Холодная сварка для меди: Холодная сварка металлов – никакого волшебства!

Содержание

Холодная сварка металлов – никакого волшебства!

Холодной сваркой называется соединение металлов в твердой фазе, достигаемое совместным пластическим деформированием соединяемых элементов без применения нагрева. Процесс осуществляется на воздухе при комнатной температуре, которая для большинства материалов ниже температуры рекристаллизации (чаще всего – путем приложения давления). Поэтому в ГОСТ 2601 данный способ имеет следующее определение:

Холодная сварка
сварка давлением при значительной пластической деформации без внешнего нагрева соединяемых частей

ВНИМАНИЕ! Если вы искали клей «холодная сварка» см. статью «Холодная сварка» – клей, но не сварка

Холодная сварка металлов – экскурс в историю

Холодная сварка металлов известна с древних времен. Как показывают археологические исследования и исторические хроники – «Колосс Родосский» был снаружи покрыт тонкими медными листами, которые были соединены между собой с использованием холодной сварки.

То есть данная технология была применена и при создании шедевров античного периода.

В Национальном музее в Дублине (Ирландия) хранятся золотые коробочки, которые по заключению экспертов, изготовлены в эпоху поздней бронзы с применением данного способа.

В 1724 году священником Дезагюлье (J. L. Desaguliers) был представлен способ соединения свинца с помощью холодной сварки. Опыт заключался в том, что два свинцовых шарика диаметром около 25 мм сдавливали вместе и вращали, в результате они соединялись. Последующие попытки разорвать данное соединение и измерить величину разрыва с помощь весов показали, что прочность соединения некоторых образцов оказалось ничем не хуже основного металла. Результаты данных опытов были опубликованы в научных журналах.

На данный способ получения соединения впервые всерьез посмотрели в 1940-х годах, именно в это время ученые обнаружили странный эффект взаимодействия нескольких кусков одного и того же металла в абсолютном вакууме – при наличии чистых плоских граней они притягиваются.

Начиная со второй половины 1940-х годов она начала применяться в промышленно развитых странах: в 1947 — 1948 гг. появилась в США, а в 1949 г. началось использование и в СССР.

В настоящее время она успешно применяется для соединения изделий из пластичных металлов, таких как медь, алюминий, свинец, олово, никель и др.

Что такое холодная сварка?

Холодная сварка – процесс, при котором происходит соединение двух твердых тел без нагрева свариваемых деталей на стыке соединения. Отличительной особенностью холодной сварки металлов является отсутствие фазы расплавления.

На первый взгляд, холодная сварка может показаться волшебством. Многие люди не могут понять, как может производится процесс соединения без нагрева, электрического тока или специальных растворов. Если посмотреть видео – у многих возникает мысль:

«Это что-то магическое». На самом деле никакой магии нет.

Метод холодной сварки основан на использовании пластической деформации, с помощью которой разрушают на свариваемых поверхностях хрупкую пленку окислов. В настоящее время известно, что сила сцепления от контакта может быть значительно увеличена благодаря сильному сжатию деталей между собой, увеличению времени контакта, повышению температуры деталей, а также от комбинирования вышеперечисленных факторов.

Основная трудность подготовки поверхности деталей заключается в тщательном удалении с нее органических и окисных пленок. Органические пленки – это тонкие пленки масел, жирных кислот и парафинов, покрывающие свариваемые поверхности. Препятствуют сцеплению также пленки адсорбированных на поверхности газов.

При контакте с кислородом или другими реактивными веществами происходит образование поверхностных слоев, которые в значительной мере или полностью исключают вероятность возникновения эффекта холодной сварки.

Ведь именно образующаяся из-за содержания кислорода в воздухе на поверхности металла оксидная пленка не дает соединиться свариваемым деталям в нормальных условиях. Кстати, даже при помещении в вакуум оксидная пленка не исчезает, то есть поверхность металла требует дополнительной очистки.

Интересные факты:

  1. Золотые самородки в природе образуются благодаря методу холодной сварки, а происходит это потому, что у золота попросту нет оксидной пленки, как всем известно – золото не окисляется.
  2. При возникновении механических проблем на первых моделях искусственных спутников Земли все списывалось именно на эффект холодной сварки. Однако позже было доказано, что причиной возникновения проблем стали простые недоработки в конструкции, а возникновение данного эффекта на орбите до сих пор не подтверждено (конечно же, кроме случаев, когда в определенных экспериментах он вызывался человеком преднамеренно).

При холодной сварке металлы соединяются благодаря совместному пластическому деформированию по поверхности их взаимного контакта. Образование цельнометаллического соединения происходит за счет возникновения металлических связей между соединяемыми металлами. Эти связи возникают между атомами при сближении поверхностей соединяемых материалов в результате образования общего электронного облака, взаимодействующего с ионизированными атомами обеих металлических поверхностей. Сварное соединение образуется только путем деформации, без нагрева извне. Это обстоятельство позволяет сваривать термически разупрочняемые материалы без нарушения их физических свойств. Отсутствие нагрева исключает опасность образования хрупких интерметаллических прослоек в зоне контакта разнородных металлов (например, алюминия и меди). Холодную сварку можно выполнять во взрывоопасной среде, возможна герметизация объектов, нагрев которых недопустим (это широко используют в промышленности).

В реальных условиях нет идеально чистых и гладких металлических поверхностей. На них имеются неровности, выступы, окисные, адсорбированные пленки, органические пленки, которые препятствуют сближению поверхностей на расстояния действия межатомных сил. Поэтому получение сварного соединения возможно только при значительных пластических деформациях, приводящих к сминанию выступов, разрушению и раздроблению поверхностных слоев и их удалению из зоны сварного соединения вследствие пластического течения. В результате в контакт вступают по всей свариваемой поверхности чистые слои металла, между которыми образуется металлическая связь.

Исследования показали, что даже у самых гладких поверхностей металлических деталей есть шероховатости, и именно эти высокие точки прикасаются к противоположной детали. В процессе образования сварного шва фактически участвуют лишь несколько тысячных долей процента площади поверхности детали, но этих микроскопических участков вполне достаточно для создания мощных молекулярных соединений. Так что при соблюдении необходимых показателей гладкости свариваемых поверхностей деталей между точками соприкосновения создается мощнейшая связывающая сила.

Снижение прочности сварного соединения за счет уменьшения толщины металла в месте соединения до известной степени компенсируется повышением прочности деформированного металла, получающего наклеп.

Например, предел прочности технически чистого алюминия в зоне максимальной деформации возрастает примерно в два раза.

Виды материалов пригодных к свариванию

Применение холодной сварки ограничивается физическими свойствами материалов и пригодна для различных металлов и их сплавов, достаточно пластичных при комнатной температуре:

  • алюминий
  • медь
  • кадмий
  • никель
  • свинец
  • олово
  • цинк
  • титан
  • серебро
  • индий
  • золото
  • платина и др.

Пластичность соединяемых материалов может быть повышена подогревом до соответствующей температуры. Так, например, высокопрочные алюминиевые сплавы при температуре 300-350°С свариваются за счет соответственно направленной пластической деформации подобно чистому алюминию при комнатной температуре.

Если на металл нанести твердые пленки электролитическим способом, например на медь пленку твердого никеля, или принять меры к предотвращению загрязнения, выполняя холодную сварку сразу же после окончания обработки механической щеткой, то в этих случаях связь происходит при значительно меньших деформациях.

Свариваемость при данном способе может быть оценена максимальной остающейся толщиной металла в месте соединения, выраженной в процентах по отношению к первоначальной толщине детали до сварки.

Параметры режимов холодной сварки

Основной параметр, определяющий процесс – величина деформации в месте соединения, которая зависит от свойств металла, его толщины, типа соединения и способов подготовки поверхностей.

Основными параметрами режима холодной сварки являются:

  • удельное давление
  • глубина вдавливания пуансона
  • величина вылета деталей из цанг (при стыковом способе)
  • диаметр пуансона
  • степень деформации

Величина удельного давления выбирается в зависимости от физико-механических свойств свариваемых материалов. Рекомендуемое удельное давление при стыковой холодной сварке:

  • алюминиевых деталей: 180-250 кг/мм2
  • медных деталей: 650-800 кг/мм2
  • для разнородных металлов, например, алюминий – медь: 500-650 кг/мм2
  • Усилие зажатия образцов в зажимах с насечкой должно превышать усилие осадки для алюминия более чем на 50%, а для меди – более чем на 80%

Зависимость деформации от свойств
МеталлОтносительная глубина вдавливания пуансона, %
Алюминий55 – 60
Алюминиевые сплавы75 – 80
Медь85 – 90
Олово85 – 88
Титан70 – 75
Серебро82 – 86
Армко-железо85 – 92
Свинец80 – 85
Никель85 – 90
Индий10 – 15

Величина вылета стержня составляет:

  • для алюминия 1-1,2 диаметра стержня
  • для меди 1,25-1,5 диаметра стержня
  • для разнородных металлов алюминий – медь: вылет медного стержня должен быть на 30-40% больше, чем алюминиевого

Степень необходимой деформации при холодной сварке разнородных материалов определяется свойствами того из свариваемых металлов, при соединении которого требуется меньшая деформация. Этим пользуются при необходимости сварить малопластичные материалы, применяя прокладки из пластичных металлов.

Предварительные исследования свариваемости показывают следующие результаты:

МеталлСвариваемость в %
Алюминий особо чистый40
Алюминий технически чистый30
Дюралюминий20
Кадмий16
Свинец16
Медь14
Никель11
Цинк8
Серебро6

Из этих данных видно, что наилучшие результаты холодной сварки дают алюминий и алюминиевые сплавы, удовлетворительные результаты дает медь. Довольно удовлетворительную свариваемость дает никель, имеющий высокую температуру плавления (1450°С).

Условия получения надежного сварного соединения

Надежное сварное соединение холодной сваркой может быть получено при соблюдении следующих условий:

  • тщательная подготовка поверхности свариваемых изделий. При точечном и роликовом способах поверхность рекомендуется зачистить механическими щетками, торцы деталей при стыковом способе для соединения проводов сравнительно небольшого диаметра – с помощью специальных ручных кусачек или механического ножа, а торцы деталей большого сечения подвергают механической обработке. При этом необходимо обеспечить параллельность свариваемых поверхностей обеих деталей и отсутствие на них жировых загрязнений;
  • одновременная пластическая деформация соединяемых деталей;
  • значительное и симметричное относительно центра зоны соединения растекание металла в плоскости соединения. Данное растекание вызывает разрушение оксидных или иных пленок, вытеснение их обломков из зоны соединения. Одновременно, растекание создает условия для интенсивного движения дислокаций с образованием активных центров на соединяемых поверхностях. Симметричное растекание необходимо для более полного удаления пленок из зоны сварного шва;
  • сжатие заготовок на заключительной стадии образования сварного соединения, что требует значительных давлений в зоне контакта;
  • очистка кромок соединяемых заготовок от загрязнений (промывка растворами, бензином, спиртом) и окисных пленок. Применение абразивного инструмента недопустимо, так как шаржированные в поверхность заготовок абразивные зерна затруднят получение сварного соединения;
  • предварительная подготовка поверхностей заготовок (шероховатость – Rz не более 10 мкм; неплоскостность поверхности не более 0,1 мм).

Виды холодной сварки

В зависимости от способа приложения давления и схемы деформации определяют следующие виды:

Области применения холодной сварки металлов

Как мы уже писали в статье данным способом успешно соединяют металлы, обладающие хорошими пластическими свойствами. Этот способ нашел применение главным образом в приборостроении, для соединения алюминиевой оболочки кабелей, при изготовлении корпусов полупроводниковых приборов, при изготовлении бытовых приборов из алюминия – чайников, подставок, каркасов, в электромонтажном производстве для соединения проводов и шин внахлестку и встык при монтаже сетей связи, троллейбусных проводов, электропроводки в домах. В летательных аппаратах встык варят шпангоуты. В последнее время достигнуты успехи в соединении полупроводниковых материалов.

Одним из направлений применения данного способа является его сочетание с обработкой давлением: прокаткой, высадкой, штамповкой, вытяжкой и т.п. С помощью последней, например, получают биметаллические переходники из алюминия и коррозионно-стойкой стали, которые затем используются в бесфланцевых соединениях трубопроводов летательных аппаратов.

Последние исследования открывают широкие возможности применения в процессе производства на микроуровне и наноуровне. Кроме того, экономически оправдано её применение при соединении небольших деталей из мягких, пластичных металлов, а также тонких металлических пленок, использующих полимеры в качестве подложки.

Холодную точечную сварку можно выполнять на любых прессах: гидравлических, эксцентриковых и т. п. Если сваривается несколько точек за один ход пресса, то требуются прессы усилием 500-1000 кг. Для холодной сварки одной точки достаточно пресс усилием 50-100 кг.

Медь Холодная сварка — Энциклопедия по машиностроению XXL

Свариваемость металлов при холодной сварке зависит от их пластичности и качества подготовки поверхности. Чем пластичнее, металлы, ровнее и чище их поверхности, тем качественнее они свариваются. Хорошо свариваются пластичные сплавы алюминия, меди, никеля, серебра, золота и подобные металлы и сплавы в однородных и разнородных сочетаниях. В недостаточно пластичных металлах при больших деформациях могут образовываться трещины. Высокопрочные металлы и сплавы холодной сваркой не сваривают.  [c.116]
Процесс холодной сварки протекает при нормальной или даже отрицательной температуре практически мгновенно, только в результате схватывания, и диффузионные процессы в данном случае практически не успевают развиться. В связи с этим холодную сварку целесообразно применять для соединения таких разнородных материалов, которые могут давать при плавлении и диффузионном взаимодействии хрупкие интерметаллиды (например, для соединения меди с алюминием).[c.136]

Необходимость довольно значительной деформации при холодной сварке ограничивает область применения этого процесса как по материалам (преимущественно медь, алюминий и другие пластичные материалы), так и по площади соединяемых поверхностей из-за необходимости приложения значительных усилий для деталей с большой свариваемой поверхностью.  [c.136]

Холодная сварка давлением применяется для скрепления деталей из пластичных металлов (алюминия, меди, никеля) и некоторых их сплавов путем большой пластической деформации в зоне контакта обезжиренных очищенных от окислов поверхностей [8 ].  [c.259]

Холодной сваркой соединяют металлы и сплавы толщиной 0,2. .. 15 мм. Необходимое давление на металл зависит от состава и толщины свариваемого материала и в среднем составляет 150. .. 1000 МПа. Холодной сваркой сваривают однородные или неоднородные металлы и сплавы, обладающие высокой пластичностью при нормальной температуре. В недостаточно пластичных металлах при больших деформациях при сварке могут образовываться трещины. Высокопрочные металлы и сплавы холодной сваркой не сваривают, так как для этого требуются очень большие давления, которые практически трудно осуществить. Хорошо свариваются сплавы алюминия, кадмия, свинца, меди, никеля, золота, серебра, цинка.  [c.256]

Возможна сварка чугунных деталей без предварительного нагрева (холодная сварка). Сварку ведут электродами из цветных металлов на медной основе. Медь не образует химических соединений с углеродом и нерастворима в железе, и шов получается неоднородным. Медно-железные электроды различной конструкции применяют чаще для заварки трещин, при сварке разбитых деталей с обеспечением хорошей прочности 18…25 кгс/мм (180…250 МПа). Электроды со стержнем из никелевого сплава используют в тех случаях, когда необходимо обеспечить хорошую обрабатываемость сварного соединения. Однако такие швы весьма склонны к усадке. И поэтому сварку необходимо вести при минимальном токе и малом проплавлении металла, при небольшой длине валиков с обязательной проковкой.[c.129]


Холодная сварка — это способ неразъемного соединения деталей путем их совместной глубокой пластической деформации, достигающей 60…90 %. Для этого требуются большие удельные давления, превышающие предел текучести свариваемого материала в 3…5 раз. Время сварки составляет 1…2 с. Холодная сварка используется в массовом производстве для соединения деталей из пластичных металлов алюминия, меди, золота, индия, серебра и их сочетаний. В этой области сварки Россия является ведущей страной как по масштабам разработки и выпуска оборудования, так и по объемам промышленного освоения.  [c.265]

Отсутствие нагрева позволяет сваривать холодной сваркой термически разупрочняемые металлы, герметизировать емкости, нагрев которых не допустим. Холодная сварка обладает малой энергоемкостью, гигиенична (не выделяется газ, нет брызг, излучений, шума). Обеспечивается надежное соединение разнородных металлов, например алюминия с медью, без образования хрупкой интерметаллидной прослойки. Недостатки холодной сварки возможность соединения только пластичных металлов, глубокие вмятины при нахлесточном соединении, ограничения в форме и размерах свариваемых деталей, малая универсальность (она не применима в труднодоступных местах, для соединения деталей сложной формы, мелких деталей).  [c.265]

Несмотря на недостатки холодная сварка широко применяется во многих отраслях производства. С ее помощью в электротехнике соединяют алюминиевые детали с медными, обеспечивая надежный электрический контакт. На кабельных заводах соединение концов бухт проводов обеспечивает намотку катушек без отходов. В радиотехнике и электронике холодную сварку на высокопроизводительных полуавтоматах используют для герметизации корпусов полупроводниковых приборов из меди, алюминия и ковара. На электрифицированном транспорте холодная сварка обеспечивает соединение контактных проводов. В бытовой технике холодная сварка заменяет клепку деталей посуды из алюминия. В производстве алюминиевых испарителей холодильников применяют холодную сварку прокаткой.[c.265]

При стыковой холодной сварке (рис. 137, г) детали 1 надо установить в зажимах 3 так, чтобы вылеты и k концов деталей были равными 1…1,2 диаметра или толщины свариваемых прутков или полос. Если свариваю 5ся разнородные металлы, то вылет и усилие зажатия деталей в зажимах 3 со стороны более прочного металла делают больше. Например, при сварке алюминия с медью вылет медного конца устанавливают на 30…50 % больше, алюминиевую деталь зажимают усилием в 0,5, а медную — в 0,8 усилия осадки. После зажатия деталей торцы их обрезают ножом 4, удаляя загрязнения и пленки с торцевых поверхностей и обеспечивая их параллельность. Затем детали сближают, сдавливают и производят сварку. Погрешности установки вылета концов деталей и непараллельность их торцов можно компенсировать при сварке увеличением осадки вплоть до ее удвоения.  [c.267]

Для холодной сварки можно применять прокладки 7 из пластичного материала толщиной до 0,5 диаметра или толщины свариваемого материала (рис. 138, г). Такой способ получил название холодная пайка . В качестве прокладок применяют алюминий, медь, олово, свинец. Прочность таких соединений не превышает 50 % прочности свариваемого материала.  [c.268]

Области применения холодной сварки. Холодная сварка уже довольно широко применяется в промышленности. Она используется для заварки алюминиевой оболочки кабелей, при сварке корпусов полупроводниковых приборов, при изготовлении бытовых приборов из алюминия — чайников, подставок, различного рода каркасов нашла применение в электромонтажном производстве для сварки проводов и шин внахлестку и встык при монтаже электролизных ванн, сетей связи и троллейных проводов и электропроводки в домах имеется возможность сваривать разнородные металлы, например медь с алюминием.  [c.16]

Холодную сварку применяют для соединения цветных металлов и их сплавов (алюминия, меди и др.). При этом происходит взаимодействие поверхностных слоев металлов локаль-  [c. 282]

При непрерывной сварке листов, полос, труб применяют-специальные ролики. Непрерывное шовное соединение может быть получено путем сдавливания одновременно по всей длине или прокатыванием ролика. Этот способ применяется главным образом для соединения деталей из сплавов алюминия, дюралюминия, сплавов кадмия, свинца, меди, никеля, золота, серебра, олова, цинка и т. п. Металлы и сплавы можно сваривать в однородных и разнородных сочетаниях. К преимуществам холодной сварки относятся малый расход энергии, незначительное изменение свойств металла, высокая производительность, легкость автоматизации. В настоящее время холодная сварка нашла применение в электротехнической и приборостроительной промышленности.  [c.411]

Холодная сварка давлением. Такая сварка (рис. 98,6) осуществляется за счет сближения молекул металла в твердом состоянии при глубокой пластической деформации его в месте сварки. Этим способом соединяют детали из достаточно пластичных материалов алюминия, меди, свинца, цинка, титана, никеля и др. , а также разнородные металлы, например алюминий с медью или свинцом, медь с никелем, латунью, нержавеющей сталью и др.  [c.328]

Холодная сварка осуществляется без нагрева свариваемых деталей и применяется для пластичных цветных металлов (меди, алюминия) и их сплавов. Сварное соединение при этом способе получается внедрением одного металла в другой при их соприкосновении под местным давлением.  [c.502]

Холодная сварка. Этот вид сварки осуществляется давлением без нагрева, путем пластического деформирования металлов в местах сварки. Применяют для соединения металлов, обладающих достаточной пластичностью, например алюминия, меди, дюралюминия. Прочное, неразъемное соединение образуется в результате  [c.168]

При производстве изделий из алюминия, его сплавов с медью, а также деталей из меди, никеля, цинка применяют холодную сварку. Она выполняется без нагрева с помощью одного давления и возможна только для металлов с высокой пластичностью при нормальной температуре.[c.266]

Холодная сварка применяется для соединения деталей небольших сечений из цветных металлов — меди, латуни, алюминия, в частности проводов, стержней небольших диаметров, и приварки шпилек к плоским поверхностям.  [c.21]

Большое применение в практике начинает находить холодная сварка разнородных металлов, в частности приварка меди к алюминию в различных электрических контактах в электромашиностроении.  [c.271]

Более распространенным методом сварки серого чугуна является холодная сварка электрической дугой. В этом случае в качестве электродов применяют чугунные или стальные стержни со специальной обмазкой, стержни из сплавов меди с никелем (монель-металл) и др.  [c.340]

Холодную сварку осуществляют без нагрева свариваемых деталей и применяют главным образом для пластичных металлов (меди, алюминия и их сплавов). Сварное соединение получается внедрением одного металла в другой при их соприкосновении под давлением за счет пластической деформации металла в месте сварки при комнатной и даже отрицательной температурах.[c.347]

Холодная сварка давлением основана на сближении молекул металла за счет глубокой пластической деформации свариваемых участков. Этим способом можно сваривать металлы, обладающие высокой пластичностью, такие, как медь, алюминий.  [c.5]

Она применяется главным образом для нахлесточных соединений. Схема холодной сварки приведена на рис. 374, е, /. В начальный период пуансоны 2 давят на свариваемые детали, зажатые в кондукторе 3. На рис. 374, е, II к III показаны окончание процесса сварки и сварное соединение. Неразъемное соединение получается в виде точки, диаметр которой обычно больше диаметра пуансона d (рис. 374, е, III). Этим способом можно осуществлять сварку меди, алюминия и других металлов, обладающих высокой пластичностью.  [c.388]

Холодная сварка давлением. Этот вид сварки осуществляется только давлением без нагрева. Применяется для сварки металлов, обладающих достаточной пластичностью,— алюминия, меди, кадмия, дюралюминия и др. Детали перед сваркой укладываются друг на друга внахлестку и затем сдавливаются  [c.319]

Холодной сваркой хорошо сваривается алюминий, дюралюминий, сплавы кадмия, свинца, меди, никеля, цинка и серебра. Можно сваривать медь с серебром. Толщины свариваемых деталей могут быть от 0,2 до 12 — 15 мм, удельное давление от 15 до 100 кГ мм . Оборудованием для холодной сварки служат винтовые, гидравлические, рычажные или эксцентриковые прессы.  [c.367]

Холодная сварка давлением позволяет осуществлять надежные соединения из алюминия и его сплавов, меди, никеля, свинца, олова, цинка и других металлов.  [c.247]

Возможна холодная сварка титана с медью по. методу вдавливания , указанная в работах К. К. Хренова .  [c.224]

Холодную сварку давлением применяют при изготовлении изделий из алюминия и его сплавов, меди, никеля, цинка, а также из алюминия с медью.  [c.291]

Изложите сущность аргонно-дуговой сварки и ее преимущества. 5. Какие источники питания дуги током применяют при электросварке 6. Каковы особенности сварки и наплавки стальных деталей 7. Чем обусловлены трудности при сварке чугунных деталей 8. Изложите приемы горячей сварки чугунных деталей. 9. Изложите приемы холодной сварки чугунных деталей. 10. Каковы особенности и приемы сварки деталей из меди и ее сплавов II. Каковы особенности и приемы сварки деталей из алюминия и его сплавов 12. Изложите сущность газопламенной сварки. Назовите ее преимущества и недостатки по сравнению с ручной электродуговой сваркой. 13. Расскажите о процессе автоматической наплавки под слоем флюса, его преимуществах и недостатках. 14. В чем заключаются особенности и преимущества автоматической сварки в защитных газах 15. Какие присадочные материалы и оборудование используют при механизированных способах сварки 16. Перечислите особенности вибродуговой наплавки, ее преимущества и недостатки. 17. В чем заключается сущность плазменно-дуговой сварки и наплавки и каковы  [c. 97]

Первым способом, т. е. одним давлением без нагрева, можно сваривать в отдельных случаях только очень пластичные металлы алюминий, медь, свинец и др. Это так называемая холодная сварка. Второй способ применим для металлов и сплавов, которые способны переходить в пластическое состояние при нагревании до температур, более низких, чем температура плавления (сталь, алюминий и др.), что позволяет производить их сварку в пластическом состоянии путем сжатия двух предварительно нагретых частей металла. При сжатии с поверхностей соприкосновения удаляется (выжимается) пленка окислов и становится возможным взаимное проникание (диффузия) зерен одного куска в зерна другого, что обеспечивает их сваривание. С повышением температуры нагрева требуемая величина усилия сжатия уменьшается.  [c.8]

Холодная сварка чугуна электродами из никелевых сплавов дает наплавленный металл с повышенной пластичностью и предупреждает образование с расплавленным чугуном хрупких сплавов, 1ак как никель не растворяет углерода и не образует с ним карбидов, но хорошо сплавляется с железом. Для холодной сварки применяют электроды со стержнем из монель-металла состава меди  [c.675]

ДО 15 мм. Соединение выполняется отдельными точками или непрерывным швом. Величина давления выбирается в зависимости от состава и толщины свариваемого материала, в среднем оно может быть от 15 до 100 кГ/мм (147—980 Мн/м ). При непрерывной сварке листов, полос, труб применяются специальные ролики. Непрерывное шовное соединение может быть получено путем сдавливания одновременно по всей длине или прокатыванием ролика. Этот способ применяется главным образом для соединения деталей из сплавов алюминия, дюралюминия, сплавов кадмия, свинца, меди, никеля, золота, серебра, олова, цинка и т. д. Металлы и сплавы можно сваривать в однородных и разнородных сочетаниях. К преимуществам холодной сварки относятся малый расход энергии, незначительное изменение свойств металла, высокая производительность, легкость автоматизации. В настоящее время холодная сварка нашла  [c.350]

В том случае, когда желательно ограничить температуру материала, в зоне соединения применяют холодную и ультразвуковую сварку. Применение этих способов сварки ограничено небольшой толщиной материала (до 1,5— 2,0 мм при ультразвуковой сварке и до 10—15 мм — при холодной сварке меди и алюминия).  [c.384]

Холодную сварку осуществляют без нагрева соединяемых деталей, создавая с помощью пуансонов или роликов давление в месте сварки. Свариваемые поверхности должны быть хорошо очищены. Этот вид сварки применяют для соединения пластичных материалов (меди, алюминия) при толщине еоедппяемых деталей, пе превышающей 3. .. 4 мм.  [c.366]

Холодной пластической сваркой могут быть получены прочные вакуум-ялотные соединения, особенно пластических материалов (медь, алюминий, никель и др.). Холодная сварка металлических штенгелей может пр.именяться при отпайке некоторых специальных тазоразрядных ламп.  [c.230]

Если металлическую поверхность очистить вращаюш.ейся стальной щеткой, то вместе с загрязнениями снимается верхний исходный слой металла. Одновременно произойдет окисление металла и наклеп верхних слоев. О степени наклепа можно судить по тому, что у алюминия твердость повышается в 5,6, а у меди — в 3,2 раза. В результате очистки образуются пленки высокой твердости из наклепанного металла. Наличие такой пленки способствует схватыванию металла при совместном пластическом деформировании образцов при холодной сварке. Такова точка зрения С. Б. Айбиндера на процесс схватывания.  [c.203]

Для холодной сварки деталей из серого чугуна применяют электроды 034-1, МНЧ-2, ЦЧ-4, УЗТМЧ-74, МСТ, ЦНИИВТ, биметаллические, пучок из меди и железа, порошковую проволоку ПП-4-1 для деталей из ковкого чугуна — латунь Л62, монель-металл, 034-1, ЛОК-59-1-03.  [c.194]

Электроды АНЧ-1 (стержнем служит проволока Св-04Х19Н9 и Св-04Х19Н9Т в оболочке из меди М2 или М3) с фтористо-кальциевым покрытием предназначены для холодной сварки чугуна в нижнем и в вертикальном положениях постоянным током обратной полярности. Металл шва — меднохромоникелевый сплав, хорошо обрабатываемый режущим инструментом.[c.206]

Применяется также метод холодной сварки чугуна комбинированными электродами из меди и стали. Впервые этот способ применили на Ленинградском заводе им. Кирова при исправле-  [c.153]

Хорошие результаты при холодной сварке чугуна дают электро- ды АНЧ-1 со стержнем из аустенитной хромоникелевой проволоки Св-04Х19Н9 или Св-06Х19Н9Т, снабженным медной оболочкой и фтористо-кальциевым покрытием типа УОНИ-13/55. Сварку этим электродом ведут постоянным током 100… 120 А обратной полярности. Наплавленный шов плотный, легко поддается обработке, но недостаточно прочен, так как электрод содержит 75…80% меди.  [c.79]

В реальных условиях на контактных поверхностях всегда имеется некоторое количество окислов и загрязнений, которые остаются в зоне соединения металлов. Однако в тех случаях, когда эти включения разобщены, сцепление будет достаточно прочным. С. Б. Айнбиндером и Г. А. Семеновой [50] исследована зона сцепления при холодной сварке алюминия, меди и стали.[c.93]

Для сварки бронзы угольным электродом применяют флюсы и присадочную проволоку того же состава, что при газовой сварке. Можно применять также флюс № 5. При этом для алюминиевой бронзы лучшие результаты дает применение флюса БЛ-3, а присадочные прутки рекомендуются следующего состава 8,5—9,5% алюминия, 1,5— 2,5% марганца, 1% железа, остальное — медь. Перед сваркой для предотвращения образования трещин целесообразен общий подогрев до 200 00°. После сварки полезен отжиг при температуре 600—650 с охлаждением о воде. Сварные соединения из прокатной латуни и бронзы для увеличения плотности и прочности шва можно проковывать в холодном состояиии.  [c.447]

Холодная сварка чугунных изделий осуществляется электродами 034-1, МНЧ-1, ЖНБ-1 и др. с фтористо-каль-циевым покрытием типа УОНИ-13/55. Стержень электрода 034-1 изготавливается из меди М-2 или М-3. Для электрода МНЧ-1 используется мо-нельметалл (63% N1, 37% Си), для ЖНБ-1-сплав, содержащий 55% № и 45 Ре. Сварка этими электродами производится постоянным током при обратной полярности и небольшими (20-30 мм) участками предельно короткой дугой с проковкой каждого участка и возобновлением сварки после охлаждения шва до 50… 60 °С. Сила сварочного тока берется согласно данным табл. 13.22.  [c.160]


Холодная сварка давлением. Обзор технологии. — «Вебер Комеханикс»

Холодная сварка давлением это сварка в твердой фазе, она является уникальной, поскольку проводится при температуре окружающей среды. Другие виды сварки в твердой фазе проводятся при повышенной температуре. Например, при сварке сопротивлением. Однако, хотя температура и высокая, расплавления материала не происходит, нагрев производится до температуры пластической деформации.

Еще 3000 лет до н.э. египтяне обрабатывали железо при помощи ковки, сваривая при этом раскаленные детали. Кузнецы также столетиями сваривали железо, используя метод ковки. Этот вид сварки всегда проводился при повышенной температуре.

В Великобритании первый известный пример сварки ковкой при температуре окружающей среды (то есть холодной сварки давлением) относится к позднему периоду Бронзового века, примерно 700 лет до н.э. При раскопках были обнаружены золотые шкатулки, изготовленные подобным образом, исходным материалом которых было золото.

Открытие холодной сварки давлением

Машина AW 813 с электроприводом для сварки проволоки больших сечений круглой и прямоугольной формы

Первые научные исследования холодной сварки давлением провел Реверенд Десагулирс в 1724 году. Он продемонстрировал этот процесс Королевскому научному обществу и затем опубликовал результаты в научных журналах. Рев Десагулирс обнаружил, что если взять два свинцовых шарика диаметром 25 мм, затем сжать их и скрутить, то они соединятся. Прочность соединения замерили на безмене и, хотя процесс был довольно нестабильным, были достигнуты хорошие результаты, полученная прочность материал соединения не отличалась от прочности основного материала.

Как оказалось, мало что изменилось в способе сварки ковкой с момента открытия его Ревом Десагулирсом в 18 веке вплоть до начала Второй мировой войны. Новые потребности военного времени способствовали появлению новых открытий, особенно в Германии, где при помощи холодной сварки давлением были сварены детали из легкосплавного материала для авиационной промышленности, хотя сварка проводилась при повышенной температуре.

Волшебный процесс сварки

Примеры соединений алюминиевых и медных прутков, полученных холодной сваркой давлением

На первый взгляд холодная сварка давлением может показаться волшебным процессом. Людям, не знакомым с данным методом сварки, бывает довольно сложно его понять, поскольку он не подразумевает использование нагрева, электричества или присадочного материала. После демонстрации они обычно спрашивают: — «Каким образом соединились две металлические детали?».

Существует несколько теорий, объясняющих, каким образом происходит холодная сварка давлением. Например, было предположение, что сварка происходит посредством рекристаллизации, также существовала энергетическая теория, но большинство предположений было опровергнуто либо экспериментальным путем, либо теоретически.

Общепринятая теория описывает холодную сварку давлением как процесс, при котором атомы металла соединяются между собой на молекулярном уровне, характерном для металлических сплавов. Данное соединение образуется в результате сил притяжения свободных, отрицательно заряженных атомов друг к другу.

Процесс сварки

Когда две металлические детали подходят друг к другу на расстояние в несколько ангстрем (в 1 сантиметре 300 млн. ангстрем), происходит реакция между свободными электронами и ионизированными атомами, которая устраняет потенциальный барьер для образования электронной пары. Это в свою очередь, приведет к образованию сварного соединения.

Более простой способ объяснения этого процесса таков: если рассматривать на уровне атомной структуры две ровные, хорошо зачищенные поверхности состыкованных деталей, получается соединение, близкое по структуре к исходному материалу.

Первоначальное применение

Ручные сварочные клещи CW 10 с возможностью сварки проволоки диаметром от 0.08 мм.

Однако на практике получить подобное соединение фактически невозможно по нескольким причинам, например, из-за неровностей поверхности, органического загрязнения поверхности и присутствия химической пленки, в том числе оксидной. Для получения максимально качественного сварного соединения необходимо удалять любые загрязнения с поверхностей контакта деталей, при этом поверхность соприкосновения деталей перед сваркой должна быть как можно больше.

На первоначальном этапе применения холодной сварки давлением практически всегда было гарантировано радиальное смещение границы между свариваемыми материалами. У данной технологии существовало несколько недостатков: было важно обеспечить плоскостность торцов соединяемых прутков, обе поверхности должны быть очищены от загрязнений, количество материала, который образуется при захвате электродами, было таковым, что могло произойти загибание проволоки, либо отклонение от соосности, тем самым, исключая правильное течение металла.

Принцип многократной осадки

Затем появился метод стыковой сварки, разработанный компанией GEC, который еще называют «принципом многократной осадки». При каждом рабочем движении машины, когда заготовка зафиксирована в электродах, она захватывается данными электродами и подается вперед.

Таким образом, два противостоящих торца материала растягиваются и расширяются по мере движения во встречном направлении. Оксидная пленка и другие посторонние включения выдавливаются из металла, и происходит сварка. Для того чтобы удалить все посторонние включения рекомендуется выполнить минимум 4 цикла осадки.

Преимущества данного вида сварки можно увидеть при практическом применении. При этом методе не нужно предварительно подготавливать к сварке торцы проволоки или прутка, кроме того, подгонка торцов происходит автоматически, когда материал находится в матрице, также нет необходимости нагрева материала, не нужно выдерживать зазор, поскольку он имеется в матрице, и не нужно устанавливать усилие пружины. В случае если вышеуказанные условия не будут соблюдаться, например, при стыковой сварке сопротивлением, то качественное соединение не получится.

Свариваемые материалы

Зона сварки в поперечном разрезе, где медный пруток диаметром 0.315″ (8мм) приварен к алюминиевому прутку диаметром 0.374″ (9.5мм)

Холодная сварка давлением применяется только для цветных металлов, в крайнем случае, для мягкой стали с очень низким содержанием углерода. Большинство цветных металлов можно сварить холодной сваркой давлением. Самые распространенные из них медь и алюминий, а также различные сплавы, такие как альдрей, сплав марки ЕЕЕ, константан, латунь 70/30, цинк, серебро и его сплавы, никель, золото и другие, которые обладают хорошей свариваемостью. Проволоку с покрытием, в том числе, луженую медь, посеребренные и никелированные прутки тоже можно сваривать друг с другом, либо просто с медью.

Если использовать обычные способы соединения разнородных металлов, таких как медь и алюминий, а именно контактную сварку, сварку трением или пайку с нагревом, то это может привести к разрыву полученного соединения. При соединении двух поверхностей металла, между алюминием и медью сразу же происходит реакция.

Данная проблема возникает скорее из-за присутствия оксидной пленки и воздушной прослойки, которые остаются на стыке двух металлов, чем по причине разнородности структуры металлов. Тем не менее, при холодной сварке давлением все оксиды и воздух выдавливаются из соединения в процессе сварки без тепловложения, и происходят только структурные изменения при температуре окружающей среды.

Холодная сварка давлением является наиболее эффективным способом сварки меди с алюминием, исключающим образование хрупких металлических соединений. Достигается высокое качество сварки, структура материала гораздо лучше литой структуры, которая возникает при сварке плавлением. Также, при этом отсутствует зона термического влияния с нежелательным влиянием на свойства материала.

При проверке прочности соединения большинство людей полагаются на данные машины для испытания на растяжение. Дополнительно можно провести испытание на знакопеременный изгиб. Тем не менее, самый оптимальный способ это протянуть сварное соединение через множество волоков волочильного станка.

Функция матрицы

Сварочная головка и проволока с гратом, образованным при холодной сварке давлением

Матрица играет очень важную роль в процессе холодной стыковой сварки. Прежде всего, зажимные губки должны надежно захватить материал, для чего в канавках наносятся рифления (насечка) электрогравером, либо, если необходимо захватывать алюминиевый пруток большого размера, механическим путем до их термообработки.

Очень важно, чтобы зазор в матрице был правильным. Если зазор слишком большой материал может порваться или погнуться. Зазор устанавливается на производстве и не может быть изменен.

И последнее, концы электродов имеют смещение, что приводит к эффекту отклонения линии вокруг длины окружности прутка. Назначением данного смещения является разделение грата на 2 половинки, что облегчает дальнейшее его удаление, иначе грат образуется в виде кольца и его сложнее будет удалить. Кроме того, концы электрода должны быть достаточно заострены, что, по сути, позволяет подрезать грат вокруг соединения, и в дальнейшем также облегчает его удаление.

Прочность и твердость электродов являются наиболее важными свойствами. В стадии зарождения холодной сварки обычным явлением была поломка электродов. Намного позже была произведена машина для сварки прутка диаметром 8 мм, и основные трудности заключались в приложении необходимых усилий на электроде для больших размеров.

Компания BWE осуществляет разработку и поставку аппаратов для холодной сварки начиная с 1969 года. За это время завод накопил огромный опты и является лидером в данной области. Оборудование этой марки хорошо зарекомендовало себя. Среди его преимуществ – долгий срок службы, простота эксплуатации, безопасность и эффективность.

Машины BWE позволяют добиться удаления всех включений и загрязнений благодаря технологии многократной осадки, применяемой при сварке. Подобная технология позволяет не только получать высококачественные сварные соединения, но и позволяет исключить операции по подготовке торцев перед сваркой, что существенно экономит время.

Широкий спектр оборудования для холодной сварки, который предлагает компания BWE, позволяет решать задачи по сварки большого диапазона диаметров прутка.

Электроды, используемые при сварке, изготавливаются с использованием новейших компьютерных технологий и доводятся вручную, обеспечивая самые высокие стандарты сварки.

Матрицы могут изготавливаться для различных форм профилей, причем только такого сечения, которое допускает применение разжимных электродов из 2-ух половинок — это обеспечит возможность вынимать сваренный пруток из матрицы — а площадь поперечного сечения должна соответствовать мощности машины.

Также существует возможность сваривать проволоку различных диаметров. В действительности, диаметр проволоки большего размера не может превышать диаметр проволоки меньшего размера более чем на 30%. Если медная проволока значительно меньше в диаметре, чем алюминиевая, то она будет просто вдавливаться в нее и сварка не получится.

Холодная сварка

Холодная сварка металлов 

Для осуществления холодной сварки необходимо удалить со свариваемых поверхностей окислы и загрязнения и сблизить соединяемые поверхности на расстояние параметра кристаллической решетки; на практике создают значительные пластические деформации.

Холодной сваркой можно получать соединения встык, внахлестку и втавр. Перед сваркой поверхности, подлежащие сварке, очищают от загрязнений обезжириванием, обработкой вращающейся проволочной щеткой, шабрением. При сварке встык проволок только обрезают торцы.

Листы толщиной 0,2—15 мм сваривают внахлестку путем вдавливания в толщу металла с одной или с двух сторон пуансонов (рис. 3). Соединения выполняют в виде отдельных точек или непрерывного шва. Ширину или диаметр пуансона выбирают в зависимости от толщины свариваемого материала.

Таблица 3. Зависимость деформаций от свойств металла

 

Основной параметр, определяющий процесс холодной сварки, — величина деформации металла в месте соединения, которая зависит от свойств металла (табл. 3), его толщины, типа соединения и способов подготовки поверхностей.

Если на металл нанести твердые пленки электролитическим способом, например на медь пленку твердого никеля, или принять меры к предотвращению загрязнении, выполняя сварку сразу же после окончания обработки механической щеткой, то в этих случаях сварка происходит при значительно меньших деформациях.

Зависимость прочности точечных соединений от величины деформаций для различных металлов представлена на рис. 4. Снижение прочности точки после достижения определенного максимума объясняется уменьшением толщины металла в месте сварки, вследствие чего происходит разрушение с вырывом точки, а не срез, как это происходило до максимума.

Степень необходимой деформации при сварке разнородных металлов определяется свойствами того из свариваемых металлов, при сварке которого требуется меньшая деформация.

Этим пользуются при сварке малопластичных металлов, применяя прокладки из пластичных металлов.

 

Рис. 3. Схемы холодной сварки внахлестку:

 

а — вдавливанием одного пуансона; б — вдавливанием двух пуансонов; в — вдавливанием пуансонов с заплечиками; г — вдавливанием пуансонов с предварительным зажатием изделия.

 

Рис. 4. Зависимость прочности точечных соединений от величины деформации:

1 — наклепанный алюминий; 2 — медь электролитическая; 3 — тантал; 4 — мягкий алюминий; 5 — олово.

Герметичное шовное соединение может быть достигнуто вдавливанием пуансона по всей длине шва или путем прокатывания ролика (рис. 5).


В конце деформирования давление пуансона должно составлять для отожженного алюминия 30—60 кгс/мм’ (290—588 МН/м2), для меди 200 кгс/мм2 (1960 МН/м2).

Стержни, полосы, профили и провода соединяют встык путем сдавливания свариваемых элементов друг с другом. Встык можно сваривать пластичные металлы: медь, алюминий, свинец, олово, кадмий, никель, титан, алюминиевые сплавы.

Прочность соединения зависит от величины пластической деформации в месте его образования. Величина пла­стической деформации зависит от длины выпущенного из зажимов конца свариваемого стержня, который затем пол­ностью выдавливается из зоны стыка в процессе сварки.

 

Рис. 5. Схема холодной шовной сварки с односторонним (а) и двусторонним деформированием (б).

Длина вылета стержня при сварке составляет для алюминия (1-1,2) d, для меди (1,25-1,5) d, где d — диаметр стержня. При сварке алюминия с медью вылет медного стержня должен быть на 30—40% больше, чем алюминиевого. Давление при холодной сварке встык составляет для алюминия 70—80 кгс/мм2 (686—784 МН/м2), меди 200—250 кгс/мм2 (1960—2450 МН/м2), меди с алюминием 150-200 кгс/мм2 (1470—1960 МН/м2). Усилие зажатия образцов в зажимах с насечкой должно превышать усилие осадки при сварке алюминия более чем на 50%, а при сварке меди — более чем на 80%.

Соединения, полученные путем одностороннего и двустороннего деформирования пуансонами постоянного сечения, как показывают эксперименты, обладают относительно низкой прочностью и при испытании на растяжение-срез разрушаются на границе вмятины с вырывом сварной точки. Соединения, полученные путем вдавливания пуансонами с заплечиками или с предварительным зажатием детали, обладают большей прочностью (табл, 4). Более высокая прочность объясняется тем, что соединение в этом случае образуется не только под поверхностью пуансонов, но и в прилегающей кольцевой зоне.

С увеличением площади соединения разрушающая нагрузка растет, однако прочность при этом уменьшается. Прочность многорядного соединения обычно составляет до 80% суммарной прочности отдельных точек.

Таблица 4. Зависимость прочности соединений из алюминия от схемы сварки.

Прочность стыковых соединений обычно выше прочности основного металла. Это объясняется тем, что в местах соединения металл упрочняется вследствие наклепа. Механические свойства соединений можно изменять с помощью термообработки. После термообработки прочность стыкового соединения равна прочности отожженного металла.

Скорость приложения давления в процессе сварки практически не влияет на прочность соединения, поэтому производительность холодной сварки может быть высокой.

Для холодной сварки внахлестку могут быть использованы любые прессы. Для одновременной сварки нескольких точек требуются прессы усилием 50—100 тс (490— 980 кН). Для одноточечной сварки широко используют гидропрессы РПГ-7 и гидропрессы с педальным приводом, создающие усилие до 12 тс (117,6 кН).

Для точечной сварки алюминиевых шин толщиной 5+5 мм в монтажных условиях предназначена установка УГХС-5, разработанная во ВНИИЭСО. Для армирования выводов алюминиевых обмоток, шин и других деталей медными накладками, используют машину МХСА-50. Полуавтомат МХСК-4 предназначен для герметичной сварки алюминиевых корпусов конденсаторов с крышкой; производительность сварки 750 изделий в час. Машина МСХС-60 предназначена для стыковой сварки алюминиевых стержней сечением до 700 мм2, медных—до 250 мм2 и медных с алюминиевыми — до 300 мм2. Максимальное осадочное усилие машины 60 тс (588 кН), макси­мальное усилие зажатия 90 тс (882 кН).

Машину МСХС-30 (рис. 6) применяют для сварки встык медных троллейных проводов сечением до 100 мм2. Машина может быть использована для сварки алюминия, а также меди с алюминием сечением до 200 мм2. Она потребляет 1 кВт электроэнергии, развивает усилие осадки до 30 тс (294 кН) и позволяет сваривать до 300 стыков в смену. Для стыковой сварки алюминиевых одножильных проводов сечением до 10 мм2 применяют ручные клещи (рис. 7).

Рис. 6. Машина для холодной сварки МСХС-30. Рис. 7. Ручные клещи для холодной стыковой сварки проводов типа КС-б.

Холодную сварку можно осуществлять путем сдавливания соединяемых изделий с одновременным их тангенциальным относительным смещением. Этот способ сварки получил название сварки сдвигом.

При сварке сдвигом механизм образования сварного соединения иной.

Ранее было показано, что когда приложена нормальная нагрузка, то деформируются только неровности, следовательно, площадь контакта, свободная от загрязнений и окисных пленок, мала. При приложении тангенциальной силы начинается перемещение поверхностей, в процессе чего окисные пленки и загрязнения сдираются и образуются отдельные мостики контакта. Тангенциальное смещение соединяемых изделий дает возможность получить сравнительно большие площади очищенных от пленок поверхностей при небольшом растекании каждой из них. Наличие тангенциальной силы уменьшает сопротивление металла пластическим деформациям и при данной нормаль- поп силе позволяет получить большую площадь контакта. Это ведет к тому, что при точечной сварке сдвигом схватывание происходит при малых деформациях и усилиях.

При сварке сдвигом разноименных металлов прочное соединение возникнет только у металлов с близкими механическими свойствами, например наклепанного алюминия и отожженной меди и некоторых других.

При холодной сварке сдвигом основные параметры — величина давления и величина сдвига. Величина давления должна быть такой, чтобы возможно было относитель­ное перемещение поверхностей. Величина сдвига не зависит от размеров изделий и определяется нормальным давлением и геометрией трущихся поверхностей. Достаточная площадь сцепления поверхностен, обработанная напильником, возникнет после сдвига на 5—7 мм.

При сварке сдвигом прочность соединений на срез может быть высокой при условии достаточной величины нахлестки, однако сопротивление отрыву всегда низкое.

Холодная сварка применяется в промышленности для заварки алюминиевой оболочки кабелей, при сварке корпусов полупроводниковых приборов, при изготовлении бытовых приборов из алюминия — чайников, подставок, различного рода каркасов; нашла применение в электро­монтажном производстве для сварки проводов и шин внахлестку и встык при монтаже электролизных ванн, сетей связи и троллейных проводов и электропроводки в домах.

Холодная сварка найдет несравненно более широкое применение.

Также по теме:

Высокочастотная сварка. Сварка токами высокой частоты.

Пайка. Общее описание пайки металлов и сплавов.

Холодная стыковая сварка проводов в трансформаторах | Практика

Для изготовления обмоток трансформаторов находят все большее применение алюминиевые провода круглого и прямоугольного сечения, а для изготовления отводов — алюминиевые провода и шины. Однако полная замена меди алюминием в отводах трансформаторов не всегда возможна. Алюминиевые отводы, присоединяемые непосредственно к обычным разъемным зажимам (соединение на болт под гайку), быстро окисляются, в результате чего контакт обгорает, выходит из строя и может вызвать аварию трансформатора. Для обеспечения надежности контакта отказываются от болтовых соединений алюминий — алюминий или медь — алюминий и применяют только контакты медь — медь. Это достигается приваркой отводов из медного провода к концам выводов обмотки, намотанной из алюминиевого провода, или приваркой к алюминиевым проводам медных переходников способом холодной стыковой сварки.

Холодной стыковой сваркой называют способ неразъемного соединения металлов, основанный на использовании пластической деформации и позволяющий осуществлять без нагрева соединение меди, алюминия и меди с алюминием. Холодная сварка обеспечивает высокую механическую прочность соединения, низкое электрическое сопротивление места стыка и высокую коррозионную стойкость. Концы проводов диаметром до 3,05 мм откусывают специальными кусачками. Поверхность кусачек тщательно обезжиривают бензином или ацетоном.

На настольном сварочном станке СНС-3 (рисунок 1) изготовляют переходники для соединения алюминиевого провода сечением до 10 мм2 с медным сечением до 6 мм2. Во время намотки алюминиевой обмотки медные переходники приваривают к первому и последнему виткам обмотки ручными сварочными клещами КС-6 (рисунок 2) непосредственно у обмоточных станков. Клещи обеспечивают холодную стыковую сварку круглого алюминиевого провода сечением до 6 мм2 с медным сечением до 4 мм2 в зависимости от установленных плашек.

1 — установочная плита, 2 — корпус станка, 3 — рычаг осадки, 4 — подвижный зажим, 5 — неподвижный зажим, 6 — рукоятка зажима провода, 7 — направляющие штоки
Рисунок 1 — Настольный сварочный станок СНС-3

1 — левая неподвижная ручка, 2 — ручка зажима, 3 — зажимная разъемная плашка, 4 — возвратная пружина, 5 — регулирующие гайки, 6 — неподвижный зажим, 7 — подвижный зажим, 8 – шток, 9 — ось поворотной ручки, 10 — правая поворотная ручка, 11 — корпус клещей
Рисунок 2 — Ручные сварочные клещи КС-6

Медно-алюминиевый переходник приваривают к концам алюминиевой обмотки за одну осадку. Ручки клещей 1 и 10 сближаются до упора, формируется сварной стык и отсекается грат.

Алюминиевые и медные переходники сечением до 50 мм2 сваривают на пневматической сварочной машине МСХС-8 (рисунок 3), работающей от сжатого воздуха. Осадочное усилие через систему рычагов 6 передается на сварочную головку. Провода зажимают вручную при помощи эксцентриков 3. Для облегчения перемещения машину устанавливают на устойчивом передвижном столе.

1 — цилиндр, 2 — замок, 3 — эксцентрик, 4 — плашка, 5 — стенка, 6 — рычаг
Рисунок 3 — Сварочная машина МСХС-8

Провода отрезают на специальном приспособлении или ножницами, причем плоскость среза должна быть перпендикулярна оси провода и профиль сечения не должен искажаться. После этого конец провода обезжиривают промывкой в бензине или ацетоне. Концы медных и алюминиевых проводов перед сваркой зачищают драчевым напильником, предварительно промытым бензином или ацетоном, причем каждую сторону напильника применяют только для одного металла. На зачищенные торцы проводов не должны попадать грязь, влага, масло, поэтому их нельзя касаться руками.

Переходники из провода сечением до 220 мм2 выполняют на сварочной машине МСХС-35 (рисунок 4). Сменными шайбами 6 регулируют зазор между рабочими торцами зажимных губок (максимальный зазор должен быть не больше двух диаметров свариваемого провода). Медный провод зажимают в неподвижную пару зажимных губок, а алюминиевый — в подвижную. Провода должны соприкасаться между собой с равным вылетом. На торцы проводов с помощью рычага 7 гидрораспределителя механизма осадки подается рабочее давление до соприкосновения зажимных губок (манометр 3 покажет усилие сжатия). Затем снимают осевое давление, освобождают медный провод, разводят зажимные губки в исходное положение с помощью рычагов 11 и 12 гидравлических клапанов и освобождают алюминиевый провод.

1 — подвижная плита, 2 — неподвижная плита, 3 — манометр, 4 — цилиндр осадочного механизма, 5 — резак для подготовки проводов к сварке, 6 — сменная шайба, 7 — рычаг золотникового парораспределителя, 8 — бак с маслом, 9 — электродвигатель, 10 — гидравлический насос, 11 — рычаг гидравлического клапана правого зажима, 12 — рычаг гидравлического клапана левого зажима
Рисунок 4 — Сварочная машина МСХС-35

Для вторичной и окончательной осадки устанавливают сварной шов отвода посередине рабочей части зажимных губок, зажимают с помощью тех же рычагов и включают осевое давление. Металл осаживается до соприкосновения торцов зажимных губок. Закончив сварку, снимают давление, разводят зажимные губки в исходное положение и вынимают заготовку отвода из машины. Грат снимают с помощью приспособления. Качество сварки выборочно контролируют на образцах путем загиба на 90°.

Холодную сварку алюминиевых шин с медным сечением до 1500 мм2 выполняют на мощных сварочных машинах МСХС-80 и МСХС-120.

В ряде конструкций трансформаторов обмотки НН выполняют из алюминиевых проводов, а отводы — из алюминиевой шины. Алюминиевую шину в месте контакта с медной шпилькой ввода армируют медной лентой для создания контакта медь — медь. Армирование выполняют методом холодной сварки па пневмогидравлическом прессе МХСА-50 (рисунок 5). Алюминиевую шину и медную ленту толщиной 1 мм, предварительно гальванически луженую, отрезают заданной длины. Конец алюминиевой шины и медную ленту тщательно зачищают. Зачищенный конец алюминиевой шины с торца огибают медной лентой и вставляют в гнездо штампа, установленного на прессе, согласно заданным размерам шины. Включают пресс и пуансоны штампа сверху и снизу производят холодную сварку медной ленты с алюминиевой шиной. Точки холодной сварки располагают по краям пластины (рисунок 6), так как в центре ее штампуют отверстие для прохода шпильки ввода. Качество сварки выборочно проверяют разрывом.

1 — станина, 2 — рабочая головка, 3 — штамп для холодной сварки, 4 — манометр
Рисунок 5 — Пресс МСХЛ-50 для холодной сварки


1 — алюминиевая шинка, 2 — медная лента, 3 — точки холодной сварки
Рисунок 6 — Отвод НН

Холодная сварка металлов

Холодная сварка — это способ неразъемного соединения деталей путем их совместной глубокой пластической деформации, достигающей 60…90 %. Для этого требуются большие удельные давления, превышающие предел текучести свариваемого материала в 3…5 раз. Время сварки составляет 1 ..2 с. Холодная сварка используется в массовом производстве для соединения деталей из пластичных металлов: алюминия, меди, золота, индия, серебра и их сочетаний. В этой области сварки Россия является ведущей страной как по масштабам разработки и выпуска оборудования, так и по объемам промышленного освоения.

Отсутствие нагрева позволяет сваривать холодной сваркой термически разупрочняемые металлы, герметизировать емкости, нагрев которых не допустим. Холодная сварка обладает малой энергоемкостью, гигиенична (не выделяется газ, нет брызг, излучений, шума). Обеспечивается надежное соединение разнородных металлов, например алюминия с медью, без образования хрупкой интерметаллидной прослойки. Недостатки холодной сварки: возможность соединения только пластичных металлов, глубокие вмятины при нахлесточном соединении, ограничения в форме и размерах свариваемых деталей, малая универсальность (она не применима в труднодоступных местах, для соединения деталей сложной формы, мелких деталей).

Несмотря на недостатки холодная сварка широко применяется во многих отраслях производства. С ее помощью в электротехнике соединяют алюминиевые детали с медными, обеспечивая надежный электрический контакт. На кабельных заводах соединение концов бухт проводов обеспечивает намотку катушек без отходов. В радиотехнике и электронике холодную сварку на высокопроизводительных полуавтоматах используют для герметизации корпусов полупроводниковых приборов из меди, алюминия и ковара. На электрифицированном транспорте холодная сварка обеспечивает соединение контактных проводов. В бытовой технике холодная сварка заменяет клепку деталей посуды из алюминия. В производстве алюминиевых испарите­лей холодильников применяют холодную сварку прокаткой.

Главным препятствием для холодной сварки, не устранимым даже глубокой пластической деформацией, являются не окисные, а водяные и жировые пленки на поверхности соединяемых деталей. Даже незначительное количество жира и влаги, перенесенное с рук на поверхность металла, делает холодную сварку невозможной. Жировая пленка при деформировании металла растягивается, не теряя сплошности, и препятствует сближению поверхностей до конца процесса. Химическим травлением и обезжириванием жировые пленки полностью не удаляются, остатки травящих и моющих веществ остаются на поверхности деталей и также препятствуют сварке. Не помогает даже многократное промывание спиртом-ректификатом. При соединении деталей внахлестку удалять жировые пленки можно стальной щеткой диаметром 50…200 мм, вращающейся со скоростью 1500…3000 об/мин и прижимаемой к поверхности с усилием 1 …2 МПа. При соединении деталей встык лучше механически обрезать торцы деталей. При сварке мелких деталей, если зачистку производить неудобно, хорошо помогает никелирование, или отжиг, а при сварке фольги — анодирование поверхности. Время от подготовки поверхности до сварки не ограничивается.

Холодная сварка может быть точечной, стыковой и роликовой (шовной). Чаще применяют точечную и стыковую сварку (рис. 90). Точечной сваркой соединяют детали внахлестку с их предварительным зажатием, повышающим прочность соединения на 20 %, или без него. В детали с обоих сторон вдавливают пуансоны круглого или чаще прямоугольного сечения. Отношение глубины вдавливания пуансона к толщине детали, при котором происходит сварка, называют минимальной вынужденной деформацией, или степенью деформации, и выражают ее в процентах. При сварке алюминия степень деформации 60 %, его сплавов — 75 %, меди, никеля и армко-железа — 85 %, свинца -55 %, серебра — 30 %. Давление при точечной сварке выбирают в 3…5 пределов текучести свариваемого материала. При сварке с предварительным зажатием деталей площадь зажатия задают в 15…25 площадей торца пуансона.

 

 

Рис. 90. Схемы холодной сварки: а — точечная; б — то же, с предварительным зажатием деталей; в — формы и размеры сечений пуансонов для точечной сварки; г — стыковая сварка; 1 — свариваемые детали; 2 — пуансоны; 3 — зажимы; 4 — нож для обрезки торцов деталей перед сваркой; — сварочное усилие; — усилие зажатия деталей; и — вылеты деталей; и — толщина и диаметр свариваемых деталей

 

При стыковой холодной сварке (рис. 90, г) детали 1 надо установить в зажимах 3 так, чтобы вылеты и концов деталей были равными 1…1,2 диаметра или толщины свариваемых прутков или полос. Если свариваются разнородные металлы, то вылет и усилие зажатия деталей в зажимах 3 со стороны более прочного металла делают больше. Например, при сварке алюминия с медью вылет медного конца устанавливают на 30…50 % больше, алюминиевую деталь зажимают усилием в 0,5, а медную — в 0,8 усилия осадки. После зажатия деталей торцы их обрезают ножом 4, удаляя загрязнения и пленки с торцевых поверхностей и обеспечивая их параллельность. Затем детали сближают, сдавливают и производят сварку. Погрешности установки вылета концов деталей и непараллельность их торцов можно компенсировать при сварке увеличением осадки вплоть до ее удвоения.

Деформация металла в зоне соединения в течение всего процесса стыковой сварки должна происходить симметрично. Нарушение этого условия ухудшает качество соединения. Внешний признак такого нарушения — асимметрия выдавленного из стыка металла (грата).

Холодной сваркой можно получать тавровые соединения (рис. 91, а). Чтобы уменьшить ослабление металла при точечной сварке, применяют ее в комбинации с механическим соединением. Это «грушевидная» сварка (рис. 91, б) и сварка-клепка (рис. 91, в). При «грушевидной» сварке собранные внахлестку детали 1 укладывают на подложку 3 с коническим отверстием, диаметр которого со стороны детали равен 1,9 суммарной толщины свариваемых деталей, а угол конусности . Детали сдавливают конусными пуансонами 4 с углом конусности 10° и диаметрами рабочих торцов Под действием сварочного усилия детали деформируются, относительная деформация достигает 75 %, металл выдавливается в коническое отверстие подложки 3, обтекая торец нижнего пуансона, металл верхней детали, растекаясь в стороны, защемляется в металле нижней детали. Это защемление обеспечивает до 50 % прочности соединения.

Точечная сварка-клепка (см. рис. 91, в) предназначена главным образом для соединения листовых и полосовых металлов разных (1:10) толщин. В деталях 1 просверливают отверстия: в тонкой — сквозное, в толстой — глухое, на глубину 0,4 ..0,9 толщины. В отверстия вдавливают или вбивают отрезок проволоки 5 несколько большего диаметра, чем диаметр отверстия. Часть проволоки, которая осталась над отверстием, расклепывается с формированием замыкающей

головки 6.

Для холодной сварки можно применять прокладки 7 из пластично­го материала толщиной до 0,5 диаметра или толщины свариваемого материала (рис. 91, г). Такой способ получил название «холодная пайка». В качестве прокладок применяют алюминий, медь, олово, свинец. Прочность таких соединений не превышает 50 % прочности свариваемого материала.

Машины для холодной сварки содержат силовой пневматический или гидравлический привод сжатия, сварочный штамп, узел подготов­ки поверхностей перед сваркой и аппаратуру управления, а для стыковой сварки — еще и привод зажатия деталей и сварочную головку. С помощью зажимных губок в стыкосварочных машинах не только зажимают детали, но и направляют течение металла при осадке и формируют грат. Поэтому они заточены под углом 60°. Изготавливают зажимные губки и пуансоны для точечной сварки из легированных (40Х, Х12М) или углеродистых (У8, У10) сталей и закаливают до твердости

HRC 55.

 

Рис. 91. Особые способы холодной сварки: а — тавровых соединений; б — «грушевидная» сварка; в — сварка-клепка; г — холодная пайка; 1 — свариваемые детали; 2 — зажимы; 3 — подложка; 4 — пуансоны; 5 — проволочная заклепка; б — она же, после сварки; 7 — пластичная прокладка; — усилия сварочное и зажимное; — диаметры рабочих торцов пуансонов; — малый диаметр конического отверстия в подложке; — угол конусности этого отверстия; — угол конусности пуансонов; — суммарная толщина соединяемых деталей

Для точечной сварки применяют машины УГХС 5-2, МХСА-50-3, рассчитанные на сварку деталей толщиной 5…20 мм. Для стыковой сварки алюминиевых и медных деталей сечением производят 5 универсальных машин типа МСХС и специализированные машины, например МСХС-2004, для сварки встык медных контактных проводов сечением до прямо на трамвайных или троллейбусных линиях. Изготавливает машины для холодной сварки завод «Электрик», г. Санкт-Петербург.

Сварка взрывом

Сварка взрывом — это способ сварки давлением, при котором для очистки, сближения, активации и соединения поверхностей используют энергию взрыва.

Возможность сварки при помощи взрыва предвидел еще в 1957 г. академик М. А. Лаврентьев. Практически этот способ осуществили в США в 1959 г. В России центром по исследованию и освоению сварки взрывом стал Волгоградский государственный технический университет.

Для сварки взрывом на жесткое основание 1 (рис. 92) укладывают одну из свариваемых деталей 2. Параллельно ей сверху с зазором h располагают вторую деталь 3, которую называют метаемой. Обе детали предварительно зачищают металлическими щетками или травлением, удаляя окалину, ржавчину и жировые пленки. На всей поверхности метаемой детали помещают заряд 5 взрывчатого вещества (ВВ) заданной высоты . После подрыва детонатором 6 заряд 5 взрывается, по нему со скоростью 2000…8 000 м/с распространяется фронт детонационной волны 9. Образующиеся газообразные продукты взрыва со скоростью 1000…6000 м/с расши­ряются, давят на метаемую деталь 3, которая со скоростью соударяется с неподвижной деталью 2 и дважды перегибается. Ее наклонный участок со скоростью равной скорости детонационной волны 9, движется за фронтом этой волны. В окрестностях вершины угла соударения разви­вается давление порядка 150 000 атм, под действием которого окисные пленки и загрязнения, разрушаясь, выносятся с поверхности кумулятивной струей 8. Очищенные поверхности, соударяясь, совместно деформируются, образуя сварное соединение. С увеличением скоростей соударения и контактирования свариваемых деталей растет мощность кумулятивной струи и соответственно суммарная толщина металла А, удаляемого с обоих поверхностей, которая может достигать 15…60 мкм (рис. 92). Однако при околозвуковых скоростях контактирования, когда из-за уменьшения угла условия соударения приближаются к плоскому удару, кумуляция, очистка поверхности и сварка становятся невозможными. Скорость контактирования должна быть меньше ско­рости звука, детали должны «захлопнуться» не раньше завершения очистки кумулятивной струей.

Рис. 92. Схема сварки взрывом: а — до начала; б — в процессе взрыва; 1 — жесткое основание; 2 – неподвижная деталь; 3 — метаемая деталь; 4 и 7- прокладки; 5 — заряд; 6 — детонатор; 8 — кумулятивная струя; 9 — детонационная волна; 10 — продукты горения ВВ

 

При сварке взрывом используют промышленные взрывчатые вещества, например аммонит № 9, 10 или гранулит АС. Перспективно применение дешевой смеси аммонита № 6 ЖВ с кварцевым песком.

Рис. 93. Влияние скоростей соударения и контактирования деталей при сварке взрывом на суммарную толщину слоя металла удаляемого кумулятивной струей с обеих свариваемых поверхностей стальных пластин

 

Соединение деталей происходит, как правило, по волнообразной линии. Конфигурация волн зависит от параметров режима сварки: скорости соударения деталей скорости контактирования и угла соударения Эти параметры можно регулировать, подбирая взрывчатое вещество, меняя высоту его слоя (от 5 до 100 мм) и зазор между деталями с учетом плотности и толщины метаемой детали. Можно выделить (рис. 94) область 1 традиционных режимов, обеспечивающих синусоидальную форму волн, область 2 безволновых соединений и область 3 режимов, при которых образуются вытянутые односторонние волны. Режимы в областях 4,5, и 6 не обеспечивают образование соединения.

 

Рис. 94. Влияние параметров соударения на положение характерных областей волнообразования в соединении деталей при сварке взрывом алюминия: 1 — область традиционных режимов; 2 — область безволновых соединений; 3 — область режимов, при которых образуются вытянутые односторонние волны; 4,5,6- области, в которых режимы не обеспечивают образование соединения

При сварке взрывом средняя температура в зоне соединения увеличивается не более чем на несколько десятков градусов. Но в вершинах волн при большой скорости их образования локальные микроучастки могут нагреваться до температуры плавления свариваемого металла. В результате образуются участки с измененными механическими свойствами, что ухудшает качество сварного соединения. В соединении с безволновой границей (область 2) оплавлений металла не происходит, прочность такого соединения наиболее высокая.

Для безопасности работ сварка взрывом производится на полигонах. Детали загружаются в бетонированные ямы, которые перед взрывом закрываются крышками, рабочие удаляются в укрытие.

Сваркой взрывом свариваются практически все сочетания металлов. Прочность и пластичность соединений в 2…4 раза выше, чем у основного металла. Остаточная пластическая деформация не превышает 1 %. Несмотря на низкий КПД процесса (0,5…3 %) достоинства сварки взрывом обусловлены дешевым и транспортабельным видом энергии (расход ВВ 250…300 кг на 1 т свариваемого металла при максимальной массе одного заряда до 2000 кг) и низкими затратами на организацию производства.

Сварку взрывом широко применяют при плакировании — нанесении на толстые детали тонкого слоя другого (износостойкого, коррозионно-стойкого или электропроводного) металла. Пример эффектного применения сварки взрывом — восстановление литых лопаток длиной 5 м из стали 30Л для 22 турбин Волжской ГЭС. Для космической техники взрывом соединяют титановые сплавы с магниевыми, алюминиевыми и ниобиевыми сплавами, с жаропрочными сталями, сваривают другие сочетания материалов, которые трудно поддаются обычным способам сварки.


Узнать еще:

Сварка меди и ее сплавов в домашних условиях аргонодуговым методом, газосваркой и припоем

Монтаж и ремонт медного водопровода, устранение течи автомобильного радиатора – это только некоторые ремонтные работы, при которых пригодится умение сваривать медь и ее сплавы. Сварка меди в домашних условиях – достаточно сложный процесс, проведение которого требует опыта и знаний. Поэтому для сварки медных деталей лучше привлекать профессионального сварщика.

И не следует верить рекламе и применять различные герметики и замазки. Холодная сварка на некоторое время сможет оказать помощь и устранить течь. Но работы по соединению стыка все равно придется делать. Если есть опыт в работе с аргоном и на полуавтоматах, можно легко справиться с этой проблемой самостоятельно.

Свойства материала

Получение неразъемного соединения медных сплавов требует знания и понимания всех процессов, происходящих в сварочной ванне. Фосфор, сера и свинец, входящие в состав сплава, положительно влияют на качество шва. Но есть целый ряд отрицательных свойств материала:

  • при большом уровне нагрева медь начинает сильно окисляться. Это приводит к образованию тугоплавких включений, впоследствии вызывающих трещины на сварочном шве;
  • охлаждаясь, материал шва подвергается сильной усадке. Такая особенность приводит к локальным трещинам;
  • при нагреве металл начинает поглощать газы. Такая особенность повышает образование раковин и непроваров. Поэтому важно при сварке применять защитные флюсы и инертные газы, которые препятствуют попаданию в шов кислорода;
  • при сваривании меди с нержавейкой или другими материалами, при разогреве, происходит образование зернистости. Это обусловлено неоднородностью материалов. Такой стык становится хрупким и ненадежным;
  • при сварке необходимо ставить большой ток. Это обусловлено высокой электропроводностью меди. Поэтому бытовой маломощный конвектор лучше оставить для сварки стали, а для меди использовать мощный промышленный аппарат;

Большой уровень текучести материала при высокой температуре плавления не позволяет обеспечить надежный шов при потолочном или вертикальном соединении. Варят медь только в нижнем или горизонтальном положении. Для лучшего качества шва надо предварительно нагреть заготовки.

Выбор электродов

Для получения качественного и наполненного шва при электросварке меди или ее сплава надо правильно выбрать электрод. В зависимости от типа сплавов используются электроды с различной обмазкой и материалом сердечника.

Обмазка или покрытие отвечает за создание защитной пленки (шлака), для предотвращения попадания вредных газов в сварочную ванну. В покрытии находятся некоторые присадки, которые совместно с металлом сердечника электрода добавляют в ванночку необходимые материалы, улучшающие шов. Металл шва остывает равномерно под слоем шлака, и из расплава удаляются вредные газы.

Используется 2 вида электродов. Изготавливаемые для сердечников прутки медной, чугунной, алюминиевой проволоки с нанесенной на них обмазкой – это плавящийся тип электродов. Электротехнический уголь, синтетический графит – эти и другие материалы используются при производстве неплавящихся электродов.

При покупке следует обращать внимание на цвет обмазки электрода. Для ручной электросварки их выпускают с красным покрытием. Синие применяют при сварке материалов с высоким уровнем температуры плавления. Желтый электрод служит для сварки жаростойкой стали, а серые применяются для сварки деталей из цветного металла.

Существует несколько способов сварки медных труб и других деталей и сплавов. Разберем каждый из них подробно.

Газосварка

С помощью газовой сварки меди, при соблюдении технологического процесса проведения работ, можно получить надежный и качественный шов. Для этого понадобится баллон с ацетиленом и горелка. Повысить качество поможет проковка поверхности шва. Этот способ позволит закрыть незначительные поры.

Единственный минус – это большой расход газа. Для нормальной работы необходимо поддерживать сильное пламя в горелке. При толщине деталей 10 мм и выше, расход газа составит 200 л/час. Для сварки толстого металла придется использовать резак для разогрева меди, а маленькой горелкой вести шов.

Для увеличения времени, при равномерном остывании, детали из меди со всех сторон обкладывают листами асбеста. Пламя горелки должно направляться на кромки деталей под прямым углом. Понизить образование участков с окислением шва и трещин можно с помощью увеличения скорости сварки и выполнения ее без разрывов.

Основное отличие соединения деталей из меди – это отсутствие прихваток при стыковке. Для более точной сборки сварку лучше производить в специальном приспособлении. Проволока для присадки применяется из различных металлов с раскислителями. Самое большое сечение проволоки не более 8 мм, для толстого металла.

При сварке обращайте внимание на процесс плавления кромок деталей и присадки. Для лучшего шва присадка должна расплавляться немного раньше краев основного металла. Обеспечивая наплавление присадочного металла на кромки, не забывайте про провар стыка.

Для большего качества стыка, кромки разделываются при толщине меди более 3 мм. Разделывают под 450. Металл лучше ляжет на стык, если его предварительно обработать смесью воды и азотной кислоты. Затем поверхности промывают водой и приступают к работе.

Готовые стыки необходимо отковать при температуре около 3000 при газовой сварке меди толщиной свыше 5 мм. Шов отжигается при температуре не больше 5000. Затем детали следует охладить в воде. При отжиге с большей температурой повышается риск получить хрупкий стык с множеством трещин.

Аргоновая электродуговая

Аргонодуговая сварка меди – это основной способ получения неразъемного соединения деталей из различных материалов с медью. Таким методом с медью можно прекрасно сваривать нержавейку.

При достаточном мастерстве получаются ровные, наполненные и качественные швы. Для сваривания этим способом применяется вольфрамовый электрод.

Аппарат для сварки деталей из меди должен работать от сети постоянного тока. Но в случае сборки деталей со сплавом алюминиевой бронзы и меди, лучшим решением будет использование аппарата переменного тока.

Настройка аппарата

Настройка величины тока при сварке зависит от толщины детали и сечения электрода. Для примера при толщине металла 1,5 мм, диаметр электрода используем 2,5 – 3 мм. Сила тока – 130 А., а диаметр присадки не более 1,6 мм. При толщине 3 мм необходимо выставить ток величиной 240 А.

По такому же принципу можно подбирать ток при сварке полуавтоматическим оборудованием с защитными газами – гелием, азотом и их смесями. Но сварка с помощью аргона – это наиболее распространенный вид соединения меди с другими материалами. Для присадки необходимо подбирать материал, в зависимости от особенностей изделия.

Работа в домашних условиях

В домашних условиях наиболее часто используются медные жилы, выдернутые из кабеля. Но перед началом работ не забудьте зачистить пруток от защитного лака с помощью наждачной бумага. Присадку обрабатывают растворителем для обезжиривания. Для выполнения качественного стыка лучше применять проволоку с низким уровнем расплава.

Присадка обязательно ведется впереди горелки, при ведении горелки «месяцем» или круговыми движениями происходит лучший прогрев зоны сварки. Сваривать толстые детали можно, расплавляя основной материал и формируя валик шва. В этом случае присадку не используют.

Для сварки тонкой меди лучше применять ступенчатый способ сварки. Для этого через определенные расстояния делают небольшие провары. Дойдя до конца шва, возвращаются к началу и повторяют операцию до полного сваривания деталей.

Основной отличительной особенностью сварки меди аргоном является получение качественного шва при горизонтальном проваре и вертикальном расположении стыка.

Медные водопроводные трубы

Сварить трубы можно всеми способами сварки меди. Можно варить медь угольным электродом, газосваркой, но наиболее распространенный и не очень сложный способ – это сварка аргоном. По ГОСТу шов должен выдерживать давление воды свыше 10-ти атмосфер при испытании системы водоснабжения.

Принцип работы прост. Нагреть стык, капнуть расплав с прутка и немного растянуть металл по шву. Так варится весь периметр трубы. Постепенно добавляя металл и растягивая его, формируют валик шва. При проведении сварки меди без остановок вы получите стык с множеством прожогов и подрезов шва.

Для выполнения этого вида работы лучше использовать импульсный тип сварочного аппарата. В этом случае можно увеличить скорость сваривания меди и уменьшить деформацию трубопровода.

Для этого выставляют короткие промежутки между импульсами, обеспечивая небольшое остывание металла. Если в шве образовалась дырка, не спешите заваривать ее. Дайте металлу остыть и, проходя по краю дырки, постепенно заварите ее.

Перед началом работы необходимо настроить силу тока. Для этого лучше использовать старые детали трубопровода. Такой способ позволит экономить дорогостоящий материал.

Пайка медного радиатора

В завершение приведем старый, но действенный способ устранения течи радиатора автомобиля. Для этого понадобится баллон пропана, горелка и широкий медный паяльник. Надо также взять кислоту для пайки или, в крайнем случае, канифоль, и прутки припоя из медно-фосфорного материала.

Сначала необходимо обнаружить место протечки. Затем зачистить его наждачкой, удалить грязь, накипь и пыль, обезжирить поверхность меди и залудить участок с дыркой. Для этого включают горелку, прогревают одновременно радиатор и паяльник. Кисточкой наносят слой кислоты и разогретым паяльником снимают небольшое количество припоя, разглаживают его по поверхности радиатора в месте повреждения.

Разогревают металл и паяльник. Снимая им капли припоя, проходят поврежденный участок, постепенно закрывая дырку. Таким старым дедовским способом можно сэкономить немаленькие средства на покупку нового радиатора или на сварку аргоном в автомастерской.

Что такое холодная сварка? | Металлические супермаркеты

Хотя сварка часто ассоциируется с горячими оранжевыми искрами и расплавленным металлом, существует несколько способов сварки, которые не подходят для этого визуального представления. Одним из наиболее известных сварочных процессов является холодная сварка. Он используется на промышленном уровне почти столетие и имеет ряд преимуществ, которыми не обладают другие сварочные процессы.

Что такое холодная сварка?

Холодная сварка — это процесс сварки в твердом состоянии, при котором для соединения двух или более металлов вместе требуется небольшое количество тепла или не требуется его вообще.Вместо этого энергия, используемая для соединения материалов, приходит в виде давления. Во время процесса холодной сварки металл не разжижается и даже не нагревается в значительной степени.

Как работает холодная сварка?

Причина, по которой холодная сварка может соединить два металла вместе без нагрева, заключается в удалении оксидных слоев на поверхностях соединяемых материалов.

Почти все металлы в нормальных условиях имеют некоторый оксидный слой на себе, даже если он может быть невидим невооруженным глазом.Эти оксиды металлов образуют барьер, который не позволяет атомам металлов на материалах сжиматься и связываться друг с другом. Однако после удаления оксидного слоя атомы металла могут соединяться друг с другом под достаточным давлением.

Для удаления оксидного слоя используются различные механические и химические методы. Очистка проволочной щеткой, обезжиривание и другие методы используются для очистки поверхности металлов от окислов. Металлы также должны быть несколько пластичными. Затем промышленное оборудование используется для создания значительного давления, необходимого для создания металлургических связей.

Для чего используется холодная сварка?

Один из самых популярных видов холодной сварки — соединение разнородных металлов. Это связано с тем, что при плавлении разнородных металлов они плохо соединяются. Это может привести к тому, что металлы не соединятся вместе, или к слабым сварным швам или сварным швам с трещинами. Холодная сварка позволяет избежать этой проблемы, поскольку она основана исключительно на атомных связях, образованных свободными электронами.

Обычно холодная сварка используется для создания стыковых соединений или соединений внахлест.Отрасли включают аэрокосмическую, автомобильную, сложные производственные приложения и лабораторные эксперименты, часто использующие холодную сварку. Он также часто используется для соединения проводов.

Какие металлы можно сваривать холодным способом?

Поскольку обычно требуются пластичные материалы, металлы, которые обычно подвергаются холодной сварке, включают:

Металлы, содержащие углерод, нельзя соединять холодной сваркой.

Каковы преимущества и недостатки холодной сварки?

Одним из самых больших преимуществ холодной сварки является отсутствие зоны термического влияния.Это снижает риск негативных химических и механических изменений основного материала в процессе сварки. Еще одно ключевое преимущество — это возможность соединять разнородные металлы, как упоминалось выше. Кроме того, при правильном выполнении холодной сварки получается сварной шов, по крайней мере, такой же прочный, как и самый слабый основной материал.

Основным недостатком использования холодной сварки является то, что материалы должны быть очень чистыми и не содержать оксидов для получения удовлетворительного сварного шва. Это может быть сложно сделать, а также может быть дорогостоящим и трудным для реализации в сценарии большого объема.Поскольку по крайней мере один из металлов должен быть пластичным, холодная сварка также ограничивается тем, какие сплавы могут быть соединены вместе.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и листы. Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из 100+ наших офисов в Северной Америке сегодня.

Процесс холодной сварки с помощью PWM

Холодная сварка крупным планом

Холодная сварка — это разновидность твердофазной сварки, которая уникальна тем, что выполняется при температуре окружающей среды. Другие формы твердофазной сварки выполняются при повышенных температурах. Египтяне изготавливали железо, молотя металлическую губку, чтобы сварить раскаленные частицы вместе, а кузнецы веками также молотили сварное кованое железо, но эти виды сварки всегда выполнялись при высоких температурах.

В 1724 году британский священнослужитель преподобный Дезагюльерс сумел создать прочную связь между двумя свинцовыми шарами без использования какого-либо тепла, просто скрутив их вместе. Это была первая успешная британская попытка сварки под давлением.

Сегодня холодная сварка составляет значительную часть всех сварочных процессов в проволочной и кабельной промышленности. Многие производители проводов и кабелей предпочитают чистый, бесшумный и «зеленый» процесс сварки, который позволяет им соединять цветные металлы без нагрева, флюса или наполнителей, экономя средства и материалы.

Простой процесс

Процесс холодной сварки прост, что снижает потребность в обучении оператора. Проволоку небольшого размера можно соединить за секунды с помощью ручного аппарата для холодной сварки; Склеивание больших секций стержней занимает немного больше времени и требует использования машины с приводом, но это гораздо более энергоэффективно, чем использование электрического устройства для стыковой сварки оплавлением. При холодной сварке постоянные сварные швы прочнее основного материала без потери электрической целостности, и их можно использовать для соединения полос и профиля, а также круглой проволоки. Холодной сваркой можно сваривать большинство цветных металлов, а также различные сплавы, и этот процесс также можно использовать для соединения разнородных металлов, таких как алюминий и медь.

Принцип множественной осадки

В современной технике холодной сварки давлением используется принцип «множественной осадки», усовершенствованный британской компанией GEC. Когда материал вставляется в матрицу, каждый раз, когда машина активируется, материал захватывается матрицей и подается вперед. Когда они прижимаются друг к другу, две противоположные поверхности материала растягиваются и увеличиваются по всей площади своей поверхности.Оксид и другие поверхностные примеси вытесняются наружу из сердцевины материала, и происходит соединение. Рекомендуется минимум четыре «осадки», чтобы гарантировать удаление всех примесей из поверхностей раздела.

Простая установка

Концы проволоки или прутка не нуждаются в какой-либо подготовке перед сваркой, а выравнивание двух торцевых концов происходит автоматически, когда материал помещается в матрицу. Не требуется настройки нагрева, настройки зазора (он встроен в матрицу) и настройки давления пружины.Любая из этих вещей, неправильно установленная на аппарате для контактной стыковой сварки, может привести к отказу сварного шва.

Как происходит холодная сварка

В настоящее время принятая гипотеза, объясняющая наличие холодной сварки, выглядит следующим образом:

Атомы металлов удерживаются вместе металлической «связью», названной так потому, что она свойственна металлическим веществам. Связь может быть описана как «облако» свободных отрицательно заряженных электронов, которое объединяет ионизированные положительно заряженные атомы в единое целое в результате сил притяжения.

Итак, если две металлические поверхности соединить вместе с расстоянием всего в несколько ангстрем (есть 300 миллионов ангстрем на один сантиметр), может произойти взаимодействие между свободными электронами и ионизированными атомами. Это устранит потенциальный барьер, позволяя электронному облаку стать обычным явлением. Это, в свою очередь, приводит к соединению и, следовательно, сварному шву.

Более простой способ объяснить этот довольно сложный процесс состоит в том, что если две поверхности (обе поверхности — атомарно чистые и атомарно плоские, если рассматривать их в атомном масштабе) соединяются под давлением, то образуется связь, равная прочности связи исходного материала. .

Видео демонстрации

Чтобы помочь производителям проводов и кабелей понять процесс холодной сварки, британская компания PWM (Машины для сварки под давлением) разработала серию онлайн-демонстраций видео, которые можно просмотреть на сайте www.pwmltd.co.uk. В видеороликах показаны в действии большие аппараты для холодной сварки для соединения прутков от 5 до 30 мм (от 0,197 до 1,181 дюйма), а также устройства меньшего размера, HP200 и M101, для соединения проволоки от 2 до 6,50 мм (от 0,079 до 0,256 дюйма). и от 1 мм до 5 мм (от 0,040 до 0,197 дюйма) соответственно.

PWM, специализирующаяся на разработке и производстве машин и штампов для холодной сварки давлением, уже более 30 лет поставляет высокопроизводительное оборудование для холодной сварки производителям проводов и кабелей по всему миру. Ассортимент продукции PWM включает ручные, настольные и тележки, а также большие отдельно стоящие модели для холодной сварки стержней большого сечения. Доступны как ручные, так и приводные аппараты для холодной сварки, с диапазоном производительности от 0,10 мм (0,0039 дюйма) до 30 мм (1.181 ”).

Для обеспечения максимальной точности все машины и матрицы для холодной сварки PWM спроектированы и изготовлены собственной командой квалифицированных инженеров PWM в соответствии со строгими стандартами качества. Матрицы, которые играют важную роль в процессе холодной сварки, изготавливаются индивидуально вручную в согласованных наборах. Они могут быть изготовлены в стандартных отраслевых размерах или изготовлены на заказ для индивидуальных применений.

Joe Snee Associates Inc. является эксклюзивным дистрибьютором PWM в США и Канаде: [адрес электронной почты защищен]

Аппараты для холодной сварки и все необходимые инструменты для холодной штамповки

Общие сведения о сварке холодным давлением

Сварка холодным давлением — это самый простой и самый экономичный метод соединения электрических катушек из медных и алюминиевых лент с соединительными шинами или выводами без использования тепла, наполнителей или флюсов. С помощью нашей проверенной технологии холодной сварки можно сваривать круглые сечения проволоки, различные материалы и материалы разных размеров. Холодный сварной шов в основном прочнее основного материала, но имеет те же электрические характеристики.

Поверхности свариваются друг с другом под высоким давлением при комнатной температуре, в результате чего молекулярные связи отличаются высокой прочностью и надежностью. Для получения идеального сварного шва необходимо удалить все загрязнения, такие как оксиды, масла, химикаты и т. Д.Собирать нужно только чистые поверхности.

Алюминий и медь можно сваривать в любой комбинации (Al-Al, Al-Cu, Cu-Cu). Предлагаем вам протестировать сварку вашего материала, чтобы подтвердить его пригодность для холодной сварки.

Аппарат для сварки холодным давлением типа KSW 80/150/220

Мобильное устройство для холодной сварки давлением типа KSW 220 является чрезвычайно экономичным и универсальным рабочим устройством для вашей техники подключения. Он особенно подходит для сварки проводов в начале и конце обмотки.Он обеспечивает все преимущества технологии сварки под давлением, такие как высокая производительность, качество соединения, чистота и возможность сваривать вместе различные материалы, такие как медь и алюминий.

Пример использования

Технические характеристики аппарата для холодной сварки под давлением KSW 80/150/220, мобильная установка

тип КСВ 80 KSW 150 KSW 220
Усилие прессования (кН) 80 150 220
макс.толщина полосы (мм)
алюминиевые полосы
1,2 2,5 4,0
макс. толщина ленты (мм)
полоски медные
1,2 2,0 2,5
макс. толщина соединения (мм) 2,5 8,0 14,0
макс. ширина соединения (мм) 50 150 150
гидравлический привод макс.(бар) 650 650 650
усилие прессования
регулируемое
да да да
Вес пресса (кг) 10 32

Пресс-инструменты

Выбор инструмента

Пресс-инструменты выбираются из таблицы. Если используется промежуточный размер полос, он будет учитываться при выборе инструмента в следующем более высоком размере.

полоса
толщина

(мм)
толщина соединения (мм)
0,17 0,2 0,3 0,4 0,5 0,6 0,8 1,0 1,2 1,5 2,0 2,5 3,0 4,0 5,0 6,0 8,0 10,0 12,0 14,0
0,025 110 113 116 117 119 120 123 126 127 128 131 132 134 137 138 140 142 143 145
0,03 110 113 116 117 119 120 123 126 127 128 131 132 134 137 138 140 142 143 145
0,035 110 113 116 117 119 120 123 126 127 128 131 132 134 137 138 140 142 143 145
0,04 113 116 117 120 120 123 126 127 128 131 132 134 137 138 140 142 143 145
0,05 113 116 117 120 120 123 126 127 128 131 132 134 137 138 140 142 143 145
0,06 116 119 120 122 123 126 127 128 131 132 134 137 138 140 142 143 145
0,08 116 119 120 122 123 126 127 128 131 132 134 137 138 140 142 143 145
0,10 116 119 120 122 123 126 127 128 131 132 134 137 138 140 142 143 145
0,12 119 120 122 125 126 127 128 131 133 134 137 138 140 142 143 145 146
0,15 120 122 125 126 128 129 131 133 134 137 138 140 142 143 145 146
0,18 122 125 127 128 129 131 133 134 137 139 140 142 143 145 146
0,20 123 125 127 128 129 131 133 134 137 139 140 142 143 145 146
0,25 123 126 127 128 129 131 133 135 137 139 140 142 143 145 146
0,30 123 126 127 128 129 131 133 135 137 139 140 142 143 145 146
0,35 126 128 128 129 132 133 135 137 139 140 142 144 145 146
0,40 128 129 129 132 134 135 137 139 140 142 144 145 146
0,50 128 129 131 132 134 135 137 139 141 142 144 145 146
0,60 129 131 132 134 135 138 139 141 142 144 145 146
0,80 131 134 134 137 138 139 141 142 144 145 146
1,0 134 135 137 138 140 141 142 144 145 147
1,2 134 135 137 138 140 141 143 144 146 147
1,5 137 139 140 141 143 144 146 147
1,8 139 141 141 143 145 146 149
2,0 139 141 142 143 145 146 149
2,5 141 142 144 145 146 149
3,0 142 144 145 146
3,5 145 146 147
4,0 146 149
4,5 147 149
5,0 148

Сварка холодным давлением: процесс, оборудование и области применения

Прочитав эту статью, вы узнаете: — 1. Процесс холодной сварки давлением 2. Оборудование для холодной сварки 3. Применение и использование 4. Преимущества 5. Недостатки.

Процесс холодной сварки давлением:

Сварка в холодном состоянии — это процесс твердотельной сварки давлением Рис. 7.34. Завершается микроскопический вид, в котором внешнее давление прикладывается при комнатной температуре, вызывая существенную из двух сопряженных поверхностей, деформацию и сварку. Сварка холодным давлением отличается отсутствием тепла (дополнительно) и флюса.По крайней мере, один из соединяемых металлов должен быть очень пластичным для удовлетворительной холодной сварки.

Свариваемые поверхности необходимо очистить проволочной щеткой от оксидной пленки и тщательно обезжирить перед сваркой. Сварка холодным давлением листов

Два металлических листа приводятся в перекрывающий контакт, и специальный инструмент (пуансон) используется для создания локальной пластической деформации, которая приводит к слиянию между двумя частями. Процесс, показанный на рис.7.35 (а). За этим процессом обычно следует отжиг сварного шва, который заменяет клепку.

Сварка проволоки холодным давлением производится на специальном аппарате. Рис. 7.35 (b) иллюстрирует этапы этого процесса. Как видно, концы проводов зажимаются и многократно прижимаются друг к другу, чтобы обеспечить соответствующую пластическую деформацию. Затем излишки осаженного металла обрезаются острыми краями захватных губок.

Оборудование для холодной сварки:

Аппарат для холодной сварки состоит из следующих компонентов:

(i) Пробивные прессы.

(ii) Пробойник или матрица.

(iii) Ролики (как прокатные).

(iv) Статическая нагрузка (ручная или силовая).

Плашки для холодной сварки должны быть такими, чтобы они вызывали контролируемую деформацию в обеих пластинах равномерно. Прикладываемое давление должно быть с обеих сторон пластин.Таким образом достигается глубокая вмятина на поверхности деталей и уменьшение толщины до 50%.

Применение и применение сварки холодным давлением:

(i) Метод сварки холодным давлением используется при сварке проволокой цветных металлов, таких как алюминий, медь или алюминиево-медные сплавы,

(ii) Используется при сборке небольших транзисторов, где нагрев не допускается,

(iii) Используется для соединения проводов, когда они обрываются во время работы,

(iv) Может использоваться для соединения разнородных металлов,

(в) Металлы, сваренные методом холодной сварки, —

(а) Медь и ее сплавы,

(б) Алюминий высокой чистоты и его сплавы,

(c) Никель, цинк и серебро и

(г) Cd и Pd и др.

Преимущества сварки под давлением:

(i) Этот процесс не требует нагрева и флюса, и, следовательно, получается гладкое соединение.

(ii) Этот процесс подходит для сварки почти всех металлов от A1 до Cu.

Недостатки холодной сварки давлением:

Холодная сварка не подходит для высокопрочных (Fe) металлов и сплавов, так как для деформации требуется большее давление.

Исследование холодной сварки давлением: коэффициент когезии меди

[1] Л.Ли, К. Нагаи и Ф. Инь. Прогресс в склеивании металлов холодной прокаткой. Наука и технология передовых материалов, 9 (2): 023001, (2008).

DOI: 10.1088 / 1468-6996 / 9/2/023001

[2] Н.Залив. Механизм образования металлических связей при холодной сварке. Дополнение к исследованиям в области сварки, 62 (5): 137-s-142s, (1983).

[3] М.Кёлер. Plattiertes Stahlblech. Merkblatt 383, Stahl-Informations-Zentrum, Дюссельдорф, (2006).

[4] К. Эбберт, Х. К. Шмидт, Д.Родман, Ф. Нюрнбергер, В. Хомберг, Х. Дж. Майер и Г. Грундмайер. Соединение с электрохимической опорой (ECUF): сварка меди холодным давлением. Журнал технологий обработки материалов, 214 (10): 2179-2187, (2014).

DOI: 10.1016 / j.jmatprotec.2014.04.015

[5] W.П. Гилбрет и Х. Т. Сумцион. Твердофазная сварка металлов в высоком вакууме. Журнал космических аппаратов и ракет, 3 (5): 674-679, (1966).

DOI: 10.2514 / 3.28512

[6] П. Хайн и М. Гейгер. Усовершенствованные стратегии управления процессом гидроформовки пар листового металла. Передовая технология пластичности, II, страницы 1267-1272, (1999).

[7] М.Мерклейн, М. Гейгер и М. Челегини. Комбинированная гидроформовка труб и двойных листов для изготовления сложных деталей. CIRP Annals-Manufacturing Technology, 54 (1): 199-204, (2005).

DOI: 10.1016 / s0007-8506 (07) 60083-3

[8] W. Homberg, A. E. Tekkaya, C. Beerwald, A. Brosius, J. Dau и M. Trompeter. Многофункциональные легкие конструкции из плакированных заготовок на заказ. Ключевые технические материалы, 410-411: 37-42, (2009).

DOI: 10.4028 / www.scientific.net / kem.410-411.37

[9] ЧАС.Конрад и Л. Райс. Связь ранее разрушенных ГЦК-металлов в сверхвысоком вакууме. Металлургические операции, 1 (11): 3019-3029, (1970).

Индивидуальный источник питания для холодной сварки оптимизирует производство труб

Situation

Производитель трубок Virtus Precision Tube, Франклин, штат Кентукки, не чужд взлетов и падений на рынке отопления, вентиляции и кондиционирования воздуха, равно как и его кузен, рынок холодильного оборудования. Спрос на продукцию может быть нестабильным, а цена на медь неумолима.

«Мы производим более 40 миллионов фунтов прокатных медных труб каждый год, размером от дюйма до ½ дюйма», — сказал Джо Нэпьер, руководитель инженерной программы Virtus.

По данным сборщика данных Statista, рынок производителей систем кондиционирования сократился почти на 50 процентов с 2005 по 2010 год, с 6,47 миллиона единиц до 3,42 миллиона единиц. Затем рынок восстановился и восстановил большую часть утраченных позиций; в 2017 г.Производители S. отгрузили 5,19 млн единиц. И хотя цены на медь не так высоки, как раньше, они все еще остаются высокими. По данным macrotrends.com, на протяжении большей части 2017 года цена составляла немногим более 3 долларов за фунт (6000 долларов за тонну).

Излишне говорить, что Virtus постоянно ищет способы делать вещи более эффективно, а также обновлять и улучшать их. делает медные трубки.

Resolution

Система холодной сварки, разработанная компанией Pressure Welding Machines (PWM) Ltd. , Кент, Англия, в партнерстве с Virtus оптимизировали и улучшили процесс производства медных трубок. По словам Нэпьера, использование специализированной версии модели ST40 с ШИМ позволило улучшить время безотказной работы, снизить затраты и создать лучшую рабочую среду для операторов.

«Система холодной сварки, которую мы разработали с помощью PWM, является частью нашей программы постоянного улучшения», — сказал Нэпьер. «Он поддерживает наше постоянное стремление к разработке высокопроизводительных трубопроводных решений для рынков HVAC и холодильных теплообменников.”

В процессе холодной сварки цветные металлы соединяются без нагрева, флюса и присадочных материалов для получения сварных швов, которые прочнее основного материала. По словам компании, ST40 не требует времени на настройку: оператор просто загружает два конца полосы по обе стороны матрицы и нажимает ножную педаль, чтобы управлять машиной. Каждый раз, когда машина приводится в действие, два конца полосы захватываются матрицей и подаются вперед. Когда два конца прижимаются друг к другу, оксиды и другие поверхностные загрязнения выталкиваются из сердцевины металла, и две чистые поверхности соединяются.

ST40 обрабатывает медную ленту максимальной шириной 1,772 дюйма и минимальной толщиной 0,00787 дюйма, в зависимости от свойств материала, и обеспечивает более быстрый, универсальный процесс и более качественные сварные швы, чем его предшественник, согласно в Виртус.

«PWM сотрудничал с нами, чтобы продемонстрировать долговечность, надежность и простоту использования процесса с использованием взятого напрокат портативного сварочного аппарата холодным давлением ST40», — сказал Нэпьер. «Затем PWM помогла нам разработать полноценное рабочее место оператора, способное соответствовать нашим производственным требованиям.Шестимесячные испытания системы в процессе производства позволили нам снизить процент брака на линии примерно на 15 процентов ».

Компания PWM поставила Virtus семь сварочных аппаратов, которые работают на постоянной основе. Такие адаптации, как автоматическая обрезка оплавлением и отжиг, а также автоматизация цикла сварки и системы открытия штампа, помогли еще больше оптимизировать процесс.

Машины для сварки под давлением, ООО, www.coldpressurewelding.com

Холодная сварка | Actforlibraries.org

Холодная сварка — это соединение двух металлических частей вместе с использованием сильного давления и без применения тепла. Холодная сварка — это твердотельный процесс, при котором давление при температуре окружающей среды вызывает слияние двух металлов. Давление вызывает деформацию, пока не будет достигнуто желаемое состояние. Холодная сварка особенно подходит для пластмасс (пластмасс и смол) и металлов, таких как алюминий, медь, серебро, никель и железо. Чаще всего применяется с алюминием и алюминием с разными металлами, такими как алюминий-медь.Холодная сварка широко используется, в том числе, в авиационной промышленности и электротехнике.

Первая демонстрация холодной сварки была проведена в 1724 году, когда преподобный Дж. Л. Дезагюльерс продемонстрировал, что если два свинцовых шарика примерно 25 мм (0,9 дюйма) сжать и скрутить вместе, они образуют соединение. Совместные результаты были нестабильными; однако связи были такими же прочными, как и исходный материал, из которого они были сделаны. Это явление было изучено более подробно только в 1940-х годах.Стало известно, что если бы начальная интенсивная сила могла быть применена к двум частям аналогичного материала внутри вакуума, они бы соединились. Постоянная сварка происходит на атомарном уровне, и связи намного прочнее, чем можно было бы достичь другими методами.

Ученые обнаружили, что холодная сварка также может выполняться без использования чрезмерного давления. Такие же результаты могут быть достигнуты путем применения низкого давления в течение более длительных периодов времени. На практике соединение двух материалов практически невозможно из-за неровностей поверхности.Для достижения максимальных результатов холодной сварки необходимо уменьшить количество загрязнений в любой форме, а свариваемую зону следует максимально увеличить. Другой метод заключается в ускорении молекул двух материалов за счет повышения температуры их поверхности.

В 1950-х годах компания General Electric (GEC) разработала простой способ соединения двух частей из цветных металлов. Сварка происходит простым их сжатием. Одного давления достаточно для образования однородных связей в меди, алюминии, цинке, свинце, никеле и кадмие.Промышленный потенциал сварки холодным давлением позволил изготавливать проводники арматуры, соединения проводов, оболочки кабелей, герметичные банки, а также многие другие полезные изделия без использования техники сварки. Кроме того, сварка под давлением в холодном состоянии позволила изготавливать металлические соединения, что было невозможно при электросварке.

Холодная сварка может использоваться для соединения большинства цветных металлов, включая медь и алюминий. Большинство черных металлов содержат углерод, который препятствует процессу холодной сварки.Были проведены испытания проволоки из низкоуглеродистой стали; однако для того, чтобы произошла холодная сварка, необходимо подвести тепло. Из-за стоимости и безопасности этого метода более практично использовать горячую сварку для соединения черных металлов. Другие холодные сплавы под давлением могут быть изготовлены с использованием латуни, никеля, серебра, цинка, золота и многих других. Гальваническая проволока, такая как никелевая пластина, посеребренная и утоненная медь, может быть приварена сама к себе или к простой меди.

В отличие от крупномасштабной холодной сварки, которая обычно требует приложения огромных давлений, новая технология, включающая нанопроволоки диаметром менее 10 нм, может использоваться для холодной сварки друг с другом посредством механического контакта и низкого приложенного давления.С помощью просвечивающей микроскопии (ПЭМ) было продемонстрировано, что связи в наномасштабе почти идеальны, с такой же ориентацией кристаллов, прочностью и проводимостью, что и применяемая нанопроволока. Холодная сварка в наномасштабе, выполняемая между серебром и золотом и серебром и серебром, предполагает, что метод может быть в целом применим в макроскопическом масштабе холодной сварки.

В настоящее время холодная сварка находит широкое применение в различных отраслях промышленности, включая электротехнику, электронику и аэрокосмическую технику.Холодная сварка используется для соединения многих металлических предметов, включая проволоку, полосы, стержни, тонкостенные трубы и неметаллические материалы с достаточной пластичностью, включая пластмассы, смолы и стекло. Для использования в космосе выгодно использовать холодную сварку. Согласно nextbigfuture.com, холодная сварка металлов в нано-масштабе будет играть важную роль в производстве электрических и механических наноустройств.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *