Генератор как устроен: Принцип Действия Генератора Постоянного Тока, Характеристики

Содержание

Как устроен генератор — все об устройстве электрогенераторов постоянного и переменого тока

Принцип работы генерирующего устройства

Работа электрогенерирующего оборудования основывается на принципе конвертации механической энергии, получаемой из внешнего источника, в электроэнергию. Иными словами, устройство не вырабатывает самостоятельно электричество. Происходит усиление движения возникающих в проводах его обмотки электрических зарядов, которые проходя через внешнее кольцо циркуляции, отдают свою энергию. В результате на выходе образуется электрический ток, который и поступает в сеть от электростанции.

С научной точки зрения принцип называется «магнитной индукцией» и был обнаружен Майклом Фарадеем в 19 веке. Ученый физик установил, что перемещением электрического проводника в магнитном поле рождается поток зарядов. Между двумя концами проводника, в частности, провода, создается разность напряжений, который усиливает движение зарядов, превращая их в электричество.

Перейти в каталог генераторного оборудования:

Основные элементы электростанции


Как устроен генератор переменного тока?

Это неотъемлемая часть электростанции, которая осуществляет преобразование механической мощности в электрическую энергию. Состоит устройство из неподвижных и подвижных модулей, которые вмонтированы в его корпус. Все элементы работают в синхронном режиме, усиливая движение между электрическими и магнитными полями, что рождает электричество.

Ротор, как подвижный модуль, создает вращающееся магнитное поле. Выполняется это несколькими способами:

  • индукцией, которая происходит в синхронном бесщеточном генераторе, которые, как правило, имеют достаточно внушительные габариты;
  • постоянными магнитами, используемыми в малых генераторах;
  • с помощью задающего возбудителя, активизирующего ротор через сборку щеток и токопроводящих контактных колец.

Подвижным ротором вокруг статора вырабатывается вращающееся магнитное поле и вызывается разность напряжений в обмотке. Таким образом производится на выходе переменный ток.

Факторы, влияющие на эффективность работы синхронного генератора:

  • металлический или пластиковый корпус. В первом случае устройство отличается большей долговечностью. Пластик же со временем деформируется и может стать причиной повреждения внутренних элементов, создавая таким образом аварийную ситуацию и опасность для пользователя.
  • шариковый или игольчатый подшипник: первый более предпочтителен в силу большей его износостойкости.
  • в бесщеточном генераторе не используются щетки, благодаря чему отличается производством более чистой энергии на фоне меньшего технического обслуживания.

Двигатель

С помощью этого элемента образуется механическая энергия для работы миниэлектростанции. Его размер напрямую зависит от максимальной мощности электростанции. Кроме того, существует множество факторов, влияющих на функциональность двигателя

:

  • вид топлива, используемое для работы двигателя. Это могут быть бензин, дизельное топливо, природный газ или пропан. Бытовые электростанции, как правило, работают на бензине, промышленные же электростанции – на дизельном топливе, природном газу, жидком или газообразном пропане. Есть модификации, работающие на комбинированном виде топлива – дизеле и газу.
  • верхнее расположение клапанов OHV. Впускные и выпускные клапаны таких двигателей располагаются не на блоке цилиндров, а на их верхушке. Данные модели имеют более высокую стоимость, что обусловлены дополнительными преимуществами. Это компактный дизайн, упрощенная рабочая механика, удобство в использовании, а также долговечность конструкции. Кроме того, их работа отличается низким уровнем шума и меньшим уровнем выбросов.
  • чугунная гильза в цилиндре двигателя, используемая в качестве подкладки. Таким способом уменьшается износ двигателя, что увеличивает доремонтный срок службы. Такая чугунная гильза используется в большинстве устройств с верхним расположением клапанов. Как элемент, эта подкладка имеет невысокую стоимость, однако очень важна, особенно в случаях частого использования электростанции.

Система подачи топлива

Топливный резервуар обычно имеет достаточный объем для поддержания стабильной работы электростанции на период от 6 до 8 часов. На малых устройствах бак устанавливается в верхней части корпуса. Для промышленной установки применяется наружный резервуар.

Характеристики системы:

  • соединение трубопроводов с двигателем. Таким путем осуществляется подача топлива к работающему модулю и обратно.
  • вентиляционная труба для топливного бака необходима для снижения уровня давления при повторном заполнении или сливе резервуара. Крайне важно при этом обеспечить контакт металлических поверхностей сопла наполнителя и топливного бака во избежание искр.
  • сливное соединение с дренажной трубой используется для предотвращения протечек жидкости во время слива.
  • топливный насос отвечает за перемещение топлива от основного хранилища в точку потребления. Данное устройство имеет электропривод.
  • топливный фильтр очищает жидкость от иных примесей, способных привести к коррозии и загрязнению внутренних модулей оборудования.
  • инжектор автоматически управляет поступлением необходимого объема жидкости в камеру сгорания.

Регулятор напряжения AVR

Этот модуль осуществляет регулировку выходного напряжения электростанции. Устройство состоит из нескольких компонентов:

  • регулятор напряжения контролирует процесс преобразования переменного напряжения в постоянный электроток. Затем происходит его подача на вторичную обмотку статора.
  • возбудитель обмотки необходим для генерирования небольшого количества переменного тока. Напрямую связан с вращающимся выпрямителем тока.
  • вращающийся выпрямитель тока осуществляет выпрямление переданного с возбудителя обмотки переменного тока с последующей конвертацией его в постоянный. Затем выполняется его подача на ротор, где в дополнение к вращающемуся магнитному полю создается и электромагнитное напряжение.
  • ротору отводится роль индукции большого количества переменного напряжения на обмотку статора.

Регулятор напряжения максимально задействован в начальном периоде запуска установки. Как только устройство выходит на полную работоспособность, модуль снижает выработку постоянного тока. В состоянии равновесия регулятор напряжения производит только необходимое количество мощности для поддержания электростанции в рабочем состоянии.

При увеличении нагрузки на электростанцию, регулятор напряжения выходит из состояния равновесия и активизирует свою работу, пока мощность оборудования не выйдет на показанный уровень потребления.

В нашем каталоге Вы можете ознакомиться с примерами дизельных генераторов с АВР >>


Установка выхлопа и охлаждения двигателя электростанции

Включает в себя:

  • Систему охлаждения электростанции, используемую для снижения уровня перегрева рабочего устройства. В качестве антифриза используется вода, водород, а также стандартный радиатор и вентилятор. За уровнем охлаждения следует периодически наблюдать, чтобы предотвратить аварийную ситуацию. Система требует постоянной очистки от загрязнений, выполняемую через каждые 600 часов работы. Следует обеспечить приток к устройству свежего воздуха: по действующим нормам в радиусе от электрогенерирующей установки должно быть не меньше метра свободного пространства.
  • Систему выхлопа. В процессе сгорания топлива образуется отработанный газ, содержащий высокотоксичные химические соединения. Очень важно создать эффективную систему утилизации выхлопов с использованием вытяжек.

Система смазки

Электростанция в комплекте имеет множество движущихся модулей, эффективность работы которых зависит и от содержания смазочных веществ. Для чего в помпе всегда находится специальное масло, уровень которого следует контролировать каждые 8 часов. Также необходимо строго отслеживать возможные протечки смазывающего вещества.

Зарядное устройство

Запуск электростанции осуществляется с помощью аккумулятора. Эта батарея должна быть всегда заряженной, за что отвечает зарядное устройство. Оно снабжает аккумулятор необходимым количеством «плавающей» энергии, которая и производит подзарядку емкости. Важно следить за уровнем этой энергии: снижение приведет к неполной зарядке аккумулятора, а повышенный уровень выведет его из строя.

Изготавливается зарядное устройство из нержавеющей стали, чтобы увеличить срок службы модуля. Его работа полностью автоматизирована и не требует вмешательства в параметры. Постоянное напряжение на выходе определяется на уровне на 2.33 Вольт на ячейку. Зарядное устройства обладает отдельным постоянным напряжением, которое может привнести сбои в нормальное функционирование электрооборудования.

Панель управления

Модуль снабжен упрощенным интерфейсом, на котором отображены все положения управляемых элементов. Каждый производитель предлагает собственный вариант панели.

Электрическое включение и выключение автоматически запускает электростанцию в рабочее состояние в случае необходимости. И отключает, когда деятельность устройства нецелесообразна.

Механическое устройство прибора отображает на датчиках наиболее важные параметры по давлению масла, температуре охлаждения, напряжению батареи, скорости вращения двигателя и длительности работы. При превышении нормы электростанция автоматически отключается.

Датчики мини электростанции отвечают за измерение выходного тока, напряжения и рабочей частоты. Иные виды контроля: переключатель частоты, фазовый селекторный переключатель и переключатель режимов двигателя.

Рама / Корпус

Основная конструкция служит генераторному оборудованию главной поддержкой и имеет выполненный под заказ корпус. В случаях, когда предполагается перемещение оборудования, рама может быть дополнительно оснащена шасси.

Для наглядности, вы можете посмотреть нашу продукцию из раздела передвижные дизельные генераторы >>

Как устроен генератор постоянного тока

Принцип действия генератора постоянного напряжения

Когда-то генераторы постоянного тока, преобразующие механическую энергию в электрическую, были единственными источниками электроэнергии. На сегодня чаще всего используются надежные трехфазные преобразователи переменного тока. Но в некоторых отраслях постоянный ток был регулярно востребован, поэтому устройства для выработки последнего неизменно совершенствовались.

Как работает

Функционирование генератора основывается на свойствах, которые следуют из известного закона электромагнитной индукции. Когда замкнутый контур разместить между полюсами магнита (постоянного), то в условиях вращения он будет проходить через магнитный поток. Во время перехода вырабатывается электродвижущая сила, возрастающая при приближении к полюсу. В случае, если присоединить нагрузку, то образуется поток тока. Когда витки рамки будут выходить из области воздействия магнита, то ЭДС будет уменьшаться и достигнет нуля при горизонтальном положении рамки. При дальнейшем вращении противолежащие контурные части изменят магнитную полярность.

Значения ЭДС в активных обмотках контура вычисляются по формулах: е1= В I v sin wt, е2= — В I v sin wt, где I — длинна одной стороны рамки, В — магнитная индукция, v — скорость вращения (линейная) контура, t — время, wt — угол пересечения магнитного потока рамкой.

Направление тока меняется в период смены полюсов. Поскольку вращение коллектора происходит одновременно с рамой, то электроток на нагрузке имеет одинаковое направление. Такая схема лежит в основе выработки постоянного электричества. Суммарная ЭДС будет иметь следующий вид: е= 2В I v sin wt.

Такой ток почти непригоден для применения, поскольку присутствуют пульсации ЭДС. Последние надо уменьшать к допустимому уровню. Для этой цели применяют много магнитных полюсов, рамки заменяют якорями, у которых намного больше обмоток и коллекторов. К тому же, соединение обмоток выполняется разными методами.

Ротор производится из стали. В пазы на сердечниках укладываются витки провода, которые составляют рабочую обмотку якоря. Проводники соединяют последовательно. Они образуют секции, создающие замкнутую цепь.

Интересно! Для процесса генерации неважно: вращаются обмотки контура или магнит. По этой причине роторы для маломощных альтернаторов изготавливают из постоянных магнитов, а переменный ток выпрямляют при помощи диодных мостов или иными схемами.

Узнать, из чего состоит генератор постоянного тока, поможет картинка 4.

Установка состоит из главных узлов:

  • неподвижная часть — главные и дополнительные полюса, станина;
  • вращающаяся часть (якорь) — стальной сердечник, коллектор.

В процессе работы установки ток проводится сквозь обмотку и образуется магнитный поток полюсов. Специальные неподвижные щетки (из сплава графита) способствуют объединению обеих частей генератора в единую цепь.

Устройство и принцип действия генератора постоянного тока за долгий период применения остались прежними, несмотря на некоторые совершенствования.

Классификация

Существуют генераторы постоянного тока с независимым возбуждением обмоток, с самовозбуждением. Последние модели используют электричество, которое ими же вырабатывается. По способу объединения обмоток якорей альтернаторы делят на устройства с возбуждением следующих типов:

Схема генератора постоянного тока представлена на картинке 5.

С параллельным возбуждением

Чтобы электроприборы работали в нормальном режиме, необходимо стабильное напряжение, которое не зависит от изменений в общей нагрузке. Эта проблема решается методом настройки параметров возбуждения. В таких генераторах катушка подключена (через реостат) параллельно обмотке якоря. Реостат может замыкают обмотку. В противном случае при разъединении цепи возбуждения внезапно повысится ЭДС самоиндукции, что может повредить изоляционный материал. В состоянии непродолжительного замыкания энергия превращается в тепловую, чем предотвращается разрушение устройства.

Электромашины с возбуждением такого вида не требуют внешнего источника питания. Самовозбуждение обмоток происходит под действием остаточного магнетизма в сердечнике магнита. Последние, для улучшения описанного процесса, производят из стали. Самовозбуждение длится до тех пор, пока ток не станет максимальным, а электродвижущая сила не покажет номинальное значение.

Преимущество вышеописанных электрогенераторов в том, что на них почти не влияют электротоки при коротком замыкании.

С независимым возбуждением

Источниками питания для обмоток нередко стают аккумуляторы или же иные устройства. В машинах с малой мощностью применяются постоянные магниты, обеспечивающие присутствие главного магнитного потока. На валу альтернатора располагают микрогенератор (возбудитель), который вырабатывает электроток для возбуждения якорных обмоток. Для этой цели необходимо от 1 до 3 % номинального тока якоря. Изменение электродвижущей силы выполняется регулирующим реостатом.

Достоинство: на возбуждающий ток не имеет воздействия напряжение на зажимах.

С последовательным возбуждением

Последовательными обмотками вырабатывается ток, который равняется электротоку альтернатора. В случае холостого хода отсутствует нагрузка, поэтому возбуждение нулевое. Это обозначает, что регулировочные свойства не существуют.

В агрегате с последовательным возбуждением почти нет тока, если ротор вращается на холостых оборотах. Чтобы запустить возбуждение, требуется подключение нагрузки к зажимам устройства. Явная связанность напряжения с нагрузкой считается огромным минусом последовательных обмоток. Подобные агрегаты используются лишь для питания электрических приборов, у которых нагрузка постоянная.

Со смешанным возбуждением

Самые лучшие свойства собраны в конструкции агрегатов со смешанным возбуждением. Особенность устройств в том, что они состоят из двух катушек:

  • основная — подключена параллельным способом к обмоткам якоря;
  • вспомогательная — подключена последовательным способом.

В цепи основной присутствует реостат, который регулирует ток возбуждения. Процедура самовозбуждения генератора со смешанным типом такая же, как у агрегата с параллельными обмотками (в самовозбуждении не принимает участия последовательная обмотка, так как отсутствует исходный ток). А свойства холостого хода идентичны характеристикам генератору с параллельной обмоткой. Такие особенности разрешают настраивать напряжение на зажимах устройства.

Технические параметры

Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

  • отношения между величинами на холостом ходу;
  • внешние параметры;
  • регулировочные значения.

Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).

В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.

Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.

При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.

Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0). При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.

Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

Мощность

Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

Реакция якоря

Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.

Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

Где используются

Еще совсем недавно генераторы постоянного тока устанавливались на транспорте для железных дорог. Но сейчас их вытесняют синхронные трехфазные устройства. Переменный ток синхронных агрегатов выпрямляют полупроводниковыми установками. Некоторые новые локомотивы используют асинхронные двигатели, которые работают на переменном токе.

Такие же обстоятельства и с автогенераторами, которые постепенно замещают асинхронными устройствами с дальнейшим выпрямлением.

Стоит заметить, что передвижное оборудование для сварки (имеющие автономное питание) обычно находится в паре с таким генератором. Отдельные отрасли промышленности продолжают применять мощные агрегаты описанного типа.

В чем секрет работы генератора постоянного тока: устройство и его принцип действия?

Генератор постоянного тока – это электрическая машина, производящая напряжение постоянной величины.

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции — возбуждение ЭДС во вращающемся проводнике.

Принцип работы генератора постоянного тока

Если к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан принцип работы генераторов переменного тока, являющихся братьями-близнецами машин постоянного напряжения.

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит. Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

Как находить возможные неисправности генераторов и чинить их — подскажет подробная инструкция.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора. Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Выясняем, как устроен агрегат

Как любая электрическая машина, генератор постоянного тока состоит из якоря и статора.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.
В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

Типы подключения электрических магнитов статора

Генераторы постоянного тока различаются по типу подключения электрических магнитов статора. Они могут быть:
  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

С принципами работы симисторов познакомит эта статья. Как на таких полупроводниках собрать регулятор мощности, можно узнать тут.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная. Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков). Такие электрические машины применяются в том случае, если требуется ограничить ток короткого замыкания в нагрузке. Например, в мобильных сварочных агрегатах.
Наличие коллекторно-щеточного узла существенно усложняет конструкцию электрической машины. Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют асинхронными генераторами с выпрямительным мостом. Таковы, например, все автомобильные источники электроэнергии.

Устройство и принцип работы генератора постоянного тока на видео

Как устроен и работает автомобильный генератор?
16 январь 2020, 13:37

Многие из вас знакомы с общим устройством автомобиля и знают, что некоторые устройства «жизненно» необходимы для полноценной работы всех систем транспортного средства. К таким устройствам относится и автомобильный генератор, основное назначение которого превращение механической энергии в электрическую. Электричество необходимо для вращения стартера при запуске двигателя, за что отвечает аккумуляторная батарея, зажигания топливной смеси внутри цилиндров и приведения в рабочее состояние всех систем и электроприборов автомобиля.

Немного истории

Как вы уже поняли, всего существует два источника автомобильного питания – это аккумулятор и генератор, при этом первый из них накапливает электричество, получаемое от генератора и передаёт полезную энергию на приборы в качестве постоянного тока ровно до того момента, как будет запущен мотор, и тогда в дело вступает второй источник питания.

Все знают автомобильные генераторы как компактные устройства, имеющие связь с двигателем посредством ременной передачи, но они не всегда были такими. До 1960 года обычный генератор представлял собой громоздкую конструкцию очень большого веса. При этом коэффициент полезного действия в устройствах начала второй половины прошлого столетия оставлял желать лучшего и точно никак не удовлетворял новым потребностям современных автомобилей, которые уже рвались на мировой рынок, заряженные небывалым энтузиазмом их разработчиков. Миру требовалось что-то более простое и лёгкое, что давало бы больше энергии при том же крутящем моменте, и это случилось в виде обновлённого генератора, работающего по технологии полупроводниковых выпрямителей.

Генераторы старого типа, поставляющиеся на рынок с шунтовой схемой параллельного возбуждения, обмоткой, имеющей связь с АКБ, либо со схемой стартера, последовательно подключённого к обмоткам якоря, нашли всеобщее признание у производителей гибридных и электрических автомобилей как основной силовой агрегат. Мир же полностью перешёл на генераторы переменного тока, обладающие известными преимуществами, такими, компактность, повышенный КПД, усиленная мощность и сила тока при неизменной частоте вращения ротора. Внимание читателя заслуживают оба типа генератора, и в последующих частях мы рассмотрим, как устроены генераторы постоянного и переменного тока и разберём принцип их работы.

Как устроен генератор постоянного тока?

Оба устройства призваны вырабатывать электричество, используя механическую силу двигателя. Массивность генераторов постоянного тока объясняется тем, что в качестве статора там используется сам корпус устройства, и чем он больше, тем лучше, поэтому для достижения наиболее высоких показателей мощности, например, для грузовых автомобилей, такие генераторы должны быть поистине гигантских размеров.

Как же происходит выработка электричества генератором постоянного тока?

  1. После подключения генератора независимым, параллельным или смешанным способом, становится возможна его дальнейшая работа по превращению механической энергии в электрическую;
  2. Полюсное размещение обмоток со смещёнными пазами обеспечивает выработку переменного тока, при этом работа генератора практически бесшумная;
  3. Якорь, как токосъемная часть генератора, крепится на подшипники крышек, рабочая часть находится между обмотками и при вращении отдаёт накопленный переменный ток щёткам;
  4. Коллектор преобразует переменный ток в постоянный, который и становится «конечным продуктом» деятельности генератора постоянного тока и обеспечивает весь автомобиль электричеством.

При необходимости генераторы оснащают дополнительным комплектом обмоток, который предполагает наличие ещё одной пары щёток.

Как устроен генератор переменного тока?

Стандартный или компактный трёхфазный генератор переменного тока имеет намного меньшие габариты за счёт изменения конструкции статора, в качестве которого выступает отдельный модифицированный элемент и более эффективный ротор вместо якоря. В связи с этим у производителей отпала необходимость создавать массивные и тяжёлые корпуса, а токосъёмные свойства генератора при этом увеличились в несколько раз. Несмотря на разительные перемены в конструкции устройств разных поколений генераторов, принцип их работы практически ничем не различается.

Генератор переменного тока состоит из ротора, статора, трёхфазных медных намоток в качестве магнитопровода, шкива, являющегося продолжением ротора, принимающего крутящий момент от двигателя, графитовых щёток, регулятора напряжения и силового выпрямителя. Каждый из элементов компактно размещён в лёгком корпусе, представляющем собой парные алюминиевые крышки, соединённые болтами. Корпус крепится к кронштейнам двигателя через проушины так, чтобы шкив находился со стороны привода.

Рассмотрим устройство элементов генератора переменного тока более детально:

  1. Статор изготавливается из стальных листов, каждая его часть сваривается или клепается так, чтобы получилось 36 пазов, которые изолируются плёнкой, либо эпоксидной смолой. Обмотка статора осуществляется между пазами;
  2. Ротор представляет из себя две разнополюсные части с клинообразными выступами, у каждой из которых имеется как минимум шесть полюсов, закреплённых на валу. В случае фиксации на концах вала закалённой цапфы и подшипников, его изготовление предполагает использование твёрдой стали, при этом шкив фиксируется при помощи резьбы и паза;
  3. Электрографитные или меднографитовые щётки имеют пружинный способ прижатия. Первый вариант с более долгим сроком эксплуатации, контактируя с кольцом, значительно снижает напряжение в цепи;
  4. Диодные мосты в виде таблеток, надёжно закреплённых на охлаждающих элементах пайкой, или силовых диодов, размещённых в пластинах, выполняют функцию отвода тепла;
  5. Выпрямление переменного тока осуществляется вспомогательным узлом диодов, заключённых в герметичный блок, который имеет подключение в виде шины. Узел защищён от короткого замыкания специальным составом;
  6. Система охлаждения генератора выполняет важную функцию, влияющую на регулировку напряжения, которая напрямую зависит от температуры окружающего воздуха. Также регулятор справляется со скачками напряжения, которые неизбежно появляются в связи с изменением числа оборотов двигателя.

Как работает автомобильный генератор?

Работа генератора невозможна без приводной силы двигателя. Индукция электродвижущей силы, возникающая в области действия магнитного поля, создаёт нап

Из каких частей состоит генератор переменного тока

Из каких частей состоит генератор переменного тока

Для чего предназначены электрические генераторы?

Электрические генераторы предназначены для преобразования механической энергии в электрическую. Причем генераторы постоянного тока предназначены для преобразования механической энергии в электрическую энергию постоянного тока, а генераторы переменного тока — для преобразования механической энергии в электрическую энергию переменного тока.

Из каких основных частей состоит генератор постоянного тока?

Рекламные предложения на основе ваших интересов:

Генератор постоянного тока состоит из неподвижного статора, к которому привернуты на болтах главг ные и дополнительные полюсы с обмотками, и вращающегося якоря. Корпус неподвижного статора обычно изготовляется из чугуна или стали, а главные полюсы современных машин — из стальных листов, благодаря чему уменьшаются потери мощности от вихревых токов.

Дополнительные полюсы изготовляют массивными.

Якорь генератора состоит нз вала, вращающегося на подшипниках, сердечника, закрепленного на валу, и коллектора, представляющего собой цилиндр из медных пластин, изолированных друг от друга и от вала.

Сердечник якоря — это цилиндр, собранный из отдельных изолированных друг от друга листов электротехнической стали. В пазах на поверхности сердечника уложена обмотка из медных изолированных проводов, состоящая из отдельных секций, каждая из которых располагается в двух пазах, а выводы от них прнс диняются к двум коллекторным пластинам коллек ра. Обмотка возбуждения делается также из медн изолированных проводов, питается она постоянны током и служит для создания основного магнитног поля.

Для чего служит коллектор генератора постоянног тока?

Коллектор со щетками служит для получения во внешней цепи тока постоянного направления, так как вследствие вращения якоря генератора между полю« сами статора в нем индуктируется электрический ток переменного направления. Кроме того, с помощью: коллектора и щеток вращающаяся обмотка якоря сое диняется с внешней электрической цепью.

Из каких частей состоит генератор переменного тока?

Генератор переменного тока состоит из двух основных частей: из неподвижного статора и вращающегося ротора. Станина неподвижного статора изготовляется из чугуна или стали, а полый цилиндр его для уменьшения вредного влияния вихревых токов собирается из отдельных листов специальной стали. В пазы во внутренней полости полого цилиндра укладывается обмотка из изолированных медных проводов, где индуктируется электрический ток. Причем если генератор трехфазный, то в пазы укладываются три обмотки, сдвинутых одна относительно другой на 120°, при этом ротор генератора при вращении проходит Мимо каждой обмотки через 1/3 оборота.

Ротор генератора состоит из вала, и магнитных полюсов, изготовленных также из листовой электротехнической стали. На магнитные надевают обмотки из изолированных медных проводов, по которым через щетки и кольца пропускают постоянный ток от постороннего источника. Кольца, через которые пропускают ток, сидят на валу, они изолированы как друг от друга, так и от вала.

Как соединяют статорную обмотку трехфазного генератора переменного тока?
Статорную обмотку трехфазного генератора переменного тока соединяют звездой и треугольником.

При соединении звездой к началам обмоток генератора ABC присоединяют три линейных провода, идущих к приемнику. Концы обмоток X, V, Z объединяют в узел, называемый нейтралью генератора, или его нейтральной точкой. В четырехпроводной системе к нейтрали генератора присоединяют нейтральный (нулевой) провод. В трехпроводной системе такой провод отсутствует. Напряжение между линейными проводами называется линейным, а между линейным и нейтральным (нулевым) проводом — фазным.

Как показывают измерения, при соединении обмотки статора «в звезду» линейное напряжение больше фазного в 1,73 раза. Если между линейным и нейтральным (нулевым) проводом напряжение будет 220 В, то между линейными проводами оно составит не 220 В, а 380 В. В промышленности и в строительстве наибольшее распространение получила трехфазная четырех- проводная система с напряжением 380/220 В. Три линейных провода с напряжением между ними 380 В используются для питания электродвигателей, а напряжение между любым линейным проводом и нейтральным (нулевым) проводом, равное 220 В,— для освещения.

Как соединяется обмотка статора трехфазного генератора переменного тока «в треугольник»?

Рис. 1. Схема соединения обмотки генератора
в звезду: ЛП — линейный провод; НП — нейтральный провод

Рис. 2. Схема соединения обмотки генератора в треугольник провод

«В треугольник» обмотка статора трехфазного генератора переменного тока соединяется следующим образом: конец первой обмотки X соединяется с началом второй обмотки В, конец второй обмотки V — с началом третьей С и конец третьей обмотки Z — с началом первой А.

Рис. 3. Схема трансформатора

Линейные провода, идущие к приемнику, присоединяются к началам обмоток статора ABC и в то же время к концам соответствующих соседних обмоток Z, X и V (рис. 2).

Вследствие этого фазное напряжение на обмотках генератора одновременно является и линейным напряжением.

Как устроен генератор переменного тока – назначение и принцип действия

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Из чего состоит генератор автомобиля: неисправности, диагностика

У каждого автомобиля есть электрическая сеть, предназначенная для выполнения ряда функций. Так, посредством подобной сети удается выполнить запуск двигателя, поджечь топливо созданием необходимого количества искр, вовремя включить сигнальные огни и фары, а также создать благоприятные условия для пассажиров, находящихся внутри.

Обеспечением электричества занимаются:

  • генератор
  • аккумулятор

Второй начинает работать еще до подачи топлива в двигатель. Поэтому батарея не может долго одна вырабатывать энергию, иначе ее заряд быстро придет в негодность, и автомобиль отключится. Чтобы этого не произошло, после запуска мотора приходит на помощь генератор, вырабатывающий необходимое количество электроэнергии на протяжении эксплуатации мотора транспортного средства.

Виды генераторов

Известно два вида агрегатов, устанавливаемых на машины. Среди них:

  1. Устройство постоянного тока. Чаще всего встречается на старых моделях транспортных средств. В последнее время популярность таких агрегатов заметно снизилась.
  2. Устройство переменного тока. Установлено практически на все автомобили современного поколения. Впервые был разработан и выпущен на заводе Америки в 1946 году.

Второй тип электрогенераторов представляет собой надежную конструкцию, отличительной особенностью которой является наличие узлов, выпрямляющих ток.

Как устроен

Вне зависимости от вида, каждый генератор предназначен для образования и подачи электрического тока, с помощью которого удается ввести в эксплуатацию систему приборов внутри автомобиля. Устройство и принцип работы генераторов отличаются, так как каждый из видов агрегатов вырабатывает разный ток. В связи с этим стоит рассмотреть оба электрогенератора отдельно.

Автогенератор постоянного тока

Уже было отмечено, что данный агрегат встречается все реже, и связано это с рядом недостатков. Среди наиболее распространенных из них:

  • небольшая эффективность работы;
  • недостаточная мощность;
  • необходимость проведения частого ремонта и осмотра;
  • недолгий срок службы.

В состав конструкции входит коллектор, благодаря которому подобные устройства способны работать в двух режимах. Поэтому часто использовался в гибридных автомобилях.

Отличительная особенность заключается в том, что электромагниты, закрепленные на устройстве, не двигаются. Это обеспечивает определенное положение электродвижущей силы и особый принцип работы.

Автогенератор переменного тока

Считается популярным устройством среди современных моделей. Содержит в конструкции:

  • обмотку, статор и ротор;
  • крышки по обеим сторонам;
  • привод со шкивом.

Располагают данный тип генератора рядом с двигателем, обычно впереди. Крепление осуществляют с помощью надежных болтов посредством заранее рассчитанного соединения. Крышки устройства выполняются из алюминиевых сплавов. В каждой крышке встроено окно для вентиляции корпуса, предотвращая перегрев конструкции. Отсутствие или засорение вентиляции объясняет, почему греется генератор на холостом или обычном ходу.

Дополнительно стоит отметить, что на задней крышке имеет особый узел, называемый щеточным. Обе крышки стягивают между собой, фиксируя специальными винтами увеличенной длины.

Конструкция

Стоит подробнее рассмотреть, из чего состоит генератор, встроенный в автомобиль. Далее представлены основные детали конструкции столь важного в машине устройства.

Статор

Статор генератора — это деталь, изготовленная из стали, толщина которой не превышает 10-11 мм. Добиваясь экономии металла, разработчики современного генератора изготовили данную деталь из отдельных элементов и придали ей форму подковы. Все листы конструкции скреплены между собой сварочным или заклепочным методами. В статоре более 30 пазов, предусмотренных для крепления обмотки. Изоляция статора обеспечивается специальным покрытием из эпоксидного компаунда или пленки.

Ротор

Система полюсов ротора отличается от системы в стандартных агрегатах. В ней две половины, каждый из которых имеет отдельный выступ, по форме напоминающий клюв. На каждом выступе — по шесть полюсов, напрессованных на вал.

Втулка устанавливается между полюсами, а обмотка закрепляется на ней. Вращающийся вал ротора изготавливают из стали низкой твердости, но это не мешает ему быть прочным и эффективно справляться с поставленной задачей. На конце вала резьба, а также шпоночный паз, фиксирующий шкив.

Узел выпрямления

Главным отличительным элементом современных автогенераторов переменного тока является узел выпрямления. Существует два типа используемых узлов:

  1. Пластины, отводящие тепло. В них установлены силовые диоды, выпрямляющие ток.
  2. Элементы со специальными ребрами для охлаждения. На них также установлены диоды, но они таблеточные.

Дополнительно к классификации можно отнести вспомогательный выпрямитель. В нем диоды содержатся в пластиковом корпусе, имеющем цилиндрическую форму. К схеме такой корпус подключают специальными шинами.

Регулятор напряжения

Данная деталь способствует поддержке необходимого напряжения внутри автогенератора. Благодаря этому достигается нормальная работа электрических систем, датчиков и других элементов, находящихся в системе транспортного средства.

Основа регуляторов напряжения — полупроводниковый элемент. Конструктивное исполнение подобных деталей может быть различным, но у всех одинаковая задача и один и тот же принцип действия.

Главное свойство регулятора — термокомпенсация. Оно представляет собой способность элемента менять показатель напряжения, поднимая или опуская его, если в процессе работы генератора были обнаружены изменения температуры за пределами рабочего пространства. Подобные махинации позволяют улучшить зарядку аккумулятора и снизить потребление ресурса.

Принцип работы генератора

Главный потребитель электроэнергии еще на запуске машины — стартер. При этом стоит заметить, что при впрыске топлива в мотор сила тока способна вырасти сразу до сотни ампер, если не больше. В таком режиме оборудование транспортного средства получает электроэнергию только от аккумулятора, который, как уже было отмечено ранее, быстро разряжается.

Как только двигатель начинает работать, на смену батарее приходит генератор, который тут же направляет электроэнергию для работы электрических систем, датчиков и других устройств.

При работе двигателя внутри машины происходит непрерывная зарядка аккумулятора, а также обеспечивается работоспособность электрооборудования, и со всем этим справляется автогенератор. Если он неожиданно выйдет из строя, то батарея машины, проработав небольшое количество времени, быстро сядет, и железному коню потребуется ремонт.

Крепление и привод

За работу генератора отвечает шкив двигателя посредством работы ременной передачи. Количество оборотов агрегата зависит от диаметров различных шкивов, входящих в состав конструкции основного устройства.

В современных моделях транспортных средств встречается поликлиновый ремень, обладающий большой гибкостью. С его помощью удается привести в действие шкивы минимального диаметра, благодаря чему увеличиваются обороты автогенератора. Существует несколько способов натяжения такого ремня, что очень удобно. Выбор способа зависит от модели транспортного средства, а также от конструкции натяжителя. Обычно предпочитают натягивать ремень специальными шариковыми роликами.

Неполадки

Несмотря на то, что вырабатывающие электричество устройства считаются надежными, в процессе их эксплуатации могут возникнуть различные проблемы. Эти проблемы можно поделить на два вида:

  1. Механические. В основном связаны с износом деталей конструкции генератора. Например, из строя неожиданно может выйти ремень, подшипник или шкив. Обнаружить подобную неисправность легко, достаточно обратить внимание на посторонний звук или стук от двигателя, рядом с которым находится автогенератор. Проблема решается ремонтом или заменой.
  2. Электрические. Удивительно, но возникают чаще. Выражаются в виде замыкания обмоток. Обнаружить невооруженным взглядом проблему не получится. Выявляется поломка только посредством незамедлительной проверки напряжения мультиметром.

Многие не знают, как проверить генератор автомобиля или как проверить его работу. Поэтому при возникновении подозрений на наличие неполадок в устройстве стоит провести диагностику генератора автомобиля или сразу же обратиться в сервисный центр для устранения проблемы.

Также читайте:

8 самых распространенных проблем Mercedes-Benz

Типичные неисправности и ремонт АКПП Мерседес-Бенц

Что такое Турбонаддув: Принцип работы, Конструктивные особенности

Система выхлопа автомобиля: Из чего состоит , частые неисправности и их устранения

Устройство автомобильного кондиционера

принцип работы и схема подключения

Любой автомобиль располагает собственной бортовой автономной электрической сетью со всеми присущими элементами, источником энергии, накопителем и потребителями. Каждый из узлов функционально закончен, они объединяются электрической проводкой, а параметры сети чётко стандартизованы благодаря накопленному опыту производства автомобильного электрооборудования.

Содержание статьи:

В качестве источника питания электроники выступает генератор, о котором и пойдет речь в этой статье.

Для чего в машине нужен генератор

Вся энергия в бортовую сеть поступает от двигателя внутреннего сгорания. Механическая энергия вращения его коленчатого вала должна быть преобразована в электрическую. Эту роль и выполняет генератор.

Читайте также: Топливный фильтр, виды, месторасположение и замена

В типовом варианте его ротор снабжён шкивом, на который надет гибкий ремень, передающий вращения от аналогичного шкива на носке коленчатого вала. Параллельно от того же ремня могут приводиться и прочие навесные агрегаты, но традиционно он именуется генераторным.

На выходе генератора образуется электрическое напряжение, способное поддерживаться в заданном диапазоне при отдаче любого тока от нуля до максимума, лимитированного номинальной мощностью.

Эту мощность прибор отдаёт при максимально допустимых оборотах ротора, привязанных к предельной частоте вращения коленвала путём подобранного передаточного соотношения ременного привода.

Виды

Выделяется два основных типа автомобильных генераторов:

  • Постоянного тока, вырабатывается напряжение определённой полярности уже непосредственно на обмотках;
  • Переменного тока, поскольку требуется всё же постоянное напряжение, то генератор снабжён внутренним полупроводниковым выпрямителем.

В настоящее время используется только второй тип, поскольку он обладает бесспорными преимуществами, причём его обмотки выдают трёхфазное напряжение, как легче поддающееся сглаживанию пульсаций и позволяющее эффективнее использовать массогабарит прибора.

Что находится внутри данного прибора разберем ниже.

Устройство

Внешне все генераторы на первый взгляд похожи, но те кто знаком с электротехникой легко определит с каким прибором имеет дело. Ситуация упрощается тем, что машины постоянного тока использовались только на совсем уж реликтовых автомобилях, давно снятых с производства.

Генератор постоянного тока

В состав динамомашины постоянного тока входят:

  • корпус;
  • обмотки возбуждения на статоре, неподвижно закреплённом в корпусе;
  • силовые обмотки на вращающемся якоре;
  • щёточный узел с меднографитовыми или угольными щётками, снимающими ток с коллектора вращающегося якоря;
  • регулятор напряжения, стабилизирующий выход путём регулирования тока возбуждения в обмотках электромагнитов статора;
  • приводной шкив на валу якоря;
  • подшипники, в которых вращается вал якоря.

Для создания приемлемой мощности на выходе весь агрегат приходилось выполнять массивным и металлоёмким, поэтому с появлением качественных выпрямительных полупроводниковых приборов генераторы постоянного тока на автомобилях применять перестали.

Генератор переменного тока

Принципиально он устроен похоже, но выходная мощность образуется многофазными обмотками статора, выполненными толстым проводом и не нуждающимися в мощных и ненадёжных токосъёмниках.

Состав оборудования тоже похож:

  • корпус с кронштейнами крепления и электрическими клеммами;
  • обмотки статора, установленные в корпусе, могут извлекаться при рассоединении его половин;
  • ротор с полюсами из мягкого электротехнического железа, медными обмотками и коллектором;
  • щёточный узел, где обычно устанавливается пара угольных щёток и встраивается интегральный полупроводниковый регулятор напряжения, через который на щётки поступает питание возбуждения;
  • блок выпрямителя, где расположен трёхфазный мост из шести силовых вентилей (диодов) и трёх относительно маломощных дополнительных диодов питания обмотки возбуждения, число диодов может отличаться в специфически устроенных современных конструкциях;
  • подшипники на валу ротора;
  • выходные разъёмы, силовой и управляющий, вторым силовым контактом выступает металлический корпус генератора;
  • шкив привода и крыльчатка принудительного охлаждения.

Весь конструктив крепится к передней части двигателя для удобной организации ременного привода от шкива коленвала. Часто отклонением генератора в сторону производится регулировка натяжения ремня, в тех случаях, когда более сложная конструкция привода навесных агрегатов не подразумевает наличие отдельного натяжителя с роликом.

Схема подключения

Схема подразделяется на силовую и управляющую цепи. Мощный выход генератора через силовой разъём из закреплённого гайкой на шпильке провода большого сечения соединяется непосредственно с плюсовой клеммой аккумуляторной батареи.

Тонкий управляющий провод чаще всего просто соединён с цепью зажигания через контрольную лампочку. Встречаются и иные схемы, когда лампочка имеет собственное управление от специально предназначенного контакта на корпусе.

Принцип работы

Перед началом работы в автомобиле включается зажигание, и на управляющий контакт генератора поступает напряжение через лампочку. Поскольку энергию генератор в этот момент не вырабатывает, то напряжение на контакте отсутствует, и лампочка оказывается под потенциалом аккумуляторной батареи. Индикатор светится, через обмотку возбуждения протекает начальный ток.

После запуска мотора вращающееся поле обмотки возбуждения на роторе создаёт ответную индукцию в обмотках статора и генератор начинает вырабатывать электроэнергию. Дополнительные диоды поднимают напряжение на контакте лампочки, перепад на ней отсутствует, и она перестаёт светиться, сигнализируя, что всё в порядке, генератор работает.

Электронная схема в реле-регуляторе щёточного узла отслеживает выходное напряжение, увеличивая или уменьшая ток возбуждения, таким образом поддерживая выход на заданном уровне, обычно это 14-15 вольт, в зависимости от типа применённого аккумулятора и его температуры.

Батарея под таким напряжением перестаёт отдавать ток и переходит в режим заряда или удержания, выполняя роль дополнительного фильтрующего элемента, поскольку напряжение генератора пульсирует с частотой трёхфазного выпрямителя.

Если включено много потребителей, а обороты двигателя малы, прибор не в состоянии отдавать требуемую мощность, напряжение уменьшается, а часть потребителей начинает питаться от аккумулятора.

При добавлении оборотов генератор увеличивает мощность, питает потребителей, а избыток её идёт на зарядку аккумулятора. Если батарея заряжена, а мощность избыточна, то реле-регулятор уменьшает ток возбуждения, чтобы не допускать опасного роста напряжения в сети.

Основные неисправности

Проявлением неисправностей становится выход напряжения в сети из заданных пределов, а также посторонние звуки из работающего генератора.

Причины могут быть различными:

  • износ щёточного узла, он заменяется вместе с интегральным реле;
  • глубокий износ коллектора щётками, если его уже невозможно устранить шлифовкой, меняются контактные кольца или якорь в сборе;
  • выход из строя подшипников якоря, их несложно заменить после полной или частичной разборки генератора;
  • выгорание диодов выпрямителя, в настоящее время их не меняют поодиночке, замене подлежит весь диодный мост;
  • короткие межвитковые замыкания или обрывы в якоре или статоре, соответствующие детали меняются;
  • обгорание или коррозия контактов, их тоже можно заменить или очистить.

Не относящейся непосредственно к генератору, но частой неисправностью является сильный свист при добавлении оборотов двигателя. Это свидетельствует о проскальзывании ремня на приводных шкивах, натяжение можно отрегулировать, но лучше такой ремень заменить.

При снятии генератора для ремонта целесообразно сразу поменять диодный мост, подшипники и реле-регулятор со щётками. Так отремонтированный прибор обретёт максимально возможную надёжность, хотя полную гарантию может дать только новый генератор от солидного производителя.

Как проверить автомобильный генератор

В идеале генератор надо проверять на стенде, где он будет раскручен до номинальных оборотов и максимально нагружен с проверкой отдаваемой в таком режиме мощности.

Но можно приблизительно проверить его и не снимая с автомобиля.

  1. К выходной клемме генератора подключается цифровой вольтметр (например, в составе мультиметра).
  2. Двигатель запускается. Показания вольтметра должны увеличиться до номинальных 14 – 14,5 вольт. Исключением станет случай, когда батарея сильно разряжена, тогда напряжение будет расти постепенно, по мере заряда.
  3. Двигатель выводится на средние или высокие обороты, а в автомобиле включаются фары и другие мощные потребители, общей потребностью не превышающие полную мощность генератора. Напряжение должно остаться стабильным, значит генератор отдаёт свою положенную мощность.
  4. От генератора не должно раздаваться характерных воющих звуков изношенных подшипников. При появлении сомнений достаточно снять ремень и прокрутить шкив вручную. Ротор должен вращаться абсолютно плавно, без вибраций и люфтов.

Новый генератор очень надёжен и первые проблемы могут возникнуть лишь после пробега в 100-150 тысяч километров. Но часто эти приборы ходят значительно больше, особенно с промежуточной заменой щёточного узла.

из чего состоит, типы, схема и назначение

Содержание статьи:

Генератор постоянного тока – это электротехническое оборудование, которое продуцирует напряжение постоянной величины. Устройство имеет довольно сложное техническое строение, которое можно назвать совершенством технической мысли.

Принцип действия

Генератор постоянного тока

Каждый проводник оснащен магнитом, к концам которого подключена нагрузка. При ее подключении по ним непрерывно протекает переменный ток. Природа его происхождения объясняется тем, что во время работы полюса магнита непрерывно меняются местами. На этом принципе основывается работа генератора переменного тока.

Чтобы ток не изменял своего направления, требуется успевать соединять точки коммутации нагрузки со скоростью аналогичной скорости вращения магнита. Справиться с поставленной задачей может только контроллер – небольшое электротехническое устройство, которое состоит из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно фиксируется на якоре устройства и вращается с ним синхронно.

Электрическая энергия с якоря удаляется с помощью щеток. Используются чаще всего кусочки графита, обладающие высокой электропроводностью и низким коэффициентом трения.

Все эти процессы способствуют образованию на выходе электротехнической установки пульсирующего напряжения одной величины. Для сглаживания этой пульсации применяется несколько якорных обмоток. Чем их больше установлено, тем меньше будут броски напряжения на выходе.

Характеристики и строение

Как и абсолютное большинство других электрических агрегатов, генератор постоянного тока в свой состав включает статор и якорь.

Якорь изготавливают из стальных пластин с небольшими углублениями, в них помещаются обмотки. Их концы обязательно коммутируют с коллектором, который изготовлен из медных пластин, разделенных диэлектриками. По окончании сборки вал, якорь с обмотками и коллектор становятся одним целым.

Статор выполняет не только свою непосредственную функцию, но и является корпусом, к внутренней поверхности которого крепятся электрические магниты и постоянные. Предпочтительнее первый вариант, их сердечники могут быть набраны из металлических пластин или отлиты вместе с корпусом. Еще на корпусе предусмотрены специальные отверстия для крепления токосъемных щеток.

Количество графитов будет изменяться в зависимости от количества полюсов магнитов, которыми оснащен статор. Количество щеток равно количеству пар полюсов.

Электродвижущая сила

Электродвижущая сила генератора постоянного тока или ЭДС представляет собой величину, которая прямо пропорциональна потоку магнитов, количеству активных проводников и частоте вращения якоря. При уменьшении или увеличении этих показателей удается управлять величиной электродвижущей силы и напряжением. Установить требуемые параметры можно с помощью регулировки частоты вращения якоря.

Мощность оборудования и КПД

Мощность генератора постоянного тока встречается как полная, так и полезная. При постоянной электродвижущей силе генератора полная мощность пропорциональна силе тока.

Еще одной важной технической характеристикой альтернатора является его коэффициент полезного действия. Это понятие представляет собой отношение полезной мощности к полной.

На холостом ходе КПД равно нулю, максимальные показатели достигаются при номинальных нагрузках. В мощных инновационных моделях генераторов постоянного тока коэффициент полезного действия приближается к 90%.

Разновидности по способу возбуждения

По способу возбуждения генераторы постоянного тока делятся на два вида:

  • с самовозбуждением;
  • с независимым возбуждением обмоток.

Для самовозбуждения оборудования обязательно требуется электричество, которое им же и вырабатывается. По принципу коммутации обмоток самовозбуждающиеся якоря альтернаторов делятся на следующие разновидности:

  • оборудование с параллельным возбуждением;
  • устройства с последовательным возбуждением;
  • генераторы смешанного типа, которые получили название – компудные.

Каждая разновидность имеет свои конструктивные особенности, преимущества и недостатки.

Для обеспечения оптимальных условий для работы оборудования требуется наличие стабильного напряжения на зажимах. Особенность устройства заключается в параллельном возбуждении выводов катушки, которые подсоединены через регулировочный реостат, расположенный параллельно обмотке якоря.

Для оборудования с независимым возбуждением источником питания выступают внешние устройства или аккумуляторные батареи. В маломощных модификациях устанавливаются постоянные магниты, обеспечивающие создание основного магнитного потока. Основное достоинство заключается в том, что на напряжение на зажимах не влияет возбуждающий ток.

Устройства со смешанным возбуждением сочетают положительные качества вышеописанных разновидностей. Конструктивные особенности – две катушки индуктивности, основная и вспомогательная. Цепь параллельной обмотки включает в себя реостат, который используется для регуляции силы тока возбуждения.

Область применения

Система постоянного тока в самолете

Генераторы постоянного тока имеют довольно обширный список применения. Его активно используют практически во всех отраслях промышленности, особенно в автомобилестроении и при сооружении российских локомотивов нового поколения, которые оснащают асинхронные двигатели, характеризующиеся работой на переменном токе.

Также электротехническое оборудование может использовать в быту для портативных сварочных аппаратов с автономной системой питания и для бытовой техники, оснащенной мощными пусковыми двигателями.

Перед покупкой следует проанализировать, с какими целями электротехническое оборудование должно будет справляться. Исходя из этого подбирается наиболее подходящая модификация генераторов постоянного тока.

Приобрести оборудование можно в специализированных магазинах или на интернет-площадках. При покупке важно проверить наличие всей необходимой сопроводительной документации и гарантийного талона. Предварительно также осматривается целостность корпуса и наличие повреждений: если таковые имеются, лучше воздержаться от покупки. При покупке через интернет стоит внимательно ознакомиться с отзывами о магазине на различных форумах.

Как работают ручные генераторы | HowStuffWorks

Использовать генераторы с ручным приводом довольно просто. Некоторые туристические гаджеты действительно имеют встроенные генераторы. Например, гаджеты со встроенными ручными генераторами, которые люди обычно используют в походах, включают радио и свет, который можно использовать для сигнализации, если вам нужна помощь. Оба этих устройства могут работать от обычных батарей большую часть времени, но если вы застряли с разряженными батареями, ручная рукоятка сбоку позволяет включить его достаточно, чтобы настроиться на прогноз погоды или использовать свет.Вам не нужно беспокоиться о подключении генератора к чему-либо, потому что все работает внутри.

Другие ручные генераторы предназначены для использования с определенным устройством, например с сотовым телефоном определенной марки. Генератор представляет собой небольшой гаджет с ручкой. Специальный разъем позволяет подключить его к телефону. Вы просто поворачиваете рукоятку, чтобы начать зарядку аккумуляторов телефона. В то время как генерируемое напряжение будет варьироваться в зависимости от того, как быстро вы поворачиваете рукоятку, встроенные регуляторы напряжения будут поддерживать постоянный ток.Чем дольше вы проворачиваете, тем больше мощности вырабатываете. Как правило, нескольких минут запуска достаточно, чтобы быстро позвонить в службу экстренной помощи.

Объявление

Некоторые генераторы с ручным приводом более универсальны. Вместо того чтобы подключаться к одному конкретному устройству, они имеют либо электрические провода, либо розетку типа прикуривателя, либо общую электрическую розетку. Затем вы можете подключить или подключить любое устройство к генератору, чтобы дать ему питание. Не каждое устройство будет работать с ручным генератором — будут работать только те, которые потребляют ток и напряжение, выдаваемые генератором.Генераторы обычно выдают мощность постоянного тока (DC), но у некоторых есть внутренние инверторы, которые преобразуют ее в мощность переменного тока (AC). Ручной генератор обычно может выдавать до 6 вольт, хотя некоторые из них имеют зубчатые передачи, которые увеличивают частоту проворачивания коленчатого вала и могут генерировать более высокие напряжения.

Если вам интересно, нова ли идея ручного генератора, она восходит как минимум к 1960-м годам. В воинских частях использовались специальные ручные генераторы, которые можно было складывать в рюкзак.Когда солдат поворачивает рукоятку, генератор можно использовать для питания электронного оборудования в полевых условиях, вдали от любого доступного источника энергии.

Если вы хотите попробовать генератор с ручным приводом, вы можете найти его у многих уличных торговцев. Их также можно приобрести в магазинах товаров для образования. Эти ручные генераторы часто поставляются с прозрачными корпусами, поэтому вы можете увидеть катушки и магниты в действии.

Перейдите на следующую страницу для получения дополнительной информации о генераторах с ручным приводом.

Python yield, генераторы и выражения генератора

Генераторы

на Python

Создание итератора в Python требует огромных усилий. Мы должны реализовать класс с методами __iter __ () и __next __ () , отслеживать внутренние состояния и вызывать StopIteration , когда нет значений для возврата.

Это длинно и нелогично. В таких ситуациях на помощь приходит генератор.

Генераторы

Python — это простой способ создания итераторов. Вся работа, о которой мы упомянули выше, автоматически выполняется генераторами в Python.

Проще говоря, генератор — это функция, возвращающая объект (итератор), который мы можем перебирать (по одному значению за раз).


Создание генераторов на Python

Создать генератор на Python довольно просто. Это так же просто, как определить обычную функцию, но с помощью оператора yield вместо оператора return .

Если функция содержит хотя бы один оператор yield (он может содержать другие операторы yield или return ), она становится функцией генератора. И yield , и return вернут некоторое значение из функции.

Разница в том, что в то время как оператор return полностью завершает функцию, оператор yield приостанавливает функцию, сохраняя все свои состояния, а затем продолжает оттуда при последующих вызовах.


Различия между функцией генератора и нормальной функцией

Вот чем функция генератора отличается от нормальной функции.

  • Функция генератора содержит один или несколько операторов yield .
  • При вызове возвращает объект (итератор), но не начинает выполнение немедленно.
  • Такие методы, как __iter __ () и __next __ () , реализуются автоматически. Таким образом, мы можем перебирать элементы, используя next () .
  • После выполнения функции функция приостанавливается, и управление передается вызывающей стороне.
  • Локальные переменные и их состояния запоминаются между последовательными вызовами.
  • Наконец, когда функция завершается, StopIteration вызывается автоматически при последующих вызовах.

Вот пример, иллюстрирующий все вышеизложенное. У нас есть функция генератора с именем my_gen () с несколькими операторами yield .

  # Простая функция генератора
def my_gen ():
    п = 1
    print ('Это печатается первым')
    # Функция генератора содержит операторы yield
    дать п

    п + = 1
    print ('Это печатается вторым')
    дать п

    п + = 1
    print ('Это напечатано наконец')
    yield n  

Интерактивный прогон в интерпретаторе приведен ниже. Запустите их в оболочке Python, чтобы увидеть результат.

  >>> # Возвращает объект, но не сразу запускает выполнение.>>> a = my_gen ()

>>> # Мы можем перебирать элементы, используя next ().
>>> следующий (а)
Это печатается первым
1
>>> # Как только функция уступает, функция приостанавливается и управление передается вызывающей стороне.

>>> # Локальные переменные и их состояния запоминаются между последовательными вызовами.
>>> следующий (а)
Это напечатано вторым
2

>>> следующий (а)
Это напечатано наконец
3

>>> # Наконец, когда функция завершается, StopIteration автоматически вызывается при последующих вызовах.>>> следующий (а)
Отслеживание (последний вызов последний):
...
StopIteration
>>> следующий (а)
Отслеживание (последний вызов последний):
...
StopIteration  

В приведенном выше примере следует отметить одну интересную вещь: значение переменной n запоминается между каждым вызовом.

В отличие от обычных функций, локальные переменные не уничтожаются при выполнении функции. Более того, объект-генератор может быть повторен только один раз.

Чтобы перезапустить процесс, нам нужно создать другой объект-генератор, используя что-то вроде a = my_gen () .

И последнее, что следует отметить, это то, что мы можем напрямую использовать генераторы с циклами for.

Это связано с тем, что цикл для принимает итератор и выполняет итерацию по нему с помощью функции next () . Он автоматически завершается, когда вызывается StopIteration . Проверьте здесь, чтобы узнать, как на самом деле реализован цикл for в Python.

  # Простая функция генератора
def my_gen ():
    п = 1
    print ('Это печатается первым')
    # Функция генератора содержит операторы yield
    дать п

    п + = 1
    print ('Это печатается вторым')
    дать п

    п + = 1
    print ('Это напечатано наконец')
    дать п


# Использование цикла for
для элемента в my_gen ():
    печать (позиция)  

Когда вы запустите программу, вывод будет:

  Это напечатано первым
1
Это напечатано вторым
2
Это напечатано наконец
3  

Генераторы Python с циклом

Приведенный выше пример менее полезен, и мы изучили его, чтобы получить представление о том, что происходило в фоновом режиме.

Обычно функции генератора реализуются с помощью цикла, имеющего подходящее условие завершения.

Давайте возьмем пример генератора, который переворачивает строку.

  def rev_str (my_str):
    длина = len (my_str)
    для i в диапазоне (длина - 1, -1, -1):
        yield my_str [i]


# Цикл для переворота строки
для символа в rev_str ("привет"):
    печать (символ)  

Выход

  о
л
л
е
h  

В этом примере мы использовали функцию range () для получения индекса в обратном порядке с помощью цикла for.

Примечание : Эта функция генератора работает не только со строками, но и с другими типами итераций, такими как список, кортеж и т. Д.


Выражение генератора Python

Простые генераторы можно легко создавать «на лету» с помощью выражений генератора. Это упрощает создание генераторов.

Подобно лямбда-функциям, которые создают анонимные функции, выражения генератора создают анонимные функции генератора.

Синтаксис выражения генератора аналогичен синтаксису понимания списка в Python.Но квадратные скобки заменены круглыми скобками.

Основное различие между пониманием списка и выражением генератора состоит в том, что понимание списка производит весь список, в то время как выражение генератора производит один элемент за раз.

У них ленивое исполнение (производство предметов только по запросу). По этой причине выражение генератора намного эффективнее с точки зрения памяти, чем эквивалентное понимание списка.

  # Инициализировать список
my_list = [1, 3, 6, 10]

# возвести каждый термин в квадрат, используя понимание списка
list_ = [x ** 2 вместо x в моем_списке]

# то же самое можно сделать с помощью выражения генератора
# выражения генератора заключены в круглые скобки ()
генератор = (x ** 2 для x в my_list)

печать (список_)
печать (генератор)  

Выход

  [1, 9, 36, 100]
<объект-генератор  в 0x7f5d4eb4bf50>  

Выше мы видим, что выражение генератора не сразу дало требуемый результат.Вместо этого он вернул объект-генератор, который производит элементы только по запросу.

Вот как мы можем начать получать предметы из генератора:

  # Инициализировать список
my_list = [1, 3, 6, 10]

a = (x ** 2 для x в my_list)
печать (далее (а))

печать (далее (а))

печать (далее (а))

печать (далее (а))

следующий (а)  

Когда мы запускаем указанную выше программу, мы получаем следующий результат:

  1
9
36
100
Отслеживание (последний вызов последний):
  Файл «<строка>», строка 15, в <модуле>
StopIteration  

Генераторные выражения могут использоваться как аргументы функции.При таком использовании круглые скобки можно опустить.

  >>> сумма (x ** 2 вместо x в my_list)
146

>>> max (x ** 2 для x в my_list)
100  

Использование генераторов Python

Есть несколько причин, по которым генераторы являются мощной реализацией.

1. Простота применения

Генераторы

могут быть реализованы ясным и кратким образом по сравнению с их аналогом класса итератора. Ниже приведен пример реализации последовательности степени двойки с использованием класса итератора.

  класс PowTwo:
    def __init __ (self, max = 0):
        self.n = 0
        self.max = max

    def __iter __ (сам):
        вернуть себя

    def __next __ (сам):
        если self.n> self.max:
            поднять StopIteration

        результат = 2 ** self.n
        self.n + = 1
        вернуть результат  

Вышеупомянутая программа была длинной и запутанной. Теперь давайте сделаем то же самое, используя функцию генератора.

  def PowTwoGen (макс = 0):
    п = 0
    пока n  

Поскольку генераторы отслеживают детали автоматически, реализация была лаконичной и намного более понятной.

2. Эффективная память

Обычная функция, возвращающая последовательность, перед возвратом результата создаст всю последовательность в памяти. Это перебор, если количество элементов в последовательности очень велико.

Генераторная реализация таких последовательностей удобна для памяти и предпочтительна, так как она производит только один элемент за раз.

3. Представьте бесконечный поток

Генераторы

- отличные носители для представления бесконечного потока данных.Бесконечные потоки не могут быть сохранены в памяти, а поскольку генераторы создают только один элемент за раз, они могут представлять бесконечный поток данных.

Следующая функция генератора может генерировать все четные числа (по крайней мере, теоретически).

  def all_even ():
    п = 0
    в то время как True:
        дать п
        п + = 2  

4. Генераторы трубопроводов

Несколько генераторов можно использовать для конвейерной обработки серии операций. Лучше всего это проиллюстрировать на примере.

Предположим, у нас есть генератор, который производит числа в ряду Фибоначчи. И у нас есть еще один генератор квадратов чисел.

Если мы хотим узнать сумму квадратов чисел в ряду Фибоначчи, мы можем сделать это следующим образом, путем конвейеризации выходных данных функций генератора вместе.

  def fibonacci_numbers (числа):
    х, у = 0, 1
    для _ в диапазоне (числа):
        х, у = у, х + у
        доход х

def квадрат (числа):
    для числа в числах:
        доход номер ** 2

print (сумма (квадрат (fibonacci_numbers (10))))  

Выход

  4895  

Эта конвейерная обработка эффективна и легко читается (и да, намного круче!).

Руководство по QR-кодам для печати и принципам их работы

Даже если вы никогда не слышали о QR-кодах, скорее всего, вы уже подсознательно знакомы с ними. В наши дни QR-коды используются во множестве различных маркетинговых материалов, а за последние несколько лет они стали более распространенными, чем когда-либо.

Многие наши клиенты здесь, на FastPrint.co.uk, в течение последних нескольких лет включают QR-коды в свои маркетинговые материалы. Мы регулярно включаем их в их визитные карточки, плакаты, листовки и даже баннеры от имени наших клиентов, так как знаем, насколько эффективными они могут быть при правильном использовании.

Несмотря на это, многие наши клиенты все еще не совсем уверены в том, что такое QR-код на самом деле. Нас регулярно спрашивают, как выглядит QR-код, что они делают и как работают.

Объяснение этого каждому клиенту может оказаться довольно длительным процессом, поэтому мы подумали, что создадим это простое руководство, чтобы точно объяснить, что такое QR-код и как он работает, на простом английском языке.

Что такое QR-код?

Источник: Му.com

Если вы посмотрите на изображение визитной карточки выше, вы заметите, что в левой части карточки есть странный рисунок, состоящий из черных квадратов и точек. По сути, так выглядит QR-код.

Идея QR-кода состоит в том, чтобы создать изображение, которое можно отсканировать любым современным смартфоном (с приложением для чтения QR-кода) и преобразовать во что-то более значимое. QR-коды часто используются для хранения информации о веб-адресах и ссылок, но с их помощью можно также направить пользователей смартфонов на множество других носителей (например,грамм. видео, изображения и т. д.).

Очевидно, это все хорошо, но в чем собственно смысл QR-кода? Конечно, вы можете просто ввести веб-адрес на своем телефоне и таким образом посетить веб-сайт? Хотя это может быть правдой, цель QR-кода - упростить процесс. Клавиатуры смартфонов (или планшетных ПК) сложнее по сравнению с клавиатурами настольных компьютеров / ноутбуков, и в большинстве случаев люди просто не беспокоятся о том, чтобы вводить адреса веб-сайтов на своих смартфонах.

QR-код используется маркетологами, чтобы упростить процесс и, следовательно, побудить больше людей посетить веб-сайт или часть контента.Вот почему маркетологи регулярно размещают QR-коды на баннерах, визитных карточках, флаерах, листовках, плакатах и ​​т. Д.

Как работает QR-код?

Источник: BetaKit.com

По сути, QR-код работает так же, как штрих-код в супермаркете. Это отсканированное изображение, которое можно мгновенно прочитать с помощью камеры смартфона. Каждый QR-код состоит из ряда черных квадратов и точек, которые представляют определенные фрагменты информации.Когда ваш смартфон сканирует этот код, он переводит эту информацию во что-то, что легко понять людям.

Проще говоря, QR-код - это закодированный фрагмент данных. Данные в QR-коде могут быть буквенно-цифровыми, числовыми, двоичными или кандзи (кандзи - это форма китайских иероглифов, которые используются в современной японской системе письма).

Хотя это техническое объяснение того, как работает QR-код, гораздо более важно сосредоточить внимание на том факте, что QR-коды могут быть отсканированы одним нажатием кнопки сотнями миллионов людей по всему миру, которые используют смартфон на ежедневно.Это делает их отличными для маркетологов.

Если вы когда-либо сканировали QR-код с помощью своего смартфона, вы, вероятно, заметили, что их можно сканировать очень быстро (здесь мы говорим в течение секунды или двух). Это делает QR-коды чрезвычайно простым способом мгновенного доступа к сохраненной информации, что, в свою очередь, делает их идеальным решением для маркетологов, жаждущих конверсии.

Как создать QR-код?

Источник: GOQR.мне

На этом этапе вам может понравиться идея использования QR-кода в ваших маркетинговых материалах, но вы, вероятно, думаете про себя, как я собираюсь создать один из них? К счастью, вам не нужно учить себя «языку QR-кодов», поскольку существует множество онлайн-генераторов QR-кодов, которые только и ждут, чтобы их использовали. Это делает весь процесс генерации QR-кода чрезвычайно простым.

Один из наших любимых генераторов QR-кодов - GOQR.me, поскольку он функциональный и простой в использовании.Чтобы использовать генератор QR-кода, все, что вам нужно сделать, это ввести текст, URL-адрес, номер телефона, информацию SMS или vCard, которую вы хотите сканировать. Веб-сайт сделает остальную работу за вас, и за секунды он создаст для вас полнофункциональный QR-код. На GOQR.me у вас есть возможность загрузить или встроить QR-код одним нажатием кнопки.

Источник: Google

Примечание. Существует множество других онлайн-генераторов QR-кодов, просто введите в Google (или Bing) фразу «генератор QR-кода», и вы, вероятно, столкнетесь с миллионами результатов.Просто выберите свой любимый.

Многие люди этого не понимают, но на самом деле вы не обязаны использовать скучное черно-белое изображение QR-кода. Фактически, когда у вас есть базовый QR-код, вы можете редактировать цвета, графику и множество других вещей, чтобы создать действительно уникальный дизайн.

Источник: Mashable & Unitaglive

Взгляните, например, на два дизайна QR-кода выше. Вы можете видеть, что это далеко от скучных черно-белых стандартных дизайнов QR-кодов, которые создаются большинством онлайн-генераторов.Но как именно создать такой дизайн и при этом обеспечить читаемость / сканирование QR-кода?

Что нельзя изменить

Прежде чем мы поговорим об областях вашего QR-кода, которые вы можете изменить и проявить творческий подход, мы поговорим о частях, которые всегда должны оставаться неотредактированными.

Если вы посмотрите на два QR-кода выше (один для нашего веб-сайта и один для youtube.com), вы заметите, что они выглядят относительно похожими.Однако если вы присмотритесь, вы заметите, что есть только некоторые аспекты QR-кодов, которые выглядят одинаково, и что многие из меньших черных точек различаются в зависимости от данных, которые были зашифрованы.

Источник: N / A

Выше вы можете увидеть версию нашего собственного QR-кода fastprint.co.uk с цветовой кодировкой. Выделенные области показывают различные части QR-кода, которые нельзя изменить. Описание каждой области приводится ниже:

Синий: три квадрата в углах QR-кода, выделенные синим цветом, будут присутствовать на каждом QR-коде, с которым вы столкнетесь.По сути, это маркеры положения, и их задача - сообщить сканеру, где находятся края QR-кода.

Оранжевые полосы: две оранжевые полосы показывают чередующиеся черные и белые точки (очень похоже на зебру). Задача этих полосок - сообщить сканеру, где расположены столбцы и ряды черных и белых точек. Они называются временными шаблонами.

Красный: красные области QR-кода сообщают сканеру, какой тип информации будет закодирован (например,грамм. URL-адрес веб-сайта, SMS-сообщение, информация vCard, буквенно-цифровая, числовая и т. д.).

Зеленый: зеленые области представляют номер версии QR-кода. Они используются в QR-кодах с номерами версий от 6 до 40. Если версия вашего QR-кода меньше 6, сканеру не нужно определять версию, так как он сможет определить ее в отдельных областях. QR-кода.

Желтый квадрат: желтый квадрат также является постоянной частью каждого QR-кода, поскольку он действует как маркер выравнивания.В некоторых более крупных QR-кодах вы можете увидеть некоторые из них, поскольку сканер использует их больше, чтобы обеспечить более точное выравнивание.

Что можно изменить

Источник: N / A

На этом этапе вы можете подумать, что можете изменить каждую часть QR-кода, кроме упомянутых выше разделов. Если вы так думаете, вы и правы, и неправы.

Оставшаяся часть QR-кода разделена на разные части (называемые модулями).Каждый модуль состоит из восьми черных / белых квадратов, сгруппированных вместе (лучше всего их воспринимать как байты).

Когда QR-сканер сканирует QR-код, он фактически сканирует эти модули независимо. Это означает, что если один из восьми квадратов (или байтов) в модуле окажется закрытым, сканер отобразит весь модуль как «нечитаемый».

Это может показаться ужасным, но на самом деле это не проблема, благодаря так называемому методу исправления ошибок Рида-Соломона.

Как работает метод исправления ошибок Рида-Соломона

Источник: ShiftEast.com

Если вам довелось проверить ссылку на Википедию выше, вы, вероятно, были сбиты с толку множеством математических формул, которые вам были представлены. Итак, давайте объясним на простом английском, как работает метод коррекции.

Взгляните на QR-код, изображенный выше. Он был создан известным брендом Marc Jacobs, и, хотите верьте, хотите нет, на самом деле это полностью функционирующий QR-код (несмотря на то, что девушка закрыла половину дизайна).Все это благодаря методу коррекции Рида-Соломона.

По сути, метод Рида-Соломона - это алгоритм, который стандартно встроен во все считыватели QR-кода. Это позволяет сканировать QR-коды, даже если определенная часть QR-кода скрыта или заблокирована.

Однако существует ограничение на то, какую часть вашего QR-кода вы можете скрыть. Метод Рида-Соломона не является волшебным, но он хорошо заполняет пробелы, если вы придерживаетесь основных принципов.

Источник: QRcode.com

Поскольку существуют разные версии и размеры QR-кодов, сумма, которую вы можете скрыть или изменить, будет зависеть от ряда факторов. Самый простой способ выяснить, какая часть QR-кода может быть скрыта, - это использовать таблицу, расположенную на веб-сайте QRcode.com.

Чтобы использовать это, вам нужно просмотреть таблицу и найти тип QR-кода, который вы используете. Для этого вам необходимо знать версию вашего QR-кода, а также количество символов, которые фактически содержит «беспорядок» в QR-коде (например,грамм. если бы ваш QR-код был URL http://www.fastprint.co.uk/ - там было бы 27 символов). В таблице появится буква, соответствующая вашему QR-коду.

Вот буквы и их значение:

Буква H: если вашему QR-коду присвоена буква «H», вы сможете скрыть или изменить до 30% кода (т. Е. Если у вас 120 точек / байтов, вы сможете прикрыть около 36 из них).

Буква Q: вы сможете изменить примерно до 25% вашего кода (т.е. если у вас 120 точек / байт, вы сможете скрыть около 30 из них)

Буква M: вы сможете изменить примерно до 15% вашего кода (т.е. если у вас 120 точек / байтов, вы сможете скрыть около 18 из них)

Буква L: вы сможете изменить примерно до 7% вашего кода (т.е. если у вас 120 точек / байт, вы сможете скрыть около 8-9 из них)

Имейте в виду, что это только приблизительное руководство, поэтому постоянное тестирование вашего QR-кода является обязательным.

Заключение

Мы надеемся, что нам удалось пролить свет на QR-коды и то, как они работают, но если у вас есть другие вопросы, пожалуйста, не стесняйтесь звонить нам, мы всегда рады помочь.

Создание QR-кодов довольно просто, если вы хотите создать только базовый дизайн, но если вы хотите создать полностью настраиваемый QR-код, все часто может быть сложным. Обычно рекомендуется оставить это опытному графическому дизайнеру со знанием QR-кодов, если это возможно.

Как работает портативный генератор

Простые основы

Так как же работает портативный генератор? Что ж, лучше начать с самого начала. Переносной генератор в основном состоит из головки генератора, двигателя, источника топлива и розеток. По этой причине некоторые люди иногда называют их двигателями-генераторами или генераторными установками. Это описание является его простейшей формой, и далее следует объяснение того, как они работают по отдельности и вместе.

Головка генератора - это компонент, который вырабатывает электричество, которое питает электрические розетки. Двигатель работает от головки генератора, и двигатель должен питаться каким-либо видом топлива, обычно бензином, жидким пропаном, природным газом или дизельным топливом.

Независимо от типа используемого топлива двигатель, обычно четырехтактный, с верхним расположением клапанов различной мощности, будет обеспечивать механическую энергию, необходимую для головки генератора, путем вращения вала. Регулятор постоянной скорости (регулятор) контролирует скорость вращения.Также должна быть система охлаждения и способ смазки движущихся частей. Затем головка генератора преобразует механическую энергию в электрическую и подает электричество на розетки. Генератор инверторного типа работает немного иначе. Но как генератор вырабатывает электричество?

Электричество и магнетизм

Хорошо, вот простая версия. Я не профессор физики и даже не электрик. Вы часто слышите вместе слова «электричество» и «магнетизм».Фактически, так назывались мои занятия по физике в колледже. Итак, они связаны. Вы помните, как в детстве брали магнит и собирали булавки, скрепки и другие металлические предметы?

Что ж, здесь происходит то, что в металлическом материале есть электроны, которые перемещаются магнитом. Точно так же, если вы можете заставить электроны двигаться в металлической проволоке, вокруг нее образуется магнитное поле. Итак, если этот вращающийся вал в двигателе-генераторе может вращать магнитное поле вокруг катушек медной проволоки, электроны перемещаются для производства электричества.Довольно круто, да?

Ну, генератор просто перемещает магнит около провода, чтобы создать постоянный поток электронов. Это самая простая форма. Обуздайте этот поток электронов и направьте его к выходам, и вы получите свой генератор. Звучит просто? Что ж, это немного сложнее.

В обычном генераторе двигатель вращает головку генератора с измеренной частотой вращения. Это движение магнитов, медной проволоки и, следовательно, электронов производит электричество. Каждый оборот двигателя производит одну волну блока переменного тока.Чтобы лучше понять, что такое мощность переменного тока, обратитесь к статье на этом сайте. Чтобы электричество производило стандартное электричество с напряжением 120 В и частотой 60 Гц, которое мы обычно используем в США, двигатель должен работать с постоянной скоростью 3600 об / мин.

Проще говоря - аналог водяного шланга

Хорошо, вы говорите, а что это за вольты, амперы и ватты, по которым оцениваются генераторы? Представьте себе поток воды, направляемый через водяной шланг. Думайте о генераторе как о водяном насосе, проталкивающем воду по шлангу, только вместо того, чтобы проталкивать воду, генератор использует магнит, чтобы подталкивать электроны.Подобно тому, как водяной насос выталкивает определенное количество молекул воды и оказывает на них определенное давление, магнит в генераторе толкает определенное количество электронов и оказывает на них определенное «давление».

В электрической цепи количество движущихся электронов (воды) называется силой тока ампер или током силы тока , и оно измеряется в амперах . «Давление», толкающее электроны, называется напряжением и измеряется в вольт .Ампер - это количество движущихся электронов, а напряжение - это величина давления за этими электронами.

Один усилитель физически означает, что 6,24 x 10 экспонент18 электронов перемещаются по проводу каждую секунду. Если вы не знаете, что означает «10 18» , это означает, что каждую секунду через провод проходит 6 240 000 000 000 000 000 электронов. МНОГО электронов! Я даже не знаю, есть ли у этого множества нулей название!

Эти электроны, движущиеся по проводу, продолжают движение до тех пор, пока не встретят «нагрузку», такую ​​как электрическая лампочка или прибор, сделают это, либо создавая тепло и свет в лампочке, либо приготовив тост, и продолжат свой путь.

Портативные генераторы с более высокой выходной мощностью могут иметь двойное напряжение 120/240 Вольт. 240 вольт по сравнению со стандартными 120 вольт, что означает, что давление, выталкивающее воду в шланге, вдвое превышает давление, или даже больше электронов доступно на другом конце для работы

Розетки - почему так много конфигураций

Эту электрическую мощность затем можно использовать в розетках переносного генератора. Эти типы розеток зависят от типа вилки и потребляемой мощности усилителя, которую вы хотите получить на принимающей стороне для вашего электрического устройства (а).Ознакомьтесь со статьей на этом сайте, чтобы быстро ознакомиться с различными розетками портативных генераторов.

Розетки позволяют получить доступ к электричеству привычным для нас способом - подключив шнур. Поскольку есть пользователи, которым нужен портативный генератор для подачи питания на разные устройства, а не только на стандартные трехконтактные настенные розетки, электроснабжение доступно через множество розеток. Как правило, чем мощнее генератор, тем больше доступно комбинаций розеток.

Конечно, все портативные генераторы имеют стандартную трехконтактную розетку, как мы привыкли видеть на стенах. Они обеспечивают 120 вольт и 15 или 20 ампер.

Более мощные вилки с различными отверстиями для зубцов более полезны, чем просто для питания вашего мощного оборудования. Поскольку многие из них могут обеспечить ток 30 ампер, многие люди используют шнур, который подходит к розетке, а затем разделяется на 3 или более стандартных трехконтактных розетки для большей универсальности, когда 30 ампер можно использовать для большего количества устройств.Посетите статью на этом сайте для получения дополнительной информации о удлинителях.

Блокирующий 4-контактный 30 А на конце вилки с четырьмя 3-контактными розетками 20 А на другом

Что значит ватт?

Портативные генераторы затем оцениваются по величине производимой ими мощности, называемой ваттами. С увеличением мощности увеличивается и все остальное. Больше универсальности по напряжению и розеткам. Двигатель побольше, мощность, топливный бак, вес, уровень шума и стоимость.

Основная формула, относящаяся к доступной мощности: Вт = амперы x вольт.Если у вас есть генератор на 4000 ватт, и вы знаете, что он всегда выдает 120 вольт, то вы знаете, что можете обеспечить в общей сложности 33 ампера. Вот как вы определяете, сколько энергии вы можете получить от имеющегося у вас генератора мощности. Чтобы узнать, как определить, какой размер генератора вам понадобится, прочтите статью на этом сайте «Какой размер портативного генератора мне нужен?»

Поищите на сайте другие полезные статьи, которые помогут вам решить, какой портативный генератор подходит вам, и особенно о том, как его безопасно эксплуатировать.

Подано под: Как это работает

Бесплатный онлайн-генератор GUID

Сколько GUID вам нужно (1-2000):
Верхний регистр: {} Подтяжки: Дефисы: Код
Base64: RFC 7515: Кодировка URL:

Результатов: Копировать в буфер обмена

Используйте эти GUID на свой страх и риск! Не дается и не подразумевается никаких гарантий их уникальности или пригодности.

Что такое GUID?

GUID (также известный как UUID) - это аббревиатура от «Глобально уникальный идентификатор» (или «Универсально уникальный идентификатор»). Идентификатор'). Это 128-битное целое число, используемое для идентификации ресурсов. Семестр GUID обычно используется разработчиками, работающими с технологиями Microsoft, а UUID используется везде.

Насколько уникален GUID?

128 бит достаточно велик, и алгоритм генерации достаточно уникален, чтобы, если 1000000000 GUID в секунду генерировались в течение 1 года, вероятность дублирования будет быть только 50%.Или, если бы каждый человек на Земле сгенерировал 600000000 GUID, только 50% вероятность дублирования.

Как используются GUID?

GUID используются при разработке корпоративного программного обеспечения на C #, Java и C ++ в качестве ключей базы данных, идентификаторов компонентов, или где-либо еще требуется действительно уникальный идентификатор. GUID также используется для идентификации всех интерфейсов и объектов в программировании COM.

Дополнительная информация о GUID

Глобальный уникальный идентификатор - Википедия, свободная энциклопедия Структура GUID
- Microsoft.com
RFC 4122
Свяжитесь с нами: генератор точек guid на gmail dot com .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *