Верхний нагреватель для ик станции: Самодельная инфракрасная паяльная станция. Бюджетный ремонт ноутбука своими руками.

Содержание

Самодельная инфракрасная паяльная станция. Схема

Многие специалисты в вопросе, какая паяльная станция лучше, делают выбор в пользу инфракрасных паяльных агрегатов. В этом оборудовании вместо потока горячего воздуха для нагревания деталей используются инфракрасные волны, передаваемые посредством невидимого глазу безопасного излучения. Подобные паяльные станции подходят для работы с любыми компонентами, так как обеспечивают локальный нагрев элементов даже в условиях ограниченного пространства плат. Современные инфракрасные приборы, например, от компаний AchiScottle и Jovy, представляют собой сложные многофункциональные комплексы, оснащенные системами охлаждения, мониторами для трансляции параметров работы, панелями управления и т.д. По сравнению с термовоздушными паяльными станциями они обладают следующими преимуществами:

Основные недостатки инфракрасных паяльных станций – это их высокая стоимость и сложность. Но следует понимать, что это оборудование считается профессиональным, и его функционал может остаться невостребованным в бытовых условиях.

Часто в своих видеороликах канал Sovering TVi рассказывал о том, что собирается собрать инфракрасную паяльную станцию. Уже практически заключительный этап перед тем, как ее будем собирать окончательно.

Радиодетали, паяльные станции ИК  и другие в этом китайском магазине.
Перед тем, как все собирать, прикупил сопутствующие материалы — термопара, для измерения температуры. Вакуумный пинцет тоже прикупил, обзор попозже. Он уже есть готовый, нужно смонтировать, не было времени. Димеры, эти 2 димера, тоже обзорчик делал, кому интересно можете посмотреть на канале. Еще прикупил такие трафареты.

Купил универсальные, так пока учиться пробовать, поэтому такие. В комплекте еще была такая, тоже обзор чуть попозже, материал уже есть нужно обработать и сделать.

Верхний нагреватель сделал из блока питания старого, такой маленький валялся. Его раскрутилась, чтобы показать вам, что внутри. Все припаял, спаял, скрутил. Сюда поставим где-нибудь диммер, чтобы можно было не выносить на переднюю панель, а управлять напрямую. Отдельно управляться с кнопкой с отдельным шнуром питания. Нижний нагреватель со своим питанием и тоже потом, если что-то не понравится, переделывать. Пока все так выглядит. Тоже и коробку переделывать.
Он будет прикручивается сюда и штанга. Такая ножка. Дроссель, точнее блок питания для лампочки подсветки. Подсветку нормальную, тоненькую. Блок питания для нее, еще дополнительный свет. Про диммеры рассказал, кнопочку включения питания для нижнего нагревателя какую-то из этих. Уголки, на которых ляжет верхний лист, снимем верхний лист посмотрим, что внутри, из чего его собрал. Эту штучку открутим.
Продолжение с 4 минуты про самодельную рабочую ИК паяльную станцию.

Инфракрасная паяльная станция своими руками С появлением микропроцессорной техники возникла необходимость при ремонте сталкиваться с перепайкой BGA микросхем, что привычными методами сделать или крайне сложно, или, чаще, невозможно. Даже фен не всегда поможет справиться с поставленной задачей. Именно поэтому изготовление инфракрасной паяльной станции своими руками будет наилучшей альтернативой и порой единственным актуальным решением.

ИК станция для пайки

Микросхемы BGA (Ball grid array) присутствуют практически в любом современном «умном» устройстве: телефоны, компьютеры, телевизоры, принтеры. В процессе эксплуатации они могут выходить из строя, что требует замены неисправной части на новую. Но такую процедуру осуществить без специального оборудования — задача крайне сложная.

Проблема заключается в том, что производители изобретают всё новые и новые методы для монтажа электронных деталей. И обычный паяльник или фен не всегда смогут помочь в решении такой проблемы. Ведь контактные шарики способствуют высокой теплоотдаче на плату, в результате чего они не могут расплавиться.

Инфракрасный паяльник Если пытаться поднять температуру до необходимой для их плавления, то появляется риск перегреть микросхему, в результате чего она может выйти из строя. Вследствие перегрева не исключена и возможность повреждения близлежащих деталей. Особенно если их корпусы выполнены из легкоплавких материалов.

Отличным решением может выступить инфракрасная станция. Она позволяет производить замену даже крупных GPU контроллеров. А с широким распространением компьютеров, ноутбуков, материнских плат, видеоадаптеров и другой сложной техники такие работы при ремонте выполняются достаточно часто. И если раньше для замены крупных микросхем можно было использовать термовоздушные станции, то сейчас, когда производители используют бесконтактные методы пайки, единственным оптимальным решением является ИК станция, способная качественно справиться с заменой любой микропроцессорной детали.

Принцип действия

Основными проблемами при перепайке микросхем и контроллеров является или недогрев до температуры плавления контактного материала, или перегрев заменяемой части и её выход из строя.

Так пришла идея нагревать до температуры 100–150 градусов Цельсия непосредственно саму плату. После чего уже производить пайку деталей. Это позволяет качественно снизить теплоотток на текстолит платы, что даёт возможность понижать и «верхние» температуры. А значит, и сама деталь будет меньше подвергаться перегреву.

Производить нагрев можно и термофеном, но использовать инфракрасный паяльник предпочтительнее. Ведь ИК станция позволяет делать это контролируемо, то есть следить и поддерживать «низ» и «верх» температур или использовать рекомендуемый термопрофиль пайки.

Конструктивные особенности

Любые ИК паяльные станции состоят из трёх основных частей. Выглядит всё довольно просто, хотя каждая из них является самостоятельным сложным механизмом, объединённым с общей установкой. Так, любая станция включает в себя:

  1. Самодельная инфракрасная паяльная станция сборкаКонтроллер управления, регулирующий весь процесс нагрева;
  2. Нижнюю подогревающую часть;
  3. Верхний подогреватель.

В зависимости от модели и производителя, ИК паяльники могут отличаться лишь техническими характеристиками. Одни делают работу проще, другие, напротив, требуют от пользователя дополнительного внимания и трудозатрат.

Влияет это и на стоимость оборудования. Поэтому, выбирая станцию требуется обращать внимание не только на цену, но и на технические данные, чтобы не переплачивать за ненужный функционал.

Изготовление своими руками

Производствам или лицам, занимающимся ремонтом сложной электронной аппаратуры, вполне можно приобрести для работы заводскую паяльную ИК станцию. А вот любителям или тем, кому такая установка нужна изредка, можно создать её своими руками. И в пользу этого, в первую очередь, говорит цена. Даже приборы китайского производства имеют стоимость от 1 тыс. долларов. Качественные же модели европейских марок от 2 тыс. долларов и выше. Позволить себе столь дорогое удовольствие сможет далеко не каждый.

 инфракрасная паяльная станция инструментыКасательно самодельной инфракрасной паяльной станции всё выглядит значительно оптимистичнее. По средним расчётам, такой аналог ИК паяльника обойдётся в пределах 80 долларов, что выглядит несравнимо более приемлемо цен на заводские приборы.

Любой человек, занимающийся ремонтом сложной техники, имеет достаточно знаний, чтобы придумать и сконструировать ИК станцию самостоятельно. В связи с этим электронная часть, внешний вид и некоторые возможности могут отличаться. А вот 

основная конструкция останется в любой модели одинаковой. Именно поэтому не существует единой идеальной схемы, которую можно привести в качестве единственного верного решения. Но для того чтобы понять сам принцип создания ИК паяльника, подойдёт любая модель. А уже основываясь на личных знаниях и предпочтениях, можно убрать или добавить те или иные части.

Первый вариант

В этом варианте будет использоваться двухканальный контроллер.

  1. Первый канал задействован для платинового терморезистора Pt 100 или обычной термопары.
  2. Второй канал будет использоваться исключительно термопарой. Каналы контроллера могут работать в автоматическом или ручном режиме.

Температура может поддерживаться в пределах от 10 до 255 градусов Цельсия. Термопары или датчик и термопара посредством обратной связи контролируют эти параметры в автоматическом режиме. В ручном режиме будет регулироваться мощность на каждом из каналов от 0 до 99 процентов.

Самодельная инфракрасная паяльная станция

Память контроллера будет содержать 14 различных термопрофилей для работы с BGA микросхемами. Семь из них предназначены для свинецсодержащих сплавов, а другие семь для припоя без содержания свинца.

В случае со слабыми нагревателями верхний может не успевать за термопрофилем. В таком случае контроллер поставит выполнение на паузу и будет дожидаться, пока наберётся необходимая температура.

Также контроллер очень удобно выполняет термопрофиль на основании температуры преднагрева всей платы. Если по той или иной причине снять чип не получилось, то можно повторно запустить его с более высокой температурой.

Инфракрасный паяльник схема

Силовой блок, изображённый на схеме, имеет транзисторный ключ для верхнего нагрева и семисторный для нижнего. Хотя приемлемо использование двух транзисторных или симисторных. Участок, отмеченный красным пунктиром, можно не собирать, если рассчитывается использование двух термопар.

Для теплоотвода от ключей можно использовать радиатор с активным охлаждением от любой техники. Главное, чтобы он подходил под конструкцию моделируемого аппарата. Нижний нагреватель будет состоять из девяти галогеновых ламп номиналом 1500 Вт 220–240в R7S 254 мм. Должно получиться три части по три лампы, соединённых последовательно. Провода лучше использовать высокотемпературные силиконовые на 220 вольт.

Самодельная инфракрасная паяльная станцияКорпус собирается из стеклотекстолита или любого другого похожего материала и усиливается алюминиевыми уголками. А также придётся купить и вакуумный насос. Для более эстетичного внешнего вида можно использовать ИК стекло на нижней панели. Но здесь существует сразу несколько отрицательных моментов: слишком медленный нагрев и остывание, и вся конструкция в процессе работы чересчур нагревается. Хотя наличие стекла не только делает прибор более привлекательным, но и удобным, так как платы можно класть прямо на него.

Стойка выполняется из алюминиевого швеллера для стоек. Подготавливаются вакуумный пинцет и трубка для него, термопара и стойки. Верхний нагреватель рекомендуется сделать из ELSTEIN SHTS/100 800W. Когда все детали готовы, их нужно разместить в корпусе и можно переходить к настройке.

Нагреватели устанавливаются на расстоянии 5–6 сантиметров от плат. Если температурный выбег больше трёх градусов, то стоит понизить мощность верхнего нагревателя.

Второе решение

В качестве второго варианта можно предложить конструкцию, отличающуюся лишь внутренними составляющими. И сначала стоит подготовить все необходимые комплектующие:

  • Верхний нагреватель – ИК головка на 450 Вт;
  • Нижний нагреватель – четырёхламповый галогеновый обогреватель 1800 Вт;
  • Уголки из алюминия;
  • Материал для корпуса – стеклотекстолит, корпус от старой аппаратуры, ПК или другое подобное;
  • Собираем инфракрасный паяльник Стальная проволока;
  • Спиральный шланг для душа;
  • Ножка от настольной лампы;
  • Плата Arduino Atmega 2560;
  • Две термопары;
  • Два твердотельных реле;
  • Блок питания с 220 вольт на 5 вольт. Подойдёт от зарядного устройства для телефона;
  • Зуммер на пять вольт;
  • Символьный дисплей;
  • Гайки, винтики, провода и другая необходимая мелочь.

Главное, сразу определиться с видом корпуса. Естественно, что много зависит от наличия подходящего материала. Поэтому именно от этого стоит отталкиваться, когда приходит время располагать комплектующие внутри.

Теперь нужно взять галогеновый обогреватель. Возможно получится найти уже старый, так как его необходимо разобрать и извлечь рефлекторы и галогеновые лампы. Сами лампы разбирать не нужно. Теперь всё это потребуется поместить в заготовленный корпус. Используется всего 4 лампы по 450 ватт, подключаемых параллельно. Провода предпочтительнее использовать те же, которыми они уже были подключены. Если по каким-либо причинам использовать их возможности нет, то придётся купить дополнительно термостойкие.

Сразу придётся подумать и о системе удержания плат. Конкретные рекомендации давать здесь сложно. Ведь всё зависит от корпуса. Но хорошо бы использовать алюминиевые профили, в которые не жёстко вставляются болты с гайками таким образом, чтобы впоследствии можно было ими зажимать печатные платы и, одновременно, была возможность регулировки под разные размеры плат. Термопары, контролирующие заданную температурную схему в нижнем нагревателе, лучше пропустить в душевой шланг. Это даст подвижность и удобство в процессе работы и монтажа.

Роль верхнего нагревателя будет исполнять керамический мощностью 450 ватт. Такой можно купить как запчасть для ИК станций. Здесь же нужно позаботиться и о корпусе, так как именно он обеспечивает правильный и качественный нагрев. Сделать его можно из тонкого листового железа, согнув нужным образом, в зависимости от формы и размера нагревателя.

Теперь нужно подумать и о креплении верхнего нагревателя. Так как он должен быть подвижным, причём перемещаться не только вверх или вниз, но и под разными углами. Отлично подойдёт стойка от настольной лампы. Закрепить её можно любым удобным способом.

Пришло время заняться контроллером. Для него тоже понадобиться отдельный корпус. Если есть подходящий уже готовый, то можно использовать его. В противном случае придётся его сделать самостоятельно всё из того же тонкого металла. Твердотельные реле нуждаются в охлаждении, поэтому стоит установить к ним радиатор и вентилятор.

Так как автоматической настройки в контроллере нет, то значения P, I и D придётся вводить вручную. Здесь есть четыре профиля, для каждого отдельно устанавливается количество шагов, скорость роста температуры, время и шаг ожидания, нижний порог, целевая температура и значения для верхнего и нижнего нагревателя.

https://220v.guru

схема инфракрасной самодельной станции с феном

На чтение 10 мин. Просмотров 10.2k. Опубликовано Обновлено

Многие радиолюбители не могут подобрать подходящий инструмент различных микросхем и компонентов. Паяльная станция своими руками для таких умельцев – это один из лучших вариантов решения всех проблем.

Больше не нужно выбирать из множества несовершенных фабричных устройств, достаточно найти подходящие комплектующие, потратить немного времени и сделать идеальное устройство, удовлетворяющее все требования, своими руками.

Виды паяльных станций

Современный рынок предлагает радиолюбителям огромное количество всевозможных видов с разной комплектацией.

В большинстве случаев станции для пайки делятся на:

  1. Контактные станции.
  2. Цифровые и аналоговые устройства.
  3. Индукционные аппараты.
  4. Бесконтактные устройства.
  5. Демонтажные станции.

Первый вариант станций представляет собой паяльник, подключенный к блоку регулировки температуры.

Электрическая схема паяльной станции.

Контактные паяльные устройства делятся на:

  • устройства для работы со свинцовосодержащими припоями;
  • устройства для работы с безсвинцовыми припоями.
, позволяющие плавить безсвинцовый припой, обладают мощными нагревательными элементами. Такой выбор паяльников обусловлен высокой температурой плавления припоя без свинца. Безусловно, благодаря наличию регулятора температуры, подобные аппараты применимы для работы со свинцовосодержащим припоем.

Аналоговые аппараты для пайки регулируют температуру жала при помощи термодатчика. Как только наконечник перегревается, питание отключается. При остывании сердечника питание вновь подается на паяльник и начинается нагрев.

Цифровые устройства управляют температурой паяльника при помощи специализированного ПИД регулятора, который в свою очередь подчиняется своеобразной программе, заложенной в микроконтроллер.

[box type=”info”]Отличительной особенностью индукционных устройств является нагрев сердечника паяльника при помощи импульсной катушки. В процессе работы происходят колебания высоких частот, образующие в ферромагнетиковом покрытии аппаратуры вихревые токи.[/box]

Остановка нагрева происходит из-за достижения ферромагнетиком точки Кюри, после которой меняются свойства металла и прекращается эффект от воздействия высоких частот.

Бесконтактные аппараты для пайки делятся на:

  • инфракрасные;
  • термовоздушные;
  • комбинированные.
паяльная станция состоит из нагревательного элемента в виде кварцевого или керамического излучателя.

Инфракрасные паяльные станции, по сравнению с термовоздушными, обладают следующими ощутимыми преимуществами:

  • отсутствие необходимости в поиске насадок на паяльный фен;
  • хорошо подходят для работы со всеми видами микросхем;
  • отсутствие термической деформации печатных плат из-за равномерного прогрева;
  • радиодетали не сдуваются воздухом с платы;
  • равномерный прогрев места пропая.

Важно отметить, что инфракрасные устройства для пайки являются профессиональным оборудованием и редко используются простыми радиолюбителями.

Зависимость температуры от времени пайки.

В большинстве случаев инфракрасные аппараты состоят из:

  • верхнего керамического или кварцевого нагревателя;
  • нижнего нагревателя;
  • стола для поддержки печатных плат;
  • микроконтроллера, управляющего станцией;
  • термопар для контроля текущих температур.

Термовоздушные станции для пайки используются для монтажа радиодеталей. В большинстве случает термовоздушными станциями удобно паять компоненты, находящиеся в SMD корпусах. Такие детали имеют миниатюрные размеры и хорошо паяются по средствам подачи на них горячего воздуха из термофена.

Комбинированные устройства, как правило, сочетают в себе несколько видов паяльного оборудования, например, термофен и паяльник.

Демонтажные станции комплектуются компрессором, работающим на втягивание воздуха. Такое оборудование оптимально подходит для снятия излишков припоя или демонтажа ненужных компонентов на печатной плате.

Все мало-мальски приличные станции компонентов в разных корпусах, имеют в наличие такое дополнительное оборудование:

  • лампы подсветки;
  • дымоуловители или вытяжки;
  • пистолеты для демонтажа и всасывания излишков припоя;
  • вакуумные пинцеты;
  • инфракрасные излучатели для прогрева всей печатной платы;
  • термофен для прогрева определенного участка;
  • термопинцет.

Паяльная станция своими руками

Наиболее функциональная и удобная станция – это инфракрасная.

Перед тем, как сделать инфракрасную паяльную станцию своими руками, следует приобрести следующие элементы:

  • галогеновый обогреватель на четырех инфракрасных лампах мощностью 2КВт;
  • верхний инфракрасный нагреватель для паяльной станции в виде керамической инфракрасной головки на 450 Вт;
  • алюминиевые уголки для создания каркаса конструкции;
  • шланг для душа;
  • проволока из стали;
  • нога от любой настольной лампы;
  • программируемый микрокомпьютер, например, Ардуино;
  • несколько твердотельных реле;
  • две термопары для контроля текущей температуры;
  • блок питания на 5 вольт;
  • небольшой экран;
  • зуммер на 5 вольт;
  • крепежные элементы;
  • при необходимости, паяльный фен.
[box type=”fact”]В качестве верхнего нагревателя можно использовать кварцевые или керамические нагреватели.[/box] схема паяльникаИзготовление паяльной станции своими руками.

Преимущества керамических излучателей представлены:

  • невидимым спектром излучения, не повреждающим глаза радиолюбителя;
  • более длительным временем безотказной работы;
  • большой распространенностью.

В свою очередь, кварцевые ИК подогреватели обладают следующими плюсами:

  • большая однородность температуры в зоне подогрева;
  • меньшая стоимость.

Этапы сборки ИК паяльной станции представлены ниже:

  1. Монтаж элементов нижнего нагревателя для работы с bga элементами.
    Наиболее простым методом добычи четырех галогеновых ламп служит демонтаж их из старенького обогревателя. После того, как вопрос с лампами решен, следует придумать вид корпуса.
  2. Сборка конструкции паяльного стола и продумывание системы удержания плат на нижнем нагревателе.
    Установка системы крепления печатных плат заключается в отрезке шести кусков алюминиевого профиля и прикреплении их к корпусу при помощи гаек из перфорированной ленты. Получившаяся система крепления позволяет перемещать печатную плату и подстраивать ее под нужды радиолюбителя.
  3. Монтаж элементов верхнего нагревателя и паяльного фена.
    Керамический нагреватель на 450 – 500 Вт можно приобрести в китайском интернет магазине. Для монтажа верхнего подогрева необходимо взять лист металла и согнуть его по размерам нагревателя. После этого верхний нагреватель самодельной ик вместе с феном следует разместить на ножке от старой настолько лампы и подключить к блоку питания.
  4. Программирование и подключение микрокомпьютера.
    Наиболее ответственный этап создания собственного инфракрасного устройства для пайки, включающий: создание корпуса для микроконтроллера с продумыванием места под остальные компоненты и кнопки. В корпусе вместе с контроллером должны быть следующие элементы: два твердотельных реле, дисплей, блок питания, кнопки и соединительные клеммы.

Большинство радиолюбителей предпочитают использовать старые системные блоки в качестве основы корпуса и алюминиевые уголки для крепления всех основных элементов нижнего нагревателя. При подключении ламп рекомендуется использовать штатную проводку разобранного галогенового обогревателя.

По завершению процесса сборки станции следует переходить к непосредственной настройке микроконтроллера. Радиолюбителям, сделавшим самому инфракрасную паяльную станцию, зачастую приходилось использовать микрокомпьютер Ардуино ATmega2560.

Программное обеспечение, написанное специально для устройств, основанных на данном типе контроллера, можно найти в интернете.

Схема

схема инфракрасной паяльной станцииПринципиальная схема инфракрасного паяльника.

Типовая схема паяльной станции включает:

  • блок усилителей термопар;
  • микроконтроллер с экраном;
  • клавиатуру;
  • звуковой сигнализатор, например, компьютерный спикер;
  • элементы питания и поддержки паяльного фена;
  • чертежи элементов детектора нуля;
  • элементы силовой части;
  • блок питания всей аппаратуры.

В большинстве случаев, схема станции представлена следующими микрокомпонентами:

  • опторазвязка;
  • мосфет;
  • симистор;
  • несколько стабилизаторов;
  • потенциометр;
  • подстроечный резистор;
  • резистор;
  • светодиоды;
  • резонатор;
  • несколько резонаторов в СМД корпусах;
  • конденсаторы;
  • переключатели.
[box type=”info”]Точные маркировки деталей разнятся в зависимости от потребностей и предполагаемых рабочих режимов.[/box]

Процесс

Процесс сборки инфракрасной паяльной станции во многом зависит от предпочтений мастера.

Типовой вариант устройства на микроконтроллере Ардуино, устраивающий большинство радиолюбителей, собирается в такой последовательности:

  • подбор необходимых элементов;
  • подготовка радиодеталей и нагревателей к проведения монтажных работ;
  • сборка корпуса паяльной станции;
  • установка нижних предварительных нагревателей для равномерного разогрева массивных печатных плат;
  • установка платы управления комбайном для пайки и ее фиксация при помощи заранее подготовленных крепежных элементов;
  • монтаж верхнего нагревателя и паяльного термофена;
  • установка креплений для термопар;
  • программирование микроконтроллера под определенные условия паяльных работ;
  • проверка всех элементов, включая галогеновые лампы нижнего нагревателя, инфракрасный излучатель и паяльный фен.
изготовление паяльной станцииУстройство паяльной станции.

После полной сборки инфракрасной станции следует проверить все элементы на работоспособность.

Отдельное внимание нужно уделить проверке корректности работы термопар, поскольку в данной системе отсутствует их компенсация.

Это означает, что при перемене температуры воздуха в помещении термопара начнет измерять температуру с существенной погрешностью.

Проверка головки керамического нагревателя также важна. В случае, если инфракрасный излучатель перегревается, необходимо обеспечить обдув воздухом или охлаждение при помощи дополнительного радиатора.

Настройка

Настройка режимов работы ИК паяльной станции в основном заключается в:

  • установке допустимых режимов работы паяльных фенов;
  • проверке режимов работы нижнего нагревательного элемента;
  • выставлении рабочих температур верхнего кварцевого излучателя;
  • установке специальных кнопок для быстрого изменения параметров нагрева;
  • программировании микроконтроллера.
изготовление паяльной станции своими рукамиОсобенности устройства паяльной станции.

По мере выполнения паяльных работ может потребоваться изменение температур и режимов.

Такие действия можно произвести при помощи кнопок, связанных с микрокомпьютером:

  • кнопка + должна быть настроена на повышение температуры покупного или самодельного кварцевого излучателя с шагом в 5 – 10 градусов;
  • кнопки – должна понижать температуру также с небольшим шагом.

Основные настройки микрокомпьютера представлены:

  • регулировкой значений P, I и D;
  • подстройкой профилей, в которых прописан шаг изменения тех или иных параметров;
  • настройкой критических температур, при которых станция отключается.
[box type=”fact”]Некоторые конструкторы верхний нагреватель делают из фена. Такой подход подойдет лишь для пайки небольших элементов в SMD корпусах.[/box]

Рекомендации по работе

Самодельные ИК паяльные станции отлично подойдут для небольшого ремонта дома или в частных мастерских. Благодаря относительной простоте конструкции и широкому функционалу инфракрасные станции пользуются невероятным спросом.

схема для изготовления ИК паяльникаЭлектрическая схема паяльника.

Основными рекомендациями при сборке станций и работе на них являются:

  1. Грамотная настройка параметров микроконтроллера.
    В случае, если в компьютер внесены неверные параметры, паяльная установка может некачественно пропаивать компоненты и повреждать маску печатных плат.
  2. Надевание средств защиты при выполнении паяльных работ.
    Кварцевый излучатель, в отличие от керамического, при работе порождает излучение на видимой для глаза длине волны. Поэтому, если в устройстве используется кварцевый инфракрасный излучатель рекомендуется надевать специальные защитные очки, защищающие оператора от повреждения зрения.
  3. Электрическая принципиальная схема станции должна содержать только надежные элементы.
    Кроме этого, все конденсаторы и резисторы, используемые при сборке, должны иметь быть выбраны с небольшим запасом.
  4. Контроллер для ИК паяльной станции можно выбрать из популярных моделей Ардуино.
    При желании, контроллер можно изготовить и из неизвестного микрокомпьютера, однако, в этом случае мастеру придется самостоятельно разработать программное обеспечение для работы паяльной станции.
  5. При сборке станции следует предусмотреть разъем для подключения паяльника.
    Иногда, компоненты платы удобнее точечно выпаивать при помощи обычного паяльника или устройства с термофеном вместо жала. Подобное решение можно реализовать, путем проектирования дополнительной термопары для контроля температуры паяльника.
  6. Для пайки с использованием активных флюсов и припоев с высоким содержанием свинца следует обеспечить циркуляцию воздуха.
    Хорошая вытяжка или вентилятор значительно облегчат дыхание оператора и позволяет ему не дышать испарениями вредных металлов.

Заключение

ИК паяльные станции – это одни из лучших установок в самых разных корпусных исполнениях. Сделать паяльную станцию на инфракрасных подогревающих элементах можно даже в домашних условиях.

Как правило, домашние мастера для нижних нагревателей предпочитают использовать мощные галогеновые лампы. Основные распиновки разъемов, параметры микросхем, модели микроконтроллера, инструкции о том, как из бытового фена сделать паяльный и другая информация доступна в интернете.

Инфракрасная паяльная станция с МК-управлением. Строим!


Была зима и, видимо, из-за нехватки солнечного света на меня напала тоска. Обычное дело. Но в этот раз решил что-то изменить. А, как известно, лучший способ развеяться — сотворить что-нибудь и желательно полезное. Моя работа — ремонт всяких цифровых штук. Почему бы мне не собрать ИК паяльную станцию?

На самом деле, я давно об этом думал. А узнав цены, понял, что хочу её именно собрать. Поэтому потихоньку покупал или собирал необходимые компоненты. Но всё как-то руки не доходили.

На этот же раз так совпало, что у меня было мало работы и практически все компоненты в наличии.
За работу!

Содержание / Contents

Прикинул задачу. Мне нужно:
1. Сравнительно несложное устройство.
2. С «мозгами» на ATMEGA
3. Нижний нагреватель на основе галогенных ламп на 1000 Вт.
4. Верхний нагреватель на основе заводского керамического нагревателя от китайцев.

5. Верхний нагреватель должен быть подвижным в трех плоскостях для центровки точки нагрева и высоты.

Прожекторные лампы и держатели для них у меня уже были. Киловаттные лампы я считаю оптимальными по нагреву и габаритам. Их шесть штук, соединены по две последовательно.

В качестве корпуса взял трофейный корпус от бесперебойника.

Корпус имеет съемную верхнюю крышку из толстой жести. Прикинув длину ламп по отношению к корпусу, понял, что «вот она, рыба моей мечты». В крышке вырезал окно для ламп. Заднюю стенку заменил ячеистой, вырезанной из крышки какого-то советского УЗЧ (похоже, «Веги»).

Основа для крепления держателей ламп сделана на листовой жести от семнадцатидюймового TFT монитора. На ней закреплены собственно держатели, а на них — отражатель, вырезанный из листового алюминия — опять же от семнадцатидюймового TFT монитора (да, много у меня этого хлама). Также в этой основе установлена термопара, взятая от неисправного термофена.

Получился такой «сэндвич».


Долго ломал голову над верхним нагревателем, особенно над тем, как сделать его подвижным. Сначала хотел использовать валы от принтеров, но тут уже без токаря не обойтись. И хотя есть у меня знакомый хороший токарь, не хотелось его беспокоить по пустякам.


Выход был найден. На ловца и зверь бежит! Это вид в разрезе центральной стойки от старой стеклянной витрины. Два куска использовал как вертикальную и горизонтальную направляющие, а еще один кусок, разрезанный уже вдоль — как полозья, по которым и будут передвигаться направляющие. В качестве элементов, которые передвигаются в полозьях, взял обыкновенные болты «пятерки». Болтов ушла целая горсть.

Корпус верхнего нагревателя выгнул из жести от корпуса DVD плеера. Использовал для этого двое маленьких тисков и ровную дощечку. Верхнюю часть разрезал ножницами по металлу и загнул плоскогубцами и молотком.


В коробке, помимо нагревателя, находится и вентилятор. Нашел самый оборотистый (5000 об./мин, а может и больше). Он просто необходим для вытягивания испарений при паянии, а то чуть подышал, и нос заложило и в горле першит. Сверху закреплен патрубок для гофротрубы, которая соединена с вентиляцией. Патрубок, кстати, от корпуса системного блока.

Из-за ограниченного размера нижней части корпуса и довольно больших размеров несущей верхнего нагревателя и его коробки, верхний нагреватель пришлось сделать съемным, чтобы можно было его использовать в крайних положениях справа и слева.


Кроме этого, пришлось соорудить переходную планку, необходимую для выравнивания верхнего нагревателя. А управляет нагревом контроллер на двух ATMEGA8. С написанием программ у меня не очень, язык «Си» только «почитать», про ассемблер вообще молчу.
Поэтому искал готовый вариант в интернете. Хотел именно на AVR, потому что для этих контроллеров у меня есть готовый программатор. Искал довольно долго. Изучил все ветки, посвященные паяльным станциям, на «Радиокоте» и на «Паяльнике».
Остановился на этом варианте.

В нем достаточный функционал и он простой для повторения. Оба канала полностью идентичны. Единственное, что изменил — вместо MOC3023 поставил MOC3063, т.к. этот чип с контролем перехода через ноль, поэтому меньше помех в сеть. В момент разогрева потребляемая мощность около 3000 Вт и это важно.

В нижнее плечо поставил симистор помощнее — BTA41.

При первом запуске вышел небольшой «бабах». Оказалось, что я случайно подключил симистор параллельно нагрузке, т.е. фактически параллельно сети. Предохранители ушли в мир иной. А на втором канале «потерял» один провод.
Больше никаких проблем не было. Будьте внимательны, не торопитесь при запуске!

В приложении выкладываю свой вариант. Скажу сразу, делал на скорую руку и уже давно. Поэтому платы без обозначений, чисто разводка. И лень возвращаться, вспоминать, что да как, извините уж.
Столько свободного места планировалось для стабилизатора на 5 В, но так как блок питания взял готовый, то место осталось.
Желающие смогут найти другие варианты ПП в Сети.

Конструктивно управление выполнено на трех платах. Две платы 100 мм на 70 мм, на одной расположились индикаторы и кнопки, на второй находится вся слаботочная электроника.


Заготовки для плат брались пачкой в Китае, поэтому под их размеры и подгонял. Платы стоят одна над другой, печатью друг к другу, между ними — шлейфы.

Силовая часть выполнена на стеклотекстолите навесным монтажом.

Питает все это блок питания от DVD плеера. Установлен готовый фильтр питания от древнего копира, с предохранителями на 10 Ампер.


В приложении есть инструкция по наладке, но я настраивал методом «научного тыка». Использовал китайские токовые клещи, в комплекте к которым шла термопара. Поставил «эталонную» термопару рядом с установленной, и крутил подстроечники. Старался сделать так, чтобы показания совпадали и подстроечники находились не в крайних положениях. Все. Ничего сложного.

Термопара от верхнего нагревателя просто устанавливается на нагреваемую плату поближе к чипу через капельку флюса, а не в сам нагреватель.
Так показания будут точнее, и не будет перегрева. Это я подсмотрел у знакомых спецов-ремонтников.

В заводских станциях датчик, в основном, находится в нагревателе, в нем даже есть специальное отверстие для этого. Но никто не мешает сделать
два датчика через переключатель.

Лампы в момент нагрева светят очень ярко, слепят. Надо чем-то закрывать лампы или глаза. Неплохо закрыть лампы стеклом от кухонной инфракрасной плиты, это будет идеальный вариант. Или взять стимпанковские сварочные очки, тогда можно стать крутым гиком, как в голивудских фильмах.
Вот так выглядит работа нижнего подогрева.


Специально прогрел немного, иначе в момент разогрева фотоаппарат засвечивается.

Разогрев импульсный, поэтому свечение то ярче, то тусклее, в темноте возникает полное ощущение горящего костра и греться возле станции тоже можно. Если же подуть на термопару, то этот искусственный «костер» «разгорается» сильнее.

При первом прогоне испытуемая плата пошла пузырями. Но я и поставил снизу 180, а сверху 350 градусов.
Второй чип снимал напарник при 230 градусах сверху, чип прекрасно снялся. Времени на второй чип ушло около 6 минут.
Корпус станции почти не нагрелся. Нагревается съемная верхняя крышка. Думаю обклеить её фольгой по бокам. Для корпуса не критично, разве чтобы руки не обжечь.
Сначала думал установить в корпус дополнительные вентиляторы, но, как показала практика, это излишне, внутри температура не выше сорока градусов после 15-ти минутного использования.

Прекрасный итог и чувство удовлетворения. А ещё мой авторитет в глазах молодого напарника стал более весомым. Теперь придется покупать трафареты, вакуумный пинцет и осваивать новые горизонты.Чертежи печаток в SPL:
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Прошивки и доп. материалы:
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.


Спасибо за внимание!


Выше я написал, что, когда дуешь на термопару нижнего подогрева, станция «разгорается», как костер. Так вот, оказалось, это очень нежелательное явление! Термопара находится сравнительно далеко от ламп и имеет очень маленький размер, поэтому очень быстро остывает.

Когда я испытывал паяльную станцию в первый раз, я не включал вытяжной вентилятор, так как для него не было питания. И все режимы паяльной станции были в норме, я бы даже сказал, идеальны. Когда же начал использовать с вытяжкой, то выяснилось, что воздушный поток охлаждает термопару, и станция начинает «жарить» плату.

Если станцию использовать для больших материнских плат, которые полностью закрывают окно нижнего подогрева, то все прекрасно. Однако при прогреве сравнительно небольших плат, как-то видеокарт, ноутбучных материнок, в действие включается воздушный поток.

Как бороться с данным явлением? Я вижу два варианта. Либо как-то скомпенсировать влияние воздушного потока, либо полностью его ограничить.

В первом случае можно, например, сделать термопару на рычажке с противовесом, так, чтобы она касалась платы снизу. Можно увеличить площадь датчика, например, согнуть медную пластинку, вставив в неё термопару. За счёт большей площади больше ИК-лучей попадет на пластинку. Правда, и площадь охлаждения тоже больше. Будем надеяться, что такая пластинка будет иметь большую тепловую инерционность и воздух не помешает.
Еще напрашивается вариант с переносом термопары поближе к лампе, но тут уже будет оказывать влияние нагретое стекло лампы, что приведет к искажению показаний.

Во втором случае, идеально закрыть окно подогревателя специальным стеклом от кухонной инфракрасной плиты. Но я его так и не нашел. Ну, нечасто люди ломают такие плиты.

Вспоминая опыт с большой платой, при прогреве маленьких плат можно закрыть оставшееся пространство окна какой-нибудь отражающей пластинкой. Например, алюминиевой или стальной, обмотанной алюминиевой фольгой.

И в самом крайнем случае, можно просто убавить подогрев, в моем случае, вместо 180 градусов, я выставляю 140-150.

Может, у кого-то еще есть мысли, как это лучше, а главное, проще сделать?

Кстати, в заводской станции начального уровня термопара находится вплотную между керамическими нагревателями. Так что в этом лампы проигрывают. Но зато в динамике разогрева они вне конкуренции. Видел на Ютубе, ребята даже в верхнем нагревателе поставили лампы именно по этой причине, использовав гирлянду из обычных 12-вольтовых галогеновых ламп от точечных светильников.

Камрад, рассмотри датагорские рекомендации

Евгений (inmiddle)

Крым

Ремонтирую потихоньку…

 

Инфракрасная паяльная станция своими руками: устройство, пайка

Радиолюбителям рано или поздно приходится сталкиваться с пайкой элементов посредством массива шариков. BGA способ пайки используется повсеместно в массовых производствах различной техники. Для монтажа используется инфракрасный паяльник, который производит соединение деталей бесконтактным способом. Готовые модификации стоят дорого, а более дешевые аналоги не обладают достаточным функционалом, поэтому возможно изготовить паяльник в домашних условиях.

Инфракрасная паяльная станция своими рукамиИнфракрасная паяльная станция своими руками Инфракрасная паяльная станция своими руками

Описание процесса ИК пайки

Принцип работы инфракрасной паяльной станции заключается в воздействии сильными волнами длиной 2-7 мкм на элемент. Устройство для пайки самодельными ИК паяльными станциями как самодельными, так и приобретаемыми, состоит из нескольких элементов:

  • Нижний нагреватель.
  • Верхний нагреватель, отвечающий за основное воздействие на материалы.
  • Конструкция держателя платы, размещенная на столе.
  • Контроллер температуры, состоящий из программируемого элемента и термопары.

Длина волны, напрямую зависит от температурных показателей источника энергии. Материалы в различной форме подвергаются пайке с помощью ИК станции, сделанной своими руками, существуют основные параметры передачи энергии, непрозрачность, отражение, полупрозрачность и прозрачность. Перед изготовлением ИК паяльной станции своими руками нужно понимать, что существуют некоторые недостатки данных систем:

  • Разная степень поглощения энергии компонентами ведет за собой неравномерный прогрев.
  • Каждая плата ввиду различных характеристик требует подбора температур, в противном случае, компоненты перегреваются, выходят из строя.
  • Наличие «мертвой зоны», где инфракрасная энергия не достигает требуемого объекта.
  • Обязательное условие защиты поверхностей остальных элементов от испарения флюсов.

Нагревание происходит за счет передачи тепла к монтажной плате. Тепловое воздействие инфракрасной станцией происходит поверх детали, температуры бывает не достаточно, поэтому конструкция подразумевает нагрев нижней части. Нижняя часть состоит из термостола, процесс пайки может осуществляться посредством спокойного инфракрасного излучения, либо потоком воздуха.

Инфракрасная паяльная станция своими руками

Профессиональное оборудование стоит достаточно дорого, более дешевые аналоги не обладают достаточным функционалом. Для экономии средств, выполнения нужных операций с BGA контроллерами, возможно изготовить инфракрасную паяльную станцию своими руками. Сборка возможна из доступных на рынке и подручных материалов. Конструкция представляет собой изготовленный из старого светильника термостол, оснащенный лампами галогенового типа. Контроллер и верхний нагреватель приобретается на рынке или собирается из старых запасных частей.

Инструменты для изготовления инфракрасного паяльникаИнструменты для изготовления инфракрасного паяльника

Инструменты для изготовления инфракрасного паяльника

Термостол потребует наличие отражателей, галогеновых ламп, размещенных в корпусе из профиля или листового металла. При изготовлении инфракрасной паяльной станции своими руками, стоит придерживаться чертежей, которые возможно разработать самостоятельно или позаимствовать у других исполнителей. Обязательно корпус снабжается местом для термопары, которая передает информацию на контролер для предотвращения резких перепадов температуры, избыточного нагрева материала.

Сборка ИК паяльной станции подразумевает самодельные конструкции в виде крепежа из штатива. Контроль температуры нагревательного узла производится второй термопарой. Устанавливается параллельно с нагревателем, штатив закрепляется на панели таким способом, чтобы ИК элемент можно было перемещать над поверхностью термостола. Расположение платы производится выше галогеновых ламп на 2-3 см, в корпусе термостола. Крепление производится кронштейнами, для изготовления возможно использовать ненужный алюминиевый профиль.

Принципиальная схема контроллера для инфракрасной паяльной станции своими рукамиПринципиальная схема контроллера для инфракрасной паяльной станции своими руками

Принципиальная схема контроллера для инфракрасной паяльной станции своими руками

Изготовление паяльной лампы своими руками в первую очередь потребует корпус. Для охлаждения системы требуется монтаж одного мощного или нескольких кулеров, материал желательно выбрать из оцинкованной стали. После полной сборки производится наладка системы путем запуска схемы, отладки устройства.

Нижний подогрев

Нижний подогрев может быть изготовлен несколькими способами, но гораздо лучшим вариантом является использование галогеновых ламп. Рациональным решением является установка своими руками ламп суммарной мощностью от 1 кВт. По бокам конструкции устанавливаются порожки, которые зафиксируют плату. Установка материалов для пайки производится на швеллер, для более мелких деталей используются подложки или прищепки.

Нижний подогревНижний подогрев

Нижний подогрев

Верхний подогрев

Известно, что верхний нагреватель подходящего качества невозможно изготовить своими руками. Для достижения наилучшего результата в процессе ИК пайки, необходимо воспользоваться керамическими нагревательными элементами. Для инфракрасной паяльной станции, изготовленной своими руками оптимальным вариантом является использование нагревателя ELSTEIN. Производитель показывает наилучшие результаты, спектр излучения идеально подходит для замены BGA плат, других деталей. Не рекомендуется экономить на покупке верхнего нагревателя — обогревателя при сборке паяльной станции своими руками, т.к. при работе некачественным инструментом возможно повреждение платы или собранной конструкции.

Верхний подогревВерхний подогрев

Верхний подогрев

Конструкция для верхнего подогрева возможна из самодельной станины. Достаточно иметь регулировку по высоте и широте для комфортной работы на инфракрасной паяльной станции, изготовленной своими руками. К штативу крепится термопара для контроля температуры.

Блок управления

Корпус контроллера подбирается по размерам в соответствие с устанавливаемыми деталями. Подходящим вариантом может оказаться кусок листового метала, который без труда возможно отрезать ножницами по металлу. Размещается в блоке управления также вентиляторы, различные кнопки, а также дисплей и сам контроллер. В роли контроллера выступает Arduino, функциональность вполне достаточна для выполнения пайки BGA схем своими руками.

Блок управленияБлок управления

Блок управления

Детали для самодельного прибора

Перед сборкой любого оборудования своими руками, необходимо подготовить материалы и инструменты. Для инфракрасного паяльника понадобятся:

  • Комплект галогеновых ламп, количество которых зависит от формы будущего нижнего нагревателя паяльной станции, оптимальное количество подбирается в диапазоне от 4 до 6 штук.
  • Керамическая инфракрасная головка мощностью не менее 400 ватт для верхнего нагревателя.
  • Шланг от душевой лейки для проводов, алюминиевые уголки.
  • Стальная проволока, крепежный элемент от старого фотоаппарата или настольной лампы для изготовления штатива.
  • Контроллер Arduino, 2 реле и термопары, а также блок питания выходом 5 вольт, который можно изготовить от зарядного устройства мобильного телефона.
  • Винты, разъемы и дополнительные периферии.
Инфракрасная паяльная станция своими руками на основе ArduinoИнфракрасная паяльная станция своими руками на основе Arduino

Инфракрасная паяльная станция своими руками на основе Arduino

В процессе сборки понадобятся чертежи, разобрать которые помогут элементарные знания в электронике.

Применение и устройство

Инфракрасный паяльник используется в основном при условиях отсутствия доступа к заменяемым компонентам. Применяется при замене мелких деталей, основным достоинством является отсутствие нагаров и прочих отложений, как при работе обычным паяльником, а также малая возможность повредить соседние элементы. Для домашнего использования возможно изготовить паяльник своими руками, используя прикуриватель от автомобиля.

Инфракрасная паяльная станция промышленного производстваИнфракрасная паяльная станция промышленного производства

Инфракрасная паяльная станция промышленного производства

Работа устройства происходит при питании 12 вольт, такое напряжения возможно получить путем использования преобразователя или не нужного блока питания для компьютера.

Изготовление

Перед сборкой паяльной станции, извлекается из корпуса прикуривателя нагревательный элемент. К контактам питания присоединяются провода питания, к центральному проводу возможно подвести медный провод с изоляцией. Сделать паяльник не составит большого труда, достаточно изолировать соединение на расстоянии от нагревательного элемента, возможно использовать термоусадочную трубку.

Термоусадочная трубкаТермоусадочная трубка

Термоусадочная трубка

Корпус производится из тугоплавкого материала. Возможно воспользоваться нерабочим паяльником или приобрести кусок стали. Необходимо следить за отсутствием соприкосновения проводов. Важно понимать, что подобного рода устройство используется при незначимых работах, так как температурные пороги, другие параметры не контролируются.

ИК паяльная станция с цифровым управлением.

РадиоКот >Лаборатория >Цифровые устройства >

ИК паяльная станция с цифровым управлением.

В данной статье описывается, как самостоятельно изготовить инфракрасную паяльную станцию с небольшими затратами. Устройство позволяет производить монтаж/демонтаж SMD и BGA компонентов на печатной плате. Данная паяльная станция рассчитана на работу с большими платами (например, материнские платы персональных компьютеров или ноутбуков), чего не позволяют делать дешевые «поделки» китайского производства, которые рассчитываются как правило, на работу с небольшими печатными платами и элементами.
Так уж случилось, что в настоящее время происходит массовый переход на поверхностный монтаж, и ничего с этим не поделаешь. Всё бы ничего, паяльник еще справляется, но вот только не с BGA (взгляните хотя бы на материнскую плату вашего компьютера, чип есть, а выводов нет: Вернее их не видно). Такие микросхемы паяются полным прогревом вместе с платой. Методов пайки существует не много, как правило, это горячий воздух или ИК излучение. У каждого метода есть свои достоинства и недостатки. Но в любом случае требуется прогрев платы, в чём и заключается сложность пайки таких микросхем «на коленке». Связано это с тем, что при нагреве небольшого участка платы происходи её расширение (выпучивание нагреваемого участка), что может привести к повреждению межслойных проводников и отрыву контактных площадок. Поэтому, необходим прогрев всей платы (не до температуры пайки, но где-то на 2/3 от неё). Подробнее от процессе ручной пайки BGA можно прочитать на сайтах посвященных ремонту компьютерной техники.
Данное устройство будет полезно многим радиолюбителям занимающимся ремонтом аппаратуры, компьютерной и видео техники. А так же тем, кто просто собирает разные схемы из деталей, выпаянных из старых плат.
Устройство позволяет монтировать/демонтировать и просто пропаивать BGA-компоненты, восстанавливая контакт, так же при помощи данного устройства можно легко «потрошить» любые платы «на детали», что помогает избавиться от «лишнего».
Теперь о самом устройстве и принципе его работы. Устройство состоит из самой установки и блока управления, который выполнен в отдельном корпусе. На установке имеется место крепления плат и два нагревателя. Верхний нагреватель имеет возможность изменять своё положение относительно закрепленной платы. В качестве нижнего нагревательного элемента я использую конфорку для электроплиток мощностью 2 кВт и диаметром 220 мм. А в качестве верхнего 4 трубчатые галогеновые лампы по 150 Вт каждая и длинной по 78мм. Выглядит это примерно вот так:

О конструкции корпуса смотрите отдельную инструкцию, там более-менее подробно описан процесс сборки и даны размеры заготовок. Материал преимущественно листовая сталь от старых компьютерных корпусов, в них применялась сталь толщиной порядка 1 мм, не то что в современных: В принципе для верхнего нагревателя подойдёт и 0,3-0,5 мм, а для нижнего желательно потолще, т.к. плитка штука не лёгкая. В качестве связующего звена использованы винты и гайки M3 c шайбами. Штатив выполнен из двух стальных реек снятых со старого матричного принтера (направляющие блока печатающей головки).
Блок управления выполнен на МК ATmega16, тактируемого от внутреннего RC-генератора частотой порядка 8 МГц. В качестве индикатора в схеме применён широко распространённый двух строчный ЖК-модуль с контроллером HD44780 (и совместимыми). Рассмотрим принципиальную схему:

Схема состоит из блока усилителей термопар, МК с дисплеем, клавиатурой и звуковым сигнализатором, схемы детектора нуля, силовой части и блока питания. Блок усилителей собран на ОУ DA1 и DA2, вместо LM358 допускается использовать LM2904. Далее сигналы поступают на АЦП МК.
МК имеет типовую обвязку в виде клавиатуры и дисплея. LC-цепочка L1 C11 питает внутреннюю схему АЦП МК. Резистором R35 устанавливается контрастность дисплея. На плате выведены сигналы для внутрисхемного программирования (ISP). К МК так же подключен пьезокристаллический звуковой излучатель BQ1. Небольшое примечание по поводу подключения дисплея, в зависимости от производителя в дисплеях могут быть поменяны местами контакты 1 и 2 (питание) и еще возможно понадобится установить гасящий резистор в цепи подсветки (вывод 15 дисплея).
Схема детектора нуля имеет два варианта, что бы, так сказать, облегчить повторяемость. Выбор варианта зависит от применяемого вами блока питания, если блок питания трансформаторный, то проще использовать схему выделенную пунктиром, а при использовании импульсного БП придётся собирать схему на оптопаре U1. В моём блоке управления применён трансформаторный БП.
Блок питания. Можно применить как импульсный БП с выходными напряжениями +5В и +12В, так и трансформаторный с интегральными стабилизаторами 7805 и 7812, включенных по типовой схеме. В трансформаторном БП делается доработка в виде дополнительного диода (VD6) сразу после диодного моста и перед фильтрующим конденсатором (см. схему обведённую пунктиром). Блок питания должен обеспечивать ток порядка 1А по обоим каналам.
Силовая часть состоит из двух одинаковых каналов на симисторах VS1 и VS2. Имеется два варианта управления ими, это через оптосимисторы (схема показана пунктиром) и через импульсные трансформаторы (их параметры указаны на схеме). Распиновка симисторов так же показана на схеме. Допускается применение симисторов импортного производства. Симисторы необходимо устанавливать на радиаторы т.к. выделяемая мощность составляет примерно 5-10 Вт. Неоновая лампа HL1 устанавливается вне блока управления поближе к нижнему нагревателю (в корпусе установки) и сигнализирует о включении нижнего подогрева. Для работы с оптосимисторами или трансформаторами прошивки РАЗЛИЧАЮТСЯ.
Так же к силовой части можно отнести схему управления вентилятором, на фото выше этого вентилятора не видно, он выполнен в виде отдельного «фена» и предназначен для охлаждения места пайки, это позволяет сделать пайку более качественной.
В данной схеме применяется метод «беспомехового» регулирования мощности, то есть путём «пропускания» полупериодов сетевого напряжения, количество пропускаемых полупериодов определяет мощность. Данный метод хорош тем, что он не даёт импульсных помех на электросеть, но при работе с лампами накаливания есть недостаток — это мерцание. В принципе это не критично и работе не мешает.
В программе для автоматического регулирования температуры используется алгоритм ПИД-регулятора.
Немного фотографий моего варианта блока управления:

Кстати, на фотографиях печатной платы присутствует кварцевый резонатор, и разводка несколько отличается, связано это с тем, что это первый вариант и в нём присутствует порт RS-232 для соединения с компьютером. Он требовался для отладки программы в процесс её написания. Для работы самой программы точность тактового генератора не требуется, т.к. для отсчёта времени (секунд) используется частота сетевого напряжения, чего вполне достаточно.
Глядя на схему и программу, можно подумать, что она еще на стадии разработки, что не далеко от истины, дело в том что задумывалось больше чем реально сделано, но как показала практика текущих функций хватает для многих задач и что бы понять чего бы еще такого доделать, требуется какое-то время поэксплуатировать устройство: Так же я надеюсь на Вас уважаемый читатель, что вы подскажете, каким образом можно улучшить функциональность и удобство работы с этим инструментом.
Несколько фото того что получилось:

Блок питания, оптосимисторы и выходные симисторы располагаются отдельно. Изначально на основной плате присутствовали транзисторы VT1 и VT2, теперь их нет т.к. удалось достать оптосимисторы. Решение с импульсными трансформаторами считаю не очень надёжным и красивым, т.к. есть некоторые сложности в их намотке — требуется хорошая изоляция первичной и вторичной обмоток, а кольца имеют предел по количеству намотанного на них изолятора. Но если достать оптосисмисторы не удаётся, всегда есть вариант с трансформаторами.
ВНИМАНИЕ: При монтаже выходных симисторов и их радиаторов (особенно применяя болтовые TC122, которые имеют электрический контакт с радиатором) помните, что они находятся под высоким напряжением и их требуется располагать, так что бы они ГАРАНТИРОВАНО, не могли замкнуть на корпус (если он металлический) и другие проводники схемы. Провода силовых цепей должны быть рассчитаны на ток порядка 10А.
В моём случае в корпусе блока управления установлен вентилятор, в принципе на практике нагрев симисторов не такой сильный, как мне казалось при разработке, но всё же рекомендую установить, при длительной работе возможен перегрев.
Вот фото процесса работы (верхний нагреватель выключен и сдвинут в сторону):

На фото происходит пропайка видеочипа компьютерной видеокарты (частая их неисправность заключается в повреждении пайки из-за перегрева), фольга используется для ограничения площади воздействия верхнего нагревателя.
Для соединения нагревателей с блоком управления у меня используются провода от старых утюгов, они в данном случае подходят наилучшим образом, т.к. имеют подходящее сечение проводников и термостойкую изоляцию.
В конструкции применяются термопары K-типа от недорогих мультиметров, удалось достать отдельно небольшое количество у продавцов таких мультиметров, т.к. приборы оказались бракованными. Термопары при работе располагаются в зоне пайки и должны прижиматься к плате, для нижнего нагревателя снизу, для верхнего непосредственно в зоне пайки. Прижим обеспечивается очень легко, это связано с тем, что провода термопар, как правило, гибкие и в тоже время достаточно упругие.
Теперь о процесс сборки блока управления. После монтажа всех элементов на плате (включая МК) тщательно проверяется качество монтажа. Затем можно перейти к прошивке МК, для этого лучше и безопаснее использовать лабораторный (не штатный источник питания) или питать от компьютера через программатор. Для прошивки я использую программатор PonyProg (https://www.lancos.com/prog.html). Напомню, что при работе с PonyProg сначала нужно откалибровать программу, затем прочитать (!) фьюзы, загрузить прошивку (HEX), загрузить данные для EEPROM (EEP) (для этого в окне проводника меняем тип файла), прошить (Write Device), опять открыть вкладку с фьюзами, установить их (как именно см. ниже), записать. Для удачной прошивки МК советую следовать этой последовательности.
BootLock12 = 1 (галки нет)
BootLock11 = 1 (галки нет)
BootLock02 = 1 (галки нет)
BootLock01 = 1 (галки нет)
Lock2 = 0 (галка есть)
Lock1 = 0 (галка есть)

OCDEN = 1 (галки нет)
JTAGEN = 1 (галки нет)
SPIEN = 0 (галка есть)
CKOPT = 1 (галки нет)
EESAVE = 1 (галки нет)
BOOTSZ1 = 1 (галки нет)
BOOTSZ0 = 1 (галки нет)
BOOTRST = 1 (галки нет)

BODLEVEL = 0 (галка есть)
BODEN = 0 (галка есть)
SUT1 = 0 (галка есть)
SUT0 = 0 (галка есть)
CKSEL3 = 0 (галка есть)
CKSEL2 = 1 (галки нет)
CKSEL1 = 0 (галка есть)
CKSEL0 = 0 (галка есть)

Далее, проверяем работоспособность подачей питания, на дисплее должно отобразиться приветствие (с коротким звуковым сигналом) и затем появиться сообщение об ошибке. Это нормально, так и должно быть. Далее следуйте Инструкции по настройке и эксплуатации паяльной станции (находится в приложении).
Подробно о сборке моего варианта можно прочесть в Инструкции по сборке установки, но это лишь один из многих вариантов, и далеко не самый идеальный, поэтому имеет лишь рекомендательный характер. Например, проще и быстрее для нижнего подогрева использовать готовый галогеновый прожектор, он конечно имеет более малую площадь, но за то ничего мастерить не нужно. Или наоборот использовать сверху и снизу кварцевые ИК излучатели с высокой эффективностью, но с ними уже сложнее.
Еще одно немаловажное замечание, при работе с галогеновыми лампами помните, что их нельзя включать со следами жира на колбе (от этого они могут расплавиться или взорваться), поэтому перед включением тщательно обезжириваем бензином или ацетоном. И еще при работе очень рекомендую обзавестись хорошими очками от солнца, они вам очень пригодятся! Удачи!

Файлы:
Печатная плата в формате SL 4.0.
Прошивка МК с исходником.
Инструкция по сборке (~5Мб).
Инструкция по настройке.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

как создать своими руками, пошаговая инструкция

Уже давно я задумался над тем, паяльную станцию своими руками и чинить на ней свои старые видеокарты, приставки и ноутбуки. Для нагрева можно использовать старую галогеновую грелку, ножку от старой настольной лампы можно использовать для удержания и перемещения верхнего нагревателя, платы будут лежать на алюминиевых поручнях, спираль от душа будет держать термопары, а плата Ардуино будет следить за температурой.

Сперва разберемся с тем, что такое паяльная станция. Современные чипы на интегральных схемах (ЦПУ, ГПУ и т.д.) не имеют ножек, зато имеют массив шариков (BGA, Ball grid array). Для того чтобы припаять\отпаять такой чип, нужно иметь устройство, которое нагреет всю IC до температуры в 220 градусов и при этом не расплавит плату, а также не подвергнет IC термическому шоку. Именно поэтому нам нужен контроллер температуры. Такие аппараты стоят в диапазоне $400-1200. Это проект должен уложиться примерно в $130. Про BGA и паяльные станции вы можете почитать на Википедии, а мы начнём работать!

Материалы:

  • Четырёхламповый галогеновый нагреватель ~1800w (в качестве нижнего подогрева)
  • 450w керамический ИК (верхний нагреватель)
  • Алюминиевые рейки для занавесок
  • Спиральный кабель для душа
  • Прочная толстая проволока
  • Ножка от настольной лампы
  • Плата Ардуино ATmega2560
  • 2 платы SSR 25-DA2x Adafruit MAX31855K (или сделайте сами, как сделал я)
  • 2 термопары типа K
  • Блок питания постоянного тока 220 на 5v, 0.5A
  • Буквенный модуль LCD 2004
  • 5v пищалка

Шаг 1: Нижний нагреватель: отражатель, лампы, корпус

Найдите галогеновый нагреватель, откройте его и выньте отражатель и 4 лампы. Будьте аккуратны, не сломайте лампы. Здесь вы можете приложить воображение и создать свой корпус, который будет держать лампы и отражатель. Например, вы можете взять старый корпус ПК и поместить лампы, отражатель и провода внутрь него. Я использовал металлические листы толщиной 1 мм и сделал из них корпуса для нижнего и верхнего нагревателя, а также корпус для контроллера Ардуино. Как я и сказал прежде — вы можете быть креативными и придумать для корпуса что-то своё.

Используемый мною нагреватель был на 1800W (4 лампы на 450w параллельно). Используйте провода из нагревателя и параллельно соедините лампы. Вы можете встроить штекер для переменного тока, как сделал это я, или соединить кабель напрямую от нижнего нагревателя к контроллеру.

Шаг 2: Нижний нагреватель: система крепления плат

После создания корпуса нижнего нагревателя, измерьте бОльшую длину его окна и отрежьте два куска алюминиевой рейки такой же длины. Вам также нужно будет отрезать еще 6 кусков, каждая размером в половину от меньшей стороны окна нагревателя. Просверлите отверстия по двум концам больших кусков реек, а также на одном конце каждой из 6 небольших реек и на длинной части окна. Перед тем, как прикручивать части к корпусу, нужно создать механизм крепления на гайках, по типу такого, который я сделал на фотографиях. Это нужно для того, чтобы меньшие рейки могли скользить по бОльшим рейкам.

После того, как вы проденете гайки в рейки и скрутите всё вместе, используйте шуруповёрт для перемещения и закрепления шурупов, чтобы система крепления подходила под размер и форму вашей платы.

Шаг 3: Нижний нагреватель: держатели термопары

Для изготовления держателей термопары, замерьте диагональ окна нижнего нагревателя и отрежьте два куска спирального кабеля для душа такой же длины. Раскрутите жесткий провод и отрежьте два куска, каждый на 6 см длиннее, чем спиральный кабель от душа. Пропустите жесткий провод и термопару через спиральный кабель и загните оба конца провода так, как это сделал я на картинках. Оставьте один конец длиннее другого для того, чтобы закрутить его одним из винтов рейки.

Шаг 4: Верхний нагреватель: керамическая пластина

Для изготовления верхнего нагревателя я использовал керамический инфракрасный нагреватель на 450W. Вы можете найти такие на Алиэкспресс. Хитрость заключается в том, что нужно создать для нагревателя хороший кейс с правильным током воздуха. Далее приступаем к держателю нагревателя.

Шаг 5: Верхний нагреватель: держатель

Найдите старую настольную лампу на ножке и разберите её. Для того чтобы правильно разрезать лампу, нужно точно всё рассчитать, так как верхний инфракрасный нагреватель должен достигать всех углов нижнего нагревателя. Итак, сначала прикрепите корпус верхнего нагревателя, сделайте разрез по оси X, произведите правильные расчёты и, наконец, сделайте разрез по оси Z.

Шаг 6: ПИД-регулятор на Ардуино

Найдите правильные материалы и создайте прочный и безопасный кейс для Ардуино и других принадлежностей.

Можно просто отрезать и с прикрепить провода, соединяющие контроллер (верхнее/нижнее питание, контролер питания, термопары), используя паяльник или раздобыть коннекторы и сделать всё аккуратно. Я не знал точно, сколько тепла будет излучать SSR, поэтому добавил на корпус вентилятор. Будете вы устанавливать вентилятор, или нет, но вам обязательно нужно нанести на SSR термопасту. Код прост и из него понятно, как соединить кнопки, SSR, экран и термопары, так что соединить все вместе будет просто. Как управлять устройством: для значений P, I и D нет автонастройки, так что эти значения нужно будет вбить вручную в зависимости от ваших настроек. Есть 4 профиля, в каждом из них можно установить количество шагов, значения Ramp (C/s), dwel(время ожидания между шагами), порог нижнего нагревателя, целевую температуру для каждого шага и значения P,I,D для верхнего и нижнего нагревателей. Если вы, например, выставите 3 шага, 80, 180 и 230 градусов с порогом нижнего нагревателя 180, то ваша плата будет прогрета снизу только до 180 градусов, дальше температура снизу будет держаться на 180 градусах, а верхний нагреватель разогреется до 230 градусов. Код до сих пор нуждается во множестве улучшений, но из него вы можете понять, как все должно работать. Это руководство описано не в деталях, ведь в нём присутствует множество самодельных элементов, и каждая сборка будет отличаться от других. Я надеюсь, что вы вдохновитесь этой инструкцией и сделаете по ней свою ИК паяльную станцию.

Код на Дропбоксе: Ссылка

IR6000 Инфракрасный верхний нагреватель верхнего нагревателя Замена детали для паяльной станции IR6500 | нагревательная часть | комплект моторной части нагревателя

Введение

Запчасть для паяльных станций BGA, с 7-контактным разъемом, с функцией программного контроля температуры (PC410 или сенсорный экран)

Если вы не знаете, подходит ли ваша машина, пожалуйста, свяжитесь с продавцом перед заказом …

Парковка внутри

Головка IR6000 450Вт…………. 1 шт

Изображения товара

.

Shop ir station — суперскидки на ir station в AliExpress

Отличные новости! Вы находитесь в нужном месте для радиостанции. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая радиостанция вскоре станет одним из самых популярных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели радиостанцию ​​на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в своей станции и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести ir station по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

.

4800 Вт паяльная станция BGA модель AT 8235T с верхним нагревателем 800 Вт, нижним нагревателем 1200 Вт и инфракрасным нагревателем 2700 Вт AC 110 В 220 В | нагреватель нагреватель | нагреватель 110 В нагреватель 220 В

AT-8235T

СТАНЦИЯ ПЕРЕРАБОТКИ BGA

Модель:
AT-8235T

Категория:
СТАНЦИЯ ДЛЯ ВОССТАНОВЛЕНИЯ BGA

Имя:
AT-8235T СТАНЦИЯ ДЛЯ ВОССТАНОВЛЕНИЯ BGA

4800 Вт Паяльная станция BGA модель AT-8235T с верхним нагревателем 800 Вт, нижним нагревателем 1200 Вт и инфракрасным нагревателем 2700 Вт.Размер печатной платы: макс. 500 * 400 мм, мин. 22 * ​​22 мм.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Общая мощность: 4800 Вт
Верхний нагреватель: 800 Вт
Нижний нагреватель: 2-й 1200 Вт, 3-й ИК-нагреватель 2700 Вт
Мощность: AC 220 В ± 10% 50/60 Гц
Размеры: L800 * W900 * H950 мм
Позиционирование: V-образная канавка, опора для печатной платы может быть отрегулирована в любом направлении с помощью внешнего универсального приспособления
Контроль температуры: Датчик K, замкнутый контур
Точность температуры: ± 2 ° c
Размер печатной платы: макс. 500 × 400 мм; Мин. 22 × 22 мм
Чип BGA: 2 * 2 мм — 80 * 80 мм
Минимальное расстояние между микросхемами: 0.15 мм
Внешний датчик температуры: 1, расширяемый (дополнительно)
Вес нетто: 45 кг

ХАРАКТЕРИСТИКИ

Встроенный промышленный ПК, интерфейс с сенсорным экраном высокой четкости, управление ПЛК и функция мгновенного анализа профиля. Паяльная станция BGA предлагает настройки в реальном времени, а отображение фактического температурного профиля можно использовать для анализа и корректировки параметров, если это необходимо.

В нем используется прецизионное управление замкнутым контуром типа K и система автоматической регулировки температуры с ПЛК и температурным модулем для обеспечения точного контроля температуры ± 2 градуса C.Внешний датчик температуры обеспечивает мониторинг температуры и точный анализ температурного профиля в реальном времени.

Поддержка печатных плат с V-образной канавкой для быстрого, удобного и точного позиционирования, подходит для всех типов печатных плат.

Гибкое и удобное съемное приспособление на плате PCB, которое защищает и предотвращает повреждение PCB. Он также может адаптироваться для переделки различных корпусов BGA.

Форсунки BGA различных размеров, которые можно регулировать на 360 градусов для облегчения установки и замены.

Три температурные зоны могут нагреваться независимо друг от друга, и их можно многократно контролировать и настраивать, чтобы обеспечить наилучшую интеграцию различных температурных зон. Температуру нагрева, время, угол, охлаждение и вакуумирование можно настроить на интерфейсе.

Существует 6-8 уровней регулируемого и постоянного контроля температуры. Массивное хранилище температурных кривых, которые доступны мгновенно в соответствии с различными BGA. Анализ кривых, настройка и регулировка доступны через сенсорный экран.Три зоны нагрева используют независимый расчет PID для управления процессом нагрева, чтобы обеспечить более точный и точный контроль температуры.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *