Подключение генератора к трехфазной сети дома схема: схема подключения с сети загородного дома через розетку

Содержание

Подключение однофазного генератора к трехфазной сети дома — советы электрика

Подключение однофазного генератора к трехфазной сети

Основу устройства классического однофазного двигателя образуют две обмотки, которые находятся под прямым углом относительно друг друга. У каждой из них имеется свое предназначение. что подразумевается их названием:

Эти обмотки могут включать в себя несколько секций, что определяется числом полюсов.

Решив использовать для подключения к дому асинхронный однофазный двигатель, следует изначально помнить о том, что он имеет определенные ограничения.

Обратите внимание

Возможности статора заложены его конструкцией, которая и определяет, для решения каких задач он может использоваться.

Речь идет о том, что при создании каждого электродвигателя заранее учитываются, какая из задач будет для него самой значимой: обеспечение максимального КПД, вращающего момента, рабочего цикла и пр.

Подобные асинхронные двигатели создают в процессе эксплуатации более высокий уровень шума. нежели двухфазные аналоги, что связано с наличием у них пульсирующего поля. У двигателя же с двумя фазами этот недостаток проявляется в меньшей степени, поскольку они оснащены пусковым конденсатором. Именно последнее устройство и создает условия для плавной работы электродвигателя.

Асинхронные однофазные двигатели требуют учета определенных правил их эксплуатации, чем они выделяются на фоне трехфазных аналогов. Недопустимым считается включение однофазных двигателей в режиме «холостого хода». Работа при малых нагрузках приводит к сильному их нагреву. Оптимально, когда такой двигатель работает при нагрузке, которая составляет более 25% от полной.

Правильный подход к решению проблемы

Максимально упростить для себя задачу по подключению генератора к дому можно следующим путем: для этого достаточно еще во время возведения загородного или частного дома и выполнения электромонтажных работ выделить определенную группу наиболее ответственных потребителей, которые будут

обеспечены резервным электроснабжением. Чаще всего это группа используется для подачи электричества на:

  • освещение;
  • отопительное оборудование;
  • определенные розетки;
  • охранно-пожарную сигнализацию.

Этот вариант является привлекательным потому, что для решения проблемы можно использовать двигатель довольно небольшой мощности.

Но, к сожалению, так поступают лишь единицы среди владельцев загородных и частных домов. Чаще всего распространены ситуации, когда проблема покупки двигателя для трехфазной сети дома и его подключения приобретает особую актуальность тот момент, когда приходится сталкиваться с таким неприятным явлением, как перебои с электричеством.

Решить эту задачу домовладельцу часто оказывается не под силу, поскольку он не обладает специальными знаниями.

чтобы подобрать подходящий вариант двигателя и в соответствии с установленными требованиями выполнить работы по его подключению к трехфазной сети.

Дабы даже человек, который далек от сферы электрики, смог разобраться, что именно делать и каким образом, мы не будем прибегать к специальным терминам и другим сложностям, а попытаемся все объяснить таким образом, чтобы любой мог разобраться с сутью этих работ.

Варианты подключения однофазного двигателя

С чего же необходимо начинать подключение однофазного генератора к трехфазной сети дома? В первую очередь необходимо определиться с методом подключения, которых сегодня известно немало.

Начать же их рассмотрение хочется с того, о котором уже было упомянуто нами выше — через подключение двигателя к выделенной для этих целей группе потребителей.

Этот метод является основным, однако помимо него существуют и другие.

Подключение нагрузки в ручном режиме

Также подключить двигатель можно посредством использования перекидного рубильника, переключателя на 3 позиции 1-0-2

. В соответствии с приведенной схемой, каждой позиции будет соответствовать следующее:

  • «1» — будет подразумевать нагрузку, запитанную от промышленной городской сети;
  • «0» — перевод рубильника в это положение будет означать, что нагрузка отключена;
  • «2» — будет соответствовать нагрузке, обеспечиваемой резервным источником электричества. В качестве такового будет выступать бензиновый, дизельный или газовый генератор.

Мы не будем слишком подробно останавливаться на устройстве составных элементов, правда, хочется отметить, что перекидной рубильник или трехпозиционный переключатель имеет довольно простую конструкцию, которая включает неподвижные контакты, соединенные с проводами (нагрузка-город-генератор), и подвижные контакты, задача которых заключается в обеспечении коммутации нагрузки с города на генератор и обратно.

Если возникла задача по переключению трехфазной нагрузки город-нагрузка, то происходит задействование сразу трех фаз. Здесь имеется в виду, что на рубильник подаются три городские фазы A-B-C, они же уходят на нагрузку. Для того чтобы нагрузка была переведена на генератор, мы должны совершать такие манипуляции, чтобы в итоге на каждую из фаз поддавалось электричество.

Решить эту задачу можно путем незначительного усовершенствования нашего переключателя рубильника: с той стороны, где будет подключаться генератор, потребуется установить перемычку между фазами A-B-C. В дальнейшем, когда нагрузка будет поступать на генератор, каждая из фаз будет обеспечена электричеством.

Подключение нагрузки посредством контакторов

Наряду с вышеперечисленными методами, подключить однофазный двигатель можно путем использования контакторов.

Основную роль здесь будут играть два контактора, среди которых один будет обеспечивать питание нагрузки от городской электросети, а другой поможет переводить нагрузку к альтернативному источнику электричества, в качестве которого будет выступать генератор.

Воспользоваться этим способом целесообразно лишь в том случае, если в системе предусмотрено автоматическое включение резервного питания.

Когда нагрузка создается городской сетью, то каждая из фаз, которая подключена к контактору, будет идти на нагрузку. При появлении в системе генератора поступают аналогичным образом, что и с перекидным рубильником: на клеммах контактора там, где подключен кабель, идущий от генератора, придется поместить перемычку между фазами и A-B-C .

Перекидной рубильник или контакторы?

Если вами не рассматривается вариант с установкой системы автоматического управления генераторами, то в этом случае для эффективного решения проблемы потребуется установить перекидной рубильник.

Причем это устройство должно быть трехпозиционным 1-0-2. Если же вы решите воспользоваться блоком автоматического запуска генератора АВР, то единственным для вас вариантом станет применение контакторов.

Эксплуатация однофазного двигателя имеет один важный нюанс: этот резервный источник питания в состоянии обеспечить бесперебойную работу всех устройств, которые имеют одну фазу. Поэтому следует убедиться, что имеющиеся у вас в доме приборы соответствуют этому требованию.

При обнаружении установок трехфазного типа вам придется отключить их от питания. пока вы будете использовать генератор. В противном случае вы рискуете полностью потерять их, поскольку использование их в подобной связке может стать причиной их выхода из строя.

Действия, приводящие к непоправимым результатам

Генератор, будь то газовый или бензиновый, отличается от большинства других приборов тем, что к нему неприменимы традиционные схемы подключения. Особое внимание следует уделить наиболее серьезным ошибкам, которые способны вывести из строя этот резервный источник питания.

Недопустимым считается схема подключения, при которой генератор подключается в трехфазной сети напрямую к потребителю.

Также запрещенным является метод подключения посредством использования двух автоматов, среди которых первый подключен к бытовой электросети, а другой — непосредственно к генератору.

Важно

Следует иметь в виду, что совершить здесь ошибку очень легко, в результате включенным окажется не тот автомат.

Последствия от такого действия будут самыми плачевными, поэтому не стоит доводить дело до подобного.

Заключение

Несмотря на обманчивое впечатление, подключить однофазный электродвигатель к трехфазной сети не так-то просто.

Учитывая, что для этого можно использовать несколько методов, а каждый из них предусматривает свои особенности, такую работу должен выполнять специалист.

Ведь любая ошибка, допущенная во время подключения этого резервного источника питания, может привести к тому, что выйдет из строя не только сам генератор, но и приборы, которые не рассчитаны на работу в подобной связке.

Источник: http://studvesna73.ru/07/23/3720/

Как подключить генератор к сети дома: схема, основные способы, инструкция :

При отсутствии электричества или сбоях в его подаче для частного дома необходимо резервное питание. Многих домовладельцев часто озадачивает проблема, касающаяся того, как подключить генератор к сети дома. Схема должна быть в первую очередь безопасной. Прежде всего необходимо разобраться, чего делать нельзя.

Ошибки при подключении резерва

Не допускается подключение мини-электростанции к розетке в доме при отключенных автоматах в щитке ввода, что часто делают хозяева. Мощность генератора может быть в несколько раз больше, чем пропускная способность проводки. Для розетки она составляет не более 3,5 кВт.

В результате провода перегреются, что грозит коротким замыканием или пожаром. В случае если кто-то нечаянно включит автомат при возобновлении питания, резервный источник электроэнергии тут же выйдет из строя. Но решение вопроса о том, как подключить генератор к сети дома через розетку, все же есть.

Мини-электростанция может подключаться к домашнему распределительному щиту, если она соответствует мощности нагрузки и подключена только к контактам рубильника со стороны генератора. Правильным решением будет также подключение к нему удлинителя, а затем – нужных приборов.

В данном случае резервный источник не будет связан с домашней сетью.

При частых отключениях электроэнергии на даче или в загородном доме рекомендуется подключать резерв с помощью перекидного рубильника, реверсивного переключателя или системы автоматического запуска резерва (АВР).

Выбор электрогенератора

Домашняя электростанция – это двигатель внутреннего сгорания (ДВС), вращающий генератор, вырабатывающий электроэнергию. Обычно применяют четырехтактные модели с частотой до 3 тыс. оборотов в минуту. Бытовые модели снабжаются топливными баками емкостью 10-15 л.

Основным вопросом при выборе является цель применения. Генератор может быть основным источником электроэнергии, но чаще всего его используют как резерв, когда возникает аварийная ситуация на линии.

Главными параметрами являются мощность, моторесурс и экономичность. Также важно, чтобы устройство было надежным и удобным в эксплуатации.

Подключение бензогенератора требует слаженной работы трех элементом:

  • кабель от резерва;
  • централизованная цепь подачи электроэнергии;
  • домашняя сеть потребления.

Основные задачи

При подключении следует определить следующее:

  • место расположения в плане экономичности и безопасности;
  • как часто происходит обрыв питания и нужна ли автоматика;
  • мощность потребления с учетом потерь и выбор запаса.

Важно создать подходящую схему подключения к домашней сети. Автоматизация процесса обходится дорого и требует квалифицированного обслуживания. Наиболее щадящем режимом для индивидуального дома является ручное подключение.

Здесь также имеет смысл применить частичную автоматизацию, поскольку полуавтоматы обойдутся недорого. Каким бы ни был вариант подключения, везде требуется надзор за работой системы. Непрерывное электроснабжение обходится дорого и для частного дома в этом нет необходимости.

В крайнем случае можно установить бесперебойный источник питания на компьютер или другие важные потребители.

Прежде всего следует рассчитать требуемую мощность дополнительного источника электроэнергии. Для этого суммируется мощность всех нагрузок, которые следует подключить, после чего следует добавить к ней запас до 30 %. Здесь учитываются пусковые токи двигателей домашней техники, в несколько раз превышающие допустимые. После к расчетной мощности подбирается агрегат.

Пример: стиральная машинка в час потребляет 2 кВт, электрическая плита – 3 кВт, холодильник – 0,5 кВт, телевизор с компьютером – 0,5 кВт, освещение – 0,5 кВт. В сумме выходит 6,5 кВт, а с учетом запаса – 8,5 кВт. На работу генератора оказывает негативное влияние отсутствие нагрузки. Она должна быть не ниже 30 % от номинального значения.

При решении вопроса о том, как подключить генератор к сети дома, схема очень важна и должна быть составлена правильно. Для минимального количества потребителей применяют компактные модели мощностью 2-3 кВт как временная мера, пока не восстановится основная сеть.

Схема подключения бензинового генератора к сети дома может быть простейшей. Важно, чтобы она была составлена правильно и обеспечивала соответствие агрегата действующей нагрузке.

Виды электрогенераторов

В качестве бытовых источников электроэнергии наиболее распространены бензиновые генераторы. Их особенности следующие:

  • большой выбор цен;
  • небольшая мощность – 0,8-12 кВт;
  • компактные мобильные и стационарные модели;
  • бывает генератор 3-х фазный и однофазный;
  • применяются преимущественно четырехтактные ДВС.

Выбирая вариант того, как подключить генератор к сети дома, схема охлаждения ДВС зависит от того, применяется агрегат постоянно или временно. Обычно устройства снабжаются воздушными радиаторами. Промышленные модели способны работать круглосуточно на жидкостном охлаждении. Они выпускаются преимущественно трехфазными. Габариты у них больше, но выше экономичность.

Подключение дизель-генератора к сети в доме применяется реже из-за большой цены. Но все же его применение целесообразно по причине большого ресурса.

Типы моделей

Установки, генерирующие электрический ток, разделяются на типы.

  1. Асинхронные. Конструкция проста и надежна. Важные узлы закрыты от влаги и пыли. Предпочтительно использовать устройства для активных нагрузок. Для питания электродвигателей асинхронные генераторы применять не рекомендуется.
  2. Синхронные. Агрегаты не имеют недостатков, характерных для асинхронных. Кроме того, они обеспечивают поддерживание более точного напряжения. Выбирать нужно бесщеточную конструкцию, у которой значительно лучше характеристики тока и меньше радиопомехи.
  3. Инверторные модели дороже и имеют меньшую мощность. Характеристики однофазных устройств хуже, особенно у дешевые моделей. Генератор 3-х фазный несколько лучше. Другими недостатками являются дороговизна и меньшая надежность.

Однофазные и трехфазные генераторы

Если трехфазных потребителей нет, целесообразно выбрать модель проще, чтобы мощность использовалась рационально. Подключение однофазного генератора к трехфазной сети дома сделать не так уж сложно. К тому же трехфазный агрегат дороже и все фазы следует равномерно нагружать. Если разница превышает 25 %, устройство может выйти из строя.

Для резерва частного дома однофазный источник тока предпочтительней при любом вводе.

Схемы подключения

Можно выбрать несколько способов применения дополнительных источников питания.

  1. Подключение резерва к выделенной группе потребителей по отдельной схеме.
  2. Применение перекидного рубильника или трехпозиционного переключателя, на которых делаются перемычки на входе со стороны генератора. В таком случае вся домашняя сеть будет запитана. Недостаток заключается в том, что трехфазные потребители здесь работать не будут.
  3. Установка двух контакторов, где один подключает питание от городской сети, а другой – от резервного источника. Способ применяется в схемах с АВР. Здесь также требуются перемычки между вводами со стороны резерва.

Подключение трехфазного генератора к трехфазной сети дома обязательно следует делать при наличии соответствующих электроприемников, например электродвигателей станков.

Автозапуск генератора

Наиболее полноценный способ переключения нагрузки производится с применением АВР. Система снабжается электростартером. Устройство автозапуска контролирует внешнюю сеть сразу после подачи на него питания.

Перед тем как подключить генератор к сети дома с автозапуском, автоматика выжидает 10 секунд после потери напряжения. Затем внешняя сеть отключается и начинается запуск дизель-генератора.

После набора оборотов в течение 20 секунд генератор подключается к сети дома.

Совет

Когда восстановится напряжение во внешней сети, резерв отключается и домашняя сеть переходит в обычный режим работы. Затем глушится двигатель генератора.

Подключение генератора с АВР к сети дома – это удобное решение, хотя и дорогостоящее.

Применение перекидного рубильника

Если средние контакты рубильника подключить к потребителю, а крайние – к кабелю электростанции и к вводу электросети, схемы источников питания никогда не пересекутся. Будет еще лучше, если у рубильника будет еще одно промежуточное нейтральное положение.

Исходное состояние рубильника считается, когда подключена главная сеть. При его переключении питание начинает поступать от генератора.

Недостатком перекидного рубильника старого образца является искрение и открытость токоведущих частей. Современные конструкции снабжены защитным кожухом, закрывающим подвижные детали. Переключатель крепится в щите управления.

Исходное положение – это подключение к главной сети. При сбое в подаче электроэнергии рукоятку переключения устанавливают в нейтральное положение, а затем запускают генератор, прогревают его и подключают к нагрузкам в доме.

Отдельное подключение нагрузки

Генераторы обычно не обеспечивают питание всей домашней сети. Достаточно подключить основные потребители: освещение и некоторые бытовые приборы.

Целесообразно переоборудовать электропроводку, чтобы не делать много переключений. Для этого достаточно провести отдельную линию к дежурному освещению и отдельным от домашней сети розеткам холодильника, телевизора, компьютера.

В щите устанавливают клеммник, к которому подключен кабель с выхода генератора.

Реверсивный переключатель

Переключение на питание от бензогенератора производится с применением реверсивного рубильника. Устройство обычно имеет 3 положения ручки, где крайние замыкают цепи, а среднее – размыкает.

Однофазная схема подходит, чтобы сделать подключение резервного генератора к сети дома с небольшой мощностью потребления, например на даче.

Входные клеммы располагаются сверху, а выходные – снизу. На щитке устанавливаются индикаторные лампы, сигнализирующие о включении сети или генератора.

Применение системы АВР

Система автоматического запуска стоит значительно дороже ручного. При этом внешний контроль все равно необходим, поскольку при запуске ДВС необходимо управлять дроссельной заслонкой. После пуска двигатель должен прогреться.

Многие предпочитают применять частичную автоматизацию, с подключением основного питания через контактор, который размыкается при отключении входа. Затем генератор запускается вручную. В него встраивается реле времени для прогрева двигателя и автоматического перехода на подключение резерва в дом.

При возобновлении подачи электричества контактор отключается и нагрузка снова подается на общую электросеть.

Резерв с полной автоматизацией электроснабжения содержит микропроцессорное регулирование работы мощных генераторов.

Особенности подключения генераторов

  1. Резервный генератор следует надежно защитить от осадков. Это может быть навес на участке или отдельное помещение с отводом выхлопа газов.
  2. Установка после счетчика, чтобы не платить за собственную выработку электроэнергии.
  3. Возможно применение резерва как подпитки при пиковых нагрузках.
  4. Выбор экономичной схемы, чтобы не было лишних затрат.

Заключение

При нестабильном электроснабжении частного дома появляется проблема, касающаяся того, как подключить генератор к сети дома. Схема должна быть простой и безопасной.

Наиболее удобным источником резервной энергии индивидуального дома или дачи является генератор с ДВС. Агрегат удобно перевозить и эксплуатировать, он не очень дорогой.

Для выбора оптимальной схемы подключения необходимо ознакомиться с особенностями устройства и переключающего оборудования.

Источник: https://www.syl.ru/article/295649/kak-podklyuchit-generator-k-seti-doma-shema-osnovnyie-sposobyi-instruktsiya

Различия схем подключения электрогенератора к домашней сети: особенности каждой схемы, область применения, выбор оборудования + основные ошибки и советы профессиональных электриков

Концепция частных домов основана на максимальной независимости. Электричество не является исключением. Большинство владельцев частных строений начинают задумываться о резерве электроэнергии из альтернативных источников.

Отсутствие электричества или регулярные сбои в подаче вынуждают многих владельцев частных домов и дач предусматривать резервное питание. Однако встает вопрос правильного подключения генератора к домашней сети. В первую очередь стоит безопасность. Необходимо четко понимать, что допустимо, а что категорически запрещено.

Основные ошибки

Существует ряд ошибок, которые допускают неопытные «электрики».

Нельзя подключать мини-электростанцию к домашней розетке, когда автоматы в щитке  ввода отключены. При редких перебоях в электроэнергии становится традицией «подкидывать» кабель бензогенератора к ближайшему разъему через штепсель.

Большинство рассуждают: зачем обустраивать резервный ввод, если свет пропадает 2-3 раза за год. Русский человек живет по принципу: мужик не перекреститься пока гром не грянет.

Электрики не рекомендуют даже задумываться о подключении генератора через розетку по следующим причинам:

  • В линии отсутствует отдельный автомат.
  • Розеточная группа не способна принять магистральную нагрузку.
  • Срабатывает человеческий фактор: владельцы забывают отключить вводной автомат, что приводит к перегрузкам, срабатыванию защиты.
  • Существует вероятность «встречки»: электричество начинает поступать с общей сети при работающем генераторе. Агрегат выходит из строя.
  • Не стоит пренебрегать комфортной и надежной системой эксплуатации узла. Лучше изучить схемы подключения генератора к домашней сети и подобрать оптимальный вариант. Это позволит сохранить оборудование и электросеть.

Генератор должен иметь мощность несколько раз меньше пропускной способности проводки. К примеру, значение для розетки – 3,5 кВт. В противном случае возникает перегрев, короткое замыкание и пожар. При включении автомата возобновиться питание, а резервный источник сломается.

Однако в некоторых случаях подключение генератора через розетку возможно. Если мини-станция соответствует по мощности, то ее можно подключить к распределительному щитку к контактам рубильника, но со стороны генератора. Лучшим вариантом будет, если к нему подключить сперва удлинитель, а только потом нужные приборы. Это исключит связь резервного источника с домашней сетью.

На даче и в загородном доме при постоянных отключениях основного источника резерв подключают через перекидной рубильник, системы автоматического запуска или реверсивный переключатель.

Оборудование для монтажа

Для подключения электрогенератора к электросети дома не потребуется много оборудования. Достаточно определить место расположения агрегата, обеспечить шумоизоляцию и вентиляцию в соответствии с нормами. Скорее всего, в помещении придется сделать цементно-песчаную стяжку для снижения вибрации.

Рассматривать монтаж мобильных генераторов до 2 кВт не имеет смысла. Они не могут полноценно обеспечить дом электричеством. К тому же они мобильны и не требует специальных условий месторасположения.

Опишем установку электрогенератора с мощностью от 2 кВт. Для организации резервной сети электропитания потребуется:

  • Медный кабель с сечением от 4 кв. мм для организации отдельного ввода. Длина должна соответствовать расстоянию между вводным устройством и месторасположением генераторного агрегата.
  • Модульный перекидной рубильник, который можно зафиксировать на DIN-рейке 35 мм. Среди недорогих моделей хорошо зарекомендовал TDM-63, а более надежными являются ABB, Hager.

Уделить внимание следует заземлению, так как подсоединение должно соответствовать ПУЭ. Другими словами перед подключением резерва необходимо организовать систему заземления TN-C-S или ТТ.

Подбор электрогенератора

Домашняя электростанция представляет собой двигатель внутреннего сгорания и вращающийся генератор, который вырабатывает электроэнергию. Наиболее распространены четырехтактные модели с максимальной частотой 3 тыс.

оборотов. Объем топливного бака в бытовых моделях – 10-15 литров. Основной критерий выбора должна быть область использования.

Генераторы могут выступать основным источником энергии, но чаще – это резерв при аварийной ситуации.

При выборе стоит обратить внимание на некоторые параметры:

  • моторесурс;
  • мощность;
  • экономичность;
  • удобство.

При подключении важно обеспечить слаженную работу 3 элементов:

  • домашней сети – потребителя;
  • централизованной цепи подачи;
  • кабеля от резерва.

Перед подключением определяются со следующими моментами:

  • безопасное и экономичное расположение электрогенератора;
  • частота сбоев подачи электроэнергии в общей сети, необходимость в автоматики;
  • рассчитанная мощность потребления с учетом запаса и потерь.

Требуется обеспечить подходящую схему подключения.

Непрерывна подача энергии стоит достаточно дорого, частный дом редко нуждается в подобном обеспечении. На важные потребители электроэнергии, такие как компьютер, можно подключить бесперебойный источник питания.

В первую очередь необходимо рассчитать мощность потребляемой энергии. Она является суммой мощностей нагрузок, которые запланировано подключить. Дополнительно прибавляют запас в размере 30% от суммарного значения. Это требуется для учета пусковых токов двигателей бытовой техники, которые в 2-3 раза превышают допустимых. По расчетной мощности можно выбирать агрегат.

Пример расчета. В доме установлена стиральная машина 2 кВт, холодильник – 0,5 кВт, электроплита – 3 кВт, общее освещение – 0,5 кВт, телевизор компьютер – 0,5 кВт. Суммарная мощность составляет 6,5 кВт, но при учете запаса расчетное значение повысится до 8,5 кВт.

Схема подключения к домашней сети бензинового генератора должна быть наиболее простой. Главное, чтобы она была правильной и позволяла обеспечить агрегат требуемой нагрузкой.

Виды генераторов

Бытовыми источниками энергии могут быть различные типы генераторов, но наиболее востребованными являются бензиновые. Они обладают следующими особенностями:

  • широкий диапазон цен;
  • мощность 0,8-12 кВт;
  • небольшие размеры;
  • существуют стационарные и мобильные модели;
  • существуют однофазные и трехфазные;
  • используется четырехтактный двигатель внутреннего сгорания.

При выборе схемы подключения необходимо учитывать способ охлаждения ДВС, что в свою очередь зависит от времени и частоты работы. Наиболее часто модели оснащены воздушными радиаторами. Промышленные модели способны работать длительное время, так как в них предусмотрено жидкостное охлаждение. Это увеличивает габаритные размеры, но повышает экономичность.

Дизель-генераторы используются реже в домашних сетях, так как их стоимость выше. Однако их использование обосновано большим ресурсом.

Типы электрогенераторов

Существует несколько типов электрогенераторов:

  • Асинхронные. Имеют простую и надежную конструкцию. Все узлы полностью защищены от влаги и пыли. Устройства лучше использовать для активных нагрузок. Асинхронные генераторы не рекомендуют использовать для питания электродвигателя.
  • Синхронные. Они не содержат перечисленных недостатков асинхронных генераторов. Также они способны более точно поддерживать напряжение. Отдавать предпочтение следует бесщеточную конструкцию с лучшими характеристиками тока и меньшими радиопомехами. У инвентарных моделей меньшая мощность и выше стоимость. Однофазные имеют хуже характеристики, особенно недорогие. Немного лучше трехфазные генераторы. Вторым недостатком считается высокая стоимость и более низкая надежность.

Однофазные и трехфазные

Если в доме нет трехфазных потребителей, то лучше установить более простую модель для рационального использования мощности. Подключить самостоятельно однофазный генератор намного проще.

Стоимость трехфазных агрегатов выше, а сам генератор должен быть равномерно нагружен по трем нагрузкам равномерно. Выход из строя происходит при превышении разницы на 25%.

В качестве резервного источника однофазный генератор предпочтительнее при любых выходах.

Схема подключения

Существует несколько способов использования дополнительного источника питания:

  • Подключение по отдельной схеме резерва к выделенной группе.
  • Использование трехпозиционного переключателя или перекидного рубильника. Для запитки всей цепи делаются перемычки со стороны генератора на входе. Единственный минус – трехфазные потребители не работают.
  • Монтаж двух контактов для питания от резервного источника и городской сети. Метод применяется при АВР. Со стороны резерва обязательно делают перемычки.

Трехфазный генератор подключают к трехфазной сети при наличии электроприемника. Примером может быть электродвигатель станков.

Автозапуск генератора

Полноценным методом переключения нагрузки подразумевает использование АВР. В системе есть электростартер. Устройство автозапуска начинает контролировать внешнюю сеть после подачи питания на него. Перед подключением генератора автоматика ждет около 10 секунд после исчезновения напряжения.

Далее внешняя сеть полностью изолируется и запускается дизель-генератор. Для полного набора оборотов требуется около 20 секунд, после чего организуется подключение к домашней сети. После восстановления работы внешней сети резерв отключается, а домашняя сеть начинает работать в привычно режиме.

Только после этого двигатель генератора глушится.

Схема предполагает наличие у генератора системы остановки двигателя и стартера. При наличии большого опыта можно организовать ее самостоятельно, но это хлопотно. Вопрос можно решить двумя способами:

  • С электрогенератором приобрести комплектный блок управления. Его подключают по указанной с инструкции схеме. Он не только будет регулировать запуск и остановку, но и частоту оборотов, то есть итоговую мощность.
  • Устройства АВР, в которых есть компоненты, устанавливающиеся на генератор в качестве дополнительного оборудования для управления дроссельной заслонкой и стартером.

Использование генератора с АВР дорогостоящее, но удобное решение.

Использование перекидного рубильника

Расположение щита с ВРУ в легкодоступном месте может оказаться камнем преткновения для домовладельцев. Есть смысл использования автоматического устройства переключения. Реализация метода не сложнее проходного выключателя.

Потребуются два модульных контакта, количество контактных пар соответствует необходимому числу, и пара нормально замкнутых и разомкнутых контактов. В обычном режиме городская сеть будет на подхвате включенного контактора.

Если в общей сети электричество пропадает, то контакты отбрасывает и пара контактов замыкается, что приводит в действие другие контакты, ответственных за резерв.

Рубильник помогает обособить схемы источников питания – крайний контакт рубильника подключают к вводу электросети и кабелю электростанции, а средний – к потребителю. Хорошо, если в рубильнике будет промежуточное нейтральное положение. Исходным положением будет подключение главной сети. Но при переключении электропитание начинает идти с генератора.

Переключатель закрепляют в щитке управления так, чтобы исходным положением была работа основной сети. При падении напряжения переключатель становиться в нейтральное положение, после чего запускается генератор. Он должен прогреться и только после подключиться к домашней нагрузке.

При возобновлении общего энергоснабжения первый контакт включается и размыкает цепь, запутывающую второй ввод. Подобная схема с натягом называется автоматической, так как пуск все же осуществляется под человеческим контролем.

Подключение нагрузки

Чаще всего генератор не способен обеспечить полную потребность домашней сети. Он используется на основные потребители – часть бытовых приборов и освещение.

Следует рассмотреть переоборудование проводки, чтобы исключить множества переключателей. Как правило, организуют одну отдельную линию для дежурного освещения и вторую – к розеткам компьютера, холодильника и телевизора.

В щиток монтируют клеммник для подключения выхода генератора.

Реверсивный переключатель

Используют реверсивный рубильник для переключения источников питания. В устройстве ручка имеет три положения для замыкания и размыкания цепи, среднее положение для размыкания всех контактов.

На даче или в частном доме с небольшим потреблением можно использовать однофазную схему подключения к домашней сети резервного источника.

В щитке должны быть индикаторные лампы для сигнализации включения генератора или сети.

Традиционно нижние контакты используют для нагрузки, а с противоположной стороны подключают вводы.

Этапы подключения генератора по схеме с пакетным переключателем:

  • Автомат ввода отключить.
  • Рукоятку переключателя установить на сеть генераторной установки.
  • Автомат нагрузки отключить.
  • Соединить кабель ручного переключателя к розетки генератора.
  • Запустить генератор, позволить прогреться пару минут.
  • Подать питание на рубильник.
  •  Автоматы нагрузки включить.

После появления электроэнергии в основной сети агрегат отключают от нагрузки, используя обратную последовательность.

Система АВР

Организация автоматического запуска стоит значительно больше ручного. Однако внешний контроль она не отменяет – запуск ДВС подразумевает управление дроссельной заслонкой. Как и ранее отмечалось, двигатель после пуска необходимо прогреть. Некоторые хозяева используют частичную автоматизацию – основное питание подключено через контактор.

При отключении входа он размыкается. На следующем этапе требуется запустить вручную генератор. В нем встроено реле для прогрева и автоматического перехода домашней сети на резервный источник. При появлении электричества в основной сети контактор отключается, а нагрузка идет на общую сеть.

При полной автоматизации электроснабжения резерв имеет микропроцессорное регулирование работы генератора.

Подключение генератора

Генератор должен быть хорошо защищен от влаги. Для этого используют отдельное помещение или навес. При монтаже в помещении обязательно предусматривают отвод выхлопа газа.

Электрогенератор устанавливают после счетчика, в противном случае придется платить за выработанную самостоятельно энергию. Резервный источник может быть подпиткой во время пиковых нагрузок.

Необходимо правильно подобрать схему монтажа, чтобы исключить необоснованных трат.

Нестабильная подача электроэнергии приводит к проблеме – как подключить генератор к домашней сети. Выбирать следует простые и безопасные схемы. Удобным источником энергии станет генератор с ДВС. Оборудование легко перевозить  и использовать, его стоимость не высока. Для правильного подбора оптимальной схемы потребуется узнать особенности устройства, переключающего оборудования.

Источник: https://www.expertporemontu.ru/shema-podklucheniya-generatora-k-seti-doma-svoimi-rukami-430

Подключение генератора к сети загородного дома

Электроэнергия, хотя и вырабатывается на крупных электростанциях, которые работают без остановки, но, тем не менее, иногда пропадает. Погода вносит свои коррективы во многие процессы. В том числе и в электроснабжение.

Причем для поселений вне городской черты они наиболее чувствительны. И когда на даче или где-нибудь в деревне с приходом непогоды пропадает свет, цивилизация вдруг исчезает. Но чтобы не испытывать проблем с отключениями электричества, нужен резервный генератор.

О его подключении и расскажем далее.

Выбор наилучшего варианта схемы

Электросеть 220 В поступает в современные частные дома и дачи через счетчик электроэнергии, расположенный вне помещения. Но главный распределительный щит обычно устанавливается в помещении. Электрогенератор также располагается либо в доме, либо в подсобном помещении. По этой причине надо в первую очередь выбрать оптимальный вариант его подключения:

  1. По месту установки электросчетчика.
  2. По месту расположения электрического щита.

В каждом из этих вариантов надо использовать такую схему, в которой питающие напряжения электросети и генератора надежно разделяются и ни в коем случае не соединяются встречно. Вариантов такой схемы может быть несколько.

Современные системы автоматического управления выпускаются для решения, в том числе и управления генераторами.

Они обеспечивают после пропадания напряжения их автоматический запуск и безопасное присоединение к домашней электросети.

Схемы с АВР

Под управлением микроконтроллера по заданной программе коммутаторы автоматически выполняют все необходимые переключения. Как результат — не надо задумываться о необходимости что-либо включать-выключать вручную и делать это.

Автоматика все сделает за человека. Но за деньги. Причем из всех вариантов сумма получится самой большой. Автоматика — дорогое удовольствие.

Кроме того, подобная схема легко реализуема только одновременно с построением домашней электросети.

Если решено применить полностью автоматическое переключение домашней сети на питание от электрогенератора, потребуется блок автоматического ввода резерва (АВР). Он должен настраиваться на приоритет основной электросети. Пример такого блока показан далее на изображении.

Блоки АВР в отдельном настенном боксеСхема домашнего электроснабжения с резервным генератором и АВР

Практическая реализация такой схемы тем проще, чем короче провода и кабели, соединяющие ее элементы. Поэтому рекомендуется продумать размещение элементов схемы заранее.

При этом не забыть о заземлении, для которого также предусматривается определенное место. В руководстве по эксплуатации обязательно изложены рекомендации о том, как делается заземление генератора.

Обратите внимание

Полная автоматизация перехода на электропитание от генератора неразрывно связана с его конструкцией.

Пример инсталляции заземления электрогенератора

Такая мини-электростанция конструктивно делается по аналогии со стартером автомобиля. В ней обязательно присутствует аккумулятор для питания электродвигателя, вращающего двигатель внутреннего сгорания.

Если применена мини-электростанция, которая запускается только вручную, эта операция — единственная, которую необходимо выполнить после отключения основной питающей электросети.

Также вручную придется отключить электростанцию и после восстановления централизованного электроснабжения.

Схема полностью автоматического резервирования электропитания трехфазной домашней сети

Переключение вручную как минимум дешевле…

Когда электросеть уже существует и к ней надо присоединять автоматику для управления электрогенератором, возникают трудности, которые с трудом преодолеваются.

Поэтому при доработке домашней электросети лучше выбрать схему с ручным переключением. Для этого в уже эксплуатируемом электрическом щите используется вариант с установкой перекидного рубильника.

Лучше всего применить компактные модели этого коммутатора. Некоторые из них показаны далее на изображении.

Перекидные рубильники от фирмы ABB

Но их можно использовать только в том случае, когда к электрощиту либо уже были проложены все необходимые для этого кабели, либо их можно проложить в уже сложившихся условиях.

И, конечно же, на дин-рейке необходимо место для размещения рубильника. А еще уточним, что такой рубильник относится к дорогим коммутаторам.

Поэтому, исходя из цен, вместо него можно порекомендовать рубильник классической конструкции, показанный на изображении далее.

Коммутатор с рубильником

Этот коммутатор устанавливается между электросчетчиком и распределительным щитом. Где именно — определяется в каждом конкретном случае.

Но самое главное при выборе коммутационного оборудования то, что не имеет смысла вкладываться в дорогие комплектующие изделия. Резервное электропитание работает случайным образом и наиболее часто кратковременно.

Резервные коммутаторы совершают незначительное число переключений. То есть они изнашиваются минимально. Поэтому простейший вариант — это схема с перекидным рубильником.

Схема с перекидным рубильником (3 фазы с общей нейтралью)

Переключатели обязательны к использованию

Наличие отдельного коммутатора, несмотря на то, что он будет нечасто использоваться, сделает схему электроснабжения дома безопасной как для пользователей, так и для оборудования, присоединенного к электропитанию.

Хотя самое простое решение — это обычная розетка, через которую можно запитать всю домашнюю сеть. Тем более что подключение к электрогенераторам тоже выполняется через розетки, установленные на их корпусе.

Однако все зависит от мощности электрогенератора.

Если его мощность более 2–3 кВт, обычная розетка может перегреться и прийти в негодность. Но и более мощные контакты решат проблему лишь отчасти.

Для оптимальной схемы необходимо аварийное отключение нагрузки.

Также будет велика вероятность того, что при подаче сетевого напряжения получится встречное соединение генератора и питающей электросети. А это может привести к порче электрогенератора.

Важно

Перекидной рубильник, хоть и не автоматический, в одном из трех своих положений перенаправит потребителей на электрогенератор.

Причем никогда не получится встречного соединения, поскольку это физически невозможно в этом рубильнике. В среднем положении домашняя электросеть получается обесточенной.

Даже при работающем электрогенераторе и наличии напряжения в электросети можно без проблем переключаться между этими двумя источниками электроэнергии.

Подключение реверсивного рубильника в однофазной электросети

Синий провод сети и генератора (см. изображение выше) надо пропустить через контакты автоматических выключателей.

Для сети и для электрогенератора нужен свой отдельный автомат-выключатель. В схеме подключения генератора обязательно должен присутствовать заземляющий контур или заземление из трубы или стального профиля длиной от 2 метров.

Хороший вариант заземления — труба скважины для воды.

Если дом присоединен к трехфазной сети, а электрогенератор однофазный, рекомендуется схема, показанная далее.

Схема соединения однофазного электрогенератора с трехфазной домашней сетью

В заключение дадим собственные рекомендации по выбору схемы подключения генератора. Еще раз напомним, что начинать строить такую схему надо со статистики отключений электроэнергии в конкретном месте.

Ручное переключение на электрогенератор дешевле. Также более дешевым вариантом является использование источников бесперебойного питания для конкретного оборудования. Электрогенератор наиболее эффективен при отоплении электричеством, когда отключения регулярны и продолжительны.

Источник: https://domelectrik.ru/elektrosnabzhenie/seti/podklyuchenie-generatora

Простое руководство о том, как подключить генератор к сети дома без посторонней помощи

Запасной источник электроэнергии никогда не помешает в доме на случай чрезвычайных ситуаций. Внеплановое и бессрочное или аварийное отключение света отрицательно может сказаться на электроприборах. И если ваша система отопления зависит от электроснабжения, то зимой есть риск остыть дому и замерзнуть его хозяину.

Приобретение генератора – это еще не выход. А вот правильное подключение даст гарантию безопасного использования прибора и обеспечения питания на время сбоя.

Домашний генератор — как правильно подключить

Существует две основных схемы подключения генератора к дому. Оба способа предназначены для самостоятельной установки без вызова мастера. Какой метод проще, легче и подходит типу генератора – решать вам:

  1. Метод с перекидным рубильником;
  2. Через автоматическое управление.

Подключение с перекидным рубильником

Тут применимы два вида рубильников: либо перекидной, либо реверсивный (с 3 ходами-положениями). Они попросту переключают домашнюю сеть к разным источникам питания. К обоим подключаются 3 ветки:

  • первая — от основной электросети к генератору,
  • вторая — от дома к генератору,
  • третья — от генератора к приборам.

Принцип работы электрического генератора заключается в том, что он будет в действии при выключенной (обесточенной) основной сети. Если же подача тока от общей электросети в норме, то генератор не может функционировать.

То есть активно что-то одно или отключены оба источника электричества.

Для подключения генератора в частном доме лучше использовать кабеля с медной проволокой внутри.

Как правило, выглядит это как шнур с двумя штепселями по краям.

Схема крепления контактов:

  • верхние контакты – крепится кабель от основной сети;
  • контакты посередине – частная цепь дома;
  • нижние контакты – предназначены для электростанции (заземление).

Важно соединить всю цепь, а потом запускать генератор!

Как запустить генератор в работу:

  1. необходимо пару минут прогреть генератор;
  2. повернуть рубильник на щитке вниз.

Подключение генератора с автоматическим запуском

Существуют станции, которые оснащаются автоматическим обслуживанием. Автоматический блок подсоединен к генератору и к сети питания. Когда в доме отключается свет, система генератора автоматически включается в работу, заменяя основной источник питания. Когда возобновляется подача электроэнергии, станция также самостоятельно отключается.

Такой блок можно приобрести отдельно в магазинах электротоваров.

Принцип подключения АВР:

  • систему АВР подсоединяется к электросети;
  • АВР и генератор соединяет кабель управления;
  • от нее выходит кабель, который крепится к контактам генератора и уже от него проводит электроэнергию в дом.

Важно! Любые работы по присоединению генераторов нужно проводить, когда дом, квартира обесточены вами лично! Это гарантирует, что вы не будете случайно поражены электрическим разрядом.

Правила безопасности при использовании домашней электростанции

Соблюдение правил убережет от замыканий, травмирования и т. д.:

  1. Если станция находится в жилом помещении, то хорошая вентилируемость – первое, что нужно обеспечить. Если же генератор большой мощности, то его следует выставлять на улицу.
  2. Лучше спрятать станцию от неблагоприятного воздействия погоды, в частности, осадков и влажности.
  3. При креплении контактов не оставляйте оголенные участки проводов.
  4. Генераторы на топливе не должны находится рядом с высокими температурами.
  5. Разлитое топливо тщательно вытирают. Перед дозаправкой агрегата выключайте его.

  6. Избегайте контактов с работающим генератором. Не подходите в развивающихся одеждах, ведь вентилятор внутри может затягивать ткань, клеенку и т.д.
  7. Заземление обязательно для дизельных и бензогенераторов.

Как правильно сделать заземление генератора

Для заземления домашней электростанции нужно всего лишь небольшой металлический прут (диаметр -15 мм) и такая же трубка (диаметр – 50 мм, по 1,5 м в длину оба изделия), а также листовое оцинкованное железо (500 мм*1000 мм).

Прочные крепления на обоих концах прута от генератора к трубе в земле гарантируют, что при возможном напряжении их не сорвет потоком мощности. Трубка воткнута глубоко в землю, которая должна быть постоянно влажной, на всю длину. Оставляем только 7-10 см сверху.

Пользуйтесь электрическими приборами правильно!

Видео о том, как подключить генератор к дому или в квартире

Источник: http://elektrik24.net/elektrooborudovanie/generator/kak-podklyuchit-k-seti-doma.html

ремонт квартир в Мурманске – Схемы подключения к трехфазной, однофазной цепи

КАРТА САЙТА

Школа ЕВРОРЕМОНТА. Технология РЕМОНТА.

04. Схемы подключения к трехфазной, однофазной сети.

     Обычно квартиры запитываются от одно- или трехфазных внешних сетей. Тут, как говорится, кому как повезло. Разумеется, трехфазные сети, как правило, обеспечивают возможность получения большей нагрузки.      Самый тонкий вопрос – организация заземления и зануления. Мы все привыкли, что в розетках и вилках (однофазных сетей) у нас присутствуют 3 контакта: фаза, ноль и земля. Очень хорошо, если к Вашему дому приходят все эти три провода (при однофазном подключении), либо 5 проводов при трехфазном (3 провода 3 фаз, ноль и земля).      Сложнее, когда Вы имеете 2 провода при однофазном или 4 провода при трехфазном подключении. В этом случае, если к Вам приходит один провод зануления/заземления (т.н. называемый PEN, Вы можете выделить из него PE (т.е. заземление) и N (т.е. нейтраль или нулевой провод).

     Конечно это будет несколько условно, но достаточно безопасно. А если Вы оборудуете Ваш щиток специальными приборами УЗО (устройство защитного отключения), то Вы можете считать себя в безопасности.

Устройства защитного отключения (УЗО) реагируют на ненормативные токи утечки, являющиеся следствием прямого или косвенного касания человеком токоведущих частей, нарушения целостности или возгорания проводки.

УЗО в первую очередь спасает человеку жизнь и защищает оборудование от возгорания.

подробнее об УЗО     Общая рекомендация следующая. На входе коттеджа или квартиры должно стоять так называемое “пожарное УЗО” с током срабатывания 100 или 300 мА. Оно предназначено для отключения сети при возникновении пожара, что очень важно для деревянных домов. Ставить на входе УЗО с токами 30мА не рекомендуется – будут постоянные отключения.

     Итак, через УЗО в 300 мА мы завязываем всю электрическую сеть в доме. А вот, через УЗО 30 мА или 10 мА мы подключаем тех потребителей, где возможны утечки. Прежде всего это помещения, связанные с водою (ванная, туалет, кухня, бойлерная, насосная станция и т.д.). Не помешает вывести на УЗО все розетки – хуже не будет.

А вот освещение выводить на УЗО смысла нет, вероятность поражения током мала, наоборот, может получиться только хуже. Представьте, темным вечером у Вас срабатывает УЗО на кухне. Если при этом еще и погаснет свет, то это только усугубит ситуацию.      Обратите внимание на тот факт, что, в отличие от автоматов, на УЗО замыкаются и нулевые провода.

Но самое главное – нулевые провода вышедшие из разных УЗО нельзя соединять вместе – сработают эти УЗО, сигнализируя об утечке.      Так как же работает наше УЗО. Очень просто. Оно представляет собою трансформатор тока: две обмотки, через одну протекает входящий в УЗО ток, а через вторую – ток, прошедший через нагрузку, т.е. выходящий.

     Если все нормально и утечки тока “на сторону” на нагрузке не было, то входящий и выходящий токи равны и УЗО работает в штатном режиме. Если же произошла утечка (например, нулевой кабель замкнут на корпус стиральной машины, а Вы к ней прикоснулись), то часть тока уйдет через Ваше тело и УЗО моментально сработает.

      Схемы подключения к трехфазной, однофазной сети.     

     В интернете можно найти несколько десятков схем подключения домов.

Совет

     Приводим три наиболее удачных варианта подключения к трехфазной сети: два варианта для режима раздельного подвода PE и N, и один вариант объединенного подвода PEN (самый дешевый и поэтому самый распространенный вариант). Порядок подключения к однофазной сети аналогичен.

Схемы распределительных щитов 3ф сети.

Вариант 1. Схема группового распределительного щита коттеджа (PE и N раздельны)

В приведенной ниже схеме все группы защищены УЗО с чувствительностью не менее 30 мА. Электрооборудование санузлов, влажных помещений, где ток утечки наиболее опасен, защищается УЗО с отключающим дифференциальным током 10 мА для обеспечения полной безопасности. 1 – Пластиковый или металлический корпус щита. 2 – Соединительные элементы нулевых рабочих проводников. 3 – Соединительный элемент зажимов РЕ проводника, а также проводника уравнивания потенциалов. 4 – Соединительный элемент фазных проводников групповых цепей. 5 – Выключатель дифференциального тока. 6 – Автоматические выключатели. 7 – Линии групповых цепей.

8 – Счетчик.

Вариант 2. Схема группового распределительного щита индивидуального здания (дома или дачи) – (PE и N раздельны)

В приведенной схеме все основные устройства выделены в отдельные группы. Предназначенные для защиты людей устройства дифференциальной защиты с чувствительностью 30 мА установлены на все основные группы потребителей, кроме освещения комнат, где маловероятен контакт человека с токоведущими частями, и климатизатора, который должен быть дополнительно заземлен. 1 – Пластиковый или металлический корпус щита. 2 – Соединительные элементы нулевых рабочих проводников. 3 – Соединительный элемент РЕ проводника, а также проводника уравнивания потенциалов. 4 – Соединительный элемент фазных проводников групповх сетей. 5 – Выключатель дифференциального тока. 6 – Автоматические выключатели. 7 – Линии групповых цепей. 8 – Дифференциальный автоматический выключатель.

9 – Счетчик.

Вариант 3. Схема группового распределительного щита для индивидуального жилого дома (PEN: т.е. PE и N объединены)

На вводе в коттедж устанавливается УЗО с дифференциальным током 300 мА (при установке УЗО с меньшим током утечки возможны ложные срабатывания вследствие большой протяженности электропроводки и высокого естественного фона утечки электрооборудования). Первые три автоматических выключателя предназначены для защиты осветительных цепей от перегрузки,короткого замыкания и токов утечки. Группа из УЗО и трех автоматических выключателей предназначена для защиты розеток. Трехфазный автоматический выключатель и УЗО защищают мощные потребители (например, электроплита). Последняя лини, состоящая из одного УЗО и двух автоматических выключателей предназначена для защиты цепей отдельно стоящего здания (например, подсобного помещения). 1 – Пластиковый корпус щита. 2 – Соединительный элемент нулевых рабочих проводников . 3 – Соединительный элемент зажимов нулевых рабочих проводников, а так же проводника уравнивания потенциалов . 4 – Соединительный элемент входных выводов защитных аппаратов групповых цепей. 5 – Автоматический выключатель дифференциального тока. 6 – Выключатель дифференциального тока. 7 – Автоматические выключатели. 8 – Линии групповых цепей.

9 – Счетчик.

Схемы распределительных щитов 1ф сети.

Вариант 1. Схема группового распределительного щита (PE и N раздельны)

Московские городские строительные нормы МГСН 3.01-01 “Жилые здания”

Схема электроснабжения квартир II категории комфорта:

Схема электроснабжения квартир I категории комфорта:

Школа ЕВРОРЕМОНТА. Технология РЕМОНТА.

КАРТА САЙТА

Источник: http://vg-repair.ru/index/skhemy_podkljuchenija_k_trekhfaznoj_odnofaznoj_cepi/0-89

Схемы подключения генераторов | Электромонтажные и отделочные работы

Подключение генератора к трехфазной сети дома схема

На каждую фазу подключается одно изделие. Для остановки генератора используется комбинация из трёх независимых перекидных контактов реле. 

 

            

 Контакты управления, предназначенные для остановки дизель генератора, соединены последовательно. При пропадании одной  фазы можно завести генератор, причём энергия будет подаваться только на одну отсутствующую фазу,  оставшиеся фазы будут питаться от электросети. Соответственно, дизельный генератор будет работать, пока электричество не появится на всех фазах. После полного отсутствия напряжения подключение фаз будет происходить последовательно по мере синхронизации соответствующей фазы электросети с  электрогенератором. После синхронизации последней фазы будет  выработана команда для остановки генератора. При параллельном соединении управляющих  контактов  электрогенератор можно будет завести только после пропадания всех  фаз. Соответственно, при синхронизации генератора с любой фазой электросети будет переключение  на эту фазу и автоматическая остановка электрогенератора. В этом случае при наличии хотя бы одной фазы запуск электрогенератора блокируется. 

  

Подключение генератора к сети дома с АВР

Еще один способ – подключение простейшей автоматики. Принцип работы подобной системы довольно прост. В случае исчезновении централизованного электропитания нужно завести бензогенератор. Если в общей сети энергия отсутствует, контактор электрогенератора замыкается. При появлении централизованного энергоснабжения, контактор разомкнется. АВР можно самостоятельно доработать. В ряде случаев дополнительно встраивается реле времени. Тогда при запуске бензинового электроагрегата полная нагрузка будет включаться лишь через некоторое время, в течение которого электрогенератор прогреется, стабилизирует обороты и перейдет на рабочий режим функционирования. Подобным способом можно как подключить бензогенератор, запускаемый вручную к сети дома, так и задействовать электрогенератор с электростартером.

 

Следующий способ подключения бензогенератора предполагает использование полноценного АВР. Автоматика проверяет наличие напряжения в общей сети. Если напряжение пропадает, АВР запускает установленный генератор, разогревает его до рабочей температуры и переводит на него нагрузку. Когда напряжение появляется в основном источнике, нагрузка переключается с бензогенератора на общую электросеть, затем происходит отключение электроагрегата.

 

 

Схемы подключения генератора

Варианты и схемы применения полуавтоматического управления генератором резервного питания + защита электросети, показаны для модификации 6,5кВт.

Полуавтоматическое управление легко позволяет подключить генератор к сети дома, в самых различных вариантах применения.

Полуавтоматическое управление генератором полностью заменяет ручной переключатель фаз сеть – генератор (рубильник включения резерва, ручной включатель резерва — РВР) и так же может использоваться как схема защиты генератора от встречного тока электросети.

Со стороны электросети в блоке полуавтоматического управления встроена защита от перенапряжений, стандартный диапазон которой составляет 140÷255В. Поэтому стабилизатор напряжения необходимо подключать перед блоком управления, при подключении электрогенератора к дому.


Рис. 1. Схема подключения электростанции со стабилизатором напряжения и с выделением резервной сети.

Как подключить генератор к сети видно из приведенной схемы. В этой схеме общее потребление от сети может значительно превышать мощность резервного электрогенератора и даже предельную мощность нагрузки самого блока полуавтоматического управления, так как часть энергии идёт напрямую. Но для этого необходимо заранее выделить резервную линию. При пропадании электросети необходимо только запустить электрогенератор резервного питания. И нет опасности перегрузки электрогенератора, так как к выделенной резервной линии заранее подключены только самые необходимые приборы, например, газовый котел отопления.

Из этой схемы может быть исключён стабилизатор, и вся электроэнергия может идти через контакты полуавтоматического управления генератором.

Полная мощность нагрузки, проходящая через контакты полуавтоматического управления от электрогенератора или от внешней сети не должна превышать паспортных значений.

Если необходимо подключение мощной нагрузки, то можно применить модификации на 11-13,5кВт или установить мощные контакторы, далее приведена схема подключения дизель генератора большой мощности.

Рис. 2. Схема увеличения мощности блока полуавтоматического управления генератором с помощью магнитных пускателей, применяется для подключения электростанции большой мощности к сети дома, офиса или предприятия.

Мощность нагрузки ограничена только допустимым током через магнитные пускатели. Блок полуавтоматического управления в данном случае используется только как управляющее устройство, ток нагрузки через него не идет (при разделении цепей нагрузки в данном случае через него можно запитать до 6 кВт).

Положение контактов указано при отсутствии внешней сети, по схеме видно, что есть электрическая блокировка для исключения одновременного включения катушек магнитных пускателей (в данном случае может быть включен только пускатель генератора). Причем даже при произвольном залипании контактов промежуточного реле исключается возможностьодновременного включения магнитных пускателей. Кроме этого магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному замыканию контактов магнитных пускателей. Это необходимо для полного исключения возможности встречного включения электрогенератора с внешней сетью.

При низких напряжениях электросети необходимо на входе электросети ставить стабилизатор. Это связано с тем, что магнитные пускатели и промежуточные реле, как правило, нормально работают при напряжениях выше 170 В.

Примечание: Контактная система магнитных пускателей является громоздкой по сравнению с контактами реле, имеет разные задержки срабатывания и отпускания, поэтому при применении схемы Рис №2, возможны проблемы с быстродействием переключения на электросеть, например возможен сброс компьютеров…

Управление генератором может применяться для подключения однофазного генератора к трёхфазной электросети, естественно только для однофазных потребителей. В данном случае на каждую фазу подключается одно изделие, а для остановки генератора используется нужная комбинация из трёх независимых перекидных контактов реле.
Рис. 3. Схема подключения однофазного резервного генератора к трёхфазной сети.

Контакты управления, предназначенные для остановки дизель генератора, соединены последовательно. При этом при пропадании хотя бы одной фазы можно завести генератор, причём энергия от него будет подаваться, только на одну отсутствующую фазу, оставшиеся фазы будут питаться от электросети. И соответственно дизель генератор будет работать, пока электроэнергия не появится на всех фазах.

После полного отсутствия напряжения подключение фаз будет происходить последовательно по мере синхронизации соответствующей фазы электросети с электрогенератором. После синхронизации последней фазы будет выработана команда для остановки генератора.

При параллельном соединении управляющих контактов электрогенератор можно будет завести только после пропадания всех фаз. Соответственно, при синхронизации генератора с любой фазой электросети будет переключение на эту фазу и автоматическая остановка электрогенератора. Другими словами, в этом случае при наличии хотя бы одной фазы запуск электрогенератора блокируется.

То есть пользователь сам может выбрать нужный ему алгоритм работы генератора в зависимости от наличия количества фаз электросети. Так же на основе схемы рис. 3 можно неограниченно увеличить мощность нагрузки, если нагрузка разбита на линии группы не более 6,5 кВт (13,5 кВт) в каждой, то на каждую линию ставится блок полуавтоматического управления генератором и все блоки независимо друг от друга параллельно работают.

Полуавтоматическое управление электрогенератором резервного питания также может применяться как полностью автоматический переключатель с основной фазы на резервную фазу — АВР, с возвратом на приоритетную фазу через минуту после появления на ней напряжения в диапазоне 155-250В.
Рис. 4. Схема подключения однофазного резервного генератора к трёхфазной сети. С выделением резервной фазы.

В данном случае фазы могут быть от разных (несинхронных) источников. При наличии хотя бы одной фазы у нас полностью автоматический переключатель фаз – АВР (Автомат Ввода Резерва), генератор остановлен, а на резервной фазе есть напряжение. Эта схема может применяться для аварийного питания газового котла отопления. Защита есть по всем трем фазам, кроме электрогенератора. Только при пропадании всех трех фаз разрешается запуск электрогенератора.

При таком применении необходимо уменьшать мощность нагрузки блоков полуавтоматического управления генераторов или применять контакторы Рис. 2.

Полуавтоматическое управление генератором позволяет обеспечить удалённую связь с аварийным электрогенератором и передачу энергии и управления всего по трем жилам кабеля. Так же в некоторых случаях позволяет сделать оптимальную разводку электросети с минимумов длины проводов и сэкономить бесполезные потери электроэнергии.
Рис. 5. Схема подключения бензогенератора с минимумом соединительных проводов, возможная длина более 100 метров.

Дополнительно применяется промежуточное реле на колодке с обмоткой 220В. Применение дополнительного реле иногда необходимо, если остановка электрогенератора производится ключом и к колодке ключа подходит 4 провода, то в этом случае для надёжной остановки необходимо закоротить 2 не связанные пары проводов. Если остановка осуществляется тумблером или ключом, к колодке которого подходит 2 провода то дополнительное реле не нужно (кроме уделённой связи по 3 жилам провода).

Так же имеется простая возможность остановки электрогенератора путём имитации срабатывания датчика масла, для этого провод, идущий в картер двигателя, соединяют с корпусом.
Рис. 6. Схема подключения генератора к сети с автоматического включения дежурного освещения.

При применении дополнительного реле есть возможность автоматически подключать резервное светодиодное освещение. При этом желательна система подзарядки аккумулятора и его защита от полного разряда.

Все приведенные схемы обеспечивают подключение резервного генератора для правильной работы фазозависимых газовых котлов отопления. Примеры схем для подключения инвертора или ИБП (UPS) к сети дома можно скачать в статье Нестандартные схемы использования полуавтоматики

.

Простая схема подключения генератора — Автомобильный портал AutoMotoGid

Концепция частных домов основана на максимальной независимости. Электричество не является исключением. Большинство владельцев частных строений начинают задумываться о резерве электроэнергии из альтернативных источников.

Отсутствие электричества или регулярные сбои в подаче вынуждают многих владельцев частных домов и дач предусматривать резервное питание. Однако встает вопрос правильного подключения генератора к домашней сети. В первую очередь стоит безопасность. Необходимо четко понимать, что допустимо, а что категорически запрещено.

Основные ошибки

Существует ряд ошибок, которые допускают неопытные «электрики».

Нельзя подключать мини-электростанцию к домашней розетке, когда автоматы в щитке ввода отключены. При редких перебоях в электроэнергии становится традицией «подкидывать» кабель бензогенератора к ближайшему разъему через штепсель. Большинство рассуждают: зачем обустраивать резервный ввод, если свет пропадает 2-3 раза за год. Русский человек живет по принципу: мужик не перекреститься пока гром не грянет. Электрики не рекомендуют даже задумываться о подключении генератора через розетку по следующим причинам:

  • В линии отсутствует отдельный автомат.
  • Розеточная группа не способна принять магистральную нагрузку.
  • Срабатывает человеческий фактор: владельцы забывают отключить вводной автомат, что приводит к перегрузкам, срабатыванию защиты.
  • Существует вероятность «встречки»: электричество начинает поступать с общей сети при работающем генераторе. Агрегат выходит из строя.
  • Не стоит пренебрегать комфортной и надежной системой эксплуатации узла. Лучше изучить схемы подключения генератора к домашней сети и подобрать оптимальный вариант. Это позволит сохранить оборудование и электросеть.

Генератор должен иметь мощность несколько раз меньше пропускной способности проводки. К примеру, значение для розетки – 3,5 кВт. В противном случае возникает перегрев, короткое замыкание и пожар. При включении автомата возобновиться питание, а резервный источник сломается.

Однако в некоторых случаях подключение генератора через розетку возможно. Если мини-станция соответствует по мощности, то ее можно подключить к распределительному щитку к контактам рубильника, но со стороны генератора. Лучшим вариантом будет, если к нему подключить сперва удлинитель, а только потом нужные приборы. Это исключит связь резервного источника с домашней сетью.

На даче и в загородном доме при постоянных отключениях основного источника резерв подключают через перекидной рубильник, системы автоматического запуска или реверсивный переключатель.

Оборудование для монтажа

Для подключения электрогенератора к электросети дома не потребуется много оборудования. Достаточно определить место расположения агрегата, обеспечить шумоизоляцию и вентиляцию в соответствии с нормами. Скорее всего, в помещении придется сделать цементно-песчаную стяжку для снижения вибрации.

Рассматривать монтаж мобильных генераторов до 2 кВт не имеет смысла. Они не могут полноценно обеспечить дом электричеством. К тому же они мобильны и не требует специальных условий месторасположения.

Опишем установку электрогенератора с мощностью от 2 кВт. Для организации резервной сети электропитания потребуется:

  • Медный кабель с сечением от 4 кв. мм для организации отдельного ввода. Длина должна соответствовать расстоянию между вводным устройством и месторасположением генераторного агрегата.
  • Модульный перекидной рубильник, который можно зафиксировать на DIN-рейке 35 мм. Среди недорогих моделей хорошо зарекомендовал TDM-63, а более надежными являются ABB, Hager.

Уделить внимание следует заземлению, так как подсоединение должно соответствовать ПУЭ. Другими словами перед подключением резерва необходимо организовать систему заземления TN-C-S или ТТ.

Дифзащита на выходе генератора не будет лишней. Даже при двухпроводном типе разводки заземление генерирующего устройства никто не отменял.

Подбор электрогенератора

Домашняя электростанция представляет собой двигатель внутреннего сгорания и вращающийся генератор, который вырабатывает электроэнергию. Наиболее распространены четырехтактные модели с максимальной частотой 3 тыс. оборотов. Объем топливного бака в бытовых моделях – 10-15 литров. Основной критерий выбора должна быть область использования. Генераторы могут выступать основным источником энергии, но чаще – это резерв при аварийной ситуации.

При выборе стоит обратить внимание на некоторые параметры:

При подключении важно обеспечить слаженную работу 3 элементов:

  • домашней сети – потребителя;
  • централизованной цепи подачи;
  • кабеля от резерва.

Перед подключением определяются со следующими моментами:

  • безопасное и экономичное расположение электрогенератора;
  • частота сбоев подачи электроэнергии в общей сети, необходимость в автоматики;
  • рассчитанная мощность потребления с учетом запаса и потерь.

Требуется обеспечить подходящую схему подключения.

Автоматизация электрификации требует много финансовых вложений и регулярного квалифицированного обслуживания. Для индивидуального дома щадящим режимом будет ручное подключение. Есть смысл в использовании частичной автоматизации в форма полуавтоматов – их стоимость не высока. Однако при любом выборе систему необходимо периодически контролировать.

Непрерывна подача энергии стоит достаточно дорого, частный дом редко нуждается в подобном обеспечении. На важные потребители электроэнергии, такие как компьютер, можно подключить бесперебойный источник питания.

В первую очередь необходимо рассчитать мощность потребляемой энергии. Она является суммой мощностей нагрузок, которые запланировано подключить. Дополнительно прибавляют запас в размере 30% от суммарного значения. Это требуется для учета пусковых токов двигателей бытовой техники, которые в 2-3 раза превышают допустимых. По расчетной мощности можно выбирать агрегат.

Пример расчета. В доме установлена стиральная машина 2 кВт, холодильник – 0,5 кВт, электроплита – 3 кВт, общее освещение – 0,5 кВт, телевизор компьютер – 0,5 кВт. Суммарная мощность составляет 6,5 кВт, но при учете запаса расчетное значение повысится до 8,5 кВт.

Генератор негативно реагирует на отсутствие нагрузки. Постоянно потребление должно быть меньше максимум на 30% от наибольшего номинального значения. При минимальном потреблении необходимо использовать компактные модели с мощностью 2-3кВт на время отсутствия электроэнергии в основной сети.

Схема подключения к домашней сети бензинового генератора должна быть наиболее простой. Главное, чтобы она была правильной и позволяла обеспечить агрегат требуемой нагрузкой.

Виды генераторов

Бытовыми источниками энергии могут быть различные типы генераторов, но наиболее востребованными являются бензиновые. Они обладают следующими особенностями:

  • широкий диапазон цен;
  • мощность 0,8-12 кВт;
  • небольшие размеры;
  • существуют стационарные и мобильные модели;
  • существуют однофазные и трехфазные;
  • используется четырехтактный двигатель внутреннего сгорания.

При выборе схемы подключения необходимо учитывать способ охлаждения ДВС, что в свою очередь зависит от времени и частоты работы. Наиболее часто модели оснащены воздушными радиаторами. Промышленные модели способны работать длительное время, так как в них предусмотрено жидкостное охлаждение. Это увеличивает габаритные размеры, но повышает экономичность.

Дизель-генераторы используются реже в домашних сетях, так как их стоимость выше. Однако их использование обосновано большим ресурсом.

Типы электрогенераторов

Существует несколько типов электрогенераторов:

  • Асинхронные. Имеют простую и надежную конструкцию. Все узлы полностью защищены от влаги и пыли. Устройства лучше использовать для активных нагрузок. Асинхронные генераторы не рекомендуют использовать для питания электродвигателя.
  • Синхронные. Они не содержат перечисленных недостатков асинхронных генераторов. Также они способны более точно поддерживать напряжение. Отдавать предпочтение следует бесщеточную конструкцию с лучшими характеристиками тока и меньшими радиопомехами. У инвентарных моделей меньшая мощность и выше стоимость. Однофазные имеют хуже характеристики, особенно недорогие. Немного лучше трехфазные генераторы. Вторым недостатком считается высокая стоимость и более низкая надежность.

Однофазные и трехфазные

Если в доме нет трехфазных потребителей, то лучше установить более простую модель для рационального использования мощности. Подключить самостоятельно однофазный генератор намного проще. Стоимость трехфазных агрегатов выше, а сам генератор должен быть равномерно нагружен по трем нагрузкам равномерно. Выход из строя происходит при превышении разницы на 25%. В качестве резервного источника однофазный генератор предпочтительнее при любых выходах.

Схема подключения

Существует несколько способов использования дополнительного источника питания:

  • Подключение по отдельной схеме резерва к выделенной группе.
  • Использование трехпозиционного переключателя или перекидного рубильника. Для запитки всей цепи делаются перемычки со стороны генератора на входе. Единственный минус – трехфазные потребители не работают.
  • Монтаж двух контактов для питания от резервного источника и городской сети. Метод применяется при АВР. Со стороны резерва обязательно делают перемычки.

Трехфазный генератор подключают к трехфазной сети при наличии электроприемника. Примером может быть электродвигатель станков.

Автозапуск генератора

Полноценным методом переключения нагрузки подразумевает использование АВР. В системе есть электростартер. Устройство автозапуска начинает контролировать внешнюю сеть после подачи питания на него. Перед подключением генератора автоматика ждет около 10 секунд после исчезновения напряжения. Далее внешняя сеть полностью изолируется и запускается дизель-генератор. Для полного набора оборотов требуется около 20 секунд, после чего организуется подключение к домашней сети. После восстановления работы внешней сети резерв отключается, а домашняя сеть начинает работать в привычно режиме. Только после этого двигатель генератора глушится.

Схема предполагает наличие у генератора системы остановки двигателя и стартера. При наличии большого опыта можно организовать ее самостоятельно, но это хлопотно. Вопрос можно решить двумя способами:

  • С электрогенератором приобрести комплектный блок управления. Его подключают по указанной с инструкции схеме. Он не только будет регулировать запуск и остановку, но и частоту оборотов, то есть итоговую мощность.
  • Устройства АВР, в которых есть компоненты, устанавливающиеся на генератор в качестве дополнительного оборудования для управления дроссельной заслонкой и стартером.

Комплекты имеют защиту по току и страхуют от перенапряжения и утечек. Монтаж заключается в подсоединении проводов потребителя и ввода на коммутирующие приборы.

Использование генератора с АВР дорогостоящее, но удобное решение.

Использование перекидного рубильника

Расположение щита с ВРУ в легкодоступном месте может оказаться камнем преткновения для домовладельцев. Есть смысл использования автоматического устройства переключения. Реализация метода не сложнее проходного выключателя. Потребуются два модульных контакта, количество контактных пар соответствует необходимому числу, и пара нормально замкнутых и разомкнутых контактов. В обычном режиме городская сеть будет на подхвате включенного контактора. Если в общей сети электричество пропадает, то контакты отбрасывает и пара контактов замыкается, что приводит в действие другие контакты, ответственных за резерв.

Рубильник помогает обособить схемы источников питания – крайний контакт рубильника подключают к вводу электросети и кабелю электростанции, а средний – к потребителю. Хорошо, если в рубильнике будет промежуточное нейтральное положение. Исходным положением будет подключение главной сети. Но при переключении электропитание начинает идти с генератора.

Старые модели рубильников отличаются открытыми токоведущими частями и искрением. В современных моделях предусмотрен защитный кожух, который прячет подвижные части.

Переключатель закрепляют в щитке управления так, чтобы исходным положением была работа основной сети. При падении напряжения переключатель становиться в нейтральное положение, после чего запускается генератор. Он должен прогреться и только после подключиться к домашней нагрузке.

Целесообразно установить временное реле, которое начнет подачу электропитания через пару минут после запуска генератора. Это требуется для прогрева оборудования. Резервный контактор должен питаться через коммуникатор главного ввода, точнее его нормально замкнутый контакт.

При возобновлении общего энергоснабжения первый контакт включается и размыкает цепь, запутывающую второй ввод. Подобная схема с натягом называется автоматической, так как пуск все же осуществляется под человеческим контролем.

Подключение нагрузки

Чаще всего генератор не способен обеспечить полную потребность домашней сети. Он используется на основные потребители – часть бытовых приборов и освещение. Следует рассмотреть переоборудование проводки, чтобы исключить множества переключателей. Как правило, организуют одну отдельную линию для дежурного освещения и вторую – к розеткам компьютера, холодильника и телевизора. В щиток монтируют клеммник для подключения выхода генератора.

Реверсивный переключатель

Используют реверсивный рубильник для переключения источников питания. В устройстве ручка имеет три положения для замыкания и размыкания цепи, среднее положение для размыкания всех контактов. На даче или в частном доме с небольшим потреблением можно использовать однофазную схему подключения к домашней сети резервного источника. В щитке должны быть индикаторные лампы для сигнализации включения генератора или сети.

Традиционно нижние контакты используют для нагрузки, а с противоположной стороны подключают вводы.

Трёхпозиционный переключатель не имеет теплового или электромагнитного разъединителя. По этой причине каждый ввод должен быть подстрахован автоматом, который срабатывает при превышении допустимой нагрузки.

Этапы подключения генератора по схеме с пакетным переключателем:

  • Автомат ввода отключить.
  • Рукоятку переключателя установить на сеть генераторной установки.
  • Автомат нагрузки отключить.
  • Соединить кабель ручного переключателя к розетки генератора.
  • Запустить генератор, позволить прогреться пару минут.
  • Подать питание на рубильник.
  • Автоматы нагрузки включить.

После появления электроэнергии в основной сети агрегат отключают от нагрузки, используя обратную последовательность.

Если достойное перекидное устройство отсутствует, то его делают из двух двухполюсных однотипных автоматов. Они должны быть установлены на одном уровне. Один из них крепят перевернутым, но чтобы клавиши были на одном уровне и фиксируют стальным штифтом.

Система АВР

Организация автоматического запуска стоит значительно больше ручного. Однако внешний контроль она не отменяет – запуск ДВС подразумевает управление дроссельной заслонкой. Как и ранее отмечалось, двигатель после пуска необходимо прогреть. Некоторые хозяева используют частичную автоматизацию – основное питание подключено через контактор. При отключении входа он размыкается. На следующем этапе требуется запустить вручную генератор. В нем встроено реле для прогрева и автоматического перехода домашней сети на резервный источник. При появлении электричества в основной сети контактор отключается, а нагрузка идет на общую сеть. При полной автоматизации электроснабжения резерв имеет микропроцессорное регулирование работы генератора.

Подключение генератора

Генератор должен быть хорошо защищен от влаги. Для этого используют отдельное помещение или навес. При монтаже в помещении обязательно предусматривают отвод выхлопа газа. Электрогенератор устанавливают после счетчика, в противном случае придется платить за выработанную самостоятельно энергию. Резервный источник может быть подпиткой во время пиковых нагрузок. Необходимо правильно подобрать схему монтажа, чтобы исключить необоснованных трат.

Нестабильная подача электроэнергии приводит к проблеме – как подключить генератор к домашней сети. Выбирать следует простые и безопасные схемы. Удобным источником энергии станет генератор с ДВС. Оборудование легко перевозить и использовать, его стоимость не высока. Для правильного подбора оптимальной схемы потребуется узнать особенности устройства, переключающего оборудования.

Устройство автомобильного генератора ссылка 1
Как проверить автомобильный генератор ссылка 2

Обозначения контактов автомобильного генератора. иногда очень нужно иметь под рукой такую табличку, а её нет 🙁

Электрические схемы автомобильных генераторных установок
Приводим примеры восьми наиболее распространенных схем автомобильных генераторных установок. На всех схемах под цифрами обозначены:
1 — генератор;
2 — обмотка возбуждения;
3 — обмотка статора;
4 — выпрямитель;
5 — выключатель;
6 — реле контрольной лампы;
7 — регулятор напряжения;
8 — контрольная лампа;
9 — помехоподавительный конденсатор;
10 — трансформаторно-выпрямительный блок;
11 — аккумуляторная батарея;
12 — стабилитрон защиты от всплесков напряжения;
13 — резистор.

Генераторные установки имеют различные обозначения выводов (обозначения немного разнятся с обозначениями на первой таблице):
— «плюс» силового выпрямителя: «+», В, 30, В+, ВАТ;

— вывод обмотки возбуждения: Ш, 67, DF, F, ЕХС, Е, FLD;

— вывод для соединения с
лампой контроля исправности
(обычно «плюс» дополнительного
выпрямителя, там, где он есть): D, D+, 61, L, WL, IND;

— вывод нулевой точки
обмотки статора: 0 (ноль), МP;

— вывод регулятора напряжения
для подсоединения его в
бортовую сеть, обычно к
«+» аккумуляторной батареи: Б, 15, S;

— вывод регулятора напряжения
для питания его от выключателя
зажигания: IG;

— вывод регулятора напряжения
для соединения его с бортовым
компьютером: FR, F.

Различают два типа невзаимозаменяемых регуляторов напряжения — в одном типе (рис. 1) выходной коммутирующий элемент регулятора напряжения соединяет вывод обмотки возбуждения генератора с «+» бортовой сети, в другом типе (рис. 2, 3) — с «-» бортовой сети. Транзисторные регуляторы напряжения второго типа являются более распространенными.

Чтобы на стоянке аккумуляторная батарея не разряжалась, цепь обмотки возбуждения генератора (в схемах 1, 2) запитывается через выключатель зажигания. Однако при этом контакты выключателя коммутируют ток до 5А, что неблагоприятно сказывается на их сроке службы. Разгрузить контакты выключателя можно, используя промежуточное реле, но более прогрессивно, если через выключатель зажигания запитывается лишь цепь управления регулятора напряжения (рис. З), потребляющая ток силой в доли ампера.

Прерывание тока в цепи управления пере водит электронное реле регулятора в выключенное состояние, что не позволяет току протекать через обмотку возбуждения. Однако применение выключателя зажигания в цепи генераторной установки снижает ее надежность и усложняет монтаж на автомобиле. Кроме того, в схемах на рис. 1, 2, 3 падение напряжения в выключателе зажигания и других коммутирующих или защитных элементах, включенных в цепь регулятора (штекерные соединения, предохранители), влияет на уровень поддерживаемого регулятором напряжения и частоту переключения его выходного транзистора, что может сопровождаться миганием ламп осветительной и светосигнальной аппаратуры, колебанием стрелок вольтметра и амперметра.

Поэтому более перспективной является схема на рис. 5. В этой схеме обмотка возбуждения имеет свой дополнительный выпрямитель, состоящий из трех диодов. К выводу «Д» этого выпрямителя и подсоединяется обмотка возбуждения генератора. Схема допускает некоторый разряд аккумуляторной батареи малыми токами по цепи регулятора напряжения, и при длительной стоянке рекомендуется снимать наконечник провода с клеммы «+» аккумуляторной батареи.

В схему на рис. 5 введено подвозбуждение генератора от аккумуляторной батареи через контрольную лампу 8. Небольшой ток, поступающий в обмотку возбуждения через эту лампу от аккумуляторной батареи, достаточен для возбуждения генератора и в то же время не может существенно влиять на разряд аккумуляторной батареи. Обычно параллельно контрольной лампе включают резистор 1З, чтобы даже в случае перегорания контрольной лампы генератор мог возбудиться.

Контрольная лампа в схеме на рис. 5 является одновременно и элементом контроля работоспособности генераторной установки. В схеме применен стабилитрон 12, гасящий всплески напряжения, опасные для электронной аппаратуры. С целью контроля работоспособности в схеме рис. 1 введены реле с нормально замкнутыми контактами, через которые получает питание контрольная лампа 8. Эта лампа загорается после включения замка зажигания и гаснет после пуска двигателя, т.к. под действием напряжения от генератора реле, обмотка которого подключена к нулевой точке обмотки статора, разрывает свои нормально замкнутые контакты и отключает контрольную лампу 8 от цепи питания.

Если лампа 8 при работающем двигателе горит, значит, генераторная установка неисправна. В некоторых случаях обмотка реле контрольной лампы 6 подключается на вывод фазы генератора.

Схема рис. 6 характерна для генераторных установок с номинальным напряжением 28 вольт. В этой схеме обмотка возбуждения включена на нулевую точку обмотки статора генератора, т.е. питается напряжением, вдвое меньшим, чем напряжение генератора. При этом приблизительно вдвое снижаются и величины импульсов напряжения, возникающих при работе генераторной установки, что благоприятно сказывается на надежности работы полупроводниковых элементов регулятора напряжения.

Резистор 13 служит тем же целям, что и контрольная лампа в схеме рис. 5, т.е. обеспечивает уверенное возбуждение генератора.

На автомобилях с дизельными двигателями может применяться генераторная установка на два уровня напряжения 14/28 В. Второй уровень 28 В используется для зарядки аккумуляторной батареи, работающей при пуске ДВС. Для получения второго уровня используется электронный удвоитель напряжения или трансформаторно-выпрямительный блок (ТВБ), как это показано на рис. 4.

В системе на два уровня напряжения регулятор стабилизирует только первый уровень напряжения 14 вольт. Второй уровень возникает посредством трансформации и последующего выпрямления ТВБ переменного тока генератора. Коэффициент трансформации трансформатора ТВБ близок к единице.

В некоторых генераторных установках зарубежного и отечественного производства регулятор напряжения поддерживает напряжение не на силовом выводе генератора «+», а на выводе его дополнительного выпрямителя, как показано на схеме рис. 7.

Схема является модификацией схемы рис. 5, с устранением ее недостатка — разряда аккумуляторной батареи регулятора напряжения при длительной стоянке. Такое исполнение схемы генераторной установки возможно потому, что разница напряжения на клеммах «+» и «Д» невелика. На этой же схеме (рис. 7) показано дополнительное плечо выпрямителя, выполненное на стабилитронах, которые в нормальном режиме работают как обычные выпрямительные диоды, а в аварийных — предотвращают опасные всплески напряжения.

Резистор R, как было показано выше, расширяет диагностические возможности схемы. Этот резистор вообще характерен для генераторных установок фирмы 8osch. Генераторные установки без дополнительного выпрямителя, но с подводом к регулятору вывода фаз, применение которых, особенно японскими и американскими фирмами, расширяется, выполняются по схеме рис. 8. В этом случае схема генераторной установки упрощается, но усложняется схема регулятора напряжения, т.к. на него переносятся функции предотвращения разряда аккумуляторной батареи на цепь возбуждения генератора при неработающем двигателе автомобиля и управления лампой контроля работоспособного состояния генераторной установки.

На вход регулятора может подаваться напряжение генератора или аккумуляторной батареи (пунктир на рис. 8), а иногда и оба эти напряжения сразу.

Конечно, стабилитрон 12, защищающий от всплесков напряжения дополнительное плечо выпрямителя, а также выполнение выпрямителя на стабилитронах может быть использовано в любой из приведенных схем.

Некоторые фирмы применяют включение контрольной лампы через разделительный диод, а в схемах рис. 5, 7 включение ее идет через контактное реле. В этом случае обмотка реле включается на место контрольной лампы. Если генераторная установка работает в комплексе с датчиком температуры электролита, она имеет дополнительные выводы для его подсоединения.

Генераторы на большие выходные токи могут иметь параллельное включение диодов выпрямителя. Для защиты цепей генераторной установки применяют предохранители, обычно в цепях контрольной лампы, соединениях регулятора с аккумуляторной батареей, в цепи питания аккумуляторной батареи.

Электроэнергия, хотя и вырабатывается на крупных электростанциях, которые работают без остановки, но, тем не менее, иногда пропадает. Погода вносит свои коррективы во многие процессы. В том числе и в электроснабжение. Причем для поселений вне городской черты они наиболее чувствительны. И когда на даче или где-нибудь в деревне с приходом непогоды пропадает свет, цивилизация вдруг исчезает. Но чтобы не испытывать проблем с отключениями электричества, нужен резервный генератор. О его подключении и расскажем далее.

Выбор наилучшего варианта схемы

Электросеть 220 В поступает в современные частные дома и дачи через счетчик электроэнергии, расположенный вне помещения. Но главный распределительный щит обычно устанавливается в помещении. Электрогенератор также располагается либо в доме, либо в подсобном помещении. По этой причине надо в первую очередь выбрать оптимальный вариант его подключения:

  1. По месту установки электросчетчика.
  2. По месту расположения электрического щита.

В каждом из этих вариантов надо использовать такую схему, в которой питающие напряжения электросети и генератора надежно разделяются и ни в коем случае не соединяются встречно. Вариантов такой схемы может быть несколько. Современные системы автоматического управления выпускаются для решения, в том числе и управления генераторами. Они обеспечивают после пропадания напряжения их автоматический запуск и безопасное присоединение к домашней электросети.

Схемы с АВР

Под управлением микроконтроллера по заданной программе коммутаторы автоматически выполняют все необходимые переключения. Как результат — не надо задумываться о необходимости что-либо включать-выключать вручную и делать это. Автоматика все сделает за человека. Но за деньги. Причем из всех вариантов сумма получится самой большой. Автоматика — дорогое удовольствие. Кроме того, подобная схема легко реализуема только одновременно с построением домашней электросети.

Если решено применить полностью автоматическое переключение домашней сети на питание от электрогенератора, потребуется блок автоматического ввода резерва (АВР). Он должен настраиваться на приоритет основной электросети. Пример такого блока показан далее на изображении.

Практическая реализация такой схемы тем проще, чем короче провода и кабели, соединяющие ее элементы. Поэтому рекомендуется продумать размещение элементов схемы заранее. При этом не забыть о заземлении, для которого также предусматривается определенное место. В руководстве по эксплуатации обязательно изложены рекомендации о том, как делается заземление генератора. Полная автоматизация перехода на электропитание от генератора неразрывно связана с его конструкцией.

Такая мини-электростанция конструктивно делается по аналогии со стартером автомобиля. В ней обязательно присутствует аккумулятор для питания электродвигателя, вращающего двигатель внутреннего сгорания. Если применена мини-электростанция, которая запускается только вручную, эта операция — единственная, которую необходимо выполнить после отключения основной питающей электросети. Также вручную придется отключить электростанцию и после восстановления централизованного электроснабжения.

Переключение вручную как минимум дешевле…

Когда электросеть уже существует и к ней надо присоединять автоматику для управления электрогенератором, возникают трудности, которые с трудом преодолеваются. Поэтому при доработке домашней электросети лучше выбрать схему с ручным переключением. Для этого в уже эксплуатируемом электрическом щите используется вариант с установкой перекидного рубильника. Лучше всего применить компактные модели этого коммутатора. Некоторые из них показаны далее на изображении.

Но их можно использовать только в том случае, когда к электрощиту либо уже были проложены все необходимые для этого кабели, либо их можно проложить в уже сложившихся условиях. И, конечно же, на дин-рейке необходимо место для размещения рубильника. А еще уточним, что такой рубильник относится к дорогим коммутаторам. Поэтому, исходя из цен, вместо него можно порекомендовать рубильник классической конструкции, показанный на изображении далее.

Этот коммутатор устанавливается между электросчетчиком и распределительным щитом. Где именно — определяется в каждом конкретном случае. Но самое главное при выборе коммутационного оборудования то, что не имеет смысла вкладываться в дорогие комплектующие изделия. Резервное электропитание работает случайным образом и наиболее часто кратковременно. Резервные коммутаторы совершают незначительное число переключений. То есть они изнашиваются минимально. Поэтому простейший вариант — это схема с перекидным рубильником.

Переключатели обязательны к использованию

Наличие отдельного коммутатора, несмотря на то, что он будет нечасто использоваться, сделает схему электроснабжения дома безопасной как для пользователей, так и для оборудования, присоединенного к электропитанию. Хотя самое простое решение — это обычная розетка, через которую можно запитать всю домашнюю сеть. Тем более что подключение к электрогенераторам тоже выполняется через розетки, установленные на их корпусе. Однако все зависит от мощности электрогенератора.

Если его мощность более 2–3 кВт, обычная розетка может перегреться и прийти в негодность. Но и более мощные контакты решат проблему лишь отчасти. Для оптимальной схемы необходимо аварийное отключение нагрузки. Также будет велика вероятность того, что при подаче сетевого напряжения получится встречное соединение генератора и питающей электросети. А это может привести к порче электрогенератора.

Перекидной рубильник, хоть и не автоматический, в одном из трех своих положений перенаправит потребителей на электрогенератор. Причем никогда не получится встречного соединения, поскольку это физически невозможно в этом рубильнике. В среднем положении домашняя электросеть получается обесточенной. Даже при работающем электрогенераторе и наличии напряжения в электросети можно без проблем переключаться между этими двумя источниками электроэнергии.

Синий провод сети и генератора (см. изображение выше) надо пропустить через контакты автоматических выключателей. Для сети и для электрогенератора нужен свой отдельный автомат-выключатель. В схеме подключения генератора обязательно должен присутствовать заземляющий контур или заземление из трубы или стального профиля длиной от 2 метров. Хороший вариант заземления — труба скважины для воды.

Если дом присоединен к трехфазной сети, а электрогенератор однофазный, рекомендуется схема, показанная далее.

В заключение дадим собственные рекомендации по выбору схемы подключения генератора. Еще раз напомним, что начинать строить такую схему надо со статистики отключений электроэнергии в конкретном месте. Ручное переключение на электрогенератор дешевле. Также более дешевым вариантом является использование источников бесперебойного питания для конкретного оборудования. Электрогенератор наиболее эффективен при отоплении электричеством, когда отключения регулярны и продолжительны.

Блок управления генератором, мощность нагрузки до 6,5 кВт | Спрут технолоджи

Описание товара

Это устройство обеспечивает:

Автоматическую защиту электросети и подключение генератора (причём короткое замыкание фазы генератора с электросетью невозможно), ручной запуск генератора и питание от него до появления электросети, автоматическое переключение на нормальную электросеть при совпадении фаз и автоматическая остановка генератора.

При отлючении электроэнергии вручную вы только запускаете генератора, далее электронная схема соединит ваш генератор с вашими потребителями и автоматически отключит сеть. А когда появится напряжение об общей сети, устройство отключит генератор и включит общую сеть, причем перебоя в поставке энергии вашим потребителям не произойдет.

Без этого устройства будет несколько затруднено подключение генератора после запуска к общей сети, а также придется вручную отключать генератор от сети, глушить его и подсоединять общую питающую сеть к вашей сети потребителей. Снимаются все проблемы контроля за пуском и остановкой генератора, просто и легко!

Управление генераторомразработано с учётомвоенных стандартов бывшего СССРиявляется высоконадёжным устройством,рекомендуемымдля установки в доме, офисе или на производстве, оптимизировано для правильнойработы автоматики газовых котлов отопления.Должно подключаться к питающей электросети, имеющей защиту от токов короткого замыкания и перегрузок (автоматические выключатели, предохранители).

Позволяетавтоматизировать работубензогенераторов с ″ручным стартером″ (дёргалкой), которые невозможно запустить автоматически.Но часто электростанциис электростартером пользователи подключают и запускают только вручную.

Подключение вроде очень простое всего 5-6 элементарных действий:

  • Отключить электросеть
  • Завести и прогреть бензогенератор
  • Подключить генератор к сети
  • Не пропустить появление нормальной электросети
  • Отсоединить бензогенератор от резервной сети и заглушить его. При этом дом обесточивается, необходимо отключать компьютеры и другие приборы
  • Подключить электросеть.

Но если эти действия делать в неправильном порядке (забыть, что-то отключить или не так подключить) то возможно встречное включение генератора с электросетью и как следствие его поломка.

При примененииданного устройства, из этого количестваручных действий для человека остаётся только одно- завести и прогреть генератор все остальные действия будут автоматизированы, причём встречное включение генератора с электросетью будет невозможно (исключается схемотехнически).

Следует учесть, что ремонт генератора после встречного включения,обходится от 3 до 10 раз дороже стоимости самого устройства для подключения. После появления внешней сети в момент полного совпадения фаз генератора и электросети происходит автоматическое подключениевнешней сети, при этомкомпьютеры не сбиваются.

Алгоритм работы следующий:

  • автоматическая защита сети при аварии и подключение генератора к дому (причём короткое замыкание генератора с электросетью невозможно),
  • ручной запуск и прогревгенератора,
  • резервное электропитание сети дома,
  • автоматический анализ появления нормальной электросети + 20 сек задержка и синхронизациягенератора с сетью.
  • автоматическое переключение на нормальную электросеть при совпадении фаз. Причём без разрыва в подаче электроэнергии к потребителям, компьютеры нормально работают, не замечая подключение электросети (встречное включение электрогенератора с силовой сетью опять невозможно),
  • автоматическая остановка генератора.

ТЕХНИЧЕСКИЕ ДАННЫЕ.
Мощность нагрузки (cosφ=1), не более ………………………………………….6,5 кВт
Мощность нагрузки (cosφ=0,4), не более ……………………………………….1.1 кВт
«Высокое» напряжение, при котором нагрузка
отключается отгородской сети, более*………………………………….. 255В
«Высокое» напряжение, при котором разрешено
подключение нагрузки (после отключения), менее* …………………. 250В
«Низкое» напряжение, при котором разрешено
подключение нагрузки (после отключения), более* …………………… 155В
«Низкое» напряжение, при которомнагрузка
отключается от внешней сети, менее* ………………………………………. 140В
Задержка при включении, не менее …………………………………………………. 20сек
+ время на совпадение фаз ……………………………………………… 90сек
Потребляемая мощность, (220В) не более ………………………………………….. 2Вт
Номинальный режим работы, при входных
напряжениях электросети0÷380В- (непрерывный)…………… продолжительный
Ширина, занимаемаяна DIN-рейке, мм, не более ………………………………. 55мм
Масса, не более ………………………………………………………………………….. 0,5 кг
Импульсный ток через управляющие контакты не более …………………………. 16А
Постоянный ток через управляющие контакты не более ………………………….. 8А
Изделиепредназначено для эксплуатации при температуре окружающей среды от -20° Сдо40°С, относительной влажности воздуха не более 80% при температуре до 25°С и высотах над уровнем моря не более 2000м.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ.
Нагрузка в исходном состоянии подключена к генератору и вначале измеряется сетевое напряжение, если оно нормальное, то блок ожидает совпадения фаз генератора и электросети и только после этогоподключает дом к внешней сети, и автоматически глушит генератор. Если бензогенератор не работает, то задержка составляет – 30 сек, если генератор работает в противофазе с электросетью, то максимальная задержка составит – 120 сек. При превышении напряжением электросети значения 255В всё подключается к генератору – это обеспечивает защиту бытовых приборов и электронной аппаратуры от скачков в электросети,при понижении напряжения до 245 В нагрузка автоматически подключается к электросети. Если входное напряжение понижается до 140 В то, нагрузка также подключается к генератору. Бензорогенератор необходимо запустить вручную.

Изделиеоптимизировано для работы фазозависимых газовых котлов отопления,поэтому при подключении генератора к домашней сети обеспечивается правильная работа датчиков пламени.

Упрощённо цикл работы блока управленияимеет следующий вид:
(«В сети авария»Автоматическое подключение генератора → Ручной запуск генератора «питание от электрогенератора» -«Напряжение в сети стало нормальным» → Ожидание совпадения фаз генератора и сети → Автоматическое переключение на нормальную электросеть «питание от внешней сети» → Автоматическая остановка электрогенератора).

Схема включения генератора для аварийного питания дома, дачи, офиса .

Изделие легко подключается к сети дома, для того чтобы автоматически глушить бензогенератор используются управляющие контакты они параллельно подключаются к штатным проводам идущим от тумблера остановки чтобы закоротить магнето. Или имитируется авария по срабатыванию датчика масла находящегося в карбюраторе двигателя, для этого провод, идущий к датчику масла, замыкается на корпус.

После остановки бензогенератора для пожарной безопасности рекомендуется перекрыть топливо.

Схемы соединения генератора для резервного питания дома можно скачать в специальной статье по применению данных блоков.

 

 

Схемы подключения генератора.

Варианты и схемы применения полуавтоматического управления генератором резервного питания

+ защита электросети, показаны для модификации 6,5кВт.

Полуавтоматическое управление легко позволяет подключить генератор к сети дома, в самых различных вариантах применения.
Полуавтоматическое управление генератором полностью заменяет ручной переключатель фаз сеть – генератор (рубильник включения резерва, ручной включатель резерва – РВР) и так же может использоваться как схема защиты генератора от встречного тока электросети.

Со стороны электросети в блоке полуавтоматического управления встроена защита от перенапряжений, стандартный диапазон которой составляет 140÷255В. Поэтому стабилизатор напряжения необходимо подключать перед блоком управления, при подключении электрогенератора к дому.

Рис. 1. Схема подключения электростанции со стабилизатором напряжения и с выделением резервной сети.

Как подключить генератор к сети видно из приведенной схемы. В этой схеме общее потребление от сети может значительно превышать мощность резервного электрогенератора и даже предельную мощность нагрузки самого блока полуавтоматического управления , так как часть энергии идёт напрямую. Но для этого необходимо заранее выделить резервную линию. При пропадании электросети необходимо только запустить электрогенератор резервного питания. И нет опасности перегрузки электрогенератора, так как к выделенной резервной линии заранее подключены только самые необходимые приборы, например, газовый котел отопления.

Из этой схемы может быть исключён стабилизатор, и вся электроэнергия может идти через контакты полуавтоматического управления генератором.

Полная мощность нагрузки, проходящая через контакты полуавтоматического управления от электрогенератора или от внешней сети не должна превышать паспортных значений.

Если необходимо подключение мощной нагрузки, то можно применить модификации на 11-13,5кВт или установить мощные контакторы, далее приведена схема подключения дизель генератора большой мощности.

Рис. 2. Схема увеличения мощности блока полуавтоматического управления генератором с помощью магнитных пускателей, применяется для подключения электростанции большой мощности к сети дома, офиса или предприятия.

Мощность нагрузки ограничена только допустимым током через магнитные пускатели. Блок полуавтоматического управления в данном случае используется только как управляющее устройство, ток нагрузки через него не идет (при разделении цепей нагрузки в данном случае через него можно запитать до 6 кВт).

Положение контактов указано при отсутствии внешней сети, по схеме видно, что есть электрическая блокировка для исключения одновременного включения катушек магнитных пускателей (в данном случае может быть включен только пускатель генератора). Причем даже при произвольном залипании контактов промежуточного реле исключается возможность одновременного включения магнитных пускателей. Кроме этого магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному замыканию контактов магнитных пускателей. Это необходимо для полного исключения возможности встречного включения электрогенератора с внешней сетью.

При низких напряжениях электросети необходимо на входе электросети ставить стабилизатор. Это связано с тем, что магнитные пускатели и промежуточные реле, как правило, нормально работают при напряжениях выше 170 В.

Управление генератором может применяться для подключения однофазного генератора к трёхфазной электросети, естественно только для однофазных потребителей. В данном случае на каждую фазу подключается одно изделие, а для остановки генератора используется нужная комбинация из трёх независимых перекидных контактов реле.

Рис. 3. Схема подключения однофазного резервного генератора к трёхфазной сети.

Контакты управления, предназначенные для остановки дизель генератора, соединены последовательно. При этом при пропадании хотя бы одной фазы можно завести генератор, причём энергия от него будет подаваться, только на одну отсутствующую фазу, оставшиеся фазы будут питаться от электросети. И соответственно дизель генератор будет работать, пока электроэнергия не появится на всех фазах.

После полного отсутствия напряжения подключение фаз будет происходить последовательно по мере синхронизации соответствующей фазы электросети с электрогенератором. После синхронизации последней фазы будет выработана команда для остановки генератора.
При параллельном соединении управляющих контактов электрогенератор можно будет завести только после пропадания всех фаз. Соответственно, при синхронизации генератора с любой фазой электросети будет переключение на эту фазу и автоматическая остановка электрогенератора. Другими словами, в этом случае при наличии хотя бы одной фазы запуск электрогенератора блокируется.

То есть пользователь сам может выбрать нужный ему алгоритм работы генератора в зависимости от наличия количества фаз электросети. Так же на основе схемы рис. 3 можно неограниченно увеличить мощность нагрузки, если нагрузка разбита на линии группы не более 6,5 кВт (13,5 кВт) в каждой, то на каждую линию ставится блок полуавтоматического управления генератором и все блоки независимо друг от друга параллельно работают.

Полуавтоматическое управление электрогенератором резервного питания также может применяться как полностью автоматический переключатель с основной фазы на резервную фазу – АВР, с возвратом на приоритетную фазу через минуту после появления на ней напряжения в диапазоне 155-250В.

Рис. 4. Схема подключения однофазного резервного генератора к трёхфазной сети. С выделением резервной фазы.

В данном случае фазы могут быть от разных (несинхронных) источников. При наличии хотя бы одной фазы у нас полностью автоматический переключатель фаз – АВР (Автомат Ввода Резерва), генератор остановлен, а на резервной фазе есть напряжение. Эта схема может применяться для аварийного питания газового котла отопления. Защита есть по всем трем фазам, кроме электрогенератора. Только при пропадании всех трех фаз разрешается запуск электрогенератора.

При таком применении необходимо уменьшать мощность нагрузки блоков полуавтоматического управления генераторов или применять контакторы Рис. 2.

Полуавтоматическое управление генератором позволяет обеспечить удалённую связь с аварийным электрогенератором и передачу энергии и управления всего по трем жилам кабеля.

Так же в некоторых случаях позволяет сделать оптимальную разводку электросети с минимумов длины проводов и сэкономить бесполезные потери электроэнергии.

Рис. 5. Схема подключения бензогенератора с минимумом соединительных проводов, возможная длина более 100 метров.

Дополнительно применяется промежуточное реле на колодке с обмоткой 220В.

Применение дополнительного реле иногда необходимо, если остановка электрогенератора производится ключом и к колодке ключа подходит 4 провода, то в этом случае для надёжной остановки необходимо закоротить 2 не связанные пары проводов.

Если остановка осуществляется тумблером или ключом, к колодке которого подходит 2 провода то дополнительное реле не нужно (кроме уделённой связи по 3 жилам провода).

Так же имеется простая возможность остановки электрогенератора путём имитации срабатывания датчика масла, для этого провод, идущий в картер двигателя, соединяют с корпусом.

Рис. 6. Схема подключения генератора к сети с автоматического включения дежурного освещения.

При применении дополнительного реле есть возможность автоматически подключать резервное светодиодное освещение. При этом желательна система подзарядки аккумулятора и его защита от полного разряда.

Все приведенные схемы обеспечивают подключение резервного генератора для правильной работы фазозависимых газовых котлов отопления, данный блок может так же использоваться и для схемы подключения инвертора.

Как переделать трехфазный генератор в однофазный

Схема подключения однофазного генератора в трехфазную сеть

Рассмотрим ключевые моменты подключения однофазного генератора в трехфазную сеть. Недавно на форуме была создана данная тема, и я решил дать более развернутый ответ, а также обсудить этот вопрос на блоге, поскольку на форум многие читатели не заходят.

Подключение однофазного генератора актуально для частных домов, коттеджей, которые хотят иметь у себя независимый источник питания.

Многие дома повышенной комфортности (коттеджи) имеют трехфазный ввод из-за большой потребляемой мощности. Здесь может встать вопрос: а какой нужен генератор? Напрашивается трехфазный генератор необходимой мощности.

Генератор для частного дома

А действительно ли нужен трехфазный генератор?

На этот ответ я однозначно не отвечу, однако, предполагаю, что однофазный генератор будет дешевле трехфазного.

Чем плох трехфазный ввод, я уже рассказывал. Основная проблема – очень трудно добиться равномерного распределения по фазам. Возможно, генератор не очень хорошо переносит такие режимы работы, когда постоянно будет перекос фаз.

А как же наш трехфазный щит переделать в однофазный?

Все очень просто. Схема автоматического включения однофазного генератора в трехфазную сеть:

Схема подключения однофазного ДГ в трехфазную сеть

Для этого нам понадобятся всего 2 контатора, не считая вспомогательных элементов.

В нормальном режиме потребители подключены к трехфазной сети через контактор КМ1. В случае отключения основного питания происходит запуск генератора. Запуск можно сделать используя дополнительный контакт контактора КМ1. Контактор КМ1 отключается, а контактор КМ2 включается и объединяет 3 фазу в одну.

Если вам не требуется автоматический запуск генератора, то вместо данного АВР можно применить, например, кулачковый переключатель на соответствующую мощность. Схема соединения – аналогично КМ2. Здесь мы должны использовать либо два ручных переключателя, либо 1 переключатель, а питающую сеть отключать вводным автоматическим выключателем.

Какое решение предпочтительнее? Выбор за вами.

Также советую пересмотреть мои старые статьи:

Советую почитать:

комментариев 18 “Схема подключения однофазного генератора в трехфазную сеть”

«При этом не стоит забывать, что мощность однофазного генератора будет не менее чем в 2 раз больше трехфазного.»

Про сечение нуля не написали.

Не понял вопрос про мощность.

Сечение нуля — не менее сечения фазного провода. Например, ВВГ-3×16.

Почему мощность однофазного генератора будет как минимум в 2 раза больше трехфазного?

По поводу нуля. Какой кабель проложить от АВР до распределительного щита при трехфазном вводе с мощностью 15 кВт. Дизель допустим аварийный на 15 кВт.

Дизель однофазный соответственно.

Рассчитываете ток, подбираете автомат,а потом выбираете сечение кабеля. На 15кВА — ВВГ-3×16

а как тогда в трехфазном режиме от сети будет питание?

Питающий кабель от трехфазной сети будет свой, например СИП4-4×16 или СИП4-4×25.

от опоры до АВР и от дизеля до АВР все и так понятно. Какой кабель класт от АВР до РЩ?И почему мощность однофазного генератора больше мощности трехфазного в 2+ раза?

После АВР у вас будут групповые линии. Не должно быть никаких промежуточных щитов.

Когда вы переведете все ЭП на одну фазу, должен снизиться общий Кс, следовательно мощность однофазного генератора будет Pantryk :

Не должно быть никаких промежуточных щитов.

Если АВР встраивать в щит с групповыми аппаратами, то да, будут сразу аппараты. А если АВР это отдешьная конструкция. В нее входит два кабеля (один от дизеля и один от опоры) и один выходит к щиту с групповыми аппаратами. Вот я про ноль такого кабеля и говорю. Или например у меня двухэтажный особняк и выделенная мощность 30 кВт, и дизель я ставлю те же 15 кВт. При этом у меня есть распределительный щит для второго этажа. Он трехфазный. К нему идет кабель 5×4. А теперь мы пускаем во все фазы синфазное напряжение. Что будет с нулем? В частном случае с одним вводно-распределительным щитом ничего страшного не будет т.к. сечение шин вполне достаточно. Но в общем случае применения однофазного генератора в трехфазной сети стоит обращать внимание на сечение нуля в трехфазных кабелях и группах.

Я же детально не рассматривал все нюансы, не привязывался к конкретному объекту. Всегда нужно смотреть какие токи у нас будут и в зависимости от них выбирать автоматы и сечения кабелей.

Если у вас есть проект, можем обсудить более детально на форуме.

Сообщества › Сделай Сам › Блог › “преобразователь однофазного тока в трёх фазный”.

Всем привет !
Очередная моя самоделка, которую я с успехом использую много лет.
Не знаю как точно, по научному его назвать, но думаю “преобразователь однофазного тока в трёх фазный” подойдёт.
Сказать честно, да и многие знают, какие мучения доставляют асинхронные эл. двигатели, при работе в однофазной сети, особенно при максимальной нагрузке.
Однажды от папы услышал, что электрики както делают такие генераторы, но тогда ещё интернета не было спросить не укого, а те у кого спрашивал, не давали ответа (видимо не у тех спрашивал))) ).Вот тут то и начались эксерименты, а то, что из них вышло ниже на фото:

Смотрите также

Комментарии 97

Такой ещё мой дед делал в 80ых годах!использовать можно только по мелочи!повесить например точильный камень для кухонного ножа!в основном только для этого!

Я сначала подумал что двигатель 220 1500 оборотов будет крутить трёхфазный генератор))

Из мотора торчат 4 провода парно 2 толстых и 2 тонких по парно отдельно если подключить работает только нужно покрутить рукой. Что за моторчик? Синхром асинхром я не знаю. Как её подключить чтоб рукой не крутить?

Два из них пусковые. Открой крышку мотора и посмотри на обмотки, те что наружние- это рабочие, а те что ближе к ротору(внутренние) это пусковая обмотка

И что делать с пусковыми куда их подключить?

один провод на ноль, а второй на пусковую кнопку как у автора в этой статье или radio18.ru/files/imagecac…l/catalog/images/8935.JPG Хотя кнопку от стиралки как у автора очень тяжело найти. Лучше воспользоваться той, на которую я дал ссылку.

У нас на рынке и в любом эл магазе таких кнопок полно ! Единственное ограничение 10 Ампер.

ого, это очень классно))))А у нас таких и не найти

И что делать с пусковыми куда их подключить?

Если будет запускаться не в ту сторону в какую надо, надо будет поменять местами провода на пусковой обмотке.

Получается одна рабочая и одна пусковая на ноль, другая рабочая через кнопку на пусковую?

одна пусковая на ноль, а вторая на фазу но на нефиксируемую клавишу, т.е. должно быть кратковременная подача фазы на пусковую

Получается одна рабочая и одна пусковая на ноль, другая рабочая через кнопку на пусковую?

Запустил! Спасибо. Дальше дело техники.

Пусковые провода можно менять местами в зависимости в какую сторону нужно чтоб вращался движок.
Удачи)))

Уже пробовал и заменами, работает. спасибо

Советую погуглить на тему 3-фазных шим-генераторов, а так же слова “частотник” и регулирование скорости вращения трехфазных двигателей.
Прибор такого типа конечно посложнее, но в такой схеме не будет двигателя, там будут 3 мощных выходных MOSFET-транзистора к примеру и большие конденсаторы.
КПД вырастет до порядка 80-90% и мощность будет ограничена только мосфетами, а они бывают и на 50А и на 100А.
А главное — сможете плавно изменять скорость вращения таких движков, изменяя частоту питания на выходе.

Для изменения частоты у меня есть частотник. Пока не понадобился.

Он не умеет делать из однофазной сети трехфазную? имхо его легко приспособить для этого. В нём почти всё уже есть.

Что такое имхо? Часто пишут

Происходит от англ. IMHO — сокращение от in my humble opinion «по моему скромному мнению». Вот примерно как то так

Ясно, по пользуюсь чтоб не отличиться

Ясно, по пользуюсь чтоб не отличиться

Можно ещё : “Имею Мнение Хрен Оспориш” )))

Что такое имхо? Часто пишут

спасибо что спросил, давно хотел спросить.

Он не умеет делать из однофазной сети трехфазную? имхо его легко приспособить для этого. В нём почти всё уже есть.

Можно по подробней ?

Можно по подробней ?

Нет, к сожалению. Всё это лучше смотреть по месту, если речь о переделке.
А если о создании, то тем более гугл и куча схем по форумам всё пояснит куда лучше меня.

Скромненько)
Вот мой вариант: на этапе тестирования
www.drive2.ru/b/1156650/

5 кВт генератор крутит 4 кВт двигатель на компрессоре, стартует как пушика от 220В)

Обычный фазовращатель, много двигателей так подключается. Емкость конденсаторов в схеме зависит от мощности нагрузки в этом минус, ибо максимальная эффективность только при одной мощности.

Конденсаторы в схеме только для запуска ” преобразователя”, после запуска двига они отключаются.

Есть мотор с 4 мя проводами, соединяю два более толстых к 220 вольт и подкручиваю рукой начинает работать, как делать так чтоб сама крутилась как включу?

Скорее всего у движка есть пусковая обмотка, эту обмотку временно подключают чтоб двигатель запустился, а потом переходят на рабочую обмотку

Значит можно его замкнуть для пуска и разомкнуть после?

есть специальные пусковые реле, которые после нажатия на кнопку шунтируют ее и производят пуск по ступеням для того что бы ток пусковой не привышал при пуске номинальный рабочий, где то схемы были по учебе еще нужно поискать)

Значит можно его замкнуть для пуска и разомкнуть после?

раньше были еще специальные выключатели, стояли в стиральных машинках, где один контакт замыкался только при нажатии на кнопку пуск, а потом отходил, два других оставались в замкнутом состоянии пока не нажмешь на кнопку стоп

Был у меня выключатель от стиралки так и не разобрался что к чему и потерял. Сегодня нашел другой выключатель с двумя пусками и с стопом, можно вроде как реверс подключить

Я недавно собрал на токарный станок ревесный пускатель.Вперёд, назад и стоп.

Правильнее, наверное, будет назвать сей девайс Фазорасщепителем!

Примерно так-же использует данный девайс serzhi И нормально!

Фактическимощность падает 1.73 раза. То есть 3 кВт мотор отдает чуть более 1 кВт

С таким преобразователем потерь практически нет. Читайте по ссылке: cm001.narod.ru/new_index/publik/generator.html Я ниже её выкладывал, но мой комментарий автор зачем-то удалил…

Ну как же нет если у вас одна штатная обмотка вообще не работает? Эта схема есть в любой книжке по электротехнике. Две обмотки последовательно а третья пусковой через конденсатор в 1/10 емкости по мощности двигателя. … вы путаете кпд самой установки и неизбежные потери мощности связанные с тем что двигатель изначально не рассчитан на такую сеть. Это как если в мотор вместо 92 налить 76 и говорить что мощность не падает

Почему одно не работает ?
Попробуем теперь, имея одну фазу, восстановить оставшиеся две. Возьмём обычный трехфазный асинхронный электродвигатель с короткозамкнутым ротором. У него также имеются ротор и три статорные обмотки, сдвинутые в пространстве на угол 120°. Подадим на одну из обмоток однофазный ток. По указанным выше причинам, ротор такого двигателя не сможет сам начать вращение. Но, если посторонней силой, сообщить ему первоначальный вращающийся момент, то он будет вращаться дальше за счёт переменного однофазного напряжения в одной обмотке. (Строгое научное объяснение этого факта я опускаю, т.к. оно широко известно из курса электротехники). Вращающийся ротор своим магнитным потоком навёдет ЭДС индукции в двух других статорных обмотках, т.е. восстановит недостающие две фазы. Таким образом, мы получим что-то вроде вращающегося трёхфазного трансформатора. Одна из обмоток двигателя, на которую подаётся переменный однофазный ток из сети, становится возбуждающей обмоткой, формирующей магнитное поле вращающегося ротора, а он, в свою очередь, возбуждает переменное напряжение в оставшихся обмотках.

Ну во первых не на одну фазу а на две а во вторых мы сейчас изобретает вечный двигателя пытаясь выдать за преобразователь обычный мотор.

Ну как же нет если у вас одна штатная обмотка вообще не работает? Эта схема есть в любой книжке по электротехнике. Две обмотки последовательно а третья пусковой через конденсатор в 1/10 емкости по мощности двигателя. … вы путаете кпд самой установки и неизбежные потери мощности связанные с тем что двигатель изначально не рассчитан на такую сеть. Это как если в мотор вместо 92 налить 76 и говорить что мощность не падает

Ну как же нет если у вас одна штатная обмотка вообще не работает? Эта схема есть в любой книжке по электротехнике. Две обмотки последовательно а третья пусковой через конденсатор в 1/10 емкости по мощности двигателя. … вы путаете кпд самой установки и неизбежные потери мощности связанные с тем что двигатель изначально не рассчитан на такую сеть. Это как если в мотор вместо 92 налить 76 и говорить что мощность не падает

Фактическимощность падает 1.73 раза. То есть 3 кВт мотор отдает чуть более 1 кВт

Как тогда объяснить тот факт, что этот мотор тянет полуторакиловатный в полную нагрузку ?

А вы сравните подав на него 3 фазы и почувствуете разницу.

А вот было бы три фазы, тогда я вообще не заморачивался !

А вы сравните подав на него 3 фазы и почувствуете разницу.

Это не мотор! С его вала никто не собирается снимать мощность. Да, если его нагрузить, он выдаст только 30-40 процентов своей мощности, потому как третья обмотка не подключена. Но он работает вхолостую, а при вращении ротора генерируется недостающая фаза в третьей обмотке, от которой уже питаются другие потребители.

Революционное решение от компании Hyundai – уникальный генератор 220/380В (2 в 1)

Дом, в котором есть и однофазные, и трехфазные потребители тока, при подключении резервного энергоснабжения, определенно требует трехфазного генератора. Ведь электроприборы на 380 Вольт никак не смогут работать от однофазной электростанции, выдающей на выходе только 220 В. А вот трехфазный генератор подходит для питания и первым, и вторым, так как имеет на панели две розетки – на 220 Вольт и на 380 Вольт. Вроде все понятно: покупаем трехфазный ген и не паримся.

С какими проблемами столкнемся?

В случае подключения трехфазного оборудования никаких неприятностей не возникнет. Но вот с однофазными – просто беда.

При их подсоединении вступают в силу две «вечных» проблемы:

  • Урезание мощности в три раза;
  • Перекос фаз.

По поводу первой – стандартный трехфазный генератор выдает на однофазное подключение только 1 третью часть своей мощности. То есть, вожделенные 6 кВт вдруг исчезают и выдается только 2 кВт (ровно треть). А бензина, между прочим, ген берет как на все 6. Это нерационально и неэкономно. Перекос – вообще явление крайне сложное. Можно развести три однофазных подключения. Но тогда по каждой проводке нужно соблюдать разницу в мощности не более 25 процентов. То есть, если на один провод включить бойлер 2 кВт, то на другой нужно что-то не меньше 1,5 кВт. Если там однокиловаттный насос, то он не включится. В общем, нужно знать все мощности в доме и все время производить сложные расчеты. Иначе, что-нибудь, да не заработает.

Hyundai создал уникальный генератор – однофазный и трехфазный (2 в 1)

Все вышеизложенное выглядит сложно, проблемно и, казалось бы, неразрешимо. Но сегодня корейская компания Хюндай предлагает легкое и простое решение. Ее новый трехфазный генератор – это устранение «головной боли» по поводу перекоса фаз и распределения мощности.Корейские инженеры создали универсальную мини-электростанцию, которая совмещает в себе сразу два вольтажа: 220В и 380В.

Уникальность прибора в том, что ген работает в двух режимах:

Вроде, как и все, – разочарованно скажете вы. Да нет. Совсем по-другому. Без урезания мощности в три раза и без явления, именуемого «перекос фаз». Практически, это прорыв, так сказать, революция в области фазности.Технология совершенно новая. Работает благодаря инновационному переключателю. Он называется Voltage Transfer Switch (переключатель предаваемого напряжения).

Как это работает?

Тот, кто боле-менее продвинут в компьютерных технологиях, хорошо знает, что такое Switch (свитч). Это своего рода многопортовый мост для соединения элементов компьютерной сети. Что-то подобное происходит и в генераторе. «Свич» переключает, только не порты, а обмотки – однофазную и трехфазную.Чтобы обеспечить это переключения из режима в режим, обмотки соединены зигзагообразно.

Последовательное соединение сменяется встречным. Получаемый зигзаг выполняет определенную функцию. Он делает так, что электродвижущая сила в однофазной обмотке идет обособленно и никак не зависит от трехфазной. Как, впрочем, и мощность, и сила тока.

В чем состоит преимущество и выгода покупателя?

Что же мы получаем при покупке универсального генератора от Хюндай?

  • Ожидаемую полную мощность. Наших 6 кВт на три фазы остаются теми же 6 киловаттами на одну фазу. Мощность не теряется;
  • Экономию бензина – на 2 кВт уже не тратится столько же горючего, как и на 6, а в три раза меньше;
  • Не нужно сложных «перекошенных» расчетов. Все просто – подключайте однофазные электрические приборы любой мощности, в любой последовательности и количестве. Главное, чтобы их общая суммарная мощность не превысила номинальную мощь самого гена.

Нам остается лишь переключать – или на 220 Вольт, или на 380 – в зависимости от потребности. VTS-переключатель задействует нужный режим вольтажа, и – о чудо! – все работает. Без потери мощи и без «перекоса».В принципе, в однофазном режиме, мощность чуть-чуть упадет. Коэффициент понижения именуется “косинус фи”. Это число так мизерно, что, практически, незаметно. С урезанием мощи в три раза его даже сравнивать нельзя.

Презентация модельного ряда

Новая серия универсальных генераторов Hyundai работает на бензине. Узнать ее среди подобных легко – в серии присутствует буква «Т». Все электростанции из этого модельного ряда оснащены фирменными двигателями специальной промышленной серии IC. Им присущи выносливость, стабильность оборотов, экономное потребление топлива, и способность к длительной работе. Новый ряд представлен тремя моделями.

Бензиновый генератор Hyundai HHY 9020FE-T (универсальный 220/380В)

Этот бензиновый генератор выдает 6,5 кВт по максимуму, как для однофазных, так и для трехфазных потребителей. Вольтаж стабильный, без отклонений на выходе. Ток качественный. Бак на 25 литров не требует частых доливок горючего. Работает без перерыва 14-15 часов.

Конструкция открытая, рама толстая, стальная, вибрации гасятся демпферами. Рекомендуется производителем в качестве резервного энергоснабжения, как в частном секторе, так и в профессиональной деятельности (мастерские, небольшие предприятия).

Трехфазный генератор методом проб и ошибок, самодельный ветряк на дачу, и как это все делаю я

Идея построить генератор (а позже ветряк) пришла в голову незадолго до появления загородного участка. Сначала просто как хобби, потом пилил научную работу. Больше всего мне помог в этом вопросе сайт Игоря Белецкого. Сделал примерный чертеж, и тут встал вопрос о покупке материалов. Станка с ЧПУ для детальной обработки у меня как не было, так и сейчас нет, следовательно конструкцию нужно было упрощать. К сожалению фотографий самого процесса изготовления у меня мало, поэтому попробую рассказать с чем я на данный момент столкнулся
Сам генератор состоит из ротора, статора и корпуса. В моем случае ротор – это два алюминиевых диска (важно чтобы материал был парамагнетиком), изготовленные на токарном станке, с прорезями под неодимовые магниты, закрепленные на эпоксидке. Полюса магнитов на диске чередуются.

Диски крепятся на оси, разноименными полюсами магнитов друг к другу, на расстоянии, чтоб между ними можно было закрепить статор. Роль ротора – создание магнитного поля постоянными магнитами.
Перейдем к устройству статора. Статор состоит из катушек обмоточной проволоки, с помощью которых будет сниматься индуцированный заряд. Проволоку лучше наматывать на металлический (тут нужно использовать ферромагнетик, например железо) сердечник для повышения индукции магнитного поля, соответственно для повышения передаваемой мощности. Так как генератор трехфазный (в одном диапазоне мощностей три фазы обычно на 150% более эффективны одной. В однофазных системах мощность падает до нуля 3 раза за каждый оборот генератора, в 3-х-фазных – падение мощности до нуля в течение оборота не происходит), нужно сделать одинаковое количество катушек на каждую фазу.
Есть два способа соединения фаз: “звезда” и “треугольник”. От этого зависит выходное напряжение и ток. Вот схематическое изображение от Игоря Белецкого:

Итак, осталось только собрать все воедино. Вместо дюралевых пластин для корпуса я предпочел ДВП (фанера, будь она березовой/ламинированной/хвойной – крошится и трескается, неудобно). В боковых сторонах просверлил отверстия под подшипники (на фото только видимость работы, нужны были фотки для научно-практической конференции).

Далее сборка статора

И завершающий этап. Регулировка расстояния между корпусом/ротором/статором/ротором/корпусом, пайка диодного моста и замеры напряжения.

Часть первая, продолжение следует)

Дубликаты не найдены

Все выкладывают как делать, а кто нибудь выкладывал его применение после сборки? Не просто замеры напряжения, а реальное применение. Или их ради замеров собирают?

Мало информации. Какая выходная мощность, вольты, амперы? Что он питает? Работает через редуктор или напрямую? Какая высота мачты? Какое обслуживание проводилось? Сложности установки. Вроде по форме ветряк из тихоходных, какая в вашей местности среднегодовая скорость ветра? У нас вот она 2.5 м/с, а ветряки считаются эффективными выше 3 м/с.

если этот вопрос мне: 1) мощность самой турбины и и конструкция ее выбиралась именно для эффективной работы при слабом ветре. расчетная ветровая мощность 800 ватт при 7 мс. при 5 мс выходное напряжение хх 14 вольт. икз моментальный 30а. 2)Он заяжает автомобильные аккумуляторы. сейчас 3 шт. 3) работает на прямую. 4)высота мачты 3м по нижней комке лопастей. 5) после первой зимы пришлось регулировать зазор (видимо разбухла эпоксидка. ветряк был установлен 01,09,2013 можно посмотретьпо экзифу боковой фотке и работает по сей день. Место установки Серебяно Пудский район Мо.Розу ветров можешь посмотреть в инете )да и стоит на середине бугра,с 3х сторон окруженного лесом 6)Сложности установки – хорошо заглубить мачту, хорошие опоры для растяжек, ну и поднять всю эту хрень. весит много.. 7) да, как и писал выше ветряк из тихоходных при 3 м/с выходное напряжение около 6 вольт. что достаточно для специального инвертора. могу добавить что пи 3 м/с могут работать ветряки только такого типа. для пропеллера надо минимум 5м/с.

Теперь в комплексе по установке. такая низкая установка обусловлена тем что изначально это был испытательный вариант и работа его в этом месте не планировалась, есть другой участок для которого он делался. Расчетную мощность самого генеатора тоже сказать не могу т.к. цена необходимых для него магнитов переваливала за 40 тр(50Х10. было разобрано очень много жестких дисков из которых были взяты магниты разломаны пополам и из них были собраны необходимые секции. В случае успеха планировалось их заменить на покупные но результат превзошел все ожидания. поэтому оставлено пока так. По мощности генератор превысил мощность ветродвигателя как минимум в 2 раза. При кз генератора он почти останавливается даже при очень сильном ветре. вот как то так.

Как изготовить генератор из асинхронного двигателя

Желание разработать автономный источник по производству электроэнергии позволил соорудить генератор из обычного асинхронного мотора. Разработка отличается надежность и относительной простотой.

Виды и описание асинхронного двигателя

Существует два вида моторов:

  1. Короткозамкнутый ротор. Он включает в себя статор (недвижимый элемент) и ротор (вращающийся элемент), движущийся за счет работы подшипников, прикрепленных к двум щиткам мотора. Сердечники изготовлены из стали, а также они изолированы друг от друга. По пазам статорного сердечника расположен изолированный провод, а по пазам роторного устанавливается стержневая обмотка либо льется растопленный алюминий. Специальные кольца-перемычки играют роль замыкающего элемента роторной обмотки. Самостоятельные разработки преобразовывают механические движения мотора и создают электроэнергию переменного напряжения. Их преимущество – нет в наличии коллекторно-щелочного механизма, что делает их более надежными и долговечными.
  2. Фазный ротор – дорогой прибор, требующий специализированного сервиса. Состав такой же, как и у ротора с коротким замыканием. Единственное исключение роторная и статорная обмотка сердечника выполнена из заизолированного провода, а ее концы подсоединяют к кольцам, прикрепленным к валу. По ним проходят специальные щетки, которые объединяют провода с регулировочным либо пусковым реостатом. Из-за низкого уровня надежности его используют лишь для тех отраслей производства, для которых он предназначен.

Область применения

Устройство используется в разных отраслях:

  1. Как обычный двигатель для электростанций, работающих от ветра.
  2. Для собственного независимого питания квартиры либо дома.
  3. Как небольшие ГЭС-станции.
  4. Как альтернативный инверторный тип генератора (сварочный).
  5. Для создания бесперебойной системы питания от переменного тока.

Преимущества и недостатки генератора

К положительным качествам разработки принадлежат:

  1. Простая и быстрая сборка с возможностью избежать разборки электродвигателя и перемотки обмотки.
  2. Способность осуществлять вращение электротока с помощью ветряной либо гидротурбины.
  3. Применение устройства в системах мотор-генератор, чтобы преобразовать однофазную сеть (220В) на трехфазную (380 В).
  4. Способность использовать разработку в местах отсутствия электричества, применяя для раскрутки двигатель внутреннего сгорания.

Минусы:

  1. Проблематичность расчета емкости конденсата, который присоединяется к обмоткам.
  2. Сложно достичь максимальной отметки мощности, на которую способна самостоятельная разработка.

Самодельный генератор из асинхронного двигателя

Принцип работы

Генератор вырабатывает электрическую энергию при условии, что количество оборотов ротора несколько выше синхронной скорости. Самый простой тип вырабатывает порядка 1800 об/мин., учитывая, что уровень его синхронной скорости становится 1500 оборотов.

Его принцип действия основывается на переработке механической энергии в электроэнергию. Заставить ротор вращаться, и производить электричество можно с помощью сильного крутящегося момента. В идеальном варианте – постоянный холостой ход, который способен поддерживать одинаковую скорость движения.

Все виды моторов, работающие от силы непостоянного тока, называются асинхронными. У них магнитное поле статора кружится скорее, чем поле ротора, соответственно направляя его в сторону своего движения. Чтобы изменить электромотор на функционирующий генератор понадобится повысить скорость передвижения ротора, чтобы он не следовал за магнитным полем статора, а начал двигаться в другую сторону.

Получить подобный результат можно, подключив прибор к электросети, конденсатор с большой емкостью или целую группу конденсаторов. Они заряжаются и скапливают энергию от магнитных полей. Фаза конденсатора имеет заряд, который противоположен источнику тока мотора, из-за чего происходит замедление работы ротора, и начинается выработка тока статорной обмоткой.

Схема генератора

Схема очень простая и не нуждается в наличии специальных знаний и умений. Если запустить разработку не подключая ее к сети, начнется вращение и, после выхода на синхронную частоту, статорная обмотка станет образовывать электрическую энергию.

Прикрепив к ее зажимам специальную батарею из нескольких конденсаторов (С) можно получить опережающий емкостный ток, который будет создавать намагничивание. Емкость конденсаторов должна быть выше критического обозначения С, которое зависит от габаритов и характеристик генератора.

В данной ситуации происходит процесс самостоятельного запуска, а на статорной обмотке монтируется система с симметричным трехфазным напряжением. Показатель создаваемого тока напрямую зависит от емкости для конденсаторов, а также характеристики машины.

Простейшая схема включения асинхронного двигателя

Делаем своими руками

Чтобы преобразовать электромотор в работоспособный генератор понадобиться применять неполярные конденсаторные батареи, поэтому электролитические конденсаторы лучше не использовать.

В трехфазном моторе подключить конденсатор можно по таким схемам:

  • «Звезда» – дает возможность провести генерацию при меньшем количестве оборотов, но с более низким выходным напряжением;
  • «Треугольник» – вступает в работу при большом количестве оборотов, соответственно вырабатывает больше напряжения.

Можно создать собственное устройство из однофазного мотора, но при условии, что он оборудован ротором с коротким замыканием. Чтобы запустить разработку следует воспользоваться фазосдвигающим конденсатором. Однофазный мотор коллекторного типа для переделки не подходит.

Внешний вид простейшего ветрогенератора с применением асинхронного двигателя

Необходимые инструменты

Создать собственный генератор несложно, главное иметь все необходимые элементы:

  1. Асинхронный мотор.
  2. Тахогенератор (прибор для измерения тока) или же тахометр.
  3. Емкость под конденсаторы.
  4. Конденсатор.
  5. Инструменты.

Пошаговое руководство

  1. Поскольку понадобится перенастроить генератор таки образом, чтобы скорость вращений превышала обороты мотора, первоначально необходимо подсоединить двигатель к электросети и завести. Затем с помощью тахометра определить скорость его вращений.
  2. Узнав скорость, следует к полученному обозначению прибавить еще 10%. Например, технический показатель мотора 1000 об/мин, то у генератора должно быть порядка 1100 об/мин (1000*0,1%=100, 1000+100=1100 об/мин).
  3. Следует подобрать емкость под конденсаторы. Чтобы определиться с размерами используйте данные таблицы.

Таблица конденсаторных емкостей

Мощность генератора КВ АХолостой ходПолная нагрузка
ЕмкостьМкфРеактивная мощность КварCOS=1COS=0.8
Емкость МкфРеактивная мощность КварЕмкость МкфРеактивная мощность Квар
2,0281,27361,63602,72
3,5452,04562,541004,53
5,0602,72753,41386,25
7,0743,36984,441828,25
10,0924,181305,924511,1
15,01205,441727,834215,5

Важно! Если емкость будет большой, то генератор начнет нагреваться.

Подберите соответствующие конденсаторы, которые смогут обеспечить требуемую скорость вращений. Будьте осторожны при установке.

Важно! Все конденсаторы должны быть заизолированы специальным покрытием.

Устройство готово и может использоваться в качестве источника электроэнергии.

Важно! Прибор с короткозамкнутым ротором создает высокое напряжение, поэтому если необходим показатель в 220В, следует дополнительно установить понижающий трансформатор.

Генератор на магнитах

Магнитный генератор имеет несколько отличий. Например, он не нуждается в установке конденсаторных батарей. Магнитное поле, которое будет создавать электричество в обмотке статора, создается за счет ниодимовых магнитов.

Особенности создания генератора:

  1. Необходимо открутить обе крышки двигателя.
  2. Понадобится устранить ротор.
  3. Ротор необходимо проточить, сняв верхний слой нужной толщины (толщина магнита + 2мм). Самостоятельно выполнить данную процедуру без токарного оборудования крайне сложно, поэтому следует обратиться в токарный сервис.
  4. Сделайте шаблон для круглых магнитиков на листе бумаги, исходя из параметров диаметр 10-20 мм, толщина около 10 мм, а присягающая сила порядка 5-9 кг на см 2 . Подбирать размер следует в зависимости от габаритов ротора. Затем прикрепите созданный шаблон на ротор и разместите магнитики полюсами и под углом 15-20 0 к оси ротора. Ориентировочное количество магнитов в одной полоске около 8 штук.
  5. У вас должно выйти 4 группы полос, каждая по 5 полосок. Между группами должно сохраняться расстояние величиной в 2 диаметра магнита, а между полосками в группе – 0,5-1 диаметр магнита. Благодаря данному расположению ротор не будет залипать к статору.
  6. Установив все магниты, следует залить ротор специальной эпоксидной смолой. Как только она высохнет, покройте цилиндрический элемент стекловолокном и снова пропитайте смолой. Такое крепление позволит избежать вылету магнитов в момент движения. Следите, чтобы диаметр у ротора был таким же, как до проточки, чтобы при установке он не терся об статорную обмотку.
  7. Просушив ротор, его можно установить на место и прикрутить обе крышки двигателя.
  8. Провести испытания. Для запуска генератора понадобится поворачивать ротор с помощью электродрели, а на выходе вымерять полученный ток тахометром.

Переделывать или нет

Чтобы определить, эффективна ли работа самостоятельно сделанного генератора, следует просчитать, насколько оправданы усилия по преобразованию устройства.

Нельзя сказать, что устройство очень простое. Двигатель асинхронного двигателя не уступает по сложности синхронному генератору. Единственное отличие отсутствие электрической цепи для возбуждения работы, но она заменяется батареей конденсаторов, что ничем не упрощает устройство.

Еще одно положительное качество – эффект клирфактора. Он заключается в отсутствии высших гармоник в генерируемом токе, то есть чем ниже его показатель, тем меньше расходуется энергии на обогрев, магнитное поле и иные моменты. У трехфазного электромотора этот показатель составляет около 2%, в то время когда у синхронных машин он минимум 15%. К сожалению, учет показателя в быту, когда в сеть включены разнотипные электроприборы, нереален.

Другие показатели и свойства разработки отрицательные. Он не способен обеспечивать номинальную промышленную частоту производимого напряжения. Поэтому устройства применяют вместе с выпрямительными машинами, а также для зарядки аккумулятора.

Генератор чувствителен к малейшим перепадам электричества. В промышленных разработках для возбуждения применяется аккумулятор, а в самодельном варианте часть энергии уходит на батарею конденсаторов. В случае, когда нагрузка на генератор выше номинала, ему не достаточно электричества для подзарядки, и он останавливается. В некоторых случаях применяют емкостные батареи, которые меняют свой динамический объем в зависимости от нагрузки.

Просчитать, учесть и компенсировать изменения тока, которые происходят случайно, к сожалению, нереально, поэтому устройству характерна нестабильная работа.


Самодельный генератор

Не все существующие электросети (в особенности действующие в удалённых от городов регионах) могут обеспечить потребителя полноценным питанием, подходящим для работы современного бытового оборудования. В связи с низким качеством поступающего с подстанций напряжения и его частыми отключениями многие пользователи вынуждены задумываться о том, чтобы изготовить самодельный генератор электроэнергии. С тем, как выглядит такой асинхронный генератор внешне, можно ознакомиться на рис. ниже.

Указанный подход к решению проблемы электропитания за городом позволяет существенно сэкономить в сравнении с ситуацией, когда генераторное оборудование приобретается через торговую сеть в готовом виде.

Эффект обратимости

Известно, что принцип работы любого генерирующего электрический ток устройства основан на преобразовании одной формы энергии (тепла, например) в необходимый для электропитания оборудования вид. Можно воспользоваться так называемыми альтернативными (их ещё называют возобновляемыми) источниками энергоснабжения, однако указанный способ связан с ещё большими материальными и производственными издержками.

Гораздо проще и экономнее сделать самодельный генератор тока, воспользовавшись потенциальными возможностями имеющегося в распоряжении пользователя старого асинхронного электродвигателя.

Основанием для такого изготовления является известный в электротехнике принцип обратимости процессов взаимодействия электромагнитных полей, что объясняется спецификой происходящих при этом электрических процессов. Если в двигателе трёхфазную энергию тока используют для превращения её в механическое вращение вала, то в генераторе всё происходит строго наоборот. В этих агрегатах принудительное вращение якоря трансформируется в текущий по фазным обмоткам электрический ток, мощность которого расходуется на обслуживание потребителя (смотрите рисунок ниже).

Таким образом, перед тем, как сделать образец самодельного электрогенератора из бывшего в употреблении асинхронного двигателя в самом общем случае необходимо проделать следующие манипуляции:

  • Клеммы, на которые подаётся трёхфазное (или однофазное – для коллекторных образцов изделий) напряжение нужно превратить в выходные контакты генератора;
  • К подвижной части генератора, от которой работал тот или иной механизм (станок, например) следует приспособить привод от внешнего источника механического вращательного импульса;

Дополнительная информация. В качестве такого источника может применяться любой подходящий для конкретных условий движитель, вращающийся под воздействием энергии сгорающего топлива (бензина, газа или солярки). При наличии в частном хозяйстве ветряка или самодельной водяной мельницы решение вопроса с приводом существенно упрощается.

  • Из-за дороговизны бензина в условиях загородного хозяйства единственно приемлемым вариантом является изготовление небольшой электростанции, работающей от дизельного движка или на газу.

В этом случае работающий на сравнительно дешёвом топливе двигатель через специальную приводную муфту подсоединяется к валу сооружаемой конструкции, которая после небольшой доработки превращается в генератор переменного тока.

Выбор конструкции

Изготовить генератор из асинхронного двигателя можно вполне успешно, если внимательно изучить конструкцию и устройство каждого из указанных механизмов. Рассмотрим сначала типовой асинхронный двигатель, работающий по принципу скольжения ротора в отстающем по фазе электромагнитном поле статора. Неподвижная часть этого агрегата (статор) оборудуется, как известно, тремя катушками, смещёнными относительно друг друга в пространстве на 120 геометрических градусов.

За счёт взаимодействия подвижного и неподвижного поля в статорных катушках наводится переменное напряжение, представленное последовательностью трёх рабочих фаз (А, В и С).

Более простой вариант изготовления синхронной машины (генератора) предполагает применение б/у коллекторного однофазного двигателя, имеющего в своём составе устройство смещения фазы на конденсаторе фиксированной ёмкости.

Изготовление однофазной системы существенно упрощает конструкцию будущего генератора, но мощность такого изделия сравнительно невелика. Это обстоятельство не позволяет использовать его для питания некоторых образцов однофазных силовых агрегатов (скважинного насоса, например).

Обратите внимание! Однофазного устройства, собранного на базе коллекторного движка, по мощности может хватить разве что на энергоснабжение домашней осветительной сети.

В случаях, когда возникает необходимость в подключении к питающей линии более мощного силового оборудования, единственно правильное решение – изготовить генератор из асинхронного механизма (рисунок ниже).

Рассмотрим, как можно переделать этот механизм в трехфазный генератор, более подробно.

Порядок доработки обмоток

Прежде чем сделать генератор из асинхронного двигателя, следует разобраться с его статорными катушками, соединёнными между собой и включаемыми в питающую линию по определённой схеме.

Дополнительная информация. Для классического подключения асинхронных механизмов используются два типа включения статорных обмоток: по так называемой схеме «звезда» или «в треугольник».

В первом случае все три линейных катушки (А, В и С) с одной стороны объединяются в общий нулевой провод, в то время как вторые их концы подключаются к трём фазным линиям. При включении «треугольником» конец одной катушки соединяется с началом второй, а её конец, в свою очередь, – с началом третьей обмотки и так далее вплоть до замыкания цепочки.

В результате такого подключения образуется правильная геометрическая фигура, вершины которой соответствуют трём фазным проводам, а нулевой провод вообще отсутствует.

Из соображений простоты монтажа и безопасности эксплуатации в бытовых схемах обычно выбирается подключение типа «звезда», обеспечивающее возможность организации местного (повторного) защитного заземления.

При доработке двигателя следует снять крышку распределительной коробки и получить доступ к клеммам, на которые в нормальных условиях поступает трёхфазное питающее напряжение. В генераторном режиме к этим контактам следует подсоединить питающую линию с подключёнными к ней бытовыми трёхфазными потребителями.

Для организации однофазного питания (розеточных линий и цепей освещения, в частности) их нужно будет подключить одним концом к выбранному фазному контакту А, В или С, а другим – к общему нулевому проводу. Порядок подсоединения проводов к асинхронному двигателю приводится на следующем рисунке.

Важно! В случае нескольких линейных (однофазных) нагрузок необходимо распределить их по фазам таким образом, чтобы те были загружены более-менее равномерно.

Таким образом, генератор своими руками, собранный из трёхфазного двигателя, будет нагружен на все питающие цепи, а конечные потребители получат полагающиеся им нормативные мощности.

Организация приводной части

В бытовых условиях в качестве механического привода, как правило, используются типовые бензогенераторы, с которых момент вращения передаётся непосредственно на рабочий вал. Основная проблема при таком подключении – организация надёжного муфтового сцепления, полностью передающего крутящий момент на ось якоря генератора (в данной ситуации его функцию выполняет ротор двигателя).

При её обустройстве самый оптимальный вариант – это обратиться за помощью к профессиональным механикам, которые помогут организовать муфтовое соединение требуемого качества и надёжности.

Обратите внимание! Ротор переделываемого механизма напоминает по своей конструкции обмотку статора с тремя сдвинутыми на 120 градусов обмотками (он называется в этом случае фазным).

Линейные выводы каждой из обмоток соединяются со съёмными контактными кольцами, посредством которых на механизм двигателя через графитовые щётки подавалось запускающее напряжение. Если оставить всё как было, получается очень непростая в изготовлении и обслуживании конструкция, использовать которую в составе будущего генератора не имеет смысла.

Для удобства переделки лучше всего воспользоваться схемой короткозамкнутой подвижной части, которая может быть получена путём закорачивания рабочих выводов каждой из катушек фазного ротора.

Генератор на постоянных магнитах

Известен ещё один способ обустройства бытовых генераторов, состоящий в использовании при изготовлении мощных постоянных магнитов и ряда дополнительных приспособлений (в некоторых средствах массовой информации их ещё называют «вечными»).

Принцип работы такого источника энергии на магнитах состоит во взаимодействии эм полей, создаваемых постоянными магнитными заготовками, жёстко закреплёнными на статорной и роторной части устройства (смотрите рисунок ниже).

Основное преимущество таких двигателей, выполняющих функцию генератора, – отсутствие потребности в источнике внешней энергии или в топливе. Однако и в данном случае не обходится без недостатков, проявляющихся, в первую очередь, в том, что сильные магнитные поля могут негативно сказываться на здоровье обслуживающего персонала.

С учётом этого недостатка во всех остальных ситуациях такой электромотор широко применяется в различных приводных узлах, нередко устанавливаемых на промышленном оборудовании. В качестве примера может быть приведён известный среди специалистов генератор, под обозначением «г 303».

В заключение обзора самодельных генераторов следует заметить, что для переделки их из асинхронных двигателей может потребоваться целый комплект специального съёмного инструмента, по своему составу напоминающий автомобильное оборудование.

Видео

Как подключить генератор в частном доме

Почему знать, как подключить генератор к частному дому через розетку – это лишняя осведомленность

Профессиональные электрики рекомендуют совсем не думать на тему, как подключить генератор к дому через розетку, по следующим причинам:

  • Отдельная розеточная группа не в состоянии принять на себя магистральную нагрузку.
  • Отсутствие отдельного автомата в линии включения.
  • Присутствие человеческого фактора, когда пользователь забывает выключить вводной автомат, чем вызывает перегруз и срабатывание защиты агрегата.
  • Возможность «встречки», когда напряжение городской сети при включенном автомате поступает на контакты работающего электрогенератора, чем может вывести его из строя.

И, наконец, последний аргумент – нет смысла пренебрегать безопасностью и комфортной системой эксплуатации узла. Правильней узнать, как подключить генератор на даче или в доме, и организовать или автоматический режим переключения или ручной. Согласитесь, только так все оборудование и электросети гарантированно будут в сохранности.

Что необходимо для реализации проекта

Если еще кто-то думает, что для подсоединения бензогенератора к электросети домостроения нужно прибрести массу оборудования, спешим успокоить – это не так. Конечно, придется определиться с месторасположением агрегата и обустроить его в соответствии с вибро- и шумоизоляционными нормами. Если для этого нужно отдельное помещение, то без цементно-песчаной стяжки не обойтись.

Само собой, речь идет об электрогенераторах мощностью свыше 2 кВт, которые в большинстве случаев монтируются стационарно. Для подсоединения его к домашней сети технический минимум состоит из следующих компонентов:

  1. Отдельный ввод из медного кабеля сечением не менее 4 мм², который прокладывается от вводного устройства до места постановки генераторного агрегата.
  2. Перекидной рубильник в модульном варианте с возможностью фиксации на DIN-рейку 35 мм. Выбор здесь довольно широк, от недорогих TDM-63 до более надежных приборов от Hager или ABB.

Особое внимание следует уделить типу заземления в домостроении, потому что подсоединение бензогенератора в роли резервного источника энергии должно выполняться в соответствии с ПУЭ. Иными словами, перед тем, как подключить генератор к домашней сети, нужно определить систему заземления – TT или TN-C-S.

Вариант 1: как на даче подключить электрический генератор при помощи реверсивного переключателя

Традиционно нижние контакты реверсивного рубильника используются для отходящей нагрузки. С противоположной стороны на парные контакты подсоединяются отдельные вводы. Переключатель имеет три положения, в среднем – все контакты разомкнуты.

Важно учесть одну деталь – в трехпозиционном переключателе нет электромагнитного или теплового разъединителя, он попросту выключает нагрузку. Исходя из этого, каждый ввод следует дополнительно страховать автоматом, ток срабатывания которого определяется допустимой нагрузкой на линию.

Последовательность включения электрогенератора в схеме с пакетным переключателем

Процесс подключения резервной системы энергоснабжения выполняется в следующей последовательности:

  • Отключить автомат ввода.
  • Установить рукоятку переключателя с городской сети на сеть генераторной установки.
  • Отключить автомат нагрузки.
  • Подсоединить кабель от ручного переключателя к розетке бензогенератора.
  • Запустить агрегат и прогреть его около 2-3 минуты.
  • Дать питание на реверсивный рубильник.
  • Включить автоматы нагрузки.

После появления штатного сетевого питания нужно отключить агрегат от нагрузки в обратной последовательности.

Альтернативное решение

Многие интересуются, как подключить электрический генератор на даче, если не удалось найти достойного перекидного устройства. Его можно сделать самостоятельно из пары двухполюсных однотипных автоматов.

Их монтируют рядом на одном уровне. Один автомат крепится в перевернутом положении так, чтобы все клавиши оказались на одном уровне, их фиксируют стальным штифтом.

Вариант 2: организация автоматического переключения линий

В штатном режиме городская сеть остается на подхвате включенного контактора. Когда на вводе из города электричество пропадет, то контакты отбросит и замкнется пара контактов, которые приведут в действие второй контактор, отвечающий за резервный ввод. Этот контактор включается в цепь до разрыва питающей сети от генераторной установки.

В схеме разумно использовать реле времени, которое позволит подать питание потребителям через 2-3 минуты после пуска бензогенератора. Этот промежуток нужен для прогрева двигателя. Питание резервного контактора должно проходить через нормально замкнутый контакт коммутатора главного ввода.

В случае появления напряжения в городской линии первый контактор опять включится и разомкнет цепь, которая запитывает второй ввод. Конечно, такую схему автоматической можно назвать только с большим натягом, потому что пуск мотора электрогенератора осуществляется под контролем человека. Полностью автоматические системы оправданы при работе с мощными источниками тока.

Вариант 3: как подключить к домашней сети резервный генератор с автозапуском АВР

Приборы для осуществления аварийного электроснабжения в полностью автоматическом режиме предполагают наличие у генерирующего агрегата стартера и системы останова двигателя. Можно и самому организовать подобную систему, но это довольно хлопотно. Таким образом, оправданы два варианта решения вопроса:

  • Комплектный блок управления, который продается вместе с электрогенератором. Перед тем, как подключить резервный генератор к домашней сети, комплект подсоединяется согласно схеме. Он управляет не только запуском и остановкой агрегата, но и регулирует обороты, т.е. выдаваемую мощность.
  • Устройство АВР с компонентами, которые необходимо установить на бензогенератор как дополнительное оборудование для управления стартером и дроссельной заслонкой.

Преимущество таких комплектов состоит в том, что они включают встроенную защиту по току, а также страхуют от утечек и перенапряжений. Пользователю только остается подсоединить провода ввода и потребителей на коммутирующие приборы.

Владельцы загородных домов порой сталкиваются с тем, что внезапно на неопределенное время прекращается подача электроэнергии. Чтобы избежать неприятных последствий таких отключений, в домах устанавливают системы автономного электроснабжения.

В зависимости от финансовых возможностей домовладельца, это могут быть солнечные или ветровые электростанции, автономные электрогенераторы разных типов и мощности. Наиболее дешевый выход из положения – купить и подключить генератор к сети дома.

Но, прежде чем покупать генератор, нужно определиться с основными параметрами:

  • мощность;
  • фазность;
  • вид топлива;
  • количество оборотов двигателя;
  • автозапуск/отключение;
  • защита от шума.

Позиция первая — мощность

Для бесперебойного электроснабжения мало подключить генератор к сети дома, нужно еще, чтобы он имел соответствующий запас мощности. Для определения необходимой мощности нужно подсчитать суммарную мощность всех электроприборов.

Затем это значение увеличивается на четверть, чтобы был запас мощности для возможных непредвиденных подключений. Полученная величина и будет минимальной мощностью электрогенератора. Для небольшого дачного домика вполне хватит установки мощностью до пяти киловатт. Для жилого загородного дома уже потребуется установка мощностью от 15 киловатт и выше.

Позиция вторая — фазность

Если проводка выполнена по однофазной схеме, и все приборы однофазные, то и покупать следует однофазный электрогенератор. Если же требуется подключение генератора к трехфазной сети дома, то при организации такого подключения следует предусмотреть распределение активных нагрузок по фазам так, чтобы перекос не превышал 20% — 30%.

Позиция третья – вид топлива для генератора

Прежде чем выбирать, какой электрогенератор – бензиновый, дизельный или газовый – стоит приобретать для дома, следует принять во внимание некоторые обстоятельства. Если перебои с электроснабжением кратковременны, то более предпочтительны покупка и подключение бензогенератора, который, к тому же, намного дешевле дизельного.

Если в магистральной сети бывают длительные и частые отключения, то лучше купить дизель-генератор. Эти установки дороже бензиновых, но затраты на солярку и на обслуживание в разы меньше, чем у бензиновых.

И, наконец, если в доме имеется природный газ или газгольдер для отопления, то в качестве источника резервного питания целесообразно подключение газового агрегата.

Позиция четвертая – количество оборотов двигателя

Промышленностью выпускаются дизельные электрогенераторы двух видов. Различие состоит в числе оборотов. Это высокооборотные, с числом оборотов в минуту, равным 3000, и низкооборотные, с числом оборотов в минуту, равным 1500.

Низкооборотные модели стоят дороже, благодаря малой шумности и повышенному рабочему ресурсу. Если электрогенератор предполагается использовать не более трех недель в год, то есть смысл купить высокооборотную машину. При более интенсивной загрузке выгодным становится подключение низкооборотной установки.

Позиция пятая – автозапуск/отключение

Блок АВР (автоматический ввод резерва) автоматически запускает генератор при отключении электроэнергии и так же автоматически отключает при стабильном возобновлении подачи напряжения. Подключение генератора с АВР к сети дома и отключение его осуществляется за время от нескольких секунд до одной минуты.

Система АВР удорожает оборудование, а для поддержания работоспособности и надежности срабатывания ее необходимо периодически запускать, даже если в этом нет необходимости. С точки зрения целесообразности ее стоит устанавливать в тех случаях, когда генератор работает в автономном режиме и предъявляются жесткие требования к бесперебойности электроснабжения.

Как избежать ошибок при подключении генератора

Наиболее часто встречающаяся ошибка при подключении резервного электропитания заключается в том, что генератор подключают к внутренней розетке в доме. Вводные автоматы на щитке при этом отключены. Этого делать нельзя ни в коем случае. Розетка рассчитана на максимальную мощность 3.5 киловатта.

Мощность генератора намного превышает это значение. Сечение проводов домашней проводки не рассчитано на такие перегрузки. В результате – перегрев проводов, короткое замыкание, пожар. А если при появлении напряжения в магистральной сети кто-то сможет включить автомат, то генератор сразу же выйдет из строя.

Правильное подключение резерва осуществляется через перекидной рубильник. Переключение последнего с питания от магистрали на питание от генератора обезопасит домашнюю проводку от повреждений и позволит через удлинитель подключить к генератору необходимые электроприборы.

Самостоятельное подключение генератора

Для подключения резервного источника питания не требуется приборов и устройств. Понадобится перекидной рубильник, устанавливаемый на щитке после счетчика, но перед автоматами ввода. Этот рубильник устанавливается с ходом переключения «вверх/вниз». На верхнюю клемму заводится магистральный кабель, на нижнюю – кабель от генератора. На среднюю клемму заводится шина от домашней проводки.

Если в магистрали пропало напряжение, следует завести генератор, дать ему прогреться, затем переключить рубильник вниз. При возобновлении подачи электроэнергии следует переключить рубильник в верхнее положение, после чего заглушить генератор.

Автоматический запуск генератора

Для обеспечения надежного электроснабжения рекомендуется осуществить подключение через систему АВР, которая возьмет на себя функции управления подачей электроэнергии. АВР следит за напряжением в магистральной сети, и, в случае отключения электричества, размыкает цепь, связывающую объект с магистралью.

После этого автоматически запускается генератор, и, как только он выйдет на рабочий режим, к нему подключаются потребители. При возобновлении подачи электричества вначале к магистрали автоматически подключаются потребители, затем выключается генератор.

Одно- и трехфазное подключения резерва

Обычно в частных домовладениях используется однофазная система электроснабжения. Три фазы задействуются при наличии двигателей станков, мощных насосов и др. В случае, если таких устройств нет, но объект подключен по трехфазной схеме, целесообразно использовать однофазный генератор, зарезервировав для наиболее важных потребителей одну фазу.

Трехфазные генераторы значительно дороже однофазных, при их подключении следует продумать распределение нагрузки между фазами, так как все три фазы должны быть нагружены примерно одинаково. Если нагрузки по фазам будут отличаться более чем на 25%, устройство может выйти из строя.

Видео по теме: Схема подключения резервного генератора к дому

При отсутствии электричества или сбоях в его подаче для частного дома необходимо резервное питание. Многих домовладельцев часто озадачивает проблема, касающаяся того, как подключить генератор к сети дома. Схема должна быть в первую очередь безопасной. Прежде всего необходимо разобраться, чего делать нельзя.

Ошибки при подключении резерва

Не допускается подключение мини-электростанции к розетке в доме при отключенных автоматах в щитке ввода, что часто делают хозяева. Мощность генератора может быть в несколько раз больше, чем пропускная способность проводки. Для розетки она составляет не более 3,5 кВт. В результате провода перегреются, что грозит коротким замыканием или пожаром. В случае если кто-то нечаянно включит автомат при возобновлении питания, резервный источник электроэнергии тут же выйдет из строя. Но решение вопроса о том, как подключить генератор к сети дома через розетку, все же есть. Мини-электростанция может подключаться к домашнему распределительному щиту, если она соответствует мощности нагрузки и подключена только к контактам рубильника со стороны генератора. Правильным решением будет также подключение к нему удлинителя, а затем – нужных приборов. В данном случае резервный источник не будет связан с домашней сетью.

При частых отключениях электроэнергии на даче или в загородном доме рекомендуется подключать резерв с помощью перекидного рубильника, реверсивного переключателя или системы автоматического запуска резерва (АВР).

Выбор электрогенератора

Домашняя электростанция – это двигатель внутреннего сгорания (ДВС), вращающий генератор, вырабатывающий электроэнергию. Обычно применяют четырехтактные модели с частотой до 3 тыс. оборотов в минуту. Бытовые модели снабжаются топливными баками емкостью 10-15 л.

Основным вопросом при выборе является цель применения. Генератор может быть основным источником электроэнергии, но чаще всего его используют как резерв, когда возникает аварийная ситуация на линии.

Главными параметрами являются мощность, моторесурс и экономичность. Также важно, чтобы устройство было надежным и удобным в эксплуатации.

Подключение бензогенератора требует слаженной работы трех элементом:

  • кабель от резерва;
  • централизованная цепь подачи электроэнергии;
  • домашняя сеть потребления.

Основные задачи

При подключении следует определить следующее:

  • место расположения в плане экономичности и безопасности;
  • как часто происходит обрыв питания и нужна ли автоматика;
  • мощность потребления с учетом потерь и выбор запаса.

Важно создать подходящую схему подключения к домашней сети. Автоматизация процесса обходится дорого и требует квалифицированного обслуживания. Наиболее щадящем режимом для индивидуального дома является ручное подключение. Здесь также имеет смысл применить частичную автоматизацию, поскольку полуавтоматы обойдутся недорого. Каким бы ни был вариант подключения, везде требуется надзор за работой системы. Непрерывное электроснабжение обходится дорого и для частного дома в этом нет необходимости. В крайнем случае можно установить бесперебойный источник питания на компьютер или другие важные потребители.

Прежде всего следует рассчитать требуемую мощность дополнительного источника электроэнергии. Для этого суммируется мощность всех нагрузок, которые следует подключить, после чего следует добавить к ней запас до 30 %. Здесь учитываются пусковые токи двигателей домашней техники, в несколько раз превышающие допустимые. После к расчетной мощности подбирается агрегат.

Пример: стиральная машинка в час потребляет 2 кВт, электрическая плита – 3 кВт, холодильник – 0,5 кВт, телевизор с компьютером – 0,5 кВт, освещение – 0,5 кВт. В сумме выходит 6,5 кВт, а с учетом запаса – 8,5 кВт. На работу генератора оказывает негативное влияние отсутствие нагрузки. Она должна быть не ниже 30 % от номинального значения.

При решении вопроса о том, как подключить генератор к сети дома, схема очень важна и должна быть составлена правильно. Для минимального количества потребителей применяют компактные модели мощностью 2-3 кВт как временная мера, пока не восстановится основная сеть.

Схема подключения бензинового генератора к сети дома может быть простейшей. Важно, чтобы она была составлена правильно и обеспечивала соответствие агрегата действующей нагрузке.

Виды электрогенераторов

В качестве бытовых источников электроэнергии наиболее распространены бензиновые генераторы. Их особенности следующие:

  • большой выбор цен;
  • небольшая мощность – 0,8-12 кВт;
  • компактные мобильные и стационарные модели;
  • бывает генератор 3-х фазный и однофазный;
  • применяются преимущественно четырехтактные ДВС.

Выбирая вариант того, как подключить генератор к сети дома, схема охлаждения ДВС зависит от того, применяется агрегат постоянно или временно. Обычно устройства снабжаются воздушными радиаторами. Промышленные модели способны работать круглосуточно на жидкостном охлаждении. Они выпускаются преимущественно трехфазными. Габариты у них больше, но выше экономичность.

Подключение дизель-генератора к сети в доме применяется реже из-за большой цены. Но все же его применение целесообразно по причине большого ресурса.

Типы моделей

Установки, генерирующие электрический ток, разделяются на типы.

  1. Асинхронные. Конструкция проста и надежна. Важные узлы закрыты от влаги и пыли. Предпочтительно использовать устройства для активных нагрузок. Для питания электродвигателей асинхронные генераторы применять не рекомендуется.
  2. Синхронные. Агрегаты не имеют недостатков, характерных для асинхронных. Кроме того, они обеспечивают поддерживание более точного напряжения. Выбирать нужно бесщеточную конструкцию, у которой значительно лучше характеристики тока и меньше радиопомехи.
  3. Инверторные модели дороже и имеют меньшую мощность. Характеристики однофазных устройств хуже, особенно у дешевые моделей. Генератор 3-х фазный несколько лучше. Другими недостатками являются дороговизна и меньшая надежность.

Однофазные и трехфазные генераторы

Если трехфазных потребителей нет, целесообразно выбрать модель проще, чтобы мощность использовалась рационально. Подключение однофазного генератора к трехфазной сети дома сделать не так уж сложно. К тому же трехфазный агрегат дороже и все фазы следует равномерно нагружать. Если разница превышает 25 %, устройство может выйти из строя.

Для резерва частного дома однофазный источник тока предпочтительней при любом вводе.

Схемы подключения

Можно выбрать несколько способов применения дополнительных источников питания.

  1. Подключение резерва к выделенной группе потребителей по отдельной схеме.
  2. Применение перекидного рубильника или трехпозиционного переключателя, на которых делаются перемычки на входе со стороны генератора. В таком случае вся домашняя сеть будет запитана. Недостаток заключается в том, что трехфазные потребители здесь работать не будут.
  3. Установка двух контакторов, где один подключает питание от городской сети, а другой – от резервного источника. Способ применяется в схемах с АВР. Здесь также требуются перемычки между вводами со стороны резерва.

Подключение трехфазного генератора к трехфазной сети дома обязательно следует делать при наличии соответствующих электроприемников, например электродвигателей станков.

Автозапуск генератора

Наиболее полноценный способ переключения нагрузки производится с применением АВР. Система снабжается электростартером. Устройство автозапуска контролирует внешнюю сеть сразу после подачи на него питания. Перед тем как подключить генератор к сети дома с автозапуском, автоматика выжидает 10 секунд после потери напряжения. Затем внешняя сеть отключается и начинается запуск дизель-генератора. После набора оборотов в течение 20 секунд генератор подключается к сети дома.

Когда восстановится напряжение во внешней сети, резерв отключается и домашняя сеть переходит в обычный режим работы. Затем глушится двигатель генератора.

Подключение генератора с АВР к сети дома – это удобное решение, хотя и дорогостоящее.

Применение перекидного рубильника

Если средние контакты рубильника подключить к потребителю, а крайние – к кабелю электростанции и к вводу электросети, схемы источников питания никогда не пересекутся. Будет еще лучше, если у рубильника будет еще одно промежуточное нейтральное положение.

Исходное состояние рубильника считается, когда подключена главная сеть. При его переключении питание начинает поступать от генератора.

Недостатком перекидного рубильника старого образца является искрение и открытость токоведущих частей. Современные конструкции снабжены защитным кожухом, закрывающим подвижные детали. Переключатель крепится в щите управления. Исходное положение – это подключение к главной сети. При сбое в подаче электроэнергии рукоятку переключения устанавливают в нейтральное положение, а затем запускают генератор, прогревают его и подключают к нагрузкам в доме.

Отдельное подключение нагрузки

Генераторы обычно не обеспечивают питание всей домашней сети. Достаточно подключить основные потребители: освещение и некоторые бытовые приборы. Целесообразно переоборудовать электропроводку, чтобы не делать много переключений. Для этого достаточно провести отдельную линию к дежурному освещению и отдельным от домашней сети розеткам холодильника, телевизора, компьютера. В щите устанавливают клеммник, к которому подключен кабель с выхода генератора.

Реверсивный переключатель

Переключение на питание от бензогенератора производится с применением реверсивного рубильника. Устройство обычно имеет 3 положения ручки, где крайние замыкают цепи, а среднее – размыкает.

Однофазная схема подходит, чтобы сделать подключение резервного генератора к сети дома с небольшой мощностью потребления, например на даче.

Входные клеммы располагаются сверху, а выходные – снизу. На щитке устанавливаются индикаторные лампы, сигнализирующие о включении сети или генератора.

Применение системы АВР

Система автоматического запуска стоит значительно дороже ручного. При этом внешний контроль все равно необходим, поскольку при запуске ДВС необходимо управлять дроссельной заслонкой. После пуска двигатель должен прогреться.

Многие предпочитают применять частичную автоматизацию, с подключением основного питания через контактор, который размыкается при отключении входа. Затем генератор запускается вручную. В него встраивается реле времени для прогрева двигателя и автоматического перехода на подключение резерва в дом.

При возобновлении подачи электричества контактор отключается и нагрузка снова подается на общую электросеть.

Резерв с полной автоматизацией электроснабжения содержит микропроцессорное регулирование работы мощных генераторов.

Особенности подключения генераторов

  1. Резервный генератор следует надежно защитить от осадков. Это может быть навес на участке или отдельное помещение с отводом выхлопа газов.
  2. Установка после счетчика, чтобы не платить за собственную выработку электроэнергии.
  3. Возможно применение резерва как подпитки при пиковых нагрузках.
  4. Выбор экономичной схемы, чтобы не было лишних затрат.

Заключение

При нестабильном электроснабжении частного дома появляется проблема, касающаяся того, как подключить генератор к сети дома. Схема должна быть простой и безопасной. Наиболее удобным источником резервной энергии индивидуального дома или дачи является генератор с ДВС. Агрегат удобно перевозить и эксплуатировать, он не очень дорогой. Для выбора оптимальной схемы подключения необходимо ознакомиться с особенностями устройства и переключающего оборудования.

электрика — Подключение 1-фазного электрогенератора к 3-фазной домашней электросети

НЕ ДЕЛАЙТЕ ЭТОГО! Ты взорвешь свой дом.

Вот в чем проблема. Это тонко.

Отключив нейтраль от сети, , но не отключив две другие фазы , вы создадите ситуацию «потеря нейтрали» между этими фазами.

Между L2 и L3 будет 400 вольт. Однако ничто не будет удерживать ни один из них на 230В. Все нагрузки на L2 (вместе) будут включены последовательно со всеми нагрузками на L3 (вместе).Другими словами, L2 будет вести себя как двухфазная североамериканская система, но с 400 В на концах и абсолютно ничем не удерживающим нейтраль в середине. И тогда он будет вести себя как сценарий «Потерянный нейтралитет».

Таким образом, две фазы дадут в сумме 400 В, но могут быть 100/300 В или 50/350 В в зависимости от нагрузок на две фазы. Очевидно, что это больше, чем они рассчитаны, поэтому они сожгут или подожгут что-нибудь.

Имейте в виду, все это происходит на L2/L3 после восстановления питания.До этого момента все будет работать.

Самый простой ответ: «Не переключать нейтраль».

При этом нейтраль остается подключенной к электросети, поэтому фазы L2 и L3 останутся при правильном напряжении 230 В относительно нейтрали.

Вы можете подключить его к генератору или , но вам нужно будет соблюдать местные нормы и правила в отношении того, соединены ли вместе нейтраль и земля генератора.

Если эти коды требуют. вам переключить нейтраль, то, ей-богу, вам понадобится 3-фазный переключатель (4 полюса).Оставьте землю подключенной. Подключите генератор к 1 полюсу и нейтрали. Переключатель прерывает другие 2 полюса, чтобы предотвратить возникновение вышеуказанной проблемы.

«Я могу просто использовать 2 переключателя, верно?» Нет. Они должны выполняться вместе как одно действие.

Этот переключатель недостаточно велик

Проблема не в том, сколько энергии будет проходить через генератор.

Проблема в том, сколько будет течь при использовании утилиты. Он должен быть рассчитан на полный ток сети — каким бы ни был ваш автоматический выключатель.

Как лучше подключить генератор к сети? 3 ПРАВИЛЬНЫЙ путь | Своими руками

Живя за городом, трудно обойтись без автономной электростанции: внезапное отключение электричества может произойти в любой момент. Генератор купить не сложно. Другое дело, подключить его к домашней электросети.

Существует несколько способов подключения независимого источника питания. Рассмотрим каждый из них.

АВАРИЙНОЕ ВНЕШНЕЕ СОЕДИНЕНИЕ

Этот метод отличается низкой надежностью и высокой степенью пожароопасности, но бывают случаи, когда решить проблему другим способом действительно невозможно.

Подобная ситуация возникает довольно часто: отдельная схема подключения генератора еще не установлена, а потребность в автономном питании уже появилась. Что делать?

Остается только одно: подключить питание напрямую в розетку с помощью специального удлинителя. Все розетки являются составляющими электрической цепи, поэтому если в одной из них пустить ток, то в остальных появится напряжение.

Итак, запускаем и прогреваем установку, подключаем ее к электросети и включаем в розетки только жизненно важные электроприборы.

Метод подходит для небольших однофазных генераторов. Если удлинитель не оборудован встроенной защитой от перегрузки по току, необходимо проверить, чтобы суммарная мощность электроприемников не превышала пропускную способность кабеля. Один квадратный миллиметр медной жилы примерно соответствует нагрузке 2 кВт при напряжении 220 В. Например, на удлинение из соединительного провода в изоляции (ПВА) сечением 1,5 мм допустимо для подключения устройств до 3,5 кВт.Изделие должно быть полностью размотано, иначе оно может перегреться, что приведет к его расплавлению или воспламенению.

ВАЖНО!

Нельзя включать автономный источник питания в сетевую розетку, не отключив предвводной автомат: всегда есть возможность одновременно включить генераторную установку и подать централизованное питание. Такая ошибка коммутации может привести к отказу генератора и даже пожару.


Читайте также: Какой генератор лучше выбрать для дома и дачи


ЭКОНОМИЧЕСКАЯ СХЕМА ПРИСОЕДИНЕНИЯ ГЕНЕРАТОРА К СЕТИ

Такая схема отличается высокой надежностью, так как не вызывает пожароопасности.Но назвать его самым удобным, пожалуй, нельзя.

Если различать фазный и нулевой провод (имеете навыки электрика), то подключить генератор к сети можно с помощью выключателя, который может работать в одном из трех положений (рисунок 1).

В качестве такого выключателя-разъединителя можно использовать, например, выключатель ИЭК ВРТ-63. В зависимости от исполнения он рассчитан на номинальный ток в 16, 25, 32 или 60 А. Это позволяет подключать автономные источники питания до 8,8 кВт в однофазном исполнении и около 20 кВт в трехфазном. .

Модульные трехпозиционные выключатели могут быть одно- и двухполюсными для работы с однофазными генераторами разных типов, а также трех- и четырехполюсными для трехфазных моделей электростанций.

При отключении питания сначала необходимо запустить и прогреть генератор на холостом ходу и только потом с помощью трехпозиционного переключателя перевести сеть заказчика на автономный источник. При восстановлении централизованного электроснабжения последовательность действий будет обратной: необходимо перевести переключатель в нейтральное положение или нейтральное положение на электросеть, затем остановить автономную электростанцию.

Следует понимать, что устройства ВРТ-63 предназначены только для коммутации. Защитите электросеть от перегрузок и коротких замыканий с помощью устройств дифференциальной защиты и автоматических выключателей.

ПОДКЛЮЧЕНИЕ ГЕНЕРАТОРА К ЧАСТНОМУ ДОМУ — ВИДЕО


См. также: Выбери генератор и подключи сам — просветительская кампания


СХЕМА АВТОМАТИЧЕСКОГО ПОДКЛЮЧЕНИЯ ГЕНЕРАТОРА К СЕТИ

Соединение данного типа настоятельно рекомендуется специалистами, так как оно не только очень надежное, но и обеспечивает необходимый комфорт.

Для тех, кто знает электротехнику на профессиональном уровне, этот способ подойдет лучше всех остальных. Он предполагает установку и использование автоматического резерва резерва (АВР). Как только централизованное электроснабжение будет отключено, контроллер или реле блока АВР без участия человека включит автономный источник и через некоторое время переведет на него нагрузку (рисунок 2).

Если вы понимаете, что ваша квалификация недостаточно высока, то стоит ограничиться этапом подключения блока АВР, а к сборке этого щита привлечь профильную организацию.Это защитит дом от неправильного схемотехнического проектирования. Например, отсутствие механической блокировки одновременного включения пары контакторов может привести к параллельной работе генератора и сети, последствия чего будут плачевными как для оборудования, так и для зданий.

Возможность подключения через АВР есть в мини электростанциях, оборудованных электростартером, который после получения сигнала от АВР запустит генератор. Если приобретаемая модель автономного источника рассчитана только на режим ручного запуска, то АВР.конечно, переключать цепь потребителя на автономный источник и обратно при возобновлении централизованного электроснабжения. Но генератор нужно включать и выключать вручную. В этой ситуации целесообразнее ограничиться подключением генератора через трехпозиционный выключатель-разъединитель.

ВАЖНО!

При обращении к третьим лицам и при самостоятельном подключении необходимо строго соблюдать рекомендации производителя по установке и эксплуатации генератора, в том числе требования по наличию защитного заземления.Только технически правильное подключение с применением надежных коммутационных и защитных устройств гарантирует длительную и безотказную работу всей внутридомовой электросети.


ЭЛЕКТРИЧЕСКИЕ СХЕМЫ ГЕНЕРАТОРА

При подготовке к установке резервного источника питания необходимо определиться с выбором генератора по трем параметрам. Рассмотрим их по порядку.

БЕНЗИН ИЛИ ДИЗЕЛЬ?

Бензиновые генераторы

дешевле своих дизельных аналогов и более распространены.Дизельные генераторы дороже в обслуживании, а в случае поломки их ремонт влетит в копеечку. Если речь идет о нечастом включении генератора, то выбор исключительно на бензине. Экономический эффект от использования источников дизельного топлива также весьма неоднозначен, так как дизельное топливо дороже бензина АИ-92.

ОДНО- ИЛИ ТРЕХФАЗНЫЙ?

Если в жилом помещении однофазное электроснабжение (220 В), то вопрос не возникает.Если дом имеет трехфазное электроснабжение и не превышает 200-300 м по площади 2 , в этом случае также можно использовать однофазное электроснабжение. Если площадь дома превышает 300 м 2 , в этом варианте необходимо установить только трехфазный генератор.

ГЕНЕРАТОР ПИТАНИЯ

Очень важный параметр. При малой мощности генератора вырабатываемую электроэнергию можно использовать очень ограниченно, а сам агрегат будет работать на максимальных нагрузках. При слишком высокой мощности деньги, потраченные на устройство, «замерзнут» в самом генераторе.Надо исходить из того, что этот источник питания является резервным. Так, если подводимая к дому мощность составляет 7 кВт, то вовсе не обязательно приобретать генератор такой же мощности. Практически не бывает ситуаций, когда в доме одновременно включены все потребители.

При разрешенной мощности 7 кВт необходимо приобрести генератор мощностью 3,5…4,0 кВт; при 5кВт -2,5…3,0кВт. Этого будет достаточно для ваших экстренных нужд.

Если электроснабжение трехфазное и разрешенная мощность 15 кВт (по 5 кВт на фазу), то можно приобрести однофазный генератор за 5,0 …7,0 кВт, а для больших площадей застройки — трехфазный генератор на 3,0…3,5 кВт. Помните, что чем больше фаз и выше мощность, тем выше стоимость генератора. Надежные, мощные бренды стоят далеко не дешево.

СХЕМА СОЕДИНЕНИЯ

Первоочередная задача — выбрать место для генератора. Это может быть гараж, хозпостройка или другое подсобное помещение. В месте установки резервного источника питания необходимо предусмотреть вентиляционный канал для выхлопных газов.

От точки подключения генератора до вводного щитка дома необходимо проложить кабель. Для однофазного генератора это будет кабель ВВГ 3×4 мм 2 и для трехфазного – ВВГ 5×4 мм2. В первом случае это фаза, ноль, земля, во втором три фазы, ноль, земля. Кабель ВВГ можно заменить кабелем NYM или ПВА.

Провод заземления подключается к станине генератора и подключается к общей защитной шине во вводном щитке.В распределительном щите после счетчика устанавливаем трехпозиционный разъединитель-разъединитель (рубильник). В случае однофазного генератора это может быть ВРТ-63 2П 32А от ИЭК; в трехфазном исполнении — ВРТ ЗР (4Р) 32 А.

Кабель для однофазного подключения. Желто-зеленый провод заземления.

Центральные контакты выключателя подключены к линии жилого помещения, а две другие группы подключены к вводной линии электроснабжения и линии генератора. Обратите внимание, что заземляющий провод всегда подключен к шине в панели и не может быть переключен.Если рычаг выключателя-разъединителя находится в среднем положении, то электрическое соединение отсутствует. При нахождении рычага в верхнем или нижнем положении линия электроснабжения дома подключается либо к централизованной системе электроснабжения, либо к резервному источнику питания (рис. 1).

Возможна установка щита рядом с генератором.

Фазировка линий — обозначение контактов L и N буквами — позволяет правильно подключить сеть, что необходимо для корректной работы устройств защитного отключения (УЗО), установленных в водяных и этажных панелях дома.Если нет физической возможности установить переключатель режимов электроснабжения в распределительный щит из-за плотной модульной установки, то генератор подключается другим способом (рис. 2).

Собственно схема та же — меняется производительность соединения. От места подключения генератора до вводного щитка прокладывают не один, а пару кабелей одинакового сечения и с одинаковым количеством жил. Переключатель режимов установлен в дополнительном щитке, который находится рядом с резервным источником питания.

Этот вариант дороже основного, первого, но в данном случае он единственно возможный. При подключении однофазного генератора к трехфазной сети фазные контакты выключателя со стороны генератора соединяются между собой (рис. 3).

ПОДКЛЮЧИТЕ ГЕНЕРАТОР

Погас свет, оборудование обесточено. Темно и тихо! Возьмите фонарь и подойдите к вводному щиту (или к щитку генератора). Запускаем генератор и переводим выключатель на линию генератора.Переключение с резервного питания на основное происходит аналогично, за исключением того, что при восстановлении основного питания можно сразу переключиться на основное питание, а затем отключить генератор.

Лучше всего коммутировать при небольшом количестве подключенных электропотребителей (линий потребления), а еще лучше при их полном отключении.

Это исключит появление дуговых разрядов на контактах.

ЕСЛИ В ДОМЕ ЕСТЬ ГАЗОВЫЙ КОТЕЛ

При смене режимов питания есть важные нюансы.Если в доме есть газовый котел, то перед включением генератора или перед переключением на основное электроснабжение его необходимо выключить и включать только после подключения электричества. Это необходимо для защиты чувствительной управляющей электроники котла от скачков напряжения.

ИНДИКАТОРЫ

Для удобства в щите после индукционного автомата целесообразно установить контрольную лампу типа ЛСИ-47 ИЭК (для однофазного питания) или ИПС-47 ИЭК (для трехфазного).Он покажет наличие напряжения на основной линии. Иначе придется смотреть в чужие окна: дали прикурить? И день и окна не помогут.

Полезно установить такой же индикатор со стороны генератора, показывающий, что дом питается от резервного источника и что электроэнергия, вырабатываемая генератором, поступает в распределительный щит. Может случиться так, что генератор работает, но электричество не подается – или нет контакта, или вышла из строя динамо-машина.

На кухне и у вводного щита держите в определенном месте фонарик (желательно налобный, чем часто пользуются туристы в походах) — в экстренной ситуации не придется искать телефон или спички со свечками .

Да и генератор может не заводиться с пол-оборота, тогда еще хорошо иметь рядом с собой фонарь с автономным питанием или налобный фонарь: неудобно запускать генератор с фонариком.

Убедитесь, что топливный бак заправлен, и держите рядом с генератором две или три 20-литровые канистры с топливом.Всегда!

Не забывайте об обслуживании генератора: каждые 100 часов работы необходимо менять масло.

© Автор: В. Борзов

 ЭЛЕКТРИЧЕСКИЕ СХЕМЫ ГЕНЕРАТОРА

схема подключения генератора схема подключения генератора

Смотрите также: Дом для генератора своими руками — строим генератор


СХЕМА ПОДКЛЮЧЕНИЯ ГЕНЕРАТОРА ДЛЯ ДОМА НА 2 ПУСКА. ВИДЕО

ИНСТРУМЕНТЫ ДЛЯ МАСТЕРОВ И МАСТЕРОВ И ТОВАРОВ ДЛЯ ДОМА ОЧЕНЬ ДЕШЕВО.БЕСПЛАТНАЯ ДОСТАВКА. ЕСТЬ ОТЗЫВЫ.

Ниже другие записи по теме «Как сделать своими руками — домохозяин!»


Подписывайтесь на обновления в наших группах и делитесь.

Давай дружить!

3-фазная мощность, значения напряжения и тока

Трехфазное соединение треугольником: линия, фазный ток, напряжение и мощность в конфигурации Δ

Что такое Delta Connection  (Δ)?

Соединение треугольником или сеткой ( Δ ) Система также известна как Трехфазная трехпроводная система ( 3-фазная 3-проводная ) и является наиболее предпочтительной системой для передачи электроэнергии переменного тока, а также для распределения, соединения звездой. обычно используется.

В системе соединения Delta (также обозначаемой Δ ) начальные концы трех фаз или катушек соединяются с конечными концами катушки. Или начальный конец первой катушки соединяется с конечным концом второй катушки и так далее (для всех трех катушек), и это выглядит как замкнутая сетка или цепь, как показано на рис. (1).

Проще говоря, все три катушки соединены последовательно, образуя тесную сеть или цепь. Из трех соединений выведены три провода, и все токи, выходящие из соединения, считаются положительными.

В соединении треугольником соединение трех обмоток выглядит как короткое замыкание, но это не так, если система сбалансирована, то значение алгебраической суммы всех напряжений вокруг сетки равно нулю в соединении треугольником.

Когда клемма открыта в Δ, то нет возможности протекания токов с базовой частотой по замкнутой сетке.

Читайте также:

Полезно помнить: В конфигурации треугольника в любой момент значение ЭДС одной фазы равно равнодействующей значений ЭДС двух других фаз, но в противоположном направлении.

Рисунок 1). Значения 3-фазной мощности, напряжения и тока при соединении треугольником (Δ)

Значения напряжения, тока и мощности при соединении треугольником (Δ)

Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока, фазных напряжений и мощности в трехфазной системе переменного тока Delta.

Линейные напряжения (V L ) и фазные напряжения (V Ph ) в соединении треугольником

На рис. 2 видно, что между двумя клеммами имеется только одна фазная обмотка (т.е. между двумя проводами имеется одна фазная обмотка). Следовательно, в соединении треугольником, напряжение между (любой парой) двух линий равно фазному напряжению фазной обмотки , которая подключена между двумя линиями.

Поскольку последовательность фаз R → Y → B, поэтому направление напряжения от фазы R к фазе Y является положительным (+), а напряжение фазы R опережает напряжение фазы Y на 120°. Аналогично, напряжение фазы Y опережает на 120° фазное напряжение B, и его направление положительно от Y к B.

Если линейное напряжение между;

  • Строка 1 и Строка 2 = V RY
  • Строка 2 и Строка 3 = V YB
  • Строка 3 и Строка 1 = V BR

Тогда мы видим, что V RY опережает V YB на 120°, а V YB опережает V BR на 120° .

Допустим,

В RY = В YB = В BR = В L    …………… (Сетевое напряжение)

Затем

В Л = В РН

И.е. при соединении треугольником, линейное напряжение равно фазному напряжению .

Линейные токи (I L ) и фазные токи (I Ph ) в соединении треугольником

Из приведенного ниже (рис. 2) следует, что общий ток каждой линии равен векторной разнице между двумя фазными токами в соединении треугольником , протекающими через эту линию. то есть;

  • Ток в линии 1= I 1 = I R – I B
  • Ток в линии 2 = I 2 = I Y – I R
  • Ток в линии 3 = I 3 = I B – I Y

{Разница векторов}

Рис (2).Линейный и фазный ток и линейное и фазное напряжение в соединении треугольником (Δ)

Ток линии 1 можно найти, определив разность векторов между I R и I B , и мы можем сделать это, увеличив I B Вектор в обратном порядке, так что I R и I B образуют параллелограмм. Диагональ этого параллелограмма показывает разность векторов I R и I B , которая равна току в линии 1 = I 1 .Более того, обращая вектор I B , он может обозначаться как (-I B ), следовательно, угол между I R и -I B (I B , если инвертировать = -I B ) составляет 60°. Если,

I R = I Y = I B = I PH …. Фазные токи

Затем;

Ток, протекающий по линии 1, будет равен;

I L или I 1 = 2 x I PH x Cos (60°/2)

= 2 x I PH x Cos 30°

= 2 x I PH x (√3/2) …… Так как Cos 30° = √3/2

I L = √3 I PH

я.е. При соединении треугольником линейный ток в √3 раза превышает фазный ток.

Точно так же мы можем найти развертку двух линейных токов, как указано выше. то есть

I 2 = I Y – I R … Разница векторов = √3 I PH

I 3 = I B – I Y … Разность векторов = √3 I PH

Поскольку все линейные токи равны по величине, т.е.

I 1 = I 2 = I 3 = I L

Отсюда

IL = √3 I PH

Это видно из рисунка выше;

  • Линейные токи отстоят друг от друга на 120°
  • Линейные токи отстают на 30° от соответствующих фазных токов
  • Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30°+Ф), т.е.е. каждый линейный ток отстает на (30°+Ф) от соответствующего линейного напряжения.

Связанная статья: Осветительные нагрузки, соединенные по схеме «звезда» и «треугольник»

Питание в соединении треугольником

Мы знаем, что мощность каждой фазы;

Мощность/Фаза = В PH x I PH x CosФ

А суммарная мощность трех фаз;

Суммарная мощность = P = 3 x В PH x I PH x CosФ …..(1)

Мы знаем, что значения фазного тока и фазного напряжения при соединении треугольником;

I PH = I L /√3   ….. (Из I L = √3 I PH )

В РН = В Л      

Ввод этих значений в экв. мощности……. (1)

P = 3 x V L x ( I L /√3) x CosФ …… (I PH = I L / /√3)

P = √3 x√3 x V L x ( I L /√3) x CosФ …{ 3 = √3x√3 }

P = √3 x V L x I L x CosФ    …

Отсюда доказано;

Питание в соединении треугольником ,

P = 3 x V PH x I PH x CosФ ….или

P = √3 x V L x I L x CosФ

Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током (не между линейным током и линейным напряжением).

То же самое объясняется в MCQ для трехфазной цепи с поясняющим ответом (MCQ № 1)

Полезно помнить:

При соединении по схеме «звезда» и «треугольник» общая мощность при сбалансированной нагрузке одинакова .

т.е. общая мощность в трехфазной системе = P = √3 x В L x I L x CosФ

Полезно знать:

Сбалансированная система — это система, в которой:

  • Все три фазы напряжения равны по величине
  • Все фазные напряжения совпадают по фазе i.е. 360°/3 = 120°
  • Токи всех трех фаз равны по величине
  • Все фазные токи совпадают по фазе друг с другом, т. е. 360°/3 = 120°
  • Трехфазная сбалансированная нагрузка — это система, в которой нагрузка, подключенная к трем фазам, одинакова.

Читайте также:

Однофазное и трехфазное питание Объяснение

В электричестве фаза относится к распределению нагрузки. Чем отличаются однофазные и трехфазные источники питания? Однофазная мощность представляет собой двухпроводную цепь питания переменного тока (ac).Как правило, имеется один силовой провод — фазный провод — и один нейтральный провод, при этом ток течет между силовым проводом (через нагрузку) и нейтральным проводом. Трехфазное питание представляет собой трехпроводную цепь питания переменного тока, в которой сигнал каждой фазы переменного тока находится на расстоянии 120 электрических градусов друг от друга.

Жилые дома обычно снабжаются однофазным источником питания, в то время как коммерческие и промышленные объекты обычно используют трехфазное питание. Одно ключевое различие между однофазным и трехфазным питанием заключается в том, что трехфазный источник питания лучше выдерживает более высокие нагрузки.Однофазные источники питания чаще всего используются, когда типичными нагрузками являются освещение или отопление, а не большие электродвигатели.

Однофазные системы могут быть получены из трехфазных систем. В США это делается через трансформатор для получения надлежащего напряжения, а в ЕС это делается напрямую. Уровни напряжения в ЕС таковы, что трехфазная система может также служить тремя однофазными системами.

Однофазное и трехфазное питание

Еще одно важное отличие трехфазного питания от трехфазного.однофазная мощность — это постоянство подачи мощности. Из-за пиков и провалов напряжения однофазный источник питания просто не обеспечивает такой стабильности, как трехфазный источник питания. Трехфазный источник питания обеспечивает постоянную мощность с постоянной скоростью.

Если сравнивать однофазное и трехфазное питание, трехфазные источники питания более эффективны. Трехфазный источник питания может передавать в три раза больше энергии, чем однофазный источник питания, при этом требуется только один дополнительный провод (то есть три провода вместо двух).Таким образом, трехфазные источники питания, независимо от того, имеют ли они три или четыре провода, используют меньше материала проводника для передачи заданного количества электроэнергии, чем однофазные источники питания.

Разница между трехфазной и однофазной конфигурациями

В некоторых трехфазных источниках питания используется четвертый провод, который является нейтральным проводом. Две наиболее распространенные конфигурации трехфазных систем известны как звезда и треугольник. Конфигурация треугольника имеет только три провода, а конфигурация звезда может иметь четвертый, нейтральный провод.Однофазные источники питания также имеют нулевой провод.

Как однофазные, так и трехфазные системы распределения электроэнергии имеют роли, для которых они хорошо подходят. Но эти два типа систем сильно отличаются друг от друга.

Статьи по теме

Узнайте больше об анализаторах качества электроэнергии.

Как понять и определить чередование фаз в энергосистеме • Услуги Valence по обучению электрику

Понимание чередования фаз жизненно важно при соединении двух систем, потому что результаты могут быть катастрофическими, если кто-то не понимает, как интерпретировать чертежи чередования фаз.Вы могли бы подумать, что такая важная вещь, как чередование фаз, будет иметь одинаковые термины во всей отрасли. К сожалению, вы ошибаетесь.

Давайте начнем с повторения теории генераторов.

На видео ниже показан генератор с «вращением по часовой стрелке», поскольку ротор генератора вращается по часовой стрелке внутри статора. Я думаю, что это ужасное определение, потому что казалось бы, что ротор вращается против часовой стрелки, если вы обойдете его и посмотрите на противоположную сторону генератора.Все зависит от вашей точки зрения. Некоторые люди называют напряжения, создаваемые этим генератором, «по часовой стрелке», потому что, если вы начнете с A:

  • напряжение фазы А сначала достигает пика,
  • , затем напряжение фазы B, а затем
  • .
  • , за которым следует напряжение C-фазы.

 

Генератор с вращением против часовой стрелки можно определить как ротор, который вращается против часовой стрелки внутри статора, как показано в следующем видео. Некоторые люди называют напряжения, создаваемые этим генератором, «против часовой стрелки», потому что, если вы начнете с A:

  • напряжение фазы А сначала достигает пика,
  • , затем напряжение фазы C, а затем
  • .
  • , за которым следует напряжение фазы B.

 

Оба эти определения — ужасный способ сообщить чередование фаз.

Например, какая последовательность фаз соответствует выходному напряжению генератора в следующем видео?

 

 

 

 

 

 

 

 

 

Генератор вращается по часовой стрелке, но напряжения вращаются против часовой стрелки, потому что сначала достигает своего пика напряжение фазы A, затем напряжение фазы C, а затем напряжение фазы B.

Какой правильный термин для этой системы… по часовой стрелке или против часовой стрелки? Оба применимы, не так ли? Вот почему это определение чередования фаз сбивает с толку.

 

Нам все равно, в какую сторону крутится генератор в энергосистеме. Мы хотим знать порядок или последовательность напряжений, вырабатываемых генератором, и убедиться, что система имеет одинаковую последовательность фаз, прежде чем подключать их. Следовательно, вы должны исключить из своей терминологии по часовой стрелке и против часовой стрелки, если хотите эффективно передавать информацию о последовательности фаз кому-либо еще.

Как определить чередование фаз по чертежам осциллограмм

Правильная используемая терминология должна ссылаться на обозначения напряжения и всегда начинаться с одного и того же обозначения.

Система A-B-C-A-B-C на следующем изображении является системой A-B-C, если я выберу A в качестве эталона.

 

На изображении ниже показана система C-A-B-C-A-B, которая также является системой A-B-C, если я использую A в качестве эталона. Ее также можно назвать системой C-A-B или системой B-C-A, в зависимости от ссылки.

 

На изображении ниже показана система A-C-B, или система C-B-A, или система B-A-C, в зависимости от эталона.

Как лучше всего передать последовательность фаз?

Есть два правила, которые вы должны использовать при передаче информации о последовательности фаз или чередовании фаз:

  1. Всегда используйте обозначения напряжения.
  2. Всегда начинайте с одного и того же обозначения.

Если всегда следовать этим двум правилам, ошибок связи быть не должно.

Если вам нужна дополнительная информация о том, что мы обсуждали до сих пор, вам следует ознакомиться с нашим онлайн-курсом 1-1: Трехфазная система электроснабжения (4 CTD NETA).

Определение вращения фаз с помощью векторных диаграмм

Все еще существует проблема, с которой я сталкиваюсь на большинстве своих занятий… вращение вектора НЕ изображается на рисунках осциллограмм; они изображены на векторных диаграммах. Многие из моих учеников не могут определить правильное вращение с помощью типичных обозначений фазового вращения на чертеже, подобном следующему:

Давайте проверим ваши знания.Какое чередование фаз изображено на следующем рисунке?

 

 

 

 

 

 

 

 

 

 

 

Чередование фаз A-B-C.

Вы не сможете определить чередование фаз с помощью векторной диаграммы, если не знаете единственное универсальное правило в мире тестирования реле. ВСЕ ФАЗОРЫ ВРАЩАЮТСЯ ПРОТИВ ЧАСОВОЙ СТРЕЛКИ.

На видео ниже показано, как взаимодействуют сигналы и вектора.

 

Заметили, что вектора вращаются против часовой стрелки и что соответствующие формы волны соответствуют вращению A-B-C из рисунков формы волны ранее?

Всегда должна быть стрелка, указывающая направление вращения векторов, и она всегда должна быть направлена ​​против часовой стрелки.

Какое вращение показано на векторной диаграмме ниже?

 

 

 

 

 

 

 

 

 

 

 

 

Это все еще вращение A-B-C.Вы всегда можете определить вращение, представив, что вектора вращаются, как в этом видео ниже.

 

Если вы хотите убедиться, что правильно понимаете чередование фаз, коснитесь пальцем любой точки векторной диаграммы и представьте, что вектора вращаются против часовой стрелки. Начните обращать внимание, когда ваш эталонный вектор пересекает ваш палец. Какой вектор пересекает ваш палец следующим? Какой последний фазовращатель скрестит ваш палец? Это поможет вам определить чередование фаз, как показано в следующем видео:

 

Давайте попробуем еще один тест!

Какое чередование фаз создается на следующем чертеже?

 

 

 

 

 

 

 

 

 

 

Это снова A-B-C, как в следующем видео:

 

Теперь, когда вы знаете, что искать и как определить чередование фаз,

Можете ли вы определить последовательность фаз с помощью векторных диаграмм?

Что такое чередование фаз при использовании 1 в качестве ссылки на рисунке ниже?

 

 

 

 

 

 

 

 

 

 

 

Чередование фаз 1-3-2 согласно следующему видео:

 

Вы должны быть в состоянии надежно определить чередование фаз системы и эффективно передать эту информацию кому-либо еще.Если вы этого не сделаете, результаты могут быть катастрофическими, вот почему это жизненно важный навык, который должны знать все тестировщики реле.

Вы можете получить больше информации о векторных диаграммах в нашем онлайн-курсе 1-2: векторные чертежи для тестеров реле (4 CTD NETA).

Вы можете получить дополнительную информацию о том, как чередование фаз применяется к тестированию реле, в будущих публикациях или на нашем онлайн-семинаре «Как тестировать защитные реле» (16 CTD NETA).

Вы можете получить больше информации обо всех наших курсах здесь.

Надеюсь, этот пост был вам полезен. Пожалуйста, нажмите одну из кнопок ниже, если вы это сделали, или оставьте комментарий. Я читаю каждый ваш комментарий.

Как синхронизируются источники питания переменного тока

Современные огромные сети переменного тока состоят из множества отдельных генераторов, и постоянно подключаются новые. Когда генератор отключен для обслуживания или даже временно отключен, он должен повторно синхронизироваться при повторном подключении к сети, как правило, автоматическими средствами с ручным резервным оборудованием, если это необходимо.

Процесс синхронизации источников питания переменного тока с напряжением сети стал более важным с распространением возобновляемых источников энергии. Энергия, генерируемая ветром и солнечными батареями, должна в конечном итоге поступать в сеть на частотах, близко соответствующих частоте мощности сети. Вот несколько основных процедур.

Коммунальные генераторы в энергосистеме США вырабатывают электроэнергию с частотой 60 Гц ±0,5 Гц. Изменения частоты коммунальных услуг происходят как следствие изменения нагрузок. Нагрузки, вызывающие падение частоты более чем на полгерца, вызывают автоматическое отключение нагрузки или другие действия, направленные на восстановление частоты.

Когда относительно небольшой генератор переменного тока подключается к работающей сети, формы сигналов двух источников должны синхронизироваться. В частности, они должны совпадать по напряжению, частоте, фазе и последовательности фаз. И, конечно же, они оба должны быть синусоидальными. В случае фазы «синхронизация» определяется как находящаяся в пределах одного электрического градуса фазы сети.

Синхронизация установлена ​​при электрически изолированном отдельном генераторе. Еще одним требованием для синхронизации вращающихся генераторов по переменному току является то, что генераторы, добавленные к сети, должны иметь надлежащую скорость спада (то есть разницу между номинальной скоростью вращения и фактической скоростью), чтобы общая нагрузка была в правильной пропорции к их соответствующим номиналам.Падение скорости относится к первичному двигателю. Это необходимое требование, поскольку загрузка генератора снижает его скорость, что, в свою очередь, точно определяет частоту. Генераторы, соединенные параллельно, могут вращаться с постепенно различающимися скоростями, потому что выходная частота каждого из них также является функцией количества полюсов.

Чтобы синхронизировать один генератор переменного тока с работающей сетью, необходимо настроить новый блок таким образом, чтобы его напряжение и частота были близки к общей сети.Затем генератор может быть электрически подключен. При подключении он автоматически привязывается к большей сети и после этого поддерживает синхронизацию без дополнительной настройки. Когда один небольшой генератор подключается к более крупной сети, каждый составляющий генератор немного меняет свою выходную частоту, чтобы приспособиться к добавленному элементу, который подстраивается в гораздо большей степени.

Есть более 500 отдельных коммунальных предприятий, снабжающих сеть Северной Америки, некоторые из которых имеют обширные группы генераторов, все синхронизированы.Сеть разделена на несколько сегментов, соединенных высоковольтными линиями постоянного тока, что устраняет необходимость синхронизации этих больших сегментов переменного тока друг с другом.

Отдельные генераторы, предназначенные для параллельной работы, обычно подключаются через автоматические выключатели, которые также функционируют как ручные или силовые выключатели. Контакты сконструированы таким образом, что защелкиваются и быстро размыкаются, чтобы свести к минимуму искрение. Трехфазные системы требуют трехполюсных выключателей.

Если прерыватель замкнут, а скорость вращения ротора не соответствует точному соответствию, устройство с более высокой силой вращения резко притягивает к себе более слабое устройство (с более высоким внутренним сопротивлением) с точки зрения числа оборотов в минуту.Результатом является внезапное ускорение или замедление, сопровождающееся сильным током как в проводниках, соединяющих машины, так и в обмотках обеих машин. Этот удар по системе также ощущается обоими первичными двигателями, возможно, в дизельных двигателях ломаются коленчатые валы.

Дополнительные эффекты могут проявиться во всей распределительной системе, включая внезапные колебания источника питания, повреждение трансформатора и срабатывание устройств перегрузки по току, вызывающих перебои в подаче электроэнергии.

Неправильное согласование фаз приводит к такому же высокому току и повреждению оборудования, обычно более серьезному, чем неправильное согласование частот.Неправильное согласование напряжения вызывает высокую реактивную мощность в генераторе и сильный механический удар по ротору и статору, что может привести к их отрыву от креплений.

В первые десятилетия крупных систем распределения электроэнергии процесс синхронизации был примитивным по сегодняшним меркам, но, тем не менее, достаточно успешным. Между клеммами трехфазного генератора и клеммами системы были подключены три лампочки накаливания, по одной в каждой паре ветвей. Операторы медленно доводили генератор до оборотов, наблюдая за лампочками.Они будут мерцать с частотой, соответствующей разнице частот между новым генератором и более крупной работающей сетью. При совпадении лампочки гасли, указывая на отсутствие разницы в частоте. Затем оператор замыкал трехполюсный переключатель, и новый генератор добавлялся в систему и оставался синхронизированным.

Пример синхронизатора.

Альтернативный метод синхронизации, также ручной, использует инструмент, известный как синхроноскоп.Синхроскоп состоит из двухфазного статора. Две обмотки статора расположены под прямым углом друг к другу. Сеть с фазовым разделением позволяет току в одной фазе опережать ток в другой фазе на 90°, тем самым создавая вращающееся магнитное поле. Обмотки статора подключаются к синхронизируемому генератору. Поляризационная катушка подключена к работающему генератору.

Вращающийся элемент ничем не ограничен и может вращаться на 360°. Обычно он состоит из двух железных лопастей, установленных в противоположных направлениях на валу, одна вверху и одна внизу, и намагничиваются поляризующей катушкой.Если частоты входящего и работающего генераторов различаются, то синхроноскоп будет вращаться со скоростью, соответствующей разнице. Если входящая частота превышает рабочую частоту, вращение будет по часовой стрелке; если входящая частота ниже рабочей частоты, индикатор будет вращаться против часовой стрелки. Когда синхроноскоп показывает нулевую разность фаз, указатель находится в положении «12 часов» и два генератора переменного тока находятся в фазе.

Для простоты синхроноскоп подключается только к одной из трех фаз каждого источника питания.Это соединение надежно проверяет частоту и фазовый угол, но не последовательность фаз. В качестве резерва используются три лампы для проверки последовательности фаз. Все это оборудование работает на пониженном напряжении, полученном от понижающих трансформаторов.

После того, как локальный источник питания настроен на согласование частот и фазовых углов, меньший генератор подключается к сети. Генератор меньшего размера будет автоматически синхронизироваться с общей сеткой, если не будет значительной разницы фаз.

Полностью автоматическая синхронизация изначально зависела от электромеханических синхронизирующих реле.В настоящее время преобладают высоконадежные микропроцессоры, хотя лампы и синхроноскопы остаются на своих местах для целей контроля и резервирования.

Реле проверки синхронизма вставлено в качестве дополнительной меры предосторожности. Он работает автоматически, чтобы предотвратить взаимосвязь в случае чрезмерной фазовой ошибки.

Все машины остаются синхронизированными, когда нагрузка изменяется в определенных пределах. Однако чрезмерное изменение частоты системы может привести к рассинхронизации составных частей.Затем происходит автоматическое отключение, что может привести к временному отключению электроэнергии до повторной синхронизации машин.

Пример синхронного инвертора, этот для солнечной батареи

Возобновляемые источники энергии генерируют энергию через инверторы, которые преобразуют постоянный ток, скажем, солнечной батареи в постоянный. В случае ветряных турбин турбина питает генератор переменного тока, частота которого изменяется пропорционально энергии ветра. Эта переменная частота обычно преобразуется в постоянный ток, а затем в переменный ток постоянной частоты, который совместим с сетью.

Разумеется, подключенный переменный ток должен быть синхронизирован с сетью. Это происходит с помощью инвертора особого типа, называемого синхронным инвертором. В отличие от генератора переменного тока, который синхронизирован с другим генератором или с сетью, синхронный инвертор непрерывно отбирает переменный ток от сети и синтезирует выходной сигнал для согласования, копируя форму сигнала от сети с учетом напряжения, частоты и фазового угла.

Синхронный инвертор сложен, но цена упала по мере того, как продается все больше единиц.

Как синхронизируется электроэнергия от разных генераторов, чтобы ее можно было объединить для обслуживания одной и той же сети? News and Research

Этот ответ исходит от Ричарда П. Шульца и Навина Б. Бхатта из American Electric Power Co., коммунального предприятия, принадлежащего инвесторам, базирующегося в Колумбусе, штат Огайо.

Разность фаз между синхронными генераторами напрямую связана с электромагнитными полями, которые используются обычными системами переменного тока для создания, передачи и распределения электроэнергии.Простая аналогия иллюстрирует это:

Представьте себе два сильных стержневых магнита в состоянии покоя, магнитно связанных друг с другом на противоположных сторонах тонкого куска стекла. Если бы не было трения между магнитами и стеклом, магниты выровнялись бы, потому что каждый из них вносит вклад в магнитное поле другого и связан с ним. И они выстраивались бы так, чтобы путь их общего магнитного поля был бы минимальным; другими словами, их выравнивание сведет к минимуму искажения и энергию в поле.

Если бы один магнит перемещался по стеклу и не было трения, другой магнит следовал бы за ним и снова выравнивался. Если бы один магнит удерживался, в то время как другой магнит двигался, сила, действующая на один магнит, была бы точным отражением силы, действующей на другой. Энергия, необходимая для перемещения или удержания магнита, которая зависит от требуемой силы и расстояния, увеличивает энергию магнитного поля. Таким образом, если бы магнит был закручен вокруг оси, перпендикулярной стеклу, задействованные силы были бы крутящими моментами, а смещения были бы углами.

Генератор на электростанции работает по тому же принципу. Постоянный ток, проходящий через катушки на валу генератора, называемые обмоткой возбуждения, создает часть магнитного поля. Другая часть создается токами, протекающими через катушки на неподвижной части генератора, называемой обмоткой якоря. Обе катушки построены так, что, когда генератор не вращается, ток в одной создает магнитное поле, которое пересекает другую в осевом направлении.

Магнитное поле от обмотки возбуждения вращается вместе с ротором генератора.Когда обмотка возбуждения вращается с определенной скоростью, ее магнитное поле вращается вокруг (неподвижных) обмоток якоря, тем самым индуцируя напряжения на якоре. Если генератор «разомкнут», то есть нет соединений с обмотками якоря, то на клеммах генератора появляются индуцированные напряжения.

Трехфазный переменный ток в статоре также создает магнитное поле, которое вращается вокруг оси генератора со скоростью, соответствующей частоте тока.В нормальных условиях, когда генератор подключен к сети передачи, магнитное поле, создаваемое этими токами, вращается синхронно с полем, создаваемым обмоткой возбуждения. Когда вал генератора не вращается, два магнитных поля будут точно выровнены — ситуация аналогична двум стержневым магнитам на стекле без трения. Но при подаче мощности вал и его магнитное поле опережают комбинированное магнитное поле. Таким образом, вал и его обмотка возбуждения «тянут» магнитные потоки и наведенные напряжения в якоре.

Распределение электроэнергии в Северной Америке

Изображение: American Electric Power

Это «вытягивающее» действие устанавливает ротор на 40–75 градусов впереди тока якоря. Это фазовое продвижение очень похоже на то, что происходит, когда один стержневой магнит поворачивает другой на другой стороне стекла. Именно таким образом энергия передается от вала и его магнитного поля к якорю и в систему передачи.

Электроэнергия от генератора передается потребителям через трансформаторы и по линиям электропередач.Поскольку большие трансформаторы и высоковольтные линии электропередач сконструированы так, чтобы вызывать очень низкие потери, они имеют низкое сопротивление протекающим через них электрическим токам. Силовые токи, протекающие по линиям электропередачи и трансформаторам, создают вокруг проводов в линиях и в обмотках трансформаторов магнитные поля. Эти поля создают сопротивление потоку тока.

В высоковольтных линиях электропередачи (выше примерно 100 киловольт) этот индуктивный импеданс больше, чем эффект сопротивления, по крайней мере, в 10 раз, а более вероятно, в 20 раз.Силовые токи, протекающие через индуктивное сопротивление линий электропередачи и трансформаторов, вызывают фазовую задержку. То есть напряжение на приемном конце отстает от напряжения на передающем конце.

В линиях электропередач и трансформаторах передача энергии принципиально связана со сдвигом фазы напряжения от конца к концу. Коммутационные станции, где генераторы, трансформаторы, линии и потребители подключены к энергосистеме, включают в себя большие токопроводящие конструкции, называемые «шинами».»Здесь выполняются измерения, такие как напряжение и фазовые углы напряжения. Для передачи электроэнергии по сети или энергосистеме каждая шина должна быть несколько не в фазе с другими шинами.

Добавить комментарий

Ваш адрес email не будет опубликован.