Азот молекулярная масса: Азот — Википедия

Содержание

Азот. Мини-справочник по химическим веществам (3340 веществ)

Алф. указатель: 1-9 A-Z А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Щ Э Я


Внешний вид:

бесцветн. газ

Брутто-формула (система Хилла): N2

Формула в виде текста: N2

Молекулярная масса (в а.е.м.): 28,0134

Температура плавления (в °C): -210

Температура кипения (в °C): -196

Растворимость (в г/100 г или характеристика):

вода: 0,00294 (0°C)
вода: 0,00233 (10°C)
вода: 0,00193 (20°C)
вода: 0,00179 (25°C)
вода: 0,00168 (30°C)
вода: 0,00148 (40°C)
вода: 0,00136 (50°C)
вода: 0,0128 (60°C)
вода: 0,0012 (80°C)
вода: 0,00119 (100°C)
этанол: мало растворим

Вкус, запах, гигроскопичность:

вкус: без вкуса
запах: без запаха

Способы получения:

1. Ректификацией жидкого воздуха.
2. Разложением нитрита аммония при нагревании в растворе.
3. Термическим разложением азида натрия.

Природные и антропогенные источники:

В земной атмосфере содержится 4 000 000 000 000 000 (четыре квадриллиона) тонн азота (78,03% по объему, 76% по массе, 99,8% всего азота на планете).
В атмосфере Солнца содержится 0,01 ат%.

Плотность:

0,0012506 (20°C, г/см3)
0,808 (-196°C, г/см3)

Давление паров (в мм.рт.ст.):

1 (-226°C)
10 (-219°C)
100 (-210°C)

Диэлектрическая проницаемость:

1,000528 (25°C)

Динамическая вязкость жидкостей и газов (в мПа·с):

0,0165 (0°C)
0,0208 (100°C)
0,0246 (200°C)
0,0311 (400°C)
0,0366 (600°C)

Скорость звука в веществе (в м/с):

334 (0 C, состояние среды — газ)
349 (19.1 C, состояние среды — газ)

Стандартная энтальпия образования ΔH (298 К, кДж/моль):

0 (г)

Стандартная энергия Гиббса образования ΔG (298 К, кДж/моль):

0 (г)

Стандартная энтропия образования S (298 К, Дж/моль·K):

199,9 (г)

Стандартная мольная теплоемкость Cp (298 К, Дж/моль·K):

29,1 (г)

Энтальпия плавления ΔHпл (кДж/моль):

0,721

Энтальпия кипения ΔHкип (кДж/моль):

5,59

Критическая температура (в °C):

-149,9

Критическое давление (в МПа):

3,905

Критическая плотность (в г/см3):

0,304

Применение:

Основная часть идет на синтез аммиака. Используется как инертная среда при проведении органических и неорганических синтезов. Жидкий азот используется для поддержания низкой температуры. Для азотирования поверхности стали (повышает твердость). Инертный наполнитель электроламп.

История:

Название азот в переводе с греческого означает «безжизненный».

Дополнительная информация:

Не поддерживает горение и дыхание. При комнатной температуре реагирует только с литием образуя нитрид лития, а также образует некоторые комплексы с d-элементами (рутением, железом, родием, палладием). При нагревании реагирует со многими металлами образуя нитриды. При нагревании под давлением, в присутсвии катализатора (губчатое железо с добавками оксидов алюминия и калия), реагирует с водородом образуя аммиак. магний способен гореть в азоте.

Атомный радиус = 0,071 нм. Содержание азота в атмосфере и земной коре 0,04 массовых процента. В природе содержится в виде двух стабильных изотопов: 14N (99,62% от всех атомов) и 15N (0,38% от всех атомов).

Степень окисления азота в его соединениях изменяется от -3 до +5. Молекула азота имеет необычайно прочную тройную связь между атомами (энергия связи 224,5 ккал/моль (940,09 кДж/моль)).

    Источники информации:

  1. Гурвич Я.А. «Справочник молодого аппаратчика-химика» М.:Химия, 1991 стр. 50
  2. Девяткин В.В., Ляхова Ю.М. «Химия для любознательных, или о чем не узнаешь на уроке» Ярославль:Академия Холдинг, 2000 стр. 30
  3. Деньгуб В.М., Смирнов В.Г. «Единицы величин. Словарь-справочник» М.: Издательство стандартов, 1990 стр. 56-57
  4. Карапетьянц М.Х., Дракин С.И. «Общая и неорганическая химия» М.:Химия 1981 стр. 392-395, 411
  5. Рабинович В.А., Хавин З.Я. «Краткий химический справочник» Л.: Химия, 1977 стр. 50
  6. Спицын В.И., Мартыненко Л.И. «Неорганическая химия» ч.1 М., 1991 стр. 101-107

Алф. указатель: 1-9 A-Z А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Щ Э Я


Еще по теме:

Азот, подготовка к ЕГЭ по химии

Азот — неметаллический элемент Va группы периодической таблицы Д.И. Менделеева. Составляет 78% воздуха. Входит в состав белков, являющихся важной частью живых организмов.

Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью азота.

Общая характеристика элементов Va группы

От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Азот, фосфор и мышьяк являются неметаллами, сурьма — полуметалл, висмут — металл.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns

2np3:

  • N — 2s22p3
  • P — 3s23p3
  • As — 4s24p3
  • Sb — 5s25p3
  • Bi — 6s26p3
Основное и возбужденное состояние азота

При возбуждении атома азота электроны на s-подуровне распариваются и переходят на p-подуровень. Поскольку азот находится во втором периоде, то 3ий уровень у него отсутствует, что проявляется в особенностях электронной конфигурации возбужденного состояния.

Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.

Природные соединения

В природе азот встречается в виде следующих соединений:

  • Воздух — во вдыхаемом нами воздухе содержится 78% азота
  • Азот входит в состав нуклеиновых кислот, белков
  • KNO3 — индийская селитра, калиевая селитра
  • NaNO3 — чилийская селитра, натриевая селитра
  • NH4NO3 — аммиачная селитра (искусственный продукт, в природе не встречается)

Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако, следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.

Получение

В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения их сжиженного воздуха получают азот.

Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.

В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония

NH4NO2 → (t) N2 + H2O

Также азот можно получить путем восстановления азотной кислоты активными металлами.

HNO3(разб.) + Zn → Zn(NO3)2 + N2 + H2O

Химические свойства

Азот восхищает — он принимает все возможные для себя степени окисления от -3 до +5.

Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.

  • Реакция с металлами
  • Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.

    N2 + Li → Li3N (нитрид лития)

    N2 + Mg → (t) Mg3N2

    N2 + Al → (t) AlN

  • Реакция с неметаллами
  • Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.

    N2 + H2 ⇄ (t, p) NH3

Аммиак

Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях, называется нашатырным спиртом.

Получение

В промышленности аммиак получают прямым взаимодействием азота и водорода.

N2 + H2 ⇄ (t, p) NH3

В лабораторных условиях сильными щелочами действуют на соли аммония.

NH4Cl + NaOH → NH3 + NaCl + H2O

Химические свойства

Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.

  • Реакция с водой
  • Образует нестойкое соединение — гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.

    NH3 + H2O ⇄ NH4OH

  • Основные свойства
  • Как основание аммиак способен реагировать с кислотами с образованием солей.

    NH3 + HCl → NH4Cl (хлорид аммония)

    NH3 + HNO3 → NH4NO3 (нитрат аммония)

  • Восстановительные свойства
  • Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные восстановительные свойства. Его используют для восстановления металлов из их оксидов.

    NH3 + FeO → N2↑ + Fe + H2O

    NH3 + CuO → N2↑ + Cu + H2O

    Горение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается выделением NO.

    NH3 + O2 → (t) N2 + H2O

    NH3 + O2 → (t, кат) NO + H2O

Соли аммония

Получение

NH3 + H2SO4 → NH4HSO4 (гидросульфат аммония, избыток кислоты)

3NH3 + H3PO4 → (NH4)3PO4

Химические свойства

Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода — реакция идет.

  • Реакции с кислотами
  • NH4Cl + H2SO4 → (NH4)2SO4 + HCl↑

  • Реакции с щелочами
  • В реакциях с щелочами образуется гидроксид аммония — NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.

    NH4Cl + KOH → KCl + NH3 + H2O

  • Реакции с солями
  • (NH4)2SO4 + BaCl2 = BaSO4↓ + NH4Cl

  • Реакция гидролиза
  • В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.

    NH4+ + H2O ⇄ NH4OH + H+

    NH4OH ⇄ NH3 + H2O

  • Реакции разложения
  • NH4Cl → (t) NH3↑ + HCl↑

    (NH4)2CO3 → (t) NH3↑ + H2O + CO2

    NH4NO2 → (t) N2↑ + H2O

    NH4NO3 → (t) N2O↑ + H2O

    (NH4)3PO4 → (t) NH3↑ + H3PO4

Оксид азота I — N2O

Закись азота, веселящий газ — N2O — обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.

Получают N2O разложением нитрата аммония при нагревании:

NH4NO3 → N2O + H2O

Оксид азота I разлагается на азот и кислород:

N2O → (t) N2 + O2

Оксид азота II — NO

Окись азота — NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.

Получение

В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.

NH3 + O2 → (t, кат) NO + H2O

В лабораторных условиях — в ходе реакции малоактивных металлов с разбавленной азотной кислотой.

Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O

Химические свойства

На воздухе быстро окисляется с образованием бурого газа — оксида азота IV — NO2.

NO + O2 → NO2

Оксид азота III — N2O3

При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.

Получение

Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой, затем охлаждением полученной смеси газов до температуры — 36 °C.

As2O3 + HNO3 → H3AsO 3 + NO↑ + NO2

При охлаждении газов образуется оксид азота III.

NO + NO2 → N2O3

Химические свойства

Является кислотным оксидом. соответствует азотистой кислота — HNO2, соли которой называются нитриты (NO2). Реагирует с водой, основаниями.

H2O + N2O3 → HNO2

NaOH + N2O3 → NaNO2 + H2O

Оксид азота IV — NO2

Бурый газ, имеет острый запах. Ядовит.

Получение

В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при разложении нитратов.

Cu + HNO3(конц) → Cu(NO3)2 + NO2 + H2O

Cu(NO3)2 → (t) CuO + NO2 + O2

Pb(NO3)2 → (t) PbO + NO2 + O2

Химические свойства

Проявляет высокую химическую активность, кислотный оксид.

  • Окислительные свойства
  • Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.

    NO2 + C → CO2 + N2

    NO2 + P → P2O5 + N2

    Окисляет SO2 в SO3 — на этой реакции основана одна из стадий получения серной кислоты.

    SO2 + NO2 → SO3 + NO

  • Реакции с водой и щелочами
  • Оксид азота IV соответствует сразу двум кислотам — азотистой HNO2 и азотной HNO3. Реакции с водой и щелочами протекают по одной схеме.

    NO2 + H2O → HNO3 + HNO2

    NO2 + LiOH → LiNO3 + LiNO2 + H2O

    Если растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.

    NO2 + H2O + O2 → HNO3

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Понятие о молярной и молекулярной массе. Молярная масса азота, водорода и воздуха :: SYL.ru

Предложенная еще древнегреческим философом Демокритом гипотеза о существовании неделимых элементарных частиц, из которых образована вся материя, была признана учеными через полторы тысячи лет. Понятие молярной массы химического вещества окончательно оформилось лишь в начале XX века. В данной статье рассмотрим это понятие, акцентируя внимание на молярной массе азота и водорода.

Амедео Авогадро и его закон

В начале XIX века наукой уже было установлено, что все вещества состоят из крохотных частиц. Эти частицы называли атомами или молекулами. При этом оба термина использовались в качестве синонимов.

В это время известный итальянский адвокат, физик и математик Амедео Авогадро проводил ряд опытов с различными газами, включая воздух. Ученый пришел к удивительному выводу, который в настоящее время носит название закона Авогадро для газов. Сформулировать его можно так: при одинаковых условиях равные объемы газов содержат равное количество образующих их частиц. Под равными условиями понимают температуру и давление.

Заметим, что сам Авогадро не смог оценить количество указанных им частиц в газе для реальных объемов. Однако ценность этого закона огромна, поскольку он говорит о том, что независимо от химической природы атомов или молекул, газы ведут себя одинаковым образом.

Работы Авогадро не были восприняты всерьез известными в то время учеными Европы. Понадобилось несколько десятков лет, чтобы о них вспомнили снова.

Опыты Иоганна Лошмидта и Жана Перрена

В 1865 году австриец Иоганн Лошмидт провел ряд экспериментов, в результате которых получил средний диаметр молекул воздуха. Зная эту величину, он смог определить число молекул в единице объема. Опыты Лошмидта считаются первыми в истории по измерению количества молекул в газовых смесях.

В 1909 году француз Жан Перрен провел эксперименты, в результате которых определил количество молекул в разных газах для разных объемов. В 1926 году за эти эксперименты ему была присуждена Нобелевская премия по физике.

Перрен предложил за базовую единицу для любых химических расчетов взять количество атомов, которое содержится в 1 грамме атомарного водорода. Впоследствии это количество было им переопределено для 1/12 грамма углерода-12. Именно Перрен предложил назвать это значение — числом Авогадро.

Постоянная Авогадро и единица количества вещества

Измеренное Перреном число Авогадро оказалось равным NA = 6,022*1023. Это означает, что всего 1 грамм атомарного водорода (H) или 2 грамма молекулярного водорода (H2) содержат NA частиц. Понятно, что с такими числами на практике работать неудобно. Поэтому во второй половине XX века на одном из заседаний Международной палаты мер и весов было принято включить число Авогадро в качестве одной из 7 базовых единиц измерения в СИ. Эта единица получила название моль.

Таким образом, 1 моль — это такое количество составляющих частиц вещества (молекул, атомов и т. д.), которое равно числу NA.

Понятие о молярной массе

Молярная масса азота или любого другого химического вещества — это физическая величина, равная массе одного моля частиц. Обозначается эта величина обычно символом Ms, где индекс показывает, какой субстанции соответствует величина. Молярная масса выражается в системе СИ в килограммах на моль. Однако, на практике эти единицы редко применяются. Чаще используют граммы на моль (г/моль).

Приведем пример. Выше было сказано, что в 2 граммах газа H2 содержится NA молекул. Тогда получаем:

Mh3 = m(H2)/NA.

Поскольку NA по определению — это 1 моль, тогда молярная масса молекулярного водорода равна 2 грамма.

Понятие о молекулярной массе

Исходя из названия, понятно, что молекулярная масса — это масса одной молекулы некоторого химического вещества. В отличие от молярной массы, эта величина выражается в СИ в килограммах (а.е.м. на практике).

Используя пример выше с молекулярным водородом, можно легко рассчитать массу молекулы H2. Поскольку масса NA молекул равна 2 грамма, тогда для одной молекулы получаем:

Mh3 = m(H2)/NA = 2*10-3 [кг]/ 6,022*1023 = 3,321*10-27 кг.

Для атомарного водорода, который имеет в два раза меньшую массу, найденная величина будет также в два раза меньше, то есть:

MH = Mh3/2 = 1,66*10-27 кг.

Как видно, типичные массы атомов и молекул очень малы. С ними так же неудобно проводить вычисления, как и с большими числами. Поэтому была введена новая единица измерения, которая называется атомной единицей массы, или сокращенно а. е. м. Одна а. е. м. соответствует массе протона, то есть MH.

Благодаря такому определению молярная и молекулярная массы совпадают друг с другом численно, хотя единицы их измерения разные. Например, для того же водорода получаем, что молярная масса равна 2 г/моль, а молекулярная — 2 а.е.м.

Отметим, что эти величины для каждого химического элемента измерены и приведены в таблице Менделеева.

Изотопы и их влияние на молярную и молекулярную массы

Приведенные в предыдущих пунктах статьи теоретические сведения и расчеты говорят, что молярная масса атома водорода равна 1 г/моль (атомарная — 1 а.е.м.). Если обратиться к таблице Менделеева, то вместо цифры 1 для H стоит значение 1,00794. Почему появляется расхождение с полученным нами числом?

Ответ на этот вопрос связан с существованием в природе изотопов — атомов, которые содержат одно и то же число протонов (электронов), но разное количество нейтронов. Поскольку массы протона и нейтрона приблизительно равны, то получаем, что массы изотопов химического элемента будут отличаться друг от друга. Например, дейтерий — водород, состоящий из нейтрона, протона и электрона, уже имеет атомарную массу 2 а.е.м.

Атомная масса, приведенная в периодической таблице под каждым элементом, это некоторая средняя величина M¯ по всем изотопам, встречающимся в природе. Ее можно рассчитать по формуле:

M¯ = ∑i(xi*Mi).

Здесь xi — относительное количество изотопа i в смеси, Mi — его атомная масса. Заметим, что эту формулу можно использовать для определения средней молярной массы газовой смеси.

Молярная и молекулярная масса азота

Для определения рассмотренных масс азота сначала следует вспомнить его химическую формулу. Символ азота в таблице Менделеева соответствует латинской букве N (номер 7). Под ним можно видеть, что атомная масса азота равна 14,0067 а.е.м.

Молекула азота состоит из двух атомов и является достаточно устойчивой (вступает в химическую реакцию при экстремальных условиях, например, при разряде молнии в атмосфере). Тогда получаем, что молярная масса азота равна:

MN2 = 2*MN = 14,0067*2 = 28,0134 г/моль.

Для химических расчетов часто используют значение 28 г/моль.

Что касается молекулярной массы азота, то определить ее можно, если вспомнить, что в 1 моле любой субстанции содержится NA частиц. Так как 1 моль N2 имеет массу 28,0134 грамма, тогда масса одной его молекулы равна:

MN2 = 28,0134*10-3 [кг]/6,022*1023 = 4,652*10-26 кг.

Молярная масса воздушной смеси

Покажем, как можно определять молярные массы совершенно любых газовых смесей. Для этого необходимо знать следующие данные:

  • Химический состав смеси.
  • Молярную массу каждого компонента в ней.
  • Долю каждого компонента в смеси.

Средний состав воздуха на нашей планете следующий (в атомных процентах):

  • N2 78,09.
  • O2 20,95.
  • Ar 0,93.
  • CO2 0,04.

Сначала вычислим молярную массу каждого соединения, пользуясь таблицей Менделеева. Молярную массу азота мы уже знаем, она равна 28,0134 г/моль. Для остальных компонентов имеем:

MO2 = 31,9988 г/моль.

MAr = 39,948 г/моль.

MCO2 = 44,0095 г/моль.

Пользуясь формулой для средней массы по всем изотопам, которая также применима в этом случае, получаем:

M¯ = ∑i(xi*Mi) = 0,7809*28,0134 + 0,2095*31,9988 + 0,0093*39,948 + 0,0004*44,0095 = 28,9685 г/моль.

Часто полученное значение округляют до 29 г/моль.

Таким образом, воздух в среднем легче, чем все его составляющие компоненты, кроме азота. Близость полученной молекулярной массы к таковой для N2 связана с тем, что почти на 80% воздух состоит из этого газа.

Что такое азот? Масса азота. Молекула азота

Неметаллический элемент 15-й группы [Va] периодической таблицы – азот, 2 атома которого, соединяясь, образуют молекулу, – бесцветный, без запаха и вкуса газ, составляющий большую часть атмосферы Земли и являющийся составной частью всего живого.

История обнаружения

Газ азот составляет около 4/5 земной атмосферы. Он был выделен в ходе ранних исследований воздуха. В 1772 году шведский химик Карл-Вильгельм Шееле первым продемонстрировал, что такое азот. По его мнению, воздух представляет собой смесь двух газов, один из которых он назвал «огненным воздухом», т. к. тот поддерживал горение, а другой – «нечистым воздухом», потому что он оставался после того, как первый расходовался. Это были кислород и азот. Примерно в то же время азот был выделен шотландским ботаником Даниэлем Резерфордом, который первым опубликовал свои выводы, а также британским химиком Генри Кавендишем и британским священнослужителем и ученым Джозефом Пристли, который разделил с Шееле первенство открытия кислорода. Дальнейшие исследования показали, что новый газ входит в состав селитры, или нитрата калия (KNO3), и, соответственно, он был назван нитрогеном («рождающим селитру») французским химиком Шапталем в 1790 г. Азот был впервые отнесен к химическим элементам Лавуазье, чье объяснение роли кислорода в горении опровергло теорию флогистона – популярное в XVIII в. ошибочное представление о горении. Неспособность этого химического элемента поддерживать жизнь (по-гречески ζωή) стала причиной того, что Лавуазье назвал газ азотом.

Возникновение и распространение

Что такое азот? По распространенности химических элементов он занимает шестое место. Атмосфера Земли на 75,51 % по весу и на 78,09 % по объему состоит из этого элемента и является основным его источником для промышленности. В атмосфере также содержится небольшое количество аммиака и солей аммония, а также оксиды азота и азотная кислота, образующиеся во время гроз, а также в двигателях внутреннего сгорания. Свободный азот найден во многих метеоритах, вулканических и шахтных газах и ​​некоторых минеральных источниках, на солнце, в звездах и туманностях.

Азот также встречается в минеральных отложениях нитрата калия и натрия, но для удовлетворения потребностей человека их недостаточно. Другим материалом, богатым этим элементом, является гуано, которое можно найти в пещерах, где много летучих мышей, или в сухих местах, посещаемых птицами. Также азот содержится в дожде и почве в виде аммиака и солей аммония, а в морской воде в виде ионов аммония (NH4+), нитритов (NO2) и нитратов (NO3). В среднем он составляет около 16 % сложных органических соединений, таких как белки, присутствующих во всех живых организмах. Естественное его содержание в земной коре составляет 0,3 части на 1000. Распространенность в космосе – от 3 до 7 атомов на атом кремния.

Крупнейшими странами-производителями азота (в виде аммиака) в начале XXI века были Индия, Россия, США, Тринидад и Тобаго, Украина.

Коммерческое производство и использование

Промышленное производство азота основано на фракционной перегонке сжиженного воздуха. Температура его кипения равна -195,8 °С, что на 13 °С ниже, чем у кислорода, который таким образом отделяется. Азот также может быть получен в больших масштабах путем сжигания углерода или углеводородов в воздухе и отделения полученного диоксида углерода и воды из остаточного азота. В малых масштабах чистый азот производится путем нагревания азида бария Ba(N3)2. Лабораторные реакции включают нагрев раствора нитрита аммония (NH4NO2), окисление аммиака водным раствором брома или нагретым оксидом меди:

  • NH4++NO2→N2+2H2O.
  • 8NH3+3Br2→N2+6NH4++6Br.
  • 2NH3+3CuO→N2+3H2O+3Cu.

Элементарный азот может быть использован в качестве инертной атмосферы для реакций, требующих исключения кислорода и влаги. Находит применение и жидкий азот. Водород, метан, окись углерода, фтор и кислород – единственные вещества, которые при температуре кипения азота не переходят в твердое кристаллическое состояние.

В химической промышленности этот химический элемент используется для предотвращения окисления или другой порчи продукта, как инертный разбавитель химически активного газа, для удаления тепла или химических веществ, а также в качестве ингибитора пожара или взрыва. В пищевой промышленности газ азот применяется для предотвращения порчи продуктов, а жидкий – для сушки замораживанием и в системах охлаждения. В электротехнической промышленности газ предотвращает окисление и другие химические реакции, создает давление в оболочке кабеля и защищает электродвигатели. В металлургии азот используется при сварке и пайке, предотвращая окисление, обуглероживание и обезуглероживание. Как неактивный газ его применяют в производстве пористой резины, пластмассы и эластомеров, он служит в качестве пропеллента в аэрозольных баллончиках, а также создает давление жидкого топлива в реактивных самолетах. В медицине быстрое замораживание жидким азотом используется для сохранения крови, костного мозга, тканей, бактерий и спермы. Он нашел применение и в криогенных исследованиях.

Соединения

Большая часть азота используется в производстве химических соединений. Тройная связь между атомами элемента настолько сильна (226 ккал на моль, вдвое больше, чем у молекулярного водорода), что молекула азота с трудом вступает в другие соединения.

Основным промышленным методом фиксации элемента является процесс Хабера-Боша для синтеза аммиака, разработанный во время Первой мировой войны, чтобы уменьшить зависимость Германии от чилийской селитры. Он включает прямой синтез NH3 – бесцветного газа с резким, раздражающим запахом – непосредственно из его элементов.

Большая часть аммиака превращается в азотную кислоту (HNO3) и нитраты – соли и сложные эфиры азотной кислоты, кальцинированную соду (Na2CO3), гидразин (N2H4) – бесцветную жидкость, используемую в качестве ракетного топлива и во многих промышленных процессах.

Азотная кислота является другим основным коммерческим соединением данного химического элемента. Бесцветная, высококоррозионная жидкость используется в производстве удобрений, красителей, лекарственных средств и взрывчатых веществ. Нитрат аммония (NH4NO3) – соль аммиака и азотной кислоты – является наиболее распространенным компонентом азотных удобрений.

Азот + кислород

С кислородом азот образует ряд оксидов, в т. ч. закись азота (N2O), в которой его валентность равна +1, окись (NO) (+2) и двуокись (NO2) (+4). Многие оксиды азота чрезвычайно летучи; они являются главными источниками загрязнения в атмосфере. Закись азота, также известная как веселящий газ, иногда используется в качестве анестезирующего средства. При вдыхании она вызывает мягкую истерию. Оксид азота быстро реагирует с кислородом с образованием коричневого диоксида, промежуточного продукта в производстве азотной кислоты и мощного окислителя в химических процессах и ракетном топливе.

Также используются некоторые нитриды, образованные соединением металлов с азотом при повышенных температурах. Нитриды бора, титана, циркония и тантала имеют специальные применение. Одна кристаллическая форма нитрида бора (BN), например, по твердости не уступает алмазу и плохо окисляется, поэтому используется в качестве высокотемпературного абразива.

Неорганические цианиды содержат группу CN. Цианистый водород, или синильная кислота HCN, является крайне неустойчивым и чрезвычайно токсичным газом, который применяется для фумигации, концентрации руды, в других промышленных процессах. Дициан (CN)2 используется в качестве промежуточного химического вещества и для фумигации.

Азиды представляют собой соединения, которые содержат группу из трех атомов азота -N3. Большинство их неустойчиво и очень чувствительно к ударам. Некоторые из них, такие как азид свинца Pb(N3)2, используются в детонаторах и капсюлях. Азиды, подобно галогенам, охотно взаимодействуют с другими веществами и образуют множество соединений.

Азот входит в состав нескольких тысяч органических соединений. Большинство из них являются производными от аммиака, цианистого водорода, циана, закиси или азотной кислоты. Амины, аминокислоты, амиды, например, получены из аммиака или тесно связаны с ним. Нитроглицерин и нитроцеллюлоза – сложные эфиры азотной кислоты. Нитриты получают из азотистой кислоты (HNO2). Пурины и алкалоиды являются гетероциклическими соединениями, в которых азот замещает один или несколько атомов углерода.

Свойства и реакции

Что такое азот? Это бесцветный газ без запаха, который конденсируется при -195,8 °С в бесцветную, маловязкую жидкость. Элемент существует в виде молекул N2, представляемых в виде :N:::N:, у которых энергия связи, равная 226 ккал на моль, уступает только окиси углерода (256 ккал на моль). По этой причине энергия активации молекулярного азота очень высока, поэтому в обычных условиях элемент относительно инертен. Кроме того, высокостабильная молекула азота в значительной степени способствует термодинамической неустойчивости многих азотсодержащих соединений, в которых связи, пусть и достаточно сильные, но уступают связям молекулярного азота.

Относительно недавно и неожиданно была открыта способность молекул азота служить в качестве лигандов в комплексных соединениях. Наблюдение того, что некоторые растворы комплексов рутения могут поглощать атмосферный азот, привело к тому, что вскоре может быть найден более простой и лучший способ фиксации этого элемента.

Активный азот можно получить путем пропускания газа низкого давления через высоковольтный электрический разряд. Продукт светится желтым светом и гораздо охотнее вступает в реакции, чем молекулярный, с атомарным водородом, серой, фосфором и различными металлами, а также способен разлагать NO до N2 и O2.

Более ясное представление о том, что такое азот, можно получить благодаря его электронной структуре, которая имеет вид 1s22s22p3. Пять электронов внешних оболочек слабо экранируют заряд, в результате чего эффективный ядерный заряд ощущается на расстоянии ковалентного радиуса. Атомы азота относительно невелики и обладают высокой электроотрицательностью, располагаясь между углеродом и кислородом. Электронная конфигурация включает три полузаполненные внешние орбитали, позволяющие образовывать три ковалентные связи. Поэтому атом азота должен обладать чрезвычайно высокой реакционной способностью, образуя с большинством других элементов стабильные бинарные соединения, особенно когда другой элемент существенно отличается электроотрицательностью, придающей значительную полярность связям. Когда электроотрицательность другого элемента ниже, полярность придает атому азота частичный отрицательный заряд, что освобождает его неразделенные электроны для участия в координационных связях. Когда другой элемент более электроотрицателен, частично положительный заряд азота существенно ограничивает донорные свойства молекулы. При малой полярности связи, вследствие равной электроотрицательности другого элемента, множественные связи превалируют над одиночными. Если несоответствие атомных размеров препятствует образованию множественных связей, то образованная простая связь, вероятно, будет относительно слабой, и соединение будет неустойчивым.

Аналитическая химия

Часто процент азота в газовой смеси может быть определен путем измерения ее объема после поглощения других компонентов химическими реагентами. Разложение нитратов серной кислотой в присутствии ртути высвобождает окись азота, которая может быть измерена в виде газа. Азот высвобождается из органических соединений, когда они сгорают над окисью меди, а свободный азот может быть измерен в виде газа после поглощения других продуктов сгорания. Хорошо известный метод Кьельдаля по определению содержания рассматриваемого нами вещества в органических соединениях заключается в разложении соединения концентрированной серной кислотой (в случае необходимости содержащей ртуть, или ее оксид, а также различные соли). Таким образом азот преобразуется в сульфат аммония. Добавление гидроксида натрия высвобождает аммиак, который собирают обычной кислотой; остаточное количество непрореагировавшей кислоты затем определяется титрованием.

Биологическое и физиологическое значение

Роль азота в живой материи подтверждает физиологическую активность его органических соединений. Большинство живых организмов не может использовать этот химический элемент непосредственно и должно иметь доступ к его соединениям. Поэтому фиксация азота имеет огромное значение. В природе это происходит в результате двух основных процессов. Одним из них является действие электрической энергии на атмосферу, благодаря чему молекула азота и кислорода диссоциируют, что позволяет свободным атомам образовать NO и NO2. Двуокись затем вступает в реакцию с водой: 3NO2+H2O→2HNO3+NO.

HNO3 растворяется и приходит на Землю с дождем в виде слабого раствора. Со временем кислота становится частью комбинированного азота почвы, где нейтрализуется, образуя нитриты и нитраты. Содержание N в культивируемых почвах, как правило, восстанавливается благодаря внесению удобрений, содержащих нитраты и аммонийные соли. Выделения животных и растений и их разложение возвращает соединения азота в почву и воздух.

Другим основным процессом естественной фиксации является жизнедеятельность бобовых. Благодаря симбиозу с бактериями эти культуры способны превращать атмосферный азот непосредственно в его соединения. Некоторые микроорганизмы, такие как Azotobacter Chroococcum и Clostridium pasteurianum, способны фиксировать N самостоятельно.

Сам газ, будучи инертным, безвреден, за исключением случая, когда им дышат под давлением, и он растворяется в крови и других жидкостях тела в более высоких концентрациях. Это вызывает наркотический эффект, а если давление снижается слишком быстро, избыток азота выделяется в виде пузырьков газа в различных местах организма. Это может вызвать боль в мышцах и суставах, обмороки, частичный паралич и даже смерть. Эти симптомы называются декомпрессионной болезнью. Поэтому те, кто вынужден дышать воздухом в таких условиях, должны очень медленно снижать давление до нормального, чтобы избыток азота выходил через легкие без образования пузырьков. Лучшей альтернативой является использование для дыхания смеси кислорода и гелия. Гелий гораздо менее растворим в жидкостях организма, и опасность уменьшается.

Изотопы

Азот существует в виде двух стабильных изотопов: 14N (99,63 %) и 15N (0,37 %). Они могут быть разделены с помощью химического обмена или путем термической диффузии. Масса азота в виде искусственных радиоактивных изотопов находится в пределах 10-13 и 16-24. Наиболее стабильный период полураспада, равный 10 минутам. Первая искусственно индуцированная ядерная трансмутация была произведена в 1919 г. британским физиком Эрнестом Резерфордом, который, бомбардируя азот-14 альфа-частицами, получил ядра кислорода-17 и протоны.

Свойства

Напоследок перечислим основные свойства азота:

  • Атомный номер: 7.
  • Атомная масса азота: 14,0067.
  • Температура плавления: -209,86 °C.
  • Точка кипения: -195,8 °C.
  • Плотность (1 атм, 0 °С): 1,2506 г азота на литр.
  • Обычные состояния окисления: -3, +3, +5.
  • Конфигурация электронов: 1s22s22p3.

Молекулярная масса трифторида азота

Молярная масса of NF3 = 71,0019096 г / моль

Перевести граммы трифторида азота в моль или моль трифторида азота в граммы

Расчет молекулярной массы:
14.0067 + 18.9984032 * 3


Элемент Условное обозначение Атомная масса Количество атомов Массовый процент
Азот N 14.0067 1 19,727%
Фтор F 18.9984032 3 80,273%

В химии вес формулы — это величина, вычисляемая путем умножения атомного веса (в единицах атомной массы) каждого элемента в химической формуле на количество атомов этого элемента, присутствующего в формуле, с последующим сложением всех этих продуктов вместе.

Определение молярной массы начинается с единиц граммов на моль (г / моль).При расчете молекулярной массы химического соединения он говорит нам, сколько граммов содержится в одном моль этого вещества. Вес формулы — это просто вес в атомных единицах массы всех атомов в данной формуле.

Формула веса особенно полезна при определении относительного веса реагентов и продуктов в химической реакции. Эти относительные веса, вычисленные по химическому уравнению, иногда называют весами по уравнениям.

Если формула, используемая при расчете молярной массы, является молекулярной формулой, вычисленная формула веса является молекулярной массой.Весовой процент любого атома или группы атомов в соединении можно вычислить, разделив общий вес атома (или группы атомов) в формуле на вес формулы и умножив на 100.

Часто на этом сайте просят перевести граммы в моль. Чтобы выполнить этот расчет, вы должны знать, какое вещество вы пытаетесь преобразовать. Причина в том, что на конверсию влияет молярная масса вещества. Этот сайт объясняет, как найти молярную массу.

Атомные веса, используемые на этом сайте, получены от NIST, Национального института стандартов и технологий.Мы используем самые распространенные изотопы. Вот как рассчитать молярную массу (среднюю молекулярную массу), которая основана на изотропно взвешенных средних. Это не то же самое, что молекулярная масса, которая представляет собой массу одной молекулы четко определенных изотопов. Для объемных стехиометрических расчетов мы обычно определяем молярную массу, которую также можно назвать стандартной атомной массой или средней атомной массой.

Используя химическую формулу соединения и периодическую таблицу элементов, мы можем сложить атомные веса и вычислить молекулярную массу вещества.

.

Молекулярный вес азотной кислоты

Молярная масса of HNO3 = 63,01284 г / моль

Перевести граммы азотной кислоты в моль или моль азотной кислоты в граммы

Расчет молекулярной массы:
1.00794 + 14.0067 + 15.9994 * 3


Элемент Условное обозначение Атомная масса Количество атомов Массовый процент
Водород H 1.00794 1 1.600%
Азот N 14.0067 1 22,228%
Кислород O 15,9994 3 76,172%

Обратите внимание, что все формулы чувствительны к регистру. Вы хотели найти молекулярную массу одной из этих похожих формул?
HNO3
HNo3


В химии вес формулы — это величина, вычисляемая путем умножения атомного веса (в единицах атомной массы) каждого элемента в химической формуле на количество атомов этого элемента, присутствующего в формуле, с последующим сложением всех этих продуктов вместе.

Используя химическую формулу соединения и периодическую таблицу элементов, мы можем сложить атомные веса и вычислить молекулярную массу вещества.

Определение молярной массы начинается с единиц граммов на моль (г / моль). При расчете молекулярной массы химического соединения он говорит нам, сколько граммов содержится в одном моль этого вещества. Вес формулы — это просто вес в атомных единицах массы всех атомов в данной формуле.

Атомные веса, используемые на этом сайте, получены от NIST, Национального института стандартов и технологий.Мы используем самые распространенные изотопы. Вот как рассчитать молярную массу (среднюю молекулярную массу), которая основана на изотропно взвешенных средних. Это не то же самое, что молекулярная масса, которая представляет собой массу одной молекулы четко определенных изотопов. Для объемных стехиометрических расчетов мы обычно определяем молярную массу, которую также можно назвать стандартной атомной массой или средней атомной массой.

Формула веса особенно полезна при определении относительного веса реагентов и продуктов в химической реакции.Эти относительные веса, вычисленные по химическому уравнению, иногда называют весами по уравнениям.

Если формула, используемая при расчете молярной массы, является молекулярной формулой, вычисленная формула веса является молекулярной массой. Весовой процент любого атома или группы атомов в соединении можно вычислить, разделив общий вес атома (или группы атомов) в формуле на вес формулы и умножив на 100.

Часто на этом сайте просят перевести граммы в моль.Чтобы выполнить этот расчет, вы должны знать, какое вещество вы пытаетесь преобразовать. Причина в том, что на конверсию влияет молярная масса вещества. Этот сайт объясняет, как найти молярную массу.

.

Перевести граммы диоксида азота в моль

›› Перевести граммы диоксида азота в

моль

Пожалуйста, включите Javascript использовать конвертер величин



›› Дополнительная информация в конвертере величин

Сколько граммов диоксида азота в 1 моль? Ответ 46.0055.
Мы предполагаем, что вы конвертируете граммов диоксида азота в моль .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
молекулярная масса диоксида азота или моль
Молекулярная формула диоксида азота NO2.
Основной единицей СИ для количества вещества является моль.
1 грамм диоксида азота равен 0,021736531501668 моля.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как переводить граммы диоксида азота в моль.
Введите ваши собственные числа в форму для преобразования единиц!


›› Похожие химические формулы

Обратите внимание, что все формулы чувствительны к регистру. Вы хотели преобразовать одну из этих похожих формул?
граммов NO2 на моль
граммов NO2 на моль



›› График перевода граммов диоксида азота в

моль

1 грамм диоксида азота в моль = 0.02174 моль

10 граммов диоксида азота на моль = 0,21737 моль

20 граммов диоксида азота на моль = 0,43473 моль

30 граммов диоксида азота на моль = 0,6521 моль

40 граммов диоксида азота на моль = 0,86946 моль

50 граммов диоксида азота на моль = 1,08683 моль

100 граммов диоксида азота на моль = 2,17365 моль

200 граммов диоксида азота в моль = 4,34731 моль



›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из моль диоксида азота в граммы, или введите другие единицы для преобразования ниже:

›› Общее количество преобразований веществ

грамма диоксида азота на децимоль
граммов диоксида азота на микромоль
граммов диоксида азота на молекулу
граммов диоксида азота на атом
граммов диоксида азота на сантимоль
граммов диоксида азота на пикомоль
граммов диоксида азота на миллимоль
граммов диоксида азота на наномоль
граммов диоксида азота на наномоль диоксид азота в киломоль


›› Подробная информация о расчетах молекулярной массы

В химии вес формулы — это величина, вычисляемая путем умножения атомного веса (в атомных единицах массы) каждого элемента в химической формуле на количество атомов этого элемента, присутствующего в формуле, с последующим сложением всех этих продуктов вместе.

Часто на этом сайте просят перевести граммы в моль. Чтобы выполнить этот расчет, вы должны знать, какое вещество вы пытаетесь преобразовать. Причина в том, что на конверсию влияет молярная масса вещества. Этот сайт объясняет, как найти молярную массу.

Если формула, используемая при расчете молярной массы, является молекулярной формулой, вычисленная формула веса является молекулярной массой. Весовой процент любого атома или группы атомов в соединении можно вычислить, разделив общий вес атома (или группы атомов) в формуле на вес формулы и умножив на 100.

Формула веса особенно полезна при определении относительного веса реагентов и продуктов в химической реакции. Эти относительные веса, вычисленные по химическому уравнению, иногда называют весами по уравнениям.

Используя химическую формулу соединения и периодическую таблицу элементов, мы можем сложить атомные веса и вычислить молекулярную массу вещества.

Определение молярной массы начинается с единиц граммов на моль (г / моль). При расчете молекулярной массы химического соединения он говорит нам, сколько граммов содержится в одном моль этого вещества.Вес формулы — это просто вес в атомных единицах массы всех атомов в данной формуле.

Атомные веса, используемые на этом сайте, получены от NIST, Национального института стандартов и технологий. Мы используем самые распространенные изотопы. Вот как рассчитать молярную массу (среднюю молекулярную массу), которая основана на изотропно взвешенных средних. Это не то же самое, что молекулярная масса, которая представляет собой массу одной молекулы четко определенных изотопов. Для объемных стехиометрических расчетов мы обычно определяем молярную массу, которую также можно назвать стандартной атомной массой или средней атомной массой.


›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

.

Перевести моль диоксида азота в граммы

›› Перевести моль диоксида азота в грамм

Пожалуйста, включите Javascript использовать конвертер величин



›› Дополнительная информация в конвертере величин

Сколько моль диоксида азота в 1 грамме? Ответ — 0,021736531501668.
Мы предполагаем, что вы конвертируете моль диоксида азота в грамм .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
молекулярная масса диоксида азота или грамм
Молекулярная формула диоксида азота NO2.
Основной единицей СИ для количества вещества является моль.
1 моль равен 1 моль диоксида азота, или 46,0055 грамма.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать моль диоксида азота в грамм.
Введите ваши собственные числа в форму для преобразования единиц!


›› Похожие химические формулы

Обратите внимание, что все формулы чувствительны к регистру. Вы хотели преобразовать одну из этих похожих формул?
моль NO2 в граммах
моль NO2 в граммах



›› Таблица перевода моль диоксида азота в граммы

1 моль диоксида азота в граммах = 46.0055 грамм

2 моля диоксида азота в граммах = 92,011 грамма

3 моля диоксида азота в граммах = 138,0165 грамма

4 моля диоксида азота в граммах = 184,022 грамма

5 моль диоксида азота в граммах = 230,0275 грамма

6 моль диоксида азота в граммах = 276,033 грамма

7 моль диоксида азота в граммах = 322,0385 грамма

8 моль диоксида азота в граммах = 368,044 грамма

9 моль диоксида азота в граммах = 414.0495 грамм

10 моль диоксида азота в граммах = 460,055 грамма



›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из граммы диоксида азота в моль, или введите другие единицы для преобразования ниже:

›› Общее количество преобразований веществ

моль диоксида азота на пикомоль
моль диоксида азота на киломоль
моль диоксида азота на сантимоль
моль диоксида азота на атом
моль диоксида азота на миллимоль
моль диоксида азота на децимоль
моль диоксида азота на моль
моль диоксида азота на наномоль
моль диоксид азота к молекуле
моль диоксида азота к микромолю


›› Подробная информация о расчетах молекулярной массы

В химии вес формулы — это величина, вычисляемая путем умножения атомного веса (в атомных единицах массы) каждого элемента в химической формуле на количество атомов этого элемента, присутствующего в формуле, с последующим сложением всех этих продуктов вместе.

Формула веса особенно полезна при определении относительного веса реагентов и продуктов в химической реакции. Эти относительные веса, вычисленные по химическому уравнению, иногда называют весами по уравнениям.

Если формула, используемая при расчете молярной массы, является молекулярной формулой, вычисленная формула веса является молекулярной массой. Весовой процент любого атома или группы атомов в соединении можно вычислить, разделив общий вес атома (или группы атомов) в формуле на вес формулы и умножив на 100.

Определение молярной массы начинается с единиц граммов на моль (г / моль). При расчете молекулярной массы химического соединения он говорит нам, сколько граммов содержится в одном моль этого вещества. Вес формулы — это просто вес в атомных единицах массы всех атомов в данной формуле.

Используя химическую формулу соединения и периодическую таблицу элементов, мы можем сложить атомные веса и вычислить молекулярную массу вещества.

Часто на этом сайте просят перевести граммы в моль.Чтобы выполнить этот расчет, вы должны знать, какое вещество вы пытаетесь преобразовать. Причина в том, что на конверсию влияет молярная масса вещества. Этот сайт объясняет, как найти молярную массу.

Атомные веса, используемые на этом сайте, получены от NIST, Национального института стандартов и технологий. Мы используем самые распространенные изотопы. Вот как рассчитать молярную массу (среднюю молекулярную массу), которая основана на изотропно взвешенных средних. Это не то же самое, что молекулярная масса, которая представляет собой массу одной молекулы четко определенных изотопов.Для объемных стехиометрических расчетов мы обычно определяем молярную массу, которую также можно назвать стандартной атомной массой или средней атомной массой.


›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы.Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *