Пайка алюминия своими руками | Строительный портал
Обычно пайку алюминия производят в рамках промышленных цехов. В домашних условиях эту процедуру провести достаточно проблематично, потому что после зачистки на поверхности металла почти сразу возникает оксидная пленка, которая и усложняет процесс. Однако не стоит расстраиваться, все-таки существует несколько способов пайки алюминия своими руками, когда пленка окислов, что покрывает деталь, разрушается непосредственно в момент проведения пайки.
Содержание:
- Характеристика алюминия как металла
- Применение алюминия и сплавов
- Особенности пайки алюминия
Характеристика алюминия как металла
Алюминий характеризуется высокими показателями электро- и теплопроводности, коррозионной и морозостойкости, а также пластичности. Температура плавления этого металла составляет около 660 градусов по Цельсию.
Зависимо от уровня очистки, первичный алюминий бывает высокой или технической чистоты.
Важное свойство алюминия состоит в его высокой электропроводности, он уступает по этому показателю только серебру, золоту и меди. Сочетание высокой электропроводности и небольшой плотности делает алюминий серьезным конкурентом меди в области производства кабельно-проводниковой продукции. Длительный отжиг алюминия при 350 градусах улучшает проводимость металла, а нагартовка — ухудшает. Электропроводность алюминия доходит до 60-65% от проводности меди и растет с уменьшением содержания примесей.
Алюминий по теплопроводности уступает только меди и серебру, превышая втрое теплопроводность малоуглеродистой стали, что можно узнать и видео о пайке алюминия. Отражательная способность металла зависит от его чистоты. Отражаемость для фольги с присутствием алюминия 99,5% составляет 84%.
Алюминий сам по себе является химически активным металлом. Однако на воздухе металл покрывается тонкой пленкой окиси алюминия – около микрона. Обладая химической инертностью и большой прочностью, она защищает материал от окисления и определяет высокий уровень его антикоррозионных свойств во многих средах. Окисная пленка в алюминии высокой чистоты является сплошной и беспористой, имеет прочное сцепление с самим металлом.
Поэтому алюминий высокой чистоты очень стоек к неорганическим кислотам, щелочам, морской воде и воздуху. Сцепление алюминия с окисной пленкой в месте нахождения примесей заметно ухудшается, и эти места являются уязвимыми для коррозии. К примеру, по отношению к неконцентрированной соляной кислоте стойкость технического и рафинированного алюминия различается в 10 раз.
Применение алюминия и сплавов
Алюминий широко используется как конструкционный материал благодаря своим основным достоинствам — легкости, податливости штамповки, коррозионной стойкости, высокой теплопроводности, неядовитости его соединений. В частности, данные характеристики сделали алюминий популярным при изготовлении алюминиевой фольги, кухонной посуды и упаковки в пищевой промышленности.
Но металл из-за низкой прочности применяется исключительно для ненагруженных элементов конструкций в случаях, когда на первый план выносится электро- или теплопроводность, пластичность и коррозионная стойкость. Такой недостаток, как малая прочность, компенсируется путем сплавления алюминия с небольшим количеством магния и меди. Сплав называют дюралюминий.
Электропроводность алюминия вполне можно сравнить с медью, но алюминий при этом стоит дешевле. Поэтому этот материал широко используется в электротехнике для производства проводов, их экранирования и при изготовлении проводников в чипах в микроэлектронике. Внедрение в строительстве алюминиевых сплавов уменьшает металлоемкость, увеличивает надежность и долговечность конструкций при использовании в экстремальных условиях.
На современном этапе эволюции авиации алюминиевые сплавы выступают основными конструкционными материалами.
Особенности пайки алюминия
Проблемы, которые касаются пайки алюминия, можно объяснить тем, что поверхность данного материала покрыта тонкой, весьма прочной и эластичной пленкой окисла. Из повседневного знакомства с предметами из алюминия или его сплава у многих сложилось неправильное представление, что подобно благородным металлам алюминий не склонен к окислению в атмосфере. Окисная пленка, как и большинство прочих окислов, инертна и плохо смачивается расплавленным металлом, поэтому эту пленку при пайке необходимо предварительно удалить.
Удаление окисной пленки
Окисел не удается удалить механическими методами, потому что при соприкосновении поверхности алюминия с водой или воздухом он снова моментально покрывается пленкой окисла. Флюсы, как правило, не растворяют окись. Вот почему пайка алюминия и изделий, изготовленных из него, считается достаточно сложной задачей, а технология пайки алюминия отличаются во многом от технологии паяния других металлов.
Для механической очистки поверхности от окисла рекомендуется зачищать металл под пленкой масла, однако масло должно быть в этом случае совершенно обезвожено, для чего его рекомендуется прогревать на протяжении некоторого времени при температуре близко 150-200 градусов. Лучше всего использовать минеральные масла или вакуумные ВМ-4, ВМ-1.
Предлагается также способ зачистки поверхности при помощи грубых железных опилок, что растираются по поверхности металла под слоем канифоли или масла жалом паяльника вместе с припоем. В этом случае опилки выполняют функцию абразива, одновременно происходит процесс облуживания. Более надежную пайку алюминия можно получить, облуживая металл по подслою меди, что электролитически нанесен на поверхность материала.
Для тех же целей можно использовать и подслой цинка, что нанесен также, как в рецепте хромирования алюминия. Пленка окисла более надежно удаляется с помощью специальных активных флюсов. Хорошо сочетать процедуру механической обработки поверхности с использованием активных флюсов.
Пайка с использованием канифоли
Для спаивания двух проводов из алюминия их нужно предварительно залужить. Для этого покрывают конец провода канифолью, помещают на шлифовальную шкурку, что имеет среднее зерно, и прижимают горячим залуженным паяльником к шлифовальной шкурке. Также для пайки можно использовать раствор известной нам канифоли в диэтиловом эфире. Паяльник при этом не отнимают от провода и добавляют на залуживаемый конец канифоль.
Провод залуживается отлично, но все манипуляции нужно повторять несколько раз. После этого пайка алюминия в домашних условиях идет обычным чередом. Также хороший результат можно получить, если взять вместо канифоли минеральное масло для швейной машины и точных механизмов или щелочное масло, что предназначено для чистки после стрельбы оружия.
Паяют алюминий хорошо нагретым паяльником. Чтобы соединить тонкий алюминий, необходимо, чтобы паяльник имел мощность 50 Вт, для металла толщиной около 1 миллиметра и больше желательна мощность порядка 90 Вт. При пайке материала, что имеет толщину больше 2 миллиметров, место пайки предварительно необходимо прогреть паяльником.
Электрохимическая методика
Второй способ пайки алюминия состоит в том, что перед непосредственной пайкой поверхность (пластинку или провод) необходимо предварительно омеднить, используя самую простую установку для гальванического покрытия. Однако вы можете сделать проще. Зачистите место пайки шлифовальной шкуркой и нанесите на него аккуратно пару капель насыщенного медного купороса.
Далее подключите к алюминиевой детали отрицательный полюс источника тока (выпрямитель, аккумулятор, батарейка от карманного фонаря), а к положительному полюсу присоедините кусок медного провода без изоляции толщиной 1— 1,2 миллиметра, который находится в специальном устройстве.
Медный провод должен находиться в щетине зубной щетки таким способом, чтобы он не касался поверхности во время трения щетины — процедуры омеднения детали. Через определенное время на поверхности детали из алюминия в результате электролиза будет оседать слой красной меди, который лудят после промывки и сушки традиционным способом с помощью паяльника.
Как вариант, вы можете использовать при пайке алюминия своими руками вместо раствора купороса соляную аккумуляторную кислоту: необходимо капнуть немного вещества в место пайки и потом водить по контактной площадке медным приводом. Осаждение меди будет происходить быстрее, чем в первом варианте, но с кислотой следует обращаться осторожно.
Чтобы кислота не разъела лишний участок, его следует залить парафином или заклеить скотчем, оголив нужную площадь. Место пайки обязательно промывается тщательно водой. Таким образом, можно проводить надежную пайку алюминия и меди, а контактные площадки при этом будут иметь аккуратную форму.
Пайка алюминия припоями
При пайке алюминия припоем основная задача кроется в первоначальном покрытии поверхности металла слоем припоя и пайке деталей, что облужены припоем. Залуженные детали из алюминия можно спаивать не только между собой, но и с деталями, что изготовлены из других сплавов и металлов.
Вы можете производить паяние алюминия легкоплавкими припоями на основе цинка, олова или кадмия и тугоплавкими на основе алюминия. Припои легкоплавкие считаются удобными тем, что позволяют проводить процесс пайки алюминия оловом при низких температурах (150—400 градусов) и избежать тем самым существенного изменения первоначальных свойств алюминия.
Соединения алюминия, что спаяны легкоплавкими припоями, особенно это касается сплавов кадмия и олова, образуют нестойкую с коррозионной позиции пару и коррозионным разрушениям плохо сопротивляются. Наиболее надежными являются более тугоплавкие припои на основе алюминия, которые содержат медь, цинк и кремний.
Простейшим из них выступает сплав алюминия с кремнием (11,7%). Еще более надежный результат дает легкоплавкий сплав алюминия с 28% Сu и 6% Si. Пайку совершают обычным паяльником, его жало прогревают до температуры 350 градусов по Цельсию, с использованием флюса, который представляет из себя смесь йодида лития и олеиновой кислоты.
Пайка сплавов алюминия
Используя припой 34А и флюс 34А, вы сможете паять не только сам алюминий, но также определенные его сплавы. Пайке легче всего поддаются сплавы АМц и авиаль, сложнее — дуралюмин, В95, АК4 и литейные сплавы, которые имеют более низкую температуру плавления. Паять сплав В95 и дуралюмин припоем 34А можно исключительно при изготовлении мелких изделий и с большой осторожностью для избегания пережога или образования в процессе пайки расплавления металла.
Вследствие большого нагрева при пайке, сплав В95 и дуралюмин переходят в отожженное состояние, при этом наблюдаются потери не меньше 30% прочности материала в области пайки, а его прочность в случае пережога материала падает больше чем вдвое.
При нагреве также нужно учитывать риск коробления металла, поэтому пайку горелкой нагруженных и крупногабаритных деталей из сплава В95 и дуралюмина рекомендовать не будем. Пайку мелких изделий из дуралюмина также безопаснее и целесообразнее производить в печи, а не горелкой, где можно регулировать температуру пайки точнее и благодаря этому избежать коробления и пережога деталей.
Для снятия стойкой окисла Аl2О3 принято использовать особо активные флюсы. Самое широкое применение получили при пайке алюминия флюсы на алюминиевой основе, что известны под индексами НИТИ-18 и 34А. При употреблении флюса 34А стоит помнить, что он способен вызывать сильную коррозию металла, поэтому остатки флюса после пайки должны быть удалены.
Паяное изделие с этой целью нужно подвергнуть специальной обработке:
- Промыть щетками в горячей воде (температура 70—80 градусов) на протяжении 15—20 минут;
- Промыть в холодной проточной воде ещё 20—30 минут;
- Обработать в растворе хромового ангидрида;
- Промыть в холодной воде;
- Просушить при температуре около 80—120 градусов по Цельсию в течение 20 минут – получаса.
Таким образом, чтобы спаять данный металл нужно запастись специальным оборудованием для пайки алюминия и выбрать один из методов пайки: паяние с механическим разрушением окисла или с химическим разрушением пленки.
Ремонт алюминия своими руками
Самое подробное описание: ремонт алюминия своими руками от профессионального мастера для своих читателей с фотографиями и видео из всех уголков сети на одном ресурсе.
Пайка алюминия, как справедливо считают многие специалисты, является достаточно сложным в выполнении технологическим процессом. Между тем такое мнение можно считать верным лишь в отношении тех ситуаций, когда спаять изделия из алюминия пытаются, используя для этого припои и флюсы, которые применяются для соединения деталей из других металлов: меди, стали и др. Если же используется специальный флюс для пайки алюминия, а также соответствующий припой, то данный технологический процесс не представляет особых сложностей.
Пайка алюминия с использованием пропановой горелки
Сложности, которые вызывает пайка алюминия при помощи традиционных припоев и флюсов, объясняются рядом факторов, преимущественно связанных с характеристиками данного металла. Основным из таких факторов является наличие на поверхности деталей из алюминия оксидной пленки, которая отличается высокой температурой плавления и исключительной химической стойкостью. Такая пленка при выполнении пайки препятствует соединению основного металла и материала припоя.
Видео (кликните для воспроизведения). |
Перед осуществлением пайки изделий из алюминия их поверхности необходимо тщательно очистить от оксидной пленки, для чего можно использовать механическую обработку или применять флюсы, в состав которых входят сильнодействующие компоненты.
Подготовленные к пайке дюралевые детали
Сам алюминий, в отличие от оксидной пленки на его поверхности, обладает достаточно низкой температурой плавления: 660 градусов, что также осложняет технологический процесс выполнения пайки. Такая характеристика алюминия приводит к тому, что при нагреве детали из него быстро теряют прочность, а при определенной температуре, находящейся в интервале 250–300 градусов, конструкции из данного металла начинают терять устойчивость. Самый легкоплавкий компонент, который входит в состав наиболее распространенных алюминиевых сплавов, начинает плавиться уже в интервале температур 500–640 градусов, что может привести к перегреву и даже к расплавлению самих соединяемых деталей.
Основу большей части легкоплавких припоев, использующихся для пайки, составляют олово, кадмий, висмут и индий. С этими элементами алюминий плохо вступает в соединения, что делает паяные соединения, полученные с их использованием, очень непрочными и ненадежными. Хорошей взаимной растворимостью обладают алюминий и цинк, поэтому данный элемент при его использовании в припоях обеспечивает полученному соединению высокую прочность.
Характеристики флюсов для пайки мягкими припоями
Состав флюсов, применяемых для пайки алюминия
При выполнении пайки изделий из алюминия можно использовать припои оловянно-свинцовой группы, если тщательно очистить поверхность деталей и применять высокоактивные флюсы. Соединения, полученные с их помощью, по причине плохой взаимной растворимости алюминия, олова и свинца отличаются невысокой надежностью, также они склонны к развитию коррозионных процессов. Чтобы сделать подобные соединения более устойчивыми к коррозии, их необходимо покрывать специальными составами.
Наиболее качественное, надежное и устойчивое к коррозии паяное соединение, позволяют получать припои, в составе которых содержится цинк, медь, кремний и алюминий.
Припои, включающие в свой состав данные элементы, производят как отечественные, так и зарубежные компании. Наиболее распространенными отечественными марками являются ЦОП40, содержащий в своем составе 40% цинка и 60% олова, и 34А, в составе которого содержится алюминий (66%), медь (28%) и кремний (6%). Цинк, содержащийся в припое для пайки изделий из алюминия, определяет не только прочность полученного соединения, но и его коррозионную устойчивость.
Самую низкую температуру плавления из всех вышеперечисленных имеют оловянно-свинцовые припои. Наиболее высокотемпературными являются те, в составе которых содержится алюминий и кремний, а также материалы, содержащие алюминий вместе с медью и кремнием. К последним, в частности, относится припой популярной марки 34А, температура плавления которого находится в интервале 530–550 градусов.
Для информации: материалы на основе алюминия и кремния плавятся при температуре 590–600 градусов.
Учитывая температуру плавления, применяют такие припои в тех случаях, когда соединить необходимо крупногабаритные детали из алюминия, в которых обеспечивается хороший теплоотвод, либо изделия, выполненные из алюминиевых сплавов, плавящихся при достаточно высоких температурах.
Но, конечно, максимальное удобство в работе демонстрируют низкотемпературные припои, одной из распространенных марок которых является HTS-2000.
Припой HTS-200 для спайки деталей из алюминия и цветных металлов
Технология пайки алюминия обязательно предполагает использование специального флюса, который необходим для того, чтобы улучшить соединяемость основного металла с материалом припоя. Именно поэтому подходить к выбору такого материала необходимо очень ответственно. Особенно актуально это требование в тех случаях, когда детали из алюминия необходимо спаять при помощи оловянно-свинцового припоя. Состав флюсов содержит элементы, которые и формируют его активность по отношению к алюминию. К таким элементам относятся: триэтаноламин, фторборат цинка, фторборат аммония и др.
Флюс Ф-64 для пайки легких сплавов без предварительной механической обработки поверхностей
Одним из наиболее популярных отечественных материалов является флюс марки Ф64. Популярность Ф64 обусловлена тем, что данный материал отличается повышенной активностью. Благодаря такому качеству выполнять пайку с флюсом Ф64 можно, даже не зачищая поверхность алюминиевых деталей от тугоплавкой оксидной пленки.
Из популярных высокотемпературных флюсов следует выделить материал марки 34А, в состав которого входит 50% хлорида калия, 32% хлорида лития, 10% фторида натрия и 8% хлорида цинка.
Для получения качественного и надежного соединения недостаточно просто знать, как паять алюминий, важно также правильно подготовить поверхности соединяемых деталей к пайке. Заключается такая подготовка в обезжиривании поверхностей и удалении с них окисной пленки.
Для обезжиривания используют традиционные средства: ацетон, бензин или любой подходящий растворитель.
Удаление окисной пленки перед пайкой, которое также несложно выполнить своими руками, преимущественно совершается при помощи механической обработки, для чего можно использовать шлифовальную машинку, наждачную бумагу, металлическую щетку или сетку из нержавеющей проволоки. Значительно реже применяется химический способ удаления такой пленки, который подразумевает травление поверхности алюминиевых деталей при помощи кислотных растворов.
Видео (кликните для воспроизведения). |
Зачистка поверхностей перед пайкой с помощью шлифовальной насадки на болгарку
Как известно, окисная пленка на поверхности алюминия образовывается практически моментально при ее контакте с окружающим воздухом. Такой процесс происходит и на зачищенной перед пайкой поверхности, но смысл выполнения зачистки состоит в том, что вновь образующаяся пленка значительно тоньше удаленной, поэтому флюсу будет гораздо легче с ней справиться.
В качестве элемента, при помощи которого выполняется прогрев габаритных соединяемых деталей из алюминия и расплавление припоя, преимущественно используется газовая горелка, работающая на пропане или бутане. Если вы решили спаять изделия из алюминия своими руками в условиях домашней мастерской, то можно использовать и обычную паяльную лампу.
Удобная в использовании газовая паяльная лампа
При выполнении нагрева необходимо очень внимательно следить за тем, чтобы не расплавились соединяемые детали. С этой целью к поверхности деталей как можно чаще прикасаются припоем, чтобы проконтролировать начало его плавления. Это и будет свидетельством того, что достигнута рабочая температура.
Нагревая детали и припой перед началом пайки, также необходимо следить за пламенем газовой горелки: смесь газа и кислорода, которая его формирует, должна быть сбалансированной. Делать это необходимо по той причине, что сбалансированная газовая смесь активно нагревает металл, но не оказывает серьезного окислительного действия. О том, что газовая смесь сбалансирована, свидетельствует ярко-синий цвет пламени, которое имеет небольшой размер. Если пламя горелки слишком маленькое по размеру и имеет бледно-голубой цвет, то это является свидетельством того, что в газовой смеси слишком много кислорода.
Для пайки небольших изделий из алюминия используются электрические паяльники и припои, плавящиеся при невысокой температуре.
Пайка деталей, выполненных из алюминия, по технологии выполнения практически ничем не отличается от процесса соединения изделий, изготовленных из других металлов. Сначала соединяемые детали обезжириваются и тщательно зачищаются, после этого их выставляют в нужное положение относительно друг друга. Затем на зону будущего соединения необходимо нанести флюс и начать ее прогрев вместе с припоем до рабочей температуры.
Процесс пайки деталей из алюминиевого сплава
При достижении рабочей температуры кончик припоя начнет плавиться, поэтому им необходимо постоянно прикасаться к поверхности деталей, контролируя процесс нагрева.
Пайка изделий из алюминия, для выполнения которой используется безфлюсовый припой, имеет свои особенности. Заключаются они в том, что для того, чтобы проникновению припоя к поверхности детали не препятствовала окисная пленка, его кончиком необходимо совершать чиркающие движения по месту будущего соединения. Таким образом нарушается целостность пленки, и припой беспрепятственно соединяется с основным металлом.
Посмотреть, как пайка выполняется практически, можно на обучающем видео.
Есть еще один технологический прием, позволяющий разрушить оксидную пленку в процессе пайки. Сделать это можно при помощи стержня из нержавеющей стали или металлической щетки, которыми водят по месту соединения и уже расплавленному припою.
Чтобы получить максимально прочное соединение методом пайки, соединяемые поверхности необходимо подвергнуть предварительному лужению.
Большое практическое значение имеет не только пайка алюминия в домашних условиях. Данную технологию также активно используют на ремонтных и производственных предприятиях. Применяя метод пайки, можно получать соединения, отличающиеся высокой прочностью, надежностью и эстетической привлекательностью.
При работе с тонким листовым алюминием пайка позволяет избежать деформацию материала
Большой популярностью данная технология пользуется при выполнении ремонтных работ с автотранспортными средствами, тракторами и мотоциклами. Объясняется такая популярность тем, что при пайке не происходит изменение структуры соединяемого металла, поэтому подобный способ соединения во многих случаях является даже более предпочтительным, чем сварка.
Практически безальтернативной пайка является тогда, когда необходимо восстановить герметичность алюминиевого радиатора или картера, отремонтировать изношенную или разрушенную деталь, изготовленную из алюминиевого сплава. Удобно и то, что сделать такой ремонт можно и своими руками, для этого не потребуется сложного и дорогостоящего оборудования.
Отремонтированный в домашних условиях автомобильный радиатор
Прогары, сколы и трещины, образовавшиеся в блоке цилиндров, изготовленном из алюминиевого сплава, также можно успешно отремонтировать при помощи пайки. Очень полезна данная технология в том случае, если необходимо восстановить изношенную внутреннюю резьбу. При этом изношенное резьбовое отверстие заполняется расплавленным припоем, а затем в него вворачивается болт. После того как припой застынет, болт из отверстия выворачивается, а внутри него оказывается сформированная по необходимым параметрам резьба. Такая несложная операция позволяет получить новую резьбу, которая по своим прочностным характеристикам ничем не уступает исходной.
Кроме этого, пайка успешно применяется для ремонта и восстановления герметичности труб, изготовленных из алюминия и сплавов данного металла. Такие трубы сейчас активно используются во многих технических устройствах. При помощи пайки вы можете своими руками, не прибегая к дорогостоящим услугам квалифицированных специалистов, отремонтировать многие предметы из алюминия и его сплавов, использующиеся в быту: посуду, лестницы, различные детали интерьера, водосточные желоба, элементы сайдинга и др. При помощи пайки можно не только ремонтировать, но и своими руками изготавливать любые конструкции из алюминия.
Использование качественных расходных материалов и строгое следование технологии, которой совсем несложно обучиться и по видео урокам, позволяет получать методом пайки соединения, отличающиеся высоким качеством, надежностью, привлекательным и аккуратным внешним видом.
Нередки ситуации, когда под рукой нет активного флюса и припоя, который специально предназначен для соединения деталей из алюминия, а спаять их необходимо срочно. В таких ситуациях можно выполнить пайку обычным припоем, состоящим из алюминия и олова или олова и свинца. В качестве флюса в данном случае можно использовать канифоль.
Оксидная пленка при использовании данного метода пайки разрушается под слоем канифоли, в которую можно дополнительно добавить металлические опилки. Для ее разрушения применяется специальный паяльник со скребком, который необходимо предварительно залудить. Скребок наряду с опилками разрушает оксидную пленку на поверхности деталей, а канифоль не дает образоваться новой. Кроме того, скребок-паяльник, перемещая расплавленный припой по месту будущего соединения, обеспечивает его лужение.
Конечно, такой способ пайки очень хлопотный и не всегда гарантирует получение качественного и надежного соединения, поэтому использовать его можно только в крайних случаях. Целесообразнее всего потрать время и деньги на приобретение качественных припоя и флюса и не переживать за качество формируемого с их помощью соединения.
Существует распространенное убеждение, согласно которому невозможно паять или лудить алюминий (а также сплавы на его основе) не имея для этого спецоборудования.
В качестве аргумента приводится два фактора:
- при контакте с воздухом на поверхности алюминиевой детали образуется химически стойкая и тугоплавкая оксидная пленка (AL2O3), в результате чего создается препятствие для процесса лужения;
- процесс пайки существенно осложняется тем, что алюминий расплавляется при температуре 660°С (для сплавов это диапазон в пределах от 500 до 640°С). Помимо этого металл теряет прочность, когда в процессе нагрева его температура поднимается до 300°С (у сплавов до 250°С), что может вызвать нарушение устойчивости алюминиевых конструкций.
Учитывая приведенные выше факторы, осуществить пайку алюминия обычными средствами действительно невозможно. Решить проблему поможет применение сильнодействующих флюсов, в сочетании с использованием специальных припоев. Рассмотрим подробно эти материалы.
Обычно в качестве основы легкоплавкого припоя используются: олово (Sn), свинец (Pb), кадмий (Cd), висмут (Bi) и цинк (Zn). Проблема в том, что алюминий в этих металлах практически не растворяется (за исключением цинка), что делает соединение ненадежным.
Применив флюс с высокой активностью и проведя должным образом обработку мест соединения, можно использовать припой на оловянно-свинцовой основе, но лучше отказаться о такого решения. Тем более, что паянное соединение на основе системы Sn-Pb обладает низкой устойчивостью к коррозии. Нанесение лакокрасочного покрытия на место пайки позволяет избавится от этого недостатка.
Для пайки алюминиевых деталей желательно использовать припой на основе кремния, меди, алюминия, серебра или цинка. Например 34A, который состоит из алюминия (66%), меди (28%) и кремния (6%), или более распространенный ЦОП-40 (Sn – 60%, Zn – 40%).
Припой отечественного производства – ЦОП-40Заметим, что чем больше процентное содержание цинка в составе припоя, тем прочнее будет соединение и выше его устойчивость к коррозии.
Высокотемпературным считается припой, состоящий из таких металлов, как медь, кремний и алюминий. Например, как упомянутый выше отечественный припой 34A, или его зарубежный аналог «Aluminium-13» , в котором содержится 87% алюминия и 13% кремния, что позволяет осуществлять пайку при температуре от 590 до 600°С.
«Aluminium-13» производства компании ChemetПри выборе флюса необходимо учитывать, что не каждый из них может быть активным к алюминию. Мы можем порекомендовать использовать в таких целях продукцию отечественного производителя – Ф-59А, Ф-61А, Ф-64, они состоят из фторборатов аммония с добавлением триэтаноламина. Как правило, на пузырьке есть пометка – «для алюминия» или «для пайки алюминия».
Флюс отечественного производстваДля высокотемпературной пайки следует приобрести флюс, выпускаемы под маркой 34А. Он состоит из хлористого калия (50%), хлорида лития (32%), фторида натрия (10%) и хлористого цинка (8%). Такой состав наиболее оптимален, если производится высокотемпературная пайка.
Рекомендуемый флюс для паки при высокой температуреПрежде чем начинать лужение, необходимо выполнить следующие действия:
- обезжирить поверхность при помощи ацетона, бензина или любого другого растворителя;
- удалить оксидную пленку с места, где будет производится пайка. Для зачистки используется наждачная бумага, абразивный круг или щетка с щетиной из стальной проволоки. В качестве альтернативы можно применить травление, но эта процедура не так сильно распространена в силу своей специфичности.
Следует учитывать, что полностью оксидную пленку удалить не получится, поскольку на очищенном месте моментально появляется новое образование. Поэтому зачистка производится не с целью полного удаления пленки, а для уменьшения ее толщины, чтобы упростить флюсу задачу.
Для пайки небольших деталей можно воспользоваться паяльником мощностью не менее 100Вт. Массивные предметы потребуют более мощного нагревательного инструмента.
Паяльник мощностью 300 ВтНаиболее оптимальный вариант для нагрева – использование газовой горелки или паяльной лампы.
Простая газовая горелкаПри использования горелки в качестве нагревательного инструмента следует учесть следующие нюансы:
- нельзя перегревать основной металл, поскольку он может расплавиться. Поэтому в процессе необходимо регулярно контролировать температуру. Делать это можно, касаясь припоем нагреваемого элемента. Расплавление припоя даст знать, что достигнута необходимая температура;
- не следует использовать кислород для обогащения газовой смеси, поскольку он способствует сильному окислению металлической поверхности.
Процесс пайки алюминиевых деталей не имеет своих отличительных особенностей, он осуществляется также как со сталью или медью.
Алгоритм действий следующий:
- обезжиривается и зачищается место пайки;
- производится фиксация деталей в нужном положении;
- нагревается место соединения;
- прикасаются стержнем припоя (содержащим активный флюс) к месту соединения. Если используется безфлюсовый припой, то для разрушения пленки оксида наносится флюс, после чего трут твердым куском припоя по месту пайки.
Для разрушения пленки оксида алюминия также используется щетка со щетиной из стальной проволоки. При помощи этого простого инструмента производят растирание расплавленного припоя по алюминиевой поверхности.
Пайка алюминия – полная видео инструкция
https://www.youtube.com/watch?v=ESFInizLE9U
Что делать при отсутствии нужных материалов?
Когда нет возможности подготовить все необходимые для пайки материалы, можно использовать альтернативный способ, при котором применяется припой на оловянной или оловянно-свинцовой основе. Что касается флюса, то он заменяется канифолью. Чтобы не образовывалась новая пленка оксида алюминия на месте старой, зачистка производится под слоем расплавленной канифоли.
Паяльник, помимо своего прямого назначения, будет использоваться как инструмент, разрушающий оксидную пленку. Для этого на его жало надевается специальный скребок. Увеличить результативность процесса можно, добавив в канифоль металлических опилок.
Процесс производится следующим образом:
- нагретым луженым паяльником расплавляют канифоль в месте пайки;
- когда канифоль полностью покрывает поверхность, начинают тереть об нее жалом паяльника. В результате этого металлические опилки и жало разрушают пленку оксида алюминия. Поскольку слой расплавленной канифоли не позволяет проникать воздуху к алюминиевой поверхности, на ней не образовывается оксидная пленка. По мере того, как производится разрушение пленки, будет происходить лужение детали;
- когда процесс лужения завершен, детали соединяют и прогревают, пока не будет достигнута температура плавления припоя.
Необходимо предупредить, что процесс пайки алюминия без специальных материалов – довольно хлопотный процесс без гарантии успешного завершения. Поэтому лучше не тратить на такую работу свои силы и время, тем более, что качество и надежность такого соединения будут сомнительными.
Гораздо проще купить активный флюс и высокотемпературный припой, при помощи которых пайка алюминия даже в домашних условиях не вызовет затруднений.
Ремонт алюминиевых радиаторов всегда вызывал ажиотаж, как со стороны хозяев автомобилей, так и со стороны мастеров. Первые постоянно хотели устранить все неисправности, вторые заработать денег. В данной статье мы попробуем рассмотреть все аспекты ремонта алюминиевых радиаторов. Все нижеописанное в равной степени относится как к радиаторам охлаждения, так и к печным радиаторам.Самые часто встречающиеся неисправности радиаторов:
- появление трещин на участке отводящих и подводящих труб радиаторов;
- нарушение герметичности трубок;
- нарушение герметичности уплотнителей;
- появление пробоин и трещин в результате механических повреждений;
- слабый проход жидкости, в результате засорения трубок.
Иногда может показаться, что отличие лишь в способе вальцовки, но это неверно. Не вдаваясь в подробности, отметим, что тип используемой прокладки между доньей радиатора и бачком накладывает определенные ограничения, или, говоря иначе, влечет за собой использование конкретного вида вальцовки. Теперь рассмотрим типы сердцевин.
Наборные сердцевины делятся на:
- цельнопаянные;
- наборные (или сборные).
Цельнопаянные
Эти радиаторы более сложней в производстве, а, соответственно, и стоят они намного дороже сборных. Смысл сердцевины заключается в том, что она набирается, как и медная, но затем отправляется в специальную печь, с инертно-газовой средой и строго определенной температурой для спекания. Затем, когда сердцевина готова, к ней подсоединяют пластмассовые бачки с помощью волнового вальцевания. Естественно, в природе есть и комбинации вышеперечисленных способов.
Как правило, сборные модели имеют в основе круглые трубки сечением 7-11 миллиметров, и наборные пластины теплоотвода, они не приварены к трубкам, а просто плотно надеты на них. Преимуществом данной конструкции является дешевизна, так как почти все работы происходят механическим способом, без помощи сварки. Но все же существует один вид сборных радиаторов, где трубки не вальцуются через силиконовые прокладки к металлической сетке, а припаиваются к алюминиевой. К этим радиаторам, в 99 процентов случаев, бачки подсоединены с помощью зубчатой вальцовки определенного вида.
Немного особняком находятся полностью алюминиевые радиаторы, в них и сердцевины, и бачки изготовлены из алюминия. Сердцевины этих радиаторов всегда изготовлены по цельнопаянной технологии.
Но, как ни удивительно, ни один радиатор охлаждения крупного изготовителя, не применяет эту технологию, так как на бачки может понадобиться столько же материала, как и непосредственно на сердцевину. Исключение имеют только эксклюзивные американские радиаторы, они производятся под заказ капризного хозяина «драга» или восстановленной «классики».
В нашей же стране, такая технология встречается или в печных радиаторах некоторых изготовителей (к примеру, Daewoo Nubira, Lanos), или в моделях откровенно китайского или отечественного изготовителя. Но эти два описанных варианта, хотя и дешевле медно-латунного радиатора, зато качество их сборки и проектирования полностью скопировано с латунных моделей, и наследует все «врожденные» недостатки. Помимо вышесказанного, нужно сказать и про алюминиевые печки, их бачки не приварены к сетке, как это должно быть, а приклеены, да еще с помощью клея, который опасно использовать даже к огородной лейке, не то, что к отопительному радиатору.
То есть, чтобы изготовить качественный алюминиевый радиатор, который, кроме хорошего теплоотвода, еще сможет выдержать механические и гидродинамические нагрузки продолжительное время, требуется тщательное проектирование, и использования сложного оборудования во время производства. А это удорожает стоимость конечного изделия, что сразу же переведет его из разряда лидеров, в сравнении с «медным» изделием, в уровень дорогостоящих аутсайдеров.
Так как, к примеру, у ГАЗели, при наших дорогах, латунный радиатор нечасто отъезжает без поломок 40000 Км, а это примерно год с ежедневной нагрузкой 100 Км. После капитального ремонта радиатора своими руками, время его жизни, в отличие от заводского, мы сможем увеличить в 2 раза, но проделать это с алюминиевым аналогом довольно сложно, и главное, не очень выгодно в финансовом плане. Здесь есть повод поразмыслить, нужно ли экономить при покупке между алюминиевым и латунным радиатором?
Как правило, мастера называют экзотикой печки и радиаторы, которые можно очень редко встретить. Как пример, можно привести отопительный прибор Опель Omega 1992 года, он изготовлен из полностью пластиковой сетки (доньи) и бачков, выполненных монолитно, и подсоединены к наборной сердцевине, которая имеет овальные трубки, с приваренным турбулятором. Кроме этого примера, также есть ряд редко встречающихся разновидностей, но это, опять же, редкость.Нужно заметить, что чем экзотичней радиатор находится на вашем автомобиле, тем трудней его отремонтировать автослесарям, и не только из-за сложности сочетания разных материалов, но еще и по причине, что опыт многих мастеров просто не дает возможности применить с первого раза проверенный и верный вариант ремонта. То есть, неопытный мастер выполнит ремонт наугад, одновременно узнавая тонкости, так сказать, тренируясь своими руками на вашем радиаторе, набивая себе опыт.
Как уже и выше упоминалось, пластмассовые бачки облегчают вес и удешевляют конструкцию. Но нужно оговориться, термин «пластиковый», рассматривая бачки, не очень корректен, так как в их основе находится полипропилен, а остальные добавки и примеси никто разглашать не будет, от этого зависит выживание в среде конкуренции. Здесь встречаются и армирование стекловолокном, и наполнители, и другие ухищрения.По истечении определенного времени пластмассовые бачки пересыхают, основа пластмассы изменяется под воздействием постоянной температурной разности и они, становясь хрупкими, образуют течь. В этом случае наилучшим вариантом будет замена радиатора на новый, потому что замена бачка не всегда рентабельна. Но иногда, если рассматривать эксклюзивные модели, ничего не сделаешь, как отремонтировать трещины в бачке своими руками, но здесь появляется второй вопрос – какой вариант ремонта лучше?
Есть три основных варианта ремонта:
- замена бачка на металлический, который на место пластикового вваривается или впаивается;
- пайка бачка пластмассой;
- использование специальных полимеров.
Первый способ наиболее надежный, но и наиболее дорогостоящий, да и остается проблема со вторым бачком (так как их два в радиаторе). Если заменять два бачка, стоимость выйдет такой, что легче заказать новый, оригинальный радиатор, и все заверения мастеров, типа, радиатор будет вечным, нужно пропустить мимо ушей, так как у алюминиевой части тоже есть определенный ресурс, и он уменьшается одновременно с ресурсом пластмассовых бачков. Дорогая цена этих бачков объясняется тем, что их изготавливает не сам мастер, а промышленный завод, наподобие авиационного (КБ Антонова или ХАЗ), а мастер лишь вваривает его своими руками с помощью аргоновой сварки.
Следующие два способа более доступны, так как использование полимеров и пайка пластика и дешевле, и быстрей, и при эксплуатации уж очень старого радиатора даст возможность «перекантоваться» до приобретения нового, без больших капиталовложений. Но нужно сказать, что паять сложный состав полипропилена иногда даже опасно, можно сделать его еще более хрупким в участке пайки.
Ремонт самих алюминиевых сот все время вызывал сильную головную боль, как у хозяев автомобилей, так и у мастеров. Главной причиной является, как иногда очень сложная, и почти неподдающаяся ремонту конструкция, так и довольно тонкий металл у радиаторов, не имеющих в конструкции так сказать, «слабых мест». Но рассмотрим все по порядку.
Первый вид, который мы опишем – это сборный радиатор автомобиля, который, как уже выше говорили недорогой, но его качественный ремонт требует довольно больших материальных вложений, но при этом руками профессионалов вполне возможет. Конструкция состоит из сотовой части, которая, между прочим, если и ломается, то не часто, как правило, первыми выходят из строя резиновые уплотнители. Круглые соты фиксируются к сетке с помощью вальцовки, через резиновый уплотнитель, который в начале жизни пластичный.Но это лишь сначала, и только при заливке качественного тосола, затем же прокладка превращается просто в страшное зрелище. К примеру, ресурс немецкого радиатора, который эксплуатируется на качественном тосоле, примерно 11-16 лет, советского – 7-11 лет, ресурс современного и китайского – иногда может быть от 20 минут до нескольких лет.
Если спайка центральной части этого радиатора (ну, протер, или пробил отверткой) возможна с помощью специальных припоев, то выгодно и качественно для обеих сторон, сделать ремонт «зловещего соединения» почти невозможно. Некоторые мастерские, в свое время разработали состав, который дает возможность припаять к стальной сетке алюминиевые соты, но, естественно, пользоваться им в ремонте, к примеру, изделий для ВАЗ-2107 нецелесообразно, этот вариант хорошо подходит лишь при ремонте «иномарок» .
Это уже более продвинутое изделие, которое и требует при ремонте продвинутого, и дорогостоящего вмешательства. Так как цельнопаянный агрегат почти не встретить в бюджетных автомобилях (к примеру, Daewoo Lanos устанавливает цельнопаянный вариант, при этом Daewoo Sens, наборной) чуть более дорогая стоимость ремонта почти все время себя оправдывает.Осложнение пайки, к примеру, угловых пакетов сот объясняется тем, что различная толщина металла не дадут мастеру, даже профессионально обращающемуся с горелкой, расплавить припой, температура которого часто достигает 500-650 градусов, и в это же время не повредить пластмассовый бачок.
Снимать его для этого тоже нецелесообразно, при этом можно повредить заводское соединение, альтернативой является качественный фотополимер или полимер.
В качестве итога, хотелось бы сказать, что алюминиевые радиаторы автомобиля с их пластмассовыми бачками хоть и довольно сложны в ремонте, но при грамотном подходе, и качественных материалах дают возможность добиться отличных результатов.
Алюминиевая лодка, как и любая другая, требует тщательного осмотра и, если будет необходимо, ремонта.
Не всегда есть возможность поручить ремонт специалисту, зачастую лодки ремонтируют своими руками.
Внимательно осмотрев алюминиевую лодку, вы должны понять, какой вид ремонта необходим.
Начинают осмотр с днища лодки, для этого её переворачивают. Искать надо трещины, проржавевшие места, потерянные или расшатанные заклепки.
Наибольшую нагрузку при эксплуатации испытывает транец лодки, на него – особое внимание.
Безусловно, поломки возможны различные, но в статье рассматриваю, только те, которые присущи только лодкам из алюминия и его сплавов.
Одна из самых часто встречающихся повреждений алюминиевой лодки – коррозия. Часто под коррозийными пятнами скрываются трещины. Если с ней не бороться, то в результате, в днище образуется дыра.
Для определения глубины повреждения надо очистить дно лодки лучше всего шлифовальной машинкой. Очищать до металла.
После грубой очистки надо зашкурить наждачной бумагой, а если понадобится, удалить старую краску специальной смывкой. Затем обезжирить, грунтовать и красить.
Определить при осмотре лодки надежность заклепок поможет молоточек. Надо будет простучать каждую заклепку, если она дребезжит и шатается, то потребуется замена.
Если дырки разработались, то на это место надо поставить заклепку большего диаметра.
Наиболее часто выходят из строя заклепки, которые расположены ближе к мотору, они больше всего подвержены вибрации.
Следующим этапом будет заделка трещин. Трещины на лодке образуются чаще всего при столкновении, например, случайно наткнулись на топляк. Трещины бывают внушительные и очень мелкие.
Самые мелкие трещины можно заделать пайкой из оловянно свинцового сплава с добавлением цинка.
При работе с алюминием и сплавами проблема возникает с лужением, мешает оксидная пленка. Существует несколько способов пайки алюминия, например, можно использовать щелочное безводное масло, например, оружейное. Перед пайкой поверхности зачистить, смочить маслом, затем паяльником убрать пленку и паять. Также используют флюс, нанося его на припой.
Единственным способом, которым можно устранить дырки и большие трещины в алюминиевой лодке, это поставить заплатки.
Заплатки можно поставить с помощью заклепок или использовать сварку.
Сварку, вообще, лучше применять в исключительных случаях, когда нельзя по какой-то причине заклепать.
Не все алюминиевые сплавы выдерживают сварку, часто корпус лодки разрывает рядом со сварочным швом. Зная об этом, опытные сварщики обычно с неохотой берутся за это дело.
Но всё-таки сваркой пользуются для ремонта. Поэтому если будете варить, то делать это надо с двух сторон и только тонкие листы.
Если вы не профессиональный сварщик, то придётся лодку транспортировать в мастерскую. Заваривают алюминиевые лодки аргоном.
Заплата ставится с внутренней стороны лодки. Для того чтобы она была прочной, надо соблюсти все правила клепки.
По размеру заплата должна соответствовать величине трещины.
Материал, из которого делаете заплатку, должен быть в точности таким же, как на вашей лодке.
Если алюминий соединить с другим металлом, то создастся гальваническая пара. Это значит, что в месте соединения будет происходить гальваническая коррозия, которая быстро разрушит алюминий или его сплав.
По этой же причине не рекомендуется для зачистки корпуса использовать металлическую щетку.
Надо соблюсти такую последовательность при установке заплаты при помощи клёпки:
Некоторые пытаются заделывать мелкие трещины холодной сваркой или стеклотканью, это бесполезна трата времени. Такой ремонт непрактичен, всё это быстро отвалится в процессе эксплуатации.
После ремонта лодку следует покрасить специапьной краской.
Народная примета: Самый большой улов бывает у молодых и неопытных рыбаков!
Автор статьи: Антон Кислицын
Я Антон, имею большой стаж домашнего мастера и фрезеровщика. По специальности электрик. Являюсь профессионалом с многолетним стажем в области ремонта. Немного увлекаюсь сваркой. Данный блог был создан с целью структурирования информации по различным вопросам возникающим в процессе ремонта. Перед применением описанного, обязательно проконсультируйтесь с мастером. Сайт не несет ответственности за прямой или косвенный ущерб.
✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 4.8 проголосовавших: 6Расход припоя, г | Расход газа, мл | |
1-2 | 0,5-1 | 3-5 |
2 -4 | 1-1,5 | 5,5 |
6 | 1,5 | 7 |
10 | 2 | 11 |
Флюс для низкотемпературной пайки алюминия: состав, виды
Алюминий признан самым капризным материалом, который требует применения специальных средств и технологий, где флюс для пайки алюминия обеспечивает высокое соединение контактов изделий. Прочное соединение требуется не только при проведении несложных работ в бытовых условиях, но им для обеспечения промышленного и производственного масштаба соединения алюминиевых материалов и активный флюс для низкотемпературной пайки алюминия будет гарантом прочного соединения. В отличие от других металлов и материалов, алюминий требует специальной технологии обработки проведения качественного соединения готовых обрабатываемых частей и главная конечная цель данного процесса создание специального и надёжного прочного соединения, относящегося к механическому типу, который обладает физико-химическими, а также электропроводными характеристиками.
Флюс для пайки алюминия
Особенности проведения работ по соединению алюминия
Применяя флюс для пайки алюминия, необходимо иметь представление о некоторых понятиях и терминах, используемые для данной работы. Итак, используя для работы флюс для пайки алюминия, помните, что это своеобразная смесь, где присутствуют органические или неорганические компоненты, главной задачей которых является обеспечение прочного соединения и адгезии физико-химической природы припоя для обеспечения прочного соединения однородной группы металлического поверхности, а иногда разных по природе материалов металла.
Использование флюса для пайки алюминия
Чтобы флюс для пайки алюминия ф 64 подошёл к материалу обработки, необходимо знать некоторые физические и химические характеристики и свойства алюминия:
- Алюминий имеет высокую степень для обеспечения теплопроводности, а также достаточную электропроводность.
- Алюминий очень устойчив к органическим и неорганическим растворителям.
- Материал имеет достаточную пластичность, то есть гнётся, меняет форму, что позволяет в свою очередь выпускать различные группы изделий – проволоку, технологические листы, изделия гнутой формы и т.д.
- Температура плавления одна из самых низких, всего +660 С.
Учитывая вышеперечисленные параметры можно сделать вывод, что флюс для пайки алюминия должен иметь специальную структуру взаимодействия с поверхностью.
«Важно!Электропроводность, это основной параметр популярности алюминия, и, следовательно, необходимо подбирать соответствующую группу пасты для пайки алюминия. »
Для создания технологических мостиков обеспечения соединения между алюминиевыми контактами, необходимо помнить, что имеются определённые трудности, которые не позволяют обеспечить качественное соединение материала. Низкое качество обеспечения соединения вызвано тем, что в процессе окисления на поверхности возникает эластичная, и в то же время прочная оксидная плёнка, которая имеет химическую формулу Al²O³. Главное преимущество данной плёнки, в химическую реакцию не могут вступить иные инородные материалы, а также обеспечивается надёжная защита соединения, если есть негативное воздействие жидкости (например, смоченный контакт сохранит свои первоначальные свойства без ущерба качества соединения).
Сфера применения
Использование флюса для пайки ф 64 достаточно обширное, и достаточно указать несколько технологических направлений, где широко используется алюминиевая основа:
- Создание систем теплопроводной магистрали, например, автомобильные радиаторы.
- В энергетических системах замкнутого пространства, например образование замкнутой электрической цепи.
- Соединение токоведущих частей, которые были разорваны под воздействием механической силы, например провода общей магистральной сети электропроводов.
- Создание технологических конструкций, которые обеспечивают связь по принципу электропроводимости.
Флюс Ф 64
Припои, основа для качественного соединения изделий из алюминия
Как видно, флюс для пайки своими руками позволит отремонтировать как сложные и проблемные источники повреждения, так и лёгкие участки и узлы. В качестве припоя используют такие традиционные материалы как:
- Олово;
- Сплав с использованием цинка;
- Сплав на основе кадмия.
Температура плавления выше перечисленных материалов в диапазоне от +200 С до +400 С, и для этих целей можно использовать не очень мощный работоспособный паяльный инструмент. Дополнительно в качестве припоя используют тугоплавкие вещества, в составе которых присутствуют медь, цинк и даже кремний.
В результате проведения технологического процесса состав флюса для пайки алюминия обеспечивает облуженный слой надежной конструкции, где происходит надёжное сцепление с поверхностью обрабатываемой части, которая создаёт своеобразный контактный мостик электросопротивления, что позволяет осуществлять дополнительную обработку в процессе проведения паяльных работ.
Серийная группа флюсов
В качестве примера можно привести флюс для пайки алюминия Векта.
Флюс Векта
А также серийный ряд припоев:
- ПОС-40. В состав припойного компонента входит до 40 % материала олова, а также 3-5 % сурьмы, и оставшаяся часть компонента состава включает в себя свинец. Номинальная действительная температура плавления материала 185-270 С. Применение данного препарата предпочтительно для мало-ответственных производственных узлов общего предназначения, например для простых технологических швов.
- Серия 34А. Этот тип флюса для пайки алюминия Firinit Afp 200 предназначен не только для соединения с алюминием, но и для пайки дюралюминия, авиаля, а также для сложного литейного сплава. Нет необходимости проходить дополнительную обработку расплавления обрабатываемых частей деталей.
Особенности флюсов для алюминиевых сплавов
Некоторые мастера знают, что флюс для пайки алюминия своими руками можно создать при помощи сподручных материалов, но в то же время есть традиционные группы, используемые в промышленных и бытовых условиях соединения изделий. В качестве таковых являются:
- Флюс 34А. Один из самых сильнейших препаратов, который основан на химическом принципе воздействия на окислы, создавая при этом качественное преобразование. По окончании производственных работ, необходимо удалить излишки препарата с поверхности обрабатываемого изделия.
- Машинное масло. Как ни странно, это самый простой и дешёвый способ удаления защитной окисной образуемой на поверхности плёнки, которая удаляется при помощи абразивного воздействия. Нанесённая жидкость полностью препятствует проникновению атмосферного воздуха, который независимо воздействует на поверхность изделия. В данном случае все обрабатываемая поверхность изделия становится исключительно восприимчивой к процессу нанесения припоя на поверхность алюминия.
Согласно общепринятой классификации припоев и флюсов, можно условно разделить на две группы, которые представлены следующими категориями:
- Твёрдая группа. В этом классе присутствуют материалы солей, а также органических веществ.
- Жидкая или гелеобразная группа флюсов. К этой группе относятся кислоты, а также традиционная органика, всем известная канифоль и солевая группа
Положительные стороны применения припоев заключаются в следующем:
- Допускается различная комбинация твёрдого преобразования совместно с припоем, например, при помощи проволоки, где наружная оболочка может выступать как твердоплавкий материал, а в сердцевине используется 100 % флюс.
- Жидкая основа. Достаточно опустить в специальное устройство припой, и им же натирается обрабатываемая поверхность.
- Все имеющиеся остатки жидкого вещества необходимо удалить.
Заключение
Техника безопасности применения припоев должна быть очень высокой. При проведении паяльных работ, необходимо помнить, что ряд припоев содержат ядовитые и опасные для организма человека вещества, которые раздражают слизистую оболочку глаз и дыхательные пути человека. Все работы необходимо осуществлять в перчатках, а также использовать специальные защитные средства. По окончании работы необходимо удалить остатки припоя, а также проветрить помещение, тщательно вымыть руки с мылом.
Видео: использование флюса Ф-64
Пайка алюминия – флюс, припой, как и чем паять правильно
Пайка алюминия, как справедливо считают многие специалисты, является достаточно сложным в выполнении технологическим процессом. Между тем такое мнение можно считать верным лишь в отношении тех ситуаций, когда спаять изделия из алюминия пытаются, используя для этого припои и флюсы, которые применяются для соединения деталей из других металлов: меди, стали и др. Если же используется специальный флюс для пайки алюминия, а также соответствующий припой, то данный технологический процесс не представляет особых сложностей.
Пайка алюминия с использованием пропановой горелки
Особенности процесса
Сложности, которые вызывает пайка алюминия при помощи традиционных припоев и флюсов, объясняются рядом факторов, преимущественно связанных с характеристиками данного металла. Основным из таких факторов является наличие на поверхности деталей из алюминия оксидной пленки, которая отличается высокой температурой плавления и исключительной химической стойкостью. Такая пленка при выполнении пайки препятствует соединению основного металла и материала припоя.
Перед осуществлением пайки изделий из алюминия их поверхности необходимо тщательно очистить от оксидной пленки, для чего можно использовать механическую обработку или применять флюсы, в состав которых входят сильнодействующие компоненты.
Подготовленные к пайке дюралевые детали
Сам алюминий, в отличие от оксидной пленки на его поверхности, обладает достаточно низкой температурой плавления: 660 градусов, что также осложняет технологический процесс выполнения пайки. Такая характеристика алюминия приводит к тому, что при нагреве детали из него быстро теряют прочность, а при определенной температуре, находящейся в интервале 250–300 градусов, конструкции из данного металла начинают терять устойчивость. Самый легкоплавкий компонент, который входит в состав наиболее распространенных алюминиевых сплавов, начинает плавиться уже в интервале температур 500–640 градусов, что может привести к перегреву и даже к расплавлению самих соединяемых деталей.
Основу большей части легкоплавких припоев, использующихся для пайки, составляют олово, кадмий, висмут и индий. С этими элементами алюминий плохо вступает в соединения, что делает паяные соединения, полученные с их использованием, очень непрочными и ненадежными. Хорошей взаимной растворимостью обладают алюминий и цинк, поэтому данный элемент при его использовании в припоях обеспечивает полученному соединению высокую прочность.
Характеристики флюсов для пайки мягкими припоями
Состав флюсов, применяемых для пайки алюминия
Используемые материалы
При выполнении пайки изделий из алюминия можно использовать припои оловянно-свинцовой группы, если тщательно очистить поверхность деталей и применять высокоактивные флюсы. Соединения, полученные с их помощью, по причине плохой взаимной растворимости алюминия, олова и свинца отличаются невысокой надежностью, также они склонны к развитию коррозионных процессов. Чтобы сделать подобные соединения более устойчивыми к коррозии, их необходимо покрывать специальными составами.
Наиболее качественное, надежное и устойчивое к коррозии паяное соединение, позволяют получать припои, в составе которых содержится цинк, медь, кремний и алюминий.
Припои, включающие в свой состав данные элементы, производят как отечественные, так и зарубежные компании. Наиболее распространенными отечественными марками являются ЦОП40, содержащий в своем составе 40% цинка и 60% олова, и 34А, в составе которого содержится алюминий (66%), медь (28%) и кремний (6%). Цинк, содержащийся в припое для пайки изделий из алюминия, определяет не только прочность полученного соединения, но и его коррозионную устойчивость.
youtube.com/embed/GtlDb9v7PLg»/>Самую низкую температуру плавления из всех вышеперечисленных имеют оловянно-свинцовые припои. Наиболее высокотемпературными являются те, в составе которых содержится алюминий и кремний, а также материалы, содержащие алюминий вместе с медью и кремнием. К последним, в частности, относится припой популярной марки 34А, температура плавления которого находится в интервале 530–550 градусов.
Для информации: материалы на основе алюминия и кремния плавятся при температуре 590–600 градусов.
Учитывая температуру плавления, применяют такие припои в тех случаях, когда соединить необходимо крупногабаритные детали из алюминия, в которых обеспечивается хороший теплоотвод, либо изделия, выполненные из алюминиевых сплавов, плавящихся при достаточно высоких температурах.
Но, конечно, максимальное удобство в работе демонстрируют низкотемпературные припои, одной из распространенных марок которых является HTS-2000.
Припой HTS-200 для спайки деталей из алюминия и цветных металлов
Технология пайки алюминия обязательно предполагает использование специального флюса, который необходим для того, чтобы улучшить соединяемость основного металла с материалом припоя. Именно поэтому подходить к выбору такого материала необходимо очень ответственно. Особенно актуально это требование в тех случаях, когда детали из алюминия необходимо спаять при помощи оловянно-свинцового припоя. Состав флюсов содержит элементы, которые и формируют его активность по отношению к алюминию. К таким элементам относятся: триэтаноламин, фторборат цинка, фторборат аммония и др.
Флюс Ф-64 для пайки легких сплавов без предварительной механической обработки поверхностей
Одним из наиболее популярных отечественных материалов является флюс марки Ф64. Популярность Ф64 обусловлена тем, что данный материал отличается повышенной активностью. Благодаря такому качеству выполнять пайку с флюсом Ф64 можно, даже не зачищая поверхность алюминиевых деталей от тугоплавкой оксидной пленки.
Из популярных высокотемпературных флюсов следует выделить материал марки 34А, в состав которого входит 50% хлорида калия, 32% хлорида лития, 10% фторида натрия и 8% хлорида цинка.
Подготовка деталей
Для получения качественного и надежного соединения недостаточно просто знать, как паять алюминий, важно также правильно подготовить поверхности соединяемых деталей к пайке. Заключается такая подготовка в обезжиривании поверхностей и удалении с них окисной пленки.
Для обезжиривания используют традиционные средства: ацетон, бензин или любой подходящий растворитель.
Удаление окисной пленки перед пайкой, которое также несложно выполнить своими руками, преимущественно совершается при помощи механической обработки, для чего можно использовать шлифовальную машинку, наждачную бумагу, металлическую щетку или сетку из нержавеющей проволоки. Значительно реже применяется химический способ удаления такой пленки, который подразумевает травление поверхности алюминиевых деталей при помощи кислотных растворов.
Зачистка поверхностей перед пайкой с помощью шлифовальной насадки на болгарку
Как известно, окисная пленка на поверхности алюминия образовывается практически моментально при ее контакте с окружающим воздухом. Такой процесс происходит и на зачищенной перед пайкой поверхности, но смысл выполнения зачистки состоит в том, что вновь образующаяся пленка значительно тоньше удаленной, поэтому флюсу будет гораздо легче с ней справиться.
Источники нагрева
В качестве элемента, при помощи которого выполняется прогрев габаритных соединяемых деталей из алюминия и расплавление припоя, преимущественно используется газовая горелка, работающая на пропане или бутане. Если вы решили спаять изделия из алюминия своими руками в условиях домашней мастерской, то можно использовать и обычную паяльную лампу.
Удобная в использовании газовая паяльная лампа
При выполнении нагрева необходимо очень внимательно следить за тем, чтобы не расплавились соединяемые детали. С этой целью к поверхности деталей как можно чаще прикасаются припоем, чтобы проконтролировать начало его плавления. Это и будет свидетельством того, что достигнута рабочая температура.
Нагревая детали и припой перед началом пайки, также необходимо следить за пламенем газовой горелки: смесь газа и кислорода, которая его формирует, должна быть сбалансированной. Делать это необходимо по той причине, что сбалансированная газовая смесь активно нагревает металл, но не оказывает серьезного окислительного действия. О том, что газовая смесь сбалансирована, свидетельствует ярко-синий цвет пламени, которое имеет небольшой размер. Если пламя горелки слишком маленькое по размеру и имеет бледно-голубой цвет, то это является свидетельством того, что в газовой смеси слишком много кислорода.
youtube.com/embed/EPLEgjiF8-I»/>Для пайки небольших изделий из алюминия используются электрические паяльники и припои, плавящиеся при невысокой температуре.
Технологические приемы пайки
Пайка деталей, выполненных из алюминия, по технологии выполнения практически ничем не отличается от процесса соединения изделий, изготовленных из других металлов. Сначала соединяемые детали обезжириваются и тщательно зачищаются, после этого их выставляют в нужное положение относительно друг друга. Затем на зону будущего соединения необходимо нанести флюс и начать ее прогрев вместе с припоем до рабочей температуры.
Процесс пайки деталей из алюминиевого сплава
При достижении рабочей температуры кончик припоя начнет плавиться, поэтому им необходимо постоянно прикасаться к поверхности деталей, контролируя процесс нагрева.
Пайка изделий из алюминия, для выполнения которой используется безфлюсовый припой, имеет свои особенности. Заключаются они в том, что для того, чтобы проникновению припоя к поверхности детали не препятствовала окисная пленка, его кончиком необходимо совершать чиркающие движения по месту будущего соединения. Таким образом нарушается целостность пленки, и припой беспрепятственно соединяется с основным металлом.
Посмотреть, как пайка выполняется практически, можно на обучающем видео.
Есть еще один технологический прием, позволяющий разрушить оксидную пленку в процессе пайки. Сделать это можно при помощи стержня из нержавеющей стали или металлической щетки, которыми водят по месту соединения и уже расплавленному припою.
Чтобы получить максимально прочное соединение методом пайки, соединяемые поверхности необходимо подвергнуть предварительному лужению.
Сфера применения процесса
Большое практическое значение имеет не только пайка алюминия в домашних условиях. Данную технологию также активно используют на ремонтных и производственных предприятиях. Применяя метод пайки, можно получать соединения, отличающиеся высокой прочностью, надежностью и эстетической привлекательностью.
При работе с тонким листовым алюминием пайка позволяет избежать деформацию материала
Большой популярностью данная технология пользуется при выполнении ремонтных работ с автотранспортными средствами, тракторами и мотоциклами. Объясняется такая популярность тем, что при пайке не происходит изменение структуры соединяемого металла, поэтому подобный способ соединения во многих случаях является даже более предпочтительным, чем сварка.
Практически безальтернативной пайка является тогда, когда необходимо восстановить герметичность алюминиевого радиатора или картера, отремонтировать изношенную или разрушенную деталь, изготовленную из алюминиевого сплава. Удобно и то, что сделать такой ремонт можно и своими руками, для этого не потребуется сложного и дорогостоящего оборудования.
Отремонтированный в домашних условиях автомобильный радиатор
Прогары, сколы и трещины, образовавшиеся в блоке цилиндров, изготовленном из алюминиевого сплава, также можно успешно отремонтировать при помощи пайки. Очень полезна данная технология в том случае, если необходимо восстановить изношенную внутреннюю резьбу. При этом изношенное резьбовое отверстие заполняется расплавленным припоем, а затем в него вворачивается болт. После того как припой застынет, болт из отверстия выворачивается, а внутри него оказывается сформированная по необходимым параметрам резьба. Такая несложная операция позволяет получить новую резьбу, которая по своим прочностным характеристикам ничем не уступает исходной.
Кроме этого, пайка успешно применяется для ремонта и восстановления герметичности труб, изготовленных из алюминия и сплавов данного металла. Такие трубы сейчас активно используются во многих технических устройствах. При помощи пайки вы можете своими руками, не прибегая к дорогостоящим услугам квалифицированных специалистов, отремонтировать многие предметы из алюминия и его сплавов, использующиеся в быту: посуду, лестницы, различные детали интерьера, водосточные желоба, элементы сайдинга и др. При помощи пайки можно не только ремонтировать, но и своими руками изготавливать любые конструкции из алюминия.
Использование качественных расходных материалов и строгое следование технологии, которой совсем несложно обучиться и по видео урокам, позволяет получать методом пайки соединения, отличающиеся высоким качеством, надежностью, привлекательным и аккуратным внешним видом.
Использование подручных средств
Нередки ситуации, когда под рукой нет активного флюса и припоя, который специально предназначен для соединения деталей из алюминия, а спаять их необходимо срочно. В таких ситуациях можно выполнить пайку обычным припоем, состоящим из алюминия и олова или олова и свинца. В качестве флюса в данном случае можно использовать канифоль.
Оксидная пленка при использовании данного метода пайки разрушается под слоем канифоли, в которую можно дополнительно добавить металлические опилки. Для ее разрушения применяется специальный паяльник со скребком, который необходимо предварительно залудить. Скребок наряду с опилками разрушает оксидную пленку на поверхности деталей, а канифоль не дает образоваться новой. Кроме того, скребок-паяльник, перемещая расплавленный припой по месту будущего соединения, обеспечивает его лужение.
Конечно, такой способ пайки очень хлопотный и не всегда гарантирует получение качественного и надежного соединения, поэтому использовать его можно только в крайних случаях. Целесообразнее всего потрать время и деньги на приобретение качественных припоя и флюса и не переживать за качество формируемого с их помощью соединения.
Оценка статьи:
Загрузка…Поделиться с друзьями:
Выбор флюса для пайки алюминия
Время чтения: 4 минуты
Алюминий — один из самых часто используемых, но вместе с тем сложных для сварки металлов. Профессиональные сварщики без проблем справляются со всеми трудностями в силу своего опыта и навыков. А вот новички часто отказываются от работы с алюминием, поскольку уверены, что качество швов будет неудовлетворительным.
Сварка алюминия действительно связана с несколькими трудностями. Но чтобы облегчить задачу можно использовать различные приспособления, например, флюс для пайки алюминия своими руками. В этой статье мы кратко расскажем, с чем сталкивается любой сварщик при сварке алюминия и как избежать этих проблем с помощью флюса. Вы также узнаете, какой флюс использовать и какие нюансы нужно соблюдать, чтобы добиться наилучшего результата.
Содержание статьи
- Общая информация
- Выбор флюса
- Особенности
- Вместо заключения
Общая информация
В начале статьи мы упомянули, что сварка алюминия всегда связана с некоторыми сложностями. Мы постараемся описать их просто и кратко. Температура плавления алюминия не превышает 660 градусов по Цельсию. Поэтому для нагрева металла можно использовать маломощный сварочный аппарат. Но на поверхности алюминия есть окисная пленка. Ее температура плавления гораздо выше температуры плавления металла. И чтобы ее расплавить, необходимо прогреть металл до температуры более 2000 градусов.
Читайте также: Домашняя сварка алюминия
В таких температурных условиях окисная пленка разрушается, но вместе с ней разрушается и сам алюминий. Заготовка становится менее прочной и результат такой сварки, мягко говоря, неудовлетворительный. Проблема усложняется еще и тем, что в составе алюминия есть компоненты, плавящиеся уже при температуре около 500 градусов. А это часто приводит к перегреву детали и образованию прожогов. Мы также не упомянули, что окисная пленка способна восстанавливаться после своего разрушения.
С этой проблемой можно бороться по-разному. Один из способов — применения флюсов, выполняющих защитную функцию. Они не дают кислороду проникать в сварочную зону, тем самым ослабляя свойства окисной пленки. Ведь ее прочность и образование во многом зависят от попадания кислорода в зону сварки.
Выбор флюса
Выбирая флюсы для алюминия необходимо учитывать сразу несколько факторов. Во-первых, нужно понимать, какой фронт работ вам предстоит. Ведь порой необходимо сварить не только алюминий с алюминием, но и алюминий с другими металлами. Такие нюансы нужно учитывать. Во-вторых, необходимо обратить внимание на состав флюса. Он должен содержать активные компоненты. Например, хлорид цинка, калия или лития.
Что касается марок, то наиболее универсальный флюс — это Ф64. В его составе содержатся компоненты с повышенной активностью. С помощью этого флюса можно варить алюминий, невзирая на трудности плавления окисной пленки.
Для высокотемпературной сварки подойдет марка 34А. Ну а если вам необходим активный флюс для низкотемпературной пайки алюминия, то рекомендуем Ф 61 , также встречается под названием Ф61А. А для пайки алюминия с медью можно использовать флюс Сastolin 192 CW, он хорошо зарекомендовал себя в работе.
Особенности
Чтобы применяемые вами флюсы исправно выполняли свою функцию, необходимо предварительно подготовить металл. Без подготовки немыслима ни одна сварка. При этом не важно, что вы используете — флюс, газ или вообще варите контактной сваркой. Процесс подготовки обязателен в любом случае.
Обезжирьте поверхность алюминия. Для этого используйте любой растворитель и безворсовую ткань. Подготовьте инструменты для зачистки металла. Можете использовать шлифмашинку, наждачку или болгарку. При применении болгарки используйте абразивные круги или сменные металлические щетки. Мы рекомендуем комбинировать различные способы зачистки, в зависимости от степени загрязненности металла.
Если металл сильно загрязнен, примените метод травления. Поместите деталь в емкость с кислотными растворами и подождите, пока грязь или коррозия растворятся. После зачистки окисная пленка так же будет удалена, но это ненадолго. Как вы теперь уже знаете, она способна самовосстанавливаться под действием кислорода.
Зачем тогда вообще нужна зачистка? Дело в том, что после механического удаления окисная пленка снова образуется, но она уже гораздо тоньше и не так химически активна. К тому же, флюс для пайки алюминия отлично работает на зачищенной поверхности, упрощая сварку.
Вместо заключения
Вот и все, что мы хотели рассказать вам о флюсах для сварки и пайки алюминия. Конечно, существует еще с десяток хороших марок флюсов, которые отлично справляются со своей задачей. Но мы перечислили самые популярные. Их без труда можно найти в любом специализированном магазине. Если вы когда-нибудь применяли выше перечисленные флюсы в своей работе, то расскажите об этом в комментариях. Ваш опыт будет полезен для всех начинающих сварщиков. Желаем удачи в работе!
Пайка алюминия с медью в холодильнике
Паяем алюминий и медь обычной горелкой.
Характеристики.
B-Zn98Al 381-400
Примерный состав (вес %): 2,4 Al – остальное Zn
Температура плавления ºС: 430-440
Рабочая температура ºС: 440
Прочность на разрыв (МПа): До 100 (Al)
Плотность (г/cм3): 7,0
Распаковка и внешний вид.
Белый пакет
Внутри зип-пакет с проволокой и инструкцией
Диаметр 2 мм, длина 3 метра. Немного жестче, чем алюминиевый пруток такого же диаметра.
Сделан в виде трубки, в центре которой можно разглядеть флюс. При многократном сгибании лопается вдоль.
Инструкция простая — греть поверхность и натирать припоем.
Переходим к практике.
Для начала проверил температуру плавления. При 360 ºС размягчается, но не очень текуч, а вот при 400 плавится как олово, так что температура плавления действительно ниже, чем у Castolin 192FBK.
Далее возьмем алюминиевую трубку, отпилим кусок и попробуем частично запаять
И что-то идет не так. Припой собирается в шарики и скатывается по поверхности. Я встречал множество гневных отзывов от людей, получившись подобный результат, мол проще оплавить деталь, чем запаять щель в ней.
Но нужно понимать, что флюс хоть и защищает от окисления, но не снимает многолетнюю оксидную пленку, так что обязательно необходимо зачистить поверхность, после чего процесс идет как по маслу
Из-за флюса поверхность мутнеет.
Немного потер щеткой. Довольно неплохо, при желании можно снять лишнее.
Деталь хорошо прогрелась, та что припой протек и с внутренней стороны стыка.
Тестируем. При нормальной сварке разрыв не должен происходить по шву, так и получилось
Крупнее справа
И слева. Тут видно, что трубка начала рваться над швом.
Помимо алюминия можно паять и медь. У нее теплопроводность выше, так что процесс идет гораздо быстрее.
Вид немного портит мутная пленка, но она легко убирается
Снизу так же хорошо протекло
Но соединение получается не такое прочное, как при работе с алюминием. Не без труда, но трубку удалось оторвать, при чем можно разглядеть, что сорвало верхний слой, как будто припой въелся на десятую миллиметра. Даже подумал, что трубка с медным напылением, но потер поверхность щеткой и она снова приобрела медный блеск.
Заказал данный лот просто из интереса, но опыт получился занятным.
Температура плавления практически вдвое ниже температуры плавления алюминия, так что для работы хватит температуры обычной газовой горелки и риск оплавить деталь сводится к минимуму.
Шов получается довольно прочным, так что это неплохая альтернатива аргоновой сварке, особенно если нет других вариантов, а результат нужен вот прям сейчас.
Так же припой хорошо обволакивает поверхность, что позволяет легко устранять порывы трубок из цветных металлов и радиаторов в автомобилях, холодильном оборудовании. Правда у меня нет возможности проверить это под большим давлением, но 8 Атмосфер медная трубка из обзора выдержала. Запаивал торец и пропиленную щель сбоку.
При желании можно использовать его для надежной спайки толстых медных или алюминиевых проводников.
Но с крупными деталями может быть проблема. Во время прогрева места спайки, тепло будет отводиться на остальную часть корпуса, что заметно замедляет процесс и можно перегреть узлы, которые не должны перегреваться — втулки, сальники, прокладки.
Так же стоит упомянуть, что есть лоты с более низкой стоимостью, но в интернетах пишут, что «это обман и лучше данного образца в мире нет». Тем не менее я заказал еще пару в другом месте за $5, но что-то они не трекаются, может не получу их, но если доедут, сделаю небольшое сравнение — возможно и не стоит переплачивать.
Я не сварщик, так что извиняюсь если кого-то заденет моя терминология, старался объяснять «на пальцах» и просто хотел поделиться, вдруг кто-то как и я до некоторого времени не знал о существовании такого припоя )
Как всегда, приветствуется конструктивная критика в комментариях. Всем добра =)
Пайка алюминия с медью
О трудностях при пайке алюминия хорошо известно. Но следующим уровнем по сложности и трудности получения качественного и достаточно надежного соединения является пайка изделий из двух таких конфликтных и различных по своим свойствам металлов – алюминия и меди.
Этот процесс сложный, затратный, с большой вероятностью брака в работе. Но потребность в таких соединениях есть и, следовательно, такая технологическая операция становится необходимой в производственной или бытовой сфере.
Сразу предупреждение – стандартный флюс и припой, подходящий для пайки алюминия, неэффективен для такой же операции с медью. На практике приходится получать соединения из литых заготовок, листового материала, труб и проводов. Последний вариант полностью отрицается электриками, так как даже при отличном качестве пайки, надежности соединения и контакта – это место навсегда останется самым ненадежным и опасным в электропроводке из-за склонности к электрохимической коррозии. Вместо пайки лучше применять переходники и зажимы из металлов, которые не «конфликтуют» ни с алюминием, ни с медью. Но вернемся к пайке.
- возможность осуществления сложного по технологии соединения;
- существование нескольких способов получения соединения деталей;
- получение работником ценного опыта при пайке технологически сложных соединений.
- для осуществления пайки необходимо наличие дополнительных, часто узкоспециализированных и дорогостоящих, материалов;
- специальные расходные материалы не так часто применяются – поэтому не являются распространенными и легкодоступными для их приобретения;
- с пайкой алюминий-медь справится только опытный мастер;
- в частном (бытовом) порядке такая пайка является трудноосуществимой;
- иногда требуется изготовление или подборка стальных переходных муфт; при использовании таких муфт возрастает количество применяемых расходников (для каждого металла нужен свой флюс и припой).
- оба металла имеют оксидные поверхностные пленки;
- медь является более тугоплавкой, что часто служит причиной преждевременного прогорания легкоплавкого алюминия в процессе работы;
- металлы имеют различные коэффициенты линейного расширения.
1. С использованием муфты
Этот способ основан на способности обоих металлов надежно и вполне качественно паяться со сталями. Именно к стальным переходным муфтам с разных сторон и припаивают стыкуемые заготовки.
2. С применением специальных припоев
Самый известный припой – Castolin192FBK – продается в виде прутка с сердечником из флюса. Это жидкоплавкий, низкотемпературный (380°С-430°С) припой с хорошими смачивающими свойствами на основе цинка и алюминия. Из-за низкой текучести он является отличным помощником для устранения больших трещин или отверстий.
3. Поверхностная пайка
Суть метода – увеличить площадь контакта соединяемых деталей с припоем, которая повысит прочность соединения на разрыв, излом, кручение. Сначала из алюминиевого края заготовки получают раструб (воронку), в который должна войти медная проволока или трубка. Края полученной воронки запаивают припоем, который, стекая, заполняет весь объем раструба. Таким образом, припой соединяет детали в единое изделие. Чем глубже воронка, тем больше поверхность соединения.
- Условия работы определяют выбор главного инструмента – паяльника или горелки.
- Припой. Он может быть специальным для непосредственной пайки алюминия с медью. При использовании муфт в работе понадобятся припои для каждого металла, подходящие для пайки их со сталью.
- Флюс, подходящий для используемого конкретного вида припоя.
- Муфта, если выбран данный вид соединения.
- Фиксирующие положение деталей инструменты и приспособления.
- Для поверхностной пайки – приспособление для возможности разделки раструба.
- Подготовительный этап, подразумевающий разделку кромок или, по необходимости, изготовление воронки-раструба.
- Механическая обработка кромок заготовок или концов проводов и трубок с обезжириванием и удалением окислов.
- Фиксация деталей перед пайкой.
- Обработка места стыка флюсом.
- Непосредственно пайка. Если для соединения выбрана муфта, то пайка производится поочередно с двух сторон. После пайки с одной стороны муфты и остывания, выполняется соединение с другой стороны и другими расходными материалами.
- После работы дать остыть стыковому шву. Остатки флюса нужно снять после окончания работы и остывания стыка.
- Проверить качество полностью готового изделия. При отсутствии брака считать его годным к эксплуатации.
- Нельзя допускать нагревания открытым огнем самого припоя в месте стыка.
- При пайке нагрев производится с разных сторон стыка с перерывами. Тепло от нагретого участка металла должно плавно перейти на сам стык.
- Начинайте прогревать с меди.
- Чем медленнее будет расти температура в месте пайки, тем выше вероятность получения качественного соединения.
- Работы производить с использованием вытяжки над местом пайки или хорошей вентиляции в рабочем помещении.
- Обязательно выполнять все требования по безопасному использованию электроприборов.
- Не нарушать правила пожарной безопасности, используя горячий инструмент и открытый огонь при пайке.
- Пользоваться специальными подставками для горячего инструмента.
- Удалить из рабочей зоны все лишние предметы и вещи, особенно легковоспламеняющиеся.
Пайка алюминия с медью
Пайка алюминия всегда являлась достаточно сложным технологическим процессом, так как температура его плавления считается относительно низкой, а свойства соединения находятся на не самом высоком уровне. Пайка алюминия с медью становится еще более сложным и проблематичным процессом, так как медь туго плавится, хотя и нормально поддается пайке. Несмотря на сложность процесса, в нем периодически возникает потребность в различных производственных сферах и даже в домашней обстановке. В нормальных условиях, без каких-либо дополнительных средств и со стандартными материалами, получить качественное соединение и не повредить при этом металл заготовки будет практически невозможно.
Пайка алюминия с медью своими руками
Пайка меди с алюминием требует особого подхода, так как тут даже стандартный припой для пайки алюминия окажется неэффективным. Стоит сразу отметить, что у алюминия именно с медью получается большая конфликтность, так как со сталью процесс спаивания лучше. Этим пользуются многие мастера при создании сложных соединений. Необходимость в такой пайке возникает как при соединении труб или других крупных деталей, так и при контактах проводов, что с технической стороны происходит легче, проще и быстрее, так как нет больших нагрузок на конечное изделие.
Пайка алюминия с медью своими руками в домашних условиях
Преимущества
- Позволяет сделать сложное соединение, которое требует технология эксплуатации;
- Существует несколько различных способов, как произвести процесс, которые заметно отличаются друг от друга;
- Дает мастеру большой опыт и возможность работы с любыми видами металла.
Недостатки
- Высокий процент брака после завершения процесса;
- Пайка алюминий-медь требует большого количества различных дополнительных материалов, многие из которых являются узкоспециализированными, без которых невозможно получить качественное соединение;
- Иногда необходимо подбирать стальные муфты того же диаметра, что и свариваемые трубы;
- Процесс пайки оказывается весьма дорогостоящим благодаря использованию флюсов, специальных припоев и других дополнительных средств;
- Многие из дополнительных расходных материалов находятся в трудном доступе, так как не относятся к распространенным и часто употребляемым;
- Далеко не каждый метод пайки из существующих оказывается подходящим для конкретного случая;
- Справиться с работой может только мастер с большим опытом и в домашних условиях это трудноосуществимый процесс.
Трудности пайки
Основная трудность пайки заключается в том, что металлические изделия из этих материалов не могут нормально соединиться, так как даже при схватывании припоя шов может треснуть даже при относительно небольшом механическом воздействии. Положение усложняется оксидной пленкой алюминия, которая обволакивает материал припоя, мешая нормальному соединению, а также не плавится от температурного воздействия. С этим может помочь в борьбе хорошая очистка и обработка растворителем с последующим нанесением специализированного флюса.
Пайка алюминия с медью
Работа с медью также получается не простой в данном случае. Ведь даже припой для пайки медных труб оказывается не совсем подходящим для такого процесса. Он является тугоплавким, что и требуется для такого металла. В то же время алюминий может иметь более низкую температуру плавления, что приведет к его прогоранию прежде, чем расплавится сам припой. Таким образом, пайка алюминия с медью твердым припоем оказывается достаточно проблематичной. Припой для плавки алюминия может не подойти для меди, так как оказывается слишком легкоплавким, но это уже более подходящий вариант, так как многие мастера, особенно при работе в домашних условиях, используют серебряные припои.
Возможные способы пайки алюминия с медью
Пайка алюминия с медью в домашних условиях и на производстве может проводиться следующими способами:
- Пайка с помощью муфты. В данном случае между металлами вставляется стальная часть, так что и медь и алюминий припаиваются с различных сторон стали более удобными способами, что помогает получить надежное соединение, так как со сталью и другими сплавами они взаимодействуют намного лучше, чем между собой.
- При использовании специальных припоев. Современные разработки, к примеру, как присадочный материал марки Castolin и специально разработанные флюсы к нему, помогают решать многие сложные вопросы. Большим недостатком такого способа является высокая стоимость расходных материалов и слабая распространенность.
Припой для сварки алюминия с медью
- Поверхностная пайка. В данном случае из алюминия делают раструб, чтобы в него могла войти медная трубка. Края этого раструба запаивают легкоплавкими припоями, захватывая большую часть поверхности медной трубы, чтобы увеличит площадь соединения.
Материалы и инструмент
Вне зависимости от того, необходима вам пайка алюминия с медью провода, трубы или листов, для этого понадобятся:
- Горелка (газовая или бензиновая) или паяльник, в зависимости от условий, в которых это все проводится;
- Припой, который будет подходить для выбранного способа, так как для пайки через стальную муфту требуются расходные материалы, которые будут рассчитаны на пайку со сталью;
- Флюс, подобранный под припой, чтобы улучшить взаимодействие с разными металлами;
- Стальная, или из какого-либо другого сплава, муфта, если выбран именно этот метод;
- Инструменты для фиксации заготовок и разделки раструба.
Пошаговая инструкция
- Осуществляется полная подготовка всех металлических изделий, которые будут принимать участие в пайке. Это включает разделку кромок, подготовку раструба, механическая обработка щеткой и растворителями, чтобы снять все имеющиеся налеты и образовавшиеся пленки.
- Затем детали надежно фиксируются, чтобы во время процесса не было ни какого движения и смещения.
- На следующем этапе следует обработать концы деталей флюсом.
- Далее уже можно приступать к непосредственному спаиванию. Если выбран метод через муфту, то сначала она припаивается к одной заготовке, к примеру, медной трубе. Потом нужно выделить время на остывание и проверку качества, чтобы не было трещин и щелей. Только после этого следует приступать к соединению со второй частью, которое осуществляется точно также, но с помощью других расходных материалов.
- После окончания процедур дать шву остыть и проверить полностью готовое изделие на отсутствие брака, прежде чем пускать его в эксплуатацию.
При выборе расходных материалов нужно обращать внимание на прочность получаемого соединения, что особенно важно при работе с трубами, которые эксплуатируются под давлением.»
Как паять алюминий оловом?
Как запаять алюминиевые предметы обычным припоем
Пайка алюминия стандартным припоем по обычной технологии является ненадежной и невозможной. Олово на нем скатывается в шар, не желая прилипать, а если и липнет, то в результате получается слабое соединение, срывающееся под малейшей нагрузкой. Чтобы этого не произошло, паять нужно особенным образом, и тогда даже обычный припой будет держаться намертво.
- припой 60/40;
- минеральное масло или вазелин;
- спирт.
Как паять алюминий правильно
На поверхности алюминия мгновенно образовывается оксидная пленка, которая и препятствует адгезии между основанием и припоем. Чтобы она не мешала, нужно создать безвоздушную среду в месте пайки. Для этого на очищенный от грязи участок алюминия наносится тонкий слой вазелина. Вместо него можно использовать минеральное или другое автомобильное масло.
Если был применен вазелин, то к нему нужно приложить жало паяльника, чтобы он расплавился в жидкое масло. После этого берется монтажный нож или другой острый предмет и им царапается алюминий под вазелином. Важно, чтобы царапины наносились по закрытой от воздуха поверхности. Как только вазелин начинает густеть, его снова следует расплавить жалом паяльника. Нужно активно тереть лезвием ножа, чтобы снять оксидную пленку на металле, а кроме этого создать рельеф, к которому потом хорошо прилипнет припой.
После удаления оксидной пленки масло не стирается. К месту пайки прикладывается жало паяльника, и алюминий разогревается до рабочей температуры. Затем наплавляется нужное количество припоя. Он будет находиться прямо в масле.
Капля припоя слегка растирается по подготовленной поверхности. Нужно ее вдавить в образовавшиеся царапины. Припой вытеснит масло в стороны, поэтому оно не будет мешать адгезии. Отсутствие оксидной пленки позволит олову прикипеть к алюминию, а не собираться шариком, который легко и просто отваливается.
Затем к подготовленной с маслом и трением поверхности можно прикладывать луженые проводки, проволоку или что потребуется. Они будут припаиваться в секунду, не забирая на себя все олово из алюминия, как происходит обычно. После пайки остатки масла убираются ваткой смоченной в спирте.
Данный метод позволяет добиться такой же надежности пайки, что и при соединении двух медных элементов. При этом в отличие от другого распространенного способа с маслом, когда оксидная пленка снимается пятиминутным трением раскаленным жалом паяльника, срывать ее ножом получается быстрее.
Смотрите видео
Как правильно паять алюминий
Порой возникает такая ситуация, что старую алюминиевую проводку заменить нет возможности и вам просто необходимо выполнить качественное соединение алюминия и меди. Для этого, конечно, можно использовать специализированные разъемы, обжимы или клемники, но я хочу вам рассказать, как можно надежно и качественно спаять медь и алюминий.
В чем сложность пайки
Как известно, алюминий очень активный металл и при взаимодействии с атмосферным воздухом он практически мгновенно покрывается оксидной пленкой, оная как раз и отторгает припой и не позволяет просто так залудить алюминий.
Чтобы припой хорошо «прилип» к металлу нужно удалить уже имеющуюся пленку и не дать ей вновь образоваться, вплоть до того момента, пока вы не нанесете припой.
Специально для этих целей были придуманы: специализированные флюсы, активно используют паяльную кислоту, применяют смесь канифоли с ацетоном.
Готовим инвентарь
Для того, чтобы успешно выполнить данную работу вам потребуется: паяльник мощностью минимум 60 Вт, ножик, пассатижи, наждачная бумага или напильник, припой ПОС 61 или ПОС 50, флюс Ф-64 либо его аналог, кисточка, губка и ветошь.
Паяем алюминий оловом и флюсом Ф-64
Важно. Пайка токопроводящих элементов с помощью Ф-64 и любого его аналога по правилам ПУЭ запрещена. Так как применение кислоты вызывает не только разрушение оксидной пленки, но так же активно разрушает сам металл, а после лужения эту кислоту удалить невозможно и она продолжает разрушительные процессы под припоем.
Таким способом вы сможете, например, запаять алюминиевую декоративную деталь.
Сам по себе алгоритм работы с флюсом Ф-64 очень прост. Сначала зачищаем изоляцию на алюминиевой жиле , затем наждачной бумагой или же ножом обрабатываем саму жилу для того, чтобы снять толстый слой пленки.
Затем кисточкой наносим флюс на зачищенную жилу и еще раз зачищаем его уже под флюсом. Таким образом флюс препятствует образованию новой пленки.
Затем уже хорошо прогретым паяльником начинаем наносить на подготовленную жилу олово. При этом вы паяльником будто втираете припой.
Как только вы залудили одну дорожку, вновь наносите флюс и повторяйте процедуру. Так вы сможете полностью покрыть жилу припоем и в дальнейшем припаять ее к нужному вам месту или детали.
После того, как вы полностью обработали жилы нужно обязательно промыть ее в растворе соды (пять столовых ложек соды на 200 грамм воды). Это нужно чтобы смыть остатки активных веществ, оные входят в состав Ф-64.
Пайка алюминия с медью при помощи олова и канифоли
Для того, чтобы спаять токопроводящие жилы медного и алюминиевого провода применять кислотные флюсы нельзя, а нужно воспользоваться жидкой канифолью, оная так же обеспечит надежное соединение.
Такую канифоль можно приобрести уже в готовом виде, а можно приготовить самостоятельно, для этого вам потребуется кусковая канифоль (оная измельчается в порошок) и чистый спирт. Затем эти два компонента смешиваем в пропорции: 60% канифоли и 40% спирта. Затем кладем пузырек в теплую воду, дожидаемся пока она разогреется и тщательно перемешиваем до полного растворения канифоли. Все, раствор готов и им можно пользоваться.
Так же помимо всего вышеперечисленного инвентаря нам еще нужно подготовить небольшую емкость в оную мы будем погружать зачищенный конец провода.
Так же удаляем изоляцию и очищаем жилу от толстого слоя пенки, затем погружаем наш оголенный конец провода, чтобы он полностью был в жидкой канифоли и с помощью ножа еще раз обрабатываем жилу.
Далее берем предварительно разогретый паяльник и начинаем обрабатывать жилу у самой поверхности канифоли, вращая его и вынимая по мере того, как будет облуживаться провод.
Главная фишка заключена в том, чтобы алюминий облуживался у самой границы между канифолью и воздухом таким образом, чтобы воздух не окислял его.
Следите, чтобы паяльник не терял температуру и при необходимости вынимайте его из ванночки, чтобы он хорошо прогрелся.
Важно. При этой работе выделяется очень много дыма, поэтому лучше ее производить на открытом воздухе или же в помещении с отличной принудительной вентиляцией.
После того, как вы облудили алюминий, остаточный след канифоли легко удаляется тряпкой смоченной в спирте. Затем вы можете скрутить облуженные алюминиевые и медные провода в классическую скрутку и тут же пропаять ее.
Олово послужит отличным нейтрализатором гальванического взаимодействия меди и олова и гарантирует, что подобное соединение прослужит очень долго и безаварийно.
Пожалуй, единственным и существенным недостатком подобного соединения меди и алюминия является тот факт, что выполнить пайку в распределительной коробке, находящейся под потолком и при отсутствии должного запаса, практически невозможно.
В этом случае лучше воспользоваться другими способами соединения проводов в распределительной коробке.
Это все, что я хотел вам рассказать о пайке алюминия с помощью специальных припоев и обычного олова с канифолью. Надеюсь, эта статья окажется вам полезна и интересна. Спасибо за внимание.
Использование припоя для пайки алюминия, меди, стали
[Припой для проведения пайки алюминия] используется не только в промышленности, но и в домашних условиях. Можно провести пайку мягким, твердым припоем в зависимости от вида металла.
Считается, что алюминий сложно паять. Если для пайки применять обычные припои, флюсы, которые используют для соединения нержавейки, латуни, меди, стали, то могут возникнуть сложности.
Причиной является образование оксидной пленки, которая отличается высокой стойкостью, тугоплавкостью. Она не дает возможности смачивания поверхности припоем, основной металл не растворится в нем.
После того как поверхность алюминия будет зачищена изделием из нержавейки, на ней появится оксидная пленка.
Перед пайкой ее обязательно нужно удалять, так как затрудняется процесс.
Не все знают, как это сделать в домашних условиях. Есть специальные составы, которые изготавливают для соединения алюминия.
Применяя их, сложности в пайке алюминия не будет.
Чем паять алюминий и его сплавы?
Чтобы пайка алюминия осуществлялась на качественном уровне, следует применять припои, в состав которых входит кремний, алюминий, серебро, медь, цинк.
В продаже можно найти состав, в котором различное соотношение данных составляющих.
При выборе припоя следует учесть, что наибольшую стойкость к коррозии, прочность имеет то соединение, которое паяли с помощью припоя с высоким содержанием цинка.
Чем больше его в составе, тем выше показатели.
Припои на основе олова и свинца применять для пайки алюминия можно.
При этом стоит хорошо подготовить поверхность материала, качественно зачистить щеткой из нержавейки и приобрести высокоактивные флюсы.
Все же специалисты не рекомендуют применять такой припой — алюминий в нем плохо растворяется.
Кроме этого, соединение будет подвержено коррозии, оно нуждается в покрытии лакокрасочными составами.
Припои, которые применяются для пайки алюминия, являются высокотемпературными. Подходящими для работы можно считать алюминиево-кремниевый, алюминиево-медно-кремниевый состав.
Припой из серебра
Для пайки чистое серебро не используют. Чаще всего для соединения латуни используют сплавы, в состав которых кроме серебра входит цинк, кадмий, никель, другие металлы.
Медь с серебром хорошо расплавляется, шов, который остается от плавки, отличается высокой прочностью.
Если в составе припоя серебра 10%, то его можно использовать для соединения деталей из стали.
Латунные и другие поверхности имеют после спаивания аккуратный, чистый шов.
Выбирая флюсы, стоит оценивать их характеристики. Не все из них проявляют активность по отношению к алюминию, особенно, если применяются припои, состав которых содержит олово и свинец, составы с серебром.
При покупке стоит приобрести флюсы, которые так и называются «Для пайки алюминия».
Также можно купить флюс: виды 34А, Ф61А, Ф59А (высокотемпературный), а можно проконсультироваться с продавцом.
Что делать, если под рукой отсутствует припой, флюс, предназначенный для работы с алюминием. Можно воспользоваться припоями, куда в состав входят олово, свинец.
При этом оксидную пленку нужно будет разрушать канифолью. Таким образом, новая пленка не будет образовываться при нанесении на поверхности канифоли.
Если образуется немного пленки, то ее необходимо потереть специальным скребком из нержавейки. Можно добавить немного металлических опилок.
Производя трение по поверхности элементами из нержавейки, пленка будет разрушаться. Канифоль защитит от воздействия алюминия с воздухом.
Вместе с этим, происходит воздействие припоем. Такой метод специалисты рекомендуют применять в крайнем случае.
Если есть возможность, лучше приобрести флюс, припой, изготовленный для работы с поверхностями из алюминия, его сплава.
Как подготовить детали к пайке?
Перед тем, как приступать к пайке своими руками, часть детали необходимо соответствующим образом подготовить. Поверхность материала следует обезжирить.
Для этого можно использовать бензин, ацетон, любой другой растворитель. Чтобы удалить оксидную пленку, нужно применить физическое воздействие.
Для этого можно использовать различные материалы: сетку из нержавейки, щетку, абразивные круги.
Для удаления оксидной пленки можно использовать кислоты, такой способ достаточно трудоемкий, чтобы использовать его в домашних условиях.
После обработки поверхности металла, применяя изделие из нержавейки, старая пленка удалится, но на ее месте образуется новая.
Она будет более слабая, тонкая. Флюс растворит ее намного быстрее, чем ту, что сняли предварительно. Поверхность из латуни, меди, стали зачищать намного легче.
Прежде чем припаять одну деталь к другой, стоит их нагреть. Если предметы из стали отличаются большими размерами, для нагрева следует использовать паяльную лампу или специальные газовые горелки.
Нагревая помощью горелки, нужно быть осторожным и все время следить за работой горелки. Основной материал перегреться не должен, так как расплавится и потеряет свою форму.
Необходим постоянный контроль температуры горелки. Для этого стержень припоя нужно кратковременно прикладывать к поверхности. Когда температура достигнет рабочей, припой расплавится.
Стоит обращать внимание на пламя горелки, которым нагреваются детали.
Газовые составы смеси для горелки должны быть сбалансированными и не иметь недостатка/переизбытка кислорода.
Если кислорода будет больше нормы, то поверхность металла будет окисляться. Подобная ситуация не случится, если работать с поверхностями из стали, латуни, меди.
Во время работы с маленькими деталями горелки не применяют, обычно пользуются паяльниками, работающими от электросети.
Если необходимо соединить несколько компонентов, применяется пайка волной припоя. На видео показано, как работать с мягкими, твердыми припоями.
Технология работы припоем алюминия, его сплавов
Детали необходимо очистить от пыли, жира, грязи и установить в то положение, в котором они будут подвергаться пайке. В место, где будет осуществляться пайка, нужно нанести флюс.
Место с флюсом нагревается. Для этого стержнем нужно прикоснуться к поверхности. Важно не перегреть место соединения, так как металл будет плавиться.
При работе с припоем без флюса стоит знать особенность: оксидную пленку на поверхности нужно разрушить, так как припой не сможет проникнуть через нее.
Разрушать ее можно с помощью нержавейки или прутком из стали, для этого нужно произвести чиркающие действия по поверхности. В результате оксидная пленка теряет целостность.
Если поверхность большая, то разрушить пленку поможет щетка из стали. Ею нужно водить по поверхности, затем соединить детали между собой.
Проблема работы алюминия — оксидная пленка образовывается мгновенно после того, как ее счистят. Она является инертной и расплавленным металлом смачивается с трудом.
Что же делать, чтобы такую пленку снять и прочно запаять деталь? Можно очищать поверхность, налив на нее слой масла. Металл в этом случае не будет контактировать с воздухом, соответственно пленка не сможет образоваться.
Вода не должна входить в состав масла. Для этого его хорошо прогревают до температуры 180-200 градусов. Специалисты рекомендуют применять вакуумные, минеральные масла.
Есть еще способ снять оксидную пленку. Покрыть поверхность канифолью. Она, как и масло, будет препятствовать попаданию воздуха на металл.
Опилками из стали или щеткой из нержавейки нужно проводить чиркающие движения по алюминию, пленка утратит свою прочность.
Лучший метод удалить оксидную пленку своими руками — применить механические действия элементами из стали плюс воздействие активным флюсом.
Применяя пайку, можно восстановить предметы из алюминия любой конструкции, величины, сложности. Такой метод ремонта используется не только для предметов, используемых в быту.
К автомобилям, мотоциклам, прочей технике предъявляются повышенные требования прочности. Их также ремонтируют путем пайки.
Иногда такой способ соединения деталей является предпочтительнее, чем сварочные работы. Ведь он не деформирует металл, не меняет его состав.
При помощи спаивания можно отремонтировать кондиционеры, насосы.
В домашних условиях можно отреставрировать алюминиевый желоб водостока, сайдинг, лестницу, посуду. После ремонта сплав окажется очень прочным.
Как паять сплавы алюминия?
Сплавы алюминия своими руками можно спаять, если купить припой и флюс марки 34А.
Проще всего запаять авиаль, сплав Амц. А вот литейные сплавы, дуралюмин, АК4, В95 паять очень сложно, так как у них низкая температура плавления.
Если возникла необходимость запаять какую-либо деталь из таких сплавов, действовать нужно крайне осторожно.
В противном случае можно получить пережог. Потеря прочности сплава составит при этом около 30 процентов в том месте, где производилась пайка. Иногда металл полностью плавится.
Сплавы дуралюмин, В95 при нагреве могут деформироваться, поэтому прогревать их с помощью горелки нельзя.
Мелкие изделия можно нагреть в специальной печи, так будет удобнее контролировать температуру.
Чтобы снять с поверхности сплава оксидную пленку нужно обработать ее флюсом, у которого активность повышенная. Широко известны такие марки — флюс 34А, НИТИ-18.
Их чаще всего применяют при работе с алюминиевыми сплавами. Важно знать, что флюс марки 34А может привести к сильной коррозии металла.
Чтобы этого не допустить, после проведения спаивания деталей, флюс, который остался на поверхности, нужно убрать.
Для этого необходимо провести ряд действий:
- изделие нужно помыть водой около 20 минут, применяя щетку. Вода должна быть горячей — примерно 80 градусов;
- около получаса промыть изделие в холодной воде;
- сделать раствор хромового ангидрида и обработать в нем изделие;
- после обработки поверхность должна просохнуть при высокой температуре около 25-30 минут.
Припои для других металлов
Если изделия, трубы состоят из меди, то специалисты не рекомендуют использовать сварочные работы.
В этом случае рекомендуется пайка медных труб твердым припоем, виды которых можно купить в любом специализированном магазине.
В отличие от алюминия, в припой для пайки медных труб может входить серебро, а также медно-фосфорный состав.
Спайка изделий из этого металла может осуществляться твердым, мягким припоем. Припой для пайки меди можете увидеть на видео ниже.
Пайка твердыми припоями с серебром требует наличия специального оборудования — газовой горелки.
Популярностью пользуются припои с содержанием серебра. В составе припоя может находиться до 55 процентов этого металла.
Среди особенностей такого припоя можно отметить низкую температуру, при которой плавится металл. Серебро в составе вещества хорошо смачивает поверхности металла.
Серебро способствует хорошему заполнению щелей, которые образовываются между соединяемыми поверхностями. При использовании такого припоя образуются плотно-вакуумные швы.
Пайка меди твердым припоем отличается от пайки мягким. Применяя твердый припой, необходимо создать условия, при которых пайка волной припоя происходит при температуре, которая выше 420-425 градусов.
Стоит помнить, что при этом температура не должна превышать температуру, при которой соединяемые металлы плавятся.
Пайка, где используется мягкий припой для медных труб, должна происходить при температуре, которая составляет менее 425 градусов.
Флюс с составом серебра, который при этом используется, не дает возможности оксидной пленки образовываться.
Сплав меди и цинка называется латунный сплав. При пайке латуни есть свои особенности. Когда происходит термическое воздействие на латунный элемент, сплав выделяет цинк.
При этом образовывается пленка из оксида меди, цинка. Удалить ее довольно сложно. Флюсы и припой при этом выбираются в зависимости от того, какой состав имеет сплав.
Серебряный припой, флюсы применяются для латуни, в составе которых есть медь. Если латунь включает в себя больше цинка, то серебряный припой должен быть ПСр40 и выше.
Когда поверхность латуни соединяется с серебряными припоями, то латунный слой может сильно расплавиться, поэтому следует контролировать нагрев металла и время всего процесса.
Самодельный (дешевый) флюс мегапуть [Архив]
Реверберация? Лемм на них! я хочу один!Но нужна хорошая горелка, Дейзел, ладно? ВМО?
Так злобно выгляжу: скрученный:
Как его наклонить?
начнем с того, что посмотрим на мой и Тима, идея разливочного патрубка заключается в том, что он поворачивается как можно ближе к патрубку, чтобы поток не начинался в одной точке, когда вы начинаете заливать, а затем заканчивался в другой точке, когда вы добираетесь до финишной части заливки, как бы остается на том же месте, таким образом, ваше литниковое отверстие в форме не нужно перемещать вокруг
вам не нужна необычная горелка, я использую мою пропановую горелку, которая Я использую во всех своих печах и кузнице, я создаю масляную горелку, надеюсь, она будет работать так же хорошо, как пропан с реверберацией, я слышал, что масляная горелка может сделать металл намного лучше gassy
Я считаю, что идея реверберации заключается в том, что тепло отражается взад и вперед от металлической поверхности и тает намного быстрее, как я уже сказал, с моей реверберацией я могу расплавить около 10 фунтов алюминия от холодного старта до полностью расплавленного металла примерно через 10 минут, максимум за 15 минут, я использую 1-дюймовую горелочную трубку, жиклер пропана. о.045 «(сварочный наконечник MIG), и я обычно запускаю свой регулятор при 3-5 PSI, иногда, если в спешке, я проворачиваю его примерно до 8-10 в течение первых нескольких минут, но это только потому, что я в спешка
Причина, по которой я использовал баллон с пропаном для своего, заключается в том, что если огнеупор начинает трескаться, ничего не будет вытекать, я использовал коммерческий огнеупор, рассчитанный на алюминий и температуру 2800 градусов, у меня действительно много мелких трещин в волосах , но я считаю, что это только из-за быстрого нагрева и охлаждения
и что касается наклона для заливки, с обратной стороны я приварил кусок арматуры к его нижней части, я просто хватаю его и поднимаю, когда строю я не думал, поэтому мне нужно установить какой-то груз на заднюю часть рамы печи, чтобы она не опрокидывалась при опрокидывании для заливки
У меня есть много фотографий, если вы хотите увидеть несколько разных видов, и, возможно, мне стоит начать новую тему об этом в разделе литейного производства и строительства, может быть, позже сегодня, после того как я найду все фотографии, я сделаю это вместо того, чтобы добавлять печь к самодельному дешевому потоку из флюса
. Я бы поступил иначе, когда когда-либо собирался построить еще один (просто не могу позволить себе купить огнеупор для следующего десятилетие (преувеличено)), но когда я это сделаю, я обязательно буду использовать хороший изоляционный тип с горячей поверхностью поверх него, у меня сейчас толщина стенки около 2 дюймов, единственное, что я бы изменил, это сливной носик, я сделал мой в спешке, поэтому он стоит на пути к привету, а опоры, которые имеют шарнир, идут прямо вниз, что очень сложно поднести фляжку достаточно близко к ней, чтобы заливка попала в отверстие литника, я бы либо выдвиньте носик немного дальше или сделайте так, чтобы ножки шли назад, а не прямо вниз, и поместите его не выше 10 дюймов в высоту на выпускном отверстии
Я подумал о внесении некоторых изменений в свой 1-й, прежде чем строить другой, поэтому я может решить эту проблему, я в основном использую его для плавления банок, я никогда не снимаю шлак перед заливкой, я просто как бы сдерживал окалину / шлак при заливке, подойдет либо кусок арматуры, либо ложка для сбора грязи, после заливки я затем открываю крышку и вычерпываю весь окалина / шлак раз у меня в этом материале остается очень мало металла, потому что он весь выливается, и, как я уже сказал, я делаю в нем банки и делаю слитки, будучи так высоко, что мне нужно установить изложницу на блоки, чтобы металл не выплёскивал при заливке, как только 1 слиток заполнится, мне нужно сдвинуть изложницу к следующей пустой, чтобы я мог просто выкопать траншею в полу своего цеха и просто залить ее таким образом, чтобы я мог сделать 1 слиток, который будет удерживает общее количество металла, которое я могу расплавить
У меня есть изложница, которая представляла собой отрезок трубы размером около 3 дюймов, которую я разрезал по длине и закрыл концы, когда она будет заполнена, она будет вмещать около 10 фунтов алюминия, что примерно соответствует максимальному значению. Я могу растаять в нем, я использовал его только один раз, с тех пор он проржавел на месте, поэтому я зацепил кусок 4 на 4 угла на толщине 1/4 дюйма, который будет работать намного лучше, я не думаю, что он проржавеет через
Я надеюсь, что этой информации было достаточно, чтобы помочь вам начать, я также хотел бы увидеть, как другие делают реверберационные печи, если нет Другая причина, чтобы просто увидеть разные конструкции, у меня есть старая бочка для масла, которую я начал строить много лет назад, но теперь у меня есть несколько других вещей, которые я мог бы использовать, которые могут быть намного проще, чтобы сделать сливной носик таким же образом Я хочу этого, это единственная проблема с моей, он должен быть длиннее, или ноги должны сидеть намного дальше от того места, где они сейчас находятся
показывает, мои кончики пальцев болят от всего этого набора текста Я только что набрал
Я просто надеюсь, что все это имеет смысл для кого-то кроме меня: shock: LOL
Ron SS
Состав флюса для сварки и пайки алюминия
Данное изобретение относится к флюсу для сварки или пайки алюминия или его сплавов.
Обычный метод соединения двух кусков алюминия с помощью сварки или пайки состоит в нагревании алюминия до температуры, при которой он начинает «потеть», то есть плавиться на поверхности, а затем «покрывать лужу» поверхностью, т.е. Другими словами, взбалтывание оксида, который образуется на поверхности, и в некоторых случаях соскабливание его железным прутом, а затем нанесение сварочной проволоки или припоя на очищенную таким образом алюминиевую поверхность сразу после того, как оксид взболтался или соскоблился .Этот метод требует значительных навыков и является неудовлетворительным даже при умелом применении, так как плавящийся алюминий имеет тенденцию поглощать частицы оксида, что делает сварное соединение слабее, чем сам металлический алюминий, а также потому, что используемая высокая температура сварки приводит к кристаллизации металла. алюминий на стыке, который делает металл стыка относительно хрупким.
SA количество флюсов для операций сварки и пайки алюминия было предложено и использовано до сих пор. Они были признаны пригодными к эксплуатации, но не отвечают всем основным требованиям эффективного алюминиевого флюса. Хороший алюминиевый флюс должен обладать следующими тремя взаимосвязанными характеристиками: (1) он должен растворять или иным образом удалять (например, всплывать) оксид алюминия, который существует на поверхности или образуется при температурах сварки, (2) он должен способствовать поток плавящегося или расплавленного алюминия и (3) он должен значительно снизить температуру плавления алюминия в зоне сварки.Эти три характеристики или функции могут быть более кратко обозначены как удаление оксидов, смачивание поверхности и снижение температуры плавления. Конечно, важно, чтобы эти три функции выполнялись взаимосвязанно. Насколько мне известно, алюминиевые флюсы, которые предлагались и применялись до сих пор, не удовлетворяли этим трем требованиям и, в частности, третьему требованию, а именно снижению в значительной степени точки плавления алюминия. Поток моего настоящего изобретения способен удовлетворить эти требования и взаимосвязанно выполнять эти три заявленные функции. Самым важным из них является существенное снижение температуры плавления алюминия. Состав флюса по настоящему изобретению сам плавится при температуре около 940 ° F и заставляет алюминий в области сварки вытекать и течь при температуре около 970 ° F, что является существенным падением по сравнению с нормальной температурой плавления алюминия, которая составляет 1217 ° F. F. При этих пониженных температурах (от 940 ° до 970 * F) состав флюса по настоящему изобретению также очень эффективно всплывает или иным образом удаляет образовавшийся оксид на свариваемых поверхностях и эффективно помогает расплавленному металлу течь вдоль соединенная область.
Фактическое плавление и соединение алюминия с помощью флюса при температуре ниже 1000 ° F, насколько мне известно, является отклонением от стандартной практики и до сих пор не осуществлялось. Проведение сварочных операций при такой пониженной температуре дает ряд далеко идущих результатов. В первую очередь, пониженная температура локализует зону сварки или плавления, устраняет охрупчивание и приводит к повышению прочности алюминия на растяжение в сварном соединении. Я обнаружил, что сварной шов, полученный с использованием состава флюса по настоящему изобретению, лишен хрупкости и обладает пределом прочности при растяжении, по существу таким же, как и у самого алюминия. Я также обнаружил, что при этих пониженных температурах и с использованием флюса данной композиции абсорбция или флотация оксида или шлака удивительна по своей скорости. Также следует отметить, что использование более низких температур для получения эффективного сварного шва связано с экономией тепла.Другими важными преимуществами этого композиционного флюса являются то, что он не выделяет опасных паров и не оставляет немытых коррозионных остатков.
Для достижения этих целей я обнаружил, что состав флюса должен содержать галогенид кадмия в сочетании с галогенидом меди, и в качестве примера я использую хлорид кадмия и хлорид меди. Я обнаружил, что использование в композиции только хлорида кадмия или хлорида меди не дает результатов, так как полученный таким образом сварной шов является хрупким и относительно слабым. В сочетании с этими галогенидами металлов я использую галогениды щелочных металлов, обычно используемые в этих алюминиевых флюсах, чтобы сделать возможным эффект более легкой текучести, такими галогенидами являются галогениды, например, калия, натрия, лития, цезия и рубидия, по отдельности или их смесь. В дополнение к этому, я предпочитаю использовать или добавлять в композицию галогенид одного из редкоземельных металлов, например церия, который стабилизирует композицию. Этот галогенид редкоземельного металла, например хлорид церия, где используется церий, служит для предотвращения поглощения влаги композицией при стоянии и, таким образом, стабилизирует ее, а также, по-видимому, придает менее критический диапазон температур плавления композиции и более легкий отрыв оксида алюминия.
Ниже приведены примеры состава флюса, воплощающего настоящее изобретение, процентные содержания даны по массе.
Пример I Процент хлорида кадмия ——————— Хлорид меди ——————— — 29. 1 Хлорид церия —————— —- 9 Хлорид калия ——————- 34.2 Калий фтористая кислота ———— 6.6 Хлорид натрия ———————— 6.6 Хлорид лития ——- —————- 4.5 Пример II Процент хлорида кадмия ———————- 10 Хлорид меди — ———————— 30 Хлорид серы ———————— — 5 Хлорид калия ———————- 41 Фторид калия ——————— 4 Хлорид натрия ————————- 7 Фторид лития ——————- — 3 Пример III Пример без использования хлорида церия: Процент хлорида кадмия —————- 56 Хлорид меди ———— — —- — 20 Хлорид калия ———————— 10 Фторид калия ————— —— 2 Хлорид натрия ————————- 2 Хлорид лития ————— — —— 10 Я предпочитаю композиции в галогенид (или смесь галогенидов) редкоземельных металлов используется из-за его стабилизирующего действия.
Галогениды щелочных металлов могут быть использованы в количестве от 10% до 75% от общей массы смеси. Вместо хлорида кадмия и хлорида меди я могу использовать другие их галогениды, такие как бромиды, йодиды и фториды, или их смесь. Вместо хлоридов щелочных металлов я могу также использовать их другие галогениды, такие как бромиды, йодиды, фториды или их смеси. Галогениды кадмия и меди могут использоваться в различных относительных пропорциях, хотя в примерах, где используется галогенид редкоземельного металла, я предпочитаю использовать галогениды кадмия и меди в пропорциях примерно от 1 до 3.Редкоземельный металл можно использовать в количестве от 1% до 20% смеси.
Я обнаружил, что состав флюса по моему изобретению может быть смешан с алюминиевым порошком для получения алюминиевого припоя. Я обнаружил, что такой припой можно получить путем смешивания алюминиевого порошка размером от 18 до 120 меш с флюсовой композицией, причем алюминиевый порошок составляет от 15 до 30% от массы смеси.
in. Состав флюса по настоящему изобретению, а также его использование и преимущества будут, в основном, полностью очевидны из приведенного выше подробного описания. Кроме того, будет очевидно, что я могу вносить изменения в относительные пропорции ингредиентов композиции и замены эквивалентов в этих ингредиентах, как описано выше, без отступления от сущности изобретения, определенного в следующей формуле изобретения.
Я заявляю следующее: 1. Флюс для сварки или пайки алюминия, содержащий галогенид кадмия, галогенид меди и галогениды щелочных металлов.
2. Флюс для сварки или пайки алюминия 2, содержащий галогенид кадмия, галогенид меди, галогенид редкоземельного металла и галогениды щелочных металлов.
3. Флюс для сварки или пайки алюминия, содержащий галогенид кадмия и галогенид меди.
4. Флюс для сварки или пайки алюминия, содержащий хлорид кадмия, хлорид меди и галогениды щелочных неталей.
5. Флюс для сварки или пайки алюминия с содержанием хлорида кадмия около 10%, хлорида меди около 30% и галогенидов щелочных металлов.
6. Флюс для сварки или пайки алюминия, содержащий около 10% хлорида кадмия, около 30% хлорида меди, от 1 до 20% хлорида редкоземельного металла и остальное в галогенидах щелочных металлов.
7. Флюс для сварки или пайки алюминия, содержащий галогениды кадмия, меди, церия, калия, натрия и лития.
8. Флюс для сварки или пайки алюминия, содержащий хлорид кадмия, хлорид меди, хлорид церия, хлорид калия, фторид калия, хлорид натрия и хлорид лития.
9. Флюс по п.8, в котором хлорид кадмия и хлорид меди находятся в соотношении примерно от 1 до 3.
OSKAR HOROWITZ.
Пайка алюминия: коррозионный или некоррозионный флюс
Пайка алюминия широко используется в автомобилестроении и HVAC / R. Большинство производителей используют полностью алюминиевые или преимущественно алюминиевые компоненты, включая змеевики испарителя и конденсатора, распределители, жидкостные и всасывающие линии. При пайке алюминия коммерчески доступны два семейства флюсов: коррозионные и некоррозионные. Чтобы выбрать подходящий для вашего приложения, давайте определим преимущества каждого из них.
Коррозионный флюс
Исторически коррозионный флюс был стандартом для соединения алюминиевых материалов. Коррозионный флюс водорастворим, содержит как хлоридные, так и фторидные соли. Остатки можно смыть с деталей раствором азотной кислоты и воды, и полученное паяное соединение будет иметь чистый вид.
В автомобильной промышленности этот флюс обычно используется в автомобильных узлах под капотом, где внешний вид критичен. Коррозионный флюс также используется в электрических системах и теплоотводах, поскольку некоррозионные остатки флюса действуют как изолятор и их нелегко удалить.
Из-за своей коррозионной природы флюс этого типа доступен только как флюс для нанесения краски или расходный материал. Использование дозируемого флюса с автоматическим дозатором позволяет тщательно контролировать количество флюса, наносимого на соединение. Многие из наших клиентов используют расходный флюс с автоматическим дозатором, такой как Handy Flo® Dispensable Flux DF 731 от Lucas-Milhaupt. Помните, что тщательный контроль количества флюса жизненно важен для получения качественных паяных соединений.
Некоррозионный флюс
Ключевым преимуществом некоррозионного флюса является исключение промывки после пайки.Многие клиенты из автомобильной промышленности перешли на использование некоррозионного флюса, потому что устранение процесса промывки после пайки исключает возможность коррозии из-за остатков коррозионного флюса. Коррозия соединений и компонентов может со временем привести к утечкам и проблемам с гарантийным обслуживанием, что может быть дорогостоящим.
Некоррозионный флюс доступен в порошковой, покрытой или пастообразной форме как со сплавом, так и без него, что позволяет вам контролировать количество флюса и сплава для вашего применения. Этот флюс используется при пайке на открытом воздухе горелочным, индукционным и печным методами.
Некоррозионные флюсы состоят из фторидных солей и могут содержать соединения цезия, в зависимости от основного материала и применения присадочного материала. Поскольку некоррозионные флюсы оставляют белый осадок, не забудьте обучить инспекторский персонал не отбраковывать детали из-за их различного внешнего вида.
Деталь, спаянная с использованием некоррозионного флюса, с остатками.
Деталь, спаянная с использованием коррозионного флюса, без остатка после очистки.
Lucas-Milhaupt предлагает три основных некоррозионных флюса, и все они доступны в форме замещаемого флюса, пасты и порошковой флюса:
- Флюс Nocolok® — это стандартный промышленный флюс, который подходит для всех алюминиевых сплавов серий 1000 и 3000. Часто этот продукт используется для алюминиевых теплообменников и межтрубных соединений.
- Флюс типа KX содержит небольшое количество цезия и имеет те же характеристики плавления, что и флюс 100% Nocolok.Это чаще всего используется с нашим сплавом AL 718 (88Al / 12Si). Флюс KX можно использовать для соединения алюминиевого сплава серии 6000; его содержание цезия помогает реагировать с магнием в этих основных материалах для более эффективного увлажнения поверхностей. Этот продукт часто используется в трубке 3003 и соединительном блоке 6061, часто встречающемся в автомобильных трубопроводах HVAC.
- Флюс типа CX также может использоваться для соединения алюминиевого сплава серии 6000. Флюс CX состоит из большего количества соединения цезия, которое значительно снижает температуру плавления и является еще более агрессивным для алюминиевых сплавов серии 6000.Этот флюс также можно использовать с нашим сплавом AL 718, но чаще всего он используется с нашими сплавами Zn / Al (AL 802 и AL 822). Эти сплавы требуют, чтобы флюсы плавились и активировались при более низкой температуре из-за их характеристик плавления. Будучи цезийсодержащим флюсом, он часто используется в соединениях серии 6000, где желательно меньшее травление поверхности и где допустима немного большая миграция флюса, например, в автомобильных трубах ОВК.
Nocolok — зарегистрированная торговая марка Solvay Fluor.
ВЫВОД:
При пайке алюминия коммерчески доступны два семейства флюсов: коррозионные и некоррозионные. Коррозионный флюс растворим в воде, и после промывки полученное паяное соединение имеет чистый внешний вид. Основное преимущество некоррозионного флюса — исключение промывки после пайки; этот флюс используется при пайке на открытом воздухе горелочным, индукционным и печным методами. Lucas-Milhaupt предлагает несколько различных вариантов некоррозийного флюса в зависимости от ваших алюминиевых сплавов и области применения.
Дополнительные сведения об основах пайки см. На сайте нашего блога.
Вопросы? Свяжитесь с нами для дальнейшей помощи. По вопросам, связанным с конкретными приложениями, обращайтесь в технический отдел Lucas Milhaupt по телефону 800.558.3856.
Мы рады предоставить экспертную информацию по Global Brazing Solutions®. Не стесняйтесь поделиться этим сообщением с коллегами и сохраните наш блог в Избранном для удобства использования!
Как паять алюминий — Weld Guru
Для профессионального ремонта алюминия не обязательно быть профессиональным сварщиком TIG.
На самом деле вы можете использовать алюминиевую пайку для ремонта трещин, отверстий, утечек, заклепок, сломанных ушек, резьбы или для изготовления алюминия, литого алюминия и чугуна быстро, легко и прочнее, чем новые.
Это совсем не сложно.
Паять можно многие алюминиевые сплавы. Алюминиевые припои используются для придания полностью алюминиевой конструкции отличной коррозионной стойкости, хорошей прочности и внешнего вида.
Точка плавления припоя относительно близка к температуре плавления соединяемого материала.Однако основной металл не следует плавить; в результате необходим строгий умеренный контроль. Температура пайки, необходимая для алюминиевых сборок, определяется температурами плавления основного металла и присадочного металла.
Основы сварки алюминия пайкой
Процесс пайки означает использование тепла, выделяемого газом (800 градусов по Фаренгейту), и наполнителя, не содержащего железа, например алюминия, для соединения с различными металлами. Сам алюминий также можно использовать для замены части другого металла, которая могла треснуть или отвалиться.
- Стоимость оборудования : Не требуется газ аргон, катушка с проволокой, перчатки, экран или электричество.
- Портативность : Легко хранится вместе с фонариком.
- Необходимые навыки : Простые инструкции, которые может использовать практически каждый. Не требуется флюс, химикаты или специальные чистящие средства. 100% гарантия.
- Опасно : Не используется электричество высокого напряжения.
- Масляный алюминий : Гелиодуговая дуга закипает алюминий, и любые загрязнения под поверхностью должны быть доведены до верха и счищены.
- Тонкий алюминий : плавится на 500 градусов раньше алюминия.
- Различные сплавы : Работает с любыми сплавами алюминия или литым алюминием.
- Время задействовано : Многие ремонты выполняются намного быстрее, чем обычные методы.
- Заполнение отверстий : Мгновенно заполняет отверстия любого размера для получения резьбы, намного более прочной, чем исходная резьба.
- Универсальность : один продукт заполняет трещины или отверстия, восстанавливает ушки, герметизирует утечки или навсегда склеивает плоские детали.
Источники тепла включают пропан или газ MAPP, турбо-наконечник или кислородно-ацетиленовую горелку и специальные материалы.
Преимущества пайки перед сваркой
Многие новые и бывшие в употреблении детали, которые можно отремонтировать с помощью пайки алюминия и сделать их более прочными, чем первоначальная форма. Примеры включают:
- Алюминиевые головки
- Головки чугунные
- Линии кондиционера
- Крышки ГРМ коллекторов
- Топливные баки
- Колеса
- Алюминиевые лодки и т. Д.
Пайка — это группа сварочных процессов, в которых материалы соединяются путем нагрева до подходящей температуры и с использованием присадочного металла с температурой плавления выше 840 ° F (449 ° C), но ниже, чем у основного металла.
Наполнитель распределяется по плотно прилегающим поверхностям стыка за счет капиллярного действия. Ниже описаны различные процессы пайки.
Горелка для пайки (TB)
Пайка горелкой выполняется путем нагрева паяемых деталей газовой горелкой или горелками, работающими на кислородном топливе.
В зависимости от температуры и количества необходимого тепла топливный газ может сжигаться с воздухом, сжатым воздухом или кислородом.
Паяльный присадочный металл может быть предварительно нанесен на стык или подаваться из ручного присадочного металла.
Иногда необходимы очистка и флюсование.
Паяльная алюминиевая скульптураМеталлы для пайки алюминия припоем
Товарный припой для алюминиевых сплавов на основе алюминия. Эти присадочные материалы доступны в виде проволоки или регулировочной прокладки.
Удобный метод предварительной замены присадочного металла — использование листа припоя (основного металла из алюминиевого сплава, покрытого с одной или обеих сторон).
Также используются термически обрабатываемые или стержневые сплавы, состоящие в основном из марганца или магния.
Третий метод нанесения припоя — это использование пасты из порошка флюса и присадочного металла. Обычные алюминиевые припои содержат кремний в качестве депрессора точки плавления с добавками цинка, меди и магния или без них.
Флюс для пайки алюминия
Флюс для пайки алюминия требуется во всех операциях пайки алюминия.
Флюсы для пайки алюминия состоят из различных комбинаций фторидов и хлоридов и поставляются в виде сухого порошка.
Для пайки в горелке и печи флюс смешивают с водой для получения пасты. Эту пасту наносят кистью, распыляют, окунают или растекают по всей площади стыка и пайки присадочного металла.
Флюсы для пайки в горелках и печах довольно активны, могут сильно повредить тонкий алюминий и требуют осторожного использования.
При пайке погружением ванна состоит из расплавленного флюса. В этом случае можно использовать менее активные флюсы, а тонкие компоненты можно безопасно паять.
Практика техники пайки металлов
Необходимые материалы:
Инструкции по пайке алюминия:
- Для начала убедитесь, что у вас есть безопасная среда для пайки алюминия. Это включает в себя надлежащую вентиляцию и сварочный шлем.
- Затем купите небольшой кусок трубы из углеродистой стали.
- Поместите трубу между 2 огнеупорными кирпичами на расстоянии примерно 3/4 дюйма друг от друга
- Возьмите кислородно-ацетиленовую горелку и установите нейтраль
- Начните с той стороны стальной трубы, которая наиболее удобна для вас (например, правши начинают с правой стороны). Используйте горелку, чтобы расплавить кусок присадочного стержня на конце трубы. Примечание: после размещения начального количества расплавленного стержня на конце стальной трубы, используйте сам расплавленный металл, чтобы расплавить большую часть стержня. Не используйте пламя горелки.Если вы видите белый дым, поднимающийся от расплавленного металла, это означает, что у вас плохой сварной шов
Если вы хотите охладить трубу и попробовать еще раз, возьмите инструмент и поместите в воду процесс, называемый закалкой сварного шва (вода ослабит сварной шов, но для практики это нормально).
Вот короткое 3-минутное видео:
Конструкция паяного соединения
Паяные соединения должны быть внахлестку, фланец, замковый шов или тройник. Узнайте больше об этих суставах здесь.
Стыковые или косые соединения обычно не рекомендуются.
Тройники обеспечивают отличный капиллярный поток и образование усиливающих галтелей с обеих сторон соединения.
Для максимальной эффективности соединения внахлестку должны иметь перекрытие как минимум в два раза больше толщины самого тонкого соединительного элемента. Нахлест более 1/4 дюйма (6,4 мм) может привести к образованию пустот или включений флюса. В этом случае полезно использовать прямые канавки или накатки в направлении потока припоя.
Закрытые узлы должны обеспечивать легкий выход газов, а при пайке погружением легкий ввод, а также отвод флюса.
Хорошая конструкция для длинных перехлестов требует, чтобы припой плавился только в одном направлении для максимальной прочности соединения. Конструкция соединения также должна обеспечивать полное удаление флюса после пайки.
Приспособления для пайки
По возможности, детали должны быть сконструированы так, чтобы их можно было закрепить. При использовании приспособлений между сборкой и приспособлением может произойти дифференциальное расширение, что приведет к деформации деталей.
Пружины из нержавеющей стали или инконеля часто используются с приспособлениями для компенсации различий в расширении. Материал крепления может быть низкоуглеродистой или нержавеющей. Однако для повторяющихся операций пайки в печи и для пайки погружением, чтобы избежать загрязнения ванны флюса, предпочтительны приспособления из никеля, инконеля или стали с алюминиевым покрытием.
Предварительная очистка
Предварительная очистка необходима для получения прочных, герметичных паяных соединений. Для нетермообрабатываемых сплавов обычно достаточно очистки паром или растворителем.Однако для термически обрабатываемых сплавов необходима химическая очистка или ручная очистка проволочной щеткой или наждачной бумагой для удаления более толстой оксидной пленки.
Печь для пайки
Пайка в печи выполняется в печах с газовым, масляным или электрическим нагревом. Регулировка температуры в пределах 5ºF (2,8ºC) необходима для получения стабильных результатов.
Желательна непрерывная циркуляция атмосферы печи, поскольку она сокращает время пайки и приводит к более равномерному нагреву. Продукты сгорания в печи могут отрицательно сказаться на пайке и окончательной работоспособности паяных узлов в термообрабатываемых сплавах.
Горелка для пайки алюминия
Пайка горелкой отличается от пайки в печи тем, что тепло локализовано.
Деталь нагревают до тех пор, пока флюс и припой не расплавятся и не смачивают поверхности основного металла.
Этот процесс напоминает газовую сварку, за исключением того, что припой более жидкий и течет за счет капиллярного действия.
Горелочная пайка часто используется для крепления фитингов к ранее сваренным или паяным в печи узлам, соединения обратных колен и аналогичных приложений.
Пайка погружением
При пайке алюминия погружением большое количество расплавленного флюса удерживается в керамической ванне при температуре пайки погружением.
Чашки для пайки погружением нагреваются изнутри путем прямого нагрева сопротивлением.
Низковольтные и сильноточные трансформаторы подают переменный ток на электроды из чистого никеля, никелевого сплава или угольные электроды, погруженные в ванну. Такие горшки обычно облицовывают огнеупорным кирпичом с высоким содержанием глинозема и огнеупорным раствором.
ПРЕДУПРЕЖДЕНИЕ
Кислотные растворы, используемые для удаления флюсов для сварки и пайки алюминия после сварки или пайки, токсичны и вызывают сильную коррозию. При работе с кислотами и растворами необходимо надевать защитные очки, резиновые перчатки и резиновые фартуки. Не вдыхать пары. При попадании на тело или одежду немедленно промыть большим количеством холодной воды. Обратитесь за медицинской помощью.
Никогда не наливайте воду в кислоту при приготовлении растворов: вместо этого налейте кислоту в воду. Всегда медленно смешивайте кислоту и воду. Эти операции следует выполнять только в хорошо проветриваемых помещениях.
Очистка после пайки
Всегда необходимо очищать паяные узлы, так как припой на деталях ускоряет коррозию.
Наиболее удовлетворительный способ удаления большей части флюса — это погрузить горячие детали в кипящую воду как можно скорее после затвердевания припоя.
Образующийся пар удаляет большую часть остаточного флюса. Если деформация из-за закалки является проблемой, детали следует дать остыть на воздухе перед тем, как погрузить их в кипящую воду.
Оставшийся флюс можно удалить погружением в концентрированную азотную кислоту на 5-15 минут. Кислоту удаляют промыванием водой, желательно в кипящей воде, чтобы ускорить высыхание.
Альтернативный метод очистки заключается в погружении деталей на 5–10 минут в 10-процентный раствор азотной кислоты плюс 0,25-процентный раствор плавиковой кислоты при комнатной температуре. За этой процедурой также следует ополаскивание горячей водой.
Для паяных узлов, состоящих из секций тоньше 0,010 дюйма (0,254 мм), а также деталей, для которых важна максимальная устойчивость к коррозии. Обычное лечение — это погружение в горячую воду с последующим погружением в раствор 10-процентной азотной кислоты и 10-процентного бихромата натрия на 5-10 минут.Затем следует ополаскивание горячей водой. Когда детали выходят из ополаскивателя горячей водой, они сразу же сушатся горячим воздухом, чтобы предотвратить образование пятен.
Другие алюминиевые направляющие
Пайка алюминия
Газовая сварка алюминия
Алюминий для сварки TIG
Вот эта альтернатива паяльному флюсу, которую вы должны попробовать! — Мастер сварки
Если вы много занимаетесь пайкой, у вас наверняка есть опыт использования различных типов паяльных флюсов. Но знаете ли вы, что есть несколько самостоятельных альтернатив флюсу, которые намного дешевле, чем коммерческий флюс?
Вазелин — одна из лучших альтернатив флюсу, которую вы можете использовать. Он так же эффективен, как и коммерческий флюс, стоит примерно вдвое дешевле, и у большинства людей он уже есть под рукой.
Так можно ли паять без промышленного флюса? Как использовать вазелин в качестве альтернативы флюсу? Есть ли другие хорошие альтернативы флюсу, которые вы могли бы использовать вместо этого? Продолжайте читать, чтобы найти ответы на эти и другие вопросы.
Вазелин: лучшая альтернатива флюсу для пайки
Скорее всего, у вас дома есть емкость с вазелином. Вазелин имеет широкий спектр применения и является одним из незаменимых компонентов для любого мастера, который занимается своими руками. Возможно, это лучшая альтернатива коммерческому флюсу, который вы можете использовать.
Что делает вазелин таким эффективным?
Он состоит из парафина и минеральных масел, что делает его антикоррозийным, поэтому вам не нужно беспокоиться о том, что он повредит припой или паяемый объект. Это также отличный очиститель, который не только удаляет любую грязь или сажу, но также удаляет оксиды металлов, которые в противном случае ослабили бы вашу связь.
Многие люди обнаружили, что вазелин работает так же хорошо, как и коммерческий флюс. Добавьте к этому тот факт, что он обычно намного дешевле, быстро плавится от тепла паяльника и может безопасно использоваться для многих типов паяльных работ. Вазелин — единственная альтернатива флюсу, которую вы захотите проверить.
Можно ли паять без флюса?
При пайке флюс используется для удаления окисления с припаиваемых материалов, что, в свою очередь, обеспечивает более прочное соединение.Кроме того, использование флюса помогает расплавленному припою легче связываться с тем, что вы паяете. Без флюса припой может прилипнуть к паяльнику, а не к паяльному объекту.
Очевидно, что флюс является важным компонентом в процессе пайки, так что действительно ли можно отказаться от использования флюса?
Дело в том, что вам не обязательно использовать коммерческий флюс, но вы должны использовать что-то, что делает ту же работу.
Вот где приходит альтернатива флюсу своими руками.
Другие альтернативы флюсу
Что делать, если вы выполняете работу или выполняете проект и у вас нет под рукой вазелина? У вас может не быть времени бежать в магазин. Есть ли еще что-нибудь, что вы могли бы использовать?
К счастью, вазелин — не единственное вещество, которое действует так же, как коммерческий флюс. Некоторые другие хорошие альтернативы флюсу описаны ниже.
Лимонный сок
Если у вас есть несколько лимонов или лимонный сок, купленный в магазине, он отлично подойдет как кислотный флюс для дома.
Высокое содержание лимонной кислоты в лимонном соке может удалить оксиды металлов так же легко, как вазелин или коммерческий флюс. Хотя использование лимонов в долгосрочной перспективе может оказаться дорогостоящим, это отличная альтернатива флюсу, если у вас не хватает времени, и это все, что у вас есть под рукой.
Если вы используете лимоны, выжимайте столько сока, сколько считаете нужным для работы. Для небольших работ вам может понадобиться только один лимон или даже половина одного, но для более крупных работ или если вы хотите, чтобы немного осталось для будущих работ, вы можете захотеть выжать сок из нескольких лимонов.
Процедите сок, чтобы удалить все семена и мякоть. Перемешайте несколько секунд, снова процедите и помешивайте еще несколько секунд. Вы можете использовать этот самодельный флюс сразу или оставить его на потом. Не храните его в холодильнике, это сделает его менее эффективным.
Домашний флюс из сосновой смолы
Если вы живете в районе, где много сосен, возможно, у вас есть шишки. Смола в сосновых шишках часто является активным ингредиентом коммерческого флюса, , и вы также можете использовать его в качестве флюса для дома.Если у вас достаточно сосновых шишек, вы можете сэкономить на будущей работе.
Соберите несколько сосновых шишек и удалите сосновые листья. Поместите их в миску или другую емкость с крышкой, чтобы не пролить, и полейте денатурированным этиловым спиртом. Накройте емкость и дайте смеси постоять не менее 8–12 часов.
Спирт растворяет сосновую смолу с листьев. Как только это произойдет, процедите смесь, чтобы удалить листья и любые другие мелкие частицы мусора.Теперь вы можете использовать смесь соснового дегтя и спирта в качестве флюса.
Очевидно, что этот метод занимает немного времени, поэтому он может быть не лучшим выбором, если у вас не хватает времени. Однако, если вы хотите сэкономить деньги и иметь доступ к большому количеству сосновых шишек, это отличный способ заранее сделать флюс своими руками, чтобы они у вас всегда были под рукой.
Флюс для самодельной канифоли
Канифоль, изготовленная из кристаллизованной колофонии, имеет множество различных применений, включая улучшение сцепления при скалолазании и других видах спорта, а также добавление сопротивления смычкам скрипки. Это также обычный ингредиент в промышленных припоях.
У вас может валяться канифоль, если у вас дома есть скрипач или любитель спорта на открытом воздухе, или если вы используете ее для других поделок. Чтобы приготовить самодельный канифольный флюс, поместите кусочки канифоли в емкость и залейте их растворителем, например изопропиловым спиртом или жидкостью для снятия лака.
Растворитель растворяет канифоль. Если канифоль находится в больших кусках, этот процесс может занять некоторое время.Один из вариантов — заранее измельчить канифоль. Так он растворится намного быстрее.
После растворения канифоли самодельный флюс готов к использованию.
Как паять с использованием альтернативы флюсу
- Очистите паяемую поверхность. Удалите пыль или частицы грязи и убедитесь, что они высохли, прежде чем начать. Если вы используете вазелин, он может служить вашим очистителем и флюсом. Нанесите небольшое количество вазелина на поверхность, затем вытрите бумажным полотенцем.
- Примените самодельный флюс или его альтернативу. Если вы используете вазелин, не нужно повторно наносить его, если вы уже использовали его для очистки. Если вы используете лимонный сок или другую альтернативу жидкому флюсу, нанесите жидкость на участок с помощью Qtip или небольшой кисти.
- Используйте свой паяльник для нанесения расплавленного припоя. Если у вас возникли проблемы с прилипанием припоя к паяемому объекту, возможно, вам придется повторно нанести флюс.Это не должно быть проблемой, если вы с самого начала не применили слишком мало.
- Дайте припою застыть как обычно. После затвердевания припоя проверьте прочность соединения. Если вы нанесли достаточное количество альтернативного флюса и не испытали никаких проблем с нанесением припоя, то соединение должно быть хорошим. Поздравляю! Вы просто эффективно использовали альтернативу флюсу своими руками!
Последние мысли
И вот оно.Хотя использование чего-либо в качестве флюса является важной частью пайки, существует множество дешевых и простых самостоятельных альтернатив флюсу, которые работают так же хорошо, как и коммерческие продукты.
Лучшей альтернативой флюсу является вазелин, потому что он дешев, эффективен, у большинства людей есть под рукой, и он может использоваться как очиститель. . Другие хорошие альтернативы — лимонный сок, домашний флюс из сосновой смолы и самодельный канифольный флюс. Какую бы альтернативу флюсу вы ни использовали, убедитесь, что во время пайки используется достаточно, чтобы создать прочную связь.
Использованные источники
Модернизированный дом
Retro Tech Lab
Элемент14
припой-алюминий
ключевые слова: алюминий, оловянно-свинцовый припой, пайка, металлургические соединения, пайка медь с алюминием, больше невозможно, электрические связи
нарушают самопроизвольный пассивирующий слой оксида алюминия.
аннотация: общепринятое мнение гласит, что паять нельзя алюминий. Представлен метод, позволяющий легко паять медь непосредственно на алюминиевую подложку, которая легко воспроизводимы только лицами с базовыми навыками металлообработки, использующими только пропановая горелка с использованием «Alumalloy Braze» и обычного полимерного флюса Припой 60/40 Pb / Sn.
Ральф Климек VK3ZZC Февраль 2011 г., c opyleft
My Интерес к этой технике проистекает из моих интересов радиолюбителей. я часто хотели сделать хорошие электрические связи с алюминием антенные элементы и были сорваны бескомпромиссной химией элементов и металла. Связь давления до сих пор была только реальная возможность, и те, у кого есть опыт, узнают на собственном опыте, что соединение под давлением длится всего пару недель при воздействии Погода.Антенна, которая хорошо себя зарекомендовала сразу после выхода из мастерской становится все более неудовлетворительным после всего лишь нескольких недель воздействия. И это несмотря на то, что соединения защищены от атмосферных воздействий и даже пассивируются. стыки силиконовой смолой. Простое соединение давления может проводят постоянный ток, но РЧ-проводимость переменного тока может быть очень низкой.
Алюминий конструкции антенн часто ограничены трудностью выполнения операция соединения металлов при низком РЧ импедансе, для например, в центральном стыке антенны наземной плоскости или в центре дипольного элемента.Затем следует реальная трудность в заделке медных коаксиальных проводов на алюминиевый привод элемент. Те, у кого есть опыт, слишком хорошо знают коррозионное воздействие двух разнородных металлов, подверженных воздействию погоды. Точка подачи Импеданс ведомого элемента в многоэлементной решетке Яги составляет порядка пяти Ом или меньше, и я подозреваю, что многие из моих только в этой точке питания антенны были неисправны.
Для ВЧ проводимость, единственные верные варианты — все медные элементы обеспечение хорошо спаянных соединений с низким сопротивлением; ценой тяжелого вес и денежная стоимость.Все мои самые успешные антенны яги имели медные ведомые элементы. Если бы только можно было сделать правду Металлургическая связь с алюминием при умеренной температуре, которая быть совместимым с медью.
Можно, иногда и с припои из экзотических сплавов и экзотические флюсы. Пайка алюминия — это ничего однако новые производители держат свои методы при себе, а производители Примечания по использованию припоев не выдаются. Здесь я представляю хорошо воспроизводимый метод, который может воспроизвести компетентный радиолюбитель используя только простую и недорогую газовую горелку на пропане.
Метод требует использования теперь широко продаваемого алюминиевого прутка для пайки. Этот стержень производится под торговой маркой Alumalloy и продается в США. Штаты под названием Durafix. Я считаю, что это тройной сплав, сделанный из из алюминия, меди и магния с температурой плавления 430 градусов C. Он был доступен под различными торговыми названиями в Австралия уже несколько лет известна здесь, в Озе, как «алюминий. натирание припоя ». Абсолютно никакой информации по применению нет. опубликовал об этом.(здесь приветствуются теории заговора!) недавно научился применять этот замечательный сплав для изготовления алюминия. к алюминиевым паяным соединениям после просмотра нескольких видеороликов на Youtube. Поиск Youtube по термину «Alumalloy» и убедитесь сами. Я использовал это с успехом сделать из него некоторые антенные элементы. Только следующий шаг осталось …. приклеивание медных проводников к алюминиевым элементам антенны.
Кому понять метод, вы должны быть знакомы с поверхностью химия алюминия.Элемент 13 — один из самых электроположительный из металлических элементов. Реакция между Al и Кислород — одна из самых экзотермических реакций из известных, образует химическая основа термитного метода сварки стали и питает Твердотопливные ракетные ускорители Space Shuttle, сжигающие алюминиевый порошок и аммоний Перхлорат. Что мешает вашей алюминиевой кухонной посуде и алюминиевой фольге самопроизвольно воспламеняется? (и сжигая свой обед)
Когда чистый Al подвергается воздействию атмосферы, он немедленно реагирует с Кислород и образует оксидный слой на поверхности.Этот оксидный слой обычно толщина всего несколько атомов. Оксид очень жесткий и связывает очень сильно к металлической поверхности. Оксид алюминия — это химическое основа из твердых абразивов, рубина, сапфира и интегральной схемы субстраты. Более толстые слои оксида могут быть искусственно выращены в процесс называется анодированием. Оксидный слой полностью пассивирует металл поверхность от дальнейшего окислительного воздействия при нормальных атмосферных условия. Оксид растворим в большинстве минеральных кислот и сильных щелочи. Именно этот оксидный монослой препятствует смачиванию припой и обычные припои.Этот монослой может быть механически нарушена и образована прямая связь металл-металл при условии что кислород можно ненадолго исключить или активно сканировать.
А сцепление под давлением с поверхностью металла Al на самом деле является оксидом бутерброд. Оксид очень тонкий, поэтому умеренное давление может подвести электрод достаточно близко к основному металлу Al, чтобы электронное туннелирование происходит через монослой оксида. Возможно, когда соединение давления новое, оксид поврежден, и это позволяет хорошо электрическое подключение.Через некоторое время кислород должен проникнуть в соедините и медленно отделите электрод от основного металла. Этот вот почему, как я и бесчисленное количество радиолюбителей обнаружили, недавно отчеканенный массив яги быстро портится, если его не достать на твоей башне.
Техника.
Припой из алюминиевого сплава плавится при температуре около 430 ° C, чистый Al и его обычные сплавы при температуре около 700 град. 400 градусов вполне в пределах мощность пропановой горелки, но совершенно за пределами верхнего диапазона паяльник.
Нагрейте основной металл снизу. Прикоснитесь к
припой к основному металлу. Не нагревайте пруток для пайки напрямую.
с горелкой … он просто расплавится и окислится.
Когда металл на
При правильной температуре припой начнет плавиться. Когда он тает, потрите
недрагоценный металл со стержнем. Это нарушает монослой оксида и позволяет
мгновенная связь металл-металл, образующаяся под расплавленной поверхностью. В
Монослой оксида нестабилен на паяемой поверхности, и жидкая пайка будет
буквально заройтесь под него.Протрите расплавленный припой
нож из нержавеющей стали и «лужение» поверхности основного металла. В
цель трения стальным лезвием — пробить большие участки
оксидный слой под расплавом припоя. Требуется постоянный нагрев, пока
вы делаете это. Первоначальный валик расплавленного припоя не смачивает
Алюминиевая поверхность до появления царапин ПОД валиком. В
расплавленный шарик временно исключает кислород из воздуха и только после этого
он сцепляется с основным металлом.
Протереть слой окисленного окалины держите лезвие ножа подальше от паяемой поверхности и дайте ему остыть.Разогрейте снизу. Нанесите обычную свинцово-оловянную смолу 60/40 с флюсом. припаяйте к паяемой поверхности и не допускайте перегрева и не допускайте попадания смолы флюс для сжигания. Образуется идеально сформированный валик припоя! Разрешить сформировать крупную бусину на поверхности и остудить. Ваш медный проводник теперь его можно припаять к этой поверхности. На данный момент очень тяжелому железу 100 Вт может хватить мощности, газ лучше из-за очень высокая теплопроводность металлического алюминия. Идеально Таким образом образуется припой между медью и алюминием.
основной металл должен быть подготовлен опилом до голого металла с очень мелким ублюдком напильником для получения максимально гладкой поверхности. Польский с Проволочная щетка FINE, щетка для замши — это то, что здесь действительно нужно. Если поверхность анодирована, ее необходимо полностью стереть, чтобы оголенный метал.
Почему это работает и как работает пайка из алюминиевого сплава?
Алюминий не требует флюса! Мне потребовалось время, чтобы оценить это факт как бы бросает вызов здравому смыслу и условностям.Пайка представляет собой сплав алюминия, меди и магния и, возможно, других нераскрытые металлы. Я полагаю, что цель магния в пайке выполняет функцию поглотителя кислорода. Под этим расплавится, поврежденная поверхность алюминия будет соединяться напрямую, и магний предотвращает динамическое образование свежего монослоя оксида алюминия за счет конкуренции с Al для растворенного кислорода в расплаве. Магний — это флюс ! Я не знаю этого факта, это только мое обоснованное предположение. Однако верно то, что магний имеет большое сродство к кислороду и в отличие от алюминия оксид магния не сильно связан с металлическая поверхность.Может быть, это вещество с высоким содержанием меди. паяемый, не знаю. У меня нет способов и средств химически анализируя это, возможно, кто-то там делает.
Я был поражен, что стандартный электрический припой Pb-Sn совместим с паяной поверхности, этого не ожидалось, и я нашел это только эксперимент.
Не верьте мне на слово, попробуйте сами.
Алюминий продается в Австралии, в розницу. Я купил свой в Баннингсе где он продается как пруток для пайки алюминия Bernzomatic.Это очень дорогие, 2 маленьких стержня стоят 10 австралийских долларов. В нем нет абсолютно никаких совет по применению. Может быть, вы купили и выбросили отвращение, потому что «не работает»? Поверьте, это работает но только с правильной техникой, как описано. Наблюдение, что пайка совместима со стандартным электрическим припоем приходит ко мне, и я подозреваю, что весь остальной мир Ham, как полный и желанный сюрприз!
Продолжение поисков хорошего способа электрического соединения с погодостойкими алюминиевыми элементами I недавно нашел лист тонкой нержавеющей стали во время недавнее погружение в мусорный контейнер.Мне интересно ответить на вопрос по поводу образуют ли алюминий и нержавеющая сталь биметаллический пара при воздействии окружающей погоды. Могу я сфабриковать некоторые детали из нержавеющей стали, которые были бы разумно сопротивление ржавчине.? На изображении ниже показаны некоторые из моих результатов. нержавеющую сталь можно резать, сверлить и формировать с некоторыми трудностями, но хорошие результаты позволяют потратить время на овладение искусством рабочая нержавеющая сталь. Нет признаков (пока) белого формирование порошка в стыке алюминия и нержавеющей стали.Этот имеет потенциал для долгосрочного применения на моих антеннах вне досягаемости на моих высоких палках. Итак, как прикрепить медный провод? Как правило, нержавеющую сталь паять мягким припоем невозможно. Есть некоторые обычно недоступные мягкие припои, которые могут склеить нержавеющая сталь. На Земле нет силы или простого потока, который позволяют склеить стандартный припой SnPb 60/40. Нержавеющая сталь может быть легко паяется с 2% (лучше 5%) серебряной пайкой и умеренный жар. Пайка совместима с 60/40 SnPb припой.Задача решена. Даже лучше, припаяйте немного 1/4 дюйма гидравлическую медную трубу и используйте ее для образования очень паяемого электрода чашка для ваших коаксиальных соединений. Медные емкости прижимаются обрезками медной проволоки в процессе пайки. ВЫРЕЗАТЬ нержавеющая сталь с угловой шлифовальной машиной и специально изготовленная отрезные диски из нержавеющей стали. Они будут иметь обозначение INOX. Вы также можете осторожно и грубо использовать очень тяжелые ножницы. сила. ДРЕЛЬ
нержавеющая сталь, сначала с новым 1/8 дюймовым кобальтом
просверлите пилотное отверстие, затем увеличьте.Особый секретный метод
сверление нержавеющей стали ФОРМА
из нержавеющей стали, поверх оправки, которая немного тоньше, чем
алюминиевая трубка. Это можно сделать с помощью тисков для тяжелых условий эксплуатации и стандартных
сверла. Вам придется немного поэкспериментировать, чтобы найти правильный
оправка. Не используйте оправку диаметром 12 мм для трубки диаметром 12 мм, фитинг не будет
«кусать». |
Постскрипты
- Сделано вы знаете, что можно было сделать некачественный стандарт 60/40 паять напрямую с алюминием? Расплавьте припой на Al во время царапания под валиком припоя. Возникает некоторая связь; действительно занимает слишком много времени, кислород растворенный в расплавленном припое быстро вступит в реакцию, и валик припоя больше не будет связывать. Это почти не работает, и я бы не стал полагаться на такая связь.Бусина самопроизвольно отвалится от основного металла. через несколько недель, хотя поначалу кажется, что граница. Почему ? Я считаю, что нестабильность этого сустава из-за атмосферного кислорода, который растворяется в расплавленном свинце оловянный сплав. Примерно через 2 недели этот кислород диффундирует через твердый припой к алюминиевому слою, где он непосредственно реагирует и эта реакция высвобождает валик припоя. Интересно, если тройной сплав свинец-олово-цинк может работать. Цинк будет действовать как сканер кислорода в затвердевшем шарике.Помните что металлы не являются полностью газонепроницаемыми. Химически реактивный газ будет диффундировать через твердый металл, хотя и очень медленно при комнатной температуре.
- шт.
пытаться. Растворится ли в припое Pb / Sn достаточно магния, чтобы вести себя как
кислородный сканер и разрешить прямую пайку всех соединений основного металла?
Обсуждать. А как насчет титана?
- алюминиевый сплав пайка также будет связывать хорошо для металла литых под давлением ящиков и других литых под давлением предметов. Ветчина, припаивайте прямо к вашим проектам литых коробок! Литой под давлением металл или горшок металл »представляет собой переменный сплав из цеховых метелок, цинка, магний, алюминий и немного меди.
- Алюминий продается в США по цене «шесть долларов за фунт», согласно рекламному ролику Youtube. Кто-то должен импортировать это загрузкой морского контейнера в Австралию.
домашняя страница
страница создана 1 февраля 17:36:45 EST 2011
Паяльный флюс 101 | Группа продуктов Harris
Боб Хенсон
Химический флюс обычно используется со многими припоями.Правильное флюсование важно, поскольку флюс поглощает оксиды, образующиеся при нагревании, и способствует течению присадочного металла. Флюсы — это химические смеси, содержащие различные химические компоненты. Смесь перемешивается, чтобы обеспечить плавное нанесение и сцепление.
Вы когда-нибудь задумывались о различных типах флюсов и о том, где каждый из них используется? Вот ускоренный курс, в котором рассматриваются типы производимых нами серебряных флюсов для пайки:
Stay-Silv ® Белый флюс для пайки
Это флюс с белой пастой, который используется в 90% случаев пайки серебром.Белый флюс подходит для пайки меди, латуни, стали, нержавеющей стали и никелевых сплавов. Он имеет активный температурный диапазон от 1050 до 1600 ° F (565 — 870 ° C). Используйте его с припоями Safety-Silv ® с высоким содержанием серебра (серия AWS BAg) на вышеуказанных основных металлах и Stay-Silv ® фос-медь-серебро (серия AWS BCuP) на меди. к латуни.
Белый флюс соответствует спецификации A5.31 Американского сварочного общества (AWS); класс FB3-A и Спецификация аэрокосмических материалов (AMS) 3410.
Stay-Silv ® Порошковый припойный флюс
Горячая наплавка прутка порошковым флюсом
Это похоже на белый флюс, за исключением порошковой формы. Поскольку это порошок, он не расслаивается и не затвердевает во время хранения (держите крышку плотно закрытой, поскольку флюс будет вытягивать влагу из воздуха). Флюс можно использовать в виде порошка, нагревая конец прутка или проволоки и погружая его во флюс. Иногда это называют «хот-роддингом». Флюс прилипнет к нагретому стержню.При необходимости флюс можно смешивать с водой или спиртом для образования пасты, которую затем можно нанести на деталь перед пайкой.
Этот флюс соответствует классу FB3-F AWS A5.31 и имеет диапазон температур 1200–1600 ° F (650–870 ° C).
Dynaflow ® Автоматическое дозирование флюса
Нанесение флюса можно автоматизировать на паяльных машинах с использованием дозирующего оборудования. Для автоматического дозирования смеси флюса частицы должны быть меньше минимального размера, чтобы предотвратить засорение отверстий и линий.Изначально флюс Dynaflow был разработан как «более гладкий» флюс для облегчения автоматической подачи. Эта последовательность достигается за счет введения дополнительного шага в процессе производства. Более гладкая консистенция также уменьшает отделение жидкости внутри неиспользуемых контейнеров.
Dynaflow Flux используется для пайки, аналогичной стандартному белому флюсу.
Stay-Silv ® Черный припой
Фитинг с флюсом для пайки Stay-Silv® Black
Формула черного флюса включает порошкообразный бор, который придает флюсу черный цвет (на самом деле более коричневый, но «коричневый» паяльный флюс не имеет такого же размаха).Этот ингредиент обеспечивает две функции:
- Флюс поглощает оксид во время нагрева. Флюс обеспечивает максимальное поглощение оксидов, после чего он насыщается и теряет свою эффективность. Такой состав позволяет флюсу выдерживать более длительные циклы нагрева без разрушения. Эти применения могут включать определенные типы концентрированного локального нагрева (например, индукционный) или могут происходить во время факельного нагрева крупных деталей. В этих случаях хорошим выбором будет черный флюс для пайки.
- Некоторые оксиды металлов труднее флюсовать. К ним относятся нержавеющая сталь, никелевые сплавы и карбид вольфрама. Черный флюс растворяет эти оксиды и способствует смачиванию присадочного металла.
Черный флюс в основном используется с припоями Safety-Silv с высоким содержанием серебра (вы часто встретите его для никелевых продуктов, содержащих 40Ni2 или 50N). Он соответствует требованиям AWS A5.31, класс FB3-C и AMS 3411, и имеет активный диапазон температур около 1050–1700 ° F (565–925 ° C).
ECO SMART ® Флюс
Зеленый паяльный флюс ECO SMART® для медных труб
Борная кислота входит в состав многих смесей флюсов для пайки. Регламент Европейского Союза REACH (Регистрация, оценка, авторизация и ограничение химических веществ) отмечает, что борная кислота классифицируется как «вещество, вызывающее очень серьезное беспокойство» на основании данных испытаний, указывающих на то, что это может быть репродуктивный токсин.
СоставECO SMART Flux имеет следующие преимущества:
- Обеспечивает состав флюса без борной кислоты для удаления компонента борной кислоты и содействия использованию более безопасного флюса для пайки.
- Зеленый цвет, который становится прозрачным или прозрачным при температуре, близкой к температуре пайки. Это облегчает оператору определение момента нанесения припоя.
- Доступен в нескольких составах для удовлетворения любых потребностей в пайке:
- Зеленая паста — для стандартной пайки (аналогична белому флюсу Stay-Silv и используется с такими же присадочными металлами и приложениями).
- Green Powder — в виде порошка.
- Black Paste — модифицированный бором флюс для более длительных циклов нагрева и трудных для пайки основных металлов (аналогичен черному флюсу Stay-Silv и используется с теми же присадочными металлами и теми же областями применения.).
- Black Powder — модифицированный бором флюс в порошковой форме.
Боб Хенсон
Боб Хенсон — технический директор компании Harris Products Group, имеющий более 40 лет опыта в области соединения металлов. Он является автором или соавтором нескольких патентов и имеет множество опубликованных статей.
Боб работает во многих отраслевых организациях и комитетах. Он является пожизненным членом Американского сварочного общества (AWS) и возглавляет комитет A5H, который составляет спецификации припоев на присадочный металл и флюсы.Боб также является членом Комитета производителей пайки AWS, Группы технической деятельности США, которая рассматривает международные документы по пайке ISO, и Комитета AWS A5 по присадочным металлам, который рассматривает спецификации электродов для дуговой сварки, стержней для газовой сварки и других присадочных металлов, охватывающих как черные и цветные материалы. Боб входит в технический комитет National Skills USA HVACR и является председателем соревнований по пайке Skills HVACR.