Регулятор температуры схема паяльника: Регулятор температуры паяльника | AUDIO-CXEM.RU

Содержание

Регулятор температуры паяльника | AUDIO-CXEM.RU

Регулятор позволяет установить необходимую температуру жала паяльника для безопасной пайки маломощных компонентов. Используя паяльник мощностью 80Вт можно выставить температуру его жала таким образом, что его мощность будет равна паяльнику 30Вт. Помимо безопасной пайки регулятор позволяет продлить срок службы паяльника, уберегая его жало от перегрева при повышенном напряжении сети.

Особенностью регулятора температуры, представленного в этой статье, является схема. Она отличается от примитивных симисторных регуляторов, например от схемы, представленной в статье «Регулятор мощности 1кВт своими руками». Отличие заключается в открытии симистора в момент прохождения синусоиды через ноль.

Что это дает? Во-первых, открытие симистора в момент минимальной нагрузки, когда синусоида проходит через ноль, позволяет значительно сократить помехи (всплески) излучаемые в сеть. Эти помехи мешают работать различной радиоэлектронной аппаратуре и бытовой электронике. Во-вторых, паяльник не гудит и не «зудит», как например, при применении простых симисторных регуляторов с фазовым регулированием.

Схема регулятора температуры паяльника

 

Схема была найдена в сети и перерисована на свой лад. Эту схему вполне можно использовать для регулировки температуры ТЭН. Для этих целей я развел печатную плату и представил ее в статье «Регулятор мощности для ТЭН не создающий помех».

Принцип работы схемы

Напряжение переменного тока (~220В) понижается с помощью гасящего конденсатора C1, выпрямляется диодным мостом VD1 и стабилизируется стабилитроном VD2. Пульсации полученного напряжения +12В сглаживаются электролитическим конденсатором C2.

На таймере DA1 выполнен генератор импульсов, причем частота импульсов примерно равна 1Гц. Переменным резистором R2 выполняется регулировка ширины импульса.

Катод светодиода HL1 соединен с выводом 7 таймера DA1, этот вывод является коллектором встроенного транзистора, а эмиттер встроенного транзистора соединен с общим проводом. На вывод 1 оптосимистора подается стабилизированное напряжение +12В. В момент, когда на 3 выводе DA1 низкий уровень, внутренний транзистор открывается и через цепь HL1R4 и светодиод оптопары U1 протекает ток, выход оптосимистора (выводы 4 и 6) соединяет управляющий вывод (G) симистора VS1 с сетью через резистор R6 и симистор VS1 открыт и пропускает через себя ток нагрузки. Симистор будет открыт, пока происходит разряд ранее заряженного конденсатора C3 до низкого уровня. Ток разряда протекает через резистор R2 и диод VD4. По мере разряда конденсатора, как только на выводе 2 таймера напряжение снизится до низкого уровня на выходе таймера (3 вывод) появится импульс, и конденсатор C3 начнет заряжаться через элементы R3VD3R2.

Пока заряжается конденсатор C3, внутренний транзистор таймера закрыт и он разорвет 7 вывод от общего провода. Светодиод оптопары U1 прекратит свечение и оптосимистор разомкнется, соответственно симистор VS1 будет закрыт.

Оптосимистор U1, а именно MOC3063 имеет схему контроля прохождения через ноль и разрешает открываться только в момент прохождения синусоиды через ноль.

Когда средний вывод R2 в левом (по схеме) положении, то разряд C3 происходит мгновенно (только через диод VD4), а заряд конденсатора будет иметь наибольшее время. Режим минимальной мощности.

При правом положении среднего вывода R2 заряд C3 будет происходить быстрее всего, а разряд будет происходить долго, импульс будет иметь наименьшую ширину, а скважность будет максимальной, поэтому паяльник будет работать в режиме максимальной мощности.

По интенсивности мигания светодиода HL1 можно визуально судить об установленном режиме температуры жала паяльника.

Принцип регулировки на графике будет выглядеть пачками целых периодов с паузами.

Для сравнения ниже представлен график работы примитивных симисторных регуляторов с фазовым регулированием (с обрезанием синусоиды).

Диапазон регулировки

При использовании компонентов с номиналами, указанными на схеме, регулятор температуры в минимальном режиме позволяет уменьшить мощность примерно в половину, так как ширина импульса NE555 будет примерно равна половине периода.

Для расширения диапазона регулировки температуры жала паяльника, необходимо вместо резистора R3 на 68кОм установить перемычку или резистор сопротивлением от 1Ом до 1кОм, а номинал переменного резистора R2 увеличить до 100кОм. Это позволит регулятору изменять температуру жала паяльника практически от минимума до максимума.

Компоненты

Конденсаторы C1 и C5 пленочные, должен быть рассчитан на 400В. Конденсатор C4 керамический на 63В.

Резистор R1 и R7 должны быть мощностью не менее 0.5Вт.

Светодиод HL1 обычный 3мм с током потребления 20мА, желательно применить красного цвета, так как у красного самое минимальное падение напряжения.

Стабилитрон Д814 желательно с буквенным индексом В, Г или Д.

Оптопара MOC3063 может быть заменена на MOC3043. Можно установить и MOC3041, MOC3042, MOC3061, MOC3062, но следует уменьшить номинал R4 до минимального отпирающего тока. Если в конце маркировки единица, то этот ток 15мА, для двойки 10мА, а для тройки (MOC3063) 5мА. Не допускается применение оптопар без контроля прохождения через ноль — «Zero crossing circuit».

Симистор BT134 можно заменить другим, например BT136 или BT137. Я установил BT137-600D.

При работе регулятора температуры с паяльником до 80Вт теплоотвод можно не устанавливать, симистор теплый.

Печатная плата была разведена не мной. Она имеет размеры 40?55мм и может быть встроена в маленький пластиковый корпус, например от небольшого зарядного устройства или в сетевой двойник (тройник).

Печатная плата регулятора температуры паяльника СКАЧАТЬ

Регулятор температуры для паяльников на 4,5-15 В, без термодатчика

Схема самодельного регулятора температуры для низковльтных паяльников на 4,5-15 В, без использования отдельного датчика температуры.

Предлагаемый стабилизатор оценивает температуру паяльника по зависящему от неё электрическому сопротивлению нагревателя. Измерение производится в моменты, когда нагреватель кратковременно отключён от источника питания и его температура наиболее близка к температуре жала паяльника.

Этот стабилизатор подходит для паяльника с номинальным напряжением питания от 4,5 до 15 В, но может быть доработан для работы с паяльником, работающим при напряжении до 35 В. Нагреватель паяльника должен быть изготовлен из материала с возможно большим положительным ТКС.

Лучший результат получается с керамическим нагревателем. Но и с нагревателем из нихрома стабилизатор тоже работает. Приступая к изготовлению стабилизатора, нужно измерить сопротивление нагревателя при холодном и разогретом до максимальной температуры паяльнике, поскольку от этих параметров зависят номиналы многих элементов устройства.

Мне однажды попался паяльник, нагреватель которого вёл себя подобно угольному микрофону, реагируя изменением сопротивления на любое нажатие. Безусловно, с таким паяльником стабилизатор работать не сможет.

Поэтому во время измерения сопротивления нагревателя в горячем состоянии нажмите на жало паяльника и слегка постучите им по какому-нибудь предмету, имитируя пайку. Никаких изменений сопротивления при этом наблюдаться не должно.

Принципиальная схема

Схема стабилизатора изображена на рис. 1. Указанные на ней номиналы элементов выбраны исходя из работы с паяльником, имеющим нихромовый нагреватель (он показан на схеме в виде резистора Rн) с холодным сопротивлением около 3 Ом и напряжением питания 7 В.

Рис. 1. Схема регулятора температуры для низковльтных паяльников на 4,5-15 В.

Таймер NE555D (DD1) включён по схеме одновибратора. Для его запуска требуется, чтобы напряжение U2 на входе S (выводе 2) таймера стало ниже, чем корректируемое резисторами R2, R3 и R5 образцовое напряжение, поступающее на вход внутреннего компаратора таймера от внутреннего делителя его напряжения питания.

Напряжение U2 образуется при протекании измерительного тока через резистор R10 и нагреватель паяльника R„. В итоге образуется подключённый к входам внутреннего компаратора микросхемы DD1 измерительный мост, схема которого показана на рис. 2.

Рис. 2. Измерительный мост.

Сопротивление нагревателя Rн на этой схеме условно показано в виде терморезистора. Сопротивление резистора R10 должно быть таким, чтобы напряжение U2 не выходило за пределы от 0,5 В до четверти напряжения питания, поэтому его номинал выбирают из условия (формула):

где Rнг и Rнх — сопротивление нагревателя соответственно в горячем и холодном состояниях; Uпит — напряжение питания. Я выбрал резистор R10 сопротивлением 24 Ом, что при напряжении питания 7 В и холодном паяльнике соответствует напряжению U2 около 0,8 В. Максимальную мощность, рассеиваемую на резисторе R10, вычисляют по формуле:

В данном случае она не превышает 1,6 Вт. Образцовое напряжение для компаратора снимают со встроенного в таймер делителя напряжения и корректируют резисторами R2, R3, R5. Оно равно (формула):

Значения сопротивления быть заданы в килоомах. В положении минимального сопротивления переменного резистора R5 напряжение Uобр должно быть равно напряжению U2 при холодном паяльнике. В положении максимального сопротивления — напряжению U2 при паяльнике, нагретом до максимальной температуры.

Если используемый омметр (мультиметр) не обеспечивает достаточной точности измерения сопротивления паяльника или просто нет желания рассчитывать сопротивления резисторов R2, R3 и R5, можно определить их экспериментально, временно включив вместо них между выводом 5 таймера и общим проводом многооборотный подстроенный резистор на 10 кОм.

Сначала при холодном паяльнике, постепенно увеличивая сопротивление подстроенного резистора, добейтесь включения нагревателя. Это будет сопротивление параллельно соединённых резисторов R2 и R3.

Продолжая увеличивать сопротивление подстроенного резистора и контролируя температуру жала паяльника, добейтесь стабилизации температуры на необходимом максимальном уровне.

Вычтя из полученного значения сопротивления ранее найденное сопротивление параллельно соединённых резисторов R2 и R3, получите необходимое максимальное сопротивление переменного резистора R5.

Безусловно, измерять сопротивление временно установленного подстроечного резистора следует только после отключения его от устройства. После старта одновибратора уровень напряжения на выходе 3 таймера становится высоким, что открывает транзисторы VT1 и VT2 и включает нагреватель паяльника.

Если номинальный ток нагревателя не превышает 1 А, можно заменить полевой p-канальный полевой транзистор VT2 биполярным структуры p-n-p, например, 2SB772 или другим с достаточными максимальным током коллектора, напряжением коллектор-эмиттер и коэффициентом передачи тока базы. Включают биполярный транзистор по схеме, показанной на рис. 3.

Рис. 3. Схема включения биполярного тарнзистора.

При большем токе этот транзистор будет сильно нагреваться и его придётся установить на теплоотвод. Полевому транзистору здесь теплоотвод не потребуется.

Сопротивление резистора R8 приведено на схеме для транзистора 2SB772 с h31э > 30. Если этот параметр значительно отличается от указанного, резисторы R4 и R8 придётся подобрать. Необходимости сильно уменьшать сопротивление резистора R4 можно избежать, подключив его левый (по схеме рис. 1) вывод непосредственно к выходу 3 таймера DD1, минуя светодиод HL1.

Катод светодиода в этом случае соединяют с общим проводом через дополнительный резистор сопротивлением около 1 кОм. При напряжении питания до 8 В желательно использовать светодиод красного цвета свечения, а при большем напряжении можно применить светодиод и другого цвета.

Цепь R1C1 — времязадающая. От номиналов её элементов зависит время, на которое включается нагреватель в каждом цикле работы стабилизатора.

Нужно учитывать, что это время зависит и от положения движка переменного резистора R5, которым изменяют пороги срабатывания таймера. В начале налаживания стабилизатора в качестве R1 впаивают резистор сопротивлением 100 кОм и проверяют работу прибора во всём заданном интервале регулировки температуры стабилизации.

После этого постепенно увеличивают сопротивление этого резистора, пока размах колебаний температуры жала не превысит один-два градуса Цельсия. После окончания цикла нагревания начинается новый цикл измерения температуры.

Транзистор VT2 закрывается, и напряжение с делителя R10R„ через интегрируюшую цепь R9C2 поступает на вывод 2 таймера DD1. Во время работы нагревателя конденсатор С2 был заряжен почти до напряжения питания, после закрывания транзистора VT2 он разряжается через резистор R9 до напряжения на выходе делителя R10Rн.

Цепь R9C2 задерживает момент запуска одновибратора (измерения температуры) на время, необходимое для завершения переходных процессов, происходящих в момент переключения. Они связаны с разрядкой конденсатора С1, выбросами напряжения на индуктивности нагревателя и соединительных проводов и другими факторами.

При любых подозрениях на неустойчивость стабилизатора нужно увеличить задержку, увеличивая ёмкость конденсатора С2 или сопротивление резистора R9.

Так как темп управления довольно низкий, эта задержка даже при максимальной температуре не оказывает заметного влияния на коэффициент заполнения импульсов, нагревающих паяльник.

Когда нагреватель остынет до температуры, установленной с помощью переменного резистора R5, его сопротивление уменьшится настолько, что напряжение на входе 2 таймера станет ниже порогового.

После этого одновибратор запустится вновь и цикл работы стабилизатора повторится. Тепловые процессы, происходящие в паяльнике, можно изучать, пользуясь упрощённой эквивалентной электрической схемой, изображённой на рис. 4.

Рис. 4. Упрощенная эквиваелнтная электрическая схема паяльника.

В ней источник тепловой энергии заменён источником тока GI1. Управляемый ключ S1 имитирует включение и выключение нагревателя. Когда он замкнут, ток источника заряжает конденсатор Сн, имитирующий теплоёмкость нагревателя, до напряжения Uн — эквивалента температуры нагревателя Тн.

Далее через тепловое сопротивление между нагревателем и жалом Rн-ж жало паяльника теплоёмкостью С, разогревается до температуры Тж (её эквивалент — напряжение Uж). Замыкание ключа S2 имитирует прикосновение жала к паяемым деталям, имеющим тепловое сопротивление относительно окружающей среды Rд-с.

Температура окружающей среды Т0 представлена потенциалом общего провода U0. Исследовать поведение электрической модели можно с помощью любой программы моделирования электрических цепей. Я использовал Multisim. Модель была дополнена рассмотренной выше схемой стабилизатора температуры.

На вход 2 таймера подавалось напряжение Uн, а выход 3 таймера был соединён с управляющим входом ключа S1. Наибольшую трудность представил правильный выбор параметров элементов эквивалентной схемы в условиях, когда реальные значения тепловых параметров паяльника неизвестны. Поэтому элементы эквивалентной схемы были подобраны опытным путём, а результаты моделирования дали лишь качественную картину происходящих процессов.

При высоком темпе управления и малой продолжительности работы нагревателя в каждом цикле стабилизируется температура самого нагревателя, поскольку он одновременно служит датчиком температуры.

Но при неизменной температуре нагревателя на тепловом сопротивлении нагреватель-жало во время пайки наблюдается значительное падение температуры, при этом температура жала уменьшается. Если увеличить длительность включённого состояния нагревателя, он успевает нагреться значительно выше температуры жала.

В паузах нагреватель за счёт сравнительно небольшой теплоёмкости быстро остывает, и его температура становится почти равной температуре жала. Именно в этот момент происходит измерение температуры нагревателя, по результатам которого определяется необходимость его повторного включения.

В итоге при пайке температура жала меньше просаживается, что частично устраняет влияние того, что фактически измеряется температура не жала, а нагревателя.

Максимальная длительность включения нагревателя ограничена теплоёмкостью паяльника, которая оказывается недостаточной для сглаживания колебаний температуры до приемлемых значений.

Детали и печатная плата

Стабилизатор собран на печатной плате из фольгированного с двух сторон стеклотекстолита, изображённой на рис. 5.

На одной стороне платы фольгу не травят. Она служит общим проводом. Вокруг отверстий под выводы деталей, не соединяемые с общим проводом, фольга удалена путём зенковки сверлом большого диаметра.

Рис. 5. Печатная плата регулятора температуры к паяльнику.

В остальные отверстия (на схеме расположения деталей они показаны залитыми) впаивают проволочные перемычки или пропаивают проходящие сквозь них выводы деталей с двух сторон. В качестве R10 можно использовать резистор МЛТ-2 или проволочный. Как самую горячую деталь, его лучше рас положить, вообще, вне платы.

Оксидные конденсаторы С1 и С4 могут быть как в корпусе В для поверхностного монтажа, так и обычными с проволочными выводами. Места для последних обозначены С1′ и С4′. Остальные конденсаторы и постоянные резисторы — типоразмера 0805 для поверхностного монтажа.

Переменный резистор R5 — ВСП4-1А 0,5 Вт. В качестве VT2 может быть применён транзистор в корпусе SOT-223, ТО-252 или ТО-263. Посадочное место на плате подойдёт для любого из них.

Крепёжные отверстия на плате не предусмотрены, её крепят в корпусе за резьбовую втулку оси переменного резистора R5. Это допустимо, поскольку плата имеет малые размеры и массу.

Она не подвергается никаким механическим нагрузкам. Максимальное напряжение питания рассмотренного стабилизатора и практически равное ему напряжение питания паяльника ограничены допустимым напряжением питания таймера NE555D, равным 15 В.

Если питать таймер от отдельного источника такого напряжения, то напряжение питания самого паяльника может быть значительно увеличено. Для этого можно подключить дополнительный интегральный стабилизатор напряжения 7812 (DA1) по схеме, показанной на рис. 6.

Рис. 6. Схема подключения дополнительного интегрального стабилизатора напряжения 7812.

Это позволит работать с паяльником на напряжение до 35 В — максимально допустимого входного напряжения стабилизатора 7812. Транзисторы VT1 и VT2 в этом случае следует выбирать с максимальным напряжением коллектор-эмиттер (сток-исток), значительно превосходящим напряжение питания паяльника.

Номиналы резисторов R7 и R8 должны быть подобраны так, чтобы при открытом транзисторе VT1 напряжение между истоком и затвором транзистора VT2 было около 10 В.

Через диод VD2 при закрытом транзисторе VT2 протекает ток резистора R10, поэтому он должен иметь запас по допустимому прямому току и не нагреваться во время работы.

Так как диод VD2 включён в измерительный мост, изменение прямого падения напряжения на нём под действием температуры может привести к изменению температуры стабилизации.

Это будет особенно заметно при нагревателе с низким ТКС. Стабилитрон VD1 защищает вход микросхемы от избыточного напряжения, когда нагреватель включён. Его напряжение стабилизации может находиться в пределах 6…9 В.

Сопротивление и мощность резистора R10 следует рассчитать по приведённым ранее формулам, подставив в них в качестве Uпит выходное напряжение стабилизатора DA1 (12 В) за вычетом падения напряжения на диоде VD2.

Для дальнейшего увеличения напряжения питания паяльника нужно позаботиться об ограничении напряжения на входе стабилизатора напряжения питания таймера и измерительного моста, использовать для управления нагревателем ключ с оптической развязкой.

А. Скирда, г. Жуковский, Московской обл. Р-12-2015.

схема регулятора температуры для паяльника

Температура жала паяльника зависит от многих факторов.

  • Входного напряжения сети, которое не всегда стабильно;
  • Рассеивания тепла в массивных проводах или контактах, на которых производится пайка;
  • Температуры окружающего воздуха.

Для качественной работы требуется поддерживать тепловую мощность паяльника на определенном уровне. В продаже есть большой выбор электроприборов с регулятором температуры, однако стоимость таких устройств достаточно высокая.

Еще более продвинутыми являются паяльные станции. В таких комплексах расположен мощный блок питания, при помощи которого можно контролировать температуру и мощность в широких пределах.

Цена соответствует функциональности.
А что делать, если паяльник уже имеется, и покупать новый с регулятором не хочется? Ответ простой – если вы умеете пользоваться паяльником, сможете изготовить и дополнение к нему.

Регулятор для паяльника своими руками

Эта тема давно освоена радиолюбителями, которые как никто другой заинтересованы в качественном инструменте для паяния. Предлагаем вам несколько популярных решений с электросхемами и порядком сборки.

Двухступенчатый регулятор мощности

Такая схема работает на устройствах с питанием от сети переменного напряжения 220 вольт. В разрыв цепи одного из питающих проводников, параллельно друг другу подключается диод и выключатель. Когда контакты выключателя замкнуты – паяльник запитан в стандартном режиме.

При размыкании – ток проходит через диод. Ели вы знакомы с принципом протекания переменного тока – работа устройства будет понятно. Диод, пропуская ток лишь в одном направлении – отсекает каждый второй полупериод, понижая напряжение вдвое. Соответственно, в два раза снижается мощность паяльника.

В основном, такой режим питания используется при длительных паузах во время работы. Паяльник находится в дежурном режиме, и наконечник не сильно охлаждается. Для приведения температуры к 100% значению, включаем тумблер – и через несколько секунд можно продолжать пайку. При снижении нагрева меньше окисляется медное жало, продлевая срок службы прибора.

Двухрежимная схема на маломощном тиристоре

Данный регулятор напряжения для паяльника подходит к маломощным устройствам, не более 40 Вт. Дли силового управления, используется тиристор КУ101Е (на схеме – VS2). Несмотря на компактные размеры и отсутствие принудительного охлаждения – он практически не греется в любом режиме.

Тиристором управляет схема из переменного резистора R4 (использован обычный СП-04 сопротивлением до 47К) и конденсатора С2 (электролит 22мф).

Принцип работы следующий:

  • Режим ожидания. Резистор R4 выставлен не максимальное сопротивление, тиристор VS2 закрыт. Питание паяльника осуществляется через диод VD4 (КД209), снижая напряжение до 110 вольт;
  • Рабочий режим с регулировкой. В среднем положении резистора R4, тиристор VS2 начинает открываться, частично пропуская через себя ток. Переход в рабочий режим контролируется с помощью индикатора VD6, который зажигается при напряжении на выходе регулятора 150 вольт.

ВАЖНО! Проверка выполняется под нагрузкой, то есть с подключенным паяльником.

При вращении резистора R2 напряжение на входе в паяльник должно плавно изменяться. Схема помещается в корпусе накладной розетки, что делает конструкцию очень удобной.

ВАЖНО! Необходимо надежно изолировать компоненты термоусадочной трубкой, для предотвращения замыкания в корпусе – розетке.

Дно розетки закрывается подходящей крышкой. Идеальный вариант – не просто накладная, а герметичная уличная розетка. В данном случае выбран первый вариант.
Получается своеобразный удлинитель с регулятором мощности. Пользоваться им очень удобно, на паяльнике нет никаких лишних приспособлений, и ручка регулятора всегда под рукой.

Регулятор на микроконтроллере

Если вы считаете себя продвинутым радиолюбителем, можно собрать достойный лучших промышленных образцов, регулятор напряжения с цифровой индикацией. Конструкция представляет собой полноценную паяльную станцию с двумя выходными напряжениями – фиксированным 12 вольт и регулируемым 0-220 вольт.

Низковольтный блок реализован на трансформаторе с выпрямителем, и особой сложности в изготовлении не представляет.

ВАЖНО! При изготовлении блоков питания с разными уровнями напряжения, обязательно установите несовместимые между собой розетки. Иначе можно вывести из строя низковольтный паяльник, по ошибке подключив его к выходу 220 вольт.

Блок управления переменной величиной напряжения выполнен на контроллере PIC16F628A.

Подробности схемы и перечисление элементной базы ни к чему, все видно на схеме. Силовое управление выполнено на симисторе ВТ 136 600. Управление подачей мощности реализовано с помощью кнопок, количество градаций – 10. Уровень мощности от 0 до 9 показывается на индикаторе, который также подключен к контроллеру.

Генератор тактов подает импульсы на контроллер с частотой 4 МГц, это и есть скорость работы программы управления. Поэтому контроллер моментально реагирует на изменение входного напряжения, и стабилизирует выходное.

Схема собирается на монтажной плате, на весу или картонке такое устройство не спаять.

Монтаж двусторонний.

Для удобства станцию можно собрать в корпусе для радиоподелок, или в любом другом, подходящего размера.

В целях безопасности, розетки на 12 и 220 вольт размещаются на разных стенках корпуса. Получилось надежно и безопасно. Такие системы отработаны многими радиолюбителями и доказали свою работоспособность.

Как видно из материала, можно самостоятельно изготовить регулируемый паяльник с любыми возможностями и на любой кошелек.

При работе с электрическим паяльником температура его жала должна оставаться постоянной, что является гарантией получения высококачественного паяного соединения.

Однако в реальных условиях этот показатель постоянно меняется, приводя к остыванию или перегреву нагревательного элемента и необходимости устанавливать в цепях питания специальный регулятор мощности для паяльника.

Колебания температуры жала паяльного устройства могут быть объяснены следующими объективными причинами:

  • нестабильность входного питающего напряжения;
  • большие тепловые потери при пайке объёмных (массивных) деталей и проводников;
  • значительные колебания температуры окружающей среды.

Для компенсации воздействия этих факторов промышленностью освоен выпуск ряда устройств, имеющих специальный диммер для паяльника, обеспечивающий поддержание температуры жала в заданных пределах.

Однако при желании сэкономить на обустройстве домашней паяльной станции регулятор мощности вполне может быть изготовлен своими руками. Для этого потребуется знание основ электроники и предельная внимательность при изучении приводимых ниже инструкций.

Принцип работы контролера паяльной станции

Известно множество схем самодельных регуляторов нагрева паяльника, входящих в состав эксплуатируемой в домашних условиях станции. Но все они работают по одному и тому же принципу, заключающемуся в управлении величиной мощности, отдаваемой в нагрузку.

Распространённые варианты самодельных электронных регуляторов могут отличаться по следующим признакам:

  • вид электронной схемы;
  • элемент, используемый для изменения отдаваемой в нагрузку мощности;
  • количество ступеней регулировки и другие параметры.

Независимо от варианта исполнения любой самодельный контроллер паяльной станции представляет собой обычный электронный коммутатор, ограничивающий или увеличивающий полезную мощность в нагревательной спирали нагрузки.

Вследствие этого основным элементом регулятора в составе станции или вне её является мощный питающий узел, обеспечивающий возможность варьирования температуры жала в строго заданных пределах.

Образец классической со встроенным в неё регулируемым модулем питания приводится на фото.

Преобразователи на управляемых диодах

Каждый из возможных вариантов исполнения устройств отличается своей схемой и регулирующим элементом. Существуют схему регуляторов мощности на тиристорах, симисторах и другие варианты.

Тиристорные устройства

По своему схемному решению большинство известных блоков регулировки изготавливаются по тиристорной схеме с управлением от специально формируемого для этих целей напряжения.

Двухрежимная схема регулятора на тиристоре низкой мощности приводится на фото.

Посредством такого прибора удаётся управлять паяльниками, мощность которых не превышает 40 Ватт. Несмотря на небольшие габариты и отсутствие вентиляционного модуля преобразователь практически не греется при любом допустимом режиме работы.

Такое устройство может работать в двух режимах, один из которых соответствует состоянию ожидания. В этой ситуации ручка варьируемого по величине резистора R4 установлена в крайне правое по схеме положение, а тиристор VS2 полностью закрыт.

Питание поступает на паяльник через цепочку с диодом VD4, на котором величина напряжения снижается примерно до 110 Вольт.

Во втором режиме работы регулятор напряжения (R4) выводится из крайне правой позиции; причём в среднем его положении тиристор VS2 немного приоткрывается и начинает пропускать переменный ток.

Переход в это состояние сопровождается зажиганием индикатора VD6, срабатывающего при выходном питающем напряжении порядка 150 Вольт.

Путём дальнейшего вращения ручки регулятора R4 можно будет плавно увеличивать мощность на выходе, поднимая его выходной уровень до максимальной величины (220 Вольт).

Симисторные преобразователи

Ещё один способ организации управления паяльником предполагает применение электронной схемы, построенной на симисторе и также рассчитанной на нагрузку небольшой мощности.

Эта схема работает по принципу снижения эффективного значения напряжения на полупроводниковом выпрямителе, к которому подключается полезная нагрузка (паяльник).

Состояние регулировочного симистора зависит от положения «движка» переменного резистора R1, меняющего потенциал на его управляющем входе. При полностью открытом полупроводниковом приборе поступающая в паяльник мощность снижается примерно в два раза.

Простейший вариант управления

Самый простой регулятор напряжения, являющийся «усечённым» вариантом двух рассмотренных выше схем, предполагает механическое управление мощностью в паяльнике.

Такой регулятор мощности востребован в условиях, когда предполагаются длительные перерывы в работе и не имеет смысла держать паяльник всё время включённым.

В разомкнутом положении выключателя на него поступает небольшое по амплитуде напряжение (примерно 110 Вольт), обеспечивающее невысокую температуру нагрева жала.

Для приведения устройства в рабочее состояние достаточно включить тумблер S1, после чего наконечник паяльника быстро нагревается до требуемой температуры, и можно будет продолжить пайку.

Такой терморегулятор для паяльника позволяет в промежутках между пайками снижать температуру жала до минимального значения. Эта возможность обеспечивает замедление окислительных процессов в материале наконечника и заметно продлевает срок его эксплуатации.

На микроконтроллере

В том случае, когда исполнитель полностью уверен в своих силах, ему можно будет взяться за изготовление термостабилизатора для паяльника, работающего на микроконтроллере.

Этот вариант регулятора мощности выполняется в виде полноценной паяльной станции, имеющей два рабочих выхода с напряжениями 12 и 220 Вольт.

Первое из них имеет фиксированную величину и предназначается для питания миниатюрных слаботочных паяльников. Эта часть устройства собирается по обычной трансформаторной схеме, которую из-за её простоты можно не рассматривать.

На втором выходе собранного своими руками регулятора для паяльника действует переменное напряжение, амплитуда которого может меняться в диапазоне от 0 до 220 Вольт.

Схема этой части регулятора, совмещённая с контроллером типа PIC16F628A и цифровым индикатором выходного напряжения, приводится так же на фото.

Для безопасной эксплуатации оборудования с двумя отличающимися по величине выходными напряжениями самодельный регулятор должен иметь различные по конструкции (несовместимые между собой) розетки.

Подобная предусмотрительность исключает возможность ошибки при подключении паяльников, рассчитанных на разные напряжения.

Силовая часть такой схемы выполнена на симисторе марки ВТ 136 600, а регулировка мощности в нагрузке осуществляется посредством коммутатора кнопочного типа с десятью положениями.

Переключением кнопочного регулятора можно изменять уровень мощности в нагрузке, обозначаемый цифрами от 0 до 9-ти (эти значения выводятся на табло встроенного в устройство индикатора).

В качестве примера такого регулятора, собранного по схеме с контроллером SMT32, может быть рассмотрена станция, рассчитанная на подключение паяльников с жалами марки Т12.

Этот промышленный образец устройства, управляющего режимом нагрева подключаемого к нему паяльника, способен регулировать температуру жала в диапазоне от 9-ти до 99-ти градусов.

С его помощью также возможен автоматический переход в режим ожидания, при котором температура наконечника паяльника снижается до установленного инструкцией значения. Причём длительность этого состояния может регулироваться в интервале от 1 до 60-ти минут.

Добавим к этому, что в этом устройстве также предусмотрен режим плавного снижения температуры жала в течение того же регулируемого промежутка времени (1-60 минут).

В завершении обзора регуляторов мощности паяльных устройств отметим, что их изготовление в домашних условиях не является чем-то совсем недоступным для рядового пользователя.

При наличии определённого опыта работы с электронными схемами и после внимательного изучения приведённого здесь материала любой желающий может справиться с этой задачей вполне самостоятельно.

Паяльник – это инструмент, без которого домашнему мастеру не обойтись, но устраивает прибор не всегда. Дело в том, что обычный паяльник, не имеющий терморегулятора и нагревающийся вследствие этого до определенной температуры, обладает рядом недостатков.

Схема устройства паяльника.

Если при непродолжительной работе без регулятора температуры вполне возможно обойтись, то у обычного паяльника, длительное время включенного в сеть, его недостатки проявляются в полной мере:

  • припой скатывается с чрезмерно нагретого жала, в результате чего пайка оказывается непрочной;
  • на жале образуется окалина, которую приходится часто зачищать;
  • рабочая поверхность покрывается кратерами, а их необходимо удалять напильником;
  • он неэкономичен – в промежутках между сеансами пайки, порой достаточно длительными, продолжает потреблять из сети номинальную мощность.

Терморегулятор для паяльника позволяет оптимизировать его работу:

Рисунок 1. Схема простейшего терморегулятора.

  • паяльник не перегревается;
  • появляется возможность подобрать значение температуры паяльника, оптимальное для конкретной работы;
  • во время перерывов достаточно с помощью регулятора температуры снизить нагрев жала, а затем в нужное время быстро восстановить требуемую степень нагрева.

Конечно, в качестве терморегулятора для паяльника на напряжение 220 В можно применить ЛАТР, а для паяльника на 42 В – блок питания КЭФ-8, но они имеются не у всех. Еще один выход из положения – применение в качестве регулятора температуры промышленного светорегулятора, но они не всегда имеются в продаже.

Регулятор температуры для паяльника своими руками

Вернуться к оглавлению

Простейший терморегулятор

Это устройство состоит всего из двух деталей (рис. 1):

  1. Кнопочный выключатель SA с размыкающими контактами и фиксацией состояния.
  2. Полупроводниковый диод VD, рассчитанный на прямой ток порядка 0,2 А и обратное напряжение не ниже 300 В.

Рисунок 2. Схема терморегулятора, работающего на конденсаторах.

Работает этот регулятор температуры следующим образом: в исходном состоянии контакты выключателя SA замкнуты и ток протекает через нагревательный элемент паяльника во время как положительных, так и отрицательных полупериодов (рис. 1а). При нажатии на кнопку SA его контакты размыкаются, но полупроводниковый диод VD пропускает ток лишь во время положительных полупериодов (рис. 1б). В результате мощность, потребляемая нагревателем, уменьшается вдвое.

В первом режиме паяльник быстро прогревается, во втором – его температура несколько снижается, перегрева не наступает. В результате можно паять в довольно комфортных условиях. Выключатель вместе с диодом включают в разрыв питающего провода.

Иногда выключатель SA монтируется на подставке и срабатывает, когда паяльник кладут на нее. В перерывах между пайкой контакты выключателя разомкнуты, мощность нагревателя снижена. Когда паяльник поднимают, потребляемая мощность возрастает и он быстро нагревается до рабочей температуры.

В качестве балластного сопротивления, с помощью которого можно уменьшить мощность, потребляемую нагревателем, можно использовать конденсаторы. Чем меньше их емкость, тем больше сопротивление протеканию переменного тока. Схема простого терморегулятора, работающего на этом принципе, приведена на рис. 2. Он рассчитан на подключение паяльника мощностью 40 Вт.

Когда разомкнуты все выключатели, тока в цепи нет. Комбинируя положение выключателей, можно получить три степени нагрева:

Рисунок 3. Схемы симисторных терморегуляторов.

  1. Наименьшая степень нагрева соответствует замыканию контактов выключателя SA1. При этом последовательно с нагревателем включается конденсатор С1. Его сопротивление довольно велико, поэтому падение напряжения на нагревателе порядка 150 В.
  2. Средняя степень нагрева соответствует замкнутым контактам выключателей SA1 и SA2. Конденсаторы С1 и С2 включаются параллельно, общая емкость увеличивается вдвое. Падение напряжения на нагревателе возрастает до 200 В.
  3. При замыкании выключателя SA3 независимо от состояния SA1 и SA2 на нагреватель подается полное напряжение сети.

Конденсаторы С1 и С2 неполярные, рассчитанные на напряжение не менее 400 В. Для достижения необходимой емкости можно несколько конденсаторов соединить параллельно. Через резисторы R1 и R2 конденсаторы разряжаются после отключения регулятора от сети.

Есть еще один вариант простого регулятора, который по надежности и качеству работы не уступает электронным. Для этого последовательно с нагревателем включается переменный проволочный резистор СП5-30 или какой-нибудь иной, имеющий подходящую мощность. Например, для 40-ваттного паяльника подойдет резистор, рассчитанный на мощность 25 Вт и имеющий сопротивление порядка 1 кОм.

Вернуться к оглавлению

Тиристорный и симисторный терморегулятор

Работа схемы, приведенной на рис. 3а, очень похожа работу разобранной ранее схемы на рис. 1. Полупроводниковый диод VD1 пропускает отрицательные полупериоды, а во время положительных полупериодов ток проходит через тиристор VS1. Доля положительного полупериода, в течение которого тиристор VS1 открыт, зависит в конечном счете от положения движка переменного резистора R1, регулирующего ток управляющего электрода и, следовательно, угол отпирания.

Рисунок 4. Схема симисторного терморегулятора.

В одном крайнем положении тиристор открыт в течение всего положительного полупериода, во втором – полностью закрыт. Соответственно, мощность, рассеиваемая на нагревателе, меняется от 100% до 50%. Если отключить диод VD1, то мощность будет меняться от 50% до 0.

На схеме, приведенной на рис. 3б, тиристор с регулируемым углом отпирания VS1 включен в диагональ диодного моста VD1-VD4. Вследствие этого регулировка напряжения, при котором отпирается тиристор, происходит как во время положительного, так и в течение отрицательного полупериода. Мощность, рассеиваемая на нагревателе, меняется при повороте движка переменного резистора R1 от 100% до 0. Можно обойтись и без диодного моста, если в качестве регулирующего элемента применить не тиристор, а симистор (рис. 4а).

При всей привлекательности терморегулятор с тиристором или симистором в качестве регулирующего элемента обладает следующими недостатками:

  • при скачкообразном нарастании тока в нагрузке возникают сильные импульсные помехи, проникающие затем в осветительную сеть и эфир;
  • искажение формы сетевого напряжения за счет внесения в сеть нелинейных искажений;
  • снижение коэффициента мощности (cos ϕ) за счет внесения реактивной составляющей.

Для сведения к минимуму импульсных помех и нелинейных искажений желательна установка сетевых фильтров. Самое простое решение – ферритовый фильтр, представляющий собой несколько витков провода, намотанных на ферритовое кольцо. Такие фильтры применяют в большинстве импульсных блоков питания электронных устройств.

Ферритовое кольцо можно взять из проводов, соединяющих системный блок компьютера с периферийными устройствами (например, с монитором). Обычно на них есть цилиндрическое утолщение, внутри которого находится ферритовый фильтр. Устройство фильтра показано на рис. 4б. Чем больше витков, тем выше качество фильтра. Размещать ферритовый фильтр следует как можно ближе к источнику помех – тиристору или симистору.

В устройствах с плавным изменением мощности следует откалибровать движок регулятора и отметить маркером его положения. При настройке и установке следует отключить устройство от сети.

Схемы всех приведенных устройств достаточно просты и их в состоянии повторить человек, обладающий минимальными навыками в сборке электронных устройств.

В радиолюбительской практике невозможно обойтись без паяльника. Он всегда находится на рабочем месте, должен быть наготове. Большинство простых и распространённых паяльников имеют фиксируемую мощность, следовательно, и температуру нагрева жала, что не всегда оправданно. Конечно, если вы включаете его на непродолжительное время, чтобы быстро что-либо припаять, то можно обойтись без регулятора температуры.

Для чего нужен регулятор температуры жала паяльника

Самый распространённый паяльник, выпускаемый промышленностью, имеет мощность в 40 ватт. Этой мощности вполне хватит для припаивания крупных, теплоёмких, деталей, где требуется прогрев до температуры плавления припоя.

Но использовать паяльник такой мощности, например, при монтаже радиодеталей крайне неудобно. Олово с перегретого жала постоянно скатывается, место пайки получается непрочным. К тому же жало очень быстро покрывается окалиной и её приходится счищать, а на рабочей поверхности медного жала образуются так называемые кратеры, которые можно удалить при помощи напильника. Длина такого жала будет очень быстро убавляться.

При использовании регулятора температуры жала паяльник всегда наготове, его температура будет оптимальна для конкретной работы, вы никогда не перегреете радиокомпоненты. Если вам нужно не надолго отлучиться, то достаточно убавить напряжение на паяльнике, а не выключать его из сети, как раньше. По возвращении на рабочее место достаточно добавить регулятором напряжение, и тёплый паяльник быстро наберёт нужную температуру.

Схема регулятора температуры для паяльника

Ниже представлена простая схема регулятора мощности:

Эту схему я использовал для своего регулятора лет 20 назад, этим паяльником я до сих пор пользуюсь. Конечно, некоторые детали, такие как: транзисторы, неоновая лампочка — можно заменить современными.

Детали устройства:

  • Транзисторы; КТ 315Г, МП 25 можно заменить на КТ 361Б
  • Тиристор; КУ 202Н
  • Стабилитрон; Д 814Б или с буквой В
  • Диод;КД 202Ж
  • Резисторы постоянные: МЛТ- 3к, 2к-2 шт, 30к, 100 ом, 470к
  • Резистор переменный; 100к
  • Конденсатор; 0,1 мкФ

Как видите, схема устройства очень простая. Её повторить под силу даже начинающему.

Делаем простой регулятор температуры паяльника своими руками

Представленное устройство построено по так называемому однополупериодному регулятору мощности. То есть при полностью открытом тиристоре VS 1, который управляется транзисторами VT 1 и VT 2, одна полуволна сетевого напряжения проходит через диод VD 1, а другая полуволна через тиристор. Если повернуть движок переменного резистора R 2 в противоположную сторону, то тиристор VS 1 закроется, а на нагрузке будет присутствовать одна полуволна, которая пройдёт через диод VD 1:

Поэтому данным регулятором невозможно убавить напряжение меньше 110 вольт. Как показывает практика, это и не нужно, так как при минимальном напряжении температура жала настолько мала, что олово еле плавится.

Номиналы деталей, представленные на схеме, подобраны для совместной работы с паяльниками большой мощности. Если вам это не требуется, то силовые элементы, тиристор и диод можно заменить на менее мощные. Если у вас не окажется в наличии двухватного резистора R 5 номиналом 30 кило ом, то его можно составить из двух последовательно соединённых резисторов по 15 кило ом, как у меня:

Данное устройство не нуждается в настройке. Собранное правильно и из исправных деталей, оно начинает работать сразу.

Внимание! Будьте осторожны. Данный регулятор температуры не имеет гальванической развязки по сети. Вторичные цепи имеют высокий потенциал.

Остаётся подобрать подходящих размеров корпус. Разместить розетку для паяльника:

Предохранитель выводить наружу не обязательно, например, у меня он впаян в разрыв сетевого шнура. А вот переменный резистор нужно установить в удобное место и,конечно, проградуировать шкалу, например, в вольтах:

Получившийся регулятор очень надёжный, что проверено временем, и прослужит он вам много лет, да и паяльник скажет вам спасибо.

Типичной проблемой при работе с паяльником является обгорание жала. Связано это с его большим нагревом. Во время работы паяльные операции требуют неодинаковой мощности, поэтому приходится использовать паяльники с разной мощностью. Для защиты устройства от перегрева и скорости изменения мощности лучше всего применять паяльник с регулировкой температуры. Это позволит за считаные секунды изменить параметры работы и продлить срок эксплуатации устройства.

История происхождения

Паяльник — это инструмент, предназначенный для передачи тепла материалу при соприкосновении с ним. Прямое его назначение — создание неразъемного соединения посредством расплавления припоя.

До начала XX века существовали два типа паяльных приспособлений: газовый и медный. В 1921 году изобретатель из Германии Эрнст Сакс изобрёл и зарегистрировал патент на паяльник, нагрев которого происходил под действием электрического тока. В 1941 году Карл Уэллер запатентовал инструмент трансформаторного вида, напоминающего формой пистолет. Пропуская через свой наконечник ток, он быстро нагревался.

Через двадцать лет этот же изобретатель предложил использовать термоэлемент в паяльнике для контроля температуры нагрева. В конструкцию входили спрессованные друг с другом две металлические пластинки с разным тепловым расширением. С середины 60-х годов из-за развития полупроводниковых технологий паяльный инструмент стал выпускаться импульсного и индукционного типа работы.

Виды паяльников

Основное различие паяльных устройств заключается в их максимальной мощности, от которой зависит и температура нагрева. Кроме этого, электрические паяльники разделяются по значению питающего их напряжения. Они выпускаются как для сети переменного напряжения 220 вольт, так и постоянного его значения разной величины. Разделение паяльников происходит также по виду и принципу действия.

По принципу работы бывают:

  • нихромовые;
  • керамические;
  • импульсные;
  • индукционные;
  • термовоздушные;
  • инфракрасные;
  • газовые;
  • открытого типа.

По виду они бывают стержневые и молотковые. Первые предназначены для точечного нагрева, а вторые для прогрева определённой площади.

Принцип работы

Большинство приборов в основе работы используют преобразование электрической энергии в тепловую. Для этого во внутренней части устройства располагается нагревательный элемент. Но некоторые типы устройства просто нагреваются на огне или используют подожжённый направленный поток газа.

В нихромовых устройствах используется проволочная спираль, через которую пропускается ток. Спираль располагается на диэлектрике. Нагреваясь, спираль передаёт тепло медному жалу. Температура нагрева регулируется термодатчиком, который при достижении определённого значения нагрева отсоединяет спираль от электрической линии, а при остывании опять подключает её к ней. Термодатчиком является не что иное, как термопара.

В керамических паяльниках в качестве нагревателей используются стержни. Регулировка в них чаще всего осуществляется методом понижения величины напряжения подающегося на керамические стержни.

Индукционное оборудование работает за счёт индуктора. Жало покрывается ферромагнетиком. С помощью катушки наводится магнитное поле и появляются в проводнике токи, приводящие к нагреву жала. При работе наступает такой момент, что жало теряет свои магнитные свойства, нагрев останавливается, а при остывании свойства возвращаются и нагрев восстанавливается.

Работа импульсных паяльников основана на использовании высокочастотного трансформатора. Вторичная обмотка трансформатора имеет несколько витков, выполненных из толстого провода, концы которого и являются нагревателями. Частотный преобразователь увеличивает частоту входного сигнала, который снижается на трансформаторе. Регулировка нагрева происходит при помощи регулировки мощности.

Термовоздушный паяльник, или, как его называют, термофен, при работе использует горячий воздух, который нагревается при прохождении через спираль, выполненную из нихрома. Температуру в нём можно регулировать как снижением величины напряжения подаваемого на проволоку, так и изменением потока воздуха.

Одним из видов паяльников стали устройства, использующие инфракрасное излучение. В основе их работы лежит процесс нагрева излучением с длиной волны до 10 мкм. Для регулирования применяется сложный узел управления, изменяющий как длину волны, так и её интенсивность.

Газовые представляют собой обычные горелки, вместо жала использующие сопла разного диаметра. Управление температурой практически невозможно, кроме изменения интенсивности выхода газа с помощью заслонки.

Понимая принцип работы паяльника, можно не только осуществить его ремонт своими руками, но и доработать его конструкцию, например, сделать его регулируемым.

Устройства для регулировки

Цена паяльников с регулировкой температуры превышает цену обыкновенных устройств в несколько раз. Поэтому в некоторых случаях есть смысл купить хороший обыкновенный паяльник, а регулятор выполнить самому. Таким образом, управление паяльным оборудованием выполняется двумя способами контроля:

  • мощностью;
  • температурой.

Контроль температуры позволяет достичь более точных показателей, но реализовать проще управление мощностью. При этом регулятор можно выполнить независимым и подключать к нему различные приборы.

Универсальный стабилизатор

Паяльник с терморегулятором можно изготовить, используя заводского исполнения диммер или сконструировать по его аналогии самостоятельно. Диммер — это регулятор, с помощью которого изменяется мощность, подводимая к паяльнику. В сети 220 вольт протекает ток переменной величины с синусоидальной формой. Если этот сигнал обрезать, то на паяльник будет подаваться уже искажённая синусоида, а значит, изменится и величина мощности. Для этого перед нагрузкой в разрыв включается устройство, которое пропускает ток только в момент достижения сигналом определённой величины.

Диммеры различают по принципу действия. Они могут быть:

  • аналоговыми;
  • импульсными;
  • комбинированными.

Схема диммера реализуется с использованием различных радиокомпонентов : тиристоров, симисторов, специализированных микросхем. Самая несложная модель диммера выпускается с механической ручкой регулятора. Принцип действия модели основан на изменении сопротивления в цепи. По сути, это тот же самый реостат. Диммеры на симисторах обрезают передний фронт входного напряжения. Контроллеры используют в своей работе сложную электронную схему понижения напряжения.

Самостоятельно выполнить диммер проще, используя для этого тиристор. Для схемы не понадобятся дефицитные детали , и собирается она простым навесным монтажом.

Работа устройства основана на способности открывания тиристора в моменты времени при подаче сигнала на его управляющий вывод. Входной ток, поступая на конденсатор через цепочку резисторов, заряжает его. При этом динистор открывается и пропускает через себя кратковременно ток, поступающий на управление тиристора. Конденсатор разряжается и тиристор закрывается. При следующем цикле всё повторяется. Изменяя сопротивление цепи, регулируется длительность заряда конденсатора, а значит и время открытого состояния тиристора. Таким образом, устанавливается время, в течение которого паяльник подключается к сети 220 вольт.

Простой терморегулятор

Используя в качестве основы стабилитрон TL431, можно собрать простой терморегулятор своими руками. Такая схема состоит из недорогих радиокомпонентов и практически не нуждается в настройке.

Стабилитрон VD2 TL431 включён по схеме компаратора с одним входом. Величина требуемого напряжения определяется делителем, собранным на резисторах R1-R3. В качестве R3 используется термистор, свойство которого заключается в уменьшении сопротивления при нагреве. С помощью R1 устанавливается значение температуры, при котором устройство отключает паяльник от питания.

При достижении на стабилитроне значения сигнала, превышающего 2,5 вольта, он пробивается, и через него поступает питание на коммутационное реле K1. Реле подаёт сигнал на управляющий вывод симистора и паяльник включается. При нагреве сопротивление термодатчика R3 уменьшается. Напряжение на TL431 опускается ниже сравниваемого и цепь питания симистора разрывается.

Для паяльного инструмента мощностью до 200 Вт симистор можно использовать без радиатора. В качестве реле подойдёт РЭС55А с рабочим напряжением 12 вольт.

Повышение мощности

Случается так, что возникает потребность не только уменьшить мощность паяльного оборудования, но и наоборот, увеличить. Смысл идеи заключается в том, что можно использовать напряжение, возникающее на сетевом конденсаторе, значение которого составляет 310 вольт. Обусловлено это тем, что сетевое напряжение имеет амплитудное значение больше чем его эффективное в 1,41 раза. Из этого напряжения формируются импульсы прямоугольной амплитуды.

Меняя коэффициент заполнения, можно управлять эффективным значением импульсного сигнала от нуля до 1,41 от эффективного значения входного напряжения. Таким образом, мощность нагрева паяльника будет изменяться от нуля до удвоенной номинальной мощности.

Входная часть представляет собой стандартно собранный выпрямитель. Выходной блок выполнен на полевом транзисторе VT1 IRF840 и способен коммутировать паяльник с мощностью 65 Вт. Управление работой транзистора происходит микросхемой с широтно-импульсной модуляцией DD1. Конденсатор С2 стоит в корректирующей цепочке и задаёт частоту генерации. Питание микросхемы осуществляется на радиодеталях R5, VD4, C3. Диод VD5 используется для защиты транзистора.

Паяльная станция

Паяльная станция, это в принципе, тот же самый регулируемый паяльник. Её отличие от него в наличии удобной индикации и дополнительных приспособлениях, помогающих облегчить процесс пайки. Обычно к такому оборудованию подключается электрический паяльник и фен. Если есть опыт радиолюбителя, можно попробовать собрать схему паяльной станции своими руками. В её основе лежит микроконтроллер (МК) ATMEGA328.

Программируется такой МК на программаторе, для этого подойдёт Adruino или самодельное устройство. К микроконтроллеру подключается индикатор, в качестве которого используется жидкокристаллический дисплей LCD1602. Управление станцией простое, для этого используется переменное сопротивление на 10 кОм. Поворотом первого выставляется температура паяльника, второго — фена, а третьим можно уменьшить или увеличить поток воздуха фена.

Полевой транзистор, работающий в ключевом режиме, вместе с симистором устанавливается на радиатор через диэлектрическую прокладку. Светодиоды используются с малым потреблением тока, не более 20 мА. Паяльник и фен, подключаемые к станции, должны иметь встроенную термопару, сигнал с которой обрабатывается МК. Рекомендуемая мощность паяльника 40 Вт, а фена — не более 600 Вт.

Источник питания потребуется на 24 вольта с током не меньше двух ампер. Для питания можно задействовать готовый адаптер от моноблока или ноутбука. Кроме стабилизированного напряжения он содержит различного вида защиту. А можно выполнить и самостоятельно аналоговый типа. Для этого потребуется трансформатор со вторичной обмоткой, рассчитанной на 18–20 вольт, и выпрямительный мост с конденсатором.

После сборки схемы проводится её наладка. Все операции заключаются в подстройке температуры. В первую очередь выставляется температура на паяльнике. Например, на индикаторе выставляем 300 градусов. Затем, прижав термометр к жалу, с помощью регулируемого резистора, устанавливается температура, соответствующая реальным показаниям. Таким же образом калибруется и температура фена.

Все радиоэлементы удобно приобрести в китайских интернет-магазинах. Такое устройство без учёта самодельного корпуса обойдётся порядка ста долларов США со всеми принадлежностями. Прошивку для устройства можно скачать тут: http://x-shoker.ru/lay/pajalnaja_stancija.rar.

Конечно, собрать начинающему радиолюбителю цифровой регулятор температуры своими руками будет сложно. Поэтому можно приобрести готовые модули стабилизации температуры. Они представляют собой платы с распаянными разъёмами и радиодеталями. Понадобится только купить корпус или изготовить его самостоятельно.

Таким образом, используя стабилизатор нагрева паяльника, легко добиться его универсальности. При этом диапазон изменения температуры достигается в пределах от 0 до 140 процентов.

Радиосхемы. — Терморегулятор для низковольтного паяльника

материалы в категории

Многие из нас используют паяльники с низким питающим напряжением. Во-первых они малогабаритные, а во-вторых так просто безопасней!

Да и радиоэлементы вносят свои тонкости при пайке- очень многие из них боятся перегрева и статического электричества. Кроме этого температурный режим при пайке играет далеко не последнюю роль: если температура паяльника будет выше положенной то флюс будет выгорать да и жало тоже, а при низкой температуре паяльника все будет наоборот- место пайки будет плохо прогрето, припой плохо смочит поверхность и качество соединения резко ухудшится…

В промышленных паяльных станциях для контроля температуры применяются термопары или терморезисторы, установленные внутри корпуса паяльника.
Однако термодатчиком может служить обычный транзистор, поскольку, как известно из школьного курса физики, его параметры настолько сильно зависят от температуры, что в обычных схемах приходится вводить специальные цепи термостабипизации. А здесь эта термозависимость как нельзя кстати.

Схема регулятора температуры для низковольного паяльника

Терморегулятор, схема которого показана на рисунке 1,  предназначен для работы с паяльником «ЭПСН-25/24» (25 Вт, 24 В). Термодатчик VT2 прижат хомутиком к трубке кожуха паяльника, а тонкие соединительные провода к нему протянуты по ручке, проводу паяльника и закреплены нитками с клеем и скотчем. VT2 вместе с резисторами R2, R3 образует цепь базового смещения транзистора VT1. .Напряжение на эмиттере VT1 и на R2 стабилизировано цепочкой R1-VD1 ..VD4, поэтому напряжение на коллекторе VT1 определяется только изменением (уменьшением) сопротивления термодатчика VT2 при нагревании, что вызывает снижение напряжения на базе VT1. Транзистор VT1 призакрывается, и падение напряжения на резисторе R4 уменьшается. Это напряжение через фильтр пульсаций C1-R5 подается на транзисторный ключ VT3-VT4, собранный по схеме Дарлингтона и управляющий репе К1. Диод VD6 повышает помехоустойчивость ключа, а VD5 блокирует ЭДС самоиндукции реле К1.

В начальный момент (при холодном термодатчике) сопротивление VT2 велико, транзистор VT1 «хорошо» открыт, падения напряжения на R4 достаточно для срабатывания ключа, поэтому он открыт, и реле К1 включено. Контакты реле К1.1 подключают паяльник (RH) К разъему питания ХЗ. Одновременно загораются светодиоды VD8, VD9. сигнализирующие о режиме нагрева.
По мере нагрева уменьшается сопротивление VT2. в какой-то момент ключ VT3-VT4 закрывается, реле отпускает, и паяльник отключается. Теперь он остывает, сопротивление VT2 растет, пока снова не сработает ключ. Резистором R6 в некоторых пределах можно регулировать чувствительность датчика (его можно и не ставить, а соединить выводы коллектора и базы VT2 накоротко).

Терморегулятор питается от простейшего выпрямителя (VD7, С2). Устройство собрано на печатной ппате из одностороннего фольгированного стеклотекстолита.


Плата (рис.2) выполнена методом прорезания изолирующих канавок. Детали монтируются с этой же стороны платы (выводы отгибаются, хорошо залуживаются и припаиваются к фольге).
Настройка правильно собранного устройства сводится к подбору сопротивлений R1 и R3. чтобы при регулировке с помощью R2 получался необходимый температурный диапазон нагрева жапа в зависимости от конкретных экземпляров паяльника и термодатчика.

Литература
1. Радио. 1998, №10.
2. Радиомир, 2002, №10, С.12.
3. Радио. 1973. №12. С.57.
4. Радио. 1998, №6, С45.
5. Радио. 1996, №12.С50.

Ю.СЕМЕНОВ, г.Воронеж.

Регулятор температуры жала паяльника, простая схема

В радиолюбительской практике невозможно обойтись без паяльника. Он всегда находится на рабочем месте, должен быть наготове. Большинство простых и распространённых паяльников имеют фиксируемую мощность, следовательно, и температуру нагрева жала, что не всегда оправданно. Конечно, если вы включаете его на непродолжительное время, чтобы быстро что-либо припаять , то можно обойтись без регулятора температуры.

Для чего нужен регулятор температуры жала паяльника

Самый распространённый паяльник, выпускаемый промышленностью,  имеет мощность в 40 ватт. Этой мощности вполне хватит для припаивания крупных, теплоёмких, деталей, где требуется прогрев до температуры плавления припоя.

Но использовать паяльник такой мощности, например, при монтаже радиодеталей крайне неудобно. Олово с перегретого жала постоянно скатывается, место пайки получается непрочным. К тому же жало очень быстро покрывается окалиной и её приходится счищать, а на рабочей поверхности медного жала образуются так называемые кратеры, которые можно удалить при помощи напильника. Длина такого жала будет очень быстро убавляться.

При использовании регулятора температуры жала паяльник всегда наготове, его температура будет оптимальна для конкретной работы, вы никогда не перегреете радиокомпоненты. Если вам нужно не надолго отлучиться, то достаточно убавить напряжение на паяльнике, а не выключать его из сети, как раньше. По возвращении на рабочее место достаточно добавить регулятором напряжение, и тёплый паяльник быстро наберёт нужную температуру.

Схема регулятора температуры для паяльника

Ниже представлена простая схема регулятора мощности:

Эту схему я использовал для своего регулятора лет 20 назад, этим паяльником я до  сих пор  пользуюсь. Конечно, некоторые детали, такие как: транзисторы, неоновая лампочка — можно заменить современными.

Детали устройства:

  • Транзисторы; КТ 315Г, МП 25 можно заменить на КТ 361Б
  • Тиристор; КУ 202Н
  • Стабилитрон; Д 814Б или с буквой В
  • Диод;КД 202Ж
  • Резисторы постоянные: МЛТ- 3к, 2к-2 шт, 30к, 100 ом, 470к
  • Резистор переменный; 100к
  • Конденсатор; 0,1 мкФ

Как видите, схема устройства очень простая. Её повторить под силу даже начинающему.

Делаем простой регулятор температуры паяльника своими руками

Представленное устройство построено по так называемому однополупериодному регулятору мощности. То есть при полностью открытом тиристоре VS 1, который управляется транзисторами VT 1 и VT 2, одна полуволна сетевого напряжения проходит через диод VD 1, а другая полуволна через тиристор. Если повернуть движок переменного резистора R 2 в противоположную сторону, то тиристор VS 1 закроется, а на нагрузке будет присутствовать одна полуволна, которая пройдёт через диод VD 1:

Поэтому данным регулятором невозможно убавить напряжение меньше 110 вольт. Как показывает практика, это и не нужно, так как при минимальном напряжении температура жала настолько мала, что олово еле плавится.

Номиналы деталей, представленные на схеме, подобраны для совместной работы с паяльниками  большой мощности. Если вам это не требуется, то силовые элементы, тиристор и диод можно заменить на менее мощные. Если у вас не окажется в наличии двухватного резистора  R 5 номиналом 30 кило ом, то его можно составить из двух последовательно соединённых резисторов по 15 кило ом, как у меня:

 Данное устройство не нуждается в настройке. Собранное правильно и из исправных деталей, оно начинает работать сразу.

 

Внимание! Будьте осторожны. Данный регулятор температуры не имеет гальванической развязки по сети. Вторичные цепи имеют высокий потенциал.

Остаётся подобрать подходящих размеров корпус. Разместить розетку для паяльника:

Предохранитель выводить наружу не обязательно, например, у меня он впаян в разрыв сетевого шнура. А вот переменный резистор нужно установить в удобное место и ,конечно, проградуировать шкалу, например, в вольтах:

Получившийся регулятор очень надёжный, что проверено временем, и прослужит он вам много лет, да и паяльник скажет вам спасибо.

Схема подключения паяльника. Регулятор температуры жала паяльника своими руками! Для чего нужен регулятор температуры жала паяльника

Основным регулирующим элементом многих схем является тиристор или симистор. Давайте рассмотрим несколько схем построенных на этой элементной базе.

Вариант 1.

Ниже представлена первая схема регулятора, как видите проще наверно уже и некуда. Диодный мост собран на диодах Д226, в диагональ моста включен тиристор КУ202Н со своими цепями управления.

Вот еще одна подобная схема, которую можно встретить в интернете, но на ней мы останавливаться не будем.

Для индикации наличия напряжения можно дополнить регулятор светодиодом, подключение которого показано на следующем рисунке.

Перед диодным мостом по питанию можно врезать выключатель. Если будете применять в качестве выключателя тумблер, проследите, чтобы его контакты могли выдерживать ток нагрузки.

Вариант 2.

Этот регулятор построен на симисторе ВТА 16-600. Отличие от предыдущего варианта в том, что в цепи управляющего электрода симистора стоит неоновая лампа. Если остановите выбор на этом регуляторе, то неонку нужно будет выбрать с невысоким напряжением пробоя, от этого будет зависеть плавность регулировки мощности паяльника. Неоновую лампочку можно выкусить из стартера, применяемого в светильниках ЛДС. Емкость С1 – керамическая на U=400В. Резистором R4 на схеме обозначена нагрузка, которую и будем регулировать.

Проверка работы регулятора осуществлялась с применением обычного настольного светильника, смотри фото ниже.

Если использовать данный регулятор для паяльника мощностью не выше 100 Вт, то симистор не нуждается в установке на радиатор.

Вариант 3.

Эта схема чуть сложнее предыдущих, в ней присутствует элемент логики (счетчик К561ИЕ8), применение которого позволило регулятору иметь 9 фиксированных положений, т.е. 9 ступеней регулирования. Нагрузкой так же управляет тиристор. После диодного моста стоит обычный параметрический стабилизатор, с которого берется питание для микросхемы. Диоды для выпрямительного моста выбирайте такие, чтобы их мощность соответствовала той нагрузке, которую вы будете регулировать.

Схема устройства показана на рисунке ниже:

Спавочный материал по микросхеме К561ИЕ8:

Диаграмма работы микросхемы К561ИЕ8:

Вариант 4.

Ну и последний вариант, который мы сейчас рассмотрим, как самому сделать паяльную станцию с функцией регулирования мощности паяльника.

Схема довольно распространенная, не сложная, многими уже не раз повторяемая, никаких дефицитных деталей, дополнена светодиодом, который показывает, включен или выключен регулятор, и узлом визуального контроля установленной мощности. Выходное напряжение от 130 до 220 вольт.

Так выглядит плата собранного регулятора:

Доработанная печатная плата выглядит вот так:

В качестве индикатора была использована головка М68501, такие раньше стояли в магнитофонах. Головку было решено немного доработать, в правом верхнем углу установили светодиод, он и включение/отключение покажет, и шкалу мал-мал подсветит.

Дело осталось за корпусом. Его было решено сделать из пластика (вспененного полистирола), который применяется для изготовления всякого рода реклам, легко режется, хорошо обрабатывается, склеивается намертво, краска ровно ложится. Вырезаем заготовки, зачищаем края, клеим “космофеном” (клей для пластика).

Рассказать в:
Для того, что бы получить качественную и красивую пайку требуется поддерживать определенную температуру жала паяльника в зависимости от марки применяемого припоя. Предлагаю самодельный регулятор температуры нагрева паяльника, которая с успехом может заменить многие промышленные несравнимые по цене и сложности.

Главное отличие схемы представляемого регулятора температуры паяльника от многих существующих, это простота и полное отсутствие излучающих радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Электрические принципиальные схемы регуляторов температуры паяльника

Внимание, ниже приведенные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы опасно для жизни!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора температуры паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получиться громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. Что бы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядиться до напряжения 2-5В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма). При повороте ручки переменного резистора R1, его сопротивление увеличиться, ток заряда конденсатора С1 уменьшиться и надо будет больше времени, что бы напряжение на нем достигло 2-5В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.


Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36В или 24В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 ватт при напряжении 36В будет потреблять ток 1,1А.

Тиристорная схема регулятора не излучающая помехи

Так как меня регуляторы, излучающие помехи не устраивали, а подходящей готовой схемы регулятора температуры для паяльника не нашлось, пришлось взяться за разработку самому. Более 5 лет регулятор температуры служит безотказно.


Работает схема регулятора температуры следующим образом. Напряжение от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4). Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться. Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядиться до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядиться, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служить для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.
Конструкция и детали регулятора температуры

Все детали регулятор температуры размещены на печатной плате. Так как схема не имеет гальванической развязки с питающей сетью, плата помещена в небольшую пластмассовую коробку, которая одновременно является вилкой. На стержень переменного резистора R5 одета пластмассовая ручка.


Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.
Микросхемы DD1 и DD2 любые 176 или 561 серии. Диоды VD1- VD4 любые, рассчитанные на обратное напряжение не менее 300В и ток не менее 0,5А. VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт. Регулятор температуры настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Мобильный паяльник

Даже людей, которые с паяльником на «ты», часто останавливает невозможность выполнить пайку проводов из-за отсутствия электрической подводки. Если место пайки находится не далеко и есть возможность протянуть удлинитель, то не всегда безопасно работать с паяльником, запитанным от электрической сети напряжением 220 вольт, в помещениях с высокой влажностью и температурой, с токопроводящими полами. Для возможности паять в любом месте и безопасно, предлагаю простой вариант автономного паяльника.

Питание паяльника от аккумулятора UPS компьютера

Подключив паяльник к аккумулятору ниже приведенным способом Вы не будете привязаны к электрической сети и сможете паять где понадобится без удлинителей с соблюдением требований правил безопасного проведения работ.
Понятно, что бы паять автономно, нужен аккумулятор большей емкости. Сразу вспоминается автомобильный. Но он очень тяжелый, от 12 кг. Однако есть и другие типоразмеры аккумуляторов, например, применяемые в бесперебойных блоках питания (UPS) компьютерной техники. При весе всего 1,7 кг они имеют емкость 7 А*час и выдают напряжение 12 В. Такой аккумулятор вполне можно легко транспортировать.

Для того, что бы обыкновенный паяльник сделать мобильным, нужно взять пластинку фанеры, просверлить в ней 2 отверстия диметром равным толщине провода опоры для паяльника и приклеить пластину к аккумулятору. При выгибании опоры ширину места установки паяльника нужно сделать чуть меньше, диаметра трубки с тепло нагревателем паяльника. Тогда паяльник будет вставляться с натягом, и фиксироваться. Будет удобно хранить, и транспортировать.

Для пайки проводов диаметром до 1 мм подойдет паяльник, рассчитанный для работы на напряжения 12 вольт и мощностью от 15 ватт. Время непрерывной работы от свежее заряженного аккумулятора паяльника составит более 5 часов. Если планируется паять провода большего диаметра, то надо уже брать паяльник мощностью 30 — 40 ват. Тогда время непрерывной работы составит не менее 2 часов.

Для питания паяльника вполне подойдут аккумуляторы, которые уже не могут обеспечить нормальную работу бесперебойных блоков питания из-за потери со временем своей емкости. Ведь для питания компьютера нужна мощность от 250 ватт. Даже если емкость аккумулятора снизилась до 1 А*часа все равно он обеспечить работу 30 ватного паяльника в течении 15 минут. Этого времени вполне достаточно для выполнения работы по пайке нескольких проводников.

В случае разовой необходимости выполнения пайки, можно на время изъять из бесперебойного блока питания аккумулятор и после пайки вернуть его на место.

Осталось на концы провода паяльника установить запрессовкой или пайкой разъемы, надеть их на клеммы аккумулятора и мобильный паяльник готов к эксплуатации. Раздел.

Автор данной статьи, Л. ЕЛИЗАРОВ, из г. Макеевка Донецкой обл., предлагает доступное для повторения радиолюбителями устройство для поддержания оптимальной температуры жала паяльника путём измерения сопротивления его нагревателя во время периодических кратковременных отключений его от сети.

На страницах радиотехнических журналов неоднократно публиковались различные устройства управления температурой жала паяльника, использующие нагреватель паяльника в качестве датчика температуры и поддерживающие её на заданном уровне. При ближайшем рассмотрении оказывается, что все эти регуляторы являются всего лишь стабилизаторами тепловой мощности нагревателя. Они, конечно, дают определённый эффект: меньше выгорает жало и паяльник не так сильно перегревается, пока лежит на подставке. Но это ещё далеко до управления именно температурой жала.


Рассмотрим кратко динамику тепловых процессов в паяльнике. На рис. 1 представлены графики изменения температуры нагревателя и жала паяльника с момента выключения нагревателя

На графиках видно, что в первые доли секунды разность температур настолько велика и непостоянна, что температуру нагревателя в этот момент никак нельзя использовать для точного определения температуры жала, а именно так работают все ранее опубликованные регуляторы, в которых нагреватель используют в качестве датчика температуры. Из рис. 1 видно, что кривые зависимости температуры жала и нагревателя от времени его выключения только через две и тем более три-четыре секунды достаточно сближаются для того, чтобы с достаточной точностью интерпретировать температуру нагревателя как температуру жала. Кроме того, разность температур становится не только малой, но и практически постоянной. По мнению автора, именно регулятор, измеряющий температуру нагревателя через определённое время после его отключения, способен более точно управлять температурой жала.

Интересно сравнить достоинства такого регулятора с паяльной станцией, использующей датчик температуры, встроенный в жало паяльника. В паяльной станции изменение температуры жала паяльника сразу вызывает реакцию устройства управления, причём повышение температуры нагревателя пропорционально изменению температуры жала. Волна изменения температуры доходит до жала паяльника через 5…7 с. При изменении температуры жала обычного паяльника волна изменения температуры идёт от жала к нагревателю (при близких теплодинамических параметрах — 5…7 с). Его узел управления сработает через 1.. .7 с (это зависит от установленного температурного порога включения) и поднимет температуру нагревателя. Обратная волна изменения температуры достигнет жала паяльника через те же 5…7 с. Отсюда следует, что время реакции обычного паяльника, использующего нагреватель в качестве датчика температуры, в 2…3 раза больше, чем у паяльника паяльной станции с датчиком температуры, встроенным в жало.

Очевидно, что у паяльной станции перед паяльником, использующим нагреватель в качестве датчика температуры, есть два основных преимущества. Первое (малозначительное) — цифровой индикатор температуры. Второе — датчик температуры, встроенный в жало. Цифровой индикатор сначала просто интересен, а потом регулирование идёт всё равно по принципу «чуть больше, чуть меньше».

У паяльника, использующего нагреватель в качестве датчика температуры, перед паяльной станцией преимущества следующие:
— блок управления не загромождает пространство на столе, так как он может быть встроен в небольшой по размерам корпус в виде сетевого адаптера;
— меньшая стоимость;
— блок управления можно использовать практически с любым бытовым паяльником;
— простота повторения, посильная и начинающему радиолюбителю.

Рассмотрим конструктивные особенности паяльников разных конструкций и мощности. В таблицепредставлены значения сопротивлений нагревателей различных паяльников, где Pw — мощность паяльника, Вт; Rx — сопротивление нагревателя холодного паяльника, Ом; Rr — сопротивление горячего после прогрева в течение трёх минут, Ом.

P W ,Вт R X ,Ом R Г, Ом R Г -R X ,Ом
188601800940
2570017001000
3016671767100
401730177040
8054756518
10060462420

По разности этих температур видно, что ТКС нагревателей могут отличаться в 50 раз. Паяльники с большим ТКС имеют керамические нагреватели, хотя бывают и исключения. Паяльники с малым ТКС — устаревшей конструкции с нагревателями из нихрома. Необходимо отдельно заметить, что в некоторых паяльниках может быть встроен диод — датчик температуры, и один паяльник мне попался совсем интересный: в одной полярности включения ТКС у него был положительный, а в другой — отрицательный. В этой связи сопротивление паяльника надо сначала измерить в холодном и горячем состояниях с тем, чтобы подключить его к регулятору в правильной полярности.

Схема стабилизатора температуры паяльника

Схема регулятора представлена на рис. 2 . Длительность включённого состояния нагревателя фиксирована и составляет 4…6 с. Длительность выключенного состояния зависит от температуры нагревателя, конструктивных особенностей паяльника и регулируется в интервале 0…30 с. Может возникнуть предположение, что температура жала паяльника постоянно «качается» вверх и вниз. Измерения показали, что изменение температуры жала под воздействием управляющих импульсов не превышает одного градуса, и объясняется это значительной тепловой инерционностью конструкции паяльника.

Рассмотрим работу регулятора. По известной схеме на выпрямительном мосте VD6, гасящих конденсаторах С4, С5, стабилитронах VD2, VD3 и сглаживающем конденсаторе С2 собран источник питания узла управления. Сам узел собран на двух ОУ, включённых компараторами. На неинвертирующий вход (вывод 3) ОУ DA1.2 подано образцовое напряжение с резистивного делителя R1R2. На его инвертирующий вход (вывод 2) подано напряжение с делителя, верхнее плечо которого состоит из рези-стивной цепи R3-R5, а нижнее — нагревателя, подключённого к входу ОУ через диод VD5. В момент включения питания сопротивление нагревателя понижено и напряжение на инвертирующем входе ОУ DA1.2 меньше напряжения на неинвертирующем. На выходе (вывод 1) DA1.2 будет максимальное положительное напряжение. Выход DA1.2 нагружен последовательной цепью, состоящей из ограничительного резистора R8, светодиода HL1 и встроенного в оптрон U1 излучающего диода. Све-тодиодНЫ сигнализирует о включении нагревателя, а излучающий диод оптрона открывает встроенный фотосимистор. Выпрямленное мостом VD7 напряжение сети 220 В поступает на нагреватель. Диод VD5 будет закрыт этим напряжением. Высокий уровень напряжения с выхода DA1.2 через конденсатор СЗ воздействует на инвертирующий вход (вывод 6) ОУ DA1.1. На его выходе (вывод 7) возникает низкий уровень напряжения, которое через диод VD1 и резистор R6 уменьшит напряжение на инвертирующем входе ОУ DA1.2 ниже образцового. Это обеспечит поддержание высокого уровня напряжения на выходе этого ОУ Такое состояние остаётся стабильным в течение времени, которое задано дифференцирующей цепью C3R7. По мере зарядки конденсатора СЗ напряжение на резисторе R7 цепи падает, и когда оно станет ниже образцового, на выходе ОУ DA1.1 низкий уровень сигнала сменится высоким. Высокий уровень сигнала закроет диод VD1, и напряжение на инвертирующем входе DA1.2 станет выше образцового, что приведёт к смене на выходе ОУ DA1.2 высокого уровня сигнала низким и отключению светодиода HL1 и оптрона U1. Закрывшийся фотосимистор отключит мост VD7 и нагреватель паяльника от сети, а открытый диод VD5 подключит его к инвертирующему входу ОУ DA1.2. Погасший светодиод HL1 сигнализирует об отключении нагревателя. На выходе DA1.2 низкий уровень напряжения будет держаться до тех пор, пока в результате остывания нагревателя паяльника его сопротивление не понизится до точки переключения DA1.2, заданной, как уже сказано выше, образцовым напряжением с делителя R1R2. Конденсатор СЗ к тому времени успеет разрядиться через диод VD4. Далее, после переключения DA1.2, вновь включится оптрон U1 и весь процесс повторится. Время остывания нагревателя паяльника будет тем больше, чем выше температура всего паяльника и меньше расход тепла на процесс паяния. Конденсатор С1 уменьшает наводки и высокочастотные помехи из сети.

Печатная плата размерами 42×37 мм изготовлена из односторонне фольгированного стеклотекстолита. Её чертёж и расположение элементов приведены на рис. 3 .
Чертеж платы в формате lay- во вложении

Светодиод HL1, диоды VD1, VD4 — любые маломощные. Диод VD5 — любого типа на напряжение не менее 400 В. Стабилитроны КС456А1 заменимы на КС456А или один стабилитрон на 12 В с максимально допустимым током более 100 мА. Оксидный конденсатор СЗ надо обязательно проверить на утечку. При проверке конденсатора омметром его сопротивление должно быть больше 2 МОм. Конденсаторы С4, С5 — импортные плёночные на переменное напряжение 250 В или отечественные К73-17 на напряжение 400 В. Микросхема LM358P заменима на LM393R В этом случае правый по схеме вывод резистора R8 необходимо подключить к плюсовой линии питания узла управления, а анод светодиода HL1 — непосредственно к выходу DA1.2 (выводу 1). При этом диод VD1 можно не ставить. Сопротивление резистора R6 должно выбираться исходя из имеющегося нагревателя. Оно должно быть меньше сопротивления нагревателя в холодном состоянии примерно на 10 %. Сопротивление подстроечного резистора R5 выбирают так, чтобы интервал регулировки температуры не превышал 100 °С. Для этого вычисляют разность сопротивлений холодного и хорошо прогретого паяльника и умножают её на 3,5. Полученное значение и будет сопротивлением резистора R5 в омах. Тип резистора — любой многооборотный.

Собранный блок необходимо наладить. Цепь из резисторов R3-R5 временно заменяют двумя последовательно включёнными переменными или подстроенными сопротивлением 2,2 кОм и 200…300 Ом. Далее блок с подключённым паяльником включают в сеть. Добившись движками временных резисторов нужной температуры жала, устройство отключают от сети. Резисторы отпаивают и измеряют общее сопротивление введённых частей. Из полученного значения вычитают половину вычисленного ранее сопротивления R5. Это и будет суммарное сопротивление постоянных резисторов R3, R4, которые выбирают из имеющихся в распоряжении по наиболее близкому к суммарному значению. В разрыв этой резистивной цепи можно поставить выключатель. При его выключении паяльник перейдёт на непрерывный нагрев. Для тех, кому нужен паяльник на несколько режимов пайки, предлагаю поставить переключатель и несколько резистивных цепей на разные режимы. Например, для мягкого припоя и для нормального припоя. При разрыве цепи — форсированный режим. Мощность применяемого паяльника ограничена предельным током выпрямительного моста КЦ407А (0,5 А) и оптрона МОС3063 (1 А). Поэтому для паяльников мощностью более 100 Вт необходимо установить более мощный выпрямительный мост, а опт-рон заменить оптоэлектронным реле нужной мощности.

Сравнение работы разных паяльников совместно с описанным устройством показало, что наиболее пригодны паяльники с керамическим нагревателем с большим ТКС. Внешний вид одного из вариантов собранного блока со снятой крышкой приведён на рис. 4.

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://сайт/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.


Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.


При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.


Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.

Регулятор мощности на симисторе КУ208Г.

VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.

На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.

Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод — катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре КУ202Н.

VS1 – КУ202Н

Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.


Регулятор мощности на маломощном тиристоре.

Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.

VD1… VD4 – 1N4007

Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.


Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.


Так выглядят регуляторы мощности, которые я использую много лет.


Get the Flash Player to see this player.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.


Дополнительный материал.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.


Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибораКатодУправ.Анод
BT169D(E, G)123
CR02AM-8312
MCR100-6(8)123

Я уверен, что каждый радиолюбитель сталкивался с проблемой отваливающихся дорожек на гетинаксе и рыхлого олова. Причиной тому является перегретое или недостаточно нагретое жало паяльника. Как решить эту проблему? Да очень просто, вернее очень простым устройством, сборка которого будет под силу даже начинающему радиолюбителю. Принципиальная схема регулятора когда-то публиковалась в журнале Радио :

О принципе работы: сия схема дает возможность регулировать мощность паяльника или лампы от 50 до 100%. В нижнем положении потенциометра тиристор VS1 закрыт, и питание нагрузки происходит через VD2, то есть напряжение уменьшается наполовину. При вращении потенциометра управляющая схема начинает открывать тиристор и происходит постепенное повышение напряжения.

Печатку можно взять . На плате два резистора Р5 — не пугайтесь, просто нужного номинала не было. При желании печатку можно миниатюризировать, у меня она размашистей из принципа — в бестрансформаторных и силовых схемах всегда развожу с размахом — безопаснее.

Схема за год использовалась очень часто и не имела ни одного отказа.

Внимание! Регулятор паяльника имеет бестрансформаторное питание 220 В. Соблюдайте правила безопасности и испытывайте схему только через лампочку — сотку!

Электронный регулятор температуры паяльника | Датчики температуры

Схемы тиристорных регуляторов мощности

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Электрические принципиальные схемы регуляторов температуры паяльника

Внимание, ниже приведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы опасно для жизни!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора температуры паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма). При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ..

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора температуры паяльника от выше представленных, это полное отсутствие излучающих радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.

Работает схема регулятора температуры следующим образом. Напряжение от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4). Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться. Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служить для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.

Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.

Микросхемы DD1 и DD2 любые 176 или 561 серии. Диоды VD1- VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор температуры настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.

Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов мощности

Для уменьшения помех излучаемых тиристорным регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Регулятор мощности паяльника с цифровой индикацией и кнопочным управлением.

Автор — Настя.

Участник Конкурса «Поздравь Кота по-человечески 2008».

Многие из нас проводят много времени в руках с паяльником. Не секрет, что хорошая пайка компонентов является залогом успешной работы электронного устройства. Качество пайки определяется по характерному блеску. Сероватая и неровная пайка является потенциальной причиной плохой работы схемы. Другая важная задача заключается в том, чтобы произвести пайку не перегревая компонентов.

Регулятор собран на pic16f628a. Тактирование микроконтроллера осуществляется встроенным генератором на частоте 4 МГц, т.е. кварцевый резонатор не нужен. На плате предусмотрены посадочные места под кварцевый резонатор, что позволяет применять устаревшие контроллеры (например, pic16f84a) и иные без внутреннего тактирования. В своем варианте регулятора я установила семисегментный индикатор с общим катодом. На плате предусмотрена установка индикатора с общим анодом, путем перепайки соответствующей перемычки. В исходниках программы закомментированы заготовки под контроллер pic16f84a и индикатор с общим анодом.

Регулятор собран на двух платах: силовая и цифровая. На силовой плате расположен фильтр (для снижения уровня помех создаваемым регулятором) и схема бестрансформаторного питания. На цифровой плате расположен микроконтроллер и семисегментный индикатор.

Платы регулятора мощности с цифровой индикацией закреплены с помощью винтов в корпусе обычной мыльницы. Дизайн регулятора зависит от Вашей фантазии и способностей.

Красной кнопкой увеличиваем уровень мощности и температуру нагрева паяльника, синей – снижаем. Программа для микроконтроллера написана на Ассемблере. Задержки, определяющие уровень мощности, подобраны экспериментально. Их можно легко изменить в программе и подобрать для себя необходимые уровни. Всего 10 уровней. Символ «0» на индикаторе означает, что симистор закрыт. Символ «9» означает, что симистор постоянно открыт и устройство работает на полную мощность.

Узлы схемы не являются чем-то необычным. Расчеты компонентов силовой части сделаны в соответствии с рекомендациями документов из открытых источников:

Соблюдайте осторожность и помните про электробезопасность при работе с сетью переменного тока 220В. Правильно изготовленный регулятор из исправных деталей не требует настройки и сразу начинает работать. Для обеспечения электромагнитной совместимости следует лишь правильно подключить его к сети (фазу и нейтраль подключить так, как это показано на схеме).

На перспективу программа для микроконтроллера может быть расширена дополнительными функциями. Например, таймер на выключение – для случаев простоя паяльника без дела, в целях защиты от выгорания жала. Также можно предложить разогрев паяльника определенное время на максимальном уровне и затем переход на меньший уровень для поддержания температуры. Если эти функции найдут Вашу поддержку, то следующая версия прошивки будет дополнена этими функциями.

то, регулируя длину погружения стержня в нагреватель, можно легко плавно изменить температуру. Но такую конструкцию крепления жала имеют не все паяльники, и этот метод может оказаться неприемлемым.

Способ 2-й. Можно воспользоваться ЛАТРом или трансформатором с большим числом отводом. В этом случае температура регулируется изменением подаваемого на обмотку нагревателя напряжения.

Способ 3-й. Последовательно с нагревателем паяльника включается добавочный резистор (реостат). При этом мощность резистора должна быть такой же, как и у паяльника, а номинал сопротивления подбираем для получения нужной температуры. Такой добавочный резистор имеет большие габариты и греется, что неудобно.

Способ 4-й. Электронный регулятор

позволяет плавно менять (переменным резистором R2) температуру нагревателя в широких пределах. Устройство имеет бестрансформаторное питание и малые габариты, что позволяет разместить его в подставке под паяльник. Схема не критична к типам деталей, и ее настройка заключается в подборе номинала резистора R4 (при нулевом значении R2) для получения максимального напряжения на нагревателе. Подключаемый паяльник может иметь мощность от 15 до 300 Вт, а при замене диодов VD1. VD4 на больший ток — до 1000 Вт.

В случае, если паяльник рассчитан на более низкое номинальное напряжение питания (48 или 36 В), потребуется снижающий напряжение трансформатор, а на схему электронного регулятора может подаваться пониженное напряжение. В этом случае для сохранения ее работоспособности потребуется пропорционально входному напряжению уменьшить номинал резистора R1.

Способ 5-й. Позволяет автоматически поддерживать заданную температуру паяльника с точностью 1°С и используется для монтажа радиоэлементов микроэлектроники, очень критичных к перегреву. В этом случае потребуется приобрести паяльник с уже установленной внутри термопарой.

Схема термостабилизатора (рисунок ниже) выполнена на одной сдвоенной микросхеме DA1 (140УД20А) и симметричном тиристоре (симисторе) VS1. На элементе DA1.1 собран дифференциальный усилитель сигнала с термопары, а на DA1.2 — интегратор, который управляет работой генератора импульсов на одно переходном транзисторе VT1. Импульсы через разделительный трансформатор Т1 поступают на управление коммутатором VS1.

Использование в схеме интегратора, вместо обычно часто применяемого компаратора, позволяет обеспечить мягкую характеристику изменения мощности в нагревателе при выходе на режим термостабилизации. Это осуществляется за счет изменения времени заряда конденсатора С10, от которого зависит частота генератора, а значит, и начальный угол открывания симистора. Пока напряжение с выхода DA1/12 не превысит пороговое значение (на DA1/6), установленное резисторами, связанными с переключателем SA2, на выходе микросхемы DA1/10 будет напряжение +12 В, что обеспечит работу генератора (VT1) на максимальной частоте — симистор будет полностью открыт.

Для питания устройства потребуется трансформатор с двумя дополнительными обмотками по 18 В или одна, но с отводом в середине. Мощность трансформатора должна соответствовать мощности паяльника (электрическая схема блока управления потребляет ток не более 15 мА).

Импульсный трансформатор Т2 имеет такие же параметры, как и в схеме здесь. Остальные детали могут применяться любого типа. Микросхему DA1 можно заменить двумя из серии 140УД7, но при этом может снизиться точность поддержания температуры.

При настройке термостабилизатора для полного открывания симистора может потребоваться поменять местами выводы на одной из обмоток импульсного трансформатора Т2 (важна фазировка управляющего импульса). Подстроечными резисторами, отмеченными «*», устанавливается необходимая температура при соответствующем положении переключателя SA1. Более точно нужную температуру можно установить при помощи резистора R15.

И еще один способ, который может являться дополнением или разновидностью третьего. Вместо добавочного гасящего резистора можно использовать не полярный конденсатор из серии МБМ. Он обладает емкостным сопротивлением на частоте 50 Гц: Хс=1/314С. Чем больше номинал емкости, тем меньше ее сопротивление.

Схема паяльника с регулируемой температурой


Одна из причин дороговизны коммерческих паяльных станций заключается в том, что они, как правило, требуют использования паяльников со встроенными датчиками температуры, такими как термопары. Эта схема устраняет необходимость в специальном датчике, поскольку она измеряет температуру нагревательного элемента паяльника непосредственно по его сопротивлению. Таким образом, эта схема, в принципе, будет работать с любым железом, сопротивление которого изменяется предсказуемо и в правильном направлении в зависимости от температуры (т. е. с положительным температурным коэффициентом).

Паяльник, который идеально подходит для использования с этим контроллером, можно приобрести в компании Dick Smith Electronics (Cat T-2100). Эта схема работает от батареи 12 В или источника постоянного тока, работающего от сети. Он работает следующим образом: преобразователь постоянного тока (IC1, Q1, D1, Q2, T1, D2, L1 и т. д.) повышает входное напряжение 12 В постоянного тока примерно до 16 В. Более высокое напряжение повышает мощность утюга и сокращает время прогрева. Это выходное напряжение подается на мост сопротивления, в котором нагревательный элемент утюга образует одно плечо.

Принципиальная схема:


Другие компоненты моста включают резисторы R7-R9 и потенциометры VR2-VR4.Когда утюг достигает заданной температуры, установленной VR4, на выходе IC2a ​​устанавливается высокий уровень, посылая сигнал на переключающий регулятор IC1. Это переводит выход преобразователя на относительно низкое напряжение. Двухцветный светодиод показывает, что утюг достиг заданной температуры, меняя цвет с красного на зеленый. Теперь утюг начинает охлаждаться, пока не упадет ниже заданной температуры, после чего выходное напряжение преобразователя постоянного тока снова становится высоким, и цикл повторяется.

Степень гистерезиса, встроенная в схему, заставляет светодиод мигать красным и зеленым цветом, в то время как утюг поддерживается на заданной температуре.Откалибруйте схему следующим образом: пока утюг еще относительно холодный, контролируйте входное напряжение и ток и отрегулируйте VR1 так, чтобы входная мощность (Вольты x Амперы) составляла около 50 Вт. Когда вы это сделаете, установите VR4 на максимум и отрегулируйте VR2 так, чтобы светодиод мигал красным и зеленым, когда утюг достиг желаемой максимальной температуры.

Наконец, установите VR4 в среднее положение и отрегулируйте VR3 так, чтобы светодиод мигал, когда утюг достигает желаемой средней рабочей температуры. Например, вы можете установить максимальную температуру примерно на 400°C, а среднюю рабочую температуру примерно на 350°C.Общий температурный диапазон в этом случае должен составлять приблизительно от 280°C до 400°C. Проверьте правильность калибровки и при необходимости повторите процедуру регулировки. При регулировке используйте температурный щуп, предпочтительно разработанный специально для паяльников, а не гадания.

Примечание:

  • ВР4 должен иметь логарифмическую конусность для компенсации нелинейности термостойкой характеристики паяльника.

Автор: Герман Нацинович — Copyright: Silicon Chip

проектирование и изготовление регулятора температуры паяльника — для Б.Темы и материалы проекта Sc, HND и OND

КОНСТРУКЦИЯ И КОНСТРУКЦИЯ РЕГУЛЯТОРА ТЕМПЕРАТУРЫ ПАЯЛЯ

ИНСТРУКЦИИ ПОЛЬЗОВАТЕЛЯ: Проект, который вы собираетесь просмотреть, касается «проектирования и изготовления регулятора температуры паяльника». Пожалуйста, откиньтесь на спинку кресла и внимательно изучите представленный ниже исследовательский материал. Эта тема проекта «Проектирование и изготовление регулятора температуры паяльника» состоит из 5 (пяти) глав.Полный проектный материал/описание включает: Резюме + Введение + и т. д. + Обзор литературы + методология + и т. д. + Заключение + Рекомендация + Ссылки/Библиография. уменьшить стресс от перехода из одной школьной библиотеки в другую во имя поиска исследовательских материалов «дизайн и конструкция регулятора температуры паяльника». Мы не поощряем любые формы плагиата.Эта услуга является законной, потому что все учебные заведения разрешают своим студентам читать предыдущие проекты, книги, статьи или документы при разработке своих собственных работ.


ТИТУЛ

КОНСТРУКЦИЯ И КОНСТРУКЦИЯ РЕГУЛЯТОРА ТЕМПЕРАТУРЫ ПАЯЛЯ

BY


EE / H3013 / 01430
Департамент электрической и электроники
Школа инжиниринга
Институт —

ДЕКАБРЬ 2018 ГОДА



СТРАНИЦА УТВЕРЖДЕНИЯ

Настоящим удостоверяется, что исследовательская работа «Проектирование и изготовление регулятора температуры паяльника» —, Рег.№ EE/h3007/01430, представленный в частичном выполнении требования о присуждении высшего национального диплома по электротехнике и электронике, был утвержден.

По
англ. —                                                    Инж. —
Руководитель                                                Начальник отдела.
Подпись………………. Подпись……………….

……………………………….
англ. —
Внешний наблюдатель


ПОСВЯЩЕНИЕ
Этот проект посвящен Всемогущему Богу за его защиту, доброту, силу в моей жизни на протяжении всего периода, а также моему — за его финансовую поддержку и моральную заботу обо мне.Также моему наставнику — за ее академические советы, которые она часто дает мне. Да защитит их Всемогущий Бог от опасностей этого мира и благословит все их начинания Аминь.


ПОДТВЕРЖДЕНИЕ

Успешное завершение этого проекта не могло бы стать реальностью без поддержки моего — и других людей. Моя безмерная признательность моему скромному и способному руководителю г-ну. — за его доброту в руководстве этим проектом.
Моя горячая благодарность моим родителям за их моральную, духовную и финансовую поддержку на протяжении всего моего обучения в этом учреждении.
Я выражаю признательность некоторым из моих лекторов, среди которых г-н — и д-р —. Я также признателен за поддержку некоторых сотрудников — среди которых: генеральный директор, заместитель генерального директора, внутренний аудитор г-н — и —. Наконец, я выражаю признательность моей старшей сестре —, милосердию моих милых друзей —, —, — и многим другим, кто очень мне помог.


ОПИСАНИЕ ПРОЕКТА: Настоящая работа «Проектирование и изготовление регулятора температуры паяльника» представляет собой законченный и хорошо проработанный проектный материал исключительно для академических целей, который был одобрен разными преподавателями из разных высших учебных заведений. Мы сделали Предварительные страницы , Реферат и Главу первую «Проектирование и изготовление регулятора температуры паяльника» видимыми для всех, то полный материал по «Проектированию и изготовлению регулятора температуры паяльника» должен быть заказал для. Приятного просмотра!!!


РЕЗЮМЕ

Паяльник — это инструмент, используемый для ремонта и сборки электронных схем. Этот прибор большую часть времени работает при подключении к розетке (110/220 В переменного тока). Это приводит к постоянному потреблению энергии. В дополнение к этому потреблению, это также приводит к ухудшению состояния паяльного жала.
При пайке иногда возникает необходимость контролировать температуру паяльника.Невозможно каждый раз менять припой. Если вы просто паяете небольшие резисторы и микросхемы, 15 Вт, вероятно, будет достаточно, но вам, возможно, придется немного подождать между соединениями, чтобы наконечник восстановился. При пайке более крупных компонентов, особенно с радиаторами (например, регуляторы напряжения), или при большом количестве пайки вам, вероятно, понадобится утюг на 25 или 30 Вт.
Для пайки более крупных изделий, таких как медная проволока 10 калибра, кожухи двигателей или большие радиаторы, вам может понадобиться утюг мощностью более 50 Вт.Паяльники бывают разной мощности и обычно работают от сети переменного тока 230 В. Однако у них нет контроля температуры. Низковольтные паяльники (например, 12 В) обычно являются частью паяльной станции и предназначены для использования с регулятором температуры. Правильный паяльник или станция с регулируемой температурой стоят дорого. Это простая схема, обеспечивающая ручное управление температурой обычного паяльника на 220 В переменного тока. Схема состоит из TRIAC1, DIAC1, потенциометра VR1, резистора и конденсатора.

Содержание Отдел Содержание
Заголовок
Одобрение
Аннотация
Таблица контента

Таблица контента

Глава Один
1.0 Введение
1.1 Фон проекта
1.2 Целью проекта
1.3      ЦЕЛЬ ПРОЕКТА
1.4      ЗНАЧЕНИЕ ПРОЕКТА
1.5      ЦЕЛЬ ПРОЕКТА
1.6      ПРИМЕНЕНИЕ ПРОЕКТА
1.7 Преимущества проекта
1.8 Проблема / ограничение проекта
1.9 Организация проекта

Глава два
2.0 Обзор литературы
2.1 Обзор связанных исследований
2.2 Обзор связанных с ними
2.3 Процесс пайки
2.4 Паяльник

ГЛАВА ТРЕТЬЯ.3 Системная эксплуатация
3.4 Описание цепи
3.5 Системная схема диаграммы
3.6 Операция цепи
3.7 Важность и функция основных компонентов, используемых в этой схеме

Глава четыре
Анализ результатов
4.0 Процедура строительства и тестирование
4.1 УПАКОВКА
4.2      СБОРКА СЕКЦИЙ
4.3      ИСПЫТАНИЯ
4.4.1 ИСПЫТАНИЯ ПЕРЕД ВНЕДРЕНИЕМ
4.4.2  ИСПЫТАНИЯ ПОСЛЕ ВНЕДРЕНИЯ
4.5 Результат
4.6 Анализ затрат
4.7 Проблема, столкнувшись

Глава пять
5.1 Вывод
5.2 Рекомендация
5.3 Ссылки


ГЛАВА ПЕРВАЯ: Доступна полная первая глава этой работы. Заказать полную работу для скачивания. Первая глава этой работы посвящена введению в данное исследование. В этой главе обсуждались предыстория, значение, объем, цель, необходимость (польза), ограничения и проблемы, преимущества данной работы.

ГЛАВА ВТОРАЯ : Доступна полная вторая глава «Проектирование и изготовление регулятора температуры паяльника» . Заказать полную работу для скачивания. Вторая глава «Проектирование и изготовление регулятора температуры паяльника» состоит из обзора литературы. В этой главе были рассмотрены все сопутствующие работы по «проектированию и изготовлению регулятора температуры паяльника» .

ГЛАВА ТРЕТЬЯ: Доступна полная третья глава «Проектирование и изготовление регулятора температуры паяльника» .Заказать полную работу для скачивания. Глава третья «Проектирование и изготовление регулятора температуры паяльника» состоит из методологии. В этой главе обсуждались все методы, использованные при выполнении этой работы.

ГЛАВА ЧЕТЫРЕ: Доступна полная четвертая глава «Проектирование и изготовление регулятора температуры паяльника» . Заказать полную работу для скачивания. Глава четвертая «Проектирование и изготовление регулятора температуры паяльника» состоит из всех испытаний, проведенных в ходе работы, и результата, полученного после всей работы

ГЛАВА ПЯТАЯ : Доступна полная пятая глава по проектированию и изготовлению «проектирования и изготовления регулятора температуры паяльника» .Заказать полную работу для скачивания. Пятая глава «Проектирование и изготовление регулятора температуры паяльника» состоит из заключения, рекомендации и ссылок.



Чтобы » СКАЧАТЬ » полный материал по этой конкретной теме выше нажмите «ЗДЕСЬ»

Вам нужны наши банковские счета ? нажмите ЗДЕСЬ

Для просмотра других связанных тем нажмите ЗДЕСЬ

Кому: » SUMMIT » новая тема(ы), создайте новую тему ИЛИ вы не видите свою тему на нашем сайте, но хотите подтвердить доступность вашей темы нажмите ЗДЕСЬ

Вы хотите, чтобы мы исследовали вашу новую тему? если да, нажмите » ЗДЕСЬ »

У вас есть вопросы по поводу нашей почты/услуг? нажмите ЗДЕСЬ для ответов на ваши вопросы

Вы также можете посетить нашу страницу в Facebook по адресу fb.me/hyclas для просмотра нашего связанного изображения строительства (или дизайна).


Для получения дополнительной информации свяжитесь с нами любым из следующих способов:

Мобильный номер: +2348146561114 или +2347015391124 [Mr. Невинный]

Адрес электронной почты : [email protected]

Номер Watsapp :+2348146561114

Чтобы просмотреть наше изображение дизайна: Вы также можете посетить нашу страницу в Facebook по адресу fb.me/hyclas для фото/фото нашего дизайна.


ЕСЛИ ВЫ ДОВОЛЬНЫ НАШИМИ УСЛУГАМИ, ПОЖАЛУЙСТА, НЕ ЗАБУДЬТЕ ПРИГЛАСИТЬ СВОИХ ДРУЗЕЙ И СОПУТНИКОВ НА НАШУ СТРАНИЦУ.

Умный адаптер для паяльника — ElectroSchematics.com

У каждого любителя электроники должен быть паяльник. Если вам нужен умный паяльник, вы можете купить его у ближайшего поставщика компонентов, но что, черт возьми, в этом интересного? Теперь очень легко собрать свой собственный, переделав обычный в умный с помощью представленного здесь маленького адаптера!

Обычно используемый припой 60/40 плавится при температуре около 200 градусов по Цельсию, но на практике температура жала паяльника должна быть выше 370 градусов по Цельсию, чтобы обеспечить хорошее паяное соединение в течение установленного времени.При таком уровне температуры наконечник быстро окисляется, что требует регулярной очистки. Вот простое схемное решение этой надоедливой проблемы, поскольку схема помогает контролировать уровень нагрева наконечника, управляя нагревательным элементом через симистор с фазовым управлением. Это не только уменьшает окисление, но и увеличивает срок службы паяльника.

Схема работает от сети переменного тока 230 В и оптимизирована для паяльников на 230 В переменного тока. Обычно температура, при которой обычно работает паяльник, слишком высока для этой цели, поэтому производитель использует простую внутреннюю модификацию, чтобы вдвое снизить энергопотребление и, таким образом, снизить температуру.Модификация заключается в установке последовательно с катушкой нагрева обычного диода (1N4007). Обязательно зашунтировать этот диод для соединения паяльника с нашей схемой контроллера.


Как сказано выше, контроллер предназначен исключительно для паяльников, работающих от сети 230 В переменного тока. Здесь симистор BT139 (T1) используется для управления фазой «резистивной» нагрузки нагревательного змеевика. Потенциометр предварительной настройки 1M (P1) представляет собой регулируемый подстроечный потенциометр для настройки работы схемы.Красный светодиод (LED1) и связанные с ним компоненты образуют мигающий индикатор активности. После сборки и «предполетных» испытаний вся схема должна быть заключена в подходящую неметаллическую коробку, снабженную подходящим гнездовым выходным разъемом питания. Обратите внимание, что текущая конфигурация этой схемы «Паяльник Presever» не подходит для управления мощностью нагрева до нуля.

Детали
T1:BT139, T2:BC547, D1:DB3 DIAC, D2&D3: 1N4007, C1:47nF/400V, C2:220uF/25V, R1&R3:470K, R2: 2K6, R4:100R, P1:2M2, Светодиод: 5 мм красный (все резисторы ¼ Вт)

Примечания

  • Точка перемычки JP1, зарезервированная на будущее, по умолчанию является перемычкой с нулевым сопротивлением.Это позволяет подключить вместо него термистор для ограничения пускового тока нагрузки нагревателя (термистор типа NTC) или создать саморегулирующуюся нагрузку нагревателя (термистор типа PTC) и т. д.
  • Хотя рассеиваемая мощность симистора (T1) невелика, необходимо предусмотреть небольшой радиатор. Не допускайте контакта радиатора с какими-либо внешними металлическими предметами
  • .
  • Прототип протестирован паяльником мощностью 25 Вт. Керамический нагреватель имеет сопротивление нагревательной катушки около 1 кОм
  • .
  • Если вы хотите получить доступ к P1 из внешнего мира, замените Preset POT P1 потенциометром с пластиковым валом 2M2 и установите его на передней панели корпуса
  • .

Паяльная станция с регулируемой температурой

Паяльные станции с регулируемой температурой уже доступны на рынке.В таких приборах в качестве датчиков температуры используются термопары или термисторы. Но даже если он доступен на рынках, это весело и интересно собрать это устройство самостоятельно. Любитель электроники наверняка хотел бы построить это устройство, чтобы увеличить срок службы своего паяльника и сэкономить энергию. Обладая базовыми знаниями о компараторах, эта схема «Паяльная станция с регулируемой температурой» очень проста для понимания.

Транзистор T 1 BC107 используется здесь как датчик температуры.Тот факт, что напряжение включения эмиттер-база кремниевого транзистора линейно зависит от температуры, используется для измерения температуры. Если рабочий ток чувствительного транзистора сделать пропорциональным абсолютной температуре, небольшая преобладающая нелинейность может быть устранена.

Диоды Д 1 и Д 2 обеспечивают источник напряжения 1,2 В, которое через резистор R 3 подается на установку рабочего тока транзистора Т 1 .Здесь переменный резистор VR 1 смещает вход усилителя для нулевого выхода при нуле градусов по Цельсию, а VR 2 можно откалибровать на 100 мВ/ 0 C на выводе 1 микросхемы 1 .

IC 1 (B) действует как простой компаратор. Резистор R 7 обеспечивает некоторый гистерезис. Предустановку VR 3 можно изменять для контроля температуры пайки примерно от 250 0 C до 450 0 C.

Транзистор T 2 управляет реле.Если температура пайки превышает установленное значение, на выводе 7 микросхемы 1 устанавливается высокий уровень, а Т 2 получает базовый уровень. Реле срабатывает, и паяльник отключается от питания. Когда температура железа попадает в диапазон установленного предела, выход на контакте 7 становится низким, что приводит к срабатыванию реле. А затем паяльник снова подключается к питанию. Конденсатор С 1 устраняет дрожание реле в момент изменения логических уровней на выводе 7 ИМС 1 .

Датчик можно монтировать на расстоянии полсантиметра от жала паяльника одножильным медным проводом. Используйте монтажные гнезда для ИС.

Для калибровки системы отрегулируйте VR 1 и VR 2 в положениях, немного превышающих их средние положения. В этом случае напряжение на выводе 1 будет около 4,8В.

Соединения VR3 должны быть выполнены таким образом, чтобы вращение VR 3 из минимального положения по часовой стрелке уменьшало напряжение на выводе 5 микросхемы 1 .Когда VR 3 находится в минимальном положении, напряжение на контакте 5 IC 1 составляет около 4,2 вольта. Когда VR 3 находится на максимуме, напряжение на контакте 5 будет равно нулю.

ПЕРЕЧЕНЬ ДЕТАЛЕЙ ПАЯЛЬНОЙ СТАНЦИИ С РЕГУЛИРУЕМОЙ ТЕМПЕРАТУРОЙ

Резисторы (все ¼ Вт, ± 5 % углерода)

R 1 , R 2 = 10 кОм

R 3 = 3,9 кОм

R 4 , R 6 = 100 кОм

R 5 = 47 кОм

Ч 7 = 1 МОм

Р 8 = 1.5 кОм

R 9 = 330 Ом

VR 1 = 4,7 кОм

VR 2 = 100 кОм

VR 3 = 470 кОм

Конденсатор

C 1 = 470 мкФ, 16 В (электролитический конденсатор)

Полупроводники

IC 1 (A, B) = LM358 (сдвоенный операционный усилитель малой мощности)

T 1 = BC107 (биполярные транзисторы малой мощности)

T 2 = BC517 (биполярный транзистор Дарлингтона NPN)

D 1 – D 4 = 1N4148 (кремниевый переключающий сигнальный диод)

D 5 = 1N4001 (выпрямительный диод)

Светодиод 1

Разное

RL 1 = 9 В, реле 100 Ом

Зачем мне паяльник с регулируемой температурой? : AskElectronics

Нет, температурный контроль это офигенно.

Если ваш утюг слишком горячий, наконечник тускнеет, однако, если он недостаточно горячий, он не может обеспечить достаточное количество тепла для быстрого завершения пайки.

Если слишком долго выполнять соединение, можно повредить как печатную плату, так и припаиваемый компонент.

Я знаю, что нелогично, что недостаточно нагретый утюг вызывает проблемы, связанные с нагревом, но это правда.

Кроме того, если вы делаете большие швы, вам нужен утюг с большой мощностью для поддержания теплового потока.Такая большая нерегулируемая мощность может легко сделать наконечник слишком горячим и привести к его потускнению.

Если жало потускнело, то припой к нему не прилипнет. Если припой не будет прилипать к наконечнику, то тепловое сопротивление между наконечником и соединением резко возрастет, и вы в конечном итоге сожжете свои вещи, потому что припой не расплавится быстро.

И наоборот, если вы делаете мелкие швы, вам не нужно столько мощности, но вам все равно нужно, чтобы утюг был правильной температуры.

ТАК нужен утюг который быстро поднимается до заданной температуры, потом там и держится .Нам также нужен утюг, который при наличии большого сустава автоматически увеличивает мощность, чтобы передать необходимое тепло суставу.

Это означает контроль температуры.

Я использовала как терморегулируемые утюги, так и утюги для карандашей, и разница в результате была поистине ночной и дневной. Я бы не пожелал использования утюга для карандашей тем, кто серьезно относится к пайке схем.

Это абсолютно стоит заплатить немного больше за утюг с регулируемой температурой, если вы хоть немного заинтересованы в возможности паять качественное соединение каждый раз с первого раза.

У меня всегда установлена ​​температура 350°C.

Да, припой плавится при 190-230°C в зависимости от того, какой тип вы используете, но вам необходимо правильно расплавить его и приклеить к соединению в кратчайшие сроки (предпочтительно 1 секунду или меньше), что требует существенно более высокая температура.

CSI Premier75W Цифровая паяльная станция с регулируемой температурой и паяльником мощностью 75 Вт

CSI Premier75W — Паяльная станция высокой мощности 75 Вт с цифровым дисплеем

Это достойный преемник популярной паяльной станции CSI Station3DLF.

CSI PREMIER75W оснащен очень мощным утюгом мощностью 75 Вт с регулируемой температурой. Устройство имеет несколько расширенных функций, которые позволяют пользователю настраивать систему с большой гибкостью. Установите до 3 предустановленных рабочих температур для легкого переключения между вашими любимыми настройками.

Паяльник имеет очень длинный изгиб 1,5 м. Гибкий кабель также устойчив к нагреву, а это означает, что если вы случайно коснетесь кабеля горячим наконечником утюга, кабель не расплавится и не испортится.

Дальнейшие разработки теперь включают механизм обнаружения движения в ручке паяльника. Когда система переходит в спящий режим утюга, достаточно просто переместить ручку утюга, чтобы возобновить работу с последней активной настройкой.

Отображение температуры можно настроить на отображение в градусах Цельсия или Фаренгейта. Существует также настраиваемая пользователем функция автоматического отключения.

Обзор :

  • Мощный нагреватель мощностью 75 Вт эффективно работает со стандартным и бессвинцовым припоем
  • Качественная отделка лицевой панели и диска управления
  • Iron Sleep Mode с обнаружением движения
  • Функция калибровки температуры

Эта система оснащена заземленным наконечником для защиты чувствительных цепей от статического заряда.Также в комплекте есть отдельный держатель для утюга.

Мы также добавили отличное средство для чистки наконечников для продления срока службы ваших наконечников. Горшок наполнен проволочной ватой, которую можно использовать для очистки наконечника, а на дне горшка есть слой канифоли. , который поможет покрыть поверхность наконечника.

Компания Circuit Specialists имеет большой запас запасных и сменных насадок для этой станции. У нас также есть полностью сменная железная ручка, включая наконечник (см. боковую панель).

Спецификация :
:

  • 220-240VAC входное напряжение
  • 75 WATT Керамический нагреватель
  • Универсальный просмотр жидкокристаллический дисплей
  • Автоматически запоминает предыдущая температура Установка
  • Дисплей в Цельсий или Фаренгейт Масштаб
  • 3 Длина шнура от станции до насадки для утюга
  • Коническая насадка в комплекте (KD-M-B)
  • Доступен широкий выбор сменных насадок
  • O.E.M., изготовленный только для специалистов по схемотехнике

Это устройство совместимо со всеми нашими стандартными паяльными наконечниками (с префиксом KD-M-, см. боковую панель)

Примечание: все устройства, поставляемые из нашего магазина в Европе, Вход 220-240 В переменного тока.

в коробке:

9061 9061 9061
CSI Premier75W Main Station 1 шт.
1 шт.
Держатель припоя 1 шт.
Розинский горшок с проводом Очиститель шерстяных наконечников 1 шт.
Инструкция по эксплуатации 1 шт.

В прошлом году я купил у местного поставщика паяльник с регулируемой температурой.Вскоре я купил термовоздушную паяльную станцию ​​и редко использовал этот утюг, потому что новая паяльная станция также имеет утюг с регулируемой температурой. Мне нравится идея этого утюга из-за его дизайна. Это не похоже на другие паяльные станции с регулируемой температурой. Смотрите фото.

Вот крупным планом. Вы можете видеть внутреннюю схему.

Это просто утюг, а в его ручке находится схема контроля температуры. Нет специальной управляемой станции, как знаменитая пушка Веллера. На ручке есть ручка для регулировки температуры от 100 до 400 C.Да, сделано в Китае. Цена очень дешевая, около 5$ (верите или нет). Но качество и исполнение вполне приличные.

Однажды я использовал это железо, и оно не работало. Итак, я открыл исправил это. Исправить довольно просто, и я проверил неисправность в течение минуты.

– Сначала удалили винт и ручку.

— я проверил схему. Вы можете увидеть микросхему, компоненты и симистор. Здесь нет SMD-устройств или дорогих, сложных вещей. Я заметил, что на трубку нагревательного элемента выходит 4 провода.Интересно, я сначала подумал, что в таком дешёвом инструменте не будет схемы обратной связи или датчика. Я ошибался. Красно-синяя пара — это нихромовая катушка, а белая пара — это термопара. Это замкнутая цепь управления, невероятно.

Я начал исследовать цепь.

Ошибка не в чем. Место пайки нагревательной катушки было сухим. Припаять напрямую к нихромовой катушке в такой схеме не очень хорошая идея. Он должен быть обжат. Но здесь нет места для этого, и я просто повторно припаиваю соединение флюсом с кислотной пастой (который может помочь при пайке металлических соединений, таких как нихром, оловянный лист и т.. Не забудьте очистить соединение после пайки, кислота из флюса может провести ваши электрические цепи). Потом железо снова заработало.

Я начал детальную проверку схемы. ИС представляет собой простой обычный операционный усилитель LM358, сдвоенный операционный усилитель малой мощности. Симистор MAC97A6, симистор логического уровня. Это означает, что этот симистор можно напрямую переключать с помощью логического уровня 5 В.

Крупный план,

Как обычно пытался проследить цепь с помощью подсветки.

Это последняя цепь.

# Обновлено 21 июля 2015 г.: добавлено значение C и исправлена ​​полярность в соответствии с комментарием Nguyen Ngoc, спасибо.

— Принцип работы схемы прост. Операционные усилители настроены как компараторы. Триак управляется непосредственно операционным усилителем 2 через C и LED1. Термопара подключена к неинвертирующему входу U1. Предустановка VR1 используется для регулировки опорного напряжения компаратора. Когда температура ниже заданной, выход U1 будет ниже, чем неинвертирующий вход U2. Выход U2 будет в высоком состоянии и включит симистор для нагрева железа.Когда температура достигнет заданного значения, выход U1 изменится на высокий, а выход U2 установится на низкий для переключения симистора.

— C1, ZD1, D2 и R7 — это простые бестрансформаторные стабилитроны.

-Хотя это не линейная схема с обратной связью, она работает, по крайней мере, для этого типа железа. Довольно простая и рабочая конструкция. Китай не победишь 🙂 .

— Я еще не построил эту схему. Если вы хотите построить, я не могу гарантировать, что это сработает.Делайте это самостоятельно. Если у кого-то есть опыт в этом, пожалуйста, дайте мне знать.

# Обновлено в августе 2015 г.

«кому интересно» (может быть кто-то 🙂) поделился этой схемой с некоторыми полезными советами по калибровке. Большое спасибо. Если у кого-то есть опыт использования этих советов, пожалуйста, поделитесь своим опытом.

Добавить комментарий

Ваш адрес email не будет опубликован.