Зеркальный солнечный коллектор: Товары оптом на Alibaba.com — зеркальный солнечный коллектор

Содержание

Солнечные концентраторы. Виды и особенности. Применение

Основной проблемой мировой энергетики считается ожидаемое снижение запасов углеводородов и других невозобновляемых источников энергии. Один из действенных подходов, позволяющий частично решить этот вопрос – использование альтернативных вариантов ее получения за счет возобновляемых источников и солнечной энергии, в частности. Реализовать эту возможность удается путем применения специальных устройств, получивших название «солнечные концентраторы».

Принцип действия концентраторов солнечной энергии

Солнечные концентраторы работают по принципу фокусировки ИК лучей и передачи энергии теплоносителю, размещенному в коллекторных установках. Для реализации функциональных возможностей этих агрегатов потребуется специальный сборник солнечного излучения – рефлектор, а также преобразователь тепла в нужный вид энергии (в электрическую, например).

Функцию такого преобразующего устройства выполняет особый узел, называемый коллектором. В нем циркулирует теплоноситель определенного вида, благодаря которому после ряда превращений с помощью встроенных генераторных установок получают электрическое напряжение определенной мощности.

Виды концентраторов

Основное назначение агрегатов этого класса – концентрировать на своей поверхности тепловые ИК лучи и направлять их точечно на приемные коллекторы, нагревающиеся до +350–700°С. При этом их средняя рабочая температура составляет порядка +600°С. Коллекторные сборники передают накопленную в теплоносителе энергию генераторным установкам, а затем – непосредственно потребителям, расходующим ее в конкретных целях.

По своей конструкции солнечные концентраторы подразделяются на следующие виды:
  • Параболического типа.
  • Тарельчатые устройства.
  • Башенные концентраторы.
  • Агрегаты с отражателями линейного типа (на линзах Френкеля). Находится в стадии экспериментальных испытаний и тестирования (не имеет практических наработок).
Параболические системы

Состоят из лотков соответствующей формы. Собранные ими солнечные лучи фокусируются на коллекторе, состоящем из целого ряда трубок с зачерненной поверхностью. Для снижения тепловых потерь эти элементы закрываются стеклянной оболочкой трубчатого типа, предотвращающей возможные конвекции в области фокусировки.

Тепловое излучение Солнца передается находящемуся в трубках теплоносителю, представляющему собой солевой расплав из натриевой и калийной селитры. При подготовке этого раствора учитывается правило, согласно которому с повышением его плотности способность накапливать солнечную энергию снижается. Важно регулировать этот показатель, поскольку от него в определенной мере зависит КПД теплового оборудования.

Для повышения эффективности действия системы параболических концентраторов такие установки содержат в своем составе одноосные или двуосные модули слежения за положением солнца на горизонте. Чаще всего они изготавливаются в мобильном варианте и могут перевозиться с места на место.

В особых случаях эти установки делаются стационарными, используемыми в одном конкретном месте. Стационарные солнечные концентраторы можно самостоятельно соорудить на приусадебном участке, заменив солевые растворы обычной водой. Существенный недостаток этих агрегатов вообще – низкая эффективность при высокой стоимости отдельных компонентов.

К числу преимуществ параболических систем относят:
  • Возможность выравнивания пиковых нагрузок солнечной активности
  • Простота механизма слежения за положением Солнца.
  • Возможность сборки системы своими силами.

Действующими установками этого типа за время их эксплуатации выработано порядка 4500 ГВт/часов, что является весомым показателем для солнечных концентраторов. Одновременно с этим накоплен значительный опыт по практической эксплуатации агрегатов параболического типа.

Тарельчатые конструкции

Своим внешним видом и принципом работы тарельчатые солнечные концентраторы напоминают знакомую всем спутниковую антенну. Отличие состоит в длине волновых излучений, которые удается концентрировать в том и в другом случае. В концентраторах солнечных лучей улавливается ИК излучение, а в спутниковых антеннах – волны более низкой частоты.

Особенности тарельчатых конструкций:
  • Приемники ИК лучей монтируются в фокусе антенны.
  • Для выработки электроэнергии используются компактные генераторы, встроенные непосредственно в элементы конструкции.
  • Теплоноситель в генерирующих агрегатах нагревается до температур, достигающих +1000°С.

Станции с тарельчатыми концентраторами чаще всего используются с целью автономного питания слаботочных нагрузок, не рассчитанных на слишком большую мощность. Однако в определенных условиях их допускается подключать к действующим электрическим сетям 220 В. В этом случае концентраторы чаще всего применяются как резервные источники электроэнергии.

Основные технические характеристики устройств:
  • Диаметр зеркала – от 7 метров и более.
  • Рабочая мощность коллектора – порядка 25 кВт.
  • КПД агрегатов (он достигает значения 29%).

К недостаткам тарельчатых систем относят несоответствие требованиям, предъявляемым к конструкциям этого класса и невысокий спрос на рынке альтернативных источников энергии. К достоинствам следует отнести возможность сглаживания колебания напряжения в сети, а также модульность, позволяющая интегрировать их в действующие электрические цепи.

Солнечные концентраторы в башенном исполнении

В этих конструкциях уловленные концентратором солнечные лучи фокусируются на специальной башне с теплоприемником, расположенной удаленно от самого устройства. В башенный приемник встроен модуль автоматического отслеживания положения Солнца, что гарантирует концентрацию лучей в строго фиксированной точке. Нагретая в результате этого жидкость поступает в генераторный агрегат, а ее излишки закачиваются в специальные сборники/хранилища для использования в ночное время или в облачную погоду.

Солнечные концентраторы башенного типа допускается использовать с целью отопления внутренних пространств строений, включая частные дома и дачи. Температура теплоносителя, циркулирующего в такой башне, достигает +1000°С. Этого достаточно для того, чтобы использовать накопленное тепло не только в быту, но и в технических целях.

Сравнительные характеристики различных видов концентраторов
При сравнении различных вариантов исполнения солнечных энергосистем необходимо отметить следующие моменты:
  • Идеального решения при выборе таких систем не существует.
  • Каждая из представленных разновидностей концентрирующих устройств имеет свои преимущества и недостатки.
  • Чтобы выбрать подходящую модель для заявленных целей – специалисты советуют воспользоваться возможностью сравнить их рабочие характеристики.

В размещенных в Интернете таблицах приводятся эксплуатационные показатели действующих промышленных систем, оснащенных различными типами концентраторов.

Концентраторы на линзах Френеля

Это сравнительно новая разработка, находящаяся в стадии испытаний и практического тестирования. На этом этапе предполагается выявить ее положительные и слабые стороны, а также составить заключение о целесообразности применения в практических целях. К плюсам этой технологии относят сравнительную дешевизну реализации и привлекательный дизайн конструкции установки.

Общий недостаток этих систем – отсутствие практических наработок и невозможность оценить перспективы концентраторов на линзах Френкеля. При грамотном подходе к выбору необходимого оборудования вообще правильное решение принимается только после анализа его отрицательных и положительных сторон.

Достоинства и недостатки солнечных концентраторов

К достоинствам солнечных концентраторов традиционно относят их экологичность и способность заменить невозобновляемые источники энергии. На этом их относительные преимущества заканчиваются.

Солнечные концентраторы имеют следующие общие недостатки:
  • Сложность изготовления конструкций.
  • Сравнительно высокая стоимость.
  • Относительно низкая эффективность (малый КПД).

К особо сложным элементам этих устройств относят механизм слежения за положением светила, для точного позиционирования которого необходимы уникальные механические приводы. Кроме того, для этого потребуются специальные компьютерные программы, обеспечивающие высокую точность управления.

В случае с мобильными установками особую важность приобретает вопрос их обеспечения качественным и бесперебойным электропитанием, что удается сделать не во всех случаях. Иногда по условиям эксплуатации добиться этого просто невозможно. Поэтому любители предпочитают изготавливать солнечные концентраторы стационарного типа, КПД которых очень низок.

Из-за высокой стоимости таких установок их серийное производство целесообразно при условии государственной поддержки. Только она в состоянии сделать рентабельным любой подобный проект. С другой стороны, применение солнечных концентраторов для нагрева носителя в отопительных системах также не имеет смысла. Для решения этой задачи существуют более эффективные системы, называемые «солнечными коллекторами«.

Похожие темы:

Солнечный коллектор — это… Что такое Солнечный коллектор?

Солнечный коллектор — устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближним инфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.

Обычно применяются для нужд горячего водоснабжения и отопления помещений.[1]

Типы солнечных коллекторов

Плоские

Плоский солнечный коллектор

Плоский коллектор состоит из элемента, поглощающего солнечное излучение (абсорбер), прозрачного покрытия и термоизолирующего слоя. Поглощающий элемент называется абсорбером; он связан с теплопроводящей системой. Он покрывается чёрным цветом либо спецраствором, для повышения эффективности. Прозрачный элемент обычно выполняется из закалённого стекла с пониженным содержанием металлов, либо особого рифлёного поликарбоната. Задняя часть панели покрыта теплоизоляционным материалом (например, полиизоцианурит). Трубки, по которым распространяется вода, изготавливаются из сшитого полиэтилена (PEX) либо меди. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметиком.

[2]

При отсутствии разбора тепла (застое) плоские коллекторы способны нагреть воду до 190—200 °C.

Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре. Стандартным решением повышения эффективности коллектора стало применение абсорбера из листовой меди из-за её высокой теплопроводности, поскольку применение меди против алюминия даёт выигрыш 4% (хотя теплопроводность алюминия вдвое меньше, что означает значительное превышение «запаса мощности» по теплопередаче), что незначительно в сравнении с ценой)

[источник не указан 51 день] Используется также аллюминиевый экран.[2]

Вакуумные

Вакуумный солнечный коллектор

Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.

Фактически солнечная тепловая труба имеет устройство схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие улавливающее солнечную энергию. между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка даёт возможность сохранить около 95% улавливаемой тепловой энергии.

Кроме того, в вакуумных солнечных коллекторах нашли применение тепловые трубки, выполняющие роль проводника тепла. При облучении установки солнечным светом, жидкость, находящаяся в нижней части трубки, нагреваясь превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору. Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.

Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.

Устройство бытового коллектора

Теплоноситель (вода, воздух или антифриз) нагревается, циркулируя через коллектор, а затем передает тепловую энергию в бак-аккумулятор, накапливающий горячую воду для потребителя.

В простом варианте циркуляция воды происходит естественно из-за разности температур в коллекторе и баке-аккумуляторе, который располагается выше.

В более сложном варианте коллектор имеет свой контур, заполненный водой или антифризом. В контур включается насос для циркуляции теплоносителя. Бак может располагаться как непосредственно рядом с коллектором, так и внутри здания.

В тех случаях, когда солнечной энергии недостаточно, температуру воды на нужном уровне поддерживает дополнительный электрический нагревательный элемент, который устанавливают за баком-аккумулятором. Такое решение позволяет повысить эффективность солнечной установки, поскольку КПД солнечного коллектора снижается с ростом температуры теплоносителя.

Бывают и солнечные водонагревательные установки аккумуляционного типа, в которых отсутствует отдельный бак-аккумулятор, а нагретая вода сохраняется непосредственно в солнечном коллекторе. В этом случае установка представляет собой близкий к прямоугольной форме бак.[1]

Преимущества и недостатки плоских и вакуумных коллекторов

Вакуумные трубчатые
Плоские высокоселлективные
++
Низкие теплопотериСпособность очищаться от снега и инея
Работоспособность в холодное время года до -30СВысокая производительность летом
Способность генерировать высокие температурыОтличное соотношение цена/производительность для южных широт и тёплого климата
Длительный период работы в течение сутокВозможность установки под любым углом
Удобство монтажаМеньшая начальная стоимость
Низкая парусность
Отличное соотношение цена/производительность для умеренных широт и холодного климата
Неспособность к самоочистке от снегаВысокие тепло потери
Относительно высокая начальная стоимость проектаНизкая работоспособность в холодное время года
Рабочий угол наклона не менее 20°Сложность монтажа связанная с необходимостью доставки на крышу собранного коллектора
Высокая парусность

Солнечные коллекторы-концентраторы

Повышение эксплуатационных температур до 120—250 °C возможно путём введения в солнечные коллекторы концентраторов с помощью параболоцилиндрических отражателей, проложенных под поглощающими элементами. Для получения более высоких эксплуатационных температур требуются устройства слежения за солнцем.

Солнечные воздушные коллекторы

Солнечные воздушные коллекторы — это приборы, работающие на энергии Солнца и нагревающие воздух. Солнечные воздушные коллекторы представляют собой чаще всего простые плоские коллекторы и используются в основном для отопления помещений, сушки сельскохозяйственной продукции. Воздух проходит через поглотитель благодаря естественной конвекции или под воздействием вентилятора. Поскольку воздух хуже проводит тепло, чем жидкость, он передает поглотителю меньше тепла, чем жидкий теплоноситель. В некоторых солнечных воздухонагревателях к поглощающей пластине присоединены вентиляторы, которые увеличивают турбулентность воздуха и улучшают теплопередачу. Недостаток этой конструкции в том, что она расходует энергию на работу вентиляторов, таким образом увеличивая затраты на эксплуатацию системы. В холодном климате воздух направляется в промежуток между пластиной-поглотителем и утеплённой задней стенкой коллектора: таким образом, избегают потерь тепла сквозь остекление. Однако, если воздух нагревается не более, чем на 17 °С выше температуры наружного воздуха, теплоноситель может циркулировать по обе стороны от пластины-поглотителя без больших потерь эффективности. Основными достоинствами воздушных коллекторов являются их простота и надёжность. Такие коллекторы имеют простое устройство. При надлежащем уходе качественный коллектор может прослужить 10-20 лет, а управление им весьма несложно. Теплообменник не требуется, так как воздух не замерзает. Потенциальным способом снижения стоимости коллекторов является их интеграция в стены или крыши зданий, а также создание коллекторов, которые можно будет собирать из готовых сборных компонентов. Коллекторы предназначены для обогрева помещений в условиях достаточной солнечной освещенности и при отсутствии (или параллельно с ними) других источников энергии (таких как газ, электричество, жидкое и твёрдое топливо). Коллекторы не могут быть основной системой отопления, так как не обеспечивают постоянных характеристик, как в течение суток, так и при смене сезонов года. Однако система может быть интегрирована в любую существующую систему отопления и вентиляции.

Применение

Солнечный водонагреватель на жилом доме. Мальта.

Солнечные коллекторы применяются для отапливания промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30—90 °C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов.

В Европе в 2000 году общая площадь солнечных коллекторов составляла 14,89 млн м², а во всём мире — 71,341 млн м².

Солнечные коллекторы — концентраторы могут производить электроэнергию с помощью фотоэлектрических элементов или двигателя Стирлинга.

Солнечные коллекторы могут использоваться в установках для опреснения морской воды. По оценкам Германского аэрокосмического центра (DLR) к 2030 году себестоимость опреснённой воды снизится до 40 евроцентов за кубический метр воды[3]

В России

По исследованиям ОИВТ РАН в тёплый период (с марта—апреля по сентябрь) на большей части территории России средняя дневная сумма солнечного излучения составляет 4,0-5,0 кВтч/м² (на юге Испании — 5,5-6,0 кВтч/м², на юге Германии – до 5 кВтч/м²). Это позволяет нагревать для бытовых целей около 100 л воды с помощью солнечного коллектора площадью 2 м² с вероятностью до 80%, то есть практически ежедневно. По среднегодовому поступлению солнечной радиации лидерами являются Забайкалье, Приморье и Юг Сибири. За ними идут юг европейской части (приблизительно до 50º с.ш.) и значительная часть Сибири.

Использование солнечных коллекторов в России составляет 0,2 м²/1000 чел. На Кипре эксплуатируется около 800 м²/1000 чел., в Австрии 450 м²/1000 чел., в Германии 140 м²/1000 чел.

В летнем периоде, большинство районов России вплоть до 65º с.ш. характеризуются высокими значениями среднедневной радиации. В зимнее время количество поступающей солнечной энергии снижается в зависимости от широтного расположения установки в разы.

Для всесезонного применения установки должны иметь большую поверхность, два контура с антифризом, дополнительные теплообменники. В таком случае применяется вакуумированные коллекторы, поскольку больше разность температур между нагреваемым теплоносителем и наружным воздухом. Однако такая конструкция выше по стоимости.[1]

Сооружение коллекторов в настоящее время осуществляет­ся, в основном, в Красно­дарском крае, Бурятии, в Приморском и Хабаровском краях.[4]

Солнечные башни

Солнечная башня, Севилья, Испания. Построена в 2007 г.

Впервые идея создания солнечной электростанции промышленного типа была выдвинута советским инженером Н. В. Линицким в 1930-х гг. Тогда же им была предложена схема солнечной станции с центральным приёмником на башне. В ней система улавливания солнечных лучей состояла из поля гелиостатов — плоских отражателей, управляемых по двум координатам. Каждый гелиостат отражает лучи солнца на поверхность центрального приёмника, который для устранения влияния взаимного затенения поднят над полем гелиостатов. По своим размерам и параметрам приёмник аналогичен паровому котлу обычного типа.

Экономические оценки показали целесообразность использования на таких станциях крупных турбогенераторов мощностью 100 МВт. Для них типичными параметрами являются температура 500 °C и давление 15 МПа. С учётом потерь для обеспечения таких параметров требовалась концентрация порядка 1000. Такая концентрация достигалась с помощью управления гелиостатами по двум координатам. Станции должны были иметь тепловые аккумуляторы для обеспечения работы тепловой машины при отсутствии солнечного излучения.

В США с 1982 г. было построено несколько станций башенного типа мощностью от 10 до 100 МВт. Подробный экономический анализ систем этого типа показал, что с учётом всех затрат на сооружение 1 кВт установленной мощности стоит примерно $1150. Один кВт·ч электроэнергии стоил около $0,15.

Параболоцилиндрические концентраторы

Параболоцилиндрические концентраторы имеют форму параболы, протянутую вдоль прямой.

В 1913 году Франк Шуман (Frank Shuman) построил в Египте водоперекачивающую станцию из параболоцилиндрических концентраторов. Станция состояла из пяти концентраторов каждый 62 метра в длину. Отражающие поверхности были изготовлены из обычных зеркал. Станция вырабатывала водяной пар, с помощью которого перекачивала около 22 500 литров воды в минуту[5].

Параболоцилиндрический зеркальный концентратор фокусирует солнечное излучение в линию и может обеспечить его стократную концентрацию. В фокусе параболы размещается трубка с теплоносителем (масло), или фотоэлектрический элемент. Масло нагревается в трубке до температуры 300—390 °C. В августе 2010 года специалисты NREL испытали установку компании SkyFuel. Во время испытаний была продемонстрирована термальная эффективность параболоцилиндрических концентраторов 73 % при температуре нагрева теплоносителя 350 °C[6].

Параболоцилиндрические зеркала изготовляют длиной до 50 метров. Зеркала ориентируют по оси север—юг, и располагают рядами через несколько метров. Теплоноситель поступает в тепловой аккумулятор для дальнейшей выработки электроэнергии паротурбинным генератором.

С 1984 года по 1991 год в Калифорнии было построено девять электростанций из параболоцилиндрических концентраторов общей мощностью 354 МВт. Стоимость электроэнергии составляла около $0,12 за кВт·ч.

Германская компания Solar Millennium AG строит во Внутренней Монголии (Китай) солнечную электростанцию. Общая мощность электростанции увеличится до 1000 МВт к 2020 году. Мощность первой очереди составит 50 МВт.

В июне 2006 года в Испании была построена первая термальная солнечная электростанция мощностью 50 МВт. В Испании к 2010 году может быть построено 500 МВт электростанций с параболоцилиндрическими концентраторами.

Всемирный банк финансирует строительство подобных электростанций в Мексике, Марокко, Алжире, Египте и Иране.

Концентрация солнечного излучения позволяет сократить размеры фотоэлектрического элемента. Но при этом снижается его КПД, и требуется некая система охлаждения.

Параболические концентраторы

Экспериментальный коллектор НПО «Астрофизика»

Параболические концентраторы имеют форму параболоида вращения. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92 % падающего на них солнечного излучения. В фокусе отражателя на кронштейне закреплён двигатель Стирлинга, или фотоэлектрические элементы. Двигатель Стирлинга располагается таким образом, чтобы область нагрева находилась в фокусе отражателя. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25 % в установке, состоящей из параболического концентратора и двигателя Стирлинга [7].

В настоящее время строятся установки с параболическими концентраторами мощностью 9—25 кВт. Разрабатываются бытовые установки мощностью 3 кВт. КПД подобных систем около 22—24 %, что выше, чем у фотоэлектрических элементов. Коллекторы производятся из обычных материалов: сталь, медь, алюминий, и т. д. без использования кремния «солнечной чистоты». В металлургии используется так называемый «металлургический кремний» чистотой 98 %. Для производства фотоэлектрических элементов используется кремний «солнечной чистоты», или «солнечной градации» с чистотой 99,9999 % [8].

В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09—0,12 за кВт·ч. Департамент энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04—0,05 к 2015 — 2020 году.

Компания Stirling Solar Energy разрабатывает солнечные коллекторы крупных размеров — до 150 кВт с двигателями Стирлинга. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию. До 2010 года будет 20 тысяч параболических коллекторов диаметром 11 метров. Суммарная мощность электростанции может быть увеличена до 850 МВт.

Линзы Френеля

Линзы Френеля используются для концентрации солнечного излучения на поверхности фотоэлектрического элемента или на трубке с теплоносителем. Применяются как кольцевые, так и поясные линзы. В английском языке употребляется термин LFR — linear Fresnel reflector.

Распространение

В 2010 году во всём мире работало 1170 МВт солнечных термальных электростанций. Из них в Испании 582 МВт и в США 507 МВт. Планируется строительство 17,54 ГВт солнечных термальных электростанций. Из них в США 8670 МВт, в Испании 4460 МВт, в Китае 2500 МВт[9]. В 2011 году насчитывалось 23 производителя и поставщика плоских коллекторов из 12 стран; 88 производителей и поставщиков вакуумных коллекторов из 21 страны.[10]

Примечания

См. также

Ссылки

Литература

  • А. И. Капралов Рекомендации по применению жидкостных солнечных коллекторов. ВИНИТИ, 1988
  • Гелиотехника. Академия Наук Узбекской АССР, 1966
  • Солнечный душ\\Наука и жизнь, издательство Правда. 1986 №1, стр 131
  • Г. В. Казаков Принципы совершенствования гелиоархитектуры. Свит, 1990

Как сделать самодельный телескоп рефлектор. Зеркальные концентраторы, повышающие кпд, для солнечных коллекторов Изготовление параболического зеркала своими руками

Стартаповская компания GoSol намерена сделать солнечную энергию доступной для каждого в глобальном масштабе. Для этого ею была создана инициатива по разработке и распространению инструкций по сборке солнечных концентраторов из местных материалов, которые могли стать эффективными источниками тепла для приготовления пищи, стирки, нагрева воды и отопления.

«Миссия GoSol.orgсостоит в том, чтобы искоренить энергетическую нищету и минимизировать последствия глобального потепления путем распространения нашей DIY-технологии (DIYот англ. Do It Yourself — рус. «сделай это сам») и разрушения всяких барьеров на пути к свободном доступу к солнечной энергии. С вашей помощью мы хотим привлечь сообщества, предпринимателей и умельцев к использованию самого мощного в мире источника энергии. Все материалы и инструменты, необходимые для реализации этих технологий уже произведены и в изобилии присутствуют во всех уголках мира» — говорится на сайте GoSol.

Энтузиасты GoSol запустили компанию, с помощью которой намереваются собрать 68 000 долларов для воплощения в жизнь своей цели. На данный момент инициатива привлекла около 27 000 долларов и совсем недавно GoSol выпустила свою первую инструкцию по созданию солнечного концентратора.

Читайте также: Солнечный концентратор Ripasso — самый эффективный способ преобразования солнечной энергии?

Бесплатное пошаговое руководство содержит всю необходимую информацию для создания своими руками солнечного концентратора мощностью 0,5 кВт. Отражающая поверхность устройства будет иметь площадь около 1 квадратного метра, а стоимость его производства обойдется от $79 до $145 в зависимости от региона проживания.

Sol1, такое название получила солнечная установка от GoSol, займет приблизительно 1,5 кубических метра пространства. Работы по его изготовлению займут около недели. Материалами для его конструкции послужат железные уголки, пластмассовые коробки, стальные прутья, а основной рабочий элемент – отражающую полусферу – предлагается выполнить из кусков обычного зеркала ванных комнат.

Солнечный концентратор может быть использован для выпечки, жарки, нагрева воды или консервации продуктов питания, посредством обезвоживания. Устройство также может служить демонстрационным примером эффективной работы солнечной энергии и поможет многим предпринимателям развивающихся стран начать собственное дело. В дополнение к содействию снижению вредных выбросов в атмосферу, солнечные концентраторы GoSol помогут сократить вырубку лесов, заменив сжигаемую древесину чистой энергией солнца.

Инструкция GoSol может быть использована не только для создания и практического применения, но и для продажи солнечных концентраторов, которые помогут значительно снизить порог доступа к солнечной энергии, которая, главным образом, сегодня генерируется посредством фотогальванических солнечных панелей. Их стоимость остается на крайне высоком уровне в регионах, где добыть энергию другими способами зачастую просто не возможно.

Бесплатная инструкция солнечного концентратора доступна на сайте GoSol, а чтобы получить ее потребуется оставить свой email адрес, на который будет отправляться обновленная информация. Если же вы желаете, чтобы «солнечная» инициатива продвигалась стремительней и в более крупных масштабах, то можно поддержать компанию финансово – стартап еще принимает денежные взносы, награда за которые будет зависеть от суммы пожертвования.

Читайте также: Украинский солнечный концентратор «Diversity» — инструкция в свободном доступе

Видео: компания GoSol.org Free The Sun Campaign for Builders

ecotechnica.com.ua

Самодельный солнечный концентратор из зеркальный пленки

Огромное количество свободной энергии солнца, воды и ветра и многого другого из того, что может дать природа, люди используют давно. Для кого-то это хобби, а кто-то не может выжить без приспособлений, которые могут извлекать энергию «из воздуха». Например в африканских странах солнечные батареи давно стали спасительным спутником для людей, в засушливых деревнях внедряются системы орошения на солнечных батареях, устанавливаются «солнечные» насосы на колодцы и др.

Солнечные печи в этом китайском магазине.

В европейских странах солнце не светит столь ярко, но лето довольно жаркое, и очень жаль, когда дармовая энергия природы пропадает зря. Существуют удачные разработки печей на солнечной энергии, но в них используются цельные или сборные параболические зеркала. Это во-первых дорого, во-вторых утяжеляет конструкцию и поэтому не всегда удобно в эксплуатации, например, когда требуется малый вес готового концентратора.Интересную модель самодельного параболического солнечного концентратора создал талантливый изобретатель.Для ее изготовления не нужны зеркала, поэтому она очень легкая и не будет тяжелым грузом в походе.

Для создания самодельного солнечного концентратора на основе пленки требуется совсем немного вещей. Все они продаются на любом вещевом рынке.1. Самоклеющаяся зеркальная пленка. Она имеет ровную блестящую поверхность и поэтому является прекрасным материалом для зеркальной части солнечной печи.2. Лист ДСП и такой же по размеру лист оргалита.3. Тонкий шланг и герметик.

Как сделать солнечную печь?

Сначала из древесно-стружечной плиты нужного вам размера электролобзиком вырезаются два кольца, которые надо приклеить друг к другу. На фото и видео фигурирует одно кольцо, но автор указывает, что позднее он добавил второе кольцо. По его словам, можно было бы ограничиться одним, но пришлось увеличить пространство для формирования достаточной вогнутости параболического зеркала. В противном случае фокус луча будет располагаться слишком далеко. Под размер кольца вырезается круг из оргалита для формирования задней стенки солнечного концентратора.Кольцо следует приклеить к оргалиту. Обязательно хорошо все промажьте герметиком. Конструкция должна быть полностью герметичной.Сбоку аккуратно, чтобы были ровные края, проделайте небольшое отверстие, в которое плотно вставьте тонкий шланг. Для герметичности соединение шланга и кольца также можно обработать герметиком.Поверх кольца натяните зеркальную пленку.Откачайте воздух из корпуса установки и таким образом сформируйте сферическое зеркало. Шланг загните и зажмите прищепкой.Сделайте удобную подставку для готового концентратора. Энергии данной установки достаточно, чтобы расплавить алюминиевую банку.

Внимание! Параболические солнечные отражатели могут быть опасными и могут при неосторожном обращении привести к ожогам и повреждениям глаз!Посмотрите процесс изготовления солнечной печки на видео.

Использован материал с сайта забацай.ру. Как сделать солнечную батарею — тут.

izobreteniya.net

Как сделать солнечный концентратор своими руками (например, параболический)

Проблема использования солнечной энергии с древних времен занимала лучшие умы человечества. Было понятно, что Солнце – это мощнейший источник даровой энергии, но как эту энергию использовать, не понимал никто. Если верить античным писателям Плутарху и Полибию, то первым человеком, практически использовавшим солнечную энергию, был Архимед, который с помощью изобретенных им неких оптических устройств сумел собрать солнечные лучи в мощный пучок и сжечь римский флот.

В сущности, устройство, изобретенное великим греком, представляло собой первый концентратор солнечного излучения, который собрал солнечные лучи в один энергетический пучок. И в фокусе этого концентратора температура могла достигать 300°С — 400°С, что вполне достаточно для того, чтобы воспламенить деревянные суда римского флота. Можно только догадываться, какое именно устройство изобрел Архимед, хотя, по современным представлениям, вариантов у него было всего два.

Уже само наименование устройства – солнечный концентратор – говорит само за себя. Этот прибор принимает солнечные лучи и собирает их в единый энергетический пучок. Самый простой концентратор всем знаком из детства. Это обычная двояковыпуклая линза, которой можно было выжигать различные фигурки, надписи, даже целые картинки, когда солнечные лучи собирались такой линзой в маленькую точку на деревянной доске, листе бумаги.

Эта линза относится к так называемым рефракторным концентраторам. Кроме выпуклых линз к этому классу концентраторов относятся также линзы Френеля, призмы. Длиннофокусные концентраторы, построенные на основе линейных линз Френеля, несмотря на свою дешевизну, практически используются очень мало, так как обладают большими размерами. Их применение оправдано там, где габариты концентратора не являются критичными.

Рефракторный солнечный концентратор

Этого недостатка лишен призменный концентратор солнечного излучения. Более того, такое устройство способно концентрировать также и часть диффузного излучения, что значительно повышает мощность светового пучка. Трехгранная призма, на основе которой построен такой концентратор, является и приемником излучения и источником энергетического пучка. При этом передняя грань призмы принимает излучение, задняя грань – отражает, а из боковой грани уже выходит излучение. В основу работы такого устройства заложен принцип полного внутреннего отражения лучей до того, как они попадут на боковую грань призмы.

В отличие от рефракторных, рефлекторные концентраторы работают по принципу сбора в энергетический пучок отраженного солнечного света. По своей конструкции они подразделяются на плоские, параболические и параболоцилиндрические концентраторы. Если говорить об эффективности каждого из этих типов, то наивысшую степень концентрации – до 10000 – дают параболические концентраторы. Но для построения систем солнечного теплоснабжения используются в основном плоские или параболоцилиндрические системы.

Параболические (рефлекторные) солнечные концентраторы

Практическое применение солнечных концентраторов

Собственно, основная задача любого солнечного концентратора – собрать излучение солнца в единый энергетический пучок. А уж воспользоваться этой энергией можно различными путями. Можно даровой энергией нагревать воду, причем, количество нагретой воды будет определяться размерами и конструкцией концентратора. Небольшие параболические устройства можно использовать в качестве солнечной печи для приготовления пищи.

Параболический концентратор в качестве солнечной печи

Можно использовать их для дополнительного освещения солнечных батарей, чтобы повысить выходную мощность. А можно использовать в качестве внешнего источника тепла для двигателей Стирлинга. Параболический концентратор обеспечивает в фокусе температуру порядка 300°С – 400°С. Если в фокусе такого сравнительно небольшого зеркала поместить, например, подставку для чайника, сковороды, то получится солнечная печь, на которой очень быстро можно приготовить пищу, вскипятить воду. Помещенный в фокусе нагреватель с теплоносителем позволит достаточно быстро нагревать даже проточную воду, которую затем можно использовать в хозяйственных целях, например, для душа, мытья посуды.

Простейшая схем нагрева воды солнечным концентратором

Если в фокусе параболического зеркала поместить подходящий по мощности двигатель Стирлинга, то можно получить небольшую тепловую электростанцию. Например, фирма Qnergy разработала и пустила в серию двигатели Стирлинга QB-3500, которые предназначены для работы с солнечными концентраторами. В сущности, правильнее было бы их назвать генераторами электрического тока на базе двигателей Стирлинга. Этот агрегат вырабатывает электрический ток мощностью 3500 ватт. На выходе инвертора – стандартное напряжение 220 вольт 50 герц. Этого вполне достаточно, чтобы обеспечить электричеством дом для семьи из 4 человек, дачу.

Кстати, используя принцип работы двигателей Стирлинга, многие умельцы своими руками делают устройства, в которых используется вращательное или возвратно-поступательное движение. Например, водяные насосы для дачи.

Основной недостаток параболического концентратора заключается в том, что он должен быть постоянно ориентирован на солнце. В промышленных гелиевых установках применяются специальные системы слежения, которые поворачивают зеркала или рефракторы вслед за движением солнца, обеспечивая тем самым прием и концентрацию максимального количества солнечной энергии. Для индивидуального использования вряд ли будет целесообразным применять подобные следящие устройства, так как их стоимость может значительно превышать стоимость простого рефлектора на обычной треноге.

Как сделать самому солнечный концентратор

Самый простой способ для изготовления самодельного солнечного концентратора – это использовать старую тарелку от спутниковой антенны. Вначале нужно определиться, для каких целей будет использоваться этот концентратор, а затем, исходя из этого, выбрать место установки и подготовить соответствующим образом основание и крепления. Тщательно вымыть антенну, высушить, на приемную сторону тарелки наклеить зеркальную пленку.

Для того, чтобы пленка легла ровно, без морщин и складок, ее следует разрезать на полоски шириной не более 3 – 5 сантиметров. Если предполагается использовать концентратор в качестве солнечной печи, то рекомендуется в центре тарелки вырезать отверстие диаметром примерно в 5 – 7 сантиметров. Через это отверстие будет пропущен кронштейн с подставкой для посуды (конфоркой). Это обеспечит неподвижность емкости с приготовляемой едой при повороте рефлектора на солнце.

Если тарелка небольшого диаметра, то рекомендуется еще и полоски разрезать на кусочки длиной примерно по 10 см. Наклеивать каждый кусочек отдельно, тщательно подгоняя стыки. Когда отражатель будет готов, его следует установить на опору. После этого нужно будет определить точку фокуса, так как точка оптического фокуса у тарелки спутниковой антенны не всегда совпадает с позицией приемной головки.

Самодельный солнечный концентратор – печь

Чтобы определить точку фокуса, необходимо вооружиться темными очками, деревянной дощечкой и толстыми перчатками. Затем нужно направить зеркало прямо на солнце, поймать на дощечку солнечный зайчик и, приближая или удаляя дощечку относительно зеркала, найти точку, где этот зайчик будет иметь минимальные размеры – небольшую точку. Перчатки нужны для того, чтобы уберечь руки от ожога, если они случайно попадут в зону действия луча. Ну, а когда точка фокуса будет найдена, ее останется только зафиксировать и монтировать необходимое оборудование.

Вариантов самостоятельного изготовления солнечных концентратором существует множество. Точно так же самому из подручных материалов можно смастерить и двигатель Стирлинга. А уж использовать этот двигатель можно для самых различных целей. На сколько хватит фантазии, желания и терпения.

solarb.ru

Эта самоделка о том, как построить солнечный водонагреватель. Правильнее назвать его параболический солнечный концентратор. Главное преимущество его в том, что зеркало отражает 90% солнечной энергии, а его параболическая форма концентрирует эту энергию в одной точке. Эта установка будет эффективно работать в большинстве районов России, вплоть до 65 градуса с.ш.

Для сборки коллектора нам понадобится несколько основных вещей: сама антенна, система слежения за солнцем и теплообменник-коллектор.

Параболическая антенна.

Можно использовать любую антенну- железную, пластиковую или из стекловолокна. Антенна должна быть панельного типа, а не сеточная. Здесь важна площадь антенны и форма. Надо помнить, мощность нагрева = площади поверхности антенны. И что мощность, собираемая антенной диаметром 1,5 м, будет в 4 раза меньше мощности собираемой антенной с площадью зеркала 3 м.

Так же понадобится поворотный механизм для антенны в сборе. Его можно заказать на Ebay или на Aliexpress.

Понадобится рулон алюминиевой фольги или лавсановой зеркальной пленки, применяемой для теплиц. Клей, которым пленка будет приклеиваться к параболе.

Медная трубка диаметром 6 мм. Фитинги, для подключения горячей воды к баку, к бассейну, ну или где вы будете применять эту конструкцию. Поворотный механизм слежения автор приобрел на EBAY за 30$.

Шаг 1 Переделка антенны для фокусировки солнечного излучения вместо радиоволн.

Надо всего лишь прикрепить лавсановую зеркальную пленку или алюминиевую фольгу к зеркалу антенны.

Такую пленку можно заказать на Aliexpress, если вдруг в магазинах не найдете Пленка

Делается это почти также просто, как и звучит. Надо только учесть, что если антенна, к примеру, диаметром 2,5 м, а пленка шириной 1 м, то не надо закрывать антенну пленкой в два прохода, будут образовываться складки и неровности, которые ухудшат фокусировку солнечной энергии. Вырезайте ее небольшими полосами и закрепляйте на антенне с помощью клея. Перед наклейкой пленки убедитесь, что антенна чистая. Если есть места, где краска вздулась- зачистите их наждачной бумагой. Вам надо выровнять все неровности. Обратите внимание, чтобы LNB-конвертор был снят со своего места- иначе он может расплавиться. После наклейки пленки и установки антенны на место не приближайте руки или лицо к месту крепления головки- вы рискуете получить серьезные солнечные ожоги.

Шаг 2 система слежения.

Список деталей: geliotraker.zip (скачиваний: 371) * U1/U2 — LM339 * Q1 — TIP42C * Q2 — TIP41C * Q3 — 2N3906 * Q4 — 2N3904 * R1 — 1meg * R2 — 1k * R3 — 10k * R4 — 10k * R5 — 10k * R6 — 4.7k * R7 — 2.7k * C1 — 10n керамика * M — DC мотор до 1А * LEDs — 5mm 563nm Видео работы гелиотракера по схеме из архива

Сам можно сделать на основе передней ступицы автомобиля ВАЗ.


Кому интересно фото взято отсюда:Поворотный механизм

Шаг 3 Создание теплообменника-коллектора

Для изготовления теплообменника понадобится медная трубка, свернутая в кольцо и помещенная в фокус нашего концентратора. Но сначала нам надо узнать размер фокальной точки тарелки. Для этого надо снять LNB-конвертер с тарелки, оставив стойки крепления конвертера. Теперь надо повернуть тарелку на солнце, предварительно закрепив кусок доски на месте крепления конвертера. Подержите доску немного в этом положении, пока не появиться дым. Это займет по времени примерно 10-15 секунд. После этого отверните антенну от солнца, снимите доску с крепления. Все манипуляции с антенной, ее развороты, проводятся для того, чтобы вы случайно не засунули руку в фокус зеркала- это опасно, можно сильно обжечься. Пусть остынет. Измерьте размер сожженной части древесины- это будет размер вашего теплообменника.


Размер точки фокусировки будет определять, сколько медной трубки вам понадобится. Автору понадобилось 6 метров трубы при размере пятна 13см.
Поворотный механизм Я думаю, что возможно, вместо свернутой трубки можно поставить радиатор от автомобильной печки, есть довольно маленькие радиаторы. Радиатор должен быть зачерненный для лучшего поглощения тепла. Если же вы решили использовать трубку, надо постараться согнуть ее без перегибов и изломов. Обычно для этого трубку заполняют песком, закрывают с обеих сторон и сгибают на какой-нибудь оправке подходящего диаметра. Автор залил в трубку воды и положил ее в морозильную камеру, открытыми концами вверх, чтобы вода не вытекла. Лед в трубке создаст давление изнутри, что позволит избежать изломов. Это позволит согнуть трубу с меньшим радиусом изгиба. Ее надо сворачивать по конусу- каждый виток должен быть не много большего диаметра чем предыдущий. Можно спаять витки коллектора между собой для более жесткой конструкции. И не забудьте слить воду после того, как закончите с коллектором, чтобы после установки его на место, вы не обожглись паром или горячей водой

Шаг 4. Собираем все вместе и пробуем.


Установка в сбореТеперь у вас есть зеркальная парабола, модуль слежения за солнцем, помещенный в водонепроницаемый контейнер, или пластиковую емкость, законченный коллектор. Все, что осталось сделать — это установить коллектор на место и опробовать его в работе. Вы можете пойти дальше и усовершенствовать конструкцию, сделав, что-то типа кастрюли с утеплителем и одеть ее на заднюю часть коллектора. Механизм слежения должен отслеживать движение с востока на запад, т.е. поворачиваться в течение дня за солнцем. А сезонные положения светила (вверх\вниз) можно регулировать вручную один раз в неделю. Можно, конечно, добавить механизм слежения и по вертикали- тогда вы получите практически автоматическую работу установки. Если вы планируете использовать воду для подогрева бассейна или в качестве горячей воды в водопроводе- вам понадобиться насос, который будет прокачивать воду через коллектор. В случае если вы будете нагревать емкость с водой, надо принять меры, чтобы избежать закипания воды и взрыва бака. Сделать это можно используя электронный термостат, который, в случае достижения заданной температуры, будет отводить зеркало от солнца с помощью механизма слежения.

От себя добавлю, что используя коллектор зимой надо принять меры, чтобы вода не замерзла в ночное время и в ненастную погоду. Для этого лучше сделать замкнутый цикл- с одной стороны коллектор, а с другой теплообменник. Систему заполнить маслом-его можно нагреть до более высокой температуры, градусов до 300, и на морозе не замерзнет. Источник

ВКонтакте

Чтобы написать комментарий необходимо войти на сайт через соц. сети (или зарегистрироваться): Обычная регистрация

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

usamodelkina.ru

Самые популярные способы использования солнечной энергии для нагрева воды, это создание плоских или вакуумных солнечных коллекторов. Однако существуют еще способы с довольно высоким показателем КПД, которые помогают использовать энергию солнца для нагрева воды. В этой статье будет рассмотрен один из таких способов, а именно создание солнечного концентратора для горячего водоснабжения.

Для создания системы нагрева воды при помощи солнечного рефлектора автору понадобились следующие материалы:1) параболическая спутниковая антенна2) зеркальная пленка3) медная трубка4) соль5) черная термостойкая краска6) муллитокристаллическое волокно

Рассмотрим основы системы и этапы создания солнечного концентратора.Главным плюсом подобной системы является более высокая производительность: качественные рефлекторы фокусируют высокую плотность солнечных лучей в одной точке, что позволяет превращать воду в пар в считанные секунды.

Для демонстрации наглядной мощности подобных систем рекомендую ознакомиться со следующим видео материалом:

Как показано в видео небольшой солнечный концентратор может прожигать дерево, плавить свинец, то есть температура которая возникает в точке концентрации солнечных лучей довольно высока.

Однако у данной системы есть ряд недостатков, которые необходимо знать перед тем как решить строить подобную систему.

Для того, чтобы рефлектор постоянно был повернут к солнцу, необходимо установка специальных систем слежения, которые будут корректировать рефлектор относительно солнца на протяжении дня. Эти трекеры довольно дорого стоят, и потребляют не мало энергии.

Эффективность концентратора сильно зависит от чистоты отражающей поверхности, поэтому зеркала требуют содержания их в чистоте.

Если данные недостатки вас не пугают, то для постройки концентратора вам понадобиться параболическая спутниковая антенна, причем не особенно важно будь то прямо-фокусная или офсетная модель. Главное это правильная парабола, которая будет концентрировать все пойманные лучи в одну точку. В принципе вы даже сами можете изготовить подобие антенны из листов картона, но эффективность такой системы очень зависит от качества параболы.


После очистки поверхности антенны, автор приступил к оклейке ее зеркальной пленкой. Лучше всего для создания зеркальной поверхности использовать металлизированную пленку с клейким слоем. Обклеивать поверхность такой пленкой довольно просто по принципу самоклеющихся обоев, но так же можно использовать и кусочки зеркал для создания отражающей поверхности на антенне.


Так как сама спутниковая антенна имеет искривленную форму, то пытаться приклеивать цельный кусок пленки не совсем разумно. Поэтому перед оклейкой автор нарезал пленку на тонкие полосы. Благодаря такому подходу удалось достаточно ровно и качестве оклеить всю поверхность антенны.


После того как антенна приобретет зеркальную поверхность необходимо определись точку фокусировки, ею будет место концентрации отраженных солнечных лучей с поверхности антенны. Обычно точка фокусировки у солнечной антенны находится как раз в районе конвертера, но если вы строили параболу самостоятельно то легче всего определить точку фокусировки при помощи экспериментального метода. Необходимо взять кусок фанеры потолще и постепенно отводить его от концентратора, пока солнечное пятно на ней не уменьшиться, как только оно будет минимальным это и будет точкой фокусировки солнечных лучей. Главное помните что в данном месте сконцентрирована высокая температура, поэтому необходимо быть осторожным и надеть средства защиты: кожаные перчатки, сварочную маску или солнечные очки.

Далее нужно сделать теплообменник, который будет сообщать температуру воде. Для этого автор использовал медную трубку. Он затрамбовал в нее соль, и стал наматывать вокруг трубы побольше. Соль внутри медной трубки нужна для того, чтобы во время намотки труба не сплющилась.

Автор отмечает что, для того чтобы использовать максимум энергии от солнца теплообменник не помешает окрасить в черный цвет. Так как теплообменник будет испытывать высокие температуры, то для окраски нужно использовать термостойкую краску.

Так же для увеличения КПД необходимо теплоизолировать теплоприемник для того, чтобы он не остывал от ветра. Ниже показана схема утепленного теплоприемника:

Используйте огнеупорные материалы для изоляции теплоприемника, так как в этом месте будет сконцентрирована высокая температура. Автор данного концентратора использовал для этих целей муллитокристаллическое волокно, которое используют в газовых горнах и муфельных печах. Стекло так же должно быть закаленным, чтобы не деформироваться от температуры.

Теплоприемник был сделан по принципу радиаторов водяного охлаждения для компьютеров. Он изготавливается соответственно размерам пятна точки фокусировки концентратора.


Ниже приведена схема подключения солнечного концентратора:

usamodelkina.ru

Солнечный тепловой концентратор. Солнечная энергетика.

Альтернативная энергетика интересует все большее количество великих умов. Я – не исключение. 🙂

Все началось с простого вопроса: “А можно ли бесколлекторный двигатель превратить в генератор?”-Можно. А зачем?-Сделать ветрогенератор.

Ветряк для выработки электроэнергии – не совсем удобное решение. Переменная сила ветра, зарядные устройства, аккумуляторы, инверторы, много не копеечного оборудования. В упрощенной схеме ветряк на «отлично» справляется с подогревом воды. Ибо нагрузка – тен, а он абсолютно не требователен к параметрам подаваемой на него электроэнергии. Можно избавиться от сложной дорогой электроники. Но расчеты показали значительные затраты на конструкцию, чтобы раскрутить генератор 500 Ватт.Мощность, которую несет в себе ветер, рассчитывается по формуле P=0,6*S*V3, где:P – мощность, ВаттS – площадь, м2V – скорость ветра, м/с

Ветер, дующий на 1 м2 со скоростью 2 м/с «несет» в себе энергию 4,8 Ватт. Если скорость ветра увеличится до 10 м/с, то мощность возрастет до 600 Ватт. У самых лучших ветрогенераторов КПД 40-45%. С учетом этого для генератора мощностью 500 Ватт при ветре, скажем 5 м/с. Потребуется площадь, ометаемая винтом ветрогенератора, около 12 кв.м. Что соответствует винту диаметром почти 4 метра! Много денег – мало толку. Добавить сюда необходимость получения разрешения (ограничение по шумности). Кстати, в некоторых странах установку ветряка нужно согласовывать даже с орнитологами.

Но тут я вспомнили о Солнышке! Оно нам дарит очень много энергии. Об этом я впервые задумался после полета над замерзшим водохранилищем. Когда увидел массу льда толщиной более метра и размерами 15 на 50 километров, я подумал: “Это же сколько льда! Сколько его надо греть, чтобы расплавить!?” И все это сделает Солнце за полтора десятка дней. В справочниках можно найти плотность энергии, которая достигает поверхности земли. Цифра около 1 киловатт на метр квадратный звучит заманчиво. Но это на экваторе в ясный день. Насколько реально утилизировать солнечную энергию для хозяйственных нужд в наших широтах (центральная часть Украины), используя доступные материалы?

Какую реальную мощность, с учетом всех потерь, можно получить с оного квадратного метра?

Для выяснения этого вопроса я сделал первый параболический тепловой концентратор из картона (фокус в чаше параболы). Выкройку из секторов оклеил обычной пищевой фольгой. Понятно, что качество поверхности, да и отражающие способности фольги, очень далеки от идеала.

Но задача стояла именно “колхозными” методами нагреть определенный объем воды, чтобы выяснить какую мощность можно получить с учетом всех потерь. Выкройку можно рассчитать с помощью файла Exel ParabAnt-v2.rar который я нашел на просторах интернета у любителей самостоятельно строить параболические антенны.Зная объем воды, её теплоемкость, начальную и конечную температуру можно рассчитать количество тепла, затраченного на ее нагрев. А, зная время нагрева, можно вычислить мощность. Зная габариты концентратора, можно определить какую практическую мощность можно получить с одного квадратного метра поверхности, на которую падает солнечный свет.

В качестве объема для воды была взята половинка алюминиевой банки, выкрашенная снаружи в черный цвет.

Емкость с водой помещается в фокус параболического солнечного концентратора. Солнечный концентратор ориентируется на Солнце.

Эксперимент №1

проводился около 7 часов утра в конце мая. Утро – далеко не идеальное время, но как раз утром в окно моей “лаборатории” светит Солнце.

При диаметре параболы 0.31 м расчеты показали, что была получена мощность порядка 13,3 Ватт. Т.е. как минимум 177 Ватт/м.кв. Тут следует отметить, что круглая открытая банка далеко не самый лучший вариант для получения хорошего результата. Часть энергии уходит на нагрев самой банки, часть излучается в окружающую среду, в том числе уносится потоками воздуха. В общем, даже в таких далеких от идеала условиях можно хоть что-то получить.

Эксперимент №2

Для второго эксперимента была сделана парабола диаметром 0.6 м. В качестве ее зеркала использовался металлизированный скотч, купленный в строительном магазине. Его отражающие качества незначительно лучше алюминиевой пищевой фольги.

Парабола имела большее фокусное расстояние (фокус за пределами чаши параболы).

Это дало возможность спроецировать лучи на одну поверхность нагревателя и получать в фокусе большую температуру. Парабола без труда прожигает лист бумаги за несколько секунд. Эксперимент проводился около 7 часов утра в начале июня. По результатам эксперимента с тем же объемом воды и той же тарой получил мощность 28 Ватт., что соответствует примерно 102 Ватт/м.кв. Это меньше, чем в первом эксперименте. Это объясняется тем, что солнечные лучи от параболы ложилось на круглую поверхность банки не везде оптимально. Часть лучей проходили мимо, часть падали по касательной. Банка охлаждалась свежим утренним ветерком с одной стороны, в то время как подогревалась с другой. В первом эксперименте за счет того, что фокус был внутри чаши, банка прогревалась со всех сторон.

Эксперимент №3

Поняв, что достойный результат можно получить, сделав правильный теплоприемник, была изготовлена следующая конструкция: банка из жести внутри выкрашена в черный цвет имеет патрубки для подвода и отвода воды. Герметично закрыта прозрачным двойным стеклом. Термоизолирована.

Общая схема такова:

Нагрев происходит следующим образом: лучи от солнечного концентратора (1) через стекло проникают внутрь банки теплоприемника (2), где, попадая на черную поверхность, нагревают ее. Вода, соприкасаясь с поверхностью банки, поглощает тепло. Стекло плохо пропускает инфракрасное (тепловое) излучение, поэтому потери на излучение тепла минимизированы. Поскольку со временем стекло прогревается теплой водой, и начинает излучать тепло, было применено двойное остекление. Идеальный вариант, если между стеклами будет вакуум, но это труднодостижимая задача в домашних условиях. С обратной стороны банка теплоизолирована пенопластом, что также ограничивает излучение тепловой энергии в окружающую среду.

Теплоприемник (2) с помощью трубок (4,5) подключается к бачку (3) (в моем случае пластиковая бутылка). Дно бачка находится на 0.3м выше нагревателя. Такая конструкция обеспечивает конвекцию (самоциркуляцию) воды в системе.

В идеале расширительный бак и трубки должны быть тоже термоизолированы. Эксперимент проводился около 7 часов утра в середине июня. Результаты эксперимента таковы: Мощность 96.8 Ватт, что соответствует примерно 342 Ватт/м.кв.

Т.е. эффективность системы улучшилась более, чем в 3 раза только за счет оптимизации конструкции теплоприемника!

При проведении экспериментов 1,2,3 нацеливание параболы на солнце делалось вручную, «наглазок». Парабола и нагревательные элементы удерживались руками. Т.е. нагреватель не всегда был в фокусе параболы, поскольку руки человека устают и начинают искать более удобное положение, которое не всегда правильное с технической точки зрения.

Как вы могли заметить, с моей стороны были приложены усилия для обеспечения отвратительных условий для проведения эксперимента. Далеко не идеальные условия, а именно:– не идеальная поверхность концентраторов– не идеальные отражающие свойства поверхностей концентраторов– не идеальное ориентирование на солнце– не идеальное положение нагревателя– не идеальное время для эксперимента (утро)

не смогли помешать получить вполне приемлемый результат для установки из подручных материалов.

Эксперимент №4

Далее нагревательный элемент был закреплен неподвижно относительно солнечного концентратора. Это позволило поднять мощность до 118 Ватт, что соответствует примерно 419 Ватт/м.кв. И это в утренние часы! С 7 до 8 утра!

Существуют и другие методы нагрева воды, с помощью Солнечных коллекторов. Коллекторы с вакуумными трубками дороги, а плоские имеют большие температурные потери в холодное время года. Применение солнечных концентраторов может решить эти проблемы, однако требует реализации механизма ориентирования на Солнце. В каждом способе есть как преимущества, так и недостатки.

Один из вопросов, который нужно решить на пути практического применения солнечных концентраторов – это снижение его парусности. Т.е. концентратор должен противостоять ветровым нагрузкам. Для снижения парусности можно использовать концентраторы, собранные из отдельных сегментов. Такие зеркальные концентраторы могут быть довольно плоскими, по сравнению с чашей параболы, а “дырчатая” структура снижает их парусность.

Читайте так же:

См. также ПараболаСолнечная энергетика Солнечный коллектор

Применение солнечных тепловых концентраторов:http://ua.livejournal.com/580303.html https://www.youtube.com/watch?v=1hPmE3Swtvw https://www.youtube.com/watch?v=Rbjey5RGx3c https://www.youtube.com/watch?v=M5OO3vCHRoI https://www.youtube.com/watch?v=CgZ0N6cg-v4

P.S. Солнечная энергия – это ресурс, который еще долгое время будет оставаться бесплатным для всех жителей планеты. И сейчас каждый желающий может свободно получать ее для своих целей. Без примения дорогостоящих технологий, а используя только доступные любому человеку материалы. Что и подтвердили вышеописанные эксперименты.

www.avislab.com

Я знаю: Солнечный концентратор своими руками — SolarNews

Главный из плюсов концентратора – большой КПД нагрева. Мощность отражателя способна в солнечную погоду в одной точке сфокусировать энергию, достаточную для кипячения воды в течении нескольких секунд.

Главными недостатками подобной системы являются необходимость постоянного слежения за солнцем (иначе КПД концентратора падает до нуля) и полировки и удаления грязи с поверхности.

Для изготовления солнечного рефлектора своими руками понадобятся:

1. Ненужная параболическая антенна (также в интернете можно найти инструкции по изготовлению параболических тарелок самостоятельно).

2. Металлизированная зеркальная плёнка с клейким слоем (или кусочки зеркал для особо увлечённых)

3. Теплоприёмник – закрученный в спираль отрез медной трубки – и вводные/выводные трубы.

4. Теплообменный бак (при необходимости).

5. В случае использования самодельного параболоида – крепление для теплоприёмника. В случае использования антенны теплоприёмник можно закрепить в месте крепления конвертера.

Этапы производства солнечного концентратора:

1. Очистить поверхность спутниковой тарелки или самодельного параболоида от грязи и жира. Проделать в центре отверстия для трубок.

2. Наклеить нарезанную на тонкие полоски зеркальную плёнку. Тонкие полоски необходимы для того, чтоб оклеить криволинейную поверхность антенны максимально плотно без стыков, видимых швов и неровностей (не забыть проделать отверстия для трубок).

Наклейка зеркальной плёнки на очищенную поверхность тарелки

Результат оклейки параболоида

3. Закрепить окрашенный чёрной термостойкой краской теплоприёмник в точке фокуса и подвести к нему вводную и выводную трубки.

Закрепление теплоприёмника в фокусе концентратора

4. Залить жидкость в теплообменный бак и установить солнечный концентратор перпендикулярно солнцу.

Важно: Необходимо помнить, что температура в точке концентрации может достигать 300-500 градусов, поэтому при работе с солнечным параболическим концентратором необходимо соблюдать меры безопасности – работать в защитной одежде (кожаные или брезентовые перчатки) и солнцезащитных очках или сварочной маске.

Схема подогрева воды с помощью самодельного солнечного концентратора выглядит примерно так:

Схема самодельного солнечного концентратора с теплообменным баком

По материалам сайта solarsistem.ru

Ну а так выглядит работа самодельного солнечного концентратора на видео (очень похоже на эксперимент с «солнечным кипятильником», не правда ли?):

solar-news.ru Как поменять смеситель в ванной своими руками

Отопление своими руками из полипропиленовых труб

Эта статья предназначена для тех астрономов-любителей, которые уже наигрались с биноклем и телескопом-рефрактором, рассмотрели фазы Венеры, кольца Сатурна и спутники Юпитера, и хотят чего-то менее скучного и более потрясающего. Например, в 1000 крат с огромным объективом. Сделать такое на одних линзах невозможно: дают так называемую хроматическую аберрацию, которая проявляется в виде радужных ореолов вокруг объектов, тем более сильных, чем сильнее увеличение телескопа.

Поэтому встаёт задача собрать самодельный телескоп-рефлектор, то есть телескоп на зеркалах. В его простейшей форме он состоит из двух зеркал (объектива и диагонального) и одной линзы-окуляра.

Где достать

Главное зеркало-объектив телескопа-рефлектора — самая важная и ответственная его часть. И она же — самая сложная в изготовлении. Найти готовое зеркало такого типа практически невозможно.

Хотя есть один способ: можно сделать такое из вогнутой или выпукло-вогнутой линзы. Найдите вогнутую или выпукло-вогнутую линзу самого большого размера, какого только сможете найти. Важно, чтобы фокусное расстояние было как можно выше, а, значит, вогнутость как можно меньше: от слишком мощных вогнутых линз требуется не сферическая, а параболическая форма, а это уже совсем другой дефицит, который никак не сымпровизируешь.

Самый надёжный расчёт — это найти плосковогнутую диаметром в 10-12 см и оптической силой в 1 диоптрию. Поищите её в оптических магазинах. Самодельный телескоп в 1000 крат, таким образом, не получится, но кое-что сделать с таким можно.

Серебрение с помощью химии

Затем надо заняться серебрением, чтобы получить зеркало. Приготовьте раствор, который называется реактивом Толленса. Для того чтобы приготовить этот реактив, нужны: нитрат серебра (ляпис), едкий натр (каустическая сода) и раствор аммиака.

В комплект к этому реактиву ещё понадобится формалин (раствор формальдегида). На 10 мл воды растворите 1 г нитрата серебра, на другие 10 мл воды — 1 г едкого натра. Смешайте эти растворы, должен выпасть белый осадок. Приливайте раствор аммиака, пока осадок не растворится. Этот раствор и есть реактив Толленса.

Чтобы использовать его для серебрения, следует налить его в вогнутую часть, предварительно тщательно очищенную от любых загрязнений. Если очень слабовыраженная вогнутость, следует сделать по её краю барьерчик из воска или пластилина.

Налив реактив, следует начинать частыми каплями добавлять в него формалин. Вскоре образуется плёнка серебра, и она превратится в вогнутое зеркало. Имейте в виду, что реактив Толленса не хранится долго, использовать его надо сразу после того, как он приготовлен.

Есть и способы изготовить вогнутую поверхность самостоятельно, в первую очередь — вышлифовывание на стеклянных кругах вогнутой поверхности. Однако эти способы слишком сложны, и не рекомендованы к использованию начинающими.

Таким же способом, как и вогнутое, следует изготовить диагональное зеркало. Оно должно быть идеально прямым; для его изготовления подойдёт плоская сторона любой плосковыпуклой или плосковогнутой.

Сборка телескопа

Теперь можете начинать собирать самодельный . Вам понадобится труба, длиной точно в фокусное расстояние (если Вы использовали для изготовления плосковогнутую линзу в 1 диоптрию, то возьмите трубу длиной в 100 см, +0,5- 1 см поправки на толщину).

Труба должна быть открытой с одного конца и закрытой с другого, и изнутри выкрашенная самой чёрной краской, что только сможете найти. Диаметр трубы должен быть в 1,25 раза больше диаметра зеркала-рефрактора, если Вы использовали для изготовления линзу диаметром в 100 мм, возьмите трубу диаметром в 125 мм.

В донце трубы, точно по центру, закрепите зеркало-объектив. Чтобы это удобно было делать, донце лучше предусмотреть съёмное. Крепить объектив к донцу можно, к примеру, суперклеем.

Сделайте отверстие ближе к открытому концу трубы. Чтобы высчитать нужное положение для отверстия, отсчитайте от открытого конца трубы её радиус. Там и должен располагаться центр отверстия. В этом отверстии будет укреплён окуляр (перпендикулярно трубе).

Оно должно висеть на оптической оси под углом в 45 градусов. Если угол выдержан правильно, то при взгляде в окуляр Вы будете видеть изображение. Если с первого раза не получится, поэкспериментируйте с углом.

Огромное количество свободной энергии солнца, воды и ветра и многого другого из того, что может дать природа, люди используют давно. Для кого-то это хобби, а кто-то не может выжить без приспособлений, которые могут извлекать энергию “из воздуха”. Например в африканских странах солнечные батареи давно стали спасительным спутником для людей, в засушливых деревнях внедряются системы орошения на солнечных батареях, устанавливаются “солнечные” насосы на колодцы и др.

В европейских странах солнце не светит столь ярко, но лето довольно жаркое, и очень жаль, когда дармовая энергия природы пропадает зря. Существуют удачные разработки печей на солнечной энергии, но в них используются цельные или сборные зеркала. Это во-первых дорого, во-вторых утяжеляет конструкцию и поэтому не всегда удобно в эксплуатации, например, когда требуется малый вес готового концентратора.
Интересную модель самодельного параболического солнечного концентратора создал талантливый изобретатель.
Для ее изготовления не нужны зеркала, поэтому она очень легкая и не будет тяжелым грузом в походе.


Для создания самодельного солнечного концентратора на основе пленки требуется совсем немного вещей. Все они продаются на любом вещевом рынке.
1. Самоклеющаяся зеркальная пленка. Она имеет ровную блестящую поверхность и поэтому является прекрасным материалом для зеркальной части солнечной печи.
2. Лист ДСП и такой же по размеру лист оргалита.
3. Тонкий шланг и герметик.

Как сделать солнечную печь?

Сначала из древесно-стружечной плиты нужного вам размера электролобзиком вырезаются два кольца, которые надо приклеить друг к другу. На фото и видео фигурирует одно кольцо, но автор указывает, что позднее он добавил второе кольцо. По его словам, можно было бы ограничиться одним, но пришлось увеличить пространство для формирования достаточной вогнутости параболического зеркала. В противном случае фокус луча будет располагаться слишком далеко. Под размер кольца вырезается круг из оргалита для формирования задней стенки солнечного концентратора.
Кольцо следует приклеить к оргалиту. Обязательно хорошо все промажьте герметиком. Конструкция должна быть полностью герметичной.
Сбоку аккуратно, чтобы были ровные края, проделайте небольшое отверстие, в которое плотно вставьте тонкий шланг. Для герметичности соединение шланга и кольца также можно обработать герметиком.
Поверх кольца натяните зеркальную пленку.
Откачайте воздух из корпуса установки и таким образом сформируйте сферическое зеркало. Шланг загните и зажмите прищепкой.
Сделайте удобную подставку для готового концентратора. Энергии данной установки достаточно, чтобы расплавить алюминиевую банку.

Внимание ! Параболические солнечные отражатели могут быть опасными и могут при неосторожном обращении привести к ожогам и повреждениям глаз!
Посмотрите процесс изготовления солнечной печки на видео.

Использован материал с сайта забацай.ру. Как сделать солнечную батарею – .

О том, как построить солнечный водонагреватель. Правильнее назвать его параболический солнечный концентратор. Главное преимущество его в том, что зеркало отражает 90% солнечной энергии, а его параболическая форма концентрирует эту энергию в одной точке. Эта установка будет эффективно работать в большинстве районов России, вплоть до 65 градуса с.ш.

Для сборки коллектора нам понадобится несколько основных вещей: сама антенна, система слежения за солнцем и теплообменник-коллектор.

Параболическая антенна.

Можно использовать любую антенну- железную, пластиковую или из стекловолокна. Антенна должна быть панельного типа, а не сеточная. Здесь важна площадь антенны и форма. Надо помнить, мощность нагрева = площади поверхности антенны. И что мощность, собираемая антенной диаметром 1,5 м, будет в 4 раза меньше мощности собираемой антенной с площадью зеркала 3 м.

Так же понадобится поворотный механизм для антенны в сборе. Его можно заказать на Ebay или на Aliexpress.

Понадобится рулон алюминиевой фольги или лавсановой зеркальной пленки, применяемой для теплиц. Клей, которым пленка будет приклеиваться к параболе.

Медная трубка диаметром 6 мм. Фитинги, для подключения горячей воды к баку, к бассейну, ну или где вы будете применять эту конструкцию. Поворотный механизм слежения автор приобрел на EBAY за 30$.

Шаг 1 Переделка антенны для фокусировки солнечного излучения вместо радиоволн.

Надо всего лишь прикрепить лавсановую зеркальную пленку или алюминиевую фольгу к зеркалу антенны.


Такую пленку можно заказать на Aliexpress, если вдруг в магазинах не найдете

Делается это почти также просто, как и звучит. Надо только учесть, что если антенна, к примеру, диаметром 2,5 м, а пленка шириной 1 м, то не надо закрывать антенну пленкой в два прохода, будут образовываться складки и неровности, которые ухудшат фокусировку солнечной энергии. Вырезайте ее небольшими полосами и закрепляйте на антенне с помощью клея. Перед наклейкой пленки убедитесь, что антенна чистая. Если есть места, где краска вздулась- зачистите их наждачной бумагой. Вам надо выровнять все неровности. Обратите внимание, чтобы LNB-конвертор был снят со своего места- иначе он может расплавиться. После наклейки пленки и установки антенны на место не приближайте руки или лицо к месту крепления головки- вы рискуете получить серьезные солнечные ожоги.

Шаг 2 система слежения.

Как было написано выше — автор купил систему слежения на Ebay. Вы так же можете поискать поворотные системы слежения за солнцем. Но я нашел несложную схему с копеечной ценой, которая довольно точно отслеживает положение солнца.

Список деталей:
(скачиваний: 428)
* U1/U2 — LM339
* Q1 — TIP42C
* Q2 — TIP41C
* Q3 — 2N3906
* Q4 — 2N3904
* R1 — 1meg
* R2 — 1k
* R3 — 10k
* R4 — 10k
* R5 — 10k
* R6 — 4.7k
* R7 — 2.7k
* C1 — 10n керамика
* M — DC мотор до 1А
* LEDs — 5mm 563nm


Видео работы гелиотракера по схеме из архива

Сам можно сделать на основе передней ступицы автомобиля ВАЗ.

Кому интересно фото взято отсюда:

Шаг 3 Создание теплообменника-коллектора

Для изготовления теплообменника понадобится медная трубка, свернутая в кольцо и помещенная в фокус нашего концентратора. Но сначала нам надо узнать размер фокальной точки тарелки. Для этого надо снять LNB-конвертер с тарелки, оставив стойки крепления конвертера. Теперь надо повернуть тарелку на солнце, предварительно закрепив кусок доски на месте крепления конвертера. Подержите доску немного в этом положении, пока не появиться дым. Это займет по времени примерно 10-15 секунд. После этого отверните антенну от солнца, снимите доску с крепления. Все манипуляции с антенной, ее развороты, проводятся для того, чтобы вы случайно не засунули руку в фокус зеркала- это опасно, можно сильно обжечься. Пусть остынет. Измерьте размер сожженной части древесины- это будет размер вашего теплообменника.


Размер точки фокусировки будет определять, сколько медной трубки вам понадобится. Автору понадобилось 6 метров трубы при размере пятна 13см.


Я думаю, что возможно, вместо свернутой трубки можно поставить радиатор от автомобильной печки, есть довольно маленькие радиаторы. Радиатор должен быть зачерненный для лучшего поглощения тепла. Если же вы решили использовать трубку, надо постараться согнуть ее без перегибов и изломов. Обычно для этого трубку заполняют песком, закрывают с обеих сторон и сгибают на какой-нибудь оправке подходящего диаметра. Автор залил в трубку воды и положил ее в морозильную камеру, открытыми концами вверх, чтобы вода не вытекла. Лед в трубке создаст давление изнутри, что позволит избежать изломов. Это позволит согнуть трубу с меньшим радиусом изгиба. Ее надо сворачивать по конусу- каждый виток должен быть не много большего диаметра чем предыдущий. Можно спаять витки коллектора между собой для более жесткой конструкции. И не забудьте слить воду после того, как закончите с коллектором, чтобы после установки его на место, вы не обожглись паром или горячей водой

Шаг 4. Собираем все вместе и пробуем.


Теперь у вас есть зеркальная парабола, модуль слежения за солнцем, помещенный в водонепроницаемый контейнер, или пластиковую емкость, законченный коллектор. Все, что осталось сделать — это установить коллектор на место и опробовать его в работе. Вы можете пойти дальше и усовершенствовать конструкцию, сделав, что-то типа кастрюли с утеплителем и одеть ее на заднюю часть коллектора. Механизм слежения должен отслеживать движение с востока на запад, т.е. поворачиваться в течение дня за солнцем. А сезонные положения светила (вверх\вниз) можно регулировать вручную один раз в неделю. Можно, конечно, добавить механизм слежения и по вертикали- тогда вы получите практически автоматическую работу установки. Если вы планируете использовать воду для подогрева бассейна или в качестве горячей воды в водопроводе- вам понадобиться насос, который будет прокачивать воду через коллектор. В случае если вы будете нагревать емкость с водой, надо принять меры, чтобы избежать закипания воды и взрыва бака. Сделать это можно используя

Проблема использования солнечной энергии с древних времен занимала лучшие умы человечества. Было понятно, что Солнце – это мощнейший источник даровой энергии, но как эту энергию использовать, не понимал никто. Если верить античным писателям Плутарху и Полибию, то первым человеком, практически использовавшим солнечную энергию, был Архимед, который с помощью изобретенных им неких оптических устройств сумел собрать солнечные лучи в мощный пучок и сжечь римский флот.

В сущности, устройство, изобретенное великим греком, представляло собой первый концентратор солнечного излучения, который собрал солнечные лучи в один энергетический пучок. И в фокусе этого концентратора температура могла достигать 300°С — 400°С, что вполне достаточно для того, чтобы воспламенить деревянные суда римского флота. Можно только догадываться, какое именно устройство изобрел Архимед, хотя, по современным представлениям, вариантов у него было всего два.

Уже само наименование устройства – солнечный концентратор – говорит само за себя. Этот прибор принимает солнечные лучи и собирает их в единый энергетический пучок. Самый простой концентратор всем знаком из детства. Это обычная двояковыпуклая линза, которой можно было выжигать различные фигурки, надписи, даже целые картинки, когда солнечные лучи собирались такой линзой в маленькую точку на деревянной доске, листе бумаги.

Эта линза относится к так называемым рефракторным концентраторам. Кроме выпуклых линз к этому классу концентраторов относятся также линзы Френеля, призмы. Длиннофокусные концентраторы, построенные на основе линейных линз Френеля, несмотря на свою дешевизну, практически используются очень мало, так как обладают большими размерами. Их применение оправдано там, где габариты концентратора не являются критичными.

Рефракторный солнечный концентратор

Этого недостатка лишен призменный концентратор солнечного излучения. Более того, такое устройство способно концентрировать также и часть диффузного излучения, что значительно повышает мощность светового пучка. Трехгранная призма, на основе которой построен такой концентратор, является и приемником излучения и источником энергетического пучка. При этом передняя грань призмы принимает излучение, задняя грань – отражает, а из боковой грани уже выходит излучение. В основу работы такого устройства заложен принцип полного внутреннего отражения лучей до того, как они попадут на боковую грань призмы.

В отличие от рефракторных, рефлекторные концентраторы работают по принципу сбора в энергетический пучок отраженного солнечного света. По своей конструкции они подразделяются на плоские, параболические и параболоцилиндрические концентраторы. Если говорить об эффективности каждого из этих типов, то наивысшую степень концентрации – до 10000 – дают параболические концентраторы. Но для построения систем солнечного теплоснабжения используются в основном плоские или параболоцилиндрические системы.


Параболические (рефлекторные) солнечные концентраторы

Практическое применение солнечных концентраторов

Собственно, основная задача любого солнечного концентратора – собрать излучение солнца в единый энергетический пучок. А уж воспользоваться этой энергией можно различными путями. Можно даровой энергией нагревать воду, причем, количество нагретой воды будет определяться размерами и конструкцией концентратора. Небольшие параболические устройства можно использовать в качестве солнечной печи для приготовления пищи.


Параболический концентратор в качестве солнечной печи

Можно использовать их для дополнительного освещения солнечных батарей, чтобы повысить выходную мощность. А можно использовать в качестве внешнего источника тепла для двигателей Стирлинга. Параболический концентратор обеспечивает в фокусе температуру порядка 300°С – 400°С. Если в фокусе такого сравнительно небольшого зеркала поместить, например, подставку для чайника, сковороды, то получится солнечная печь, на которой очень быстро можно приготовить пищу, вскипятить воду. Помещенный в фокусе нагреватель с теплоносителем позволит достаточно быстро нагревать даже проточную воду, которую затем можно использовать в хозяйственных целях, например, для душа, мытья посуды.


Простейшая схем нагрева воды солнечным концентратором

Если в фокусе параболического зеркала поместить подходящий по мощности двигатель Стирлинга, то можно получить небольшую тепловую электростанцию. Например, фирма Qnergy разработала и пустила в серию двигатели Стирлинга QB-3500, которые предназначены для работы с солнечными концентраторами. В сущности, правильнее было бы их назвать генераторами электрического тока на базе двигателей Стирлинга. Этот агрегат вырабатывает электрический ток мощностью 3500 ватт. На выходе инвертора – стандартное напряжение 220 вольт 50 герц. Этого вполне достаточно, чтобы обеспечить электричеством дом для семьи из 4 человек, дачу.

Кстати, используя принцип работы двигателей Стирлинга, многие умельцы своими руками делают устройства, в которых используется вращательное или возвратно-поступательное движение. Например, водяные насосы для дачи.

Основной недостаток параболического концентратора заключается в том, что он должен быть постоянно ориентирован на солнце. В промышленных гелиевых установках применяются специальные системы слежения, которые поворачивают зеркала или рефракторы вслед за движением солнца, обеспечивая тем самым прием и концентрацию максимального количества солнечной энергии. Для индивидуального использования вряд ли будет целесообразным применять подобные следящие устройства, так как их стоимость может значительно превышать стоимость простого рефлектора на обычной треноге.

Как сделать самому солнечный концентратор

Самый простой способ для изготовления самодельного солнечного концентратора – это использовать старую тарелку от спутниковой антенны. Вначале нужно определиться, для каких целей будет использоваться этот концентратор, а затем, исходя из этого, выбрать место установки и подготовить соответствующим образом основание и крепления. Тщательно вымыть антенну, высушить, на приемную сторону тарелки наклеить зеркальную пленку.

Для того, чтобы пленка легла ровно, без морщин и складок, ее следует разрезать на полоски шириной не более 3 – 5 сантиметров. Если предполагается использовать концентратор в качестве солнечной печи, то рекомендуется в центре тарелки вырезать отверстие диаметром примерно в 5 – 7 сантиметров. Через это отверстие будет пропущен кронштейн с подставкой для посуды (конфоркой). Это обеспечит неподвижность емкости с приготовляемой едой при повороте рефлектора на солнце.

Если тарелка небольшого диаметра, то рекомендуется еще и полоски разрезать на кусочки длиной примерно по 10 см. Наклеивать каждый кусочек отдельно, тщательно подгоняя стыки. Когда отражатель будет готов, его следует установить на опору. После этого нужно будет определить точку фокуса, так как точка оптического фокуса у тарелки спутниковой антенны не всегда совпадает с позицией приемной головки.


Самодельный солнечный концентратор – печь

Чтобы определить точку фокуса, необходимо вооружиться темными очками, деревянной дощечкой и толстыми перчатками. Затем нужно направить зеркало прямо на солнце, поймать на дощечку солнечный зайчик и, приближая или удаляя дощечку относительно зеркала, найти точку, где этот зайчик будет иметь минимальные размеры – небольшую точку. Перчатки нужны для того, чтобы уберечь руки от ожога, если они случайно попадут в зону действия луча. Ну, а когда точка фокуса будет найдена, ее останется только зафиксировать и монтировать необходимое оборудование.

Вариантов самостоятельного изготовления солнечных концентратором существует множество. Точно так же самому из подручных материалов можно смастерить и двигатель Стирлинга. А уж использовать этот двигатель можно для самых различных целей. На сколько хватит фантазии, желания и терпения.

Солнечный коллектор. Расчет окупаемости.

Современное развитое общество трудно представить без использования альтернативных источников энергии. Япония, Австралия, США, Греция и другие, экономически развитые страны уже давно активно используют солнечную энергию при конструировании комбинированных котельных установок, а также для нагрева воды. На сегодняшний день использование в Европе солнечных коллекторов – это уже не призрачная перспектива, а реальное настоящее. Учитывая, нестабильность макроэкономической среды, стоимость традиционных видов топлива и электроэнергии будет возрастать. Следовательно, установка гелиосистемы — это надежные инвестиции в будущее.

Популярным заблуждением является мнение о том, что солнечные водонагреватели реально использовать лишь в теплое время года, ведь достижения научно-технического прогресса позволяют использовать энергию Солнца даже зимой.

Как показывает практика, благоприятные климатические условия в сфере использования альтернативных источников энергии играют менее важную роль, чем социально-экономические. Ярким тому примером можно назвать Кипр, где площадь установленных гелиосистем на душу населения является одной из наибольших в Европе. Данный успех объясняется принятым в государстве благоприятным законодательством. Грамотная законодательная база в поддержку широкого использования солнечной энергии существует также и в Израиле. Практически во всех новых домах Израиля и Кипра установлены солнечные водонагреватели.

Солнечный коллектор или гелиосистема представляет собой конструкцию для сбора энергии Солнца, переносимой видимыми лучами света и ближним инфракрасным излучением. И даже в пасмурную погоду солнечный коллектор будет функционировать, так как поглощает солнечную энергию через облака, однако, при необходимости, система способна автоматически переключится на традиционные источники энергии.

Существуют солнечные коллекторы разных конструкций, в зависимости от сферы их применения. Сегодня рынок предлагает множество моделей коллекторов. Условно существует несколько классификаций. Например, в зависимости от температуры, которую дают коллекторы, различают следующие их виды:

— низкотемпературные — вырабатывают низкопотенциальное тепло, ниже 50 градусов Цельсия, применяются в основном для подогрева воды в бассейнах;

— среднетемпературные коллекторы, производящие высоко- и среднепотенциальное тепло (60-80 С), используются для нагревания воды в жилых массивах;

— высокотемпературные коллекторы — параболические тарелки, используемые в основном электрогенерирующими предприятиями, производящими электричество для электросетей.

Наиболее распространенными типами солнечных коллекторов можно назвать вакуумные и плоскопанельные.

Особенностью вакуумных коллекторов является использование вакуума в качестве достаточно эффективного теплоизолятора. Вакуум поддерживается между внешним стеклянным покрытием и теплопоглощающим слоем. Это минимизирует потери тепла и снижает зависимость КПД гелиосистемы от разности между температурой коллектора и температурой окружающей среды.

Конструктивно вакуумные коллекторы могут быть:

— трубчатыми, которые состоят из герметичных труб;

— плоскими, вакуум в которых поддерживается при помощи насосов.

Трубчатые вакуумные коллекторы являются более распространенными. Для них характерен так называемый «зеркальный эффект», т.е. минимизация зависимости теплоотдачи коллектора от высоты, на которой находится Солнце. Это содействует выравниванию тепловой мощности трубчатого коллектора на протяжении всего года. Возможно повышение температур теплоносителя до 250—300 °C при условии ограничения разбора тепла.

Вакуумные солнечные коллекторы являются довольно интересным высокотехнологичным видом гелиосистем в техническом отношении.

Плоскопанельные солнечные коллекторы — более распространенный вид коллекторов. Следует отметить, что пройдя ряд научно-технических усовершенствований, коллекторы данного типа, вероятно, практически достигли максимальных показателей в плане эффективности, срока эксплуатации и стоимости.

В основе работы плоских солнечных коллекторов лежит парниковый эффект: солнечный свет, попадающий на поверхность панельного коллектора, полностью пропускается стеклом. В качестве верхнего прозрачного слоя используется обычное или закаленное стекло, также может использоваться поликарбонат, ударопрочное стекло, стекло с низким содержание железа. Передачу теплоты к теплоносителю осуществляют алюминиевые или медные элементы. Отвод теплоты осуществляется с помощью воды или раствора незамерзающей жидкости.

Плоский солнечный коллектор — достаточно простое устройство. Покрытие, являющееся наиболее высокотехнологичным элементом во всей конструкции, должно поглощать большую часть энергии солнечных лучей, излучая при нагреве в инфракрасном спектре минимально возможную часть поглощенной энергии. При отсутствии разбора тепла плоские коллекторы нагревают воду до 190 °C.

В настоящий момент, наиболее перспективными для России являются плоскопанельные солнечные коллекторы горячего водоснабжения, т.к. имеют четыре неоспоримых преимущества: всесезонность, простоту, надежность конструкции при относительно невысокой цене и, несомненно, срок службы — 50 лет в сравнении с 20-30 годами работы вакуумных. Необходимо также акцентировать внимание на том факте, что срок окупаемости вложенных в гелиосистему средств, зависит от цен на ископаемые энергоносители. В европейских странах обычно срок окупаемости составляет менее 10 лет, в США – 4. И, конечно же, основное преимущество использования солнечной энергии — экологическая чистота и неограниченность

Самодельный солнечный концентратор из зеркальный пленки. Солнечный концентратор своими руками. Отопление дома солнечным коллектором, изготовленным своими руками Солнечный концентратор своими руками чертежи

Проблема использования солнечной энергии с древних времен занимала лучшие умы человечества. Было понятно, что Солнце – это мощнейший источник даровой энергии, но как эту энергию использовать, не понимал никто. Если верить античным писателям Плутарху и Полибию, то первым человеком, практически использовавшим солнечную энергию, был Архимед, который с помощью изобретенных им неких оптических устройств сумел собрать солнечные лучи в мощный пучок и сжечь римский флот.

В сущности, устройство, изобретенное великим греком, представляло собой первый концентратор солнечного излучения, который собрал солнечные лучи в один энергетический пучок. И в фокусе этого концентратора температура могла достигать 300°С — 400°С, что вполне достаточно для того, чтобы воспламенить деревянные суда римского флота. Можно только догадываться, какое именно устройство изобрел Архимед, хотя, по современным представлениям, вариантов у него было всего два.

Уже само наименование устройства – солнечный концентратор – говорит само за себя. Этот прибор принимает солнечные лучи и собирает их в единый энергетический пучок. Самый простой концентратор всем знаком из детства. Это обычная двояковыпуклая линза, которой можно было выжигать различные фигурки, надписи, даже целые картинки, когда солнечные лучи собирались такой линзой в маленькую точку на деревянной доске, листе бумаги.

Эта линза относится к так называемым рефракторным концентраторам. Кроме выпуклых линз к этому классу концентраторов относятся также линзы Френеля, призмы. Длиннофокусные концентраторы, построенные на основе линейных линз Френеля, несмотря на свою дешевизну, практически используются очень мало, так как обладают большими размерами. Их применение оправдано там, где габариты концентратора не являются критичными.

Рефракторный солнечный концентратор

Этого недостатка лишен призменный концентратор солнечного излучения. Более того, такое устройство способно концентрировать также и часть диффузного излучения, что значительно повышает мощность светового пучка. Трехгранная призма, на основе которой построен такой концентратор, является и приемником излучения и источником энергетического пучка. При этом передняя грань призмы принимает излучение, задняя грань – отражает, а из боковой грани уже выходит излучение. В основу работы такого устройства заложен принцип полного внутреннего отражения лучей до того, как они попадут на боковую грань призмы.

В отличие от рефракторных, рефлекторные концентраторы работают по принципу сбора в энергетический пучок отраженного солнечного света. По своей конструкции они подразделяются на плоские, параболические и параболоцилиндрические концентраторы. Если говорить об эффективности каждого из этих типов, то наивысшую степень концентрации – до 10000 – дают параболические концентраторы. Но для построения систем солнечного теплоснабжения используются в основном плоские или параболоцилиндрические системы.


Параболические (рефлекторные) солнечные концентраторы

Практическое применение солнечных концентраторов

Собственно, основная задача любого солнечного концентратора – собрать излучение солнца в единый энергетический пучок. А уж воспользоваться этой энергией можно различными путями. Можно даровой энергией нагревать воду, причем, количество нагретой воды будет определяться размерами и конструкцией концентратора. Небольшие параболические устройства можно использовать в качестве солнечной печи для приготовления пищи.


Параболический концентратор в качестве солнечной печи

Можно использовать их для дополнительного освещения солнечных батарей, чтобы повысить выходную мощность. А можно использовать в качестве внешнего источника тепла для двигателей Стирлинга. Параболический концентратор обеспечивает в фокусе температуру порядка 300°С – 400°С. Если в фокусе такого сравнительно небольшого зеркала поместить, например, подставку для чайника, сковороды, то получится солнечная печь, на которой очень быстро можно приготовить пищу, вскипятить воду. Помещенный в фокусе нагреватель с теплоносителем позволит достаточно быстро нагревать даже проточную воду, которую затем можно использовать в хозяйственных целях, например, для душа, мытья посуды.


Простейшая схем нагрева воды солнечным концентратором

Если в фокусе параболического зеркала поместить подходящий по мощности двигатель Стирлинга, то можно получить небольшую тепловую электростанцию. Например, фирма Qnergy разработала и пустила в серию двигатели Стирлинга QB-3500, которые предназначены для работы с солнечными концентраторами. В сущности, правильнее было бы их назвать генераторами электрического тока на базе двигателей Стирлинга. Этот агрегат вырабатывает электрический ток мощностью 3500 ватт. На выходе инвертора – стандартное напряжение 220 вольт 50 герц. Этого вполне достаточно, чтобы обеспечить электричеством дом для семьи из 4 человек, дачу.

Кстати, используя принцип работы двигателей Стирлинга, многие умельцы своими руками делают устройства, в которых используется вращательное или возвратно-поступательное движение. Например, водяные насосы для дачи.

Основной недостаток параболического концентратора заключается в том, что он должен быть постоянно ориентирован на солнце. В промышленных гелиевых установках применяются специальные системы слежения, которые поворачивают зеркала или рефракторы вслед за движением солнца, обеспечивая тем самым прием и концентрацию максимального количества солнечной энергии. Для индивидуального использования вряд ли будет целесообразным применять подобные следящие устройства, так как их стоимость может значительно превышать стоимость простого рефлектора на обычной треноге.

Как сделать самому солнечный концентратор

Самый простой способ для изготовления самодельного солнечного концентратора – это использовать старую тарелку от спутниковой антенны. Вначале нужно определиться, для каких целей будет использоваться этот концентратор, а затем, исходя из этого, выбрать место установки и подготовить соответствующим образом основание и крепления. Тщательно вымыть антенну, высушить, на приемную сторону тарелки наклеить зеркальную пленку.

Для того, чтобы пленка легла ровно, без морщин и складок, ее следует разрезать на полоски шириной не более 3 – 5 сантиметров. Если предполагается использовать концентратор в качестве солнечной печи, то рекомендуется в центре тарелки вырезать отверстие диаметром примерно в 5 – 7 сантиметров. Через это отверстие будет пропущен кронштейн с подставкой для посуды (конфоркой). Это обеспечит неподвижность емкости с приготовляемой едой при повороте рефлектора на солнце.

Если тарелка небольшого диаметра, то рекомендуется еще и полоски разрезать на кусочки длиной примерно по 10 см. Наклеивать каждый кусочек отдельно, тщательно подгоняя стыки. Когда отражатель будет готов, его следует установить на опору. После этого нужно будет определить точку фокуса, так как точка оптического фокуса у тарелки спутниковой антенны не всегда совпадает с позицией приемной головки.


Самодельный солнечный концентратор – печь

Чтобы определить точку фокуса, необходимо вооружиться темными очками, деревянной дощечкой и толстыми перчатками. Затем нужно направить зеркало прямо на солнце, поймать на дощечку солнечный зайчик и, приближая или удаляя дощечку относительно зеркала, найти точку, где этот зайчик будет иметь минимальные размеры – небольшую точку. Перчатки нужны для того, чтобы уберечь руки от ожога, если они случайно попадут в зону действия луча. Ну, а когда точка фокуса будет найдена, ее останется только зафиксировать и монтировать необходимое оборудование.

Вариантов самостоятельного изготовления солнечных концентратором существует множество. Точно так же самому из подручных материалов можно смастерить и двигатель Стирлинга. А уж использовать этот двигатель можно для самых различных целей. На сколько хватит фантазии, желания и терпения.

Опубліковано 09.08.2013

Альтернативная энергетика интересует все большее количество великих умов. Я – не исключение. 🙂

Все началось с простого вопроса: “А можно ли бесколлекторный двигатель превратить в генератор?”
-Можно. А зачем?
-Сделать ветрогенератор.

Ветряк для выработки электроэнергии – не совсем удобное решение. Переменная сила ветра, зарядные устройства, аккумуляторы, инверторы, много не копеечного оборудования. В упрощенной схеме ветряк на «отлично» справляется с подогревом воды. Ибо нагрузка – тен, а он абсолютно не требователен к параметрам подаваемой на него электроэнергии. Можно избавиться от сложной дорогой электроники. Но расчеты показали значительные затраты на конструкцию, чтобы раскрутить генератор 500 Ватт.
Мощность, которую несет в себе ветер, рассчитывается по формуле P=0,6*S*V 3 , где:
P – мощность, Ватт
S – площадь, м 2
V – скорость ветра, м/с

Ветер, дующий на 1 м2 со скоростью 2 м/с «несет» в себе энергию 4,8 Ватт. Если скорость ветра увеличится до 10 м/с, то мощность возрастет до 600 Ватт. У самых лучших ветрогенераторов КПД 40-45%. С учетом этого для генератора мощностью 500 Ватт при ветре, скажем 5 м/с. Потребуется площадь, ометаемая винтом ветрогенератора, около 12 кв.м. Что соответствует винту диаметром почти 4 метра! Много денег – мало толку. Добавить сюда необходимость получения разрешения (ограничение по шумности). Кстати, в некоторых странах установку ветряка нужно согласовывать даже с орнитологами.

Но тут я вспомнили о Солнышке! Оно нам дарит очень много энергии. Об этом я впервые задумался после полета над замерзшим водохранилищем. Когда увидел массу льда толщиной более метра и размерами 15 на 50 километров, я подумал: “Это же сколько льда! Сколько его надо греть, чтобы расплавить!?” И все это сделает Солнце за полтора десятка дней. В справочниках можно найти плотность энергии, которая достигает поверхности земли. Цифра около 1 киловатт на метр квадратный звучит заманчиво. Но это на экваторе в ясный день. Насколько реально утилизировать солнечную энергию для хозяйственных нужд в наших широтах (центральная часть Украины), используя доступные материалы?

Какую реальную мощность, с учетом всех потерь, можно получить с оного квадратного метра?

Для выяснения этого вопроса я сделал первый параболический тепловой концентратор из картона (фокус в чаше параболы). Выкройку из секторов оклеил обычной пищевой фольгой. Понятно, что качество поверхности, да и отражающие способности фольги, очень далеки от идеала.

Но задача стояла именно “колхозными” методами нагреть определенный объем воды, чтобы выяснить какую мощность можно получить с учетом всех потерь. Выкройку можно рассчитать с помощью файла Exel который я нашел на просторах интернета у любителей самостоятельно строить параболические антенны.
Зная объем воды, её теплоемкость, начальную и конечную температуру можно рассчитать количество тепла, затраченного на ее нагрев. А, зная время нагрева, можно вычислить мощность. Зная габариты концентратора, можно определить какую практическую мощность можно получить с одного квадратного метра поверхности, на которую падает солнечный свет.

В качестве объема для воды была взята половинка алюминиевой банки, выкрашенная снаружи в черный цвет.

Емкость с водой помещается в фокус параболического солнечного концентратора. Солнечный концентратор ориентируется на Солнце.

Эксперимент №1

проводился около 7 часов утра в конце мая. Утро – далеко не идеальное время, но как раз утром в окно моей “лаборатории” светит Солнце.

При диаметре параболы 0.31 м расчеты показали, что была получена мощность порядка 13,3 Ватт . Т.е. как минимум 177 Ватт/м.кв. Тут следует отметить, что круглая открытая банка далеко не самый лучший вариант для получения хорошего результата. Часть энергии уходит на нагрев самой банки, часть излучается в окружающую среду, в том числе уносится потоками воздуха. В общем, даже в таких далеких от идеала условиях можно хоть что-то получить.

Эксперимент №2

Для второго эксперимента была сделана парабола диаметром 0.6 м . В качестве ее зеркала использовался металлизированный скотч, купленный в строительном магазине. Его отражающие качества незначительно лучше алюминиевой пищевой фольги.


Парабола имела большее фокусное расстояние (фокус за пределами чаши параболы).

Это дало возможность спроецировать лучи на одну поверхность нагревателя и получать в фокусе большую температуру. Парабола без труда прожигает лист бумаги за несколько секунд. Эксперимент проводился около 7 часов утра в начале июня. По результатам эксперимента с тем же объемом воды и той же тарой получил мощность 28 Ватт ., что соответствует примерно 102 Ватт/м.кв . Это меньше, чем в первом эксперименте. Это объясняется тем, что солнечные лучи от параболы ложилось на круглую поверхность банки не везде оптимально. Часть лучей проходили мимо, часть падали по касательной. Банка охлаждалась свежим утренним ветерком с одной стороны, в то время как подогревалась с другой. В первом эксперименте за счет того, что фокус был внутри чаши, банка прогревалась со всех сторон.

Эксперимент №3

Поняв, что достойный результат можно получить, сделав правильный теплоприемник, была изготовлена следующая конструкция: банка из жести внутри выкрашена в черный цвет имеет патрубки для подвода и отвода воды. Герметично закрыта прозрачным двойным стеклом. Термоизолирована.



Общая схема такова:

Нагрев происходит следующим образом: лучи от солнечного концентратора (1 ) через стекло проникают внутрь банки теплоприемника (2 ), где, попадая на черную поверхность, нагревают ее. Вода, соприкасаясь с поверхностью банки, поглощает тепло. Стекло плохо пропускает инфракрасное (тепловое) излучение, поэтому потери на излучение тепла минимизированы. Поскольку со временем стекло прогревается теплой водой, и начинает излучать тепло, было применено двойное остекление. Идеальный вариант, если между стеклами будет вакуум, но это труднодостижимая задача в домашних условиях. С обратной стороны банка теплоизолирована пенопластом, что также ограничивает излучение тепловой энергии в окружающую среду.

Теплоприемник (2 ) с помощью трубок (4,5 ) подключается к бачку (3 ) (в моем случае пластиковая бутылка). Дно бачка находится на 0.3м выше нагревателя. Такая конструкция обеспечивает конвекцию (самоциркуляцию) воды в системе.

В идеале расширительный бак и трубки должны быть тоже термоизолированы. Эксперимент проводился около 7 часов утра в середине июня. Результаты эксперимента таковы: Мощность 96.8 Ватт , что соответствует примерно 342 Ватт/м.кв.

Т.е. эффективность системы улучшилась более, чем в 3 раза только за счет оптимизации конструкции теплоприемника!

При проведении экспериментов 1,2,3 нацеливание параболы на солнце делалось вручную, «наглазок». Парабола и нагревательные элементы удерживались руками. Т.е. нагреватель не всегда был в фокусе параболы, поскольку руки человека устают и начинают искать более удобное положение, которое не всегда правильное с технической точки зрения.

Как вы могли заметить, с моей стороны были приложены усилия для обеспечения отвратительных условий для проведения эксперимента. Далеко не идеальные условия, а именно:
– не идеальная поверхность концентраторов
– не идеальные отражающие свойства поверхностей концентраторов
– не идеальное ориентирование на солнце
– не идеальное положение нагревателя
– не идеальное время для эксперимента (утро)

не смогли помешать получить вполне приемлемый результат для установки из подручных материалов.

Эксперимент №4

Далее нагревательный элемент был закреплен неподвижно относительно солнечного концентратора. Это позволило поднять мощность до 118 Ватт , что соответствует примерно 419 Ватт/м.кв . И это в утренние часы! С 7 до 8 утра!

Существуют и другие методы нагрева воды, с помощью Солнечных коллекторов. Коллекторы с вакуумными трубками дороги, а плоские имеют большие температурные потери в холодное время года. Применение солнечных концентраторов может решить эти проблемы, однако требует реализации механизма ориентирования на Солнце. В каждом способе есть как преимущества, так и недостатки.

Солнечную энергию можно собирать и использовать разными способами. Один из самых простых и эффективных — зеркальный рефлектор и концентратор. Его не сложно изготовить своими руками.

Рефлектор отражает солнечные лучи и концентрирует их на ёмкости с водой. Та нагревается и вскипает, выдавая струю пара. Конструкция устройства довольно проста, главное — чтобы зеркала автоматически поворачивались на нужный угол и следили за Солнцем.

Полученный пар направляем, например, в духовой шкаф для приготовления пищи, по трубам на обогрева дома, в турбину для генерации электроэнергии, в двигатель, холодильник и т.д. На самом деле, если посмотреть на какой-нибудь производственный процесс, то почти любую его часть можно перевести на пар.

Самодельный парогенератор Solar-OSE на линейных зеркалах с управлением от платы Arduino на французской конференции мейкеров POC21 , посвящённой самодельным экологическим проектам.

Недавно авторы выложили в открытый доступ под лицензией Creative Commons инструкцию по сборке устройства. Такой компактный прибор на 1 кВт отлично подходит для малого бизнеса, особенно в сельской местности. Если объединить несколько модулей, то мощность повышается в несколько раз.

По оценке мейкеров, стоимость всех деталей парогенератора составит примерно $2000, но есть разные варианты экономии.

Примерное время сборки: 150 часов. Одна неделя, три человека.

В инструкции приводится полный список и размеры всех материалов, а также необходимые для работы инструменты.

По принципу работы солнечные концентраторы сильно отличаются от . Мало того, солнечные электростанции теплового типа намного эффективней фотоэлектрических в силу ряда особенностей.

Задача солнечного концентратора – сфокусировать солнечные лучи на емкости с теплоносителем , которым могут выступать, например, масло или вода, хорошо поглощающие солнечную энергию. Методы концентрации бывают разными: параболоцилиндрические концентраторы, параболические зеркала, или гелиоцентрические установки башенного типа.

В одних концентраторах излучение солнца фокусируется вдоль фокальной линии, в других – в фокусной точке, где и расположен приемник. Когда солнечное излучение отражается с большей поверхности на меньшую поверхность (на поверхность приемника), достигается высокая температура, теплоноситель поглощает тепло, двигаясь через приемник. Система в целом содержит также аккумулирующую часть и систему передачи энергии.

Эффективность концентраторов сильно снижается в период облачности, поскольку фокусируется лишь прямое солнечное излучение. Именно по этой причине такие системы достигают самого высокого КПД в регионах, где уровень инсоляции особенно высок: в пустынях, в районе экватора. Для повышения эффективности использования солнечного излучения, концентраторы оснащаются специальными трекерами, следящими системами, обеспечивающими максимально точную ориентацию концентраторов в направлении солнца.

Поскольку стоимость солнечных концентраторов высока, а следящие системы требуют периодического обслуживания, их применение в основном ограничено промышленными системами генерации электроэнергии.

Такие установки могут использоваться в гибридных системах в совокупности, например, с углеводородным топливом, тогда аккумулирующая система обеспечит снижение себестоимости получаемого электричества. Это станет возможным, так как генерация будет происходить круглосуточно.

Параболоцилиндрические солнечные концентраторы бывают в длину до 50 метров, они имеют вид вытянутой зеркальной параболы. Такой концентратор состоит из массива вогнутых зеркал, каждое из которых собирает параллельные солнечные лучи, и фокусирует их в конкретной точке. Вдоль такой параболы, располагается труба с теплоносителем так, что на нее и фокусируются все отраженные зеркалами лучи. Чтобы снизить потери тепла, трубу окружают стеклянной трубкой, которая протянута вдоль линии фокуса цилиндра.

Такие концентраторы располагаются рядами в направлении север-юг, и они, безусловно, оснащаются системами слежения за солнцем. Сфокусированное в линию излучение, нагревает теплоноситель почти до 400 градусов, он проходит через теплообменники, вырабатывая пар, который и вращает турбину генератора.

Справедливости ради стоит отметить, что на месте трубы может быть расположен и фотоэлемент. Однако, несмотря на то, что с фотоэлементами, размеры концентраторов могут быть меньшими, это чревато уменьшением КПД и проблемой перегрева, для решения которой требуется разработка качественной системы охлаждения.

В пустыне штата Калифорния в 80-е было сооружено 9 электростанций на параболоцилиндрических концентраторах, суммарной мощностью 354 МВт. Затем эта же компания (Luz International) возвела еще и гибридную станцию SEGS I в Деггетте, мощностью 13,8 МВт, которая включала в себя дополнительно печи на природном газе. В общем, по состоянию на 1990 год, компанией было построено гибридных электростанций на суммарную мощность 80 МВт.

Развитие солнечной генерации на параболоцилиндрических электростанциях ведется в Марокко, Мексике, Алжире и других развивающихся странах при финансировании Всемирного банка.

Специалисты в итоге заключают, что сегодня параболоцилиндрические электростанции уступают как по рентабельности, так и по эффективности солнечным электростанциям башенного и тарельчатого типа.


– это, похожие на спутниковые тарелки, параболические зеркала, которыми солнечные лучи фокусируются на приемник, расположенный в фокусе каждой такой тарелки. При этом температура теплоносителя при данной технологии нагрева достигает 1000 градусов. Жидкий теплоноситель сразу подается к генератору или двигателю, который совмещен с приемником. Здесь используются, например, двигатели Стирлинга и Брайтона, что позволяет значительно повысить производительность таких систем, поскольку оптическая эффективность высока, а начальные затраты невысоки.

Мировым рекордом по эффективности гелиоустановки параболического тарельчатого типа является 29% КПД, достигнутый при преобразовании тепловой энергии в электрическую, на тарельчатой установке, совмещенной с двигателем Стирлинга на Ранчо Мираж.

Благодаря модульному проектированию, солнечные системы тарельчатого типа очень перспективны, они позволяют легко добиваться требуемых уровней мощности как для гибридных потребителей, подключенных к коммунальным электросетям, так и для автономных. Примером может служить проект «STEP», состоящий из 114 зеркал параболической формы, имеющих диаметр 7 метров, расположенный в штате Джорджия.

Система производит пар среднего, низкого и высокого давления. Пар низкого давления подается в систему кондиционирования трикотажной фабрики, пар среднего давления – для самого трикотажного производства, а пар высокого давления – непосредственно для генерации электричества.

Безусловно, тарельчатые солнечные концентраторы, объединенные с двигателем Стирлинга, интересуют владельцев крупных энергетических компаний. Так корпорация «Science Applications International Corporation», в сотрудничестве с тройкой энергетических компаний, разрабатывает систему с использованием двигателя Стирлинга и параболических зеркал, которая сможет производить 25 кВт электроэнергии.

В солнечных электростанциях башенного типа с центральным приемником, солнечное излучение фокусируется на приемник, который расположен в верхней части башни . Вокруг башни в большом количестве расставлены отражатели-гелиостаты . Гелиостаты снабжены двуосной системе слежения за солнцем, благодаря которой они всегда повернуты так, что лучи неподвижно сконцентрированы на теплоприемнике.

Приемник поглощает тепловую энергию, которая потом вращает турбину генератора.

Жидкий теплоноситель циркулируя в приемнике, передает пар тепловому аккумулятору. Обычно работает водяной пар с температурой 550 градусов, воздух и другое газообразное вещество с температурой до 1000 градусов, органические жидкости обладающие низкой температурой кипения – ниже 100 градусов, а также жидкий металл – до 800 градусов.

В зависимости от назначения станции, пар может вращать турбину для выработки электроэнергии, или непосредственно использоваться на каком–нибудь производстве. Температура в приемнике варьируется в диапазоне от 538 до 1482 градусов.

Башенная электростанция «Solar One» в Южной Калифорнии, одна из первых станций такого типа, изначально производила электроэнергию посредством водно-паровой системы, выдавая 10 МВт. Затем она претерпела модернизацию, и усовершенствованный приемник, работающий теперь на расплавленных солях и теплоаккумулирующая система стали значительно эффективней.

Это привело к тому, что башенные электростанции с теплоаккумулятором ознаменовали прорыв в технологиях солнечных концентраторов: электроэнергия в такой электростанции может производиться по мере надобности, так как теплоаккумулирующая система может хранить тепло до 13 часов.

Технология расплавленной соли дает возможность сохранять солнечное тепло при температуре 550 градусов, и электроэнергия теперь может производиться в любое время суток и при любой погоде. Башенная станция «Solar Two» мощностью 10 МВт, стала прототипом промышленных электростанций такого типа. В перспективе – строительство промышленных станций мощностями от 30 до 200 МВт для крупных промышленных предприятий.

Перспективы открываются колоссальные, однако развитие тормозится из-за потребности в больших площадях, и немалой стоимости возведения башенных станций промышленных масштабов. Например, для того, чтобы разместить 100 мегаваттную башенную станцию, нужно 200 га, в то время как для атомной электростанции могущей производить 1000 мегаватт электроэнергии, нужно всего 50 га. Параболоцилиндрические станции (модульного типа) на небольшие мощности, в свою очередь, рентабельней башенных.

Таким образом, башенные и параболоцилиндрические концентраторы подходят для электростанций мощностью от 30 МВт до 200МВт, которые соединены с сетью. Модульные тарельчатые концентраторы подойдут для автономного электроснабжения сетей, которым требуется всего несколько мегаватт. Как башенные, так и тарельчатые системы дороги в производстве, однако дают весьма высокий КПД.

Как видим, параболоцилиндрические концентраторы занимают оптимальное положение в качестве наиболее перспективной из технологий солнечных концентраторов на ближайшие годы.

(Канада) разработала универсальный, мощный, эффективный и один из самых экономичных солнечных параболических концентраторов (CSP — Concentrated Solar Power) диаметром 7 метров, как для обычных домовладельцев, так и для промышленного использования. Компания специализируется на производстве механических устройств, оптики и электронной техники, что помогло ей создать конкурентный продукт.

По оценке самого производителя, солнечный концентратор SolarBeam 7M превосходит другие типы солнечных устройств: плоских солнечных коллекторов, вакуумных коллекторов, солнечных концентраторов типа «желоб».

Внешний вид солнечного концентратора Solarbeam

Как это работает?

Автоматика солнечного концентратора отслеживает движение солнца в 2-ух плоскостях и направляет зеркало точно на солнце, позволяя системе собирать максимальную солнечную энергию с рассвета до позднего заката. Независимо от сезона или места использования, SolarBeam поддерживает точность наведения на солнце до 0,1 градуса.

Падающие на солнечный концентратор лучи фокусируются в одной точке.

Расчеты и проектирование SolarBeam 7M

Стресс — тестирование

Для проектирования системы использовались методы 3D моделирования и программного стресс-тестирования. Тесты выполняются по методике МКЭ (анализ Методом Конечных Элементов) для расчета напряжений и перемещений деталей и узлов под воздействием внутренних и внешних нагрузок, чтобы оптимизировать и проверить конструкцию. Такое точное тестирование позволяет утверждать, что SolarBeam может работать в условиях экстремальных нагрузок от ветра и климатических условий. SolarBeam успешно прошел моделирование ветровой нагрузки до 160 км/час (44 м/с).

Стресс -тестирование соединения рамы параболического отражателя и стойки

Фотография узла крепления концентратора Solarbeam

Стресс-тестирование стойки солнечного концентратора

Уровень производства

Часто, высокая стоимость изготовления параболических концентраторов препятствуют их массовому использованию в индивидуальном строительстве. Использование штампов и больших сегментов из светоотражающего материала, сократили производственные издержки. Solartron использовал много инноваций, используемых в автомобильной промышленности, для уменьшения стоимости и увеличения объема выпускаемой продукции.

Надежность

SolarBeam был протестирован в суровых условиях севера, обеспечивает высокую производительность и долговечность. SolarBeam разработан для любых состояний погоды, в том числе высокой и низкой температуры окружающей среды, снеговой нагрузки, обледенения и сильных ветров. Система предназначена для 20 -ти и более лет эксплуатации с минимальным техническим обслуживанием.

Параболическое зеркало SolarBeam 7M способновы удержать до 475 кг льда. Это примерно равно 12,2 мм толщине ледяного покрова по всей площади 38,5 м2.
Установка штатно работает в снегопады из-за изогнутой конструкции зеркальных секторов и способности автоматически выполнять «авто очистку от снега».

Производительность (сравнение с вакуумными и плоскими коллекторами)

Q / A = F’(τα)en Kθb(θ) Gb + F’(τα)en Kθd Gd -c6 u G* — c1 (tm-ta) — c2 (tm-ta)2 – c5 dtm/dt

Эффективность для не-концентрирующих солнечных коллекторов была рассчитана по следующей формуле:

Efficiency = F Collector Efficiency – (Slope*Delta T)/G Solar Radiation

Кривая производительности для SolarBeam концентратора показывает общую высокую эффективность во всем диапазоне температур. Плоские солнечные коллекторы и вакуумированные показывают более низкую эффективность, когда требуются более высокие температуры.

Сравнительные графики Solartron и плоских/вакуумных солнечных коллекторов

Эффективность (КПД) Solartron в зависимости от разности температур dT

Важно отметить, что приведенная выше диаграмма не учитывает потери тепла от ветра. Кроме того, приведенные выше данные указывают максимальную эффективность (в полдень) и не отражает эффективность в течении для. Данные приведены для одного из самых лучших плоских и вакуумных коллекторов. В дополнение к высокой эффективности, SolarBeamTM производит дополнительно до 30% больше энергии, из-за отслеживания солнца по двум осям. В географических регионах, где преобладают низкие температуры, эффективность у плоских и вакуумированных коллекторов значительно снижается из-за большой площади поглотителя. SolarBeamTM имеет абсорбер площадью только 0,0625 м2 относительно площади сбора энергии 15,8 м2, чем достигаются низкие потери тепла.

Обратите внимание также, что в связи с применением двухосевой системы слежения, SolarBeamTM концентратор всегда будет работать с максимальной эффективностью. Эффективная площадь коллектора SolarBeam всегда равна фактическая площадь поверхности зеркала. Плоские (неподвижные) коллекторы теряют потенциальную энергию согласно уравнения ниже:
PL = 1 – COS i
где PL потери в энергии в %, от максимальной при смещении в градусах)

Система управления

Управления SolarBeam использует технологию «EZ-SunLock». С помощью этой технологии, система может быть быстро установлена и настроена в любой точке земли. Система слежения отслеживает солнце с точностью до 0,1 градуса и использует астрономический алгоритм. Система имеет возможность общей диспетчеризации через удаленные сети.

Нештатные ситуации, при которых «тарелка» автоматически будет припаркована в безопасное положение.

  • Если давление теплоносителя в контуре упадет ниже 7 PSI
  • При скорости ветра более 75км/ч
  • В случае отключения электроэнергии, ИБП (источник бесперебойного питания) перемещает тарелку в безопасное положение. Когда питание возобновляется, автоматическое слежение за солнцем продолжается.

Мониторинг

В любом случае, и особенно для промышленного применения, очень важно знать состояние вашей системы для обеспечения надежности. Вы должны быть предупреждены прежде, чем возникнет проблема.

SolarBeam имеет возможность осуществлять мониторинг через удаленную панель мониторинга SolarBeam . Эта панель проста в использовании и предоставляет важную информацию о статусе SolarBeam, диагностику и информацию о производстве энергии.

Удаленная настройка и управление

SolarBeam можно дистанционно настраивать и оперативно менять установки. «Тарелкой» можно управлять дистанционно с помощью мобильного браузера или ПК, упрощающие или делающие ненужными системы управления на месте установки.

Оповещения

В случае тревоги или необходимости обслуживания, устройство посылает сообщение по электронной почте назначенному обслуживающему персоналу. Все предупреждения могут быть настроены в соответствии пользовательскими предпочтениями.

Диагностика

SolarBeam имеет возможности удаленой диагностики: температуры и давления в системе, производство энергии и т.д. С первого взгляда вы видите статус работы системы.

Отчетность и графики

В случае необходимости получения отчетов по производству энергии, они могут быть легко получены для каждой «тарелки». Отчет может быть в виде графика или таблицы.

Монтаж

SolarBeam 7М изначально был разработан для крупномасштабных CSP установок, поэтому монтаж сделали максимально простым. Конструкция позволяет быстро собрать основные компоненты и не требует оптической юстировки, что делает монтаж и запуск системы недорогим.

Время монтажа

Бригада из 3 человек, может установить один SolarBeam 7М от начала до конца в течение 8 часов.

Требования к размещению

Ширина SolarBeam 7М составляет 7 метров с 3,5 метровым отступом. При установке нескольких SolarBeam 7М, на каждую систему необходимо отвести площадь примерно 10 х 20 метров, чтобы обеспечить максимальный солнечный сбор с наименьшим количеством затенения.

Сборка

Параболический концентратор спроектирован для возможности сборки на земле с использованием механической системы подъема, что позволяет быстро и легко установить фермы, зеркальные сектора и крепления.

Области применения

Получение электроэнергии с помощью установок ORC (Organic Rankine Cycle).

Установки промышленного опреснения воды

Тепловую энергию для завода по опреснению воды может поставлять SolarBeam

В любой промышленности, где требуется много тепловой энергии для технологического цикла, таких как:

  • Пищевая (варка, стерилизация, получение спирта, мойка)
  • Химическая промышленность
  • Пластиковая (Нагрев, вытяжка, сепарация, …)
  • Текстильная (отбеливание, стирка, прессование, парообработка)
  • Нефтяная (возгонка, осветление нефтепродуктов)
  • И многое другое

Место установки

Подходящим местом для установки являются регионы, получающие не менее 2000 кВт*ч солнечного света на м2 в год (кВт*ч/м2/год). Наиболее перспективными производители считаю следующие регионы мира:

  • Регионы бывшего Советского Союза
  • Юго-Западный США
  • Центральная и Южная Америка
  • Северная и Южная Африка
  • Австралия
  • средиземноморские страны Европы
  • Средний Восток
  • Пустынные равнины Индии и Пакистане
  • Регионы Китая

Спецификация модели Solarbeam-7M

  • Пиковая мощность — 31,5кВт (при мощности 1000Вт/м2)
  • Степень концентрации энергии — более 1200 раз (пятно 18см)
  • Максимальная температура в фокусе — 800°С
  • Максимальная температура теплоносителя — 270°С
  • Эксплуатационная эффективность — 82%
  • Диаметр рефлектора — 7м
  • Площадь параболического зеркала — 38,5м2
  • Фокусное расстояние — 3,8м
  • Потребление электроэнергии сервомоторами — 48W+48W / 24В
  • Скорость ветра при работе — до 75км/ч (20м/с)
  • Скорость ветра (в безопасном режиме) — до 160 км/ч
  • Отслеживание солнца по азимуту — 360°
  • Отслеживание солнца по вертикали — 0 — 115°
  • Высота опоры — 3,5м
  • Вес отражателя — 476 кг
  • Общий вес -1083 кг
  • Размер абсорбера — 25,4 х 25,4 см
  • Площадь абсорбера -645 см2
  • Объем теплоносителя в абсорбере — 0,55 литра

Габаритные размеры рефлектора

Вакуумный солнечный коллектор MVK 001, 45311.3

Вакуумный солнечный коллектор Мейбес MVK 001

Вакуумные солнечные коллекторы MVK 001 предназначены для преобразования солнечной энергии в тепловую, и последующую передачу ее в систему
отопления. Работают по принципу нагрева черного тела в застекленной двухстенной колбе, межу стенками которой откачан воздух (создан вакуум). Под стеклянной колбой находится зеркальный отражатель, который обеспечивает фокуссировку солнечных лучей при прямом и рассеяном солнечном излучении. Устанавливаются только вертикально под углом от 150 до 750. MVK — Meibes Vacuum Kollektor.

Особенности:
  • Обеспечивает существенный вклад тепловой энергии в системы ГВС и отопления при наличии прямого и рассеяного солнечного излучения.
  • Может нагревать воду в баке до высоких температр (до 90 0С).
  • Может полностью закрыть потребности в ГВС/подогреве бассейна в летнее время, а также частично закрыть потребности отопления.
  • Выдерживает атмосферные осадки, ураганные ветры до 120 км/ч.
  • Циллиндрическая форма стеклянной колбы уменьшает силу удара града, что позволяет коллектору выдерживать мелкий и средний град.
  • Каждая вакуумная трубка может быть демонтирована отдельно и заменена на новую.
  • U-образна медная трубка теплообменника позволяет снимать с коллектора даже небольшой тепловой потенциал.
  • Патрубки коллекторов оснащены подключениями (НГ 3/4’’ — справа, НР 3/4’’ — слева) для быстрой увязки между собой коллекторов в ряд и подключения трубопроводов.
  • Быстрая поставка комплекта оборудования на объект — все оборудование находится на складах в Украине.
  • Гарантия 5 лет.

Устройство коллектора

Обозначения:

1. U-образный теплообменник из медной трубки Ду 8мм.
2. Сегмент отражателя (нерж. сталь).
3. Гильза для датчика температуры, Ду 8 мм.
4. Патрубок подающей лннии НГ 3/4’’.
5. Патрубок обратной лннии НР 3/4’’.
6. Коллектор подающей линии, медная труба Ду 18мм.
7. Коллектор обратной линии, медная труба Ду 18мм.
8. Теплоизоляция из минваты.
9. Алюминиевый теплопроводник.
10. Внутренняя стенка вакуумной колбы с высокоселективным слоем.
11. Внешняя стенка вакуумной колбы.
12. Напыление берилия (обеспечивает помутнение колбы при
разгерметизации колбы).
13. Упоры, которые гасят колебания внутренней стенки вакуумной колбы.
14. Пластиковая чашка для фиксации вакуумной колбы раме.
15. Алюминиевая рама.
16. EPDM-уплотнение.

Размеры колектора

Таблица характеристик вакуумного солнечного коллектора MVK 001

КУПИТЬ Вакуумный солнечный коллектор Meibes MVK 001 В КИЕВЕ, И В УКРАИНЕ!
А ТАКЖЕ ЗАКАЗАТЬ МОНТАЖ ПО КИЕВУ И КИЕВСКОЙ ОБЛАСТИ,
ВЫ МОЖЕТЕ ЧЕРЕЗ НАШИХ МЕНЕДЖЕРОВ ПО ТЕЛЕФОНАМ:

+38(044)391-08-61 +38(093)170-31-51 +38(067)481-08-28 +38(050)453-08-28

Солнечный зеркальный нагреватель. Концентраторы солнечной энергии. Самодельная печь концентратор на солнечном излучении

Солнечную энергию можно собирать и использовать разными способами. Один из самых простых и эффективных — зеркальный рефлектор и концентратор. Его не сложно изготовить своими руками.

Рефлектор отражает солнечные лучи и концентрирует их на ёмкости с водой. Та нагревается и вскипает, выдавая струю пара. Конструкция устройства довольно проста, главное — чтобы зеркала автоматически поворачивались на нужный угол и следили за Солнцем.

Полученный пар направляем, например, в духовой шкаф для приготовления пищи, по трубам на обогрева дома, в турбину для генерации электроэнергии, в двигатель, холодильник и т.д. На самом деле, если посмотреть на какой-нибудь производственный процесс, то почти любую его часть можно перевести на пар.

Самодельный парогенератор Solar-OSE на линейных зеркалах с управлением от платы Arduino на французской конференции мейкеров POC21 , посвящённой самодельным экологическим проектам.

Недавно авторы выложили в открытый доступ под лицензией Creative Commons инструкцию по сборке устройства. Такой компактный прибор на 1 кВт отлично подходит для малого бизнеса, особенно в сельской местности. Если объединить несколько модулей, то мощность повышается в несколько раз.

По оценке мейкеров, стоимость всех деталей парогенератора составит примерно $2000, но есть разные варианты экономии.

Примерное время сборки: 150 часов. Одна неделя, три человека.

В инструкции приводится полный список и размеры всех материалов, а также необходимые для работы инструменты.

(Канада) разработала универсальный, мощный, эффективный и один из самых экономичных солнечных параболических концентраторов (CSP — Concentrated Solar Power) диаметром 7 метров, как для обычных домовладельцев, так и для промышленного использования. Компания специализируется на производстве механических устройств, оптики и электронной техники, что помогло ей создать конкурентный продукт.

По оценке самого производителя, солнечный концентратор SolarBeam 7M превосходит другие типы солнечных устройств: плоских солнечных коллекторов, вакуумных коллекторов, солнечных концентраторов типа «желоб».

Внешний вид солнечного концентратора Solarbeam

Как это работает?

Автоматика солнечного концентратора отслеживает движение солнца в 2-ух плоскостях и направляет зеркало точно на солнце, позволяя системе собирать максимальную солнечную энергию с рассвета до позднего заката. Независимо от сезона или места использования, SolarBeam поддерживает точность наведения на солнце до 0,1 градуса.

Падающие на солнечный концентратор лучи фокусируются в одной точке.

Расчеты и проектирование SolarBeam 7M

Стресс — тестирование

Для проектирования системы использовались методы 3D моделирования и программного стресс-тестирования. Тесты выполняются по методике МКЭ (анализ Методом Конечных Элементов) для расчета напряжений и перемещений деталей и узлов под воздействием внутренних и внешних нагрузок, чтобы оптимизировать и проверить конструкцию. Такое точное тестирование позволяет утверждать, что SolarBeam может работать в условиях экстремальных нагрузок от ветра и климатических условий. SolarBeam успешно прошел моделирование ветровой нагрузки до 160 км/час (44 м/с).

Стресс -тестирование соединения рамы параболического отражателя и стойки

Фотография узла крепления концентратора Solarbeam

Стресс-тестирование стойки солнечного концентратора

Уровень производства

Часто, высокая стоимость изготовления параболических концентраторов препятствуют их массовому использованию в индивидуальном строительстве. Использование штампов и больших сегментов из светоотражающего материала, сократили производственные издержки. Solartron использовал много инноваций, используемых в автомобильной промышленности, для уменьшения стоимости и увеличения объема выпускаемой продукции.

Надежность

SolarBeam был протестирован в суровых условиях севера, обеспечивает высокую производительность и долговечность. SolarBeam разработан для любых состояний погоды, в том числе высокой и низкой температуры окружающей среды, снеговой нагрузки, обледенения и сильных ветров. Система предназначена для 20 -ти и более лет эксплуатации с минимальным техническим обслуживанием.

Параболическое зеркало SolarBeam 7M способновы удержать до 475 кг льда. Это примерно равно 12,2 мм толщине ледяного покрова по всей площади 38,5 м2.
Установка штатно работает в снегопады из-за изогнутой конструкции зеркальных секторов и способности автоматически выполнять «авто очистку от снега».

Производительность (сравнение с вакуумными и плоскими коллекторами)

Q / A = F’(τα)en Kθb(θ) Gb + F’(τα)en Kθd Gd -c6 u G* — c1 (tm-ta) — c2 (tm-ta)2 – c5 dtm/dt

Эффективность для не-концентрирующих солнечных коллекторов была рассчитана по следующей формуле:

Efficiency = F Collector Efficiency – (Slope*Delta T)/G Solar Radiation

Кривая производительности для SolarBeam концентратора показывает общую высокую эффективность во всем диапазоне температур. Плоские солнечные коллекторы и вакуумированные показывают более низкую эффективность, когда требуются более высокие температуры.

Сравнительные графики Solartron и плоских/вакуумных солнечных коллекторов

Эффективность (КПД) Solartron в зависимости от разности температур dT

Важно отметить, что приведенная выше диаграмма не учитывает потери тепла от ветра. Кроме того, приведенные выше данные указывают максимальную эффективность (в полдень) и не отражает эффективность в течении для. Данные приведены для одного из самых лучших плоских и вакуумных коллекторов. В дополнение к высокой эффективности, SolarBeamTM производит дополнительно до 30% больше энергии, из-за отслеживания солнца по двум осям. В географических регионах, где преобладают низкие температуры, эффективность у плоских и вакуумированных коллекторов значительно снижается из-за большой площади поглотителя. SolarBeamTM имеет абсорбер площадью только 0,0625 м2 относительно площади сбора энергии 15,8 м2, чем достигаются низкие потери тепла.

Обратите внимание также, что в связи с применением двухосевой системы слежения, SolarBeamTM концентратор всегда будет работать с максимальной эффективностью. Эффективная площадь коллектора SolarBeam всегда равна фактическая площадь поверхности зеркала. Плоские (неподвижные) коллекторы теряют потенциальную энергию согласно уравнения ниже:
PL = 1 – COS i
где PL потери в энергии в %, от максимальной при смещении в градусах)

Система управления

Управления SolarBeam использует технологию «EZ-SunLock». С помощью этой технологии, система может быть быстро установлена и настроена в любой точке земли. Система слежения отслеживает солнце с точностью до 0,1 градуса и использует астрономический алгоритм. Система имеет возможность общей диспетчеризации через удаленные сети.

Нештатные ситуации, при которых «тарелка» автоматически будет припаркована в безопасное положение.

  • Если давление теплоносителя в контуре упадет ниже 7 PSI
  • При скорости ветра более 75км/ч
  • В случае отключения электроэнергии, ИБП (источник бесперебойного питания) перемещает тарелку в безопасное положение. Когда питание возобновляется, автоматическое слежение за солнцем продолжается.

Мониторинг

В любом случае, и особенно для промышленного применения, очень важно знать состояние вашей системы для обеспечения надежности. Вы должны быть предупреждены прежде, чем возникнет проблема.

SolarBeam имеет возможность осуществлять мониторинг через удаленную панель мониторинга SolarBeam . Эта панель проста в использовании и предоставляет важную информацию о статусе SolarBeam, диагностику и информацию о производстве энергии.

Удаленная настройка и управление

SolarBeam можно дистанционно настраивать и оперативно менять установки. «Тарелкой» можно управлять дистанционно с помощью мобильного браузера или ПК, упрощающие или делающие ненужными системы управления на месте установки.

Оповещения

В случае тревоги или необходимости обслуживания, устройство посылает сообщение по электронной почте назначенному обслуживающему персоналу. Все предупреждения могут быть настроены в соответствии пользовательскими предпочтениями.

Диагностика

SolarBeam имеет возможности удаленой диагностики: температуры и давления в системе, производство энергии и т.д. С первого взгляда вы видите статус работы системы.

Отчетность и графики

В случае необходимости получения отчетов по производству энергии, они могут быть легко получены для каждой «тарелки». Отчет может быть в виде графика или таблицы.

Монтаж

SolarBeam 7М изначально был разработан для крупномасштабных CSP установок, поэтому монтаж сделали максимально простым. Конструкция позволяет быстро собрать основные компоненты и не требует оптической юстировки, что делает монтаж и запуск системы недорогим.

Время монтажа

Бригада из 3 человек, может установить один SolarBeam 7М от начала до конца в течение 8 часов.

Требования к размещению

Ширина SolarBeam 7М составляет 7 метров с 3,5 метровым отступом. При установке нескольких SolarBeam 7М, на каждую систему необходимо отвести площадь примерно 10 х 20 метров, чтобы обеспечить максимальный солнечный сбор с наименьшим количеством затенения.

Сборка

Параболический концентратор спроектирован для возможности сборки на земле с использованием механической системы подъема, что позволяет быстро и легко установить фермы, зеркальные сектора и крепления.

Области применения

Получение электроэнергии с помощью установок ORC (Organic Rankine Cycle).

Установки промышленного опреснения воды

Тепловую энергию для завода по опреснению воды может поставлять SolarBeam

В любой промышленности, где требуется много тепловой энергии для технологического цикла, таких как:

  • Пищевая (варка, стерилизация, получение спирта, мойка)
  • Химическая промышленность
  • Пластиковая (Нагрев, вытяжка, сепарация, …)
  • Текстильная (отбеливание, стирка, прессование, парообработка)
  • Нефтяная (возгонка, осветление нефтепродуктов)
  • И многое другое

Место установки

Подходящим местом для установки являются регионы, получающие не менее 2000 кВт*ч солнечного света на м2 в год (кВт*ч/м2/год). Наиболее перспективными производители считаю следующие регионы мира:

  • Регионы бывшего Советского Союза
  • Юго-Западный США
  • Центральная и Южная Америка
  • Северная и Южная Африка
  • Австралия
  • средиземноморские страны Европы
  • Средний Восток
  • Пустынные равнины Индии и Пакистане
  • Регионы Китая

Спецификация модели Solarbeam-7M

  • Пиковая мощность — 31,5кВт (при мощности 1000Вт/м2)
  • Степень концентрации энергии — более 1200 раз (пятно 18см)
  • Максимальная температура в фокусе — 800°С
  • Максимальная температура теплоносителя — 270°С
  • Эксплуатационная эффективность — 82%
  • Диаметр рефлектора — 7м
  • Площадь параболического зеркала — 38,5м2
  • Фокусное расстояние — 3,8м
  • Потребление электроэнергии сервомоторами — 48W+48W / 24В
  • Скорость ветра при работе — до 75км/ч (20м/с)
  • Скорость ветра (в безопасном режиме) — до 160 км/ч
  • Отслеживание солнца по азимуту — 360°
  • Отслеживание солнца по вертикали — 0 — 115°
  • Высота опоры — 3,5м
  • Вес отражателя — 476 кг
  • Общий вес -1083 кг
  • Размер абсорбера — 25,4 х 25,4 см
  • Площадь абсорбера -645 см2
  • Объем теплоносителя в абсорбере — 0,55 литра

Габаритные размеры рефлектора

Климат средней полосы России не балует ее жителей обилием прямого солнечного света. Абсолютно ясных солнечных дней в течении года бывает немного. В основном же как правило переменная облачность, когда солнце появляется на десяток – другой минут, а затем на это же время прячется за облаками и интенсивность солнечной тепловой энергии резко падает.

Все это крайне неблагоприятно сказывается на перспективах использования солнечной энергии для организации горячего водоснабжения на даче или в загородном доме. Солнечные коллекторы и водонагреватели традиционной конфигурации просто физически неспособны эффективно нагревать воду. Потому что они основаны на принципе непрерывной циркуляции воды из накопительного бака в солнечный коллектор и обратно. И небольшой по площади солнечный коллектор площадью в 1-2 кв. метра не способен быстро нагреть большой объем воды в несколько сот литров. Это легко доказывается простейшими расчетами.

Практически единственным выходом организовать действительно надежное горячее водоснабжение от солнечной энергии служит построение концентрирующего солнечного коллектора с малым объемом воды, нагреваемой в каждую единицу времени. Логика тут достаточно простая.

На каждый квадратный метр поверхности падает примерно 800-1000 Ватт солнечной энергии. Возьмем нижнее значение (с учетом отражения от самого солнечного коллектора, оно, увы не нулевое). Итак, теплотворность нашего «кипятильника» 800 Ватт (или 2900 КДж). Теплоемкость воды равна 4,2 Кдж/кг*град. Теперь вспомним, за какое время электрический чайник в 1,5 КВт мощности доводить те 1,5 литра воды, что в нем помещается, до кипения. За считанные минуты! А если заставить его кипятить бочку воды? Он ее только нагревать будет часа 3-4.

С другой стороны, нам не нужна целая бочка горячей воды и сразу. Нам в каждую минуту времени надо 2-3 литра всего. Умыться, посуду помыть… И напрашивается следующая схема нагревания воды. Относительно маломощным «чайником» мы быстро нагреваем 1-2 литра воды и сливаем ее в термос. Затем нагреваем следующую порцию и снова сливаем в термос и так далее. А для своих нужд мы используем ее из термоса. Т.е. делаем проточный водонагреватель с накоплением результата его работы. Такой он будет проточно-накопительный.

Такая схема значительно снижает требования по мощности собственно нагревателя и в тоже время позволит иметь достаточно большой запас горячей воды в несколько десятков литров.

Посудите сами, даже в течении 10-15 минут, когда светит солнце, мы получим около 200 Ватт-часов энергии от солнца. Это эквивалентно 720 КДж. Что позволит нагреть до 50-60 градусов примерно 4-5 литров воды (почти полведра, межлу прочим). В следующий «выход» солнца — еще 5 литров, потом еще. И так далее в течении всего дня.

Причем чем меньше будет емкость нашего нагревателя, тем эффективнее он будет использовать солнечную энергию. Он будет ухитряться выхватывать солнечное тепло даже если оно будет выскакивать всего на несколько минут! Как говорится, с паршивой овцы хоть шерсти клок. А уже если оно будет долгим, такой нагреватель превратится в кипятильник.

Сделать такой малоёмкий солнечный коллектор можно двумя способами. Первый — сделать очень плоский классический коллектор максимально большой площади. Например, толщиной в 1-2-3 см всего и площадью в 1-1,5 кв. метра. Но его емкость будет около 20-40 литров! Особо маленьким его не назвать. И что бы нагреть всю эту воду потребуется как минимум час солнца.

Второй вариант — сделать концентрирующий параболический солнечный коллектор примерно такой же площади и с емкостью 2-3 литра! Тогда вода в нем будет нагреваться всего за 5-8 минут! Всего полчаса солнца — и у нас целое ведро достаточно горячей воды! Более того, концентрирующий коллектор способен собирать и рассеянную солнечную энергию, когда лучи рассеиваются дымкой и облаками.

Теперь перейдем к конструкции. Многих пугает слово «параболический» и они думают, что сделать параболический концентратор сложно. На самом деле, сделать параболическое зеркало сможет даже школьник. К тому же концентрирующий коллектор гораздо проще даже в физическом плане. Не надо «заморачиваться» огромной и ломкой плоской «канистрой». Добиваться ее абсолютной герметичности, жесткости, обеспечивать минимальное гидродинамическое сопротивление и т.д. В параболическом солнечном водонагревателе – коллектор — простой плоский готовый металлический профиль или труба! Надо только сделать заглушки на торцы и врезать пару футорок для ввода – вывода воды. Вся остальная арматура и в в том и другом случае будет одинаковая. Само же параболическое зеркало делается из обыкновенной фанеры и оклеивается обычной бытовой фольгой для запекания. Коэффициент ее отражения ИК-лучей составляет 90-95 %!

Существует достаточно простой способ для построения параболы. На листе фанеры мы рисуем прямой угол. Затем, по одной стороне мы наносим отметки через 1 единицу измерения (например через 100 мм, на рисунке – это буквы). А по другой — через 2 единицы (т.е через 200 мм, на рисунке это цифры). Затем соединяем отметки линиями а1, б2, в3 и т.д. Образующиеся пересечения линий и дадут нам искомую параболу. Ее естественно надо сгладить при помощи лекала. И разумеется, это только половинка параболы, которая нам нужна. Вторая — зеркальное отражение.

Теперь, как может выглядеть концентрический параболический солнечный водонагреватель.

Ну примерно так.

Вода в коллектор – нагреватель поступает под небольшим давлением из напорного бака. А на выходе коллектора установлен клапан – термостат. Аналогичный по действию тому, что устанавливается в контурах охлаждения автомобилей. Т.е. он открывается тогда, когда вода нагревается до определенной температуры. Когда порция воды, находящаяся в коллекторе нагреется, термостат открывается и вода сливается в баки термосы. Как только вся горячая вода сольется и начнет идти прохладная вода, то термостат тут же закроется и коллектор начнет греть следующую порцию.

Что бы зря не пропадало место позади параболического зеркала, баки – термосы установлены в свободных нишах и тщательно теплоизолированы. Хотя, как понимаете, это всего лишь вариант их расположения. Их можно установить в любом удобном месте, но важно тщательно утеплить трубу, ведущую к ним от коллектора.

Вообще говоря, параболическое зеркало имеет не просто фокус, куда направляются все отраженные лучи, а так называемую фокальную плоскость. Потому что если лучи падают на параболическое зеркало не перпендикулярно, то и отражаться они будут не по центру параболы. Поэтому в устройствах с параболическими зеркалами делают гелиотрекеры, которые всегда поворачивают параболическое зеркало строго на солнце либо перемещают коллектор по фокальной плоскости (что на мой взгляд, проще).

В садово-дачных условиях это, к сожалению, серьезно усложняет конструкцию концентрирующего солнечного коллектора. Либо придется ставить какую то автоматику, либо самом периодически, вручную, разворачивать параболическое зеркало строго на солнце.

Определённым решением в этом случае может служить не горизонтальное, а вертикальное расположение параболического зеркала. Ведь солнце достаточно быстро перемещается по горизонтали, и очень медленно по вертикали. Поэтому, если сделать достаточно вытянутую параболу и расположить коллектор в ее фокальной плоскости, то несколько часов подряд на коллектор будет падать весь объем отраженной солнечной энергии. А регулировку по вертикали придется делать лишь раз в неделю-две, в зависимости от угла солнца над горизонтом.

Но конечно, самым эффективным решением будет изготовление гелиотрекера, поворачивающего параболическое зеркало непосредственно на солнце.

Внимание! Если вы будете реализовывать подобный проект, ни в коем случае не пробуйте температуру в зоне коллектора рукой, «на ощупь»!!! Температура в зоне нагрева достигает 200-300 градусов! Это все равно, что пробовать на ощупь спираль электроплитки. Во время моих экспериментов деревяшка, внесенная в зону нагрева бесшумно вспыхивала практически мгновенно. Довольно мистическое зрелище, кстати.

Константин Тимошенко

Задать свои вопросы и обсудить конструкцию вы можете на

Огромное количество свободной энергии солнца, воды и ветра и многого другого из того, что может дать природа, люди используют давно. Для кого-то это хобби, а кто-то не может выжить без приспособлений, которые могут извлекать энергию “из воздуха”. Например в африканских странах солнечные батареи давно стали спасительным спутником для людей, в засушливых деревнях внедряются системы орошения на солнечных батареях, устанавливаются “солнечные” насосы на колодцы и др.

В европейских странах солнце не светит столь ярко, но лето довольно жаркое, и очень жаль, когда дармовая энергия природы пропадает зря. Существуют удачные разработки печей на солнечной энергии, но в них используются цельные или сборные зеркала. Это во-первых дорого, во-вторых утяжеляет конструкцию и поэтому не всегда удобно в эксплуатации, например, когда требуется малый вес готового концентратора.
Интересную модель самодельного параболического солнечного концентратора создал талантливый изобретатель.
Для ее изготовления не нужны зеркала, поэтому она очень легкая и не будет тяжелым грузом в походе.


Для создания самодельного солнечного концентратора на основе пленки требуется совсем немного вещей. Все они продаются на любом вещевом рынке.
1. Самоклеющаяся зеркальная пленка. Она имеет ровную блестящую поверхность и поэтому является прекрасным материалом для зеркальной части солнечной печи.
2. Лист ДСП и такой же по размеру лист оргалита.
3. Тонкий шланг и герметик.

Как сделать солнечную печь?

Сначала из древесно-стружечной плиты нужного вам размера электролобзиком вырезаются два кольца, которые надо приклеить друг к другу. На фото и видео фигурирует одно кольцо, но автор указывает, что позднее он добавил второе кольцо. По его словам, можно было бы ограничиться одним, но пришлось увеличить пространство для формирования достаточной вогнутости параболического зеркала. В противном случае фокус луча будет располагаться слишком далеко. Под размер кольца вырезается круг из оргалита для формирования задней стенки солнечного концентратора.
Кольцо следует приклеить к оргалиту. Обязательно хорошо все промажьте герметиком. Конструкция должна быть полностью герметичной.
Сбоку аккуратно, чтобы были ровные края, проделайте небольшое отверстие, в которое плотно вставьте тонкий шланг. Для герметичности соединение шланга и кольца также можно обработать герметиком.
Поверх кольца натяните зеркальную пленку.
Откачайте воздух из корпуса установки и таким образом сформируйте сферическое зеркало. Шланг загните и зажмите прищепкой.
Сделайте удобную подставку для готового концентратора. Энергии данной установки достаточно, чтобы расплавить алюминиевую банку.

Внимание ! Параболические солнечные отражатели могут быть опасными и могут при неосторожном обращении привести к ожогам и повреждениям глаз!
Посмотрите процесс изготовления солнечной печки на видео.

Использован материал с сайта забацай.ру. Как сделать солнечную батарею – .

Очень давно хотелось изготовить солнечный параболический концентратор. Прочитав массу литературы по изготовлению формы для параболического зеркала, я остановился на простейшем варианте — спутниковой тарелке. Спутниковая тарелка имеет параболическую форму, которая собирает отраженные лучи в одной точке.

За основу присмотрел Харьковские тарелки «Вариант». По приемлимой для меня цене мог приобрести только 90 сантиметровое изделие. Но цель моего опыта — высокая температура в фокусе. Для достижения хороших результатов необходима площадь зеркала — чем больше, тем лучше. Поэтому тарелка должна быть 1,5м, а лучше 2м. В ассортименте Харьковского производителя есть данные размеры, однако изготовлены они из алюминия, и соответственно цены заоблачные. Пришлось нырнуть в интернет, в поисках б/у изделия. И вот в Одессе, строители разбирая какой-то объект, предложили мне спутниковую тарелку размерами 1,36м х 1,2м., изготовленную из пластика. Немного не дотягивала до моих пожеланий, однако цена была хорошей, и я заказал одну тарелку.

Получив через пару дней тарелку, обнаружил, что изготовлена она в США, имеет мощные ребра жесткости (я переживал, достаточно ли крепкий корпус, и не поведет ли его после наклейки зеркал), и крепкий механизм ориентирования с множеством настроек.

Также приобрел зеркала, толщиной 3мм. Заказал 2 кв.м. — немного с запасом. Зеркала продаются в основном толщиной 4 мм., нашел троечку, чтобы легче было нарезать. Размер зеркал для концентратора решил сделать 2 х 2 см.

После сбора основных комплектующих приступил к изготовлению подставки для концентратора. Нашлось несколько уголков, кусочков труб и профильков. Нарезав по размерам, сварил, зачистил и покрасил. Вот что получилось:

Итак, изготовив подставку, принимаюсь за нарезку зеркал. Зеркала получил размерами 500 х 500 мм. Первым делом разрезал пополам, а потом сеткой 2 х 2 см. Перепробовал кучу стеклорезов, однако сейчас найти в магазинах, хоть что-то толковое, не представляется возможным. Новый стеклорез режет идеально 5-10 раз, и все…. После этого можно сразу выкидывать. Возможно есть какие-то профессиональные, но покупать их надо не в строительных магазинах. Поэтому, если кто-то соберется сделать концентратор из зеркал, вопрос о порезке зеркал самый трудный!

Зеркала нарезаны, тренога готова, приступаю к поклейке зеркал! Процесс долгий и нудный. У меня количество зеркал на готовом концентраторе получилось 2480 штук. Клей выбрал неправильный. Купил специальный клей для зеркал — держит хорошо, но он густой. При наклейке, выдавливая капельку на зеркало и прижимая потом к стенке тарелки, есть вероятность неравномерно прижать зеркало(где-то сильнее, где-то слабее). От этого зеркало может быть приклеено не плотно, т.е. будет направлять свой лучик солнца не в фокус, а около него. А если фокус будет размыт — высоких результатов ждать нечего. Забегая вперед, скажу, что у меня фокус получился размытым (из чего делаю вывод о том, что необходимо было применить другой клей). Хоть и результаты опыта порадовали, но фокус был размером приблизительно около 10 см, а вокруг еще размытое пятно еще по 3-5 см. Чем меньше фокус, тем точнее фокусировка лучей, тем соответственно будет выше температура. На поклейку зеркал у меня ушло почти 3 полных дня. Площадь нарезанных зеркал составила около 1,5кв.м. Был брак, вначале, пока не приспособился — много, позже существенно меньше. Бракованные зеркала составили, наверное, не более 5 %.

Солнечный параболический концентратор готов.

При замерах, максимальная температура в фокусе концентратора составила не менее 616,5 градусов. Солнечные лучи помогли поджечь деревянную доску, расплавить олово, свинцовый грузик и алюминиевую пивную банку. Эксперимент я проводил 25 августа 2015 года в Харьковской области, пгт.Новая Водолага.

В планах на следующий год (а может быть получится и в зимний период) приспособить концентратор для практических потребностей. Возможно для нагрева воды, возможно для выработки электроэнергии.

В любом случае, всем нам природа дала мощнейший источник энергии, надо только научиться им пользоваться. Энергия солнца в тысячи раз перекрывает все потребности человечества. И если человек сможет взять хотя-бы малую часть этой энергии, то это будет величайшим достижением нашей цивилизации, благодаря которому мы сохраним нашу планету.

Ниже представлен ролик, в котором вы увидите процесс изготовления солнечного концентратора на основе спутниковой тарелки, и опыты, которые с помощью концентратора получилось сделать.

Концентрация солнечной энергии | SEIA

Концентрирующие солнечные электростанции (CSP) используют зеркала для концентрации солнечной энергии для приведения в действие традиционных паровых турбин или двигателей, вырабатывающих электричество. Тепловая энергия, сконцентрированная на заводе CSP, может храниться и использоваться для производства электроэнергии, когда это необходимо, днем ​​или ночью. Сегодня в Соединенных Штатах работает около 1815 мегаватт ( МВт а.ч. ) установок CSP.

Параболический желоб
В системах с параболическими желобами

используются изогнутые зеркала для фокусировки солнечной энергии на трубку-приемник, которая проходит по центру желоба.В приемной трубке высокотемпературный теплоноситель (например, синтетическое масло) поглощает солнечную энергию, достигая температуры 750°F или выше, и проходит через теплообменник для нагрева воды и производства пара. Пар приводит в действие обычную энергосистему с паровой турбиной для выработки электроэнергии. Типичное поле солнечного коллектора содержит сотни параллельных рядов желобов, соединенных в виде серии петель, которые расположены на оси север-юг, чтобы желоба могли отслеживать движение солнца с востока на запад.Отдельные коллекторные модули обычно имеют высоту 15-20 футов и длину 300-450 футов.

Компактный линейный рефлектор Френеля

CLFR использует принципы желобных систем с изогнутыми зеркалами, но с длинными параллельными рядами недорогих плоских зеркал. Эти модульные отражатели направляют солнечную энергию на приподнятые приемники, состоящие из системы трубок, по которым течет вода. Концентрированный солнечный свет кипятит воду, генерируя пар высокого давления для непосредственного использования в производстве электроэнергии и промышленных паровых установках.

Силовая башня
В системах Power Tower

используется система центрального ресивера, которая обеспечивает более высокие рабочие температуры и, следовательно, большую эффективность. Управляемые компьютером зеркала (называемые гелиостатами) отслеживают движение солнца по двум осям и фокусируют солнечную энергию на приемнике на вершине высокой башни. Сосредоточенная энергия используется для нагрева транспортной жидкости (более 1000 ° F) для производства пара и запуска центрального электрогенератора. Аккумуляторы энергии могут быть легко и эффективно включены в эти проекты, что позволяет производить электроэнергию 24 часа в сутки.

Блюдо-двигатель

Зеркала распределены по поверхности параболической тарелки, чтобы сконцентрировать солнечный свет на приемнике, закрепленном в фокусе. В отличие от других технологий CSP, которые используют пар для выработки электроэнергии с помощью турбины, в системе тарельчатого двигателя используется рабочая жидкость, такая как водород, который нагревается до 1200 ° F в ресивере для привода двигателя. Каждая тарелка вращается по двум осям, чтобы отслеживать движение солнца.

Основные требования к концентрирующим солнечным электростанциям
  • Финансирование. Основной проблемой для любого предприятия по производству энергии коммунального масштаба, включая CSP, является финансирование проекта.

  • Области с высокой солнечной радиацией. Чтобы сконцентрировать солнечную энергию, она не должна быть слишком рассеянной. Это измеряется прямой нормальной интенсивностью (DNI) солнечной энергии. Производственный потенциал на юго-западе США стоит особняком от остальной части США, как показано на карте Национальной лаборатории возобновляемых источников энергии ниже.

  • Примыкающие участки земли с ограниченным облачным покровом. Станция CSP работает наиболее эффективно и, следовательно, наиболее рентабельно, когда построена мощностью 100 МВт и выше.В то время как потребности в земле будут варьироваться в зависимости от технологии, типичному заводу CSP требуется от 5 до 10 акров земли на каждый МВт мощности. Большая площадь вмещает аккумулирование тепловой энергии.

  • Доступ к водным ресурсам. Как и для других тепловых электростанций, таких как природный газ, уголь и атомная энергия, большинству систем CSP требуется доступ к воде для охлаждения. Все они требуют небольшого количества воды для мытья коллекционных и зеркальных поверхностей. Установки CSP могут использовать влажные, сухие и гибридные методы охлаждения, чтобы максимизировать эффективность производства электроэнергии и экономии воды.

  • Доступный и ближайший доступ к линиям электропередач – станции CSP должны располагаться на земле, подходящей для выработки электроэнергии, с адекватным доступом к все более нагруженной и устаревшей сети электропередачи. Доступ к высоковольтным линиям электропередачи имеет ключевое значение для разработки проектов солнечной энергетики коммунального масштаба для передачи электроэнергии от солнечной электростанции к конечным пользователям. Большая часть существующей инфраструктуры передачи на юго-западе работает на полную мощность, и срочно требуется новая линия передачи.

заводов CSP в США

Для получения дополнительной информации посетите страницу проектов NREL по концентрации солнечной энергии.

Солнечная электрогенерирующая система Ivanpah (Brightsource Energy/NRG Energy, Inc.)

Расположенный на 3500 акрах федеральной земли в пустыне Мохаве в Калифорнии, объект Ivanpah представляет собой солнечную электростанцию ​​мощностью 392 мегаватта, состоящую из 173 500 гелиостатов и трех силовых башен, способных обеспечить чистой, устойчивой электроэнергией более 100 000 американских домов.Проект Ivanpah, разработанный в рамках партнерства между BrightSource Energy, NRG Energy и Google и построенный Bechtel, позволил создать более 1000 рабочих мест с момента начала строительства в октябре 2010 года.

Mojave Solar One (Abengoa Solar, Inc.)

Расположенная на площади 1765 акров примерно в 100 милях к северо-востоку от Лос-Анджелеса, электростанция с параболическим желобом мощностью 280 мегаватт будет способна обеспечивать электроэнергией примерно 90 000 американских домохозяйств. Разработано компанией Abengoa Solar Inc., проект Mohave создал около 830 рабочих мест в США, и после завершения он будет продолжать нанимать 70 человек.

Солана (Абенгоа Солар, Инк.)

На электростанции Solana с параболическими желобами мощностью 250 мегаватт возле Гила-Бенд, штат Аризона, используются технологии накопления тепла, и она обеспечивает чистой и надежной электроэнергией более 97 000 клиентов коммунальных служб Аризоны. Проект, разработанный Abengoa Solar, позволил создать 1700 рабочих мест в строительстве и был введен в эксплуатацию в октябре 2013 года.

Дюны Полумесяца (SolarReserve, LLC)

Проект Crescent Dunes недалеко от Тонопа, штат Невада, представляет собой солнечную электростанцию ​​мощностью 110 мегаватт с 10-часовым запасом энергии при полной нагрузке, которая позволяет производить энергию по требованию днем ​​​​и ночью.Это первая в стране промышленная электростанция на расплавленной соли с накопителем энергии, не требующая резервного питания природным газом. С 640-футовой силовой башней и 10 347 гелиостатами проект Crescent Dunes питает 75 000 американских домов. Этот проект площадью 1600 акров, разработанный SolarReserve и построенный ACS Cobra, создал около 4300 прямых, косвенных и индуцированных рабочих мест.

Genesis Solar (NextEra Energy Sources, LLC)

Расположенный в Блайт, штат Калифорния, проект солнечной энергетики Genesis представляет собой солнечную электростанцию ​​мощностью 250 мегаватт, которая состоит из более чем 600 000 параболических зеркал на 1800 акрах.Станция способна обеспечить электроэнергией около 88 000 американских домов. Разработанный NextEra Energy Sources в сотрудничестве с Sener и Fluor, проект был введен в эксплуатацию в апреле 2014 года и создал 800 рабочих мест в строительстве.

Система производства солнечной энергии (NextEra Energy Sources, LLC)

Обладая общей мощностью 354 мегаватта из трех отдельных мест в Харпет-Лейк, Крамер-Джанкшен и Даггет в Калифорнии, электростанции SEGS обеспечивают чистой и устойчивой электроэнергией 232 500 американских домов.

Невада Солнечная Один (Acciona)

В сотрудничестве с Nevada Power Company и Sierra Pacific Resources проект Nevada Solar One охватывает 400 акров и имеет мощность 64 МВт. Завод состоит из более чем 182 000 зеркал и имеет 760 параболических концентраторов. Было создано более 800 рабочих мест в строительстве, и в настоящее время на постоянной основе работает более 30 человек. Каждый год Nevada Solar One производит достаточно электроэнергии для питания 14 000 домов в Неваде.

Кимберлинская солнечная тепловая электростанция (Арева)

Расположенный в Бейкерсфилде, штат Калифорния, завод Kimberlina, ранее принадлежавший и управляемый Ausra, теперь работает под управлением AREVA Solar.Этот проект площадью 10 акров мощностью 5 МВт является вторым в своем роде, завершенным в Калифорнии, причем первый был введен в эксплуатацию двадцатью годами ранее.

Sierra SunTower (eSolar)

В процессе строительства Sierra SunTower в Ланкастере, штат Калифорния, от начала до конца, компания eSolar создала более 250 рабочих мест в строительстве и в настоящее время предоставляет 6 постоянных рабочих мест с полной занятостью. SunTower мощностью 5 МВт ежегодно питает более 4000 домов в Калифорнии и компенсирует более 7000 тонн CO2.

Центр солнечной энергии Мартина нового поколения (FL Power & Light)

Занимая 500 акров и используя более 190 000 зеркал, Центр солнечной энергии Martin NextGen в Индиантауне, штат Флорида, имеет генерирующую мощность 75 МВт. Этот объект является первым в мире когенерационным заводом, работающим на солнечной энергии и природном газе. 155 000 МВт-ч ежегодно могут обеспечить электроэнергией более 11 000 домов.

Гибридный проект солнечной геотермальной энергии Стилуотер (Enel Green Power)

Будучи первым солнечным проектом Enel Green Power, электростанция Стилуотер использует 240 акров и более 89 000 поликремниевых фотоэлектрических панелей для обеспечения солнечной энергии этой когенерационной установки.Эта первая в своем роде комбинированная солнечная и геотермальная электростанция, способная производить 2 МВт только на солнечной энергии, имеет общую мощность 26 МВт. Расположенный в Фэллоне, штат Невада, объект Enel Green Power вырабатывает достаточно энергии для питания 15 000 домов.

Концентрированная солнечная энергия с параболическим желобом

Параболический желоб работает с эффективностью около 75% и на площади 495 квадратных футов может собрать около 270 кВтч / 10 часов в ясный день.

Solar Parabolic Trough использует зеркальные поверхности, изогнутые в виде линейно вытянутой параболической формы.Приемная трубка, проходящая в центре и по всей длине желоба, является точкой фокусировки, в которой солнце генерирует солнечную энергию. Вода прокачивается через приемную трубу и нагревается при прохождении через приемную трубу.

Параболический солнечный желоб имеет механический поворотный привод с электронным трекером, который использует математический алгоритм для отслеживания солнца. Трекер ориентирован с севера на юг и отслеживает солнце с востока на запад. Наши параболические желобные солнечные коллекторы могут собирать солнечную энергию до 10 часов в день по сравнению с 6-часовым рабочим днем ​​с обычными плоскими коллекторами.На изображении выше показан участок нашего параболического солнечного желоба площадью 61,87 кв. фута. Несколько секций могут быть объединены вместе для создания большого параболического солнечного водонагревателя/системы парового отопления/нагревателя на солнечной энергии. Восемь секций составляют солнечный параболический желоб площадью 495 кв. футов.

В более сложной конфигурации наш параболический солнечный желоб можно использовать для производства пара более высокого давления. В результате можно привести в действие тепловую машину (паровую машину или турбину) для выработки электроэнергии или непосредственно в механический привод.

Эффективность

Параболический солнечный желоб работает с эффективностью около 75% и на площади 495 квадратных футов может собирать около 270 кВтч / 10 часов в ясный день.

Эта солнечная энергия может быть использована для выполнения такой работы, как нагрев воды до более высоких температур 212°F (100°C), убивая все бактерии в воде, делая воду пригодной для питья. Во многих странах третьего мира безопасная чистая питьевая вода является проблемой. (Примечание) эта система не удаляет химические вещества из воды.Если вода имеет тяжелые осадки, следует использовать фильтр отложений в сочетании с нашим параболическим водонагревателем / парогенератором.

Солнечная ванна также создает пар, который можно использовать для приготовления пищи в большой скороварке. Приготовление на пару занимает в 1/3 раза меньше времени, чем обычное приготовление. Пар также можно использовать в процессе консервирования для сообщества.

Во время сбора урожая большая часть урожая на полях портится. Параболический солнечный водонагреватель желоба можно использовать для стерилизации банок, бланширования фруктов или овощей, а затем использовать пар с температурой 240 ° F — 15 фунтов на квадратный дюйм для процесса консервирования.

Характеристики
  • Параболический солнечный желоб создает солнечную энергию / солнечную горячую воду / паровую плиту / давление парового двигателя
  • Этот солнечный желоб отслеживает солнце с помощью математического алгоритма и не отгоняет тени от облаков.
  • Прочный, легкий и прочный. В запатентованных параболических отражателях используются новейшие технологии. В процессе изготовления наших параболических желобов используется точность ЧПУ. Параболический желоб, изготовленный с высокой точностью, может фокусировать больше солнечного света на трубчатом коллекторе приемника, что приводит к выработке большего количества солнечной энергии.
  • Солнечные корыта легко собираются, и на сборку уходят 2 человека примерно за 1 неделю.
  • Сделано в США.
  • Запатентованная новая технология, позволяющая сделать параболическую солнечную батарею более надежной, менее дорогой и более точной.

Нажмите здесь, чтобы перейти по ссылке на видео YouTube.

Кипяченая питьевая вода

Кипячение воды — самый верный способ убить все микроорганизмы. По данным Медицинского общества дикой природы. Температура воды 160° F (70° C) убивает все патогены в течение 30 минут.Температура воды выше 185 ° F (85 ° C) убивает все патогены в течение нескольких минут. Таким образом, за время, необходимое для того, чтобы вода достигла точки кипения (212 ° F или 100 ° C), все патогены будут уничтожены, даже на большой высоте. В тот момент, когда ваша питьевая вода закипает, вода уже становится безопасной для питья.

Вопросы и ответы по кипячению питьевой воды.

Сколько минут нужно кипятить воду, чтобы ее можно было пить

  • 30 минут при 160°F или 70°C
  • 3 минуты при 185°F или 85°C
  • Мгновенно при 212°F или 100°C

ПРИМЕЧАНИЕ: Предостережения относительно безопасного времени кипячения воды: Кипячение воды НЕ удалит химические токсины, которые могут присутствовать.Очень грязную воду следует сначала профильтровать с помощью ткани или другого материала для удаления отложений и/или дать постоять некоторое время, чтобы отложения осели, а затем вылить сверху более чистую воду.

Новое изобретение для повышения энергоэффективности систем солнечных коллекторов с параболическими желобами

Исследователь из Sandia Рич Дайвер настраивает разработанное им устройство для калибровки желобчатых солнечных коллекторов, чтобы максимизировать количество солнечного света, которое они захватывают.(Фото Рэнди Монтойя)

Устройство для измерения выравнивания зеркал, изобретенное Ричем Дайвером, исследователем из Sandia National Laboratories, может вскоре сделать одну из самых популярных систем солнечных коллекторов, параболические желоба, более доступной и энергоэффективной.

Новая теоретическая технология фотографического наложения (TOP)

Diver привлекает интерес со стороны солнечной промышленности из-за ее простоты и необходимости поиска решений для глобального потепления.

«Выравнивание TOP может решить серьезную проблему с желобными системами — неточное выравнивание зеркал, которое не позволяет солнечному свету точно фокусироваться на солнечных приемниках», — говорит Дайвер. «Неправильно выровненные зеркала приводят к потере и трате энергии».

ПОЛЯ МОДУЛЕЙ ПАРАБОЛИЧЕСКОГО ЖЕЛОБА простираются до горизонта пустыни Мохаве недалеко от Барстоу, Калифорния. Изобретение Рича Дайвера можно использовать для лучшего выравнивания зеркал и сделать систему силовой установки желоба более доступной и эффективной.

Вместе с Дайвером над проектом работает Тим ​​Мосс, который является менеджером проекта и основным разработчиком программного и аппаратного обеспечения.

Параболические желоба используют зеркальные поверхности, изогнутые в параболической форме. Зеркала фокусируют солнечный свет на приемной трубке, проходящей по всей длине желоба. Нефть проходит через фокальную область, где она нагревается до высоких температур, а затем проходит через теплообменник для получения пара. Затем пар используется для работы обычной электростанции.

Крупнейшие в мире сооружения с параболическими желобами, расположенные в пустыне Мохаве недалеко от Барстоу, Калифорния., состоящая из девяти электростанций, производящих 354 мегаватта электроэнергии в пиковом режиме. Мощность станций варьируется от 14 до 80 МВт. Например, станции мощностью 30 МВт возле Крамер-Джанкшен имеют около 10 000 модулей, каждый из которых состоит из 20 зеркал. Ожидается, что в ближайшее время будет введена в эксплуатацию автономная электростанция мощностью 64 МВт, которая будет снабжать электроэнергией Лас-Вегас, штат Невада. Завод мощностью 1 МВт также существует в Аризоне.

Проблема с системами параболических желобов, по словам Дайвера, заключалась в отсутствии точного выравнивания зеркал, что препятствует максимальной энергоэффективности.

Заимствуя вариации методов, используемых для выравнивания зеркал в системах солнечных тарелок, Diver разработал выравнивание TOP, оптический подход для быстрой и эффективной оценки выравнивания зеркал в электростанциях с параболическими желобами и предписания корректирующих действий.

«Этот метод можно использовать при строительстве электростанций для повышения производительности существующих электростанций или для текущего обслуживания», — говорит Дайвер. «Это должна быть идеальная техника выравнивания зеркала, потому что она проста в настройке, требует минимум сложного оборудования и не требует снятия приемника.»

Подход TOP состоит из столба с пятью камерами, расположенными вдоль него. Четыре камеры делают цифровые фотоизображения четырех рядов зеркал параболического модуля. Средняя камера фотографирует центр модуля, к которому прикреплен измеритель оси визирования, который используется для вертикального центрирования или «визирования» шеста по отношению к модулю желоба.

Векторная алгебра и теория проекций затем используются для предсказания теоретического проецируемого изображения приемника для идеально выровненных зеркал.Расчетное теоретическое изображение приемника для идеально совмещенных зеркал накладывается на фотографии фактического положения изображения приемника в зеркалах. Изображения и фактическое изображение сравниваются, чтобы показать, как должны быть выровнены зеркала. Затем нужно настроить зеркала на правильное выравнивание.

«Весь этот процесс очень прост, — говорит Дайвер. «Как только зеркала выровнены, начинается экономия энергии. Это похоже на сбор денег с земли. И зеркала выровнены на весь срок службы завода.»

Для удовлетворения потребностей промышленных электростанций с желобами, таких как станции Kramer Junction, Калифорния, компания Diver and Moss установила приспособление TOP на прицеп, запряженный правительственным фургоном, который можно безопасно перемещать по шоссе к параболическим электростанциям. Камеры будут фотографировать модули на разных заводах. Изображения будут обработаны позже, и будут созданы рабочие задания с подробным описанием регулировки выравнивания. Регулировка центровки может быть произведена в удобное время, даже во время работы установки.

Diver говорит, что люди пытались придумать способы юстировки зеркал в параболических модулях не менее 20 лет, но их методы всегда были «громоздкими и занимали слишком много времени».

Он и Мосс разработали метод TOP, используя параболический модуль 20-летней давности, расположенный в Национальном испытательном центре солнечного теплового излучения Sandia в Альбукерке. Модуль такой же, как и в Kramer Junction. Они провели «вымогательные» испытания TOP на заводе по производству желобов за пределами Тусона, штат Аризона., в марте и октябре 2006 года. Следующими шагами будут испытания системы в Kramer Junction в конце этого года и, в конечном итоге, лицензирование технологии для параболических ринвовских электростанций и/или разработчиков проектов.

Источник: Sandia National Laboratories.


Солнечные платформы длиной в сто метров, которые остаются устойчивыми и стабильными в бурную морскую погоду

Цитата : Новое изобретение, позволяющее сделать системы солнечных коллекторов с параболическими желобами более энергоэффективными (15 мая 2007 г.) получено 29 марта 2022 г. с https://физ.org/news/2007-05-parabolic-trough-solar-collector-energy.html

Этот документ защищен авторским правом. Помимо любой добросовестной сделки с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в ознакомительных целях.

Использование параболических зеркал для концентрации солнечных лучей на фотогальванических коллекторах снижает стоимость в Израиле

В настоящее время Израиль потребляет 60 миллиардов киловатт-часов электроэнергии в год, и Faiman ожидает, что к 2020 году этот показатель вырастет до 80 миллиардов киловатт-часов в год.Для достижения этой цели необходимо резко увеличить скорость установки солнечных батарей.

Faiman называет этот подход с изогнутым зеркалом «комбинированным производством тепла и электроэнергии» или ТЭЦ. Он предотвращает возгорание коллекторной пластины, пропуская через нее воду, которая поставляет всю горячую воду для кибуца, и позволяет коллектору работать с эффективностью 70%, а не в среднем от 10 до 15% для традиционных фотоэлектрических панелей. Мое предположение состоит в том, что это число в 70% достигается за счет подсчета генерации на квадратный дюйм только коллектора, а не всего массива зеркал.

Профессор Дэвид Файман перед своими солнечными панелями в Национальном парке Бокер в Сиде. Фото: Элиягу Гершковитц

Хотя собирающие поверхности должны быть большими, чтобы уловить как можно больше солнечных лучей, Фейман понял, что «пластинки», которые преобразуют эти солнечные лучи в электричество, не обязательно должны быть такими. Изгибая панель в параболическую тарелку и перефокусируя все солнечные лучи на небольшой приемник, составляющий лишь одну тысячную размера тарелки, модель Файмана минимизирует размер самого экономически и экологически дорогого компонента панели.

Обычно сосредоточение такого большого количества солнечной энергии на такой небольшой площади приводит к сжиганию солнечного преобразователя, что делает его бесполезным. Но Фейман натолкнулся на другую идею, чтобы превратить этот недостаток в преимущество. За счет протекания воды или другой жидкости над солнечным преобразователем излучаемые поверхности охлаждаются до приемлемого уровня. Тепловая энергия, поглощаемая этой жидкостью, затем передается воде, хранящейся в больших резервуарах, что делает ненужным использование электричества или сжигание ископаемого топлива для нагрева проточной воды.

Что наиболее важно для большинства людей, панели ТЭЦ вскоре смогут производить энергию наравне с традиционными источниками энергии, говорит Сегев (партнер Faiman). от 500 до 1000 единиц в месяц — они будут генерировать энергию менее чем на 10 центов США за киловатт-час».

Теперь, если мы сможем заставить весь мир искупить нашу зависимость от ископаемого топлива, которое выбрасывает огромное количество загрязнений в нашу атмосферу, включая CO2, что вызывает глобальное потепление, мир станет намного лучше для наших детей и внуков.

Давайте не будем повторять ошибок прошлого.

И, для наших еврейских читателей, Г’мар Хатима Това

18:06 PT : Джо Бак сказал мне, что этот подход с параболическим зеркалом использовался раньше, поэтому слово «прорыв» может быть немного чрезмерным. Я уже изменил это из «революции» в статье Haaretz. Извиняюсь. Я постараюсь быть более осторожным писателем в следующем году. В прошлом году я работал над проверкой орфографии, и вы должны признать, что я добился прогресса, по крайней мере, в постах, если не в комментариях.Ваше здоровье.

21:17 PT : У меня было открыто несколько окон этой статьи в моем новом браузере FireFox, поэтому, когда я недавно исправил орфографию, обновление снова ввело ошибки, которые я исправил в первой версии. Извиняюсь.

Цилиндрическое параболическое зеркало в качестве рефлектора для солнечных коллекторов. Эффективность и оптимизация

PDF-версия также доступна для скачивания.

ВОЗ

Люди и организации, связанные либо с созданием этого отчета, либо с его содержанием.

какой

Описательная информация, помогающая идентифицировать этот отчет.Перейдите по ссылкам ниже, чтобы найти похожие элементы в электронной библиотеке.

Когда

Даты и периоды времени, связанные с этим отчетом.

Статистика использования

Когда последний раз использовался этот отчет?

Взаимодействие с этим отчетом

Вот несколько советов, что делать дальше.

PDF-версия также доступна для скачивания.

Цитаты, права, повторное использование

Международная структура взаимодействия изображений

Распечатать / поделиться


Печать
Электронная почта
Твиттер
Фейсбук
Тамблер
Реддит

Ссылки для роботов

Полезные ссылки в машиночитаемом формате.

Архивный ресурсный ключ (ARK)

Международная структура взаимодействия изображений (IIIF)

Форматы метаданных

Картинки

URL-адреса

Статистика

Кене, Р.Цилиндрическое параболическое зеркало как отражатель для солнечных коллекторов. Эффективность и оптимизация, отчет, 27 октября 1976 г .; Соединенные Штаты. (https://digital.library.unt.edu/ark:/67531/metadc1414341/: по состоянию на 29 марта 2022 г.), Библиотеки Университета Северного Техаса, цифровая библиотека ЕНТ, https://digital.library.unt.edu; зачисление отдела государственных документов библиотек ЕНТ.

Parabolic Trough Solar Collectors (Полное руководство)

Этот веб-сайт содержит партнерские ссылки, мы можем получать небольшую комиссию за рекомендацию определенных продуктов.Мы очень ценим вашу поддержку!

являются наиболее зрелой технологией CSP и одной из самых перспективных доступных технологий концентрации солнечной энергии.

В этом руководстве рассматриваются основы параболических желобных солнечных коллекторов, их преимущества и недостатки, а также принципы их работы. Он также проанализирует их дизайн, технологические аспекты и области применения.

Что такое солнечный коллектор с параболическим желобом?

Солнечные коллекторы с параболическим желобом представляют собой изогнутые зеркала, фокусирующие солнечный свет на трубу, заполненную жидкостью.

Жидкость нагревается до высоких температур, в результате чего образуется пар для питания турбины и выработки электроэнергии. Солнечные коллекторы с параболическим желобом часто используются для выработки электроэнергии на крупных солнечных электростанциях.

Солнечные коллекторы с параболическим желобом являются наиболее распространенным типом солнечных тепловых коллекторов, поскольку они предлагают массу преимуществ.

Желобообразная форма коллектора позволяет улавливать большую площадь солнечного излучения, чем плоская панель. Параболическая форма также фокусирует излучение на небольшой площади, что увеличивает теплопередачу и позволяет лучше использовать солнечную энергию.

Стеклянный отражатель вокруг желоба помогает направлять больше солнечного света на поглотитель, а также защищает поглотитель от непогоды.

Конструкция солнечного коллектора с параболическим желобом

Солнечные коллекторы с параболическим желобом состоят из изогнутого зеркала, отражающего солнечный свет на трубку, заполненную жидкостью.

Жидкость нагревается солнцем и затем используется для нагрева воды или другой жидкости для производства пара. Затем этот пар можно использовать для выработки электроэнергии или обогрева зданий.

Поглотитель/приемник

Приемник представляет собой компонент, ориентированный в центре тарелки солнечного отражателя для отражения и концентрации солнечного излучения. Размер приемника должен быть оптимизирован, чтобы свести к минимуму эффект затенения.

Чтобы уменьшить массу, необходимую для слежения за солнцем, следует также оптимизировать массу приемника. Наконец, приемник также должен быть подключен к системе слежения, чтобы следить за солнцем вместе с тарелкой.

Параболический тарельчатый отражатель

Параболический тарельчатый отражатель является основным конструктивным элементом параболического тарельчатого коллектора.

Когда дело доходит до тарелки рефлектора, расположение имеет решающее значение. Прежде всего, тарелки могут быть расположены непрерывно или отдельными элементами (зеркалами), чтобы принять форму параболы.

Также важно, чтобы параболические тарелки располагались как можно ближе к:

  • Уменьшению столкновений и защите зеркал
  • Защите коллекторов
  • Минимизации трубопровода теплоносителя
  • Сокращению обслуживания
  • Уменьшению паразитной производительности насоса 9

Тарелка солнечного отражателя должна быть установлена ​​на двухосном солнечном трекере так, чтобы он всегда был ориентирован на солнце.

Как упоминалось выше, основная роль зеркал в солнечном коллекторе с параболическим желобом состоит в том, чтобы отражать солнечное излучение и фокусировать его на приемнике.

Зеркала состоят из отражающих слоев и защитных слоев, защищающих отражающие слои от истирания и коррозии.

Существует 3 основных типа зеркал, используемых в солнечных коллекторах с параболическим желобом:

Зеркало из посеребренного стекла

Серебрение на задней стороне зеркала помогает отражать больше света, что делает его лучшим типом зеркал для использования в PTSC. потому что он отражает больше всего света.

Зеркала из посеребренного стекла также менее склонны к потускнению со временем, а значит, они дольше будут выглядеть блестящими и новыми.

Отражатели из анодированного листового алюминия

Анодированный листовой алюминий также является хорошим выбором для отражения излучения, поскольку он дешевле, чем другие типы отражателей.

Кроме того, отражатели из анодированного листового алюминия обладают относительно высокой отражательной способностью, а также являются прочными и долговечными, что делает их эффективным выбором для солнечных тепловых установок.

Рефлекторы из посеребренного полимера

Рефлекторы из посеребренного полимера состоят из нескольких слоев полимеров с внутренним слоем из чистого серебра.

Посеребренные полимерные отражатели могут отражать до 95 % падающего на них света, что означает повышенную эффективность. Другая хорошая сторона посеребренных полимеров заключается в том, что они легко и легко доступны.

Система слежения за отражателем

Система слежения за солнцем представляет собой устройство, которое ориентирует солнечный параболический лотковый коллектор по направлению к солнцу.Это повышает эффективность коллектора, удерживая коллектор на пути солнца и подвергая его воздействию максимально возможного количества солнечного света.

Солнечные системы слежения могут быть активными (моторизованными) или пассивными.

Активные системы используют двигатель (электронное преобразование сигнала) для вращения коллектора. Существует два основных типа активных трекеров: с обратной связью и без обратной связи.

Трекеры с замкнутым контуром более распространены и представляют собой набор двигателей и датчиков, которые удерживают зеркала на одной линии с солнцем.Трекеры с разомкнутым контуром полагаются на обратную связь от солнца для поддержания выравнивания.

Пассивные системы полагаются на движение солнца (эффект термосифона) для вращения коллектора.

Пассивные трекеры не имеют моторов, шестерен и других движущихся частей. Они полагаются на естественное направление ветра, чтобы вращать турбину и вырабатывать электроэнергию.

Этот тип трекера обычно дешевле, чем активный трекер, но он не так эффективен для использования в солнечных коллекторах с параболическими желобами.

Опорная конструкция

Опорная конструкция солнечного коллектора с параболическим желобом состоит из трех частей:

  • Основная опора
  • Рама
  • Кронштейны приемника

коллектор на землю.Эта основная несущая конструкция состоит из стальных или алюминиевых труб, сваренных вместе в виде металлического стержня. Металлический стержень затем прикручивается к земле.

Каркас представляет собой металлическую сетку, к которой крепятся зеркала. Они помогают поддерживать жесткость и параболическую форму системы. Этот компонент также действует как канал для передачи крутящего момента от системы слежения к системе коллектора.

Кронштейны приемника представляют собой металлические кронштейны, которые крепятся к зеркалам отражателей и удерживают их на месте.

Для уменьшения потерь между ресивером, расположенным в центре параболического желоба, и удерживающим его кронштейном между ними используется изоляционный материал.

Как правило, в несущей конструкции размещаются компоненты параболического коллектора, система слежения и приводной двигатель. Это помогает в выравнивании солнечного отражателя с солнцем.

По этим причинам он должен быть достаточно прочным, чтобы удерживать все компоненты системы независимо от погодных условий.

Рабочая жидкость/рабочий газ

Рабочий газ параболического желобного солнечного коллектора представляет собой жидкость, протекающую через коллектор и поглощающую солнечное тепло.

Рабочий газ в трубке нагревается солнцем и поступает в теплообменник, где передает свое тепло воде, которая затем используется для выработки электроэнергии.

Наиболее распространенными рабочими жидкостями для параболических желобных солнечных коллекторов являются вода и воздух, но могут использоваться и другие жидкости, такие как гелий.

Основным преимуществом использования воды в качестве рабочей жидкости является то, что это возобновляемый ресурс. Недостатком является то, что вода может испаряться, что может привести к снижению эффективности системы. Преимущество воздуха в том, что он нелетучий, но он менее эффективен, чем вода, поскольку может поглощать лишь ограниченное количество тепла.

Гелий является отличной рабочей жидкостью для параболических желобных солнечных коллекторов при рабочей температуре 700К и ниже.

Тепловая машина

Тепловая машина представляет собой двигатель внешнего сгорания, который нагревает и охлаждает рабочий газ, запечатанный в цилиндре.Он преобразует тепловую энергию в кинетическую энергию.

Тепловая машина также может работать автономно, используя теплоноситель из ресивера. Наиболее распространенными типами тепловых двигателей для систем солнечных коллекторов с параболическими желобами являются двигатель Стирлинга и двигатель с циклом Брайтона.

Как солнечный коллектор с параболическим желобом преобразует солнечную энергию в электрическую? (Принцип работы)

Зеркала параболической желобной солнечной тарелки фокусируют солнечное излучение на приемник, установленный в центре параболической тарелки вместе с тепловым двигателем.Тепловая машина содержит трубы, по которым проходит рабочий газ.

Когда тепловая энергия передается к ресиверу, рабочий газ внутри труб теплового двигателя расширяется, приводя в движение поршни, которые, в свою очередь, приводят в движение коленчатый вал, приводящий в движение электрогенератор.

Преобразование энергии, происходящее в солнечном коллекторе с параболическим желобом, следующее:

Солнечная энергия → Тепловая энергия → Кинетическая энергия → Электрическая энергия

Применение солнечных коллекторов с параболическим желобом использоваться в качестве концентрирующей фотоэлектрической (PV) системы.

В системе этого типа концентрированный солнечный свет используется для выработки электроэнергии. Коллектор состоит из параболического отражателя, который фокусирует солнечную энергию на небольшой площади. Затем эта сфокусированная энергия используется для выработки электроэнергии с помощью фотоэлементов.

Изогнутая поверхность параболического лоткового коллектора используется для сбора и фокусировки солнечного света на небольшой площади фотоэлементов. Это увеличивает количество энергии, генерируемой фотоэлементами, и может повысить эффективность системы до 50%.

Опреснение воды

Использование солнечных коллекторов с параболическими желобами для опреснения воды в последние годы привлекает внимание из-за их способности обеспечивать недорогой и экологически безопасный процесс опреснения.

Солнечные коллекторы с параболическим желобом также очень эффективно преобразовывают солнечный свет в тепло.

Это делает их отличным выбором для опреснения воды, так как тепло можно использовать для испарения воды. Более того, PTSC могут выдерживать экстремальные погодные условия, что делает их хорошим выбором для мест, где много солнца или ветра.

Обеззараживание воды

Солнечные коллекторы с параболическим желобом также можно использовать для обеззараживания воды. Высокая температура воды, производимая коллектором, может быть использована для уничтожения бактерий и других микроорганизмов в воде. Это делает воду безопасной для питья или использования в других целях.

Солнечное отопление воды и воздуха

Использование параболического концентрированного солнечного тепла для нагрева воды и воздуха становится все более распространенным. В этом типе солнечного теплового коллектора изогнутое зеркало отражает солнечный свет на приемную трубку, расположенную в фокусе зеркала.

Концентрированный солнечный свет нагревает жидкость внутри трубки до очень высокой температуры. Затем используется тепловая энергия, что позволяет использовать ее для нагрева воды или воздуха.

Солнечная сушка

Параболическая концентрированная солнечная сушка — это процесс, в котором используется концентрированная солнечная энергия из системы для сушки пищевых и других продуктов. Этот процесс можно использовать для сушки пищевых продуктов, сельскохозяйственной продукции, твердых отходов и других материалов.

Концентрированная сушка на солнечной энергии имеет ряд преимуществ по сравнению с традиционными методами сушки.Это очень эффективный способ сушки продуктов и других продуктов, при этом не образуются вредные выбросы.

Солнечная система кондиционирования воздуха

Одним из потенциальных преимуществ PTSC по сравнению с другими типами солнечных тепловых коллекторов является то, что они могут достигать более высоких температур. Это делает его пригодным для таких применений, как кондиционирование воздуха, для которого требуется высокотемпературный источник энергии.

Используя солнце для получения холодного воздуха, эти системы могут снизить затраты на электроэнергию до 50%.

Коэффициент концентрации солнечных коллекторов с параболическим желобом

Коэффициент концентрации представляет собой отношение между площадью сбора и площадью приемника коллектора излучения.

Безразмерная геометрическая величина, используемая для расчета эффективности приемника излучения. Фактор концентрации также известен как эффективность сбора или коэффициент захвата.

Коллекторы с параболическим желобом имеют средний коэффициент концентрации от 10 до 100. Это означает, что они могут достигать концентрации выходной энергии выше, чем у линейных коллекторов Френеля, но ниже, чем у тарельчатой ​​системы Стирлинга.

Является ли солнечный коллектор с параболическим желобом активной или неактивной технологией?

Солнечные технологии можно разделить на активные и активные.Пассивные солнечные технологии, как правило, дешевле в установке, но они также работают менее эффективно. К ним относятся изоляция окон, тепловая масса и защита от солнца.

Активные солнечные технологии более дороги в установке, но они более эффективны и могут обеспечить большую мощность.

Требуются внешние компоненты, такие как насосы и система подачи жидкости для преобразования солнечной энергии в тепловую или нетепловую энергию. Солнечные тепловые коллекторы, в том числе коллекторы с параболическими желобами, подпадают под эту категорию.

Некоторые из внешних компонентов, используемых в солнечном коллекторе с параболическим желобом, которые делают его активной солнечной технологией, включают систему слежения за солнцем и систему транспортировки жидкости.

Производственные ошибки солнечных коллекторов с параболическим желобом

В процессе изготовления и нормальной эксплуатации коллектора могут возникать некоторые ошибки. Ошибки PTSC угрожают коэффициенту концентрации и, следовательно, оптической эффективности.

Ошибка формы

Геометрическая форма желобного солнечного коллектора — параболическая.Солнечные лучи фокусируются на фокальной линии параболического желоба.

Ошибка в форме фокальной линии приведет к ошибке в форме солнечного коллектора. Это, в свою очередь, приведет к ошибке в количестве энергии, собранной солнечным коллектором.

Ошибка наклона

Точность параболического коллектора зависит от гладкости поверхности зеркала. Любая рябь или неровности на зеркале вызовут отклонение лучей, что приведет к неточному сбору энергии.Это известно как ошибка наклона.

Ошибка отклонения приемника

Ошибка отклонения приемника является мерой рассогласования между приемником и фокальной линией.

сообщить об этом объявлении

Это смещение может быть вызвано рядом факторов, включая движение приемника или цели, атмосферные условия и отражения.

Ошибка зеркальности

Ошибка зеркальности — это оптическая ошибка, вызванная отражением света от зеркала. Ошибка возникает из-за несовершенства отражения и приводит к искажению излучений.

Величина ошибки зеркальности зависит от шероховатости поверхности зеркала и может быть минимизирована полировкой поверхности зеркала.

Отклонение слежения

Ошибка слежения за солнцем возникает, когда коллектор не направлен точно на солнце. Это может произойти по нескольким причинам, в том числе из-за неправильной установки или выравнивания, смещения отражателей или затенения от близлежащих объектов.

В результате этого смещения система солнечной энергии не будет такой эффективной, как ожидалось.

сообщите об этом объявлении

Деформация рамы

Рама коллектора должна постоянно подвергаться нормальной нагрузке. Однако, если нагрузка в основном за счет собственного веса, крутильных нагрузок и ветра превышает предел, он может деформироваться.

Конструкция солнечного коллектора с параболическим желобом должна выдерживать такую ​​деформацию.

Долговечность и обслуживание солнечных коллекторов с параболическим желобом

Солнечные коллекторы с параболическим желобом являются наиболее эффективным типом солнечных коллекторов.Они также являются одними из самых дорогих в установке и обслуживании.

Долговечность является важнейшим требованием для солнечных коллекторов с параболическими желобами. Изогнутая зеркальная поверхность подвержена повреждениям от града, ветра и мусора. Поэтому коллектор должен выдерживать сильный ветер и экстремальные погодные условия.

Практика технического обслуживания и очистки параболических лотковых солнечных коллекторов необходима для обеспечения максимальной производительности системы.

Пыль, грязь и другие частицы со временем медленно накапливаются на поверхности зеркала.Это приведет к тому, что зеркало станет менее эффективным при захвате и отражении солнечного света. Важно регулярно очищать зеркальную поверхность, чтобы этого не произошло.

Кроме того, оптические элементы и система слежения должны быть чистыми и свободными от мусора.

Отражатель должен быть правильно выровнен с приемником для достижения максимального преобразования солнечной энергии. Любое отклонение приведет к снижению эффективности системы.

Плюсы солнечных коллекторов с параболическим желобом

Экологичность с низким уровнем выбросов

PTSC имеют низкий уровень выбросов в окружающую среду в течение жизненного цикла системы.Это делает их более экологичными, чем другие типы солнечных коллекторов.

Простота изготовления и обслуживания

Солнечные коллекторы с параболическим желобом являются наиболее распространенным типом солнечных тепловых коллекторов.

Они имеют простую конструкцию и поэтому относительно недороги в производстве. Они также имеют более низкие эксплуатационные и эксплуатационные расходы, чем другие типы солнечных коллекторов.

Солнечная энергия является одним из наиболее перспективных источников возобновляемой энергии.В частности, солнечные коллекторы с параболическими желобами имеют длительный срок службы и очень надежны.

Долгий срок службы

Одним из основных преимуществ использования параболических желобных солнечных коллекторов является их длительный срок службы.

Эти коллекторы могут служить до 25 лет, что значительно дольше, чем у других типов солнечных коллекторов. Это не говоря уже о том, что они также очень надежны и требуют минимального обслуживания в долгосрочной перспективе.

Минусы солнечных коллекторов с параболическим желобом

Отслеживание солнца обязательно

Угол наклона солнца влияет на мощность солнечных коллекторов.Это особенно актуально для солнечных коллекторов, в которых используются зеркала, такие как параболические желоба.

Если угол наклона солнца слишком сильно меняется, мощность солнечного коллектора будет снижена. Это связано с тем, что зеркало не сможет отражать солнечный свет на приемник под правильным углом.

Отслеживание солнца должно использоваться для поддержания оптимального угла наклона солнца.

Стоимость электроэнергии высока

Несмотря на то, что параболические желоба являются одной из самых дешевых технологий CSP, стоимость электроэнергии от солнечных коллекторов с параболическими желобами по-прежнему в два раза дороже, чем электроэнергия из обычных источников.

Стоимость строительства и монтажа может быть высокой

Стоимость строительства и монтажа параболического лоткового коллектора может быть высокой. Стоимость материала отражателя, приемника, опорной конструкции и труда, необходимого для изготовления отражателя, может значительно увеличить общую стоимость системы.

Хорошая новость заключается в том, что стоимость системы желобов для солнечных батарей может быть компенсирована за счет экономии затрат на электроэнергию.

Насколько горячими могут быть солнечные коллекторы с параболическим желобом?

Когда солнечные лучи падают на приемник, передается тепловая энергия, в результате чего компонент сильно нагревается.Как правило, температура может находиться в диапазоне 750°C-1000°C.

Поддерживает ли правительство солнечные коллекторы с параболическим желобом?

Концентрация солнечной энергии — это чистый и возобновляемый источник энергии, который может обеспечить значительное количество энергии для Соединенных Штатов.

Министерство энергетики стремится поддерживать развитие технологий CSP и постоянно финансирует проекты, направленные на субсидирование стоимости электроэнергии от параболических желобов.

Резюме

Параболический желобной солнечный коллектор является наиболее распространенным типом солнечного теплового коллектора. Он используется с 1880-х годов.

Система PTC состоит из параболического отражателя, который концентрирует солнечный свет на приемной трубке. В трубке находится жидкость, нагреваемая солнцем. Затем нагретая жидкость используется для выработки тепла или электричества.

Основным преимуществом систем PTC является их зрелость. Ряд систем PTC эксплуатируются уже много лет, и со временем технология совершенствовалась.Это приводит к высокой степени надежности и низким затратам на техническое обслуживание.

Использование параболических желобных солнечных коллекторов быстро растет во всем мире, поскольку технология становится все более эффективной и доступной. По мере того, как солнечная энергия становится все более распространенной, количество солнечных коллекторов с параболическими желобами, вероятно, будет продолжать расти.

Солнечные зеркала производят высококачественное промышленное тепло —

Промышленные компании по-прежнему получают тепло для своих процессов за счет сжигания ископаемого топлива, например природного газа.В случае концентрированной солнечной тепловой энергии (CST) параболические зеркала концентрируют солнечный свет и преобразуют его непосредственно в тепло. Температура может достигать четырехсот градусов по Цельсию. Качественное тепло, поэтому подходит для промышленных процессов.

Технология производит в три раза больше энергии на установленный квадратный метр, чем солнечная фотоэлектрическая установка. Тепло можно легко комбинировать с другими источниками тепла и хранить в изолированных емкостях. Технология не имеет цепочки поставок.Тепло падает из воздуха, так сказать. Это делает его полностью экологичной альтернативой промышленному теплу. Таким образом, CST может внести значительный вклад в сокращение выбросов CO2.

Выход

Хотя солнечное тепло больше похоже на решение для более теплых стран, Azteq также имеет тысячу солнечных часов во Фландрии и Нидерландах. Этих часов должно быть достаточно, чтобы сделать технологию конкурентоспособной с газом в краткосрочной перспективе. Особенно, если цена на CO2 в будущем вырастет из-за налогов на CO2.Azteq и Darel настолько убеждены в работе CST, что предлагают это устойчивое решение под названием «Тепло как услуга».

Зеркальные установки Azteq

обычно устанавливаются на земле, но их также можно разместить, например, на подставках над парковкой. Требуемая площадь поверхности зеркала особенно зависит от потребности в энергии. Azteq обычно рассчитывает мощность в пять мегаватт на гектар площади зеркала.

Три пилотных проекта

В прошлом году Azteq установила одну установку параболических солнечных зеркал площадью 1100 квадратных метров на территории логистической компании Adpo в Беверене, Бельгия.И такая же установка на химической компании Proviron в Остенде. Солнечные зеркала, каждое по пять метров в длину, расположены последовательно и в два ряда по 120 метров и движутся вместе с солнцем, чтобы сконцентрировать максимальное количество солнечного света на коллекторных трубках.

Adpo использовал газ для производства пара для нагрева и очистки резервуаров и контейнеров. Для этого требуется температура свыше 140 градусов по Цельсию. Солнечная электростанция ежегодно заменяет 500 мегаватт-часов потребления газа. Proviron использует пар при 180 градусах Цельсия и двенадцати барах для химических процессов.

В Генке также строится пилотная установка с солнечными зеркалами. В общей сложности эти три электростанции будут производить от 1260 до 1390 мегаватт-часов зеленого тепла в год. Три пилотных проекта будут стоить в общей сложности 1,425 миллиона евро, из которых 819 000 евро будут профинансированы правительством Фландрии.

Операция

Солнечные зеркала отражают 95 процентов захваченных солнечных лучей в одну и ту же точку. Такая высокая степень отражения стала возможной благодаря специальному покрытию, которое отражает лучи и минимально поглощает их.Кроме того, зеркала движутся вместе с солнцем, чтобы максимально использовать солнечный свет в любое время суток.

Тепло собирается в коллекторной трубке, состоящей из трех частей: наружной стеклянной трубки, внутренней металлической трубки, по которой течет масло, и вакуума между двумя частями. Внутренняя трубка использует энергопоглощающее покрытие, чтобы терять как можно меньше тепла. Масло обладает высокой теплопроводностью, чтобы максимально эффективно поглощать тепло.

Теплообменник обеспечивает фактическое использование захваченного тепла.Теплообменник передает тепло от горячего масла из теплового коллектора к среде, используемой в производственном процессе заказчика. Это может быть снова термальное масло, а также тепло в виде пара или горячей воды.

Тепло очень хорошо хранится для отложенного использования, оно в пять раз эффективнее электричества.

Добавить комментарий

Ваш адрес email не будет опубликован.