РадиоКот :: Вторая жизнь компьютерного БП
РадиоКот >Схемы >Питание >Блоки питания >Вторая жизнь компьютерного БП
Всем привет. Не так давно проводя уборку в гараже наткнулся на старый компьютерный БП. Для современных компьютеров он уже слабоват, а выкидывать было жалко. Тогда и родилась идея создания на его основе мощного источника питания для испытания различных радиолюбительских конструкций. В интернете много информации по переделке той или иной модели компьютерных блоков питания под регулируемые лабораторные источники или под другие цели.
После измерения радиолюбительским осциллографом Сага выходных пульсаций было выявлено, что компьютерный БП на выходе даёт высокий уровень высокочастотных помех. Тогда было принято решение ограничиться минимальной переделкой самого БП, а регулировку выходного напряжения выполнить по классической схеме. Это связано с тем, что для сглаживания данных помех нужна батарея конденсаторов, разной ёмкости, а общая суммарная ёмкость получается большой. (т.е. при маленькой нагрузке конденсаторы будут долго разряжаться и изменение выходного напряжения будет запаздывать за непосредственной регулировкой движком переменного резистора, при модернизации обратной связи).
Итак, то что у меня получилось я сегодня Вам и хочу предложить. Начнём с переделки самого БП.
На фото 1 приведён внешний вид уже переделанного БП. Разберём всё по пунктам на модели переделанного мной БП (Модель указана на схеме)
1. Выпаиваем из БП все лишние провода, оставляем только нужную нам шину 12 Вольт и 5 Вольт.
2. Замыкаем на землю провод запуска БП. На плате он подписан pc on и выведен зелёным проводом.
3. Так как импульсный БП нельзя включать без нагрузки, то на шину 5 вольт следует подключить нагрузку 0.2-0.5 А. Для этого я использовал 2 параллельно соединённых резистора 22 Ом 10 Ватт.
4. Далее увеличиваем конденсаторы ( 200 Вольт, 330 микрофарад, находятся на фото 1 слева у радиатора ) до 1000 микрофарад 200 вольт.
5. Устанавливаем дополнительные вентилятор на крышку БП, так, что бы он нагнетал воздух внутрь БП и соединяем его параллельно встроенному вентилятору.
На этом переделку БП можно считать оконченной. После этого его можно смело включать, не опасаясь выхода из строя и проверять на нагрузку.
Если БП запускается и держит нагрузку добавляем блок конденсаторов С1-С13, а так же классическую схему регулирования напряжения на основе составного транзистора VT1-VT2. По постоянному току конденсаторы включены параллельно и их ёмкость складывается, а значит суммарная ёмкость получается большой, что способствует хорошей работе БП на динамическую нагрузку.
По переменному же току конденсаторы так же соединены параллельно, но переменное напряжение более низкой частоты лучше проходит через конденсатор большей ёмкости и сглаживается, а напряжение более высокой частоты через конденсатор меньшей ёмкости. Этим и обусловлено соединение в батарею конденсаторов разной ёмкости. После установки данного блока конденсаторов высокочастотные помехи БП значительно уменьшились до уровня пригодного для испытания большинства радиолюбительских конструкций. Готовый блок конденсаторов и схема регулирования в сборе приведена на рис. 3.
На Рис 2 показан переделанный БП в сборе.
На рис 4 источник питания без установленной верхней крышки.
А на рис 5 источник питания в сборе.
Светодиоды HL1-HL3 являются индикатором напряжения на составном транзисторе, а так же выполняют роль дополнительной подсветки. Индикатор La1 является индикатором включения питания.
Амперметр подойдёт любой на ток полного отклонения 10-12 А, включается последовательно с любой из выходных клем (на схеме не указан).
Выключатель S1 любой на ток более 2-3 А.
Все остальные используемые детали указаны на схеме.
Основным преимуществом данного источника питания является простота его изготовления, кроме того он не нуждается в налаживании и начинает работать сразу после включения. При нагрузке 10 Ампер напряжение не падает ниже 9 вольт, чего для большинства конструкций вполне достаточно.
Файлы:
Схема в формате SPlan
Как вам эта статья? | Заработало ли это устройство у вас? |
Лабораторный блок питания из компьютерного
Нам понадобятся:
1. Блок питания от старого Пк (любой ATX)
2. Модуль ЖК вольтметра
3. Радиатор для микросхемы(любой, подходящий по размеру)
4. Микросхема LM317 (регулятор напряжения)
5. электролитический конденсатор 1мкФ
6. Конденсатор 0.1 мкФ
7. Светодиоды 5мм — 2шт.
8. Вентилятор
9. Выключатель
10. Клеммы — 4шт.
11. Резисторы 220 Ом 0.5Вт — 2шт.
12. Паяльные принадлежности, 4 винта M3, шайбы, 2 самореза и 4 стойки из латуни длиной 30мм.
Я хочу уточнить, что список примерный, каждый может использовать то, что есть под рукой.
Общие характеристики блока питания ATX:
Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера. Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги:а) Входное высокое напряжение сначала выпрямляется и фильтруется.
б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.
высоковольтной и низковольтными частями схемы.
г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.
Основными достоинствами таких источников являются:
— Высокая мощность при небольших размерах
— Высокий КПД
Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В.
К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора.
Мощность блока питания
Электрические характеристики блока питания напечатаны на наклейке (см. рисунок) которая, обычно, находится на боковой стороне корпуса. Из нее можно получить следующую информацию:Напряжение — Ток
3.3В — 15A
5В — 26A
12В — 9А
-5 В — 0,5 А
5 Vsb — 1 A
Для данного проекта нам подходят напряжения 5В и 12В. Максимальный ток, соответственно будет 26А и 9А, что очень неплохо.
Питающие напряжения
Выход блока питания ПК состоит из жгута проводов различных цветов. Цвет провода соответствует напряжению:Нетрудно заметить, что кроме разъемов с питающими напряжениями +3.3В, +5В, -5В, +12В, -12В и земли, есть еще три дополнительных разъема: 5VSB, PS_ON и PWR_OK.
Разъем 5VSB используется для питания материнской платы, когда блок питания находится в дежурном режиме.
Разъем POWER_OK в дежурном режиме имеет состояние близкое к нулю. После включения блока питания и формировании на всех выходах напряжений нужного уровня на разъеме POWER_OK появляется напряжение около 5В.
ВАЖНО: Чтобы блок питания работал без подключения к компьютеру необходимо соединить зеленый провод с общим проводом. Лучше всего это сделать через переключатель.
Модернизация блока питания
1. Разборка и чистка
Нужно разобрать и хорошо очистить блок питания. Лучше всего для этого подойдет пылесос включенный на выдув или компрессор. Нужно проявлять повышенную осторожность, т.к. даже после отключения блока питания от сети на плате остаются напряжения, опасные для жизни.
2. Подготавливаем провода
Отпаиваем или откусываем все провода, которые не будут использованы. В нашем случае, мы оставим два красных, два черных, два желтых, сиреневый и зеленый.
Если есть достаточно мощный паяльник — лишние провода отпаиваем, если нет — откусываем кусачками и изолируем термоусадкой.
3. Изготовление передней панели.
Сначала нужно выбрать место для размещения передней панели. Идеальным вариантом та будет сторона блока питания, с которой выходят провода. Затем делаем чертеж передней панели в Autocad или другой аналогичной программе. При помощи ножовки, дрели и резака из куска оргстекла изготавливаем переднюю панель.
4. Размещение стоек
Согласно отверстий для крепления в чертеже передней панели просверливаем аналогичные отверстия в корпусе блока питания и прикручиваем стойки, которые будут держать переднюю панель.
5. Регулировка и стабилизация напряжения
Для возможности регулировки выходного напряжения нужно добавить схему регулятора. Была выбрана знаменитая микросхема LM317 из-за ее простоты включения и невысокой стоимости.LM317 представляет собой трехвыводный регулируемый стабилизатор напряжения, способный обеспечить регулировку напряжения в диапазоне от 1.2В до 37В при токе до 1.5А. Обвязка микросхемы очень простая и состоит из двух резисторов, которые необходимы для задания выходного напряжения. Дополнельно данная микросхема имеет защиту перегрева и перегрузки по току.
Схема включения и распиновка микросхемы приведены ниже:
Резисторами R1 и R2 можно регулировать выходное напряжение от 1.25В до 37В. Т.е в нашем случае, как только напряжение достигнет 12В, то дальнейшее вращение резистора R2 напряжение регулировать не будет. Чтобы регулировка происходила на всему диапазону вращения регулятора необходимо рассчитать новое значение резистора R2. Для расчета можно использовать формулу, рекомендуемую производителем микросхемы:
Либо упрощенная форма этого выражения:
Vout = 1.25(1+R2/R1)
Погрешность при этом получается очень низкой, так что вторую формулу вполне можно использовать.
Принимая во внимание полученную формулу можно сделать следующие выводы: когда переменный резистор установлен на минимальное значение (R2 = 0) выходное напряжение составляет 1.25В. При вращении ручки резистора выходное напряжение будет возрастать, пока не достигнет масимального напряжения, что в нашем случае составляет чуть меньше 12В. Другими словами максимум у нас не должен превышать 12В.
Приступим к расчету новых значений резисторов. Сопротивление резистора R1 возьмем равным 240 Ом, а сопротивление резистора R2 рассчитаем:
R2=(Vout-1,25)(R1/1.25)
R2=(12-1.25)(240/1.25)
R2=2064 Ома
Ближайшее к 2064 Ом стандарное значение сопротивления резистора равно 2 кОм. Значения резисторов будут следующие:
R1=240 Ом, R2=2 кОм
На этом расчет регулятора закончен.
6. Сборка регулятора
Сборку регулятора выполним по следующей схеме:Ниже приведу принципиальную схему:
Сборку регулятора можно выполнить навесным монтажем, припаивая детали напрямую к выводам микросхемы и соединяя остальные детали при помощи проводов. Также можно специально для этого вытравить печатную плату или собрать схему на монтажной. В данном проекте схема была собрана на монтажной плате.
Еще обязательно нужно прикрепить микросхему стабилизатора к хорошему радиатору. Если радиатор не имеет отверстия для винта, тогда оно делается сверлом 2.9мм, а резьба нарезается тем же винтом М3, которым будет прикручена микросхема.
Если радиатор будет прикручен напрямую к корпусу блока питания, тогда необходимо изолировать заднюю часть микросхемы от радиатора кусочком слюды или силикона. В этом случае винт, которым прикручена LM317 должен быть изолирован с помощью пластиковой или гетинаксовой шайбы. Если же радиатор не будет контактировать с металлическим корпусом блока питания, микросхему стабилизатора обязательно нужно посадить на термопасту. На рисунке можно увидеть, как радиатор крепится эпоксидной смолой через пластину оргстекла:
7. Подключение
Перед пайкой необходимо установить светодиоды, выключатель, вольтметр, переменный резистор и разъемы на переднюю панель. Светодиоды отлично вставляются в отверстия, просверленные 5мм сверлом, хотя дополнительно их можно закрепить суперклеем. Переключатель и вольтметр держатся крепко на собственных защелках в точно выпиленных отверстиях Разъемы крепятся гайками. Закрепив все детали, можно приступать к пайке проводов в соответствии со следующей схемой:
Для ограничения тока последовательно с каждым светодиодом припаивается резистор сопротивлением 220 Ом. Места соединений изолируются при помощи термоусадки. Коннекторы припаиваются к кабелю напрямую или через переходные разъемы Провода должны быть достаточно длинными, чтобы можно было без проблем снять переднюю панель.
Перед подключением вольтметра, нужно внимательно разобраться со схемой подключения, рекомендованной производителем.
Встречаются модели с внешним питанием и питанием от измеряемого напряжения.
В нашем случае для питания индикатора необходимо было постоянное напряжение 9-12В. Для этих целей подойдет плата от любого блока питания, способная выдавать требуемое напряжение или зарядное устройство от старого телефона. Также возможно использовать одно из фиксированных напряжений блока питания ATX.
8. Последние штрихи
Первое, что мы можем сделать, так это приклеить четыре силиконовый ножки-подставки, чтобы не царапать стол, понизить уровень шума и способствовать лучшему охлаждению БП.
Далее, необходимо закрыть боковые грани между блоком питания и передней панелью полосками оргстекла. Ширина полосок должна быть такой же, как и высота стоек, которые мы использовали. Боковые панели соединяем с передней панелью при помощи дихлорэтана или клея. Для улучшения охлаждения сверлим отверстия напротив радиатора охлаждения. Так же, чтобы улучшить охлаждение нижнюю полоску можно не ставить.
Наш лабораторный блок питания почти готов, но для начала проведем с ним некоторые тесты.
9. Испытания
Измерения:
При помощи мультиметра нужно измерить напряжение между общим разъемом и разъемами с напряжением. При измерении регулируемого выхода измерения проводятся минимального и максимального напряжения. Результаты следующие:
Защита:
Поскольку блок питания компьютера имеет защиту от перегрузки и короткого замыкания, мы можем это проверить. Для этого закорачиваем проводом общий разъем и разъем 5В или 12В. Блок питания должен отключиться. Для повторного его включения необходимо выключить и снова включить выключатель подачи 220В. Регулируемый выход защищен микросхемой LM317. Защита в зависимости от температуры микросхемы срабатывает при превышении тока нагрузки 2-3А.
10. Улучшение
В процессе эксплуатации было замечено, что на микросхеме LM317 рассеивается очень большое количество тепла и радиатор достаточно горячий. Поэтому дополнительно, при помощи двух шурупов, был установлен 12-ти вольтовый вентилятор от видеокарты.
Питание вентилятора берется с выхода 12В, и желательно запитать его через дополнительный выключатель, чтобы вставить его только тогда, когда это необходимо.
Результат
В основу написания легла статья с испанского сайта http://www.taringa.net
Простая схема мощного, лабораторного блока питания.
Для нашего лабораторного блока питания понадобится всего 8 деталей, самое главное трансформатор, у которого на выходе порядка 12 -15 вольт. Транзистор возьмём простой и самый распространенный КТ805 с радиатором охлаждения.
Два конденсатора первый на 220 микрофарад 40 Вольт, второй на 2200 микрофарад 25 Вольт.



Резисторы на 1ком и 270 ом. Диодный мост, который рассчитан на 3-4 ампера. И переменный резистор на 10 килоом. Вот вроде все детали, которые нам понадобится для сбора нашей поделки. Делать будем простым навесным монтажом.
Собирать будем вот по такой, простой схеме…

Теперь берём небольшой проводок и припаем его к коллектору транзистора, а другим концом к плюсу нашего диодного моста.

Дальше берем конденсатор на 2200 микрофарад 25 Вольт, к нему припаиваем параллельно резистор 1 ком, который служит для плавного регулирования выходящего тока. Далее припаиваем плюс конденсатора к эммитору транзистора, а минус к нашему диодному мосту.


Затем берём наш второй конденсатор на 220 микрофарад, его минус припаиваем к минусу диодного моста, а плюс соответственно к плюсу диодного моста.

Теперь давайте разберемся и припаяем наш подстроечный резистор. Берем его левый контакт и припаиваем к минусу диодного моста, средний контакт резистора припаиваем в базе нашего транзистора, а третий, правый контакт припаиваем к сопротивлению на 270 ом, а второй конец сопротивления припаиваем к плюсу диодного моста.

Вот и собрали мы нашу схему навесным монтажом, теперь осталось припаять только трансформатор к схеме, это сделать очень просто, берём выход вторичной обмотки и припаиваем к переменным контактом диодного моста.
теперь осталось припаять только трансформатор к схеме, это сделать очень просто, берём выход вторичной обмотки и припаиваем к переменным контактом диодного моста.

Ну и осталось припаять только провода, которые служат выходом нашей схемы. Один провод «плюс» мы при паяем к эмиттеру транзистора, а второй минусовой провод паяем к минусу диодного моста.

Вот и готова наша простая схема небольшого лабораторного блока питания, который я надеюсь поможет вам в дальнейшем, никаких настроек он не требует и работает сразу.
Переделка компьютерного блока питания своими руками | Своими руками
В современном компьютере единственное, что не устаревает стремительно, — это блок питания (БП). Если системный блок через некоторое время уже не представляет никакого интереса, то блок питания можно использовать отдельно как источник электричества малого напряжения.
Компьютерный БП ATX — довольно мощный и при этом благодаря импульсной схеме преобразования напряжения имеет малые габариты. Блок хорошо защищен от перегрузок и по току, и по напряжению, и от короткого замыкания (фото 1). Сложная электронная схема обеспечивает на выходе ряд стандартных для всех компьютеров напряжений: +3,3 В, +5 В, +12 В, -12 В, -5 В и дежурное 5 В. В зависимости от назначения мощности различных БП. а также их максимальные токи нагрузки различаются.
Я предлагаю использовать компьютерные блоки для питания разных устройств. Для этого необходима небольшая их доработка.
Маркировка проводов и конфигурация контактного разъёма компьютерных БП — стандартны (см. таблицы и фото).
Хороший блок питания должен выдерживать диапазон изменения входного напряжения при сохранении стабильной работы. Для 110-вольтовых моделей хороший блок питания должен «держать» от 90 до 130В, для 220В — 180 до 270.
Вывод 14: PS_0N Power Supply On (active low). Это управляющий вход. При замыкании общим проводом с СОМ блок питания включается, при размыкании — отключается.
Вывод 9: +5 VSB, Standby Voltage (max 2А) — дежурное питание +5 В присутствует даже при выключенном БП.
Так как импульсный блок питания без нагрузки включать не рекомендуется, необходимо обеспечить ему хотя бы минимальную нагрузку. Я использовал два светодиода и подключил их черезрезисторы около 1 кОм к контактам +5 В и +12 В. Они и в дальнейшем будут индикаторами наличия напряжения на этих выходах.
Кроме того, на каждой линии всех требуемых напряжений необходимо установить конденсаторные фильтры. Чем больше будет их ёмкость (от 1 000 мкФ и выше), тем лучше. Для проверки работоспособности БП нужно включить его в сеть и убедиться в наличии дежурного питания (+5 В) на выводе 9 ОС. Если оно присутствует, то можно идти дальше и проводами соединить вывод 1Д PS_0N с корпусом СОМ, благодаря чему блок питания (если он исправен) сразу запустится. Эти два провода нужно подсоединить к любому переключателю (фото 2). Таким образом и будет происходить управление включением и выключением нашего блока.
Для напряжения +5 В можно использовать ионистор любой ёмкости на напряжение 5,5 В, что благоприятно отразится на работе в любом режиме. Если необходимо напряжение 3,3 В (контакт 11 на 20-контактном разъёме) для питания, например, фотоаппарата, то для него тоже лучше использовать ионистор. Эти немногочисленные элементы нужно разместить на подходящей монтажной плате (фото 3).
Читайте также: Электропроводка на даче своими руками – схемы и фото
Вот и всё, варианты размещения элементов и выключателя могут быть разными — в зависимости от конкретных возможностей. Так как на полной нагрузке (ток 15-20 А) в новых условиях блок питания вряд ли будет работать, то интенсивное охлаждение ему не потребуется, и для снижения шума внутренний вентилятор (на 12 В) можно питать через ограничительный резистор сопротивлением 100 Ом с рассеиваемой мощностью 1 Вт.
Таблица 1. Основной разъём питания.
№ контакта | Цепь | Цвет провода |
1 | +3,3 В | Оранжевый |
2 | +3,3 В | Оранжевый |
3 | СОМ | Чёрный |
и | +5 В | Красный |
5 | СОМ | Чёрный |
6 | 5 В | Красный |
7 | СОМ | Чёрный |
8 | PWR_OK | Серый |
9 | +5 В | Лиловый |
10 | +12 В | Жёлтый |
11 | +3.3 В (датчик +3.3 В) | Оранжевый (коричневый) |
12 | -12 В | Голубой |
13 | СОМ | Чёрный |
14 | PS ON | Зелёный |
15 | СОМ | Чёрный |
16 | СОМ | Чёрный |
17 | СОМ | Чёрный |
18 | -5 В | Белый |
19 | +5 В | Красный |
20 | +5 В | Красный |
Ссылка по теме: Схема проходного выключателя и его монтаж своими руками
Таблица 2. Дополнительный соединитель для блоков с большими выходными токами.
№ контакта | Цепь | Цвет провода |
1 | СОМ | Чёрный |
2 | сом | Черный |
3 | сом | Чёрный |
4 | +3,3 В | Оранжевый |
5 | +3.3 В | Оранжевый |
6 | +5 В | Красный |
Компьютерный блок питания как источник электричества малого напряжения – фото
1.Общий вид блока питания, извлечённого из системного блока компьютера.
2. Установив выключателя на модернизированном блоке питания.
3. Монтажные платы для установки ёмкостных фильтров на выходах с разным напряжением.
4. Разъёмы на выходе блока питания: а — 20-контактный; 6 — 4-контактный.
Схема контактов для разъемов компьютерных компонентов.
©Алексей Усков, Владивосток
ИНСТРУМЕНТ ДЛЯ МАСТЕРОВ И МАСТЕРИЦ, И ТОВАРЫ ДЛЯ ДОМА ОЧЕНЬ ДЕШЕВО. БЕСПЛАТНАЯ ДОСТАВКА. ЕСТЬ ОТЗЫВЫ.
Ниже другие записи по теме «Как сделать своими руками — домохозяину!»
Подпишитесь на обновления в наших группах и поделитесь.
Будем друзьями!
Переделка компьютерного БП в двухполярный источник питания
В очередной раз встает вопрос о переделке компьютерного блока питания. На этот раз в двухполярный источник питания. Возникла нужда в таком источнике питания для усилителя. Но железный трансформатор мотать не хочется, а сборка с нуля импульсного блока питания занимает слишком много времени. Вот и было решено получить нужное напряжение из компьютерного блока питания. Сам источник питания был необходим для усилителя на микросхеме TDA7294.

И стоит заметить, что многие начинающие радиотехники сталкиваются с такой проблемой – собрали усилитель, но не могут определиться с блоком питания.
На самом деле это сложно назвать переделкой, поскольку компьютерный блок питания без всяких разных переделок может отдавать нужное напряжение для подобных целей. И для этого прежде всего необходимо раздобыть рабочий блок питания абсолютно любой мощности и формата.
Про силовые шины и выходные напряжения должно быть все понятно из следующего рисунка:
По идее, необходимо соединить зеленый провод с любым из черных, чтобы запустить блок питания.
Затем нужно взять пару многожильных проводов и припаять их к тем выводам трансформатора, которые изображены на рисунке ниже:
Ничего сложного! А вся хитрость в том, что в компьютерном блоке питания все выпрямители однополярного типа со средней точкой.
То есть все обмотки, по сути, двухполярные, и если использовать концы этих обмоток и пустить их на отдельный диодный выпрямитель, то можно получить напряжение в 2 раза больше, чем с однополярным выпрямителем, который задействован в компьютерном блоке питания.
Земля блока питания останется самой собой и в этом случае, то есть средней точкой.
Остается подобрать только диодный мост.
В предлагаемом варианте необходимо использовать диоды с обратным напряжением не меньше 100 В. Они обязательно должны быть импульсного типа. Можно также задействовать диоды Шоттки.
Идеальным вариантом являются отечественные КД213. Они довольно мощные и к тому же без проблем работают на таких частотах.
После переделки получается двухполярное напряжение, а если быть точнее, двухполярные 30 В. Это как раз то, что нужно для микросхем типа TDA7294.
И самое важное – будет работать защита. При коротком замыкании блок попросту уйдет в защиту. Чтобы снять ее, необходимо на короткое время разъединить зеленый и черный провода, а затем соединить снова. Если блок будет постоянно использоваться, то стоит поставить выключатель.
В зависимости от блока питания 12-вольтовые шины на трансформаторе могут быть с разных сторон, поэтому, чтобы не путаться, необходимо отследить путь желтого выходного провода и найти диодную сборку на шине 12 В.
Потом нужно припаять провода к крайним выводам этой сборки.
Не будет работать только стабилизация, но, в принципе, для питания усилителя она вовсе не нужна.
Автор: Алексей Алексеевич. Мурманск.
Отзывы о блоке питания для компьютера
— интернет-магазины и отзывы на блок питания для компьютера своими руками на AliExpress
Отличные новости !!! Вы попали в нужное место для приобретения компьютерного блока питания своими руками. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший компьютерный блок питания своими руками станет одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели блок питания для компьютера на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не знаете, как сделать блок питания для компьютера и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести diy блок питания для компьютера по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.
Блок питания My DIY Bench
Опубликовано 18 декабря 2012 г.
Еще одна вещь, которая нужна всем (и, вероятно, построила), — это простой лабораторный настольный блок питания. Многие люди используют такие вещи, как модифицированные блоки питания для ПК, но я не был сторонником этого, потому что мне нужно было что-то меньшее, с меньшим током и более чистое (с точки зрения RF). Мне не нужно ничего особенно мощного, просто что-то, чтобы обеспечить несколько общих напряжений для цифровой логики и небольших радиочастотных схем. Вот что я придумал!
На изображении выше вы можете увидеть обычный светодиод, который питается напрямую от 5-вольтовой розетки. Токоограничивающего резистора нет, поэтому через светодиод проходит много тока, который сжигается, когда я его фотографировал.Амперметр (синий номер) показывает, что он потребляет 410 мА — эй! Макет довольно простой. Каждое подключение к красной банановой вилке обеспечивает напряжение (5, 5, 12 и переменное соответственно). Черные соединения заземлены. Черный разъем в верхнем левом углу — это заземление, чувствительное к току, и ток, проходящий через него, будет отображаться на синем циферблате. Правый циферблат показывает напряжение источника переменного напряжения и может варьироваться от 3,5 до 30,5 В в зависимости от того, где установлен потенциометр. Все выходы напряжения рассчитаны на ток около 1А.
Я построил это, используя множество компонентов (eBay), которые у меня были под рукой. Я часто экономлю деньги там, где могу, снабжая свой верстак комплектующими, которые покупаю оптом. Вот что я использовал:
- Вольтметр постоянного тока 4,5–3,0 В — 2,08 доллара США (отправлено) eBay
- 0-9,99 Амперметр — 4,44 доллара США (с доставкой) eBay
- L7805 Стабилизатор напряжения 5 В — 10 за 3,51 доллара (0,35 доллара США за шт.) (Отправлено) eBay
- L7812 Регулятор напряжения 12 В — 20 за 3,87 доллара (0,19 доллара за шт.) (Отправлено) eBay Стабилизатор переменного напряжения
- LM317 — 20 за 6 долларов.15 (0,30 долл. США за шт.) (Отправлено) eBay
- Линейный потенциометр 10 кОм — 10 за 4,00 (0,40 доллара США за шт.) (Отправлено) eBay
- подключения банановой вилки — 20 за 3,98 доллара (0,20 доллара за шт.) (Отправлено) eBay
- алюминиевый корпус — 3,49 $ (радиошак)
ИТОГО: 13,60 $
Фактически работает переменное напряжение? Вольтметр точен? Давай проверим.
Я бы сказал, работает нормально! Теперь у меня новый взгляд на рабочий стол.
Примечание о желтом цвете: Корпус, который я получил, изначально был из серебристого алюминия.Я отшлифовал его (чтобы сделать поверхность шероховатой), затем распылил желтой краской из спрея рустолеум. Я подумал, что это должно было быть по металлу, так что я мог бы попробовать. Я распылил его один раз, затем нанес второй слой через 20 минут, а затем дал высохнуть в течение ночи. В будущем я бы попробовал покрыть поверхность лаком, потому что его немного легко поцарапать. Тем не менее, это выглядит довольно круто, и в будущем мне придется начать окрашивать распылением больше моих корпусов.
Примечание о сглаживающих конденсаторах. Практически на всех схемах линейных регуляторов напряжения, таких как LM7805, показаны разделительные конденсаторы до и после регулятора. Я добавил несколько разных номиналов конденсаторов на входе (вы можете увидеть их на схеме), но я намеренно сделал , а не , включал сглаживающие конденсаторы на выходе. Причина заключалась в том, что я всегда ставил сглаживающие конденсаторы в свои макеты и в свои проекты, ближе к реальной схеме. Если бы я включил (и полагался) на выходные конденсаторы на уровне источника питания, я бы улавливал радиочастотный шум 60 Гц (и другой мусор) в кабелях, идущих от источника питания к моей плате.Короче говоря, на выходе нет конденсаторов, поэтому всегда нужно использовать хороший дизайн и добавлять развязывающие конденсаторы во все создаваемые схемы.
Вход этой схемы представляет собой источник питания 48 В от устаревшего струйного принтера. Он был прикреплен к разъему RCA, чтобы его можно было легко подключать и отключать.
Вот быстрый и простой способ подключить зарядное устройство / блок питания USB от розетки.Его можно использовать для зарядки / питания PSP, iPod или любого другого USB-устройства. Сначала вам нужно приобрести регулируемую настенную бородавку 5 В постоянного тока, рассчитанную на 500 мА или выше. Тот, который я использовал, взят с диска IoMega Zip. Он имеет импульсный стабилизатор с выходом 5 В постоянного тока на 1 ампер. Это отличный способ превратить старую бородавку (подключить блок питания) в полезный источник питания USB, и для него требуется очень мало дополнительных компонентов. ![]() 1) резистор 330 Ом 1/4 Вт ![]() Загрузки Блок питания DIY USB — Ссылка
|