Регулятор напряжения для паяльника: Регулятор мощности для паяльника своими руками: схемы и готовые решения

Содержание

ТОП-5 регуляторов мощности для паяльника: на тимисторе, на симисторе

Стандартные модели паяльников часто имеют один параметр мощности, который никак не меняется. Это не всегда удобно, так как для некоторых процедур может понадобиться другое значение этого параметра и иная температура, для чего потребуется менять сам инструмент. Такое дополнение, как регулятор мощности для паяльника, будет отличным решением данной проблемы. Ведь с его помощью можно попросту понизить максимальную температуру разогрева инструмента за счет уменьшения мощности устройства.

Существуют модели, в которых регулятор температуры паяльника уже встроен в сам инструмент. Такой подход удобен, но применим только для одного конкретного паяльника, тогда как покупка отдельного регулятора будет совместима и с другими инструментами. За счет максимально простой схемы инструмента, подключение таких дополнений не вызывает больших проблем в работе. Профессиональные регуляторы обладают высокой точностью установки параметров. Но даже самодельные варианты, которые также часто встречаются, могут быть удовлетворительными для домашнего использования.

Регулятор мощности для паяльника

Предназначение регуляторов мощности

Регулятор мощности для паяльника 220 В помогает добиться изменения температуры пайки. В большинстве своем, при полностью разогретом инструменте, она не меняется. Чтобы понизить температуру жала, если того требует технология пайки, нужно просто ждать, пока оно остынет. Это долго и неудобно. Если в схеме подключения будет регулятор мощности, то можно попросту уменьшить мощность устройства, так что даже при максимальном разогреве температура не будет достигать той, которая была доступна без дополнительного устройства.

Регулятор напряжения для паяльника обеспечивает получение стабильного питания. Во многих бытовых сетях напряжение часто становится меньше номинального. Это создает определенные проблемы даже при работе маломощным паяльником. Благодаря регулятору, который понижает параметры инструмента, создается оптимальные условия для работы, даже если в сети параметры электропитания не стабильны.

Основной целью, для которой устанавливается регулятор нагрева паяльника, становится возможность изменения его рабочих характеристик. Естественно, что все модели могут иметь различную мощность, поэтому регулировка здесь идет в процентном соотношении. Таким образом, если в одном положении регулятор температуры жала паяльника не будет создавать каких-либо ограничений, то в другой позиции его мощность станет нулевой. Среднее положение ручки будет равняться 50% мощности. Некоторые модели регуляторов создают максимальное снижение только на половину общей мощности, но при этом принцип регулировки остается прежним. Не стоит забывать о повышающих регуляторах, которые также используются сейчас.

Принцип работы регуляторов мощности для паяльников

Для понятия принципа работы устройства, стоит рассмотреть электрическую схему регулятора мощности для паяльника 220 В. Это не единственный возможный вариант, так как в каждой модели могут присутствовать свои особенности, но на основной принцип работы, по которому действует большинство, они мало влияют.

Схема регулятора для паяльника:

Схема регулятора мощности

Это максимально простой вид схемы, в которой присутствует силовая часть и схема управления. VS 1 относится к силовой части. Этот тиристор служит для снятия напряжения для регулировки, которое идет с его анода.

Для элементов управления выбраны VT1 и VT2. Эти транзисторы служат для управления тиристором. Для питания используется параметрический стабилизатор, который образуется при соединении стабилитрона VD 1 и резистора R5. В этой схеме стабилитрон выполняет функцию ограничения повышения параметров напряжения в сети, которое может произойти из-за скачков, а также просто стабилизирует работу инструмента за счет сохранения параметров. Для гашения лишнего напряжения и используется резистор. Второй резистор R2 служит для регулировки выходного напряжения на данном устройстве.

ТОП 5 регуляторов мощности

Основным отличием в разных моделях регуляторов является их основной элемент, на базе которого и создается регулятор. К наиболее распространенным вариантам относятся:

  • Регулятор мощности для паяльника на тиристоре КУ202. Это кремниевый диффузно-планарный триодный элемент, который обладает p-n-p-n структурой. Он хорошо подходит в качестве переключающего устройства в тех узлах, где требуется работа с высокими напряжениями, которые должны быть понижены. Весит элемент около 14 грамм.

Регулятор мощности для паяльника на тиристоре КУ202

  • Регулятор мощности для паяльника на симисторе ВТА16. Максимальное обратное напряжение в устройства составляет 600 В. Максимальный средний уровень тока в открытом состоянии симистора достигает 16 А. Максимальное напряжение в открытом состоянии – 1,5 В. Может работать при температуре от -40 до +125 градусов Цельсия.

Пример регулятора на симисторе ВТА16

  • Регулятор мощности для паяльника на симисторе тс106. В основе него лежит симметричный симистор, максимально допустимый ток для которого составляет 10 А. Повторяющееся импульсное напряжение в нем 600 В. Для соединения со схемой присутствуют жесткие выводы. Устройство поставляется в пластмассовом корпусе.
  • Регулятор TR. Это универсальное устройство, которое может подключаться ко многим силовым нагрузкам при напряжении в 220В. Максимальная мощность здесь составляет 400 Вт. Регулятор поставляется в виде платы, которую можно вмонтировать в различные устройства, а не только в паяльник. Обеспечивает диапазон регулировки в пределах 15-100% от номинальной мощности устройства.
  • Регулятор на тиристоре VS2. Предназначен для подключения к источнику питания 220 В. Максимально допустимая нагрузка здесь составляет 2 кВт. Диапазон регулировки лежит в пределах от 15 до 100% мощности устройства. Здесь присутствует возможности подстройки нижнего порога.

Регулятор на тиристоре VS2

На какой параметр обращать внимание при выборе

При рассмотрении различных вариантов изделий можно встретить самые различные модели, в которых порой присутствуют очень интересные дополнения. Регулятор мощности для паяльника на симисторе с индикацией будет отличным дополнением, но наличие индикации является далеко не самым главным параметром при выборе.

В первую очередь нужно обратить внимание на максимальную мощность, на которую рассчитано устройство. Зачастую они имеют большой запас, но этот фактор нужно всегда учитывать.

Диапазон регулировки также имеет большое значение. Чем он шире, тем более тонко можно подстроить параметры паяльника для работы. Для многих вполне достаточно использовать регуляторы с пределами на 50-100%. Но более удобными в работе будут те, которые могут снизить мощность до 15% или даже до 0.

 

Заключение

Регулятор мощности является очень полезным дополнением, которое поможет сделать работу с паяльником более удобной. В особенности это помогает владельцам мощных моделей инструментов. Конечно же, иногда для работы с тонкими проводами требуется не только слабая мощность, но и особенное жало. Подбор подходящего регулятора мощности, который сможет сочетаться со всеми инструментами, сделает удобной работу с любым паяльником.

Регулятор мощности для паяльника своими руками: конструкция и элементная база

Во время работы с электрическим паяльником необходимо следить за температурой нагрева его жала. Она должна быть постоянной и не меняться. Однако в реальных условиях показатели часто то уменьшаются, то увеличиваются. Это приводит к тому, что приходится использовать специальный регулятор мощности для паяльника.


Паяльник часто используется во время ремонта электроники

Конструкция и детали

Многих людей интересует, какая может быть конструкция у такого регулятора. Данное устройство может быть наружным, в виде небольшого отдельного блока. Иногда встречаются более компактные конструкции, которые встраиваются в паяльную станцию или в корпус розетки.

Главными деталями регулятора мощности паяльника являются резисторы. Их мощность должна составлять не меньше 0,125 Вт. Если в устройстве присутствует R5, его мощность — от 2 Вт.

Дополнительная информация! Возможно, придется подбирать другой номинал деталей, чтобы напряжение в питании не опускалось ниже 11 В.

Как функционирует контролер паяльника

Существует огромное количество схем устройств для настройки нагрева паяльной станции. Однако все они работают по одинаковому принципу, который заключается в увеличении или уменьшении входной мощности. В редких случаях тот или иной регулятор для паяльника может отличаться по таким признакам:

  • тип используемой электронной схемы;
  • установленный измеряемый элемент для определения мощности;
  • число ступеней настройки мощности.

Независимо от вышеперечисленных отличий, данные устройства в любом случае будут представлять собой обычный коммутатор для регулирования мощности.

Варианты монтажа регуляторов мощности паяльника

Корпус розетки идеально подходит для установки регулятора мощности

В зависимости от поставленных задач, устройство для настройки мощности паяльной станции можно поместить в несколько различных корпусов:

  • Вилка. Это наиболее распространенный и удобный вариант. Довольно часто люди используют для этого зарядку от смартфона или корпусы от других адаптеров.
  • Внутри паяльника. Некоторые паяльные станции имеют достаточно большие корпуса, внутри которых можно без проблем расположить регулятор. Это очень удобно, так как устройство будет всегда под рукой.
  • Розетка. Часто регулятор напряжения для паяльника располагают внутри розеток. Этот способ можно использовать, если нет вилки или не хватает места в паяльной станции.

Важно! Прежде чем устанавливать регулятор в тот или иной корпус, надо ознакомиться с инструкцией и разобраться, как это делать правильно.

Необходимые материалы и инструменты

Микроконтроллер нужен для управления устройством

Чтобы сделать регулятор для паяльника своими руками, понадобятся следующие материалы:

  • Тиристор — электронный ключ для пропуска тока в одном направлении.
  • Симистор — подвид тиристора для проведения тока в двух направлениях.
  • Резистор — используется для конвертации напряжения в силу тока.
  • Конденсатор — необходим для своевременного выключения тиристора.
  • Стабилитрон — нужен для стабилизации напряжения.
  • Микроконтроллер Atmega — отвечает за электронное управление.

Из инструментов может понадобиться паяльник, отвертки, нож, флюс и припой.

Электрические принципиальные схемы регуляторов температуры паяльника

Прежде чем приступить к созданию и установке регулятора, необходимо ознакомиться с основными принципиальными схемами.

Схема регулятора для паяльника без помех на микросхеме

Данный вариант используют довольно редко, так как воплотить в жизнь такую схему непросто. Однако если в доме подключено огромное количество электроники, лучше пользоваться именно таким регулятором. Он будет отлично работать и при этом не выдавать в сеть помехи.

Стоит отметить, что пользоваться данной схемой нужно только в тех случаях, если человек работает с паяльной станцией ежедневно. Если же она большую часть времени лежит без дела, можно попробовать варианты попроще.

На базе фазовых регуляторов мощности PR1500S

PR1500S часто используется для изменения мощности паяльников

В данном случае устройство оснащается специальным фазовым регулятором. Других деталей в этой схеме не так много и поэтому сборка конструкции выполняется достаточно быстро.

Чтобы сделать регулятор температуры паяльника, используя эту схему, придется заранее подготовить резистор переменного типа с встроенным выключателем. Также понадобится конденсатор на 620 В. Он нужен, чтобы устранить помехи, которые могут появиться во время работы.

Регулятор мощности на симисторе КУ208Г

Это одна из наиболее простых схем, которую часто используют во время создания регуляторов мощности паяльника. Все, что понадобится для изготовления устройства — симистор и димистор.

Чтобы приспособление для настройки температуры правильно работало, пригодится димистор DB3 и симистор ВТ139.

Главное достоинство такой схемы — ее компактность. Она без проблем помещается в зарядный блок телефона.

На оптосимисторе МОС204х/306х/308х

Оптосимисторы устанавливаются практически во все регуляторы

Относительно популярная схема, которой довольно часто пользуются во время создания регуляторов. В этом случае при создании устройства рекомендуется пользоваться оптическими симисторами, так как они могут открываться, если напряжение переходит через ноль.

Также в схеме используется специальный индикатор-таймер 555 серии. Он необходим для своевременного отключения регулятора.

Важно! Все компоненты, которые используются в этой схеме, очень маленькие. Это позволяет размещать устройство практически в любом корпусе.

Регулировка на интегральном стабилизаторе

Распространенный метод настройки мощности паяльной станции — использование стабилизаторов интегрального типа. С их помощью удастся легко сделать регулятор напряжения, который позволит уменьшать и увеличивать температуру нагрева паяльного жала.

Единственный серьезный недостаток применения таких стабилизаторов заключается в том, что они сильно нагреваются. Это часто приводит к перегреванию стабилизирующей микросхемы.

С ШИМ-контроллером

Некоторые люди решают регулировать мощность при помощи специального ШИМ-контроллера. Для таких целей можно воспользоваться любой моделью, которая работает на частоте около 1 Гц. В качестве основного коммутирующего элемента в этой плате используется полевой транзистор. Его можно купить или найти на любой старой материнке. Подойдет любой транзистор, напряжение которого не опускается ниже 12 В.

Транзисторный регулятор мощности

Устройства на ШИМ-контроллерах — одни из наиболее эффективных

Многие пользуются транзисторными терморегуляторами для паяльника. Главное их преимущество заключается в том, что в них отсутствуют помехи. Еще одно преимущество таких устройств заключается в том, что они могут работать с индуктивной нагрузкой. Это позволяет использовать их не только с паяльниками, но и со светодиодными лампочками.

Монтировать транзистор необходимо на радиатор толщиной не менее трех сантиметров. Это предотвратит перегревание устройства во время его работы.

Важно! Подключаемая нагрузка должна быть меньше 100 Вт. При этом диапазон регулировки составляет от 10 до 220 В.

Регулятор мощности для паяльника на 20-36 В переменного напряжения

Если паяльник работает от сети с пониженным напряжением, для него придется делать отдельный регулятор.

Элементная база

Чтобы самостоятельно сделать такое устройство, понадобится заранее подготовить следующие компоненты:

  • Транзистор КТ815Б. Если такого нет, вместо него можно установить КТ815Г.
  • Диодный мост КЦ401А. Также для регулятора подойдет КЦ402 Б или С.
  • Диоды. Для регулятора мощности лучше использовать модели из серии Д9.

Также понадобятся конденсаторы. Рекомендуется устанавливать оксидные элементы типа К50-6.

Особенности монтажа

Печатная плата используется для соединения всех элементов регулятора

Чтобы изготовить такой регулятор, придется заранее заказать макет печатной платы и на нем разместить всю элементную базу. Особое внимание необходимо уделить резисторам. Дело в том, что их параметры подбираются в зависимости от желаемого предела регулирования.

Все компоненты рекомендуется размещать на радиаторе Г-образной формы. С лицевой стороны или в верхней части корпуса регулятора необходимо установить розетку для подключения паяльной станции.

Проверка и регулировка схемы

Чтобы проверить работоспособность устройства, необходимо воспользоваться мультиметром. Если во время вращения ручки регулирования мощности выходное напряжение будет меняться, значит все работает исправно. Однако иногда показатели напряжения не изменяются. Это говорит о том, что во время сборки регулятора были допущены ошибки.

Во время использования паяльника часто приходится вручную настраивать его мощность. Делается это при помощи специального регулятора. Его можно приобрести в специализированных магазинах или сделать самостоятельно.

cxema.org — Хороший регулятор мощности паяльника

Давно известно, что когда паяльник перегревается, то жало покрывается окислами и быстро выгорает, особенно у дешевых китайских. Поэтому соберем хорошую схему регулятора мощности, которая  будет управлять степенью его нагрева.

Основным элементом схемы является мощный симистор (симметричный тиристор). Он работает также как тиристор, но не имеет анода и катода, ток в нем  может протекать в обоих направлениях. Управляет симистор симетричный динистор или диак, в данном случае DB3 (советский аналог КН 102).

Динистор можно найти в балласте эконом лампы, в электронном трансформаторе или купить (стоит копейки). Динистор можно условно назвать разрядником. Он имеет определенное напряжение пробоя и откроется только по достижении этого значения.

По даташиту на DB3 это в среднем 28- 30В. При каждой полуволне сетевого напряжения конденсатор С1 заряжается через R1 и R2. Когда напряжение дойдет до значения пробоя динистора, он откроется и на управляющий электрод симистора поступит напряжение. Симистор сработает (откроется), ток пойдет через нагрузку.

ЦепочкаVD1, VD2,C2, R3 предназначена для нормального срабатывания тиристора при минимальной выходной мощности. Принцип работы всех аналогичных схем одинаков: чем больше время задержки включения тиристора, тем меньше выходная мощность.

Данная схема отличается тем, что стабильно работает при любой выходной мощности. Заменив  только тиристор на более мощный можно получить регулятор, способный коммутировать нагрузку в десятки киловатт. Например, у меня прошлой зимой  он использовался с обогревателем на 5кВт. Если регулятор используется для паяльника то можно обойтись без теплоотвода. В случае мощных нагрузок понадобится соответствующий радиатор.

Печатная плата компактная и может поместиться в спичечном коробке, можно собрать регулятор даже в рукоятке паяльника. Я собрал его в небольшом корпусе. Кстати, многие китайские промышленные паяльники дополненые таким простым регулятором анонсируют как “паяльную станцию”.

Список компонентов 

  • Купить готовый регулятор мощности можно тут
  • Купить симистор можно тут 
  • Динистор  30шт за 0,85$ купить можно тут
  • Диоды 1n4007 100шт за 0,75$ купить можно тут
  • Переменный резистор 500k 5шт за 2,7$ купить можно тут
  • Набор резисторов 600шт за 2,85$ купить можно тут

Скачать архив проекта 

Регулятор мощности паяльника с предварительным прогревом

В литературе и Интернете можно найти немало описаний самодельных фазовых регуляторов мощности для паяльников, однако автор не смог найти среди них подходящего. В одном не предусмотрен предварительный прогрев жала, другой слишком сложен, третий слишком велик по размерам. Поэтому автором был разработан оптимальный, по его мнению, вариант регулятора мощности для простого паяльника, о котором и пойдёт речь в статье. Он полностью аналоговый, прост по схеме и лёгок в повторении.

Каждый радиолюбитель рано или поздно сталкивается с необходимостью регулирования температуры жала паяльника. Это особенно актуально, если речь идёт о паяльнике с медным жалом. Оно существенно удобнее в работе по сравнению с необгораемым жалом, покрытие на котором легко повредить, хватает одного погружения в некоторые флюсы. Плохое качество пайки, трудность лужения некоторых медных на вид проводов, отслоение печатных проводников от платы при пайке — вот не полный перечень проблем, связанных с перегревом жала.

Простые широкодоступные паяльники не имеют встроенного регулятора температуры (мощности). Существуют, конечно, варианты со встроенным регулятором или более дорогие с термодатчиком, как у паяльной станции. Но зачастую они рассчитаны на работу с паяльником мощностью не более 60 Вт, а стандартное необгораемое жало непопулярно у профессионалов.

Предлагаемый регулятор, используя фазовый метод регулирования, управляет мощностью, отдаваемой в чисто активную (омическую) нагрузку, которой является и паяльник. По существу, он превращает простой паяльник в «паяльную станцию», позволяя комфортно работать как с необгораемыми, так и с медными жалами. В нём предусмотрены таймер предварительного разогрева жала с сигнализирующим о режиме разогрева светодиодом и фильтр, ослабляющий высокочастотные помехи, создаваемые регулирующим элементом — тринистором.

Плата описываемого регулятора мощности уместилась в корпусе зарядного устройства для сотового телефона. После доработки им заменяют стандартную сетевую вилку паяльника.

Рис. 1. Схема регулятора

 

Схема регулятора представлена на рис. 1. Он состоит из следующих узлов:

— защитной цепи из плавкой вставки FU1 и варистора RU1, гасящего высоковольтные всплески напряжения;

— помехоподавляющего фильтра C2C4L1, построенного из деталей от КЛЛ;

— фазового регулятора из [1] на элементах C1, C3, R2-R4, VS1, VS2;

— таймера на элементах C5, R6- R12, VD3, VT1, VT2 с кнопкой повторного запуска SB1;

— переключателя мощности VT3 с сигнальным светодиодом HL1;

— выпрямителя на диодном мосте VD2 для питания всего устройства;

— узла питания таймера — резисторов R1, R5 и стабилитрона VD1.

Применение в качестве регулирующего элемента не симистора, а диодного моста VD2 в связке с тринистором VS2 обусловлено необходимостью питать таймер пульсирующим напряжением. RC-цепь R2R3C1 в начале каждого полупериода сетевого напряжения задерживает нарастание напряжения, приложенного к закрытому симметричному динистору VS1. Задержку регулируют переменным резистором R2 практически от нуля до длительности полупериода (10 мс). Как только напряжение на динисторе достигает приблизительно 32 В, он открывается и открывает мощный тринистор VS2. С этого момента и до конца полупериода напряжение сети поступает на нагрузку, а цепь питания узла управления зашунтирована открытым тринистором. В следующем полупериоде процесс повторяется. Чем больше задержка, тем меньше мощность, выделяемая на паяльнике, и ниже температура его жала.

Сопротивление резистора R3 подобрано так, чтобы при минимальном введённом сопротивлении переменного резистора R2 не перегружать управляющий электрод тринистора, добиться минимальной задержки и обеспечить приемлемую яркость свечения светодиода HL1.

Пороговый элемент таймера — триггер Шмитта на транзисторах VT1 и VT2, причём транзистор VT1 — полевой. Это необходимо для максимизации входного сопротивления триггера, что позволяет уменьшить его влияние на время-задающую цепь R6R7C5. При указанных на схеме номиналах этих элементов выдержка таймера регулируется в интервале 1…4,5 мин. Если нужны другие границы этого интервала, следует изменить номиналы резисторов R6, R7 и конденсатора C5.

В момент включения устройства в сеть конденсатор C5 разряжен, поэтому транзистор VT3 открыт. В этом состоянии резисторы R2 и R3 времязадающей цепи фазового регулятора зашунтированы открытым участком коллектор-эмиттер транзистора VT3 и светодиодом HL1. Поэтому задержка открывания тринистора VS2 минимальна, а мощность нагрева паяльника максимальна. Идёт его предварительный прогрев. Синее свечение светодиода HL1 показывает, что паяльник ещё холодный и не готов к работе. После зарядки конденсатора C5 до напряжения переключения триггера транзистор VT3 закрывается и регулятор переходит в нормальный рабочий режим с регулировкой мощности переменным резистором R2. Нажатием на кнопку SB1 можно в любой момент перезапустить таймер и на время его выдержки перевести паяльник в режим максимальной мощности. Это бывает полезно при пайке массивных деталей и толстых проводов.

Примечание.В рассматриваемом устройстве ток разрядки конденсатора C5 при нажатии на кнопку SB1 ограничен только сопротивлением её контактов и ЭПС этого конденсатора. Поэтому полезно включить последовательно с кнопкой резистор сопротивлением несколько сотен ом, что устранит быстрое обгорание контактов кнопки и опасность повреждения самого конденсатора.

Таймер питается выпрямленным диодным мостом VD2 пульсирующим напряжением, стабилитрон VD1 ограничивает его амплитуду до 15 В. Такое решение позволяет уменьшить номиналы элементов времязадающих цепей. Кроме того, прерывистое питание устраняет неустойчивое состояние триггера Шмитта при медленном изменении напряжения на его входе.

Чертёж печатной платы регулятора изображён на рис. 2. Печать односторонняя, но детали размещены на двух её сторонах, как показано на том же рисунке. При использовании указанных на схеме деталей регулятор пригоден для работы с паяльниками мощностью до 120 Вт. Для паяльника большей мощности придётся выбрать более мощные тринистор, диодный мост и дроссель. Но на предлагаемой печатной плате такие детали уже не уместятся, придётся разрабатывать новую.

Рис. 2. Чертёж печатной платы регулятора

 

Резисторы СА9Mh3,5-1MB и CA6Ph3,5-1MA, применённые в качестве соответственно R2 и R7, по своей конструкции подстроечные. Однако для резисторов серии CA9 производитель предлагает съёмные ручки [2] из изоляционного материала, превращающие их в регулировочные. Одной из этих ручек я и воспользовался. Кроме того, резистор R2 выбран с логарифмической зависимостью сопротивления от угла поворота движка. Это позволило получить более плавное изменение мощности вблизи её минимума.

Плёночные конденсаторы C2 и C4 извлечены из неисправных КЛЛ. Конденсатор C1 — полипропиленовый KEMET R79GC31504040K, подойдёт любой другой плёночный на указанное на схеме или большее напряжение. К сожалению, применение здесь керамических конденсаторов или плёночных на меньшее напряжение приводило к неустойчивой работе регулятора, а в некоторых случаях он вовсе не работал.

Транзистор FMMT6520 в корпусе SOT-23 и с допустимым напряжением коллектор-эмиттер минус 350 В не имеет аналогов. Однако испытания показали устойчивую работу в качестве VT3 транзисторов MMBTA92, PMBTA92, KST92MTF, BF821 с предельным напряжением минус 300 В. Их намного легче найти.

Резистор R5 — металлоокисный С2-23 0,5 Вт. Его можно заменить двумя соединёнными последовательно углеродными резисторами сопротивлением 33 кОм и мощностью 0,25 Вт.

Плавкая вставка FU1 — Littelfuse 0672002 или отечественная серии ВП4. Дроссель L1 от КЛЛ применим при мощности нагрузки не более 40 Вт. Если мощность больше, он перегревается, его нужно заменить рассчитанным на больший ток, да и ёмкость конденсаторов C2 и C4 желательно увеличить до 0,15 мкФ. Параметры фильтра не критичны, можно и вовсе без него обойтись, однако при этом на близкорасположенную электронную технику могут воздействовать создаваемые тринисто-ром регулятора помехи.

Светодиод HL1 подойдёт суперъяркий любого свечения. Светящийся светодиод обычной яркости может оказаться практически незаметным, так как средний текущий через него ток очень мал.

Конденсатор C5 — многослойный керамический типоразмера 1206 для поверхностного монтажа. Оксидный конденсатор здесь недопустим из-за большого тока утечки. Чтобы иметь возможность составить конденсатор нужной ёмкости из двух меньшей ёмкости, на плате предусмотрено дополнительное посадочное место, обозначенное C5′.

В качестве диодного моста VD2 может быть использован любой из DB104-DB108. Перед монтажом плавкой вставки FU1 на её длинный вывод наденьте тонкую изоляционную трубку. Чтобы обеспечить пожаробезопасность, желательно защитить аналогичным образом и весь корпус вставки.

Внешний вид готовой платы регулятора показан на рис. 3. Перед первым включением её в сеть удалите остатки флюса со стороны печатных проводников. Устройство должно заработать сразу, в противном случае проверьте качество и правильность монтажа. Налаживание регулятора заключается в установке длительности прогрева и проверке пределов регулировки мощности для конкретного паяльника.

Рис. 3. Внешний вид готовой платы регулятора

 

Прежде всего, поверните движки переменного и подстроечного резисторов в положения максимальной мощности и наиболее продолжительного прогрева (крайние по часовой стрелке). Секундомером засеките время от включения паяльника до достижения его жалом температуры плавления припоя и запомните его. Далее поверните оба движка до упора в противоположную сторону. Нажмите и отпустите кнопку SB1 для повторного запуска таймера. С помощью секундомера измерьте время, прошедшее от отпускания кнопки до выключения светодиода HL1. Постепенно поворачивая движок подстроечного резистора R7 в сторону увеличения этого времени и перезапуская таймер, установите продолжительность прогрева паяльника, близкую к требуемой.

Если требуемой продолжительности прогрева добиться не удаётся, можно сместить интервал её регулирования в нужную сторону, увеличив или уменьшив ёмкость конденсатора C5. При необходимости параллельно этому конденсатору можно подключить ещё один.

После регулировки таймера дождитесь, пока светодиод HL1 погаснет, и установите переменным резистором R2 необходимую температуру паяльника. Наэтом налаживание регуляторазавер-шено. По его завершении рекомендую покрыть сторону печатных проводников платы тремя слоями влагозащитного лака Plastik-71. Готовую и налаженную плату поместите в корпус, например, от зарядного устройства для сотового телефона.

Этот корпус нужно вскрыть и удалить из него всё, находящееся внутри, за исключением сетевой вилки. Замерьте штангенциркулем извлечённую плату зарядного устройства. Обычно она имеет форму трапеции. Плата регулятора преднамеренно сделана с запасом по ширине, обрежьте её по этим размерам.

Примерьте плату к корпусу и как можно точнее обозначьте на его внутренней поверхности центр будущего отверстия для ручки управления переменным резистором R2. По этой метке просверлите в корпусе отверстие диаметром не более 1,5 мм. Снова установите плату в корпус и оцените соосность просверленного отверстия с перекрестием на движке резистора. Если она удовлетворительна, можно перейти к следующему шагу, а в противном случае сделать снаружи корпуса новую, более точную метку.

Теперь следует приложить к корпусу шаблон, чертёж которого в масштабе 1:1 приведён на рис. 4. Центр наибольшего из отверстий шаблона совместите с просверленным отверстием или сделанной меткой, затем шилом наметьте центры остальных отверстий. По сделанной разметке просверлите в корпусе все нужные отверстия. Их диаметры указаны на шаблоне.

Рис. 4. Шаблон к корпусу регулятора

 

Завершив подготовку корпуса, отрежьте от шнура паяльника сетевую вилку. Затем пропустите шнур без вилки внутрь корпуса сквозь резиновый уплотнитель и припаяйте разделанные концы его проводов к контактным площадкам платы регулятора, обозначенным на рис. 2 «К EK1». Провода следует вставлять в отверстия контактных площадок со стороны установки крупных деталей. Контактные площадки, обозначенные на рис. 2 «K XP1, соедините гибкими монтажными проводами со штырями имеющейся в корпусе сетевой вилки.

Прежде чем закрывать корпус, вытяните из него излишки шнура паяльника через резиновый уплотнитель и зафиксируйте шнур в уплотнителе каплей клея. Если мощность паяльника более 100 Вт, рекомендую сделать в корпусе регулятора несколько вентиляционных отверстий. Внешний вид паяльника с регулятором показан на рис. 5.

Рис. 5. Внешний вид паяльника с регулятором

 

Литература

1. Кузнецов А. Симисторный регулятор мощности с низким уровнем помех. — Радио, 1998, №6, с. 60, 61.

2. CA9 — CE9 Shafts. — URL: https://www. acptechnologies.com/catalogue/potentiome ters/ca9-ce9/ca9-ce9-shafts/ (17.02.19)

Автор: В. Иншаков, г. Балашиха Московской обл.

Схема регулятора паяльника тиристор


Предназначение регуляторов мощности

Регулятор мощности для паяльника 220 В помогает добиться изменения температуры пайки. В большинстве своем, при полностью разогретом инструменте, она не меняется. Чтобы понизить температуру жала, если того требует технология пайки, нужно просто ждать, пока оно остынет. Это долго и неудобно. Если в схеме подключения будет регулятор мощности, то можно попросту уменьшить мощность устройства, так что даже при максимальном разогреве температура не будет достигать той, которая была доступна без дополнительного устройства.

Регулятор напряжения для паяльника обеспечивает получение стабильного питания. Во многих бытовых сетях напряжение часто становится меньше номинального. Это создает определенные проблемы даже при работе маломощным паяльником. Благодаря регулятору, который понижает параметры инструмента, создается оптимальные условия для работы, даже если в сети параметры электропитания не стабильны.

Основной целью, для которой устанавливается регулятор нагрева паяльника, становится возможность изменения его рабочих характеристик. Естественно, что все модели могут иметь различную мощность, поэтому регулировка здесь идет в процентном соотношении. Таким образом, если в одном положении регулятор температуры жала паяльника не будет создавать каких-либо ограничений, то в другой позиции его мощность станет нулевой. Среднее положение ручки будет равняться 50% мощности. Некоторые модели регуляторов создают максимальное снижение только на половину общей мощности, но при этом принцип регулировки остается прежним. Не стоит забывать о повышающих регуляторах, которые также используются сейчас.

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Теги статьи:Добавить тег

Регулятор мощности паяльника с цифровой индикацией и кнопочным управлением.

Автор: Настя Опубликовано 01.01.1970

2008

Многие из нас проводят много времени в руках с паяльником. Не секрет, что хорошая пайка компонентов является залогом успешной работы электронного устройства. Качество пайки определяется по характерному блеску. Сероватая и неровная пайка является потенциальной причиной плохой работы схемы. Другая важная задача заключается в том, чтобы произвести пайку не перегревая компонентов. Хорошее качество пайки обеспечивают цифровые паяльные станции, которые контролируют температуру жала. Но они достаточно дороги и трудоемки в сборке. Цифровые паяльные станции не всегда можно взять с собой для работы в полевых условиях. В радиолюбительской практике для регулировки температуры обычных паяльников используются как промышленные, так и самодельные регуляторы мощности, которые иначе называют диммерами. Как правило, такие диммеры используются для плавной регулировки яркости ламп накаливания, и, следовательно, нет необходимости в дополнительной индикации уровня мощности, т.к. о настройке судят по яркости свечения. Но как оценить на каком уровне мощности работает паяльник? Кто-то оценивает достаточность мощности по положению крутилки диммера, а я же решила собрать регулятор с цифровой индикацией и кнопочным управлением.

Регулятор собран на pic16f628a. Тактирование микроконтроллера осуществляется встроенным генератором на частоте 4 МГц, т.е. кварцевый резонатор не нужен. На плате предусмотрены посадочные места под кварцевый резонатор, что позволяет применять устаревшие контроллеры (например, pic16f84a) и иные без внутреннего тактирования. В своем варианте регулятора я установила семисегментный индикатор с общим катодом. На плате предусмотрена установка индикатора с общим анодом, путем перепайки соответствующей перемычки. В исходниках программы закомментированы заготовки под контроллер pic16f84a и индикатор с общим анодом. Регулятор собран на двух платах: силовая и цифровая. На силовой плате расположен фильтр (для снижения уровня помех создаваемым регулятором) и схема бестрансформаторного питания. На цифровой плате расположен микроконтроллер и семисегментный индикатор.

Платы регулятора мощности с цифровой индикацией закреплены с помощью винтов в корпусе обычной мыльницы. Дизайн регулятора зависит от Вашей фантазии и способностей.

Красной кнопкой увеличиваем уровень мощности и температуру нагрева паяльника, синей – снижаем. Программа для микроконтроллера написана на Ассемблере. Задержки, определяющие уровень мощности, подобраны экспериментально. Их можно легко изменить в программе и подобрать для себя необходимые уровни. Всего 10 уровней. Символ «0» на индикаторе означает, что симистор закрыт. Символ «9» означает, что симистор постоянно открыт и устройство работает на полную мощность. Для проверки работоспособности регулятора мощности можно подключить лампу накаливания (на фото лампа на 40Вт).

Узлы схемы не являются чем-то необычным. Расчеты компонентов силовой части сделаны в соответствии с рекомендациями документов из открытых источников: 1. Электромагнитная совместимость импульсных источников питания 2. Transformerless Power Supply. Application Notes 91008b Соблюдайте осторожность и помните про электробезопасность при работе с сетью переменного тока 220В. Правильно изготовленный регулятор из исправных деталей не требует настройки и сразу начинает работать. Для обеспечения электромагнитной совместимости следует лишь правильно подключить его к сети (фазу и нейтраль подключить так, как это показано на схеме). На перспективу программа для микроконтроллера может быть расширена дополнительными функциями. Например, таймер на выключение – для случаев простоя паяльника без дела, в целях защиты от выгорания жала. Также можно предложить разогрев паяльника определенное время на максимальном уровне и затем переход на меньший уровень для поддержания температуры. Если эти функции найдут Вашу поддержку, то следующая версия прошивки будет дополнена этими функциями.

Файлы:

Схема Плата Исходники и прошивка

Вопросы, как обычно, складываем тут.

Как вам эта статья? Заработало ли это устройство у вас?
4225
16

Принцип работы регуляторов мощности для паяльников

Для понятия принципа работы устройства, стоит рассмотреть электрическую схему регулятора мощности для паяльника 220 В. Это не единственный возможный вариант, так как в каждой модели могут присутствовать свои особенности, но на основной принцип работы, по которому действует большинство, они мало влияют.

Схема регулятора для паяльника:

Схема регулятора мощности

Это максимально простой вид схемы, в которой присутствует силовая часть и схема управления. VS 1 относится к силовой части. Этот тиристор служит для снятия напряжения для регулировки, которое идет с его анода.

Для элементов управления выбраны VT1 и VT2. Эти транзисторы служат для управления тиристором. Для питания используется параметрический стабилизатор, который образуется при соединении стабилитрона VD 1 и резистора R5. В этой схеме стабилитрон выполняет функцию ограничения повышения параметров напряжения в сети, которое может произойти из-за скачков, а также просто стабилизирует работу инструмента за счет сохранения параметров. Для гашения лишнего напряжения и используется резистор. Второй резистор R2 служит для регулировки выходного напряжения на данном устройстве.

ТОП 5 регуляторов мощности

Основным отличием в разных моделях регуляторов является их основной элемент, на базе которого и создается регулятор. К наиболее распространенным вариантам относятся:

  • Регулятор мощности для паяльника на тиристоре КУ202. Это кремниевый диффузно-планарный триодный элемент, который обладает p-n-p-n структурой. Он хорошо подходит в качестве переключающего устройства в тех узлах, где требуется работа с высокими напряжениями, которые должны быть понижены. Весит элемент около 14 грамм.

Регулятор мощности для паяльника на тиристоре КУ202

  • Регулятор мощности для паяльника на симисторе ВТА16. Максимальное обратное напряжение в устройства составляет 600 В. Максимальный средний уровень тока в открытом состоянии симистора достигает 16 А. Максимальное напряжение в открытом состоянии – 1,5 В. Может работать при температуре от -40 до +125 градусов Цельсия.

Пример регулятора на симисторе ВТА16

  • Регулятор мощности для паяльника на симисторе тс106. В основе него лежит симметричный симистор, максимально допустимый ток для которого составляет 10 А. Повторяющееся импульсное напряжение в нем 600 В. Для соединения со схемой присутствуют жесткие выводы. Устройство поставляется в пластмассовом корпусе.
  • Регулятор TR. Это универсальное устройство, которое может подключаться ко многим силовым нагрузкам при напряжении в 220В. Максимальная мощность здесь составляет 400 Вт. Регулятор поставляется в виде платы, которую можно вмонтировать в различные устройства, а не только в паяльник. Обеспечивает диапазон регулировки в пределах 15-100% от номинальной мощности устройства.
  • Регулятор на тиристоре VS2. Предназначен для подключения к источнику питания 220 В. Максимально допустимая нагрузка здесь составляет 2 кВт. Диапазон регулировки лежит в пределах от 15 до 100% мощности устройства. Здесь присутствует возможности подстройки нижнего порога.

Регулятор на тиристоре VS2

На какой параметр обращать внимание при выборе

При рассмотрении различных вариантов изделий можно встретить самые различные модели, в которых порой присутствуют очень интересные дополнения. Регулятор мощности для паяльника на симисторе с индикацией будет отличным дополнением, но наличие индикации является далеко не самым главным параметром при выборе.

Регулятор температуры паяльника

Регулятор позволяет установить необходимую температуру жала паяльника для безопасной пайки маломощных компонентов. Используя паяльник мощностью 80Вт можно выставить температуру его жала таким образом, что его мощность будет равна паяльнику 30Вт. Помимо безопасной пайки регулятор позволяет продлить срок службы паяльника, уберегая его жало от перегрева при повышенном напряжении сети.

Особенностью регулятора температуры, представленного в этой статье, является схема. Она отличается от примитивных симисторных регуляторов, например от схемы, представленной в статье «Регулятор мощности 1кВт своими руками». Отличие заключается в открытии симистора в момент прохождения синусоиды через ноль.

Что это дает? Во-первых, открытие симистора в момент минимальной нагрузки, когда синусоида проходит через ноль, позволяет значительно сократить помехи (всплески) излучаемые в сеть. Эти помехи мешают работать различной радиоэлектронной аппаратуре и бытовой электронике. Во-вторых, паяльник не гудит и не «зудит», как например, при применении простых симисторных регуляторов с фазовым регулированием.

Схема регулятора температуры паяльника

Схема была найдена в сети и перерисована на свой лад. Эту схему вполне можно использовать для регулировки температуры ТЭН. Для этих целей я развел печатную плату и представил ее в статье «Регулятор мощности для ТЭН не создающий помех».

Принцип работы схемы

Напряжение переменного тока (~220В) понижается с помощью гасящего конденсатора C1, выпрямляется диодным мостом VD1 и стабилизируется стабилитроном VD2. Пульсации полученного напряжения +12В сглаживаются электролитическим конденсатором C2.

На таймере DA1 выполнен генератор импульсов, причем частота импульсов примерно равна 1Гц. Переменным резистором R2 выполняется регулировка ширины импульса.

Катод светодиода HL1 соединен с выводом 7 таймера DA1, этот вывод является коллектором встроенного транзистора, а эмиттер встроенного транзистора соединен с общим проводом. На вывод 1 оптосимистора подается стабилизированное напряжение +12В. В момент, когда на 3 выводе DA1 низкий уровень, внутренний транзистор открывается и через цепь HL1R4 и светодиод оптопары U1 протекает ток, выход оптосимистора (выводы 4 и 6) соединяет управляющий вывод (G) симистора VS1 с сетью через резистор R6 и симистор VS1 открыт и пропускает через себя ток нагрузки. Симистор будет открыт, пока происходит разряд ранее заряженного конденсатора C3 до низкого уровня. Ток разряда протекает через резистор R2 и диод VD4. По мере разряда конденсатора, как только на выводе 2 таймера напряжение снизится до низкого уровня на выходе таймера (3 вывод) появится импульс, и конденсатор C3 начнет заряжаться через элементы R3VD3R2.

Пока заряжается конденсатор C3, внутренний транзистор таймера закрыт и он разорвет 7 вывод от общего провода. Светодиод оптопары U1 прекратит свечение и оптосимистор разомкнется, соответственно симистор VS1 будет закрыт.

Оптосимистор U1, а именно MOC3063 имеет схему контроля прохождения через ноль и разрешает открываться только в момент прохождения синусоиды через ноль.

Когда средний вывод R2 в левом (по схеме) положении, то разряд C3 происходит мгновенно (только через диод VD4), а заряд конденсатора будет иметь наибольшее время. Режим минимальной мощности.

При правом положении среднего вывода R2 заряд C3 будет происходить быстрее всего, а разряд будет происходить долго, импульс будет иметь наименьшую ширину, а скважность будет максимальной, поэтому паяльник будет работать в режиме максимальной мощности.

По интенсивности мигания светодиода HL1 можно визуально судить об установленном режиме температуры жала паяльника.

Принцип регулировки на графике будет выглядеть пачками целых периодов с паузами.

Для сравнения ниже представлен график работы примитивных симисторных регуляторов с фазовым регулированием (с обрезанием синусоиды).

Диапазон регулировки

При использовании компонентов с номиналами, указанными на схеме, регулятор температуры в минимальном режиме позволяет уменьшить мощность примерно в половину, так как ширина импульса NE555 будет примерно равна половине периода.

Для расширения диапазона регулировки температуры жала паяльника, необходимо вместо резистора R3 на 68кОм установить перемычку или резистор сопротивлением от 1Ом до 1кОм, а номинал переменного резистора R2 увеличить до 100кОм. Это позволит регулятору изменять температуру жала паяльника практически от минимума до максимума.

Компоненты

Конденсаторы C1 и C5 пленочные, должен быть рассчитан на 400В. Конденсатор C4 керамический на 63В.

Резистор R1 и R7 должны быть мощностью не менее 0.5Вт.

Светодиод HL1 обычный 3мм с током потребления 20мА, желательно применить красного цвета, так как у красного самое минимальное падение напряжения.

Стабилитрон Д814 желательно с буквенным индексом В, Г или Д.

Оптопара MOC3063 может быть заменена на MOC3043. Можно установить и MOC3041, MOC3042, MOC3061, MOC3062, но следует уменьшить номинал R4 до минимального отпирающего тока. Если в конце маркировки единица, то этот ток 15мА, для двойки 10мА, а для тройки (MOC3063) 5мА. Не допускается применение оптопар без контроля прохождения через ноль — «Zero crossing circuit».

Симистор BT134 можно заменить другим, например BT136 или BT137. Я установил BT137-600D.

При работе регулятора температуры с паяльником до 80Вт теплоотвод можно не устанавливать, симистор теплый.

Печатная плата была разведена не мной. Она имеет размеры 40?55мм и может быть встроена в маленький пластиковый корпус, например от небольшого зарядного устройства или в сетевой двойник (тройник).

Печатная плата регулятора температуры паяльника

Принцип работы контролера паяльной станции

Известно множество схем самодельных регуляторов нагрева паяльника, входящих в состав эксплуатируемой в домашних условиях станции. Но все они работают по одному и тому же принципу, заключающемуся в управлении величиной мощности, отдаваемой в нагрузку.
Распространённые варианты самодельных электронных регуляторов могут отличаться по следующим признакам:

  • вид электронной схемы;
  • элемент, используемый для изменения отдаваемой в нагрузку мощности;
  • количество ступеней регулировки и другие параметры.

Независимо от варианта исполнения любой самодельный контроллер паяльной станции представляет собой обычный электронный коммутатор, ограничивающий или увеличивающий полезную мощность в нагревательной спирали нагрузки.

Вследствие этого основным элементом регулятора в составе станции или вне её является мощный питающий узел, обеспечивающий возможность варьирования температуры жала в строго заданных пределах.

Образец классической подставки под паяльник со встроенным в неё регулируемым модулем питания приводится на фото.

Узнаем как изготовить регулятор мощности для паяльника? Регулятор мощности для паяльника своими руками: схемы и инструкция

Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки. Наиболее распространенные схемы регуляторов мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения. Сегодня применяются самодельные и заводские установки.

Простой регулятор мощности для паяльника

Если нужно получить 40 Вт из паяльника на 100 Вт, можно применить схему на симисторе ВТ 138-600. Принцип работы заключается в обрезке синусоиды. Уровень среза и температуру нагрева можно регулировать, используя резистор R1. Неоновая лампочка выполняет функцию индикатора. Ставить ее не обязательно. На радиатор устанавливается симистор ВТ 138-600.

Корпус

Вся схема обязательно должна быть помещена в закрытый диэлектрический корпус. Желание сделать прибор миниатюрным не должно влиять на безопасность при его использовании. Помните, что устройство работает от источника напряжения 220 В.

Тринисторный регулятор мощности для паяльника

В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования номинальной мощности такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.

Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода. Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу. Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора.

Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.

Цепь R2R3R4VT3

Генератор питается импульсами напряжением до 7В и длительностью 10 мс, сформированными цепью R2R3R4VT3. Переход транзистора VT3 является стабилизирующим элементом. Он включается в обратном направлении. Мощность, которую рассеивает цепь резисторов R2-R4, будет уменьшена.

Схема регулятора мощности включает в себя конденсатор С1КМ5, резисторы — МЛТ и R5 — СП-0,4. Транзистор можно использовать любой.

Плата и корпус для прибора

Для сборки данного устройства подойдет плата из фольгированного стеклопластика диаметром 36 мм и толщиной 1 мм. Для корпуса можно использовать любые предметы, например пластиковые коробки или футляры из материала с хорошей изоляцией. Понадобится база под элементы вилки. Для этого к фольге можно припаять две гайки М 2,5 таким образом, чтобы штыри прижимали плату к корпусу при сборке.

Недостатки тринисторов КУ202

Если мощность паяльника небольшая, регулирование возможно только в узкой области полупериода. В той, где удерживающее напряжение тринистора хотя бы немного ниже тока нагрузки. Температурная стабильность не может быть достигнута, если использовать такой регулятор мощности для паяльника.

Повышающий регулятор

Большая часть устройств для стабилизации температуры работает только на снижение мощности. Регулировать напряжение можно от 50-100% или от 0-100%. Мощности паяльника может оказаться недостаточно в случае подачи питания ниже 220 В или, например, при необходимости выпаять большую старую плату.

Действующее напряжение сглаживается электролитическим конденсатором, увеличивается в 1,41 раза и питает паяльник. Постоянная мощность, выпрямленная на конденсаторе, достигнет 310 В при питании 220 В. Оптимальная температура нагрева может быть получена даже при 170 В.

Мощные паяльники не нуждаются в повышающих регуляторах.

Необходимые детали для схемы

Чтобы собрать удобный регулятор мощности для паяльника своими руками, можно использовать метод навесного монтажа возле розетки. Для этого нужны малогабаритные комплектующие. Мощность одного резистора должна составлять не менее 2 Вт, а остальных — 0,125 Вт.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На полевом транзисторе IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. Параметрический стабилизатор монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.

Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Возможности замены деталей в регуляторах

Микросхема DD1 может быть заменена на К561ЛА7. Выпрямительный мостик делается из диодов, рассчитанных на минимальный ток 2А. Устройство IRF740 можно использовать как выходной транзистор. Схема не нуждается в накладке, если все детали исправны и при ее сборке не было допущено ошибок.

Другие возможные варианты устройств для рассеивания напряжения

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование – от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

Ферритовое кольцо от компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.

Стрелочный индикатор

В регулятор мощности паяльника может быть интегрирован стрелочный индикатор для большего удобства при использовании. Сделать это совсем несложно. Неиспользуемая старая аудиоаппаратура может помочь с поиском таких элементов. Приборы несложно найти на местных рынках в любом городе. Хорошо, если один такой лежит дома без дела.

Для примера рассмотрим возможность интегрирования в регулятор мощности для паяльника индикатора М68501 со стрелкой и цифровыми отметками, который устанавливался в старых советских магнитофонах. Особенность настройки заключается в подборе резистора R4. Наверняка придется подбирать прибор R3 дополнительно, если будет использован другой индикатор. Необходимо соблюдение соответствующего баланса резисторов при понижении мощности паяльника. Дело в том, что стрелка индикатора может отображать снижение мощности на 10-20% при фактическом потреблении паяльником 50%, то есть наполовину меньше.

Заключение

Регулятор мощности для паяльника можно собрать, руководствуясь множеством инструкций и статей с приведенными примерами возможных разнообразных схем. От хороших припоев, флюсов и температуры нагревательного элемента во многом зависит качество спайки. Сложные устройства для стабилизации или элементарное интегрирование диодов может применяться при сборке аппаратов, необходимых для регулирования поступающего напряжения.

Такие приборы широко используются с целью понижения, а также повышения мощности, подающейся на нагревательный элемент паяльника в диапазоне от 0% до 141%. Это очень удобно. Появляется реальная возможность работать при напряжении ниже 220 В. На современном рынке доступны качественные аппараты, укомплектованные специальными регуляторами. Заводские устройства работают только на понижение мощности. Повышающий регулятор придется собирать самостоятельно.

Регулятор напряжения для паяльника схема

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

Схемы простых регуляторов для паяльника.

Если вы читаете эту статью, значит объяснять, для чего нужен регулятор нагрева паяльника вам не нужно. Конечно, покупать паяльную станцию в которой уже имеется устройство регулирования накладно, а собрать регулятор самому многим из вас не составит больших усилий, поэтому в этой статье мы решили поделиться с вами схемками самых простых устройств, предназначенных для этих целей.

Основным регулирующим элементом многих схем является тиристор или симистор. Давайте рассмотрим несколько схем построенных на этой элементной базе.

Ниже представлена первая схема регулятора, как видите проще наверно уже и некуда. Диодный мост собран на диодах Д226, в диагональ моста включен тиристор КУ202Н со своими цепями управления.

Вот еще одна подобная схема, которую можно встретить в интернете, но на ней мы останавливаться не будем.

Для индикации наличия напряжения можно дополнить регулятор светодиодом, подключение которого показано на следующем рисунке.

Перед диодным мостом по питанию можно врезать выключатель. Если будете применять в качестве выключателя тумблер, проследите, чтобы его контакты могли выдерживать ток нагрузки.

Этот регулятор построен на симисторе ВТА 16-600. Отличие от предыдущего варианта в том, что в цепи управляющего электрода симистора стоит неоновая лампа. Если остановите выбор на этом регуляторе, то неонку нужно будет выбрать с невысоким напряжением пробоя, от этого будет зависеть плавность регулировки мощности паяльника. Неоновую лампочку можно выкусить из стартера, применяемого в светильниках ЛДС. Емкость С1 – керамическая на U=400В. Резистором R4 на схеме обозначена нагрузка, которую и будем регулировать.

Проверка работы регулятора осуществлялась с применением обычного настольного светильника, смотри фото ниже.

Если использовать данный регулятор для паяльника мощностью не выше 100 Вт, то симистор не нуждается в установке на радиатор.

Эта схема чуть сложнее предыдущих, в ней присутствует элемент логики (счетчик К561ИЕ8), применение которого позволило регулятору иметь 9 фиксированных положений, т.е. 9 ступеней регулирования. Нагрузкой так же управляет тиристор. После диодного моста стоит обычный параметрический стабилизатор, с которого берется питание для микросхемы. Диоды для выпрямительного моста выбирайте такие, чтобы их мощность соответствовала той нагрузке, которую вы будете регулировать.

Схема устройства показана на рисунке ниже:

Спавочный материал по микросхеме К561ИЕ8:

Таблица функционирования микросхемы К561ИЕ8:

Диаграмма работы микросхемы К561ИЕ8:

Ну и последний вариант, который мы сейчас рассмотрим, как самому сделать паяльную станцию с функцией регулирования мощности паяльника.

Схема довольно распространенная, не сложная, многими уже не раз повторяемая, никаких дефицитных деталей, дополнена светодиодом, который показывает, включен или выключен регулятор, и узлом визуального контроля установленной мощности. Выходное напряжение от 130 до 220 вольт.

Так выглядит плата собранного регулятора:

Доработанная печатная плата выглядит вот так:

В качестве индикатора была использована головка М68501, такие раньше стояли в магнитофонах. Головку было решено немного доработать, в правом верхнем углу установили светодиод, он и включение/отключение покажет, и шкалу мал-мал подсветит.

Дело осталось за корпусом. Его было решено сделать из пластика (вспененного полистирола), который применяется для изготовления всякого рода реклам, легко режется, хорошо обрабатывается, склеивается намертво, краска ровно ложится. Вырезаем заготовки, зачищаем края, клеим “космофеном” (клей для пластика).

Внешний вид склеенной коробки:

Красим, собираем “потроха”, получаем чтото типа такого:

Ну и в заключение, если вы собираетесь использовать с данным регулятором паяльники разной мощности, то в вышеприведенной схеме стоит заменить узел визуального контроля на такой:

С предыдущим вариантом схемы индикатора (которая без транзистора), измерялся ток потребления паяльника, а при подключении паяльников разной мощности, показания различные, а это не есть хорошо.

Вместо импортной диодной сборки 1N4007 можно поставить отечественную , например КЦ405а.

Регуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.

Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.

Виды и характеристики регуляторов

Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:

  • тиристорные;
  • симисторные;
  • фазовые (диммер).

По виду выходного сигнала:

  • стабилизированные;
  • не стабилизированные.

Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.

По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.

Основными характеристиками, на которые следует обращать внимание, являются следующие параметры:

  • плавность регулировки;
  • рабочая и пиковая подводимая мощность;
  • диапазон входного рабочего напряжения;
  • диапазон задания напряжения, поступающего на нагрузку;
  • условия эксплуатации.

Тиристорный регулятор мощности

Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.

Простейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.

Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.

Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания ) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.

Изготовление устройства самостоятельно

Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.

В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров диодного моста, применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.

Симисторный регулятор мощности

Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.

Мощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.

Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.

Фазовый регулятор

Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.

Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.

Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.

При работе с электрическим паяльником температура его жала должна оставаться постоянной, что является гарантией получения высококачественного паяного соединения.

Однако в реальных условиях этот показатель постоянно меняется, приводя к остыванию или перегреву нагревательного элемента и необходимости устанавливать в цепях питания специальный регулятор мощности для паяльника.

Зачем он нужен

Колебания температуры жала паяльного устройства могут быть объяснены следующими объективными причинами:

  • нестабильность входного питающего напряжения;
  • большие тепловые потери при пайке объёмных (массивных) деталей и проводников;
  • значительные колебания температуры окружающей среды.

Для компенсации воздействия этих факторов промышленностью освоен выпуск ряда устройств, имеющих специальный диммер для паяльника, обеспечивающий поддержание температуры жала в заданных пределах.

Однако при желании сэкономить на обустройстве домашней паяльной станции регулятор мощности вполне может быть изготовлен своими руками. Для этого потребуется знание основ электроники и предельная внимательность при изучении приводимых ниже инструкций.

Принцип работы контролера паяльной станции

Известно множество схем самодельных регуляторов нагрева паяльника, входящих в состав эксплуатируемой в домашних условиях станции. Но все они работают по одному и тому же принципу, заключающемуся в управлении величиной мощности, отдаваемой в нагрузку.

Распространённые варианты самодельных электронных регуляторов могут отличаться по следующим признакам:

  • вид электронной схемы;
  • элемент, используемый для изменения отдаваемой в нагрузку мощности;
  • количество ступеней регулировки и другие параметры.

Независимо от варианта исполнения любой самодельный контроллер паяльной станции представляет собой обычный электронный коммутатор, ограничивающий или увеличивающий полезную мощность в нагревательной спирали нагрузки.

Вследствие этого основным элементом регулятора в составе станции или вне её является мощный питающий узел, обеспечивающий возможность варьирования температуры жала в строго заданных пределах.

Образец классической подставки под паяльник со встроенным в неё регулируемым модулем питания приводится на фото.

Преобразователи на управляемых диодах

Каждый из возможных вариантов исполнения устройств отличается своей схемой и регулирующим элементом. Существуют схему регуляторов мощности на тиристорах, симисторах и другие варианты.

Тиристорные устройства

По своему схемному решению большинство известных блоков регулировки изготавливаются по тиристорной схеме с управлением от специально формируемого для этих целей напряжения.

Двухрежимная схема регулятора на тиристоре низкой мощности приводится на фото.

Посредством такого прибора удаётся управлять паяльниками, мощность которых не превышает 40 Ватт. Несмотря на небольшие габариты и отсутствие вентиляционного модуля преобразователь практически не греется при любом допустимом режиме работы.

Такое устройство может работать в двух режимах, один из которых соответствует состоянию ожидания. В этой ситуации ручка варьируемого по величине резистора R4 установлена в крайне правое по схеме положение, а тиристор VS2 полностью закрыт.

Питание поступает на паяльник через цепочку с диодом VD4, на котором величина напряжения снижается примерно до 110 Вольт.

Во втором режиме работы регулятор напряжения (R4) выводится из крайне правой позиции; причём в среднем его положении тиристор VS2 немного приоткрывается и начинает пропускать переменный ток.

Переход в это состояние сопровождается зажиганием индикатора VD6, срабатывающего при выходном питающем напряжении порядка 150 Вольт.

Путём дальнейшего вращения ручки регулятора R4 можно будет плавно увеличивать мощность на выходе, поднимая его выходной уровень до максимальной величины (220 Вольт).

Симисторные преобразователи

Ещё один способ организации управления паяльником предполагает применение электронной схемы, построенной на симисторе и также рассчитанной на нагрузку небольшой мощности.

Эта схема работает по принципу снижения эффективного значения напряжения на полупроводниковом выпрямителе, к которому подключается полезная нагрузка (паяльник).

Состояние регулировочного симистора зависит от положения «движка» переменного резистора R1, меняющего потенциал на его управляющем входе. При полностью открытом полупроводниковом приборе поступающая в паяльник мощность снижается примерно в два раза.

Простейший вариант управления

Самый простой регулятор напряжения, являющийся «усечённым» вариантом двух рассмотренных выше схем, предполагает механическое управление мощностью в паяльнике.

Такой регулятор мощности востребован в условиях, когда предполагаются длительные перерывы в работе и не имеет смысла держать паяльник всё время включённым.

В разомкнутом положении выключателя на него поступает небольшое по амплитуде напряжение (примерно 110 Вольт), обеспечивающее невысокую температуру нагрева жала.

Для приведения устройства в рабочее состояние достаточно включить тумблер S1, после чего наконечник паяльника быстро нагревается до требуемой температуры, и можно будет продолжить пайку.

Такой терморегулятор для паяльника позволяет в промежутках между пайками снижать температуру жала до минимального значения. Эта возможность обеспечивает замедление окислительных процессов в материале наконечника и заметно продлевает срок его эксплуатации.

На микроконтроллере

В том случае, когда исполнитель полностью уверен в своих силах, ему можно будет взяться за изготовление термостабилизатора для паяльника, работающего на микроконтроллере.

Этот вариант регулятора мощности выполняется в виде полноценной паяльной станции, имеющей два рабочих выхода с напряжениями 12 и 220 Вольт.

Первое из них имеет фиксированную величину и предназначается для питания миниатюрных слаботочных паяльников. Эта часть устройства собирается по обычной трансформаторной схеме, которую из-за её простоты можно не рассматривать.

На втором выходе собранного своими руками регулятора для паяльника действует переменное напряжение, амплитуда которого может меняться в диапазоне от 0 до 220 Вольт.

Схема этой части регулятора, совмещённая с контроллером типа PIC16F628A и цифровым индикатором выходного напряжения, приводится так же на фото.

Для безопасной эксплуатации оборудования с двумя отличающимися по величине выходными напряжениями самодельный регулятор должен иметь различные по конструкции (несовместимые между собой) розетки.

Подобная предусмотрительность исключает возможность ошибки при подключении паяльников, рассчитанных на разные напряжения.

Силовая часть такой схемы выполнена на симисторе марки ВТ 136 600, а регулировка мощности в нагрузке осуществляется посредством коммутатора кнопочного типа с десятью положениями.

Переключением кнопочного регулятора можно изменять уровень мощности в нагрузке, обозначаемый цифрами от 0 до 9-ти (эти значения выводятся на табло встроенного в устройство индикатора).

В качестве примера такого регулятора, собранного по схеме с контроллером SMT32, может быть рассмотрена станция, рассчитанная на подключение паяльников с жалами марки Т12.

Этот промышленный образец устройства, управляющего режимом нагрева подключаемого к нему паяльника, способен регулировать температуру жала в диапазоне от 9-ти до 99-ти градусов.

С его помощью также возможен автоматический переход в режим ожидания, при котором температура наконечника паяльника снижается до установленного инструкцией значения. Причём длительность этого состояния может регулироваться в интервале от 1 до 60-ти минут.

Добавим к этому, что в этом устройстве также предусмотрен режим плавного снижения температуры жала в течение того же регулируемого промежутка времени (1-60 минут).

В завершении обзора регуляторов мощности паяльных устройств отметим, что их изготовление в домашних условиях не является чем-то совсем недоступным для рядового пользователя.

При наличии определённого опыта работы с электронными схемами и после внимательного изучения приведённого здесь материала любой желающий может справиться с этой задачей вполне самостоятельно.

Контроллер напряжения для тяжелых утюгов и кастрюль

Паяльники American Beauty — это паяльники с полной выходной мощностью, разработанные и изготовленные для производства огромного количества тепла. Включение регулятора напряжения в ваш процесс пайки продлевает срок службы нагревательного элемента и жала вашего паяльника, уменьшает термические повреждения, вызванные избыточным накоплением тепла, и экономит энергию и время простоя за счет холостого хода вашего паяльника в перерывах. Этот регулятор напряжения предназначен для почти со всей нашей линейкой мощных паяльников мощностью от 60 до 300 Вт (модели 3125–3178).Кроме того, его можно использовать с нашим промышленным котлом для пайки весом 1 фунт (модели 300), чтобы обеспечить более жесткий контроль за изменением температуры.

Твердотельное устройство регулирования напряжения , встроенное в каждый контроллер, обеспечивает более жесткий контроль процесса, более длительный срок службы нагревательного элемента и снижение повреждений, вызванных избыточной тепловой мощностью. Каждое из них описано ниже отдельно:

Улучшенное качество припоя: Идеальная рабочая температура вашего паяльника или тигля должна быть удобно выше точки эвтектики вашего припоя.Избыток тепла просто наносит ущерб.

Увеличенный срок службы нагревательного элемента: Помните сказку про черепаху и зайца? Достаточно сказано!

Жесткий контроль технологического процесса: Наши внутренние испытания показали, что, включив контроль напряжения в наш паяльный тигель модели 600, мы смогли добиться колебания температуры менее +/- 5°.

В качестве замены модели V3700, представленной на этой странице, можно использовать следующие продукты:

Настройка паяльной станции промышленного класса American Beauty

Текущее обслуживание вашей паяльной станции

Настройка и использование нашего контроллера напряжения