, чем вобще ее не делать. А «кое-как» на самолете никто из вас не пробовал летать??? В качестве пилота??Уважаемый Хе-Хемуль — «не на частоте же ядра, вроде как сотни килогерц (не мега-). Так что из ВЧ тут в основном гармоники, пропадут — и фиг с ними… плюс — вспомните, сколь длинны и извилисты дорожки всяческих шин данных и на каких частотах они работают. И таки работают же…» — это вы шутите так наверное…. гармоники пропадут только если керамика установлена везде где положено.
Семен Сатановский
По поводу 100Вт паяльника — полностью поддерживаю — сам писал об этом в технологии пайки еще два года назад, правда сам использую для этих целей 80Вт с «правильно» заточенным жалом. Главное, если клиент на тебя «давит», ты не должен это «давление» паяльником на плату передавать, если работать без нажима и в одно касание, то даже лак не нарушается — пайки как заводские и иногда даже лучше чем заводские . Флюс — паста, бездымная, с нейтральным Ph и качественный припой (например Radiel Fondam) — вот орудие настоящего ремонтника. А паяльники — это кто к чему привык. у меня например их уже восемь, кроме паяльника-отсоса, и фена со станцией.
raccord — если конденсаторы после замены ощутимо греются — значит это либо «не конденсаторы», либо не все в схеме отремонтировано. И еще если кто-то что либо делает как попало, то это рекламировать и шум вокруг поднимать не стоит. НЕ кино ведь. Такую работу увидишь, потом кошмары мучить будут.
Да и просто для всех — популяризация подобных «ремонтов» приводит к ощутимому снижению популярности таких действий как ремонт вообще.
Пример:
Принес один клиент к нам в магазин системный блок уже полураскрученый — смотрю — на плате один конденсатор вздутый — говорю — «Тут надо конденсаторы перепаять» — в ответ — нет мне лучше плату поменяйте. Хозяин-барин, поменяли плату на более новую (Jetway на KT333) — с поддержкой DDR, плату (Aopen AK73AV) — мне в ремонт — смотрю, «умники» уже паяли, дорожки побиты, конденсаторы в отверстиях болтаются, канифоли черной типа сургуча — вагон. Конденсаторы стоят местами на 25В, местами вообще не заменен явный хлам, который не сегодня-завтра вздуется… После замены всех конденсаторов на «правильные» и восстановления дорожек плата прекрасно себя чувствует и продана в составе другого компьютера другим клиентам.
Поломанная плата была выменяна на новый кабель Udma-100.
Вердикт — профессионалы решают любые задачи и зарабатывают, а дилетанты уйдут с рынка.
Опыт за деньги не купишь…
Меняем конденсаторы на материнской плате » PCmodern.ru
Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.
Итак, для пайки нам понадобятся следующие инструменты:
- ремонтируемая деталь (например, материнка),
- пальник или термофен,
- припой,
- флюс,
- оплётка,
- плоскогубцы,
- конденсатор,
- обезжириватель,
- кисточка.
Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.
Как подобрать нужный конденсатор
На каждом конденсаторе имеется маркировка. Там указано 4 параметра:- напряжение в вольтах,
- емкость в микрофарадах,
- рабочая температура,
- маркировка полярности.
Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой.
На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.
Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.

Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т.е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.

Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации. Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.

Также мы должны найти этот конденсатор на обратной стороне платы.

Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.
Отпаиваем старый конденсатор
Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.
На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.

Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.

И прогреваем место пайки на расстоянии 4-5 см.

Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.

Должно получиться вот так.
Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.

На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.

Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.

Можно поставить материнку вот так.
После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.

Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.

Ставим новый конденсатор
И вот финишная прямая.Вставляем новый конденсатор в выпаянное нами отверстие.
Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).

С обратной стороны у нас должно получиться вот так.

Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.
По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.

Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.
Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!

Те самые ножки.

Лицевая сторона. Все готово!
Источник: httрs://tehnichка.рro/change-capacitor-on-motherboard/
Конденсаторы Материнка Ремонт
Монтаж и пайка резисторов и конденсаторов
Ленточные или проволочные выводы постоянных резисторов нельзя изгибать ближе, чем в 3-5 мм от корпуса. Изгибы должны быть плавными и с закруглениями, иначе вывод может надломиться. Перегрев резисторов может привести к изменению их сопротивления. Чтобы избежать этого, гибкие выводы постоянных резисторов паяют не менее 5 мм от их корпуса. При этом вывод у самого корпуса плотно захватывают плоскогубцами, отводящими тепло и уменьшающими нагрев резисторов во время пайки. Процесс припаивания гибкого вывода постоянного резистора на печатную плату, а также припаивание монтажного провода к лепестку переменного резистора должен занимать не более 10 секунд. Если пайка не удалась, её можно повторить не ранее через 2-3 минуты. При навесном монтаже резисторы необходимо перед пайкой механически закрепить.[12]
Перед монтажом резисторов необходимо произвести входной контроль, сначала визуальный, для чего необходимо проверить целостность корпуса и покрытия резистора, наличие и крепление выводов, а затем провести контроль его электрических параметров. Монтаж необходимо производить таким образом, чтобы маркировка резистора хорошо читалась.
Установка всех элементов электрорадиоаппаратуры производится согласно отраслевому стандарту ОСТ4.010.030-81 «Варианты установки электрорадиоэлементов на печатные платы».
Различные способы монтажа резисторов изображены на рисунках 7.1-7.4:
Рисунок 7.1 – Вариант установки резистора Iа
Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.
Рисунок 7.2 – Вариант установки резистора Iб
Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.
Рисунок 7.3 – Вариант установки резистора IIa
Применяется на платах с односторонним и двухсторонним расположением печатных проводников без электроизоляционной защиты под корпусами ЭРЭ.
Рис.7.4– Вариант установки резистора III
Применяется на платах с односторонним и двухсторонним расположением печатных проводников.
Перед пайкой выводы конденсаторов должны быть облужены припоем. Пайку выводов конденсаторов следует производить с флюсом, при этом не должно происходить опасного перегрева конденсатора. При монтаже неполярных конденсаторов с оксидными диэлектриками необходимо обеспечить изоляцию их корпусов от других элементов, шасси и друг от друга. При плотном монтаже конденсаторов для обеспечения изоляции их корпусов допускается надевать изолирующие трубки.
Различные варианты установки конденсаторов согласно отраслевому стандарту ОСТ 4.010.030-81 указаны на рисунках 7.5-7.10.
Рисунок 7.5 – Вариант установки конденсаторов Iа
Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.
Рисунок 7.6 – Вариант установки конденсаторов Iб
Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.
Рисунок 7.7 – Вариант установки конденсаторов IIa
Применяется на платах с односторонним и двухсторонним расположением печатных проводников без электроизоляционной защиты под токопроводящими корпусами ЭРЭ.
Рисунок 7.8 – Вариант установки элементов IIб
Применяется на платах с односторонним и двухсторонним расположением печатных проводников без электроизоляционной защиты под токопроводящими корпусами ЭРЭ.
Рисунок 7.9 – Вариант установки элементов IIв
Применяется на платах с односторонним и двухсторонним расположением печатных проводников без электроизоляционной защиты под токопроводящими корпусами ЭРЭ.
Рисунок 7.10– Вариант установки конденсаторов ХIб
Применяется на платах с односторонним и двухсторонним расположением печатных проводников с использованием электроизоляционной прокладки.
Элементы, установленные по данному варианту, демонтажу не подлежат.
4 Техническое задание
4.1 Выбрать радиокомпоненты согласно варианту задания.
4.2 Произвести формовку выводов радиокомпонентов.
4.3 Произвести монтаж радиокомпонентов на печатную плату. Способы монтажа выбрать самостоятельно (смотри рисунки 7.1 – 7.10).
4.4 Сделать вывод о проделанной работе.
5 Контрольные вопросы
5.1 Области применения резисторов.
5.2 Основные параметры резисторов?
5.3 Достоинства и недостатки электролитических конденсаторов
5.4 Допускается ли изгиб выводов конденсаторов и резисторов вблизи корпуса прибора?
Практическая работа №8
Выполнение подготовки полупроводниковых приборов к монтажу
Цель работы
Закрепить полученные знания о маркировке полупроводниковых приборов и о входном контроле полупроводниковых приборов. Освоить особенности монтажа и демонтажа полупроводниковых приборов (диодов, транзисторов).
Инструменты и материалы
2.1 Мультиметр.
2.2 Набор диодов и транзисторов.
2.3 Печатная плата.
2.4 Паяльник 36В.
2.5 Набор инструментов (бокорезы, плоскогубцы с насечкой, плоскогубцы «утконосы»).
Теоретические сведения
К монтажу полупроводниковых приборов предъявляют самые жесткие требования, т.к. они чувствительны к статическому напряжению и изменению температуры. Полупроводниковые приборы имеют в большинстве случаев гибкие выводы. Поэтому их включают в схему путем пайки. Пайка выводов производится на расстоянии не менее 10 мм. от корпуса полупроводникового прибора (от вершины изолятора) с помощью легкоплавкого припоя. Изгиб выводов допускается на расстоянии не менее 3–5 мм от корпуса. Процесс пайки должен быть кратковременным (не более 3 – 5 с.) Мощность паяльника не должна превышать 50 Вт. Припаиваемый вывод плотно зажимают плоскогубцами. Плоскогубцы в данном случае играют роль теплоотвода. Необходимо следить за тем, чтобы нагретый паяльник даже на короткое время не прикасался к корпусу полупроводникового прибора, а также недопустимо попадание на корпус расплавленных капель припоя.
Во избежание перегрева полупроводниковых приборов не следует располагать их вблизи силовых трансформаторов, электронных ламп и других излучающих тепло деталей аппаратуры. Желательно снижать рабочую температуру прибора. Если она будет на 10ºС ниже предельной, то число отказов снижается вдвое. Крепление полупроводниковых приборов на выводах не рекомендуется, особенно если аппаратура может находиться в условиях вибрации. Рабочие напряжения, токи и мощности должны быть ниже предельных величин.
Срок службы диодов увеличивается, если их эксплуатировать при обратных напряжениях не свыше 80% предельно допустимых.
Нельзя допускать короткого замыкания выпрямителя на полупроводниковых диодах (испытание «на искру»). Это может привести к повреждению диодов. Полупроводниковый диод может быть поврежден, если на него подать напряжение в пропускном направлении (даже от одного аккумуляторного элемента) без последовательно включенного ограничительного сопротивления.
Транзисторы не должны даже короткое время работать с отключенной базой. При включении источников питания вывод базы транзистора должен присоединяться первым (при отключении – последним).
Нельзя использовать транзисторы в режиме, когда одновременно достигаются два предельных параметра (например, предельно допустимое напряжение коллектора иодновременно предельная допустимая рассеиваемая мощность).
Срок службы транзистора и надежность его работы увеличиваются, если при его эксплуатации напряжение коллектора не превышает 80% предельно допустимой величины.
При работе транзистора в условиях повышенных температур нужно обязательно снижать рассеиваемую мощность и напряжение на коллекторе.
Необходимо следить за тем, чтобы подаваемое на транзистор питающее напряжение было правильной полярности (например, нельзя включать отрицательный полюс напряжения на коллектор транзистора n-p-n типа, или положительный на коллектор транзистора p-n-р типа). Чтобы по указанной причине транзистор не пришел в негодность при установке его в схему, нужно твердо знать, какого он типа: p-n-р. или n-p-n.
Если необходимо удалить транзистор из схемы (или включить его в схему), нужно предварительно выключить питание схемы.
Различные варианты установки транзисторов согласно отраслевому стандарту ОСТ 4.010.030-81 указаны на рисунках 8.1- 8.4
Рисунок 8.1 – Вариант установки транзисторов Va.
Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.
Рисунок 8.2 – Вариант установки транзисторов Vб
Применяется на платах с односторонним и двухсторонним расположением печатных проводников, с применением электроизоляционных подставок, стоек, втулок и т.п.
Элементы, установленные по данному варианту, демонтажу не подлежат.
Рисунок 8.3 – Вариант установки элементов Vв
Применяется на платах с односторонним и двухсторонним расположением печатных проводников, с применением механических держателей.
Рисунок 8.4 – Вариант установки элементов Vг
Применяется на платах с односторонним и двухсторонним расположением печатных проводников, с применением электроизоляционных подставок.
4 Техническое задание
4.1 Получить задание у мастера.
4.2 Произвести входной контроль диодов и транзисторов. Данные занести в отчет.
4.3 Произвести монтаж диодов и транзисторов на печатную плату. Способы монтажа выбрать самостоятельно.
4.4 Сделать вывод о проделанной работе.
5 Контрольные вопросы
5.1 Классификация полупроводниковых диодов.
5.2 Классификация полупроводниковых транзисторов.
5.3 Опишите маркировку и параметры полупроводниковых диодов.
5.4 Опишите маркировку и параметры полупроводниковых транзисторов.
5.5 Какие требования предъявляются к монтажу полупроводниковых приборов?
Практическая работа №9
Выполнение подготовки интегральных микросхем к монтажу
Цель работы
Закрепить полученные знания о маркировке интегральных микросхем и о монтаже микросхем на печатные платы. Освоить особенности монтажа интегральных микросхем.
Инструменты и материалы
2.1 Набор микросхем.
2.2 Паяльник 36В.
2.3 Набор инструментов (бокорезы, плоскогубцы с насечкой, плоскогубцы «утконосы»).
Теоретические сведения
При подготовке микросхем к монтажу на печатные платы (операции рихтовки, формовки и обрезки выводов) выводы подвергаются растяжению, изгибу и сжатию. Поэтому при выполнении операций по формовке необходимо следить, чтобы растягивающее усилие было минимальным. В зависимости от сечения выводов микросхем оно не должно превышать определенных значений (например, для сечения выводов от 0,1 до 2 мм2 — не более 0,245…19,6 Н).
Формовка выводов прямоугольного поперечного сечения должна производиться с радиусом изгиба не менее удвоенной толщины вывода, а выводов круглого сечения — с радиусом изгиба не менее двух диаметров вывода (если в ТУ не указывается конкретное значение). Участок вывода на расстоянии 1 мм от тела корпуса не должен подвергаться изгибающим и крутящим деформациям. Обрезка незадействованных выводов микросхем допускается на расстоянии 1 мм от тела корпуса.
В процессе операций формовки и обрезки не допускаются сколы и насечки стекла и керамики в местах заделки выводов в тело корпуса и деформация корпуса.
В процессе производства для формовки и подрезки применяют шаблоны, а так же специальные полуавтоматические и автоматические устройства.
В радиолюбительской практике формовка выводов может проводиться вручную с помощью пинцета с соблюдением приведенных мер предосторожности, предотвращающих нарушение герметичности корпуса микросхемы и его деформацию.
Основным способом соединения микросхем с печатными платами является пайка выводов, обеспечивающая достаточно надежное механическое крепление и электрическое соединение выводов микросхем с проводниками платы.
Для получения качественных паяных соединений производят лужение выводов корпуса микросхемы припоями и флюсами тех же марок, что и при пайке. При замене микросхем в процессе настройки и эксплуатации РЭА производят пайку различными паяльниками с предельной температурой припоя 250° С, предельным временем пайки не более 2 с и минимальным расстоянием от тела корпуса до границы припоя по длине вывода 1,3 мм.
Качество операции лужения должно определяться следующими признаками:
минимальная длина участка лужения по длине вывода от его торца должна быть не менее 0,6 мм, причем допускается наличие «сосулек» на концах выводов микросхем;
равномерное покрытие припоев выводов;
отсутствие перемычек между выводами.
При лужении нельзя касаться припоем гермовводов корпуса. Расплавленный припой не должен попадать на стеклянные и керамические части корпуса.
Необходимо поддерживать и периодически контролировать (через 1,2 ч) температуру жала паяльника с погрешностью не хуже ± 5° С. Кроме того, должен быть обеспечен контроль времени контактирования выводов микросхем с жалом паяльника, а также контроль расстояния от тела корпуса до границы припоя по длине выводов. Жало паяльника должно быть заземлено (переходное сопротивление заземления не более 5 Ом).
Рекомендуются следующие режимы пайки выводов микросхем для различных типов корпусов:
максимальная температура жала паяльника для микросхем с планарными выводам 265° С, со штырьковыми выводами 280° С;
максимальное время касания каждого вывода жалом паяльника 3 с; минимальное время между пайками соседних выводов 3 с;
минимальное расстояние от тела корпуса до границы припоя по длине вывода 1 мм;
минимальное время между повторными пайками одних и тех же выводов 5 мин.
4 Техническое задание
4.1 Изучить маркировку микросхем.
4.2 Произвести подготовку микросхем к монтаж плату, согласно задания мастера.
4.3 Сделать вывод о проделанной работе.
5 Контрольные вопросы
5.1 Перечислить этапы подготовки микросхемы к монтажу
5.2 Какие типы корпусов отечественных микросхем вы знаете?
5.3 Как определить первый вывод микросхемы?
Практическая работа №10
Вздулись конденсаторы на материнской плате? Инструкция по замене
В этой статье рассмотрим процесс замены вышедших из строя конденсаторов на материнской плате.
Исходя из практики, конденсаторы на плате вздуваются и перестают работать на 3-5 год использования. Такое поведение вполне нормальное, и разрешить эту проблему можно, просто заменив вздутые на аналогичные, но новые.
Как можно определить проблему, и какой дальнейший порядок действий? Давайте разбираться.
Как определить, что проблема именно в конденсаторах
- Компьютер запускается, но потом самостоятельно выключается. С третьей или четвертой попытки аппарат заводится и нормально работает. Но стоит выключить его и оставить на некоторое время, как проблема возвращается. Это — верный симптом того, что конденсаторы либо пересохли, либо вздулись.
- В процессе работы система постоянно крашится с синим экраном.
- Ну и самый надежный способ — просто взглянуть на плату. Если конденсатор потерял строго цилиндрическую форму – он нуждается в замене.
При осмотре материнской платы важно быть очень внимательным. Выявив места места дислокации поврежденных конденсаторов, необходимо подобрать подходящий для замены. Их можно выпаять из другой материнской платы, если есть в запасе. Но лучше купить новые, так будет надежнее.
Важно помнить, что вольтаж новых конденсаторов может быть больше штатного, но ни в коем случае не меньше. Например, если у вас конденсатор на 10 В 3300 мФ, то на замену можно взять мощностью 16 В. В идаеле — использовать с номиналом емкости, аналогичным ранее установленному. Это позволит продлить срок службы как конденсатора, так и низковольтного стабилизатора ядра процессора.
Как выпаять конденсаторы из материнской платы
Позаботьтесь о том, чтобы у вас были:
Желательно иметь паяльник именно в 40 Вт, так как в противном случае есть риск перегрева мест пайки и необратимого повреждения контактных площадок или токопроводящих дорожек платы.
Для облегчения процесса извлечения нерабочего конденсатора с материнской платы лучше всего использовать оловоотсос.
Рекомендуем использовать паяльник с тонким жалом.
После удаления вздувшегося конденсатора необходимо очистить из отверстий лишний припой. Если работа выполняется без использования оловоотсоса, то отверстия можно прочистить при помощи острого конца деревянной палочки. Для этого вставляем в отверстие острый конец деревянной заготовки, прогреваем паяльником это место с обратной стороны и аккуратно выдавливаем остатки припоя.
Выполняя эту работу, категорически запрещается использовать металлические предметы: скрепки, иголки, проволоку. Контактная схема материнской платы многослойна. Прочищая отверстия металлическими предметами высока вероятность повреждения контактных перемычек. Если это произойдет, то восстановить их будет возможно, но материнская плата не будет работать корректно.
Когда отверстия в материнской плате очищены, можно приступать непосредственно к припаиванию нового. Помните, что критически важным является соблюдение полярности 🙂
Как правило, на материнских платах обозначается полярность. На устанавливаемом конденсаторе также имеется маркировка полярности, обозначенная на корпусе.
По завершению процедуры протираем плату спиртом (или бензином «калоша») для удаления остатков флюса. Устанавливаем материнскую плату и включаем компьютер или ноутбук.
Если кондеры подобраны правильно и не было допущено ошибок при пайке то восстановленная материнская плата прослужит вам еще годы.
Замена конденсаторов на материнской плате: основы пайки
Всех приветствую! Сегодня я покажу вам основы замены конденсаторов на материнской плате. Будет производиться замена вышедшего из строя конденсатора.
Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.
Итак, для пайки нам понадобятся следующие инструменты:
- ремонтируемая деталь (например, материнка),
- пальник или термофен,
- припой,
- флюс,
- оплётка,
- плоскогубцы,
- конденсатор,
- обезжириватель,
- кисточка.


Полный набор
Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.
На каждом конденсаторе имеется маркировка. Там указано 4 параметра:
- напряжение в вольтах,
- емкость в микрофарадах,
- рабочая температура,
- маркировка полярности.
Конденсаторы могут отличаться в размерах, но это практически ни на что не влияет. Можно использовать конденсаторы с повышенным объемом микрофарад (но конденсаторы с пониженной электроемкостью ставить не рекомендуется).


Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой.
На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.
Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.


Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т.е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.


Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации 😀 Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.


Также мы должны найти этот конденсатор на обратной стороне платы.


Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.
Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.
На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.


Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.


И прогреваем место пайки на расстоянии 4-5 см.


Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.


Должно получиться вот так.


Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.


На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.


Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.


Можно поставить материнку вот так
После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.

Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.

И вот финишная прямая.
Вставляем новый конденсатор в выпаянное нами отверстие.
Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).
С обратной стороны у нас должно получиться вот так.


Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.
По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.


Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.
Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!
Финальный результат выглядит так.


Те самые ножки


Лицевая сторона. Все готово!
Всем пока!
Post Views: 283
Как паять паяльником — примеры пайки на определенных деталях

Как паять паяльником — примеры пайки на определенных деталях.
Паять паяльником это не столь сложно, как это кажется с первого взгляда. Пользоваться паяльником начали еще в Египте более пяти тысяч лет назад. И в технологии пайки от той поры практически ничего не изменилось.
Технология пайки паяльником на самом деле не сложная. Суть ее в том, что при использовании расплавленного металла, имеющего низкую температуру плавления, соединяются любые и в любом сочетании металлы, имеющие большую температуру плавления.
Перед тем, как приступить к пайке, нужно изначально подготовить поверхность тех деталей, что будут паяться. Нужно очистить поверхность от следов грязи, если таковы имеются и удалить оксидную пленку.
Оксидная пленка – это пленка, что образовывается на поверхности металла за счет определенных условий воздуха или не очень сильно окисленной среде. Толщина такой пленки может быть разной, поэтому от этого будет зависеть, при помощи чего ее можно будет удалить – напильника или наждачной бумаги. Если площадь пайки не большая или это будут паяться круглые провода, то эту площадь можно зачистить лезвием обычного ножа. После очистки поверхность должна быть блестящей без всяких пятен, окислов и неровностей. Если на поверхности имеются жирные пятна, то их убирают при помощи ацетона или растворителя уайт-спирита (очищенного бензина).
Когда поверхность полностью подготовлена, то ее нужно залудить, то есть покрыть слоем припоя. Это делается следующим образом: вам нужно нанести на поверхность, что будет паяться, флюс и приложить жало паяльника с припоем.
Что бы жало паяльника хорошо передавало тепло к детали, его необходимо прикладывать таким образом к детали, что бы площадь соприкосновения жала паяльника и детали была максимальной. Для этого можно использовать паяльник с жалом, имеющим срез.
Главное в процессе пайки это прогреть те поверхности, что спаиваются до той температуры, которую имеет расплавленный припой. Если поверхности не были прогреты до нужной температуры, то пайка будет матовой и иметь низкую механическую прочность. Если в процессе пайки поверхности перегреть, то припой растечется, и вы вовсе не сможете выполнить процесс пайки.
Когда все описанные выше пункты выполнены, прикладываем детали друг к другу, и выполняем пайку электрическим паяльником.
Сколько будет длиться процесс пайки зависит от того какая толщина и вес детали, но приблизительно это от одной до десяти секунд. Большая часть радиоэлектронных компонентов паяются не дольше чем две секунды. Паяльник отводится в сторону, как только припой растекся по поверхности. Смещать детали нельзя до той поры, пока припой полностью не затвердеет. Ведь если сместить детали, то будет низким качество механической прочности и герметичности пайки. Если вы случайно сместили детали, все может быть, то нужно выполнить процесс пайки снова.
Когда жало паяльника горячее, то припой на нем, при ожидании, покрывается окислами и остатками сгоревшего флюса.
Поэтому перед пайкой жало паяльника нужно обязательно очищать. Для этого можно взять кусочек увлажненного поролона (плотность его может быть разной) и быстро жалом провести по этому поролону, тогда все остатки из жала останутся на поролоне.
Перед тем, как начать пайку нужно убедится в том, что поверхности или провода, что будут паяться уже облужены, это обязательно. Ведь пайка уже облуженых поверхностей и проводов будет действительно качественной, да и вы, выполняя пайку, будете получать удовольствие от работы.
Если Вы никогда раньше не работали с паяльником, то лучше всего перед тем, как выполнить ответственное задание по пайке паяльником необходимо потренироваться паять. Начните с самого простого, попробуйте паять одножильный медный провод, что используется для электропроводки. Первое, что стоит сделать, это снять с проводника изоляцию.
Как правильно залудить провода из меди.
Сняв изоляцию с провода, оцените, в каком состоянии находится проводник. Если провода новые, то их проводник не имеет оксидной пленки и такие провода можно паять, не выполняя зачистку. Возьмите небольшое количество припоя на жало паяльника, а потом коснитесь им канифоли и проведите жалом паяльника по поверхности проводника.
Если проводник имеет чистую поверхность, то по ней припой растечется тонким слоем. При нехватке припоя, берется еще одна порция с обязательным касанием канифоли. И так необходимо делать до той поры пока проводник полностью не будет залужен. Что бы работать с проводником было максимально комфортно, положите его на деревянную площадку, такая используется в качестве подставки для паяльника. Всегда в том месте, где выполняется лужение, скапливается определенное количество канифоли, что ускоряет процесс лужения, ведь припоя на жало можно взять больше, и каждый раз не касаться канифоли.
Бывают и такие случаи, что вроде и проводник без оксидной пленки, а лудится, он не хочет. В таком случае необходимо использовать паяльную кислоту. Но если у Вас под рукой, ее, не оказалось можно обойтись и таблеткой аспирина. Разогреть пару секунд, а потом лудить на площадке. Вот увидите, будет лудиться без всяких проблем. Если вы используете метод с аспирином для медного провода, на котором будет оксидная пленка, он сразу будет покрываться тонким слоем припоя. (Но этот метод желательно использовать в крайних случаях, поскольку запах от процесса будет не самый лучший)
Если у Вас получилось залудить проводник, то вас можно поздравить с первыми успехами в работе с паяльником.
Если первый раз работает с паяльником, то будьте готовы к тому, что хорошая пайка у вас не получится. На это есть пару причин. Очень сильно нагрет паяльник для данного вида припоя. Это определить можно по жалу паяльника, ведь на припое, что есть на нем, образовывается темная оксидная пленка. Если сильно нагреть жало паяльника, то рабочая часть жала будет покрыта черным окислом, из-за чего припой на жале держаться не будет. Жало паяльника не разогрето до необходимой температуры. В таком случае внешне пайка будет матовой и рыхлой. Чтобы правильно подобрать температуру можно использовать регулятор температуры. Еще может быть недостаточно прогрет провод во время обслуживания. Такое часто случается, если на рабочей части жала паяльника имеется небольшое количество припоя. Тогда площадь соприкосновения маленькая, и тепло не так как нужно передается на проводник. Тренироваться паять нужно до той поры, пока не получится правильно залудить провод.
Часто бывает такое, что по окончанию лужения паяльником проводов, на них можно увидеть остатки припоя, что похожи на наплывы. Что бы от них избавиться расположите провод вертикально, концом вниз, а паяльник наоборот – вертикально, чтобы его жало «смотрело» вверх, а потом аккуратно проведите жалом по проводам. Так, как припой тяжелый, то все образовавшиеся наплывы перейдут на жало паяльника.
Но, прежде, чем это сделать, удалите весь припой, что имеется на рабочей части жала паяльника. А для этого просто легонько ударьте жалом о подставочку. Аналогичным способом уберите лишний припой с мест паек на печатных платах.
Продолжить свою тренировку стоит на медном многожильном проводе. Его тоже нужно научиться лудить пальником. Здесь же все не будет так просто, как в предыдущем варианте, а особенно если этот провод еще нужно перед лужением очистить. Очистить провод, от оксидной пленки используя для этого механический способ, будет немного затруднительно. Для этого понадобится разделить проводники и выполнить зачистку каждого по отдельности. У меня был случай, когда сняв изоляцию с провода, используя для этого термический способ, то увидел следующее: верхний проводник был весь покрыт оксидной пленкой, а нижний проводник был расплетен. Именно такой случай является одним из самых сложных для лужения. Но, такие провода лудятся не хуже, чем простые одножильные.
Паяем правильно многожильные провода.
Для начала, проводник нужно обработать паяльной кислотой, и начинать прогревать их паяльником, продвигая их так, чтобы все проводники этого многожильного провода были смочены кислотой.
Потом нужно выполнить лужения на площадке с использование канифоли, все выполнять аналогично тому, что описано выше. Разница только в том, что вам необходимо будет прижимать провод к площадке и в процессе лужения поворачивать его в одну сторону. Это требуется чтобы проводники этого провода сплелись между собой.
Имея уже готовый залуженный провод такого типа, вы сможете, используя для этого круглогубцы, сделать кольцо. А это кольцо использовать потом, к примеру, в качестве резьбового присоединения, которое в дальнейшем можно будет использовать, например для контактов розетки или выключателей.
А еще его используют для патронов в люстрах, или же припаять такое кольцо к латунным контактам или печатным платам. Не поленитесь, в качестве тренировки попробуйте выполнить такого типа пайку паяльником.
Единственное, что нужно стараться не сместить детали, во время их соединения методом пайки, пока не застынет припой.
Если говорить о пайке паяльником любых других деталей, то она не сильно отличается от пайки проводов паяльником. И если вы попробовали лудить и паять провода, и у вас все получилось хорошо, то вы сможете выполнить любую пайку паяльником.
Учимся лудить тонкие медные провода, что покрыты лаком.
Если нужно залудить паяльником тонкий проводник, у которого диаметр жилы меньше 0,2 мм, что изолированный эмалью, нужно использовать хлорвинил. Данный вид пластика используется для изготовления изоляции и больших изолирующих трубок. Для этого необходимо положить провод на изоляцию и слегка прижать его жалом паяльника, после чего протаскивать провод, при этом постоянно поворачивая его. Вследствие нагрева хлорвинила выделяется хлор, именно он позволяет разрушить лак и без проблем залудить провод.
Такого рода технология будет просто незаменимой, если вам нужно паять паяльником провод, типа литцендрат. Это провод, что состоит из большого количества тоненьких проволок, что имеют эмалированное покрытие и представляют собой один проводник.
Тонкие провода покрыты эмалью, можно еще лудить применяя таблетки аспирина. Такой метод лужения паяльником я описывал выше. Необходимо взять провод, который вы будете лудить и поместите на подготовленную заранее таблетку аспирина, а потом протягивать его между аспирином и жалом паяльника. Но, стоит помнить, что на рабочей части жала, должно быть, необходимое количество припоя и канифоли.
Как паять паяльником радиодетали.
Часто технология пайки требуется, когда выполняется ремонт электрических приборов. Ведь там есть печатные платы, состоящие из радиоэл
ементов и тому подобное. И зачастую из этих плат нужно их выпаивать или запаивать назад. Это нельзя назвать сложной работой, но все же необходимо будет соблюдать определенную технологию пайки.
Пайка паяльником резисторов, диодов, конденсаторов.
Выпаять из платы необходимый вам радиоэлемент, а он может быть с двумя выводами, не составит труда и не требует высшего образования. В качестве таких элементов выступают практически всегда резисторы или диоды. Для качественного выпаивания с платы любого из таких элементов, нужно нагреть паяльником то, место где он запаян. Под высокой температурой припой расплавиться и вы легко достанете нужный вам элемент. Чтобы вынуть вывод резистора, можно использовать пинцет, но нужно делать все, не спеша, чтобы не соскакивал пинцет, а такое часто бывает, особенно в тех случаях, когда радиоэлемент имеет загнутый вывод и он находится со стороны пайки.
Что бы работать с пинцетом было удобнее, вы можете сточить его губки, но без фанатизма. Тогда при захвате вывода пинцет не будет соскальзывать.
Работая с печатной платой, особенно если речь идет о демонтаже радиоэлементов, очень хочется иметь еще одну руку, ведь при данной работе нужно работать паяльником, пинцетом и еще держать саму плату.
В качестве третей руки вам послужат настольные тиски. Используя данный инструмент, вы сможете зажать плату, и устано
Конденсаторы— learn.sparkfun.com
Добавлено в избранное Любимый 71Введение
Конденсатор — это двухконтактный электрический компонент. Наряду с резисторами и катушками индуктивности, они являются одними из самых фундаментальных пассивных компонентов , которые мы используем. Вам придется очень внимательно поискать схему, в которой не имеет конденсатора.
Особенностью конденсаторов является их способность накапливать энергию ; они похожи на полностью заряженную электрическую батарею. Колпачки , как мы их обычно называем, имеют множество критических применений в схемах. Общие приложения включают локальное накопление энергии, подавление скачков напряжения и комплексную фильтрацию сигналов.
Рассмотрено в этом учебном пособии
В этом руководстве мы исследуем всевозможные темы, связанные с конденсаторами, в том числе:
- Как делается конденсатор
- Как работает конденсатор
- Емкости
- Типы конденсаторов
- Как распознать конденсаторы
- Как емкость сочетается последовательно и параллельно
- Применение конденсаторов общего назначения
Рекомендуемая литература
Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:
Обозначения и единицы измерения
Условные обозначения цепей
Есть два распространенных способа изобразить конденсатор на схеме. У них всегда есть две клеммы, которые подключаются к остальной цепи. Символ конденсаторов состоит из двух параллельных линий, которые могут быть плоскими или изогнутыми; обе линии должны быть параллельны друг другу, близко друг к другу, но не касаться друг друга (это фактически показывает, как сделан конденсатор.Трудно описать, проще просто показать:

(1) и (2) — стандартные обозначения цепи конденсатора. (3) — пример символов конденсаторов в действии в цепи регулятора напряжения.
Символ с изогнутой линией (№2 на фото выше) указывает, что конденсатор поляризован, что означает, что это, вероятно, электролитический конденсатор. Подробнее об этом в разделе о типах конденсаторов этого руководства.
Каждый конденсатор должен сопровождаться названием — C1, C2 и т. Д.. — и стоимость. Значение должно указывать на емкость конденсатора; сколько там фарадов. Кстати о фарадах …
Емкость
Не все конденсаторы одинаковы. Каждый конденсатор имеет определенную емкость. Емкость конденсатора говорит вам, сколько заряда он может хранить , большая емкость означает большую емкость для хранения заряда. Стандартная единица емкости называется фарад , сокращенно F .
Получается, что фарад — это лот емкости, даже 0,001 Ф (1 миллифарад — 1 мФ) — это большой конденсатор. Обычно вы видите конденсаторы с номиналом от пико- (10 -12 ) до микрофарад (10 -6 ).
Имя префикса | Аббревиатура | Вес | Эквивалентные фарады |
---|---|---|---|
Пикофарад | пФ | 10 -12 | 0,000000000001 F |
Нанофарад | nF | 910 | 0.000000001 F |
Микрофарад | мкФ | 10 -6 | 0,000001 F |
Милифарад | мФ | 10 -3 | 0,001 F |
Килофарад | килофарад | килофарад 10 3 | 1000 Ф |
Когда вы переходите к диапазону емкости от фарада до килофарада, вы начинаете говорить о специальных конденсаторах, называемых конденсаторами super или ultra .
Теория конденсаторов
Примечание : Материал на этой странице не совсем критичен для понимания новичками в электронике … и к концу все становится немного сложнее. Мы рекомендуем прочитать раздел How a Capacitor is made , остальные, вероятно, можно пропустить, если они вызывают у вас головную боль.
Как делается конденсатор
Схема обозначения конденсатора на самом деле очень похожа на то, как он сделан.Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины размещены очень близко друг к другу, параллельно, но диэлектрик находится между ними, чтобы они не соприкасались.

Стандартный сэндвич конденсатора: две металлические пластины, разделенные изолирующим диэлектриком.
Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или всего, что может препятствовать прохождению тока.
Пластины изготовлены из проводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к клеммному проводу, который в конечном итоге подключается к остальной части схемы.
Емкость конденсатора — сколько в нем фарад — зависит от его конструкции. Для большей емкости требуется конденсатор большего размера. Пластины с большей площадью перекрытия поверхности обеспечивают большую емкость, в то время как большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок.Полная емкость конденсатора может быть рассчитана по формуле:

Где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянное значение, определяемое материалом диэлектрика), A — это площадь, на которой пластины перекрывают друг друга, а d — расстояние между пластинами.
Как работает конденсатор
Электрический ток — это поток электрического заряда, который электрические компоненты используют для зажигания, вращения или выполнения любых действий.Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — засасываются в одну из пластин, и она становится в целом заряженной отрицательно. Большая масса отрицательных зарядов на одной пластине отталкивает, как заряды, на другой пластине, делая ее положительно заряженной.

Положительный и отрицательный заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды.Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда останутся на пластине (пока им не будет куда-то идти). Стационарные заряды на этих пластинах создают электрическое поле, которое влияет на электрическую потенциальную энергию и напряжение. Когда заряды группируются на таком конденсаторе, крышка накапливает электрическую энергию так же, как батарея может накапливать химическую энергию.
Зарядка и разрядка
Когда на пластинах конденсатора сливаются положительный и отрицательный заряды, конденсатор становится заряженным .Конденсатор может сохранять свое электрическое поле — удерживать свой заряд, потому что положительный и отрицательный заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.
В какой-то момент обкладки конденсатора будут настолько заряжены, что просто не смогут больше их принимать. На одной пластине достаточно отрицательных зарядов, чтобы они могли отразить любые другие, которые попытаются присоединиться. Здесь вступает в игру емкость конденсатора (фарад), которая говорит вам о максимальном количестве заряда, которое может хранить конденсатор.
Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они покинут конденсатор, и разрядит .
Например, в схеме ниже можно использовать аккумулятор для создания электрического потенциала на конденсаторе. Это вызовет нарастание одинаковых, но противоположных зарядов на каждой из пластин, пока они не станут настолько полными, что оттолкнут ток от протекания. Светодиод, расположенный последовательно с крышкой, может обеспечивать путь для тока, а энергия, запасенная в конденсаторе, может использоваться для кратковременного освещения светодиода.
Расчет заряда, напряжения и тока
Емкость конденсатора — сколько в нем фарад — говорит вам, сколько заряда он может хранить. Сколько заряда хранит конденсатор в настоящее время, зависит от разности потенциалов (напряжения) между его пластинами. Эта взаимосвязь между зарядом, емкостью и напряжением может быть смоделирована следующим уравнением:

Заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).
Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение, чтобы увеличить или уменьшить заряд крышки. Больше напряжения означает больше заряда, меньше напряжения … меньше заряда.
Это уравнение также дает нам хороший способ определить значение одного фарада. Один фарад (F) — это способность хранить одну единицу энергии (кулоны) на каждый вольт.
Расчет тока
Мы можем пойти дальше по уравнению заряда / напряжения / емкости, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток — это скорость потока заряда.Суть отношения конденсатора к напряжению и току такова: величина тока , проходящего через конденсатор , зависит как от емкости, так и от того, как быстро напряжение растет или падает . Если напряжение на конденсаторе быстро растет, через конденсатор будет индуцироваться большой положительный ток. Более медленный рост напряжения на конденсаторе означает меньший ток через него. Если напряжение на конденсаторе стабильное и неизменное, через него не будет проходить ток.
(Это некрасиво, и это касается вычислений. В этом нет необходимости, пока вы не перейдете к анализу во временной области, разработке фильтров и прочим грубым вещам, поэтому переходите к следующей странице, если вам не нравится это уравнение .) Уравнение для расчета тока через конденсатор:
Часть этого уравнения dV / dt представляет собой производную (причудливый способ сказать мгновенная скорость ) напряжения во времени, это эквивалентно тому, «насколько быстро напряжение растет или падает в этот самый момент».Большой вывод из этого уравнения заключается в том, что если напряжение стабильно , производная равна нулю, что означает, что ток также равен нулю . Вот почему ток не может протекать через конденсатор, поддерживающий постоянное постоянное напряжение.
Типы конденсаторов
Существуют всевозможные типы конденсаторов, каждый из которых имеет определенные особенности и недостатки, которые делают его лучше для одних приложений, чем для других.
При выборе типа конденсатора необходимо учитывать несколько факторов:
- Размер — Размер как по физическому объему, так и по емкости.Нередко конденсатор является самым большим компонентом в цепи. Также они могут быть очень маленькими. Для большей емкости обычно требуется конденсатор большего размера.
- Максимальное напряжение — Каждый конденсатор рассчитан на максимальное падение напряжения на нем. Некоторые конденсаторы могут быть рассчитаны на 1,5 В, другие — на 100 В. Превышение максимального напряжения обычно приводит к разрушению конденсатора.
- Ток утечки — Конденсаторы не идеальны.Каждая крышка склонна пропускать небольшое количество тока через диэлектрик от одного вывода к другому. Эта крошечная потеря тока (обычно наноампер или меньше) называется утечкой. Утечка заставляет энергию, накопленную в конденсаторе, медленно, но верно истощаться.
- Эквивалентное последовательное сопротивление (ESR) — Выводы конденсатора не на 100% проводящие, они всегда будут иметь небольшое сопротивление (обычно менее 0,01 Ом). Это сопротивление становится проблемой, когда через колпачок проходит большой ток, вызывая потери тепла и мощности.
- Допуск — Конденсаторы также не могут иметь точную, точную емкость. Каждый конденсатор будет рассчитан на номинальную емкость, но, в зависимости от типа, точное значение может варьироваться от ± 1% до ± 20% от желаемого значения.
Конденсаторы керамические
Наиболее часто используемый и производимый конденсатор — керамический конденсатор. Название происходит от материала, из которого сделан их диэлектрик.
Керамические конденсаторы обычно бывают физически и емкостными малыми .Трудно найти керамический конденсатор больше 10 мкФ. Керамический колпачок для поверхностного монтажа обычно находится в крошечном корпусе 0402 (0,4 мм x 0,2 мм), 0603 (0,6 мм x 0,3 мм) или 0805. Керамические колпачки со сквозными отверстиями обычно выглядят как маленькие (обычно желтые или красные) лампочки с двумя выступающими клеммами.

Две крышки в радиальном корпусе со сквозным отверстием; конденсатор 22 пФ слева и 0,1 мкФ справа. Посередине — крошечная крышка 0,1 мкФ 0603 для поверхностного монтажа.
По сравнению с не менее популярными электролитическими крышками керамические конденсаторы являются более близкими к идеальным конденсаторам (гораздо более низкое ESR и токи утечки), но их небольшая емкость может быть ограничивающей.Обычно они также являются наименее дорогим вариантом. Эти колпачки хорошо подходят для высокочастотной связи и развязки.
Электролитический алюминий и тантал
Электролитикихороши тем, что они могут упаковать много емкости в относительно небольшой объем. Если вам нужен конденсатор емкостью от 1 мкФ до 1 мФ, вы, скорее всего, найдете его в электролитической форме. Они особенно хорошо подходят для высоковольтных приложений из-за их относительно высокого максимального номинального напряжения.
Алюминиевые электролитические конденсаторы, самые популярные из семейства электролитических, обычно выглядят как маленькие жестяные банки с обоими выводами, выходящими снизу.

Ассортимент электролитических конденсаторов для сквозных отверстий и поверхностного монтажа. Обратите внимание, что у каждого из них есть метод маркировки катода (отрицательный вывод).
К сожалению, электролитические крышки обычно поляризованы . У них есть положительный вывод — анод — и отрицательный вывод, называемый катодом.Когда напряжение подается на электролитический колпачок, анод должен иметь более высокое напряжение, чем катод. Катод электролитического конденсатора обычно обозначается знаком «-» и цветной полосой на корпусе. Ножка анода также может быть немного длиннее, как еще один признак. Если на электролитический колпачок подать обратное напряжение, они выйдут из строя (из-за чего лопнет и разорвется) и навсегда. После лопания электролитик будет вести себя как короткое замыкание.
Эти колпачки также известны своей утечкой — позволяя небольшим токам (порядка нА) проходить через диэлектрик от одного вывода к другому. Это делает электролитические колпачки менее чем идеальными для хранения энергии, что, к сожалению, с учетом их высокой емкости и номинального напряжения.
Суперконденсаторы
Если вы ищете конденсатор, предназначенный для хранения энергии, не ищите ничего, кроме суперконденсаторов. Эти колпачки имеют уникальную конструкцию, обеспечивающую – высоких емкостей в диапазоне фарад.

Суперконденсатор 1Ф (!). Высокая емкость, но рассчитана только на 2,5 В. Обратите внимание, что они также поляризованы.
Несмотря на то, что они могут хранить огромное количество заряда, суперкаперы не справляются с очень высокими напряжениями. Этот суперконденсатор 10F рассчитан только на максимальное напряжение 2,5 В. Более того, это уничтожит его. Суперэлементы обычно устанавливаются последовательно для достижения более высокого номинального напряжения (при уменьшении общей емкости).
Основное применение суперконденсаторов — накопление и выделение энергии , как и батареи, которые являются их основным конкурентом.Хотя суперконденсаторы не могут удерживать столько энергии, сколько батарея такого же размера, они могут высвобождать ее намного быстрее и обычно имеют гораздо больший срок службы.
Другое
Электролитические и керамические крышки покрывают около 80% типов конденсаторов (а суперкапсы только около 2%, но они супер!). Другой распространенный тип конденсатора — пленочный конденсатор , который отличается очень низкими паразитными потерями (ESR), что делает их идеальными для работы с очень высокими токами.
Есть много других менее распространенных конденсаторов. Конденсаторы переменной емкости могут производить различные емкости, что делает их хорошей альтернативой переменным резисторам в схемах настройки. Скрученные провода или печатные платы могут создавать емкость (иногда нежелательную), поскольку каждый состоит из двух проводников, разделенных изолятором. Лейденские банки — стеклянная банка, наполненная проводниками и окруженная ими — это О. семейства конденсаторов. Наконец, конечно, конденсаторы потока (странная комбинация катушки индуктивности и конденсатора) имеют решающее значение, если вы когда-нибудь планируете вернуться в дни славы.
Конденсаторы последовательно / параллельно
Как и резисторы, несколько конденсаторов могут быть объединены последовательно или параллельно для создания комбинированной эквивалентной емкости. Конденсаторы, однако, складываются таким образом, что полностью противоположны резисторам.
Конденсаторы параллельно
Когда конденсаторы размещаются параллельно друг другу, общая емкость равна сумме всех емкостей .Это аналогично тому, как резисторы добавляются последовательно.

Так, например, если у вас есть три конденсатора номиналом 10 мкФ, 1 мкФ и 0,1 мкФ, подключенные параллельно, общая емкость будет 11,1 мкФ (10 + 1 + 0,1).
Конденсаторы серии
Подобно тому, как резисторы сложно добавить параллельно, конденсаторы становятся неприятными при установке в серии . Общая емкость последовательно соединенных конденсаторов Н и является обратной суммой всех обратных емкостей.

Если у вас есть только двух конденсаторов , соединенных последовательно, вы можете использовать метод «произведение над суммой» для расчета общей емкости:

Существует множество приложений для этого изящного маленького (на самом деле, они обычно довольно большие) пассивного компонента. Чтобы дать вам представление об их широком спектре использования, вот несколько примеров:
Развязные (байпасные) конденсаторы
Многие конденсаторы, которые вы видите в схемах, особенно те, которые имеют интегральную схему, развязаны. Работа развязывающего конденсатора заключается в подавлении высокочастотного шума в сигналах источника питания.Они снимают с источника напряжения крошечные колебания напряжения, которые в противном случае могут нанести вред чувствительным микросхемам.
В каком-то смысле развязывающие конденсаторы действуют как очень маленький локальный источник питания для микросхем (почти как источник бесперебойного питания для компьютеров). Если в источнике питания очень быстро падает напряжение (что на самом деле довольно часто, особенно когда цепь, которую он питает, постоянно переключает требования к нагрузке), разделительный конденсатор может на короткое время подавать питание с правильным напряжением.Вот почему эти конденсаторы также называются байпасными конденсаторами; они могут временно действовать как источник питания , минуя источник питания.
Разделительные конденсаторы подключаются между источником питания (5 В, 3,3 В и т. Д.) И землей. Нередко для обхода источника питания используют два или более конденсаторов с разным номиналом или даже разных типов, потому что некоторые номиналы конденсаторов будут лучше других при фильтрации определенных частот шума.
На этой схеме три развязывающих конденсатора используются для уменьшения шума в источнике напряжения акселерометра.Две керамические 0,1 мкФ и одна танталовая электролитическая 10 мкФ разделенные функции развязки.Хотя кажется, что это может привести к короткому замыканию между питанием и землей, только высокочастотные сигналы могут проходить через конденсатор на землю. Сигнал постоянного тока поступит на микросхему, как и нужно. Другая причина, по которой они называются шунтирующими конденсаторами, заключается в том, что высокие частоты (в диапазоне кГц-МГц) обходят ИС, а не проходят через конденсатор, чтобы добраться до земли.
При физическом размещении развязывающих конденсаторов их всегда следует располагать как можно ближе к ИС.Чем дальше они находятся, тем менее эффективны.
Вот схема физической схемы из схемы выше. Крошечная черная ИС окружена двумя конденсаторами по 0,1 мкФ (коричневые крышки) и одним электролитическим танталовым конденсатором 10 мкФ (высокая прямоугольная крышка черного / серого цвета).
Чтобы следовать хорошей инженерной практике, всегда добавляйте хотя бы один развязывающий конденсатор к каждой ИС. Обычно хорошим выбором является 0,1 мкФ или даже дополнительные конденсаторы на 1 мкФ или 10 мкФ. Это дешевое дополнение, и они помогают убедиться, что микросхема не подвергается сильным провалам или скачкам напряжения.
Фильтр источника питания
Диодные выпрямителимогут использоваться для преобразования переменного напряжения, выходящего из вашей стены, в постоянное напряжение, необходимое для большинства электронных устройств. Но сами по себе диоды не могут превратить сигнал переменного тока в чистый сигнал постоянного тока, им нужна помощь конденсаторов! При добавлении параллельного конденсатора к мостовому выпрямителю выпрямленный сигнал выглядит следующим образом:

Может быть преобразован в сигнал постоянного тока близкого к уровню, например:
Конденсаторы — упрямые компоненты, они всегда будут пытаться противостоять резким перепадам напряжения.Конденсатор фильтра будет заряжаться по мере увеличения выпрямленного напряжения. Когда выпрямленное напряжение, поступающее в конденсатор, начинает быстро снижаться, конденсатор получит доступ к своему банку накопленной энергии, и он будет очень медленно разряжаться, передавая энергию нагрузке. Конденсатор не должен полностью разрядиться, пока входной выпрямленный сигнал снова не начнет увеличиваться, заряжая конденсатор. Этот танец разыгрывается много раз в секунду, многократно, пока используется источник питания.
Цепь питания переменного тока в постоянный.Крышка фильтра (C1) имеет решающее значение для сглаживания сигнала постоянного тока, посылаемого в цепь нагрузки.
Если вы разорвите какой-либо блок питания переменного тока в постоянный, вы обязательно найдете хотя бы один довольно большой конденсатор. Ниже показаны внутренности настенного адаптера постоянного тока на 9 В. Заметили там конденсаторы?
Конденсаторов может быть больше, чем вы думаете! Есть четыре электролитических крышки, похожие на консервные банки, в диапазоне от 47 мкФ до 1000 мкФ. Большой желтый прямоугольник на переднем плане — это высоковольтный 0.Крышка из полипропиленовой пленки 1 мкФ. И синий колпачок в форме диска, и маленький зеленый посередине — керамические.
Хранение и поставка энергии
Кажется очевидным, что если конденсатор накапливает энергию, одно из многих его применений будет подавать эту энергию в цепь, как аккумулятор. Проблема в том, что конденсаторы имеют гораздо меньшую плотность энергии , чем батареи; они просто не могут вместить столько энергии, сколько химическая батарея того же размера (но этот разрыв сокращается!).
Положительным моментом конденсаторов является то, что они обычно служат дольше, чем батареи, что делает их лучшим выбором с экологической точки зрения. Они также способны выдавать энергию намного быстрее, чем аккумулятор, что делает их подходящими для приложений, требующих коротких, но сильных всплесков мощности. Вспышка камеры могла получать питание от конденсатора (который, в свою очередь, вероятно, заряжался от батареи).
Батарея или конденсатор?Батарея | Конденсатор | |
---|---|---|
Емкость | ✓ | |
Плотность энергии | ✓ | |
Скорость заряда / разряда | ✓ | |
9 Срок службы | ✓
Фильтрация сигналов
Конденсаторыобладают уникальной реакцией на сигналы различной частоты.Они могут блокировать низкочастотные компоненты или компоненты сигнала постоянного тока, позволяя при этом проходить более высоким частотам. Они похожи на вышибалу в очень эксклюзивном клубе только для высоких частот.
Фильтрация сигналов может быть полезна во всех видах приложений обработки сигналов. Радиоприемники могут использовать конденсатор (среди других компонентов) для отстройки от нежелательных частот.
Другой пример фильтрации сигнала конденсатора — это пассивные схемы кроссовера внутри динамиков, которые разделяют один аудиосигнал на множество.Последовательный конденсатор блокирует низкие частоты, поэтому оставшиеся высокочастотные части сигнала могут идти на твитер динамика. При прохождении низких частот в цепи сабвуфера высокие частоты в основном могут быть шунтированы на землю через параллельный конденсатор.

Очень простой пример схемы кроссовера аудио. Конденсатор блокирует низкие частоты, а катушка индуктивности блокирует высокие частоты. Каждый из них может использоваться для доставки нужного сигнала настроенным аудиодрайверам.
Снижение рейтинга
При работе с конденсаторами важно проектировать свои схемы с конденсаторами, которые имеют гораздо более высокий допуск, чем потенциально самый высокий скачок напряжения в вашей системе.
Вот отличное видео от инженера SparkFun Шона о том, что происходит с различными типами конденсаторов, когда вы не можете снизить номинальные параметры конденсаторов и превысить их максимальное напряжение. Вы можете прочитать больше о его экспериментах здесь.
Закупка конденсаторов
Храните на этих маленьких компонентах накопителя энергии или используйте их в качестве начального блока питания.
Наши рекомендации:

Комплект конденсаторов SparkFun
В наличии КОМПЛЕКТ-13698Это комплект, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить работу над электроникой. Нет мес…
9
Конденсатор керамический 0.1 мкФ
В наличии COM-08375Это очень распространенный конденсатор емкостью 0,1 мкФ. Используется во всевозможных приложениях для отключения ИС от источников питания. 0,1 дюйма с интервалом…
1
Суперконденсатор — 10Ф / 2.5В
В наличии COM-00746Да, вы правильно прочитали — конденсатор 10 Фарад. Этот маленький колпачок можно зарядить, а затем медленно рассеять на протяжении всего…
3
Ресурсы и дальнейшее развитие
Уф.Почувствуйте себя экспертом по конденсаторам ?! Хотите узнать больше об основах электроники? Если вы еще этого не сделали, подумайте о прочтении некоторых других распространенных электронных компонентов:
А может, некоторые из этих руководств привлекут ваше внимание?
Вот как заменить конденсаторы на материнской плате.Это в равной степени применимо к замене конденсаторов на любой печатной плате компьютерного продукта. Изначально я написал это для раздела часто задаваемых вопросов на форумах о плохих шапках. |
Хорошо знать историю платы.Например, если на плате появились плохие колпачки, но они были выведены из эксплуатации раньше, то это отличный кандидат для повторения. Если плата была оставлена на очень долгое время и заглушки протекли повсюду, то слив, вероятно, можно было бы хорошо очистить. Если плата теперь мертва после отключения в один прекрасный день, то, если ничего не сгорело, возможно, не удалось открыть некоторые крышки, и плата все еще годна для ремонта. Если плата вышла из строя и на ней появился запах гари или подгоревшие предметы, возможно, закорочены некоторые колпачки. |
Тестирование платы — Внимание! |
Если вам дается плата для устранения неполадок, которая не выполняет POST, она просто мигает светодиодом на плате и дергается вентилятор, вы должны быть осторожны, чтобы плата не была в состоянии, которое может повредить процессор, который вы используете для проверки доска.Существует вероятность того, что микросхема VRM повреждена из-за короткого замыкания полевого транзистора и, следовательно, Vcore будет слишком высоким. Плата станет убийцей ЦП. Лучше протестировать Vcore с помощью мультиметра, прежде чем подключать процессор для устранения неполадок с платой. В любом случае всегда рекомендуется тестировать неизвестные платы с вашими худшими компонентами. |
2. Сначала практикуйтесь и изучите рекомендации |
Вы вполне можете отремонтировать материнскую плату самостоятельно, но вы должны сначала прочитать всю информацию, а также потренироваться, прежде чем начать свой первый ремонт.Даже если вы прочитали всю информацию, пайка и замена колпачков требует некоторой практики. Будет ОЧЕНЬ приятно увидеть вашу первую повторную загрузку, но разочаровывает, если она выглядит неаккуратно или не работает, потому что вы сделали это неправильно. |
Достать хлам материнская плата |
Лучше всего достать хлам материнскую плату и потренироваться снимать с нее заглушки.Научитесь делать это аккуратно, и вы также узнаете, будет ли ваш паяльник достаточно горячим для реальной работы. Было бы хорошо также приобрести несколько самых дешевых крышек и попрактиковаться в их установке на мусорную доску. |
Узнайте, что такое хорошее паяное соединение |
Узнайте, что такое хорошее паяное соединение по следующим ссылкам, и попрактикуйтесь в его изготовлении.Мы гарантируем, что это будет самая сложная часть операции, но с практикой вы научитесь делать это хорошо. Ресурсы для Elecraft Builder (нажмите на руководство по пайке) Apogee Kits Downloads (нажмите на бесплатное иллюстрированное руководство ApogeeKits по пайке электроники) |
3.Спланируйте работу перед тем, как начать |
Убедитесь, что у вас достаточно крышек |
Самое главное — проверить, достаточно ли у вас правильных значений ограничений для выполнения работы.Когда вы закончите, вы захотите увидеть загрузку платы и не захотите ждать следующего заказа крышек. Снова проверьте исходные заглушки на доске, чтобы увидеть, не пропустили ли вы один или ошиблись с значениями. Сделать это очень просто. |
Составьте схему |
Схема разъемов платы |
При извлечении материнской платы из корпуса для любого вида работы очень полезно сделать диаграмму положений разъемов корпуса (переключатель питания, сброс, светодиод жесткого диска и т. Д.), А также записать положение каждого цветного провода.Отметьте также положение основной / второй IDE, дискеты, записав положение красной линии на кабеле. Это делает его намного проще, и тогда вам не придется искать руководство по какой-то непонятной плате в Интернете, если вы позже подключили его неправильно. Или придется снова открывать этот проклятый футляр, потому что жесткий диск перевернулся и т. Д. |
Схема расположения колпачков |
Очень важно составить схему расположения и номиналов оригинальных конденсаторов на плате.Обязательно отметьте, где на схеме находится отрицательный вывод каждого конденсатора. Отрицательный вывод обозначен на конденсаторе полосой сбоку. Эта полоса соответствует белой полусфере вокруг отверстия для отрицательного вывода на трафарете платы. Эта диаграмма также является полезным инструментом для окончательной проверки перед включением платы. Очень важно записать положение фактического отрицательного вывода оригинального конденсатора, потому что трафарет платы может быть неправильным, и вы хотите перепроверить схему перед неправильной установкой нового конденсатора.Отметьте на диаграмме номиналы оригинальных конденсаторов, а также значения, которыми вы будете заменять каждый конденсатор, если они разные. Очень полезно иметь эту диаграмму под рукой во время перепланировки, чтобы вы могли сосредоточиться на пайке и не думать слишком много или ошибаться. |
Отметить на плате места, где не устанавливались заглушки |
Из-за изменений и исправлений конструкции на трафарете платы могут быть места, где конденсаторы были помечены для установки, но не были.Очень важно отметить на доске тонким маркером X на этих позициях. Не рекомендуется устанавливать заглушки в эти положения, если вы не пользуетесь испытанным модом платы. Очень легко ошибиться и установить колпачки в неправильное положение, поэтому приятно видеть, что на доске отмечены крестики, чтобы напомнить вам. |
4.Подготовьте рабочее место и доску |
Все инструменты всегда под рукой |
![]() |
Минимум, который вам понадобится, это следующее.Получите все готово и под рукой. Когда на работе приходится вставать и что-то искать, это боль. Нагрейте паяльник, пока готовите область. Вы хотите установить температуру утюга на 450oC и дать ему прогреться примерно 10 минут, прежде чем начать. — Паяльная станция или сетевой паяльник (должен быть заземлен! И минимум 40 Вт (60 Вт — хороший выбор) |
![]() |
Паяльная станция ERSA 60 Вт.Очень важно иметь при себе влажную губку для чистки утюга во время работы, независимо от того, используете ли вы утюг с проводом или станцию. |
![]() |
то, что вы считали хорошим, бесполезно. 40 Вт — это абсолютный минимум для перепланировки. рекомендуется использовать короткие «стандартные» долота, так как они лучше выдерживают тепло |
— Припой (60/40, 0.8мм хорошо) |
припой 60/40 0,8 мм |
— Швейная игла из нержавеющей стали или стоматологическая отмычка из нержавеющей стали (см. Далее в FAQ) — Лампочка для распайки (если хотите) — Свинцовые кусачки (кусачки для тонкой проволоки) |
![]() |
Pro’s Kit кусачки для свинца |
— Держатель платы |
— Спрей для очистки флюса |
Cramolin Flux-Off спрей |
— Ватные палочки / ватные палочки (обычно используются для чистки ушей) — Спирт (95% или лучше всего 99-100%) для очистки электролита от доски — Антистатический браслет |
![]() |
антистатический браслет |
Для очистки выводных отверстий можно использовать либо только иглу / резец, либо использовать грушу для распайки / оплетку для распайки / паяльник (по вашему выбору). |
Подготовьте конденсаторы |
Особенно, если вы работаете с несколькими номиналами конденсаторов, хорошо иметь каждое значение в отдельных отсеках одной из этих пластиковых коробок с множеством отсеков для размещения винтов и прочего.Это предотвращает подобрать неправильное значение и установить его на плату. Вы можете использовать один из отсеков для установки снятых конденсаторов. |
Снимите все компоненты с платы |
Это довольно очевидно, но все равно будет сказано.Перед началом работы необходимо удалить HSF (радиатор процессора / вентилятор), процессор, оперативную память и все карты с платы. Когда вы снимаете HSF сокета процессора (не P4 и т. Д.), Вы должны поместить визитную карточку между нижней частью зажима, на который вы будете оказывать давление, и платой. Это потому, что очень легко надавить слишком сильно и повредить следы. |
Очистить доску |
Перед началом работы очистите доску от пыли с обеих сторон сжатым воздухом. |
Подготовьте держатель платы |
Легко найти держатель для досок — это два зажима для дерева, те, которые вы используете, чтобы прикрепить дерево к столу для безопасного пиления. Вероятно, есть в вашем гараже.Вы можете прикрепить их к рабочему столу в перевернутом виде, и тогда доска поместится между ручками и металлическими направляющими зажимов. Для снятия заглушек важно, чтобы доска была надежно закреплена. Если вы собираетесь работать с доской между колен или чем-то в этом роде, это не рекомендуется, и вы, вероятно, обожжетесь. Вам нужно, чтобы держатель платы находился сбоку от рабочего пространства, а затем вам понадобится чистая ровная площадка для размещения платы, лежащей на столе, для установки новых заглушек.Ваш паяльник должен находиться в пределах досягаемости от обеих сторон и с ним удобно работать. |
5.Снятие конденсаторов |
Получите защитные очки на |
При пайке НЕОБХОДИМО носить защитные очки или обычные очки по рецепту. Попадание горячего флюса в глаз может серьезно поранить. |
Получите антистатический браслет на |
При пайке или работе с платой необходимо носить антистатический браслет. Наденьте его на руку, держащую утюг.Лучше всего прикреплять ремешок к задней части компьютера, который подключен к розетке. |
Подготовьте держатель платы |
Лучший способ снять конденсаторы — положить плату на стол тыльной стороной вверх.Затем добавьте припой к нескольким крышкам. Затем поместите его в держатель платы, чтобы снять заглушки. В идеале передняя часть доски должна быть обращена к вам, а вы нагреваете ее сзади. В противном случае вы можете держать доску на коленях, если у вас нет держателя для доски. |
Добавьте припой на каждый вывод на задней части платы |
Очень важно добавить немного припоя к выводам конденсатора, который вы должны удалить, в том месте, где вывод встречается с платой.Это поможет вам быстро и легко нагреть весь припой при снятии конденсатора. Так нагрейте один из выводов конденсатора с задней стороны платы, чтобы утюг касался контактной площадки вокруг отверстия и вывода. Затем нанесите немного припоя на уже имеющийся припой. Сделайте то же самое с другим отведением. Проще всего сделать это с рядом конденсаторов, а затем сконцентрироваться на процессе их удаления. |
![]() |
добавление припоя к выводам существующих конденсаторов |
припой добавлен и готов к удалению. |
Снимите конденсатор |
Чтобы удалить конденсатор, необходимо нагреть один из выводов конденсатора с задней стороны платы, чтобы утюг соприкасался с прокладкой вокруг отверстия и проводом.Затем вы пошевелите и подтолкните конденсатор к другому выводу, продолжая нагревать припой утюгом. Затем проделайте то же самое с другим отведением. Здесь вы создадите свою собственную технику. Некоторым людям нравится нагревать оба провода и вытаскивать их одновременно. Другим нравится попеременно нагревать и покачивать каждый вывод, пока конденсатор не освободится. Или даже полностью отключите один вывод, а затем поработайте над другим. Важно найти лучший способ снятия конденсатора с наименьшей нагрузкой.Вы должны убедиться, что весь припой хороший и горячий, и не тянуть слишком сильно, а немного покачивать вывод назад и вперед, пока он не освободится. Если вы будете тянуть слишком сильно, когда припой недостаточно горячий, вы можете повредить фольгу выводного порта, который проходит через плату и соединяется с электрическими дорожками. Не волнуйтесь, просто будьте осторожны, и вы не повредите доску. |
![]() |
Снятие крышки |
Возникли проблемы с удалением конденсатора? |
Если у вас возникли проблемы с извлечением конденсатора, возможно, ваше железо недостаточно горячее.Если это 60 Вт, то, возможно, вам стоит попробовать наконечник другого размера, возможно, наконечник слишком длинный и тонкий и не передает достаточно тепла от нагревателя утюга. Не забывайте, что если вы работаете вблизи больших следов, они поглощают тепло от утюга, что затрудняет работу в этом положении. Типы используемого припоя, по-видимому, различаются в зависимости от производителя платы. Некоторые легко нагреть, другие — нет. С старыми досками работать сложнее. С большинством досок у вас не возникнет проблем, если ваш утюг достаточно горячий. Есть разные техники работы на сложных досках. Некоторым нравится нагревать доску термовоздушным феном или работать термовоздушным карандашом. Другим нравится использовать паяльные пистолеты большой мощности для устойчивых паяльных площадок. Все это требует некоторого опыта и знаний, иначе доска будет испорчена. |
Очистка отверстия |
После того, как вы удалите конденсатор, отверстие не будет чистым, если вам не повезет.Некоторые люди не утруждают себя чисткой отверстия, а помещают выводы нового колпачка напротив отверстий, а затем вдавливают колпачок, одновременно нагревая отверстия на обратной стороне платы. Это не самый лучший метод, и перед установкой нового колпачка лучше очистить отверстие. Здесь мы обсудим некоторые методы очистки отверстий. На самом деле вам нужно будет найти метод, который лучше всего подходит для вас. Чтобы очистить отверстие, можно держать доску держателем. |
Механические насосы для пайки |
НЕ рекомендуется использовать механический пневматический насос для пайки для очистки отверстия, они действительно имеют слишком большую мощность.Существует возможность повредить выводной порт, высасывая его одновременно с припоем. Это будет означать, что вам придется аккуратно впаивать новую крышку, следя за тем, чтобы припой прошел через отверстие, чтобы найти правильные следы в слоях платы. Это будет довольно сложно, так что забудьте о механических насосах для пайки. Кроме того, отдача может ударить по плате и повредить след, или насос может разбрызгать на плату остатки припоя, что может вызвать короткое замыкание при включении платы. |
![]() |
пневматические насосы для пайки. не рекомендуется. если вам действительно нужно их использовать, используйте их наполовину не взведенными. как только вы освоите хорошую технику иглы или зубочистки, вы забудете о них. они полезны для удаления коннекторов atx / usb / kbd через |
Колба под припой |
Вы можете попытаться очистить отверстие, используя лампочку для припоя, которая представляет собой устройство с соплом и лампочкой.Всасывание не такое мощное, как насос для пайки, но его мощности достаточно для очистки переходных отверстий. Вы можете использовать его, работая с соплом на лицевой стороне платы и паяльником сзади (способ 1). Или вы можете использовать его, работая как с соплом, так и с паяльником на задней стороне платы (метод 2). Опять же, это личное предпочтение. Некоторым сложно работать с обеих сторон доски одновременно, и для этого вам понадобится держатель для доски (другие используют колени, но вы должны быть осторожны, если будете это делать).Если бы вы использовали метод 2, вы могли бы положить доску на стол. (метод 1) Вы помещаете сопло заподлицо с отверстием на передней части доски, нагревая отверстие утюгом с задней стороны доски. Вы отпускаете утюг с тыльной стороны платы, а затем быстро сжимаете лампочку, чтобы высосать припой из отверстия. Вы можете найти этот тип инструмента для распайки полезным или неэффективным. Не рекомендуется использовать лампу более двух раз на одном и том же отверстии.Если отверстие не очищено, после этого лучше всего использовать зубочистку или иглу. Вы также можете нанести немного свежего припоя в отверстие на задней стороне платы, чтобы облегчить процесс удаления припоя перед использованием лампы. |
груша для демонтажа |
Фитиль для демонтажа |
Некоторым нравится использовать фитиль для распайки, который вы кладете на отверстие, а затем нагревают утюгом.Затем припой будет вытянут и приклеен к фитилю. Затем вы периодически отрезаете часть с припоем, чтобы иметь возможность работать с новым фитилем. Кому-то он нравится, кому-то он не нужен. |
Паяльник |
Если вы часто меняете колпачки, возможно, вам будет полезно купить демонтажный паяльник у одного из крупных производителей.Это будет похоже на паяльник, но в нем есть вакуумный насос, который всасывает припой через жало. С такими установками будет работать намного проще, но они довольно дорогие. |
Стоматологическая отмычка или игла |
Topcat, владелец бадапов.net разработала решение с использованием зубочистки для очистки отверстий. Это не зубочистка, это ручной инструмент, которым стоматолог соскребает между зубами. Вам нужно будет получить его в магазине или у стоматолога! Он также имеет то преимущество, что отводит тепло от платы. |
игла идеального размера (чуть больше проволочного наконечника), удерживаемая в части электрического блока. |
Опять же, как и в случае с лампой для распайки, есть личные предпочтения: вы можете работать с отмычкой на передней панели платы, нагревая ее сзади, или, как topcat, работает и с рисунком, и с утюгом на задней стороне платы. Итак, что вам нужно сделать, это нагреть отверстие утюгом, пока припой не расплавится. Затем вы вставляете кирку в отверстие до упора, не прикладывая усилий, пока она не выйдет с другой стороны.Затем вы снимаете утюг и даете припою затвердеть. Поскольку резец изготовлен из нержавеющей стали, припой к нему не прилипнет. Затем вы осторожно вращаете и поворачиваете отмычку, пока она не высвободится, и вытаскиваете ее из отверстия. Вы можете использовать бритвенный нож, чтобы соскрести сухой припой с отверстия, но будьте осторожны, чтобы не повредить след на плате. Теперь отверстие должно быть чистым. Если у вас нет доступа к зубочистке, вы можете использовать вместо нее швейную иглу из нержавеющей стали. Может быть полезно иметь два размера (один маленький и острый, другой большой и закругленный), которые вы можете удерживать в электрическом блоке (обычный тип, используемый для соединения двух кабелей вместе. |
![]() |
помогает игле в трудном отверстии за счет нагрева спереди |
Таким образом, вы сделаете свой личный выбор того, как прочистить отверстия. Намерение состоит в том, чтобы найти метод, который очистит отверстия быстрее всего, так как если вы нагреете колодки в течение очень длительного времени, вы повредите доску.Самое главное — иметь хороший горячий утюг, чтобы входить в него горячим и быстрым. |
Проверка отверстия |
Очень полезно иметь поблизости настольную лампу, которую можно осветить на тыльной стороне доски и проверить, чисты ли и чисты ли отверстия.Намного легче увидеть, что отверстие чистое, когда сквозь него светит свет. |
очищено отверстий |
7.Установка новых конденсаторов |
Подготовка конденсатора к установке |
Новые конденсаторы поставляются с довольно длинными выводами. Рекомендуется обрезать выводы конденсатора, который вы собираетесь установить, до длины примерно 1 см для обоих выводов.Это не является обязательным требованием, но это упростит вам продевание коротких проводов через отверстия, а не ненужных длинных проводов. Для обрезки выводов конденсатора используйте микрокусачки, а не стандартные кусачки. Это связано с тем, что микрокусачки аккуратно режут провода и не сжимают концы в острые точки, как стандартные кусачки. |
Снимите плату с держателя платы |
Для установки конденсатора вам необходимо положить плату на стол. |
Перед началом работы внимательно проверьте отрицательный провод |
Посмотрите на переднюю часть доски, вы увидите белый полукруг или отметку на одной стороне круга.Вы должны совместить белую / серебряную / золотую линию, идущую вниз с одной стороны конденсатора, с этой белой меткой. Это показывает отрицательный результат. Обратите внимание на это важно, при неправильной установке конденсатора при подаче питания на плату конденсатор перегорит. |
Здесь полезно обратиться к диаграмме, которую вы сделали до того, как начали процесс пересчета.Дважды проверьте на диаграмме значение устанавливаемой крышки, а также дважды проверьте полярность. Иногда полярность, указанная на трафарете платы, неверна. Доверяйте полярности, в которой был установлен старый конденсатор, а не трафарету платы. Asus, например, показывает положительный результат с белым полушарием, в отличие от всех остальных. Также проверьте на передней панели платы, что вы не отметили X, чтобы показать, что конденсатор не был установлен в этом положении. Легко увлечься и совершить ошибку.Не рекомендуется устанавливать новые колпачки там, где их не было раньше, если вы не используете проверенный и проверенный мод. |
Не нажимайте на провода конденсатора через отверстие |
Вы должны немного согнуть выводы вместе, чтобы они точно прошли через оба отверстия, не прилагайте усилий к конденсатору, если у вас есть проблемы, согните выводы еще немного или, возможно, вам придется снова прочистить отверстие, но лучше на этот раз.Если приложить усилие, можно повредить фольгу внутри отверстия. |
8. Пайка конденсатора в |
Вставьте конденсатор и положите плату на стол тыльной стороной к себе.потяните за ножки конденсатора, чтобы убедиться, что он плотно прилегает к плате, и слегка отогните ножки крышки наружу. не слишком много, ровно столько, чтобы держать крышку. Нагрейте подкладку вокруг отверстия и провод с помощью утюга. Вы должны расположить припой в точке, где есть очевидное пространство между выводом и площадкой вокруг отверстия. Держите утюг на другой стороне. Затем в отверстие введете припой. Если у вас возникли проблемы с нагревом вывода и контактной площадки, вы можете быстро коснуться припоя на утюге, а затем ввести его в отверстие. |
![]() |
припаивание новой крышки |
Порт вывода соединяет контактную площадку через отверстие с контактной площадкой на другой стороне платы и по пути также обеспечивает соединение с правильными дорожками для этого компонента на любом слое платы, требуемом конструкцией.Поэтому нет необходимости заливать припой в отверстие, чтобы обеспечить хороший электрический контакт. Чтобы конденсатор физически лучше удерживался на плате, хорошо залить в отверстии немного припоя. Однако, когда вы совершенствуете свою технику пайки, вы обнаружите, что смачивание отверстия припоем и немедленная попытка ввести припой в отверстие дает гораздо лучшее соединение, чем работа только с паяльной площадкой, которая может привести к некрасивому шаровому паяльному соединению. |
![]() |
Хорошие блестящие пайки — это то, что вам нужно увидеть.сложно сделать фото таймером и сделать красивый стык. в любом случае не нужно больше припоя, чем это нужно. Если паять при 450 ° C, как будто сняли крышку, будет сложно сделать красивое соединение. хотя это нормально. для достижения наилучших рабочих характеристик припаивайте при 350 ° C |
![]() |
Узнайте, что такое хорошее паяное соединение |
Вы, вероятно, поймете, что вам потребовалось меньше припоя и времени, чем вы думали.Ознакомьтесь с приведенными ниже ссылками и поймите, что такое хорошее паяное соединение, а затем попробуйте улучшить следующее. Здесь сложно обучить технике. Вы должны понимать, как правильно паять соединение, а затем изменять свою технику, пока не достигнете ее. Я думаю, что 450oC может быть слишком горячим для достижения идеального стыка, но легче держать утюг таким же горячим, чем снимать крышки. Идеальное паяное соединение — это ровно столько припоя, чтобы обеспечить хорошее соединение. Припой не образует шар вокруг контактной площадки, он изгибается от вывода посередине вниз к сторонам контактной площадки.Не волнуйтесь, что вы не сделали хорошее соединение, пока соединение красивое и блестящее, а припой попал в отверстие, вы научитесь делать хорошие паяные соединения с практикой. А теперь сделай другой ход. Производители указывают, что если припой сразу плавится утюгом, значит, утюг слишком горячий. На расплавление припоя нужно 1,5-3 секунды. Они не рекомендуют нагревать дольше 3 секунд. Но не беспокойтесь об этом слишком сильно, сконцентрируйтесь на создании хорошего паяного соединения, и каждый раз вы будете быстрее припаивать колпачок. |
Закрепите провода |
Когда вы закончите, воспользуйтесь небольшой парой кусачков для обрезки лишних проводов. Я рекомендую 8PK-30D от Pro’s Kit, отличной тайваньской компании и не очень дорогой.Большие стандартные кусачки для проводов не справятся с этой задачей, вам понадобятся подходящие микрокусачки, они также полезны, если вы хотите обрезать выводы конденсатора перед установкой. Обрежьте выводы так же коротко, как и другие компоненты на плате. |
![]() |
отведение с обрезкой |
Не нагревайте припой повторно |
Не рекомендуется повторно нагревать припой, который вы нанесли на новые колпачки, а затем наносить еще в случае возникновения проблемы.Это может ухудшить состояние сустава. Лучше проделать весь процесс, чтобы снять колпачок, прочистить отверстие и начать заново. |
Не снимайте и не переустанавливайте конденсаторы чрезмерное количество раз |
Чем чаще вы это делаете, тем выше опасность повреждения переходных отверстий на плате.Кроме того, если вы чрезмерно нагреете новые конденсаторы, вы повредите их, поэтому мы хотим нагреть их только один раз, когда мы их припаяем, и, следовательно, гарантировать, что они будут работать наилучшим образом. Одним из примеров такой плохой практики может быть удаление старых конденсаторов с донорской платы, а затем их повторная установка на плату, которую вы ремонтируете, просто для проверки, если она размещена, а затем удаление их и установка новых хороших конденсаторов. Лучше всего установить новые конденсаторы с первого раза и свести к минимуму возможность повреждения платы. |
9.Завершение работы — Очистка доски |
Когда вы закончите оребрение, вам нужно будет очистить флюс вокруг паяных соединений, а также от брызг флюса, которые могут быть вокруг платы. Вам понадобится спрей FLUX-OFF. Я использую один из Cramolin, который называется FLUX-OFF и представляет собой диметоксиметан. Это повредит пластик и ПВХ, поэтому вы нанесете небольшое количество брызг вокруг паяных соединений и обработаете излишки с помощью ватной палочки или ватной палочки (обычно используются для чистки ушей), чтобы они не стекали в отверстие, как из разъемов pci или что угодно на другую сторону доски.Затем можно растереть излишки флюса вокруг стыков с помощью бутона. После выполнения всех соединений и проверки тех, которые я пропустил, я оставляю доску с галогенной настольной лампой (или другой настольной лампой) примерно в футе от нее на 10 минут, чтобы убедиться, что весь FLUX-OFF испарился. Он легко воспламеняется, поэтому курить запрещено. Причина, по которой вы выполняете эту очистку, заключается в том, что некоторые флюсы имеют умеренную коррозию. Если вы использовали припой без чистого флюса, этот шаг можно пропустить. |
![]() |
Если вы сравните предыдущие фотографии, вы увидите коричневый флюс вокруг паяных соединений.похоже, что плата сгорела, но это не так. после чистки это выглядит так. |
Когда перепрограммирование выполнено, важно очень хорошо проверить плату, прежде чем подавать на нее питание. |
Визуально проверить плату |
Проверьте, не прилипли ли к плате мелкие кусочки припоя или кусочки проводов, которые вы подрезали, и которые могут вызвать короткое замыкание. Я также продувал доску с обеих сторон небольшим количеством сжатого воздуха по тем же причинам.Проверьте контактные площадки на задней стороне платы на наличие установленных вами колпачков, чтобы убедиться, что они не соединены припоем с соседним компонентом и могут вызвать короткое замыкание. Короткое замыкание при включении платы — это нехорошо. |
Сравните плату с диаграммой, которую вы сделали |
Убедитесь, что ВСЕ конденсаторы, которые вы установили, имеют правильные значения и установлены в правильном направлении, прежде чем подавать на них питание.Еще раз проверьте, что вы НЕ устанавливали заглушки в положения, которых не было раньше. |
![]() |
завершена работа по перепрофилированию |
Подать питание на плату |
Подключите процессор / оперативную память / клавиатуру / гибкий диск и монитор, затем включите плату.Полезно иметь процессор и оперативную память, которые предназначены только для тестирования, чтобы вы не поджаривали клиентов или друзей, если вы допустили ошибку. |
Если это не POST |
Не спешите с выводом, что вы прикрутили плату на основании светодиодов платы, которые показывают сообщение об ошибке или если вы не получаете видеосигнал.Сохраняйте спокойствие и проверьте соединения монитора, посадочные места для плунжера и процессора, прежде чем вы решите, что допустили ошибку при пайке. Обратитесь к руководству для светодиодов платы, чтобы узнать, в чем проблема. Я гарантирую, что если вы проявите разумную осторожность, то получите выгоду. Платы могут пострадать от неправильной пайки. Другое дело, если вы сожгли или поцарапали следы платы во время работы или короткое замыкание. Иногда очистка BIOS с помощью перемычки или извлечение батареи может решить проблемы. |
![]() |
поврежденные следы от чрезмерного нагрева.не очень хорошие снимки, потому что это после попытки ремонта, но идею вы поняли. |
11. Запустите тестовые утилиты |
Сначала я бы начал с загрузки служебного диска ram test, такого как http: // www.memtest86.com/ и проверка на наличие ошибок оперативной памяти в течение нескольких часов при использовании известной ХОРОШЕЙ оперативной памяти, затем вы можете запустить некоторые утилиты, такие как prime95 http://www.mersenne.org/freesoft.htm, также в Windows, и вы захотите увидеть, что плата полностью стабильна без ошибок после нескольких дней работы. По крайней мере, запускайте доску на ночь, если вы торопитесь. |
12.Удачи с новой доской |
DIY сделает вас очень счастливыми, и вы можете перейти к другой задаче пайки, например, сделать комплект стереоусилителя или что-то в этом роде. Стоящий способ провести выходные и очень полезный. Если вы перейдете к замене красивых крышек, вы также сможете начать делать доски своих друзей и заработать немного денег.Если вы можете выполнить эту работу, вам не о чем беспокоиться, многие сбои компонентов происходят из-за плохих колпачков. Вы даже можете перейти к покупке вещей с плохими крышками по дешевке и ремонту их самостоятельно. По крайней мере, вы больше никогда не будете беспокоиться о покупке компонентов с дешевыми крышками, вы сможете самостоятельно восстановить их долговечность. |
Как сделать электрошокер с конденсатором
Итак, вы хотите научиться делать электрошокер с конденсатором? Может, вы пытались заставить работать электрошокер, но еще не добились успеха? Может быть трудно завязать голову вокруг поиска подходящих материалов и деталей, чтобы успешно делать это дома и эта статья поможет вам преодолеть этот пробел и получить электрошокер шокирующая ценность в кратчайшие сроки!
Несмотря на прошлые разочарования, мы собираетесь решить эту проблему простым для понимания способом, так что к концу вы есть рабочий электрошокер! Пока ты в безопасности, играй с электричеством может даже быть забавным, если вы заставите его работать! Вы будете мастером своего дела мира электрошокера к тому времени, когда мы закончим.
Помните! Создавайте это, только если вы знакомы с электроникой и опасностями и мерами безопасности, необходимыми при работе с электричеством. Вы несете полную ответственность за любые травмы, которые могут возникнуть в результате работы с электрическим током!

- ПРОФЕССИОНАЛЬНОЕ ОБОРУДОВАНИЕ ДЛЯ САМОЗАЩИТЫ: Мощный мощный фонарик с электрошокером.Обеспечивает болезненную останавливающую силу и подкрепляется пожизненной …
- ТЕХНОЛОГИЯ ПРЕДОТВРАЩЕНИЯ ВЫКЛЮЧЕНИЯ: ударные пластины на боковой стороне электрошокера шокируют атакующего, если он попытается отобрать у вас пистолет; Контурная рукоятка …
- ВНУТРЕННИЙ ПЕРЕЗАРЯЖНЫЙ АККУМУЛЯТОР: Наш электрошокер просто подключается к стандартной розетке для полной зарядки. Батарейки не нужны! Зарядный шнур …

предметов, которые вам понадобятся для сборки электрошокера
Труба из ПВХ — 1 дюйм на 8 дюймов в диаметре отлично подойдет для этого проекта.Вы действительно можете модифицировать его с помощью любого типа корпуса, который подходит вам, например, корпуса фонарика или других вещей. Возможно, будет проще пойти в местный магазин Home Depot, чем покупать на Amazon — вы сэкономите больше денег, купив именно тот предмет, который вам нужен.
Volt Booster — Это повысит напряжение до 400000 вольт, так что вы действительно сможете нанести удар!
Аккумулятор 18650 — 18650 означает размер и форму аккумулятора. Эти будут рентабельными и выполнят свою работу.
Кнопочный переключатель — Этот переключатель будет отлично работать по отличной цене и упростит подсоединение проводов.
Электрический провод — Вы можете купить новый провод или вытащить его из старой электроники
Заглушки из ПВХ — Эти заглушки подходят для 1-дюймовой трубы из ПВХ, с которой вы будете работать.
Паяльник — Здесь не нужно тратить кучу денег, мы просто делаем пайку. Этот отлично подойдет для легкой пайки, которую мы будем делать.
Припой — Есть водопроводный припой, который НЕ РАБОТАЕТ, поэтому этот припой избавляет вас от необходимости определять, какой из них вам нужен.
Дрель — Для этого подойдет любая дрель. Если у вас его нет, я бы попросил одолжить у ваших соседей, прежде чем покупать его!
Винты — Подойдет любой размер.
Отвертка — Головка Phillips подойдет лучше всего.
Есть много-много способов сделать электрошокер. практически из всего, что вы можете найти в своем доме.Труба ПВХ собирается предоставить вам самый прочный корпус и инструменты, необходимые для оглушения оружие просто необходимо для выполнения работы, поэтому этот список будет самым рентабельный для вас и самый простой способ получить конечный результат.
Также мы будем использовать аккумулятор и в этом руководстве используется усилитель напряжения, а не конденсатор. Вы конечно можете при желании используйте конденсатор, но если вы не знакомы с пайкой заготовки печатная плата, а также какой конденсатор использовать вы значительно увеличите риск получить удар электрическим током, а также получить устройство, которое просто не работает.Цель этого руководства — убедиться, что у вас есть действующий электрошокер к концу статьи!
Пошаговая инструкция Инструкция
Шаг 1.) Припаиваем провода к аккумулятору 18650
Сначала вам нужно припаять красный провод к положительная сторона аккумулятора. Соответственно спаяете черный провод к отрицательной стороне аккумулятора. Обязательно припаяйте его по бокам, чтобы можно вставить аккумулятор обратно в блок питания и зарядить его, чтобы повторно использовать оглушение пистолет!
Шаг 2.) Подключите провода к кнопочному переключателю
Труба из ПВХ довольно длинная, поэтому мы нужно сделать провода кнопочного переключателя. Идите и возьмите 2 штуки провод, примерно 4 дюйма каждый, и прикрепите его к проводам кнопки переключатель. После этого оберните соединения изолентой.
Шаг 3.) Установите ПВХ трубу и заглушки!
Начните с отметки точки примерно на 3,45 дюйма вверх длина трубы. Затем возьмите одну из заглушек из ПВХ и нарисуйте 2 точки на внутри крышки рядом, но с промежутком между ними.
Затем с отверстием на 3,45 дюйма вверх длина трубы должна быть просверлена, и вы хотите, чтобы она была размером с кнопочный переключатель. Не волнуйтесь, мы не пытаемся достичь совершенства в этом.
Затем просверлите отверстие в каждой из 2 точек. на колпачке из ПВХ.
Шаг 4.) Вставьте кнопочный переключатель
Поместите кнопочный переключатель в отверстие. Убедитесь, что присоединенные провода торчат вниз и выходят из короткой стороны трубы, чтобы вы могли легко получить к ним доступ. Если отверстие слишком большое, вы можете обернуть кнопочный переключатель изолента, чтобы плотнее прилегала к отверстию.
Шаг 5.) Закрутите крышку
Сначала прикрепите 1 провод длиной около 2 дюймов к 1 винт, а затем проделайте то же самое с другим проводом ко 2-му винту. Вы будете затем возьмите отвертку и вверните их в крышку. Наконец, поставьте электрические скотчем на головках винтов, чтобы закрепить его. Ваша острая часть винтов должен торчать из верхней части заглушки из ПВХ.
Шаг 6.) Подключите усилитель напряжения
Далее необходимо подключить провода, ведущие от усилителя напряжения до проводов, ведущих к винтам. затем снова наклеиваем изоленту на место соединения проводов.
Шаг 7.) Установите все в
Теперь вам нужно установить усилитель напряжения. Вы вставите его на самую длинную сторону, чтобы провода усилителя напряжения и стартер оба торчат с короткой стороны.Кроме того, вы можете сдвинуть кусок пены с усилителем напряжения, чтобы он не подпрыгивал в там.
Шаг 8.) Подключите усилитель напряжения и аккумулятор к Switch
.Подключите отрицательный провод усилителя напряжения к проводу кнопки. выключатель и обязательно закрепите его изолентой. Затем подключите минус провод АКБ ко 2-му провод кнопочного переключателя. Снова обмотайте соединение изолентой.
Шаг 9.) Крышка!
Полностью задвиньте аккумулятор и вставьте колпачок на электрошокер готов к работе! Со временем вы будете использовать весь заряд в аккумулятор, и в этом случае вы можете просто снять крышку и зарядить аккумулятор.
Обычно Задаваемые вопросы:
Опасно ли повышение напряжения до 400 000? — На самом деле нет. Напряжение — это движущая сила электрического тока, поэтому он действительно проникает в объект.Опасны именно токи, и электрошокер работает от высокого напряжения — по этой причине электрический ток малой силы.
Что если Я случайно перекрещиваю провода? — Если нет знаком с аспектами электричества и работы с ним, в общем, Возможно, стоит отказаться от создания этого электрошокера своими руками. Пересекая провода положительное и отрицательное ничего не могут сделать или могут вызвать взрыв в зависимости от какие провода вы пересекаете и когда.
Кому Вывод
Надеюсь, вам понравилось учиться делать электрошокер с конденсатором! Опять же, будьте осторожны при работе с таким оборудованием.Убедитесь, что у вас есть подходящая батарея 18650 и усилитель напряжения, чтобы у вас была достаточная мощность, чтобы нанести удар с той силой удара, которую вы ищете! Счастливого строительства!
Вы также можете использовать чехол для телефона с электрошокером.
13 распространенных проблем с пайкой печатных плат, которых следует избегать
Ручная пайка всегда считалась отличительным навыком в репертуаре гиковских навыков каждого производителя электроники. Пайка никогда не была ракетостроением.Это может быть интересное занятие для новичков, и при достаточной практике это навык легко освоить.
Хотя кто угодно может бросить припой на печатные платы, получите ли вы классные паяные соединения или просто пещерные соединения — это совсем другое дело. По мере того, как компоненты становятся меньше и компактнее, шансы возникновения проблем с пайкой возрастают. При пайке печатной платы старайтесь, чтобы готовое изделие имело следующие характеристики:
- Паяльная поверхность остается чистой;
- Паяные соединения должны обладать достаточной механической прочностью, чтобы паяные детали не выпали или не расшатались при вибрации или ударе;
- Пайка должна быть надежной и обеспечивать электрическую проводимость. Это не только гарантия работоспособности продукта, но и предотвращение его выгорания в результате короткого замыкания.
И если ваша печатная плата будет использоваться для важного приложения, будет как никогда важно знать, как выглядит хорошее паяное соединение.

(Источник: Surfacemountprocess)
Вот руководство, которое поможет вам различать, что хорошо, а что нет, чтобы вы могли быть уверены, что избежите этих проблем с пайкой для своих домашних проектов или просто сможете провести оценку качества собранных печатных плат, полученных от третьей стороны.
Идеальные пайки
При поиске дефекты припоя, полезно иметь изображение идеального паяного соединения для сравнение.
Идеальное паяное соединение со сквозным отверстием — это как Hershey’s Поцелуй
Идеальное паяное соединение со сквозным отверстием
(Источник: unbrokenstring)
Идеал паяное соединение для компонентов со сквозным отверстием представляет собой «вогнутый фланец», который имеет гладкая и блестящая вогнутая поверхность под углом от 40 до 70 градусов от горизонтально, что похоже на поцелуй Херши.Может быть достигается, когда паяльник нагрет до нужной температуры, с оксидом слой очищен от контактов печатной платы.
Идеальное паяное соединение для поверхностного монтажа
Точно так же хорошие паяные соединения SMD также имеют гладкие вогнутые галтели.

(Источник: poeth)
Следовательно, общие характеристики хорошего паяного соединения:
— Имеет хорошие и полное смачивание
— Имеет вогнутая кромка
— Блестящий и чистый
Плохие пайки
К сожалению, паяные соединения могут выйти из строя по многим причинам, так как припой всегда оказывается там, где ему не положено.

(Источник: gaudi.ch)
1. Паяльная перемычка
Паяные перемычки — сквозное и поверхностное крепление
(Источник: Pimoroni, Youtube-Androkavo)
Из множества проблем, вызываемых все меньшими и меньшими компонентами, паяные перемычки занимают первое место в списке. Паяльный мост образуется, когда две точки на печатной плате, которые не должны быть электрически соединены, непреднамеренно соединяются припоем во время пайки печатной платы.Это приведет к короткому замыканию, которое может вызвать различные повреждения, в зависимости от конструкции схемы.
Обычно это связано с чрезмерным нанесением припоя между соединениями или использованием слишком больших или слишком широких паяльных жалах. Или угол, когда паяльник вынут, неподходящий. Идентификация паяного мостика иногда может быть сложной задачей, поскольку паяные мостики могут быть микроскопическими по размеру. Если его не обнаружить, это может привести к короткому замыканию и возгоранию компонента.
Паяльный мостик можно зафиксировать, удерживая припой в середине моста, чтобы расплавить припой, и протягивая его, чтобы сломать мост. Если паяльная перемычка слишком велика, излишки припоя можно удалить с помощью присоски для припоя.
Конечно, лучше всего предотвратить образование перемычек припоя; вы можете использовать правильную длину вывода для сквозных отверстий. Длина выводов, подходящая для вашего приложения, зависит от размера и толщины печатной платы, а также размера и качества компонентов; Кроме того, вы должны использовать правильный размер отверстия и диаметр площадки для деталей со сквозным отверстием.
2. Избыточный припой

(Источник: Androkavo, Youtube)
Если вы проявите излишний энтузиазм и нанесете на штифт слишком много припоя, вы получите избыточный налет, который характеризуется округлой и выпуклой формой. Прямая причина в том, что снятие припоя происходит слишком поздно.
Обычный новичок предполагает, что чем больше припоя, тем лучше, но хотя больше припоя должно увеличить количество материала, образующего соединение, трудно понять, что на самом деле произошло под этой массой припоя.По-прежнему существует вероятность того, что ни штифт, ни площадка не смачиваются должным образом. С одной стороны, это расходует припой, с другой стороны, это увеличивает риск образования паяных мостиков и может содержать другие дефекты; Так что лучше перестраховаться, чем сожалеть. Достаточного количества припоя для надлежащего смачивания штифта и контактных площадок обычно достаточно, и вогнутая поверхность остается наилучшей формы, поскольку это позволяет нам лучше получить доступ к смачиванию соединения.
Таким образом, ключом к тому, чтобы избежать слишком большого количества припоя, является понимание сроков вывода припоя.
3. Шариковый припой

Шарики припоя также являются одним из наиболее распространенных дефектов пайки, которые обычно возникают при пайке волной или оплавлением. Он выглядит как небольшая сфера припоя, которая прилипает к ламинату, резисту или поверхности проводника.
Шарики припоя могут быть вызваны многими факторами, в основном по следующим двум причинам:
- При пайке печатных плат влага возле сквозных отверстий на печатной плате превращается в пар из-за тепла.Если металлическое покрытие стенки отверстия тонкое или есть зазоры, водяной пар будет удален через стенку отверстия. Если в отверстии есть припой, водяной пар может выдавить припой и образовать шарики припоя на лицевой стороне печатной платы.
- Образование шарика припоя на обратной стороне печатной платы (сторона, контактирующая с гребнем волны) вызвано неправильной настройкой некоторых технологических параметров при пайке волной припоя. Если количество флюсового покрытия увеличено или температура предварительного нагрева установлена слишком низкой, это может повлиять на испарение компонентов флюса.Когда печатная плата входит в гребень волны, излишек флюса испаряется при высокой температуре, и припой выплескивается из ванны с оловом. На поверхности печатной платы образуются шарики припоя неправильной формы.
4. Холодное соединение
Бугристый и тусклый холодный стык(Источник: Androkavo, Youtube)
Поверхность холодных стыков выглядит тусклой, бугристой и покрытой рябью. Обычно это вызвано тем, что к стыку передается недостаточное количество тепла для его полного расплавления, что может быть результатом ряда различных причин.Возможно, паяльнику или самому соединению не было предоставлено достаточно времени для достаточного нагрева, температура паяльника может быть недостаточно высокой для плавления конкретного типа используемого припоя (например, бессвинцовый припой имеет более высокую температуру плавления) или, это может быть результатом конструкции подушечек и самих следов. Например, контактная площадка, подключенная непосредственно к заземляющей пластине без учета термического разгрузки, приведет к тому, что тепло паяльника будет отдано заземляющей пластине. Если вы обнаружите стойкое паяное соединение, которое не разжижается, возможно, неисправна конструкция.
Холодное соединение — это то же самое, что и виртуальная сварка. В процессе производства сложно полностью обнажить. Часто требуется, чтобы пользователи использовали его в течение определенного периода времени, который может составлять дни, месяцы или даже годы. Это не только будет иметь очень плохие последствия, но и вызовет чрезвычайно серьезные последствия. Из-за низкой прочности холодной сварки проводимость невысока.
5. Перегрев стыка

Подобно тому, как слишком мало тепла вызывает шаткие суставы, слишком большое количество тепла также вызывает головную боль.Перегретые паяные соединения имеют белые паяные соединения, отсутствие металлического блеска и шероховатую поверхность. Перегрев паяных соединений может возникнуть в результате слишком высокой температуры паяльника или из-за того, что припой не течет, возможно, из-за того, что поверхность контактной площадки или вывода уже имеет слой оксида, что препятствует достаточной теплопередаче и, следовательно, заставляет вас нагревать сустав слишком долго. Будем надеяться, что нанесенный ущерб не будет серьезным (возможно, это просто сгоревший флюс), но он может привести к полному подъему колодок, повреждению платы или необходимости дорогостоящего ремонта.Избегайте этого, выбирая правильную температуру паяльника и используйте флюс для очистки грязных стыков и контактных площадок.
6. Надгробие
Дефект надгробной плиты — поверхностный монтаж и сквозное отверстие
(Источник: Youtube — BermNarongGamer, Epectec)
Компонент с надгробием обычно представляет собой компонент для поверхностного монтажа, такой как резистор или конденсатор, одна сторона которого оторвана от контактной площадки. В идеале припой должен прикрепиться к обеим контактным площадкам и начать процесс смачивания.Но если припой на одной контактной площадке не завершил процесс смачивания, одна сторона компонента будет наклоняться набок, выглядя как надгробие, отсюда и ее зловещее название.
При пайке оплавлением все, что может привести к расплавлению паяльной пасты на одной контактной площадке раньше, чем на другой, может вызвать надгробие. Например, отсутствие терморельефа или неодинаковые толщины дорожек, соединяющих контактные площадки. При пайке волной припоя компоненты с большими корпусами могут физически толкаться поступающей волной припоя, в результате чего компонент фиксируется в виде надгробия.Инженеры-компоновщики должны учитывать направление волны при проектировании плат, предназначенных для пайки волной припоя.
7. Недостаточное смачивание (сквозное отверстие)

Не полностью смоченные стыки являются слабыми и не образуют прочного соединения с доской. В идеале припой должен на 100% смачиваться контактной площадкой и штифтом, не оставляя открытых щелей или пустот. Недостаточное смачивание контактов и контактной площадки происходит из-за того, что не удается подвести тепло как к контакту, так и к контактной площадке, и не дает припою достаточно времени для растекания.Большинство причин заключается в том, что поверхность зоны сварки загрязнена, покрыта пятнами припоя, или на поверхности склеиваемого объекта образуется слой оксида металла. Методика ремонта заключается в том, чтобы тщательно очистить доску и равномерно нагреть колодку и штифт.
Продукты с проблемами недостаточного смачивания имеют низкую прочность, а цепь не подключена, не включается и не выключается.
8. Недостаточное смачивание (поверхностный монтаж)

Точно так же компоненты SMD также могут страдать от недостаточного смачивания. На изображении выше 3 контакта компонента SMD не имеют хорошего смачивания с соответствующими площадками. Припой на штырях не попал на контактные площадки, так как контакт был нагрет вместо контактной площадки. Это приведет к пропуску пайки или меньшему количеству сбоев при пайке, что может привести к выпадению компонентов.
Решение для устранения этого дефекта — нагреть паяльную площадку кончиком паяльника, а затем нанести еще припой, пока он не растечется и не расплавится вместе с припоем, уже находящимся на контакте.
9. Пайки для припоя

(Источник: Epectec)
Паяное соединение, которое не смачивается припоем, обычно называют скипом припоя. Между припоем и выводом компонента или с медной фольгой есть четкая разделительная линия, и припой углублен в сторону разделительной линии. Это происходит, когда припой пропускает контактную площадку для поверхностного монтажа, что приводит к разрыву цепи. Поверхность припоя, контактирующая с компонентом, похожа на воздушный шар, прижимающийся к стенам комнаты — в узком углу из-за высокого поверхностного натяжения расплавленного припоя.Причиной пропусков припоя может быть комбинация промахов в конструкции или во время производства.
Возможно, вы разместили контактную площадку неравномерного размера, или ваш производитель мог использовать неправильную высоту волны между вашей платой и волной пайки.
Вред в том, что это может привести к неправильной работе схемы.
10. Подъемные колодки

Поднятая площадка — это площадка для пайки, которая отсоединилась от поверхности печатной платы, возможно, из-за чрезмерного усилия на существующее соединение или избыточного тепла.Другая возможность заключается в том, что прокладка находится под компонентом, который находится в слепой зоне мастера по ремонту. Поэтому технический специалист может попытаться переместить компонент, потому что паяное соединение не видно во время операции, что приводит к наклону площадки.
С такими подушечками сложно работать, так как они очень хрупкие и легко могут оторваться от следа. Фактически, эти печатные платы были повреждены.
Если вы все еще хотите использовать эту печатную плату ,, вы можете попробовать решение.Следует приложить все усилия, чтобы приклеить площадку обратно к плате, прежде чем пытаться припаять к ней.
.
11. Отсутствие припоя
Припой не полностью заполнил сквозное отверстие на этом рисунке(Источник: Kitronik)
Как следует из названия, соединение с недостатком пайки не имеет достаточно припоя для образования прочного электрического соединения. Припой не образует гладкой переходной поверхности. Здесь вероятно, что провод был нагрет недостаточно, что привело к плохому соединению.Причин, по которым не хватает пайки, много, в том числе:
- Плохая текучесть припоя или преждевременный выход припоя.
- Недостаточный поток.
- Слишком короткое время сварки.
Возможно, что это соединение будет работать, поскольку электрический контакт все еще установлен. Но механическая прочность невысока. Тем не менее, соединение с недостатком пайки может в конечном итоге выйти из строя, поскольку со временем развиваются трещины, которые ослабляют соединение. К счастью, спасти соединение с недостатком пайки не сложно.Просто разогрейте соединение и добавьте еще припоя.
12. Брызги припоя / лямки
Брызги пайки на следах (слева) и вокруг компонентов для поверхностного монтажа (справа)
(Источник: Workmanship.nasa & Texas Instruments)
Эти кусочки припоя прилипают к паяльной маске неаккуратными брызгами, создавая вид паутины. Эти резьбы неправильной формы вызваны недостаточным использованием флюса или наличием загрязняющих веществ на поверхности плат во время пайки волной припоя.Нестабильная температура паяльника также может вызвать это явление.
Брызги припоя / лямки могут вызвать короткое замыкание.
Если это связано с тем, что в проволоке для припоя слишком много флюсов канифольного типа, рекомендуется уменьшить количество добавок для проволоки. Если это связано с тем, что температура паяльника нестабильна, рекомендуется использовать стол паяльника с постоянной температурой. Конечно, важно также поддерживать чистоту поверхности досок.
13.Отверстия под штифт и газовые отверстия
Дефект отверстия под штифт (слева) и дефект продувочного отверстия (справа)
(Источник: eptac)
Отверстия под штифты и дефекты газовых раковин можно легко распознать, поскольку они выглядят как отверстие в паяном соединении. Термины «штифт» или «выдувное отверстие» дают представление о размере отверстия, при этом «штифт» относится к маленьким отверстиям, а выдувные отверстия — к гораздо большим отверстиям. Вместо того, чтобы быть результатом плохой ручной пайки, в процессе пайки волной припоя обычно образуются штифты и горловины.Влага внутри плат превращается в газ во время пайки и выходит через припой, когда он все еще находится в расплавленном состоянии. Пустоты образуются, когда газ продолжает выходить после затвердевания паяного соединения. Цепь будет временно проводить, но она легко может стать причиной плохой проводимости в течение длительного времени. Некоторые способы, которые используются для решения этой проблемы, — это запекание или предварительный нагрев плат для удаления влаги и минимальная толщина медного покрытия около 25 мкм в сквозных отверстиях.
Что можно сделать, чтобы избежать проблем с пайкой?
Хотя не существует надежного метода для полного предотвращения проблем с пайкой, есть несколько полезных привычек, которые мы можем использовать во время проектирования и пайки печатных плат, чтобы снизить риск возникновения проблем с пайкой.
1. Рассмотрите дизайн паяльной маски
Обычно зеленый цвет, припой маскирует тонкое полимерное покрытие, наносимое на поверхность печатных плат для защиты меди от воздействия окружающей среды. Конечно, паяльная маска также может отображаться в разных цветах, включая зеленый, белый, синий, черный, красный, желтый и т. Д.В частности, паяльная маска не только играет роль паяльной маски, но также играет роль защиты от коррозии, влаги и плесени. Помимо предотвращения окисления, они также предотвращают образование паяных перемычек, так как припой плохо прилипает к покрытию. Следовательно, между контактными площадками может быть спроектирована паяльная маска для образования перемычки паяльной маски. Это особенно полезно для ИС и BGA, где зазор между контактными площадками может составлять всего несколько тысячных дюйма.
2.Разместите реперные знаки
Контрольные метки представляют собой круглые отверстия в паяльной маске с круглой оголенной медью в центре, которые помещаются на плату печатной платы на этапе проектирования печатной платы. Для компонентов, требующих специальной обработки, имеются реперные метки на панели и отдельные компоненты. Машины Pick-and-Place рассматривают их как контрольные точки на печатной плате для выравнивания компонентов SMD на плате во время сборки. При правильном использовании точность размещения можно повысить. Точно так же, если реперные метки плохо спроектированы (например,грамм. плохое размещение или недостаточное количество реперных точек), они могут привести к неправильной ориентации, увеличивая риск проблем с пайкой.

(Источник: pcb-3d)
3. Очистка и лужение кончика паяльника
Плохое обслуживание наконечника — одна из основных причин плохой пайки вручную соединений. Любые загрязнения или окисление на наконечнике снизят способность паяльника проводить тепло, что, в свою очередь, снизит качество ваших паяных соединений.Следовательно, важно заботиться о своих наконечниках для пайки. Перед тем, как приступить к пайке, не забудьте очистить кончик утюга, потерев его о чистящую салфетку. Если ваше паяльное жало уже сильно окислилось, вы можете использовать активатор для его спасения. Просто окуните его в пастообразную субстанцию, переместите и дайте абразиву сделать свою работу, и поверхность снова станет блестящей.
После этого кончик утюга следует залудить. Лужить наконечник утюга означает покрыть наконечник слоем припоя, чтобы защитить наконечник от окисления и улучшить его способность проводить тепло.Очищайте и залуживайте жало паяльника после каждых двух или трех паяных соединений и еще один раз в конце каждого сеанса пайки. Это продлит срок службы вашего паяльника и улучшит качество паяных соединений!

(источник: weller-tools)
4. Практика ведет к совершенству
Пайка — это навык, который улучшается по мере того, как вы тренируетесь! Вы можете сколько угодно практиковаться на старой печатной плате или паяльной плате, прежде чем приступить к реальным проектам, которые слишком дороги, чтобы их разрушить.Попробуйте различные методы, найдите способ, которым паяльник лучше всего ложится в вашу руку, определите, как долго вам нужно держать припой и наконечник на месте, и сделайте множество ошибок.
Чтобы сделать пайку более удобной, компания Seeed выпустила миниатюрный паяльник в форме ручки. Благодаря встроенным в рукоятку дисплею температуры и схемам управления пайка становится еще более увлекательной и беспроблемной.
Откажитесь от тяжелых паяльников ради этого миниатюрного!
5.Работа с хорошей сборкой печатных плат
Если ручная пайка и поиск компонентов для ваших собственных компонентов слишком сложны, или если вы думаете, что работа с крошечными компонентами выходит за рамки возможностей вашего простого смертного глаза, всегда есть возможность работать с профессиональным сборщиком печатных плат, который опытен и знаком с подводными камнями сборки печатных плат. Благодаря 10-летнему опыту работы в отрасли, служба Seeed Fusion PCB Assembly (PCBA) может быстро подобрать компоненты и собрать для вас полную плату.
Это все, что у нас есть на данный момент. У вас есть плохо зарубленный припой, которым вы хотели бы поделиться? Поделитесь ими в разделе комментариев ниже!
Следите за нами и ставьте лайки:
Продолжить чтение
Уметь припаять конденсатор и держатель микросхемы на печатной плате.
Презентация на тему: «Уметь припаять конденсатор и держатель микросхемы на место на печатной плате.»- стенограмма презентации:
1 Уметь припаять конденсатор и держатель микросхемы на печатной плате.
Цели урока Научиться правильно и безопасно паять компоненты на печатную плату. Критерии успеха Должен уметь понимать правила охраны труда и техники безопасности, связанные с использованием паяльника.Должен быть в состоянии выбрать правильные резисторы, правильно разместить их на плате и безопасно припаять все девять на место. Можно припаять конденсатор и держатель микросхемы на печатной плате.

2

3 Безопасная пайка НАЗВАНИЕ: При пайке вы нагреваете медную дорожку в течение…
Чтобы лужить паяльник, коснитесь его на короткое время… Если вы обожглись, промойте пораженный участок под струей холодной воды, чтобы… Очистить паяльник, который вы протираете вкратце о… Для защиты рабочих поверхностей мы используем…… десять минут.… Влажная губка. … Три секунды. … Нагревательный мат. … Длина припоя. НАЗВАНИЕ:

4

5 Здоровье и безопасность при пайке. Правда или ложь.
Если вы все же обожглись утюгом, промойте ожог под проточной водой в течение трех минут. 2. Если паяльник не используется, поместите его в предусмотренный держатель.3. Коснитесь паяльника, чтобы проверить, горит ли он. 4. Перед началом пайки залудите жало паяльника влажной губкой. 5. При пайке убедитесь, что комната хорошо вентилируется. 6. Паять должен только один человек. 7. Убедитесь, что под паяльником и держателем находится нагревательный коврик. 8. Прежде чем приступить к пайке, наденьте блейзер. 9. При пайке всегда надевайте фартук. 10. Протрите утюг прилагаемым припоем, чтобы очистить его. FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE

6 БУДЕТ Вручен в понедельник 12 ДЕКАБРЯ.P3
Задача: На листе обычной бумаги A4 нарисуйте 10-миллиметровую рамку, добавьте заголовок «Безопасность пайки» и свое ИМЯ. Аккуратно запишите каждое утверждение, а затем с помощью слов и иллюстраций объясните, почему каждое правило важно. За правильное использование цвета вы получите дополнительные оценки! ВСТРЕЧАЕТСЯ В ПОНЕДЕЛЬНИК 12 ДЕКАБРЯ. P3 1. Если паяльник не используется, вставьте его в предусмотренный держатель. 2. Убедитесь, что под паяльником и держателем находится нагревательный коврик. 3. При пайке убедитесь, что комната хорошо вентилируется.4. Паять должен только один человек. 5. Не прикасайтесь к паяльнику, чтобы убедиться, что он включен. 6. Перед пайкой снимите блейзер. 7. При пайке всегда надевайте фартук и защитные очки. 8. Протрите утюг влажной губкой, предназначенной для его очистки. 9. Обязательно залуживайте жало паяльника перед началом пайки. 10. Если вы все же обожглись утюгом, протрите ожог под проточной водой на десять минут.
7 Безопасная пайка Безопасная пайка ИМЯ: ИМЯ:
Во время пайки вы нагреваете медную дорожку, чтобы… Чтобы лужить паяльник, коснитесь им на короткое время… Если вы обожгетесь, вы промокните пораженный участок под струей холодной воды для… паяльником протрите его на короткое время … Для защиты рабочих поверхностей мы используем … … десять минут.… Влажная губка. … Три секунды. … Нагревательный мат. … Длина припоя. При пайке вы нагреваете медную дорожку для … Чтобы лужить паяльник, вы слегка касаетесь им … Если вы обожглись, промойте пораженный участок под струей холодной воды, чтобы … Чтобы очистить паяльник, быстро протрите его … Для защиты рабочие поверхности мы используем…… десять минут. … Влажная губка. … Три секунды. … Нагревательный мат. … Длина припоя. ИМЯ: ИМЯ: