Самодельный ветрогенератор на 1 квт: Как сделать ветрогенератор 💨 на 220В своими руками: самодельный ветряк

Содержание

Фото и видео отчет о самодельном ветряке большой мощности

Интересная конструкция вертикального ветряка, который отличается необычной работой ротора, и необычным трехстаторным генератором. Информация о этом ветряке найдена на форуме http://windpower-russia.ru/showthread.php?t=336. Генератор сделан из асинхронного двигателя мощностью 7,5кВт. Для удобства корпус двигателя был распилен вдоль, чтобы можно было вставлять статоры. Ниже фото шиндика этого мотора.

Асинхронный двигатель 7,5kw

Данные донора, из которого сделан генератор Сначала генератор был намотан проводом 1,8мм, но потом один статор был перемотан проводом 1,6мм, и третий статор двойным проводом 0,9мм. Но после этих изменений мощность и характеристики в принципе не изменились. Ниже табличка мощности генератора при прокрутке на разное сопротивление.

Данные генератора

Мощность генератора на нагрузку и напряжение на холостых оборотах Три статора вместо одного сделаны для того чтобы уменьшить залипание ротора.
Неодимовые магниты сильно притягиваются к зубам статора и вот чтобы снизить, а точнее равномерно распределить залипание сделаны три статора со сдвигом. Каждый из статоров имеет момент страгивания 3.5Нм, а вместе без сдвига просто огромные 10.5Нм. Статоры сдвинуты по оси на 2мм, сдвинуты на расстояние 1/9 от зуб+паз. Магниты использовал размером 50*18*4 мм, 48 штук N40, по 16 штук на 1 статор. статоры по 24 зуба, мотал провод на каждый зуб.

Генератор для ветряка

Тройной ротор и три статора, корпус генератора

Ротор

Ротор генератора на неодимовых магнитах

Перемотанный генератор

Генератор, намотанные медным проводом статоры Так-же поставил на генератор редуктор от мотоцикла Урал, через отключаемую муфту, передаточное соотношение 1:4. К редуктору присоединил бензиновый мотор Субару, мощность ДВС 7кВт. Такая связка предусмотрена для того чтобы при отсутствии или нехватке ветра использовать эту систему для зарядки аккумуляторов.

Самодельный бензогенератор

самодельный бензо-генератор для зарядки аккумуляторов

Начало сборки ветроколеса

изготовление основы ветроколеса, рама ротора ветряка

Привод ротора

Цепной привод ветроколеса, далее пойдет на генератор Лопасти ветрогенератора, сделаны они корпус из трубы 27мм, каркасные усилители из листовой стали 1,5мм, общиты поликарбонатом 4мм. Снаружи торцы отделал 0,55мм оцинковкой. Ниже на фото одна из лопастей, всего их две, далее на видео вы увидите как они работают.

Лопасть вертикального ветряка

Самодельная лопасть вертикального ветрогенератора

Вертикальный ветряк

Каркас ветряка пока сделал из бруса 50*150мм Ветрогенератор в работе, пока правда без генератора

В основном все готово, надо соединительный кардан под размер удлинить, и ремни другие купить на редуктор, так-как купил 1210 мм длинной, а надо 1110 мм, были куплены сначала не те. При 3м/с стартовый момент во всех точках поворота примерно 39Нм. Руками даже за 12-ти сантиметровый фланец не реально остановить при трогании ,перчатки в клочья разлетаются, а уж когда вращается вообще и не стоит тормозить, площадь у нее получилась 6,3 м2, Ветряк уже испытал на себе сильный ветер. Если получится планируемая мощность, то весь каркас будет из труб, а это пока экспериментальный каркас , в случае чего в стройку уйдет. Через некоторое время все было готово к первым испытаниям, но ветра почемуто не-было целых три дня. Ветряк страгивался при 3м/с, но больше 15ватт пока приборы не фиксировали. И наконец подул небольшой ветерок и далее на видео первые вольты и амперы.

Далее была приобретена метеостанция с анемометром, чтобы максимально точно подсчитать КИЭВ всей ветроустановки. Ниже видео работы ветряка и показания приборов. Ветер до 5м/с, ток на аккумулятор 24вольта до 5Ампрер.

Изначально в проекте этого ветряка задумывались еще направляющие экраны, которые должны были собирать ветер и направлять на ротор, тем самым по расчетам мощность должна была увеличится в 1,7 раза, но пока без них, и возможно их не будет вообще. Данных по ветряку пока больше нет, новые данные могут появится на форуме, ссылка в начале статьи.

Ветрогенератор на неодимовых магнитах своими руками

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации.

Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации. Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

к содержанию ↑

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

к содержанию ↑

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

к содержанию ↑

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

к содержанию ↑

Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

к содержанию ↑

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

к содержанию ↑

Как повысить мощность ветряка?

Для подъема мощности ветрогенератора можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора. Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с. Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.




Ветрогенератор 12 вольт своими руками

Сделать ветряк самостоятельно кажется непосильной задачей, которая отнимает много времени и сил. Но следуя пошаговой инструкции можно легко и быстро достичь желаемого результата за небольшие деньги.

Задавшись целью обзавестись ветрогенератором, многие хотят его сделать самостоятельно. Как показали исследования в интернете — большинство так и делает, но такое решение отняло у них очень много времени и усилий (по крайней мере, самая первая сборка). Чаще всего применяется схема сборки на магнитах постоянного тока. Этот путь является значительно проще, чем самостоятельное создание самого генератора. По этой причине рекомендуется запастись терпением и начинать поиски двигателя, который бы отлично подходил по параметрам, чтобы сделать ветрогенератор своими руками.

к содержанию ↑

Подбор генератора

Как оказалось, большинство использует в виде генератора старый мотор из компьютеров. Такой мотор является раритетом и применялся еще во времена, когда у вычислительных машин использовались большие ленточные катушечные накопители. Среди всех возможных вариантов самым лучшим можно считать двигатель постоянного тока от производителя Ametekна 30 вольт. Это самый подходящий вариант, чтобы сделать ветрогенератор, так как даже легкое вращение его вала может свободно генерировать 12 В. Данный двигатель довольно тяжело найти, но на торговых площадках ebay и Amazon полно его аналогов. Дополнительно в описании знающие люди указывают возможность их использования в качестве генератора для ветряка.

Подбор двигателя нужно делать с учетом следующих параметров:

  • постоянный ток;
  • низкие обороты;
  • высокое напряжение;
  • высокая сила тока.

Все дело в том, что двигатель, рассчитанный на 7200 оборотов и напряжением в 24 В, при низких оборотах вряд ли сможет дать требуемые значения. Но если взять 30-вольтовый мотор с номинальным значением в 325 об/мин, то вполне реально ожидать от него напряжение в 12 вольт даже при характерных ветряку низких оборотах.

Примерная стоимость того же Ametek примерно 26 $. Можно найти и немного дешевле двигатель, но это не столь важно. При обычном легком толчке он зажигает без проблем лампу на 12 вольт, что нам и требовалось. Итак, двигатель-генератор мы нашли. Приступаем к следующему шагу — расчету лопастей.

к содержанию ↑

Лопасти

В качестве лопастей, создавая ветрогенератор, можно без проблем использовать обычную сантехническую трубу из ПВХ длиной 60 см и диаметром 15 см. Разрежьте ее на 4 части. Это будут заготовки лопастей. Затем вырежьте квадрат 5х5 у основания для создания крепежа в дальнейшем. Чтобы сохранить точную форму и не срезать лишнего рекомендуется просверлить изначально небольшое отверстие в нужном месте. Далее просто обрезаете лишний пластик вдоль заготовки по диагонали. Все, первая лопасть готова.

Используйте вырезанный элемент как шаблон для создания остальных трех лопастей. Также он будет играть роль запасной детали, если что-то пойдет не так. Двигатель на наш ветрогенератор мы выбрали и изготовили лопасти. Теперь нужно их сделать одним единым.

к содержанию ↑

Сборка генератора с лопастями

Для объединения лопастей с генератором можно применять обычный шкив как основу и алюминиевый диск диаметром 13 см. Скрепив их вместе с использованием болтового соединения, вы получите отличную легкую и практичную основу, которая будет являться промежуточным звеном, передающим силу ветра с лопастей, вращая ветрогенератор. Сами лопасти крепятся также при помощи болтов. В магазине сантехники можно приобрести колпак, чтобы скрыть все металлические детали и придать ветряку большей обтекаемости. Практика показала, что все эти параметры позволяют даже легкому ветерку создавать вращения и при этом ветрогенератор вырабатывает положенные ему 12 В.

к содержанию ↑

Установка турбины

Для установки турбины своими руками можно использовать обычную деревянную подставку из бруска длиной 84 см. Также желательно использовать кусок пластиковой трубы диаметром 10 см для защиты двигателя от разного рода осадков. В качестве хвоста для ветряка на 12 вольт рекомендуется применять алюминиевую пластину размером 21х35 см и толщиной 20-30 мм. Она идеально подойдет как противовес и как элемент для поворота установки по ветру. Все размеры не критичны и могут быть немного изменены под особенности конструкции.

Также рекомендуется провести шлифовку всех элементов и закругление углов для более привлекательного вида и лучших аэродинамических показателей. Затем покройте все деревянные части несколькими слоями краски. Цвет можете выбрать любой, так как от этого ничего не зависит.

Для большего удобства на краю, где будет располагаться сам генератор, можно прикрутить несколько планочек, чтобы он плотно сидел на своем месте. Крепиться мотор при помощи хомутов. Ветрогенератор готов. Теперь нужно установить его на мачте.

к содержанию ↑

Элементы мачты

Конечный результат при создании ветряка своими руками полностью зависит от возможности поворачиваться в зависимости от направления ветра и основной высоты.

Обычная железная труба диаметром 2,5 сантиметра легко скользит внутри электрического трубопровода сечением 3 сантиметра. На бруске установите железный фланец с посадочным местом под трубу 2,5 см. Центр ее должен находиться примерно в 19 см от края. Далее просто вверните кусок трубы в фланец. Также нужно просверлить отверстие в бруске под провода, которые будут проходить через него.

Основание можно сделать в следующей последовательности:

  1. Из фанеры вырезается круг диаметром 60 см;
  2. К нему крепятся два металлических сантехнических колена диаметром 2,5 см при помощи фланцев;
  3. Посредине устанавливается тройник диаметром 3,5 см, на который накручивается основная труба;
  4. В деревянном диске нужно просверлить несколько отверстий для закрепления его на земле.

Труба, которая будет служить мачтой, может использоваться как разборная, так и цельная. Длина ее должна быть не менее 3 метра, а диаметр 3,5 см. Для закрепления трубы можно использовать обычные веревки с хомутами.

Мы создали мачту и теперь можем смело устанавливать наш 12-вольтовый ветрогенератор в рабочее положение. При этом не нужно забывать о подсоединении к нему проводов и протягивании их через трубу. У основания требуется проделать отверстие, чтобы их вывести и подсоединить к контроллеру, который мы сейчас и рассмотрим.

к содержанию ↑

Схема контроллера

Контроллер позволяет регулировать заряд в батареях и при этом не дает им излишка энергии. Если АКБ полные, то это устройство перенаправляет ток напрямую к потребителю. Контроллер на 12 вольт можно легко найти в любом магазине электроники. Но его можно сделать и своими руками, что в положительно отразится на цене.

На рисунке приведена схема сборки контроллера. Она немного изменена в силу того, что большое количество стандартных деталей очень тяжело найти. Любой радиолюбитель сможет ее собрать в кучу.

Установив ветряк и присоединив контроллер мы видим, что наша конструкция работает и даже мультиметр демонстрирует практически точное значение в 12 вольт при слабом ветре. Сборка ветрогенератора своими руками выполнена.

к содержанию ↑

Затраты

Наверное, самой важной частью являются затраты. Проведя небольшое исследование рынка можно прийти к выводу, что на закупку всех элементов с учетом инвертора и батарей, наш ветряк, собранный своими руками, обойдется не более 250 $. Заводские ветрогенераторы имеют практически такие же характеристики, как и тот, что вы соберете своими руками. Вот только придется за них выложить больше 1000 $.



Вертикальные ветряки проще в изготовлении и не требовательны к направлению ветра. При этом, они имеют меньшую эффективность, так как ветер с одинаковой силой воздействует на обе стороны лопасти, затрудняя вращение. Для того, чтобы избежать этого недостатка, создано множество различных конструкций ротора, таких как:

  • ротор Савониуса
  • ротор Дарье
  • ротор Ленца

Известны ортогональные конструкции (разнесенные относительно оси вращения) или геликоидные (лопасти, имеющие сложную форму, напоминающую витки спирали). Все эти конструкции имеют свои достоинства и недостатки, основным из которых является отсутствие математической модели вращения того или иного вида лопастей, делающего расчет крайне сложным и приблизительным. Поэтому действуют методом проб и ошибок — создается экспериментальная модель, выясняются ее недостатки, с учетом которых изготавливается рабочий ротор.

Наиболее простая и распространенная конструкция — ротор Савониуса, но в последнее время в сети появляется множество описаний других ветрогенераторов, созданных на базе других видов.

Устройство ротора несложно — вал на подшипниках, на верхней части которого укреплены лопасти, которые под действием ветра вращаются и передают крутящий момент на генератор. Изготовление ротора осуществляется из доступных материалов, монтаж не требует чрезмерной высоты (обычно поднимают на 3-7 м), это зависит от силы ветров в регионе. Вертикальные конструкции почти не требуют ухода или обслуживания, что облегчает эксплуатацию ветрогенератора.

Рекомендуемые товары

Как сделать аксиальный ветрогенератор


Эта статья посвящена созданию аксиального ветрогенератора на неодимовых магнитах со статорами без металла. Ветряки подобной конструкции стали особенно популярны из-за растущей доступности неодимовых магнитов.

Материалы и инструменты использованные для постройки ветряка этой модели:

1) ступица от автомобиля с тормозными дисками.
2) дрель с металлической щеткой.
3) 20 неодимовых магнитов размером 25 на 8 мм.
4) эпоксидная смола
5) мастика
6) труба ПВХ 160 мм диаметром
7) ручная лебедка
8) труба металлическая длинной 6 метров

Рассмотрим основные этапы постройки ветряка.

За основу генератора была взята ступица автомобиля с тормозным диском. Так как основная деталь заводского производства, то это послужит гарантом качества и надежности. Ступица была полностью разобрана, подшипники находящиеся в ней были проверены на целостность и смазаны. Так как ступица была снята со старого автомобиля, то ржавчину пришлось зачистить с помощью щетки, которую автор насадил на дрель.
Ниже предоставлена фотография ступицы.

Затем автор приступил к установке магнитов на диски ротора. Было использовано 20 магнитов. Причем важно заметить, что для однофазного генератора количество задействованных магнитов равно количеству полюсов, для двухфазного соотношение будет три к двум или четыре полюса к трем катушкам. Магниты следует крепить на диски с чередованием полюсов. Для соблюдения точности необходимо сделать шаблон размещения на бумаге, либо начертить линии секторов прямо на самом диске.


Так же следует разметить магниты по полюсам маркером. Определить полюса можно поднося поочередно магниты к одной стороне проверяющего магнита, если притягивается — плюс, отталкивается- минус, главное, чтобы полюса при установке на диск чередовались. Это необходимо потому что магниты на дисках должны притягиваться друг к другу, а это будет происходить, только если магниты стоящие напротив друг друга будут разной полярности.

Магниты были приклеены на диски при помощи эпоксидной смолы. Чтобы смола не растекалась за границы диска автор сделал бордюры по краям при помощи мастики, то же самое можно сделать при помощи скотча, просто обмотав колесо по кругу.

Рассмотрим основные отличия конструкции однофазного и трехфазного генераторов.
Однофазный генератор будет давать вибрацию при нагрузках, что будет отражаться на мощности самого генератора. Трехфазная конструкция лишена подобного недостатка благодаря чему, мощность постоянна в любой момент времени. Это происходит потому, что фазы компенсируют потерю тока друг в друге. По скромным расчетам автора трехфазная конструкция превосходит однофазную на целых 50 процентов. К тому же из-за отсутствия вибраций мачта не будет дополнительно раскачиваться,следовательно не будет дополнительного шума при работе ротора.

При расчете зарядки 12-ого аккумулятора, которая будет начинаться на 100-150 оборотах в минуту, автор сделал по 1000-1200 витков в катушках. При намотке катушек автор использовал максимально допустимую толщину проволоки, чтобы избежать сопротивления.
Для наматывания проволоки на катушки автор соорудил самодельный станок, фотографии которого представлены ниже.


Лучше использовать катушки эллипсоидной формы, что позволит большей плотности магнитных полей их пересекать. Внутреннее отверстие катушки стоит делать по диаметру магнита либо больше него. В случае, если делать их меньше, то лобовые части практически не участвуют в выработке электроэнергии, а служат проводниками.

Толщина самого статора должна равняться толщине магнитов, которые задействованы в установке.


Форму для статора можно сделать из фанеры, хотя автор решил этот вопрос иначе. Был нарисован шаблон на бумаге, а затем сделаны борта при помощи мастики. Так же для прочности была использована стеклоткань. Для того, чтобы эпоксидная смола не прилипла к форме, ее необходимо смазать воском или вазелином, или можно использовать скотч, пленку, которую в последствии можно будет отодрать от готовой формы.

Перед заливкой катушки необходимо точно закрепить, а их концы вывести за пределы формы, чтобы затем соединить провода звездой или треугольником.

После того, как основная часть генератора была собрана, автор измерил протестировал его работу. При ручном вращении генератор вырабатывает напряжение в 40 вольт и силу тока в 10 ампер.


Затем автор изготовил мачту для генератора высотой в 6 метров. В будущем планируется увеличить высоту мачты за счет использования более толстой трубы минимум вдвое. Чтобы мачта была неподвижна основание было залито бетоном. Для опускания и поднимания мачты было сделано металлическое крепление. Это необходимо, чтобы иметь доступ к винту на земле, так как заниматься ремонтными работами на высоте не особенно удобно.

Для поднятия мачты используется ручная лебедка.
Сам винт для генератора был сделан из трубы ПВХ диаметром 160 мм.

После установки и испытаний генератора в стандартных условиях автор сделал следующие наблюдения: мощность генератора доходит до 300 ватт при ветре в 8 метров в секунду. В последующем увеличил мощность генератора за счет металлических сердечников установленных в катушки. Винт стартует уже при двух метрах в секунду.

Дальше автор приступил к совершенствованию конструкции в целях увеличения мощности генератора. Были набраны магнитопроводы из пластин, которые в последствии были установлены в конструкцию. Из-за их установки появился эффект залипания, но не очень сильный. Старт работы винта происходит при скорости ветра около двух метров в секунду.

Таким образом установка металлических сердечников увеличила мощность генератора до 500 ватт при ветре в 8 метров в секунду.
Для защиты от сильных ветров была использована классическая схема увода винта складывающимся хвостом.

В среднем генератор способен вырабатывать до 150 ватт энергии в час, которая идет на зарядку аккумуляторов.


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Как сделать вертикальный ветрогенератор на 220В для дома своими руками

Электроэнергия неуклонно дорожает. Чтобы чувствовать себя комфортно за городом в жаркую летнюю погоду и морозным зимним днем, необходимо или основательно потратиться, или заняться поиском альтернативных источников энергии. Россия – огромная по площади страна, имеющая большие равнинные территории. Хотя в большинстве регионов у нас преобладают медленные ветры, малообжитая местность обдувается мощными и буйными воздушными потоками. Поэтому присутствие ветрогенератора в хозяйстве владельца загородной недвижимости чаще всего оправдано. Подходящую модель выбирают, исходя из местности применения и фактических целей использования.

Ветряк #1 — конструкция роторного типа

Можно сделать своими руками несложный ветряк роторного типа. Конечно, снабдить электроэнергией большой коттедж ему вряд ли будет под силу, зато обеспечить электричеством скромный садовый домик вполне под силу. С его помощью можно снабдить светом в вечернее время суток хозяйственные постройки, осветить садовые дорожки и придомовую территорию.

Подробнее о других видах альтернативных источников энергии можно прочитать в данной статье: https://aqua-rmnt.com/otoplenie/alt_otoplenie/alternativnye-istochniki-energii.html

Так или почти так выглядит роторный ветрогенератор, сделанный своими руками. Как видите, в конструкции этого оборудования нет ничего сверхсложного

Подготовка деталей и расходников

Чтобы собрать ветрогенератор, мощность которого не будет превышать 1,5 КВт, нам понадобятся:

  • генератор от автомобиля 12 V;
  • кислотный или гелиевый аккумулятор 12 V;
  • преобразователь 12V – 220V на 700 W – 1500 W;
  • большая ёмкость из алюминия или нержавеющей стали: ведро или объёмистая кастрюля;
  • автомобильное реле зарядки аккумулятора и контрольной лампы заряда;
  • полугерметичный выключатель типа «кнопка» на 12 V;
  • вольтметр от любого ненужного измерительного устройства, можно автомобильный;
  • болты с шайбами и гайками;
  • провода сечением 2,5 мм2 и 4 мм2;
  • два хомута, которыми генератор будет крепиться к мачте.

Для выполнения работы нам будут нужны ножницы по металлу или болгарка, рулетка, маркер или строительный карандаш, отвертка, ключи, дрель, сверло, кусачки.

Большинство владельцев частных домов не признают использование геотермального отопления, однако подобная система имеет перспективы. Подробнее о преимуществах и недостатках данного комплекса можно прочитать в следующем материале: https://aqua-rmnt.com/otoplenie/alt_otoplenie/geotermalnoe-otoplenie-doma-svoimi-rukami.html

Ход конструкторских работ

Мы собираемся изготовить ротор и переделать шкив генератора. Для начала работы нам понадобится металлическая ёмкость цилиндрической формы. Чаще всего для этих целей приспосабливают кастрюлю или ведро. Возьмем рулетку и маркер или строительный карандаш и поделим ёмкость на четыре равные части. Если будем резать металл ножницами, то, чтобы их вставить, нужно сначала сделать отверстия. Можно воспользоваться и болгаркой, если ведро не выполнено из крашеной жести или оцинкованной стали. В этих случаях металл неминуемо перегреется. Вырезаем лопасти, не прорезая их до конца.

Чтобы не ошибиться с размерами лопастей, которые мы прорезаем в ёмкости, необходимо сделать тщательные замеры и тщательно всё пересчитать

В днище и в шкиве размечаем и высверливаем отверстия для болтов. На этой стадии важно не торопиться и расположить отверстия с соблюдением симметрии, чтобы при вращении избежать дисбаланса. Лопасти следует отогнуть, но не слишком сильно. При выполнении этой части работы учитываем направление вращения генератора. Обычно он крутится по движению часовой стрелке. В зависимости от угла изгиба увеличивается и площадь воздействия потоков ветра, а, значит, и скорость вращения.

Это ещё один из вариантов лопастей. В данном случае каждая деталь существует отдельно, а не в составе ёмкости, из которой вырезалась

Раз каждая из лопастей ветряка существует отдельно, прикручивать нужно каждую. Преимущество такой конструкции в её повышенной ремонтопригодности

Ведро с готовыми лопастями следует закрепить на шкиве, используя болты. На мачту при помощи хомутов устанавливаем генератор, затем подсоединяем провода и собираем цепь. Схему, цвета проводов и маркировку контактов лучше заранее переписать. Провода тоже нужно зафиксировать на мачте.

Чтобы подсоединить аккумулятор, используем провода 4 мм2, длина которых не должна быть более 1-го метра. Нагрузку (электроприборы и освещение) подключаем с помощью проводов сечением 2,5 мм2. Не забываем поставить преобразователь (инвертер). Его включают в сеть к контактам 7,8 проводом 4 мм2.

Конструкция ветряной установки состоит из резистора (1), обмотки стартера генератора (2), ротора генератора (3), регулятора напряжения (4), реле обратного тока (5), амперметра (6), аккумулятора (7), предохранителя (8), выключателя (9)

Достоинства и недостатки такой модели

Если всё сделано правильно, работать этот ветрогенератор будет, не создавая вам проблем. При аккумуляторе 75А и с преобразователем 1000 W он может питать уличное освещение, охранную сигнализацию, приборы видеонаблюдения и т.д.

Схема работы установки наглядно демонстрирует то, как именно энергия ветра преобразуется в электричество и то, как она используется по назначению

Достоинства такой модели очевидны: это весьма экономичное изделие, хорошо поддаётся ремонту, не требует особых условий для своего функционирования, работает надежно и не нарушает ваш акустический комфорт. К недостаткам можно отнести невысокую производительность и значительную зависимость от сильных порывов ветра: лопасти могут быть сорваны воздушными потоками.

Изготовить солнечную батарею возможно и самостоятельно. Пошаговая инструкция расположена здесь: https://aqua-rmnt.com/otoplenie/alt_otoplenie/solnechnaya-batareya-svoimi-rukami.html

Ветряк #2 — аксиальная конструкция на магнитах

Аксиальные ветряки с безжелезными статорами на неодимовых магнитах в России до последнего времени не делали по причине недоступности последних. Но теперь они есть и в нашей стране, причем стоят они дешевле, чем изначально. Поэтому и наши умельцы стали изготавливать ветрогенераторы этого типа.

Со временем, когда возможности роторного ветрогенератора уже не будут обеспечивать все потребности хозяйства, можно сделать аксиальную модель на неодимовых магнитах

Что необходимо подготовить?

За основу аксиального генератора нужно взять ступицу от автомобиля с тормозными дисками. Если эта деталь была в эксплуатации, её необходимо разобрать, подшипники поверить и смазать, ржавчину счистить. Готовый генератор будет покрашен.

Чтобы качественно отчистить ступицу от ржавчины, воспользуйтесь металлической щеткой, которую можно насадить на электродрель. Ступица снова будет выглядеть отлично

Распределение и закрепление магнитов

Нам предстоит наклеивать магниты на диски ротора. В данном случае используются 20 магнитов размером 25х8мм. Если вы решите сделать другое количество полюсов, то используйте правило: в однофазном генераторе должно быть сколько полюсов, столько и магнитов, а в трехфазном необходимо соблюдать соотношение 4/3 или 2/3 полюса к катушкам. Размещать магниты следует, чередуя полюса. Чтобы их расположение было правильным, используйте шаблон с секторами, нанесенными на бумаге или на самом диске.

Если есть такая возможность, магниты лучше использовать прямоугольные, а не круглые, потому что у круглых магнитное поле сосредоточено в центре, а у прямоугольных – по их длине. Противостоящие магниты должны иметь разные полюса. Чтобы ничего не перепутать, маркером нанесите на их поверхность «+» или «-». Для определения полюса возьмите один магнит и подносите к нему другие. На притягивающихся поверхностях ставьте плюс, а на отталкивающихся – минус. На дисках полюса должны чередоваться.

Магниты правильно размещены. Перед их фиксацией эпоксидной смолой, необходимо сделать бортики из пластилина, чтобы клейкая масса могла застыть, а не стекла на стол или пол

Для закрепления магнитов нужно использовать сильный клей, после чего прочность склейки дополнительно усиливают эпоксидной смолой. Ею заливают магниты. Чтобы предотвратить растекание смолы можно сделать бордюры из пластилина или просто обмотать диск скотчем.

Трехфазные и однофазные генераторы

Однофазный статор хуже трехфазного, потому что при нагрузке он даёт вибрацию. Это происходит из-за разницы в амплитуде тока, которая возникает по причине непостоянной отдачи его за момент времени. Трехфазная модель этим недостатком не страдает. Мощность в ней всегда постоянна, потому что фазы друг друга компенсируют: если в одной ток падает, а в другой он нарастает.

В споре однофазного и трехфазного вариантов последний выходит победителем, потому что дополнительная вибрация не продлевает срок службы оборудования и раздражает слух

В результате отдача трехфазной модели на 50% превышает тот же показатель однофазной. Другим плюсом отсутствия ненужной вибрации является акустический комфорт при работе под нагрузкой: генератор не гудит во время его эксплуатации. Кроме того, вибрация всегда выводит ветрогенератор из строя до истечения срока его эксплуатации.

Процесс наматывания катушек

Любой специалист вам скажет, что перед наматыванием катушек нужно произвести тщательный расчет. А любой практик все сделает интуитивно. Наш генератор не будет слишком быстроходным. Нам нужно, чтобы процесс зарядки 12-вольтового аккумулятора начался при 100-150 оборотах в минуту. При таких исходных данных общее число витков во всех катушках должно составлять 1000-1200шт. Осталось разделить эту цифру на количество катушек и узнать, сколько витков будет в каждой.

Чтобы сделать ветрогенератор на низких оборотах мощнее, нужно увеличить число полюсов. При этом в катушках возрастет частота колебания тока. Для намотки катушек лучше использовать толстый провод. Это уменьшит сопротивление, а, значит, сила тока возрастет. Следует учесть, что при большом напряжении ток может оказаться «съеденным» сопротивлением обмотки. Простой самодельный станочек поможет быстро и аккуратно намотать качественные катушки.

Статор размечен, катушки уложены на свои места. Для их фиксации используется эпоксидная смола, стеканию которой снова противостоят пластилиновые бортики

Из-за числа и толщины магнитов, расположенных на дисках, генераторы могут значительно различаться по своим рабочим параметрам. Чтобы узнать, какую мощность ждать в результате, можно намотать одну катушку и прокрутить её в генераторе. Для определения будущей мощности, следует измерить напряжение на определенных оборотах без нагрузки.

Например, при 200 оборотах в минуту получается 30 вольт при сопротивлении 3 Ом. Отнимаем от 30 вольт напряжение аккумулятора в 12 вольт, а получившиеся 18 вольт делим на 3 Ом. Результат – 6 ампер. Это тот объём, который отправится на аккумулятор. Хотя практически, конечно, выходит меньше из-за потерь на диодном мосту и в проводах.

Чаще всего катушки делают круглыми, но лучше их чуть вытянуть. При этом меди в секторе получается больше, а витки катушек оказываются прямее. Диаметр внутреннего отверстия катушки должен соответствовать размеру магнита или быть немногим больше его.

Проводятся предварительные испытания получившегося оборудования, которые подтверждают его отличную работоспособность. Со временем и эту модель можно будет усовершенствовать

Делая статор, учтите, что его толщина должна соответствовать толще магнитов. Если число витков в катушках увеличить и сделать статор толще, междисковое пространство увеличится, а магнитопоток уменьшится. В результате может образоваться то же напряжение, но меньший ток из-за возросшего сопротивления катушек.

В качестве формы для статора используют фанеру, но можно на бумаге разметить сектора для катушек, а бордюры сделать из пластилина. Прочность изделия увеличит стеклоткань, помещенная на дно формы и поверх катушек. Эпоксидная смола не должна прилипать к форме. Для этого её смазывают воском или вазелином. Для тех же целей можно использовать пленку или скотч. Катушки закрепляют между собой неподвижно, концы фаз выводят наружу. Потом все шесть проводов соединяют треугольником или звездой.

Генератор в сборе тестируют, используя вращение рукой. Получившееся напряжение составляет 40 вольт, сила тока при этом составляет примерно 10 Ампер.

Заключительный этап — мачта и винт

Фактическая высота готовой мачты составила 6 метров, но лучше было бы сделать её 10-12 метров. Основание для неё нуждается в бетонировании. Необходимо сделать такое крепление, чтобы трубу можно было поднимать и опускать при помощи ручной лебедки. На верхнюю часть трубы крепится винт.

Труба ПВХ – надежный и достаточно легкий материал, используя который можно сделать винт ветряка с заранее предусмотренным изгибом

Для изготовления винта нужна ПВХ труба, диаметр которой составляет 160 мм. Из неё предстоит вырезать шестилопастной двухметровый винт. С формой лопастей имеет смысл поэкспериментировать, чтобы усилить крутящий момент на низких оборотах. От сильного ветра винт нужно уводить. Эта функция выполняется с помощью складывающегося хвоста. Выработанная энергия копится в аккумуляторах.

Мачта должна подниматься и опускаться с помощью ручной лебедки. Дополнительную устойчивость конструкции можно придать, используя натяжные тросы

Вашему вниманию предоставлены два варианта ветрогенераторов, которые чаще всего используются дачниками и владельцами загородной недвижимости. Каждый из них по-своему эффективен. Особенно результат применения такого оборудования проявляется в местности с сильными ветрами. В любом случае, такой помощник в хозяйстве не помешает никогда.

Оцените статью: Поделитесь с друзьями!

Стоят ли они? > ENGINEERING.com

Маленькая ветряная турбина на крыше — (Изображение Андола [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], через Wikimedia Commons).

Недалеко от моего места работы есть частная средняя школа с несколькими небольшими ветряками, установленными на крыше. Сразу по дороге от моего дома у жителя есть небольшая ветряная турбина на крыше гаража. Каждое утро по дороге на работу я проезжаю мимо фермерского дома с небольшой ветряной турбиной, установленной на 30-футовой башне.Сколько энергии могут генерировать турбины на крыше? Давайте посчитаем…

Рекламируются ветряные турбины с номинальной мощностью. Небольшие турбины, подобные тем, что вы видели на крыше, обычно рассчитаны на мощность от 400 до 1 кВт. Итак, вы можете сделать быстрый мысленный расчет и предположить, что турбина мощностью 1 кВт будет вырабатывать 24 кВт · ч энергии каждый день (1 кВт x 24 часа). Что ж, это было бы правдой, если бы ветер дул постоянно с номинальной скоростью ветра. Но факт в том, что ни одно из этих условий вряд ли может возникнуть на крыше.

Во-первых, номинальная мощность турбины — это лучший сценарий. Это мера того, сколько мощности турбина будет генерировать при максимальной скорости ветра, которую она может выдержать. Чтобы получить более точную оценку, посмотрите на кривую мощности турбины. Вот типичная кривая мощности для турбины мощностью 1 кВт:

Кривая показывает, что турбина начинает вырабатывать мощность со скоростью около 3 м / с (6,7 миль в час) — скорости включения. Более медленный ветер не имеет достаточной мощности, чтобы заставить ротор вращаться. По мере увеличения скорости ветра происходит быстрое увеличение мощности, но выходная мощность достигает 1 кВт (номинальная мощность), когда скорость ветра составляет около 11 м / с (почти 25 миль в час).Для сравнения: если бы на вашей земле средняя скорость ветра составляла 25 миль в час, все ваши деревья были бы постоянно согнуты. Более вероятно, что вы увидите скорость ветра от 3 до 5 м / с, что означает, что турбина мощностью 1 кВт обычно вырабатывает менее одной десятой своего номинального значения.

Скорость останова — это скорость, при которой турбина задействует тормозной механизм для предотвращения повреждения. Типичная скорость останова всего на несколько м / с выше номинальной скорости, поэтому «золотая середина» — диапазон, в котором турбина вырабатывает свою номинальную мощность, — довольно узкий.

Чтобы сделать ветроэнергетику рентабельной, турбинам необходим доступ к сильным и устойчивым ветрам. Жилая крыша не предлагает ни того, ни другого. Скорость ветра увеличивается с высотой, и верхняя часть дома находится довольно близко к уровню земли. Хуже того, все препятствия — деревья, другие здания, даже сам дом — вызывают турбулентность на ветру. Таким образом, вместо быстрого устойчивого ветра, дующего в основном в постоянном направлении, вы получаете короткие порывы ветра, дующие со случайных направлений. Турбулентность не только снижает мощность турбины, но и вызывает механическое напряжение, которое сокращает срок службы турбины.Практическое правило заключается в том, что турбина должна быть как минимум на 9 м (30 футов) выше любого препятствия в пределах 150 м (500 футов):

Недавно я видел исследование, в котором говорилось, что турбины на крышах должны быть установлены ближе к центру крыши, а не по периметру, потому что турбулентность больше вокруг внешней стороны крыши, чем в центре. Достаточно справедливо, но это исследование рассматривало только турбулентность, а не общую добычу. Следование его рекомендациям означает, что ваша турбина прослужит дольше. Это хорошо, потому что турбине может потребоваться очень много времени, чтобы выработать достаточно электроэнергии, чтобы компенсировать стоимость самой турбины.Лучше не ставить ветряные турбины на крышу.

В курсе «Введение в устойчивую энергетику», который я преподаю, мы выполняем упражнение для расчета срока окупаемости различных небольших ветряных турбин. Не буду упоминать бренды, но мы выбрали ветряную турбину с горизонтальной осью мощностью 400 Вт (HAWT) и 1 кВт HAWT. И мы не стали возиться с установкой на крыше — мы выбрали башню высотой 10 м (33 фута), поскольку на больших высотах дуют устойчивые ветры. В северном Иллинойсе средняя зимняя скорость ветра на высоте 10 м составляет 3.6 м / с, или около 8 миль в час.

400 Вт HAWT

При ветре 3,6 м / с турбина мощностью 400 Вт вырабатывает 50 Вт. Если предположить, что она будет работать 24 часа в сутки, 7 дней в неделю, 365 дней в году, турбина будет вырабатывать 438 кВтч в год. Средняя национальная ставка на электроэнергию в США составляет 0,12 доллара за киловатт-час, поэтому турбина экономит владельцу 52 доллара в год на стоимости электроэнергии. Типичная турбина мощностью 400 Вт стоит около 400 долларов — и это просто турбина, а не башня. Самый дешевый комплект башни, который я смог найти, стоит чуть меньше 400 долларов, не считая бетонного основания.Таким образом, одна из этих турбин и ее башня стоит как минимум 800 долларов. Это более чем 15-летний период окупаемости, который не будет ужасным для долгосрочных инвестиций, за исключением того, что турбина поставляется с годовой гарантией.

1 кВт HAWT

Популярная турбина мощностью 1 кВт с более высокой гарантией будет генерировать 77 Вт при скорости ветра 3,6 м / с. Это дает 675 кВтч каждый год, сокращая годовой счет потребителя за электроэнергию на 81 доллар. Турбина продается за 4400 долларов без башни, и эта турбина намного тяжелее, поэтому для нее требуется более прочная башня.В общем, стоимость башни примерно такая же, как и стоимость турбины, поэтому инвестиции близки к 8800 долларам. Если бы родители Бильбо Бэггинса купили одну из них в день его рождения, она окупилась бы примерно в то время, когда ему исполнился одиннадцать лет. О, я даже не вдавался в стоимость профессиональной установки, которая может составлять 2000 долларов или больше.

Легко сказать, что эти турбины не стоят своих денег по сравнению с электросетью, но как насчет удаленных мест, где электросеть недоступна? Давайте посмотрим на турбину мощностью 1 кВт и башню за 8800 долларов.Мы определили, что он производит 675 кВтч в год. Есть ли лучший возобновляемый источник энергии? Солнечная?

В том же месте средний солнечный ресурс составляет 4,5 пиковых солнечных часа (PSH) в день, а в худшем случае — 2,6 PSH зимой. Чтобы вырабатывать 675 кВтч / год, фотоэлектрическая батарея должна производить 1,85 кВтч / день. Зимой солнечная батарея мощностью 1 кВт могла бы покрыть это, даже если бы вся система была эффективна только на 75%. (85% — более реалистичное число.) Маленькая фотоэлектрическая система стоит около 4 долларов за установленный ватт, поэтому общие инвестиции, включая установку, составляют около 4000 долларов.Более того, в фотоэлектрической системе нет движущихся частей, поэтому она не требует ежегодного обслуживания.

Когда я провожу цифры, я просто не вижу причин, по которым домовладелец выбрал бы небольшую ветряную турбину, когда фотоэлектрическая энергия — лучший вариант. Подождите … Я могу вспомнить одно: у меня есть невестка, которая живет на Аляске!

Ветровая энергия — отличный источник возобновляемой энергии — в масштабах коммунального предприятия . Большие турбины более эффективны, чем маленькие, а более высокие башни достигают этих богатых энергией высокоскоростных ветров.Если вы думаете о небольшой турбине, подумайте еще раз. Если вы не находитесь в арктическом регионе, вам лучше потратить деньги на солнечные батареи.

Комментарии или отзыв? Продолжите этот разговор наглядно в нашем новом сообществе ProjectBoard! Нажмите здесь

Следуйте за доктором Томом Ломбардо в Twitter, LinkedIn, Google+ и Facebook.


ВЕТРОВАЯ ТУРБИНА PMDD 1,5 МВт — Скачать PDF бесплатно

ЭКСПЕРТ ОТРЕМОНТИРОВАННАЯ ВЕТРОВАЯ ТУРБИНА

EXPERT ПРЕОБРАЗОВАННАЯ ВЕТРОВАЯ ТУРБИНА Repowering Solutions является подразделением группы компаний Jeraneas.Наш основной бизнес — восстановление ветряных турбин различных размеров; работа, которую мы прошли

Подробнее

Возбуждение. www.andritz.com/neptun

Возбуждение www.andritz.com/neptun 02 NEPTUN Возбуждение Возбуждение 3 x 150 МВт, Копсверке II, Австрия Динамика с силой мозга Система возбуждения синхронного генератора позволяет питать

Подробнее

ТЕХНОЛОГИЯ ВЕТРОВОЙ ТУРБИНЫ

Модуль 2.2-2 ТЕХНОЛОГИЯ ВЕТРОВОЙ ТУРБИНЫ Электрическая система Герхард Дж. Гердес Семинар по возобновляемым источникам энергии 14-25 ноября 2005 г. Нади, Республика острова Фиджи Содержание Модуль 2.2 Типы генераторных систем

Подробнее

GE Energy 1,5 МВт. Ветряная турбина

Ветряная турбина GE Energy мощностью 1,5 МВт Рабочая лошадка в отрасли Миру нужны надежные, доступные и экологически чистые источники электроэнергии с нулевыми выбросами парниковых газов, поэтому GE продолжает привлекать инвестиции

Подробнее

ВЭУ ВВД-1 1 МВт

Приложение 10 Техническая спецификация 1 (18) ВЭУ ВВД-1 1 МВт Техническая спецификация Приложение 10 Техническая спецификация 2 (18) Содержание 1.Общие … 3 2. Башня … 6 3. Ротор … 6 4. Коренной подшипник 3-RR

Подробнее

ПЛАТФОРМА 2,1 МВт: будущие поколения

ПЛАТФОРМА 2,1 МВт Впереди поколения ПЕРВАЯ И ВЫСОКАЯ ГИБРИДНАЯ БАШНЯ В МИРЕ С РЕШЕТОЧНО-ТРУБНОЙ ГИБРИДНОЙ башней Инновационная 120-метровая гибридная башня с решетчатой ​​структурой в основании и трубчатой ​​верхней частью Увеличенная высота ступицы

Подробнее

Береговые ветровые службы

GE Renewable Energy Onshore Wind Services www.ge.com/wind PITCH СОДЕРЖАНИЕ: 3 Эксплуатация и обслуживание 3 Управление активами и парками 5 Техническое обслуживание турбин 8 Улучшение и оптимизация 8 Услуги ветроэнергетики *

Подробнее

Nordex SE. Nordex переходит в офшор

Nordex SE Nordex выходит на офшор Ганновер, апрель 2011 г. Содержание 1. Рынок морской ветроэнергетики 2. История и будущее Nordex Offshore 3. Конкуренция и техническое развитие 4. N150 / 6000 2 Сильные перспективы роста

Подробнее

ВЕТРОВЫЕ ТУРБИНЫ ENERCON

Продажи ENERCON GmbH Dreekamp 5 2665 Aurich, Германия Телефон +49 494192 7 Факс +49 4941 92 71 9 vertrieb @ enercon.de E-33 E-44 E-48 E-53 E-7 E-82 ENERCON ВЕТРОВЫЕ ТУРБИНЫ ОБЗОР ПРОДУКЦИИ ENERCON GmbH Dreekamp 5

Подробнее

ИНСТИТУТ ХОЛОДИЛЬНЫХ ТЕХНОЛОГИЙ

БУМАГА №: КАТЕГОРИЯ: TP09-18 ИНСТИТУТ ТЕХНОЛОГИЙ ОХЛАЖДЕНИЯ ВЕНТИЛЯТОРОВ ПОСЛЕДНИЕ РАЗРАБОТКИ В АВТОТЕХНОЛОГИИ ПОЗВОЛЯЮТ ПРЯМО ПРИВОДИТЬ ВЕНТИЛЯТОРЫ НИЗКОСКОРОСТНОЙ ГРАДУСКИ ROBBIE MCELVEEN BILL MARTIN RYAN SMITH BALDOR ELECTRIC

Подробнее

Основы моторики.Двигатель постоянного тока

Основные принципы работы двигателя Прежде чем мы сможем исследовать функцию привода, мы должны понять основные принципы работы двигателя. Он используется для преобразования электрической энергии, подаваемой контроллером, в механическую

. Подробнее

производственные проверки www.sgs.com

инспекции в процессе эксплуатации www.sgs.com Сведение к минимуму простоев ветряных турбин Одна из основных проблем при инвестировании в проекты ветряных электростанций связана с эксплуатационной готовностью турбины, которая представляет собой риск

Подробнее

PI734D — Лист технических данных

PI734D — Технический паспорт PI734D ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СТАНДАРТЫ ОПЦИЙ Промышленные генераторы Newage Stamford соответствуют требованиям BS EN 60034 и соответствующим разделам других национальных и международных стандартов

. Подробнее

PI734B — Лист технических данных

PI734B — Технический паспорт PI734B ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СТАНДАРТЫ ОПЦИЙ Промышленные генераторы Newage Stamford соответствуют требованиям стандарта BS EN 60034 и соответствующих разделов других национальных и международных стандартов

. Подробнее

УСТОЙЧИВОЕ ТЕХНОЛОГИИ

УСТОЙЧИВЫЕ ТЕХНОЛОГИИ ЗЕЛЕНЫЕ РАБОТЫ БУДУЩЕГО Мировой лидер в области обучающего оборудования СОЛНЕЧНЫЕ ТЕХНОЛОГИИ Вид сзади Тренажер солнечной фотоэлектрической энергии модели H-SPT-AC-1A предлагает пользователю практическую альтернативу

Подробнее

Обзор технологии ветряных турбин

Курс по обзору технологии ветряных турбин №: M01-009 Авторы и права: 1 PDH Brian McCaffrey, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877)

Подробнее

НЕКОКАР. Международный проект CATIA

NECOCAR International CATIA Project 2008 ЦЕЛЬ Целью этого проекта является разработка электрокара для японской публики. Симпатичная удобная современная экологическая ОРГАНИЗАЦИЯ Русско-французская CATIA V5 R18 Совместное использование

Подробнее

морской ветер будущее

Будущее морской ветроэнергетики Будучи дочерней компанией Mitsubishi Heavy Industries Ltd (MHI), Mitsubishi Power Systems Europe (MPSE) является частью одной из самых инновационных, успешных и ответственных компаний в мире

. Подробнее

МЕЖДУНАРОДНЫЙ СТАНДАРТ

МЕЖДУНАРОДНЫЙ СТАНДАРТ IEC 61400-1 Второе издание 1999-02 Системы ветряных турбин Часть 1: Требования безопасности Aérogénérateurs Часть 1: Спецификации безопасности IEC 1999 Авторские права — все права

Подробнее

UCI274C — Лист технических данных

— Технический паспорт ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СТАНДАРТЫ ОПЦИЙ Промышленные генераторы Newage Stamford соответствуют требованиям BS EN 60034 и соответствующему разделу других международных стандартов, таких как BS000,

Подробнее

UCI274H — Лист технических данных

— Технический паспорт ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СТАНДАРТЫ ОПЦИЙ Промышленные генераторы Newage Stamford соответствуют требованиям BS EN 60034 и соответствующему разделу других международных стандартов, таких как BS000,

Подробнее

СИНХРОННЫЕ МАШИНЫ

СИНХРОННЫЕ МАШИНЫ Геометрия синхронной машины очень похожа на геометрию индукционной машины.Сердечник статора и обмотки трехфазной синхронной машины практически идентичны

Подробнее

Сколько стоят ветряки?

Ветряные турбины домашнего или сельскохозяйственного масштаба

Ветряные турбины мощностью менее 100 киловатт стоят от 3000 до 8000 долларов за киловатт мощности. Установка мощностью 10 киловатт (размер, необходимый для питания большого дома) может иметь установленную стоимость от 50 000 до 80 000 долларов (или больше).

Ветряные турбины имеют значительную экономию на масштабе. Турбины меньшего размера для фермерских или жилых домов в целом стоят меньше, но они дороже за киловатт производимой энергии. Часто существуют налоговые и другие стимулы, которые могут резко снизить стоимость ветроэнергетического проекта.

Коммерческие ветряные турбины

Затраты на ветряную турбину коммунального масштаба колеблются от 1,3 до 2,2 млн долларов на МВт установленной паспортной мощности. Большинство установленных сегодня промышленных турбин имеют мощность 2 МВт и стоят примерно 3-4 миллиона долларов.

Общие затраты на установку ветряной турбины промышленного масштаба будут существенно различаться в зависимости от количества заказанных турбин, стоимости финансирования, даты заключения договора о покупке турбины, контрактов на строительство, местоположения проекта и других факторов. Компоненты затрат для ветроэнергетических проектов включают в себя другие вещи, помимо турбин, такие как расходы на оценку ветровых ресурсов и анализ участка; строительные расходы; разрешительные и межсетевые исследования; модернизация инженерных сетей, трансформаторов, защитного и измерительного оборудования; страхование; эксплуатация, гарантия, обслуживание и ремонт; юридические и консультационные услуги.Другие факторы, которые повлияют на экономику вашего проекта, включают налоги и льготы.

Дополнительные ссылки

Страница Windustry по экономике малого ветра, включая ссылку на наш Small Wind Calculator

Страница ветроэнергетики о затратах на ветровые проекты в сообществах

Список производителей турбин в нашей ветровой библиотеке

Страница Совета по сертификации малых ветроэнергетических установок, посвященная сертифицированным малым ветровым турбинам (для получения информации о ценах свяжитесь с указанными компаниями)

Единый перечень ветроэнергетических установок Межгосударственного консультативного совета по турбинам

.

Добавить комментарий

Ваш адрес email не будет опубликован.