Импульсный блок питания не запускается: Ремонт импульсного блока питания своими руками

Содержание

Импульсный блок питания не держит нагрузку

Причина отказа блока питания, или почему техника перестает работать. С недавних пор, стал все чаще замечать, что люди стали обращаться, да и сам попадаю, на странный и однообразный ремонт техники. Все начинается примерно по одному сценарию – работал себе аппарат год или два и тут вдруг начал включаться медленно, или вообще не запускаться, или же при включение выключается резко, или же пытается включиться но не включается! В общем берем тестер и проверяем блок питания измерением напряжения на нем, точнее на выходных клеммах, оно как правило находится в допустимых рамках, или как вариант отличается на 0.3-0.4 вольт в меньшую сторону, например у 12 вольтовых блоках питания оно как правило 11.4 вольта.

А вот если проверить осциллографом, или простым тестером из динамика, то слышны высокочастотные пульсации, поэтому без сглаживания эта аппаратура с таким питанием не может работать!

Такие конденсаторы, как правило, внешне заметно на крышке вздуваются или взрываются вообще, при проверки могут показать заметное уменьшение ёмкости – вместо 1000 мкф будет 120-150 мкф, или того меньше, или же в тестере конденсатор может определиться вообще как другой элемент.

При таком чуде, когда конденсатор вдруг стал резистором либо диодом, блок питания пытается включиться, но токи становятся высокими и в крупных фирменных телевизорах такие блоки уходят в защиту. При новой попытки включить все повторяется по кругу.

Часто замену фильтрующего конденсатора можно выполнить увеличенной емкостью, например вместо батареи из трех конденсаторов редкой емкости в 1500 мкф, можно поставить в 4000 мкф. Главное проверить потом стабильность работы прибора и уровень пульсаций, чтобы все было в норме, ну и чтоб конденсатор был на нужное напряжение, или лучше с запасом по напряжению, тогда он будет дополнительно защищен от перепадов.

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП.

Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.

Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Схемы ибп телевизоров.

Ремонт блока питания телевизоров. К недостаткам импульсной технологии следует отнести

В любой электронной системе, работающей от импульсного блока питания, наступает неприятный момент, когда приходится сталкиваться с проблемным выходом его из строя. К сожалению, импульсные радиоэлементы или блоки, как показывает практика, не столь долговечны, как того хотелось бы, поэтому требуют к себе более пристального внимания, а зачастую просто замены или ремонта.

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально. Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта. Но если вы стали обладателем разборного импульсного блока питания , то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания

Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания. Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы. Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения , которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы. Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок. А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания

Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр , который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме. В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения. Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам , который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента , нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних. В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта. К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

Если вы ремонтировали ИБП, то вы наверняка сталкивались с такой ситуацией: все неисправные элементы заменены, оставшиеся вроде бы проверены, а включаете телевизор и… бац… и все надо начинать сначала! В радиотехнике чудес не бывает и, если что-то не работает, то на это есть причина! Наша задача – найти ее!

ИБП – самый ненадежный узел в современных радиоустройствах. Оно и понятно – огромные токи, большие напряжения – ведь через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.

Большинство производителей применяют простые схемы ИБП. Оно и понятно. Наличие нескольких уровней защиты способно часто лишь усложнить ремонт и практически не влияют на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а нам при ремонте приходится долго разбираться, что это за детали и зачем они нужны. Конечно, каждый ИБП имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими характеристиками, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.

Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех ИБП практически одинаков, отличие только в схемных решениях и типах применяемых деталей.

Я пользуюсь методикой, выработанной многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой.

Предложенная методика предполагает, что вы хоть немного знакомы с работой телевизора. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.

Итак, ремонтируем блок питания.

Вам принесли телевизор или испортился свой.

    Включаете телевизор, убеждаетесь, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в ИБП. На всякий случай надо будет проверить напряжение питания строчной развертки.

    Выключаете телевизор, разбираете его.

    Внешний осмотр платы телевизора, особенно участка, где размещен ИБП. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и др.

    Надо будет в дальнейшем проверить их.

    Внимательно просмотрите пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.

    Проверьте цепь питания: прозвоните шнур питания, предохранитель, выключатель питания – если он есть, дроссели в цепи питания, выпрямительный мост.

    Часто при неисправном ИБП предохранитель не сгорает – просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.

    Недолго проверить остальные детали блока – диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.

    Надо посмотреть, нет ли замыканий во вторичных цепях питания – для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.

Выполнив все проверки и заменив неисправные детали, можно выполнить проверку под током. Для этого вместо сетевого предохранителя подключаем лампочку 150-200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила ИБП в случае, если неисправность не устранена. Отключите размагничивающее устройство.

Включаем.Возможны три варианта:

  1. Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку – для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150-160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим, в некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть), или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
  2. Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что ИБП не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280-300 Вольт. Если его нет – иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено – может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
  3. Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните – чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.

На 95% неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.

Ремонт импульсного источника питания. Отремонтировать блок питания или преобразователь напряжения самостоятельно может любой человек, владеющий базовыми радиоэлектронными навыками. Действуйте, выявите неисправность и устраните ее. (10+)

Ремонтируем импульсный источник питания сами, своими руками. Неисправности

Внимание! Некоторые элементы источника питания во время работы находятся под сетевым напряжением. Убедитесь, что Вы обладаете необходимой квалификацией для безопасного выполнения ремонта импульсного источника питания.

Диагностика и ремонт импульсного источника питания в большинстве случаев могут быть выполнены при наличии базовых навыков в радиоэлектронике.

Устройство источника питания, понижающего преобразователя сетевого напряжения

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука…
Включение светодиодов в светодиодном фонаре….

Инвертор, преобразователь, чистая синусоида, синус…
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за…

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….


Расчет онлайн гасящего конденсатора бестрансформаторного источника питания. ..

Инвертирующий импульсный преобразователь напряжения. Силовой ключ — би…
Как сконструировать инвертирующий импульсный источник питания. Как выбрать мощны…

В любом современном телевизоре есть импульсный блок питания.

Блок питания — это целый узел, предназначенный для обеспечения телевизора питающими напряжениями определенной мощности, необходимыми для нормального функционирования электроприбора.

Когда неисправен импульсный блок, наблюдаются всевозможные неполадки телевизионного приемника, в том числе, он совсем не работает или перестает включаться.

Возможные неисправности блока питания

Мастера ВсеРемонт24, приезжая на дом к клиенту, чаще всего сталкиваются именно с неисправностью блока питания. Это самая частая неисправность телевизоров всевозможных моделей, марок и типов.

Блок питания может быть в общей схеме телевизора или в виде отдельного модуля.

Блоки питания уникальны в каждом телевизоре, у каждого своя схема. Но на их работоспособность одинаково негативно влияют:

  • нарушение владельцем правил эксплуатации (особенно температурного режима),
  • относительно простые схемы,
  • непрофессиональный ремонт техники.

Неисправности, характерные для большинства блоков питания:

  1. Перегорание предохранителя.
  2. Блок питания не запускается, напряжение на выпрямителе есть, ключевые элементы исправны.
  3. Блок питания не запускается, так как срабатывает защита.
  4. Сгорает силовой (ключевой) транзистор.
  5. Заниженное или завышенное напряжение в первичных или вторичных цепях.

Очевидно, что разобраться в поломке и отремонтировать телевизор может только опытный телемастер. Самостоятельный ремонт крайне нежелателен, однако, возможен.

Проверка и ремонт блока питания

Если у вас есть некоторый опыт, все необходимые знания и инструменты (в частности, мультиметр и паяльник), попробуйте починить телевизионный приемник.

Алгоритм действий при проверке блока питания ТВ:

  1. Выключить телевизор (вынуть вилку из розетки).
  2. Разрядить высоковольтный конденсатор.
  3. Вынуть плату из корпуса телевизора.
  4. Осмотреть плату (визуальная диагностика).
  5. Проверить мультиметром резисторы, конденсаторы, диоды, транзисторы и прочее.
  6. Осмотреть обратную сторону платы. Проверить, нет ли трещин, пробоев между дорожками, надежность припайки деталей.

Резисторы могут:

  • потемнеть,
  • потрескаться,
  • ухудшается качество пайки выводов.

Если все это заметно визуально, имеет смысл поменять резисторы на новые с отклонением от оригинала не более плюс-минус 5%.

Если внешне ничего не заметно, следует проверить резисторы мультиметром. Резистор неисправен, если сопротивление = 0 или?.

Неисправные электролитические конденсаторы внешне вздутые. Проверяется также их емкость. Допустимые отклонения — плюс-минус 5%.

Исправный кремниевый диод имеет сопротивление в прямом направлении 3-6 кОм, а в обратном — ?.

Чтобы измерить сопротивление, нужно выпаять диод. Для проверки мультиметр устанавливают в режим измерения сопротивления с пределом в 20 кОм.

Второй вариант проверки мультиметром без выпаивания диода. В таком случае мультиметр нужно установить на режим измерения падения напряжения (должно быть до 0, 7 V). Если мультиметр показывает 0 или около нуля, диод придется все-таки выпаять и проверить снова. Если показания не меняются, наверняка произошло пробитие. Требуется замена детали.

Биполярные транзисторы проверяются в обоих направлениях (в прямом и обратном) на переходах:

  • база-коллектор,
  • база-эмиттер.

Проверка предполагает измерение падения напряжения в транзисторах. Также важно проверить чтобы не было пробоя в переходе “коллектор-эмиттер”.

Исправные транзисторы ведут себя как диоды, неисправные нужно перепроверять полностью — всю “обвязку”:

  • диоды,
  • резисторы,
  • конденсаторы.

Чтобы проверить питающие напряжения импульсного блока питания, потребуется:

  • его схема,
  • две лампы накаливания?100W.

Алгоритм действий:

  1. Воспользовавшись схемой, найти выход на каскад строчной развертки.
  2. Отключить выход.
  3. Подключить лампу накаливания.
  4. Блок питания подключить через вторую лампу.

Если лампа загорается и ярко горит, блок питания неисправен. Если же лампочка загорается и гаснет или слабо светит, входные цепи блока питания исправны.

Чтобы определить какой именно элемент пробит (отчего и горит лампочка), нужно обратиться к схеме.

Проверочное измерение напряжения производится с подключенной лампочкой на нагрузке B+. В схеме указано каким должно быть напряжение. Обычно это 110-150V. Если оно соответствующее, блок питания исправен.

Если напряжение повышено (200V), проверяют элементы первичной цепи блока питания. Если понижено — вторичные цепи.

Все неисправные детали выпаиваются, на их место припаивают новые.

Помните! Отремонтировать блок питания телевизора самостоятельно, не имея знаний и опыта, невозможно. Еще важнее то, что кустарный и любительский ремонт — прямая угроза здоровью и даже жизни людей!

В наше время практически все электроприборы бытового назначения имеют специальные приспособления, именуемые импульсными блоками. Они могут иметь вид как отдельного модуля, так и платы, размещенной в конструкции прибора.

Импульсный блок питания

Поскольку импульсные блоки предназначены для выпрямления и понижения сетевого напряжения, то они могут часто выходить из строя. Поэтому, чтобы не покупать новое дорогостоящее бытовое устройство, знания о том, как его можно починить своими руками будут достаточно востребованными. О том, как выявить неисправности работы данного прибора или платы, а также как самостоятельно провести его ремонт, вам расскажет данная статья.

Описание преобразователя напряжения

Импульсный блок питания может иметь вид платы или самостоятельного выносного модуля. Он предназначен, как уже говорилось, для понижения и выпрямление сетевого напряжения. Его необходимость основывается на том, что в стандартной сети питания имеется напряжение в 220 вольт, а для работы многих бытовых приборов необходимо гораздо меньшее значение этого параметра.
Сегодня, вместо стандартных понижающе-выпрямительных схем, собранных на основе диодного моста и силового трансформатора, используются блоки питания импульсного преобразования напряжения.

Обратите внимание! Несмотря на наличие высокой схемотехнической надежности, импульсные блоки питания часто ломаются. Поэтому в наше время очень актуален ремонт этих элементов электросхем.

Схема импульсного блока питания

Все типы источника питания импульсного вида (встроенного или вынесенного за пределы прибора) имеют два функциональных блока:

  • высоковольтный. В таком блоке питания происходит преобразование сетевого напряжения в постоянное при помощи диодного моста. Причем напряжение сглаживается до уровня 300,0…310,0 вольт на конденсаторе. В результате происходит преобразование высокого напряжения в импульсное с частотой 10,0…100,0 килогерц;

Обратите внимание! Такое устройство высоковольтного блока позволило отказаться от низкочастотных массивных понижающих трансформаторов.

  • низковольтный. Здесь же происходит понижение импульсного напряжения не необходимого уровня. При этом напряжение сглаживается и стабилизируется.

В результате такого строения на выходе из блока питания импульсного типа функционирования наблюдается несколько или одно напряжение, которое нужно для питания бытовой техники.
Стоит отметить низковольтный блок может содержать разнообразные управляющие схемы, повышающие надежность прибора.

Импульсный блок питания (плата). Цвета приведены на схеме

Поскольку блоки питания такого типа имеют сложное устройство, их правильный ремонт, проводимый своими руками, должен опираться на некоторые знания в электронике.
Осуществляя ремонт данного прибора, не стоит забывать, что некоторые его элементы могут находиться под сетевым напряжением. В связи с этим даже проводя первичный осмотр блока необходимо соблюдать предельную осторожность.
Ремонт в большинстве случаев не будет вызывать осложнений, т. к. импульсные блоки питания имеют типовое устройство. Поэтому и неисправности у них тоже будут схожими, а ремонт своими руками выглядит вполне посильной задачей.

Возможные причины поломки

Неисправности, которые приводят импульсный блок питания в нерабочее состояние, могут появляться по самым разнообразным причинам. Наиболее часто поломки происходят из-за:

  • наличия колебания сетевого напряжения. К неисправности могут привести те колебания, на которые не рассчитаны данные понижающе-выпрямительные модули;
  • подключение к блоку питания нагрузок, на которые бытовые приборы не рассчитаны;
  • отсутствие защиты. Не устанавливая защиту, некоторые производители просто экономят. При обнаружении такой неполадки нужно просто установить защиту в конкретное место, где она и должна находиться;
  • несоблюдение правил и рекомендаций эксплуатации, которые указаны производителями для конкретных моделей.

При этом в последнее время частой причиной поломки преобразователей напряжения является заводской брак или использование при сборке некачественных деталей. Поэтому, если вы хотите, чтобы ваш купленный импульсный блок питания проработал как можно дольше, не стоит покупать его в сомнительных местах и не у проверенных людей. Иначе это могут быть просто впустую потраченные деньги.
После диагностики блока зачастую выясняются следующие неисправности:

  • 40% случаев – нарушение работы высоковольтной части. Об этом свидетельствует перегорание диодного моста, а также поломка фильтрующего конденсатора;
  • 30% — пробоем биполярного (формирующего импульсы высокой частоты и располагающегося в высоковольтной части устройства) или силового полевого транзистора;
  • 15% — пробой диодного моста в его низковольтной части;

Диодный мост

  • редко встречается выгорание (пробой) обмоток дросселя на выходном фильтре.

Все остальные поломки можно будет определить только специальным оборудованием, которое вряд ли хранится дома у среднестатистического человека. Для более глубокой и точной проверки необходим цифровой вольтметр и осциллограф. Поэтому если поломки не кроются в четырех приведенных выше вариантах, то в домашних условиях блок питания такого типа вы не сможете починить.
Как видим, ремонт, проводимый в данной ситуации своими руками, может иметь самый разнообразный вид. Поэтому, если у вас перестал работать компьютер или телевизор по причине поломки блока питания, то не нужно бежать в ремонтную службы, а можно попутаться решить проблему своими силами. При этом домашний ремонт обойдется значительно в меньшую стоимость. А вот если вы не сможете своими силами справиться с поставленной задачей, тогда можно уже идти на поклон к специалистам из ремонтной службы.

Алгоритм определения поломки

Любой ремонт всегда начинается с выяснения причины неисправности блока питания импульсного.

Обратите внимание! Для ремонта и поиска неисправностей импульсного блока питания вам потребуется вольтметр.

Вольтметр

Для того чтобы ее выявить, необходимо придерживаться следующего алгоритма:

  • разбираем блок питания;
  • с помощью вольтметра измеряем напряжение, которое имеется на электролитическом конденсаторе;

Измерение напряжение на электролитическом конденсаторе

  • если вольтметр выдает напряжение в 300 В, то это означает, что предохранитель и все элементы электросети (кабель питания, сетевой фильтр входные дроссели), связанные с ним работают нормально;
  • в моделях с двумя конденсаторами небольших размеров напряжение, свидетельствующее об их исправности, которое выдает вольтметр, должно составить 150 В для каждого прибора;
  • если же напряжение отсутствует, тогда необходимо провести прозвонку диодов выпрямительного моста, предохранителя и конденсатора;

Обратите внимание! Самыми коварными элементами в электросхеме блока питания импульсного типа работы являются предохранители. Об их поломке не свидетельствуют никакие внешние признаки. Только прозвонка поможет вам выявить их неисправность. В случае сгорания они выдадут высокое сопротивление.

Предохранители импульсного блока питания

  • если была обнаружена неисправность предохранителей, то нужно проверять остальные элементы электросхемы, так как они редко когда сгорают в одиночку;
  • внешне достаточно легко выявить испорченный конденсатор. Обычно он вздувается или разрушается. Ремонт в данном случае будет заключаться в его выпаивании и замене на работоспособный.
  • Обязательно необходимо прозвонить на предмет исправности следующие элементы:
  • выпрямительный или силовой мост. Он имеет вид монолитного блока или организован из четырёх диодов;

Силовой мост импульсного БП

  • конденсатор фильтра. Может выглядеть как один или несколько блоков, которые соединяются между собой последовательно или параллельно. Обычно конденсатор фильтра расположен высоковольтной части блока;
  • транзисторы, размещенные на радиаторе.

Обратите внимания! Проводя ремонт, нужно найти сразу все неисправные детали импульсного блока питания, так как их выпаивание и замену следует проводить одновременно! В противном случае замена одного элемента будет приводить к выгоранию силовой части.

Особенности ремонтных работ и инструменты для них

Для стандартного типа устройств вышеперечисленные этапы диагностики и проведения ремонтных работ будут идентичными. Это связано с тем, что все они имеют типовое строение.

Припаивание деталей к плате

Также, чтобы провести качественный самостоятельный ремонт импульсного преобразователя напряжения, необходим хороший паяльник, а также умение управляться с ним. При этом вам еще понадобиться припой, спирт, который можно заменить на очищенный бензин, и флюс.
Помимо паяльника в ремонте обязательно понадобятся следующие инструменты:

  • набор отверток;
  • пинцет;
  • бытовой мультиметр или вольтметр;
  • лампа накаливания. Может использовать в качестве балластной нагрузки.

С таким набором инструментов простой ремонт будет по силам любому человеку.

Проведение ремонтных работ

Собираясь своими руками починить испортившийся импульсный преобразователь напряжения, необходимо понимать, что такие манипуляции не проводятся для изделий, предназначенные для комплексной замены. Они не рассчитаны на ремонт и их не возьмется чинить ни один мастер, так как здесь нужен полный демонтаж электронной начинки и замены ее на новую работающую.

Плата блок питания импульсного принципа работы

Во всех остальных случаях ремонт в домашних условиях и своими руками вполне возможен.
Правильно проведенная диагностика является половиной ремонта. Неисправности, связанные с высоковольтной части обнаружатся легко как визуально, так и при помощи вольтметра. А вот неисправность предохранителя можно выявить при отсутствии напряжения на участке после него.
При обнаружении с ее помощью неисправностей остается просто произвести их одновременную замену. Осуществляя ремонтные работы, необходимо обязательно опираться на внешний вид электронной платы. Иногда, чтобы проверить каждую деталь, необходимо ее выпаять и протестировать мультиметром. Желательно проводить проверку всех деталей. Несмотря на затруднительность такого процесса, он позволит выявить все испорченные элементы электросхемы и вовремя их заменить, чтобы предотвратить перегорания прибора в обозримом будущем.

Замена перегоревших деталей

После того, как была проведена замена всех перегоревших деталей, необходимо установить уже новый предохранитель и проверить отремонтированный блок питания, включив его. Обычно, если все было выполнено правильно, а также соблюдены все нормы и предписания ремонтных работ, преобразователь заработает.

2.6. Основные неисправности, методы их поиска и устранения

2.6. Основные неисправности, методы их поиска и устранения

В этом разделе читателю предлагается анализ возможных неисправностей импульсных источников питания ATX конструктива на примере схемы, приведенной на рис.  2.2. Источник питания является преобразователем сетевого первичного напряжения, поэтому работа с ним требует особой подготовки и аккуратности. Перед проведением самостоятельных работ с прибором подобного типа следует ознакомиться с содержанием предыдущего раздела «Проведение работ с блоками питания конструктива ATX». Это позволит подготовить рабочее место для проведения ремонта, избежать ошибок и предотвратить возможную порчу измерительных приборов.

Если произошел отказ источника питания, прежде всего неисправный прибор следует подвергнуть тщательному визуальному осмотру. На этом этапе можно выявить наличие поврежденных элементов и предварительно локализовать место неисправности. Замену элементов, особенно в силовых цепях, следует производить на оригинальные, используемые в данном приборе. Если такой возможности нет, и требуется отыскать аналог, то подбирать его следует очень внимательно с учетом требований конструкции, надежности и безопасности.

Описание поиска возможных неисправностей составлено в предположении, что внешне элементы тестируемого источника питания выглядят нормально, без очевидных дефектов и повреждений. Печатный монтаж не поврежден или предварительные работы по его восстановлению уже проведены. Проверка источника проводится без нагрузки вторичных цепей, если иное не указано, на отдельном стенде. Перечень необходимого оборудования приведен в разделе 2.5. Вход сигнала PS-ON должен быть замкнут перемычкой на общий провод вторичной цепи. Все операции по монтажу и демонтажу, а также установке и удалению временных соединений производятся только на полностью обесточенном приборе.

После включения блока питания выходные вторичные напряжения отсутствуют. Сгорел предохранитель.

Возможная причина: во время эксплуатации было произведено ощибочное подключение блока питания к сети с напряжением 220 В, в то время как переключатель выбора напряжения был установлен в положение 115 В.

Алгоритм поиска неисправности:

1. Последовательно проверить целостность индуктивных элементов сетевого фильтра, выпрямительные диоды D11 – D14, конденсаторы C5 и C6, силовые транзисторы Q9 и Q10, диоды рекуперации D23 и D24.

2. Провести проверку активных компонентов узла автогенератора на транзисторе Q3.

3. Оценку работоспособности элементов произвести только после их демонтажа из печатной платы блока питания. Наиболее вероятен выход из строя активных силовых элементов схемы и конденсаторов C5 и C6.

4. После замены неисправных элементов проверку работоспособности каскадов проведите последовательно по методике, приведенной в разделе 2.5. Сначала выполните проверку функционирования ШИМ преобразователя и силового каскада на Q9 и Q10, согласно положениям подраздела 2.5.2. Затем к тестируемому блоку питания подключите трансформатор сетевой развязки согласно рис. 2.21. Убедитесь в работоспособности узла на Q3, сравнивая данные результатов своих измерений с осциллограммами, приведенными на рис. 2.4.

5. Без нагрузки по вторичным каналам проверьте работу силового каскада. В базовой цепи Q9 проведите контроль прохождения импульсного сигнала через пассивные элементы C21, R36, R40. Измерения проводите относительно эмиттера Q9. Аналогично проверьте базовую цепь Q10, подключая общий вывод осциллографа к его эмиттерной цепи. Проверьте наличие трехуровневого импульсного сигнала на коллекторе Q10, измеряя его относительно эмиттера Q10. Размах сигнала должен практически совпадать с уровнем напряжения питания силового каскада. Вид полученных осциллограмм напряжений сравните с приведенными на рис. 2.12, 2.13, снятыми в соответствующих точках.

Возможная причина: произошел пробой изоляции силовых транзисторов, установленных на общем радиаторе.

Алгоритм поиска неисправности:

1. Не производя демонтаж, проверить сопротивление между металлическими частями корпусов транзисторов Q9 и Q10, на которые выведены выводы коллекторов, и радиатором, на котором они закреплены. Если обнаружено, что сопротивление между ними составляет несколько килоом или менее, это служит признаком того, что изолирующая прокладка повреждена. Нужно выпаять транзисторы и проверить целостность прокладок и исправность транзисторов.

2. Неисправные транзисторы и пробитые прокладки заменить. Крепление новых транзисторов произвести через новые прокладки. После механической установки проверить сопротивление между корпусами Q9, Q10 и радиатором.

3. Проверить исправность диодного моста на D11 – D14 и резистивные элементы базовых цепей силовых транзисторов. При пробое транзисторов или прокладок они также могут быть повреждены.

4. После замены всех неисправных элементов, включая предохранитель, проверку силовой части преобразователя провести в два этапа. На первом этапе использовать методику подраздела 2.5.2, на втором – подраздела 2.5.3.

Возможная причина: отказ элементов в автогенераторном каскаде на Q3.

Алгоритм поиска неисправности:

1. Проверить омметром исправность транзистора Q3. Если произошел отказ, следует произвести замену.

2. Дополнительно осмотреть трансформатор Т8. Провода трансформатора не должны быть повреждены, на изоляции обмоток не должны просматриваться следы термических повреждений. Если эти следы наблюдаются, то существует большая вероятность разрушения эмали провода обмотки, что приведет к межвитковым замыканиям и снижению индуктивности первичной обмотки T8. Трансформатор следует заменить.

3. После замены элементов проверку функционирования каскада выполнять по методике подраздела 2.5.3. Вид осциллограмм напряжений на элементах этого каскада должен соответствовать осциллограммам, изображенным на рис. 2.4.

Сразу после включения источника питания происходит срабатывание защиты.

Возможная причина: не подается сигнал обратной связи на микросхему IC1.

Алгоритм поиска неисправности:

1. Из-за повреждения проводника печатной платы, соединяющего точку объединения резисторов R47, R46 и вывод IC1/1, или неисправности самих резисторов сигнал обратной связи нагрузки основных вторичных каналов не подается на микросхему ШИМ преобразователя. Отсутствие этого сигнала IC1 в начальный момент воспринимает как повышение потребления по вторичным каналам положительных напряжений. Происходит увеличение длительности импульсов возбуждения силового каскада на транзисторах Q9 и Q10. Напряжение на конденсаторе C19 возрастает и открывается транзистор Q6. Далее развивается процесс включения блокировки ШИМ преобразователя по входу IC1/4 через транзистор Q1.

2. Проверку работы ШИМ преобразователя провести с использованием методики описанной в подразделе 2.5.1. После включения стабилизированного внешнего источника 2 по рис. 2.22 проследить подачу сигнала обратной связи от выходного контакта канала +5 В через резистор R47 на вывод IC1/1. При уровне выходного напряжения внешнего источника 2, соответствующем +5 В, напряжение на выводе IC1/1 должно составлять 2,2–2,3 В.

Возможная причина: нарушены электрические связи между пассивными элементами, установленными в базовой цепи транзистора Q4.

Алгоритм поиска неисправности:

1. Провести электрическую проверку исправности элементов и проводников их соединяющих, подключенных к базовой цепи транзистора Q4.

2. Наиболее вероятная причина срабатывания защиты по этому каналу – нарушение связей между резистором R9 и анодом диода D4. В этом случае напряжение от вторичного канала +5 В не компенсируется отрицательными напряжениями. Транзистор Q4 открывается положительным напряжением, поступающим на его базу. Далее, в проводящее состояние переходит Q1 и подключает вывод IC1/4 к положительному напряжению вывода IC1/14. ШИМ преобразователь блокируется.

Возможная причина: срабатывание защиты вызвано неисправностью стабилитронов ZD1 или ZD3.

Алгоритм поиска неисправности:

1. Проверить исправность стабилитронов ZD1 и ZD3. Если хоть один из них неисправен и его внутренняя структура образует лишь сопротивление малой величины, то положительное напряжение вторичного канала через него будет поступать на базу Q4. Последовательное переключение транзисторов Q4 и Q1 приведет к срабатыванию защиты и блокировке микросхемы IC1.

Не вырабатывается напряжение питания для элементов дежурного режима +5VSB. Вторичные напряжения поступают независимо от наличия перемычки, соединяющей вход PS-ON с общим проводом.

Возможная причина: нарушена работоспособность элементов вторичной цепи автогенераторного каскада.

Алгоритм поиска неисправности:

1. Если ШИМ преобразователь запускается без подключения вывода PS-ON к общему проводу, то это указывает на то, что при подключении блока к питающей сети не формируется напряжение +5 VSB, подаваемое на этот сигнальный вход через резистор R22.

2. Подключить импульсный блок питания к первичной сети. Произвести проверку формирования напряжения на вторичной обмотке автогенераторного каскада. Измерения производить относительно общего провода вторичной цепи.

3. Последовательно проверить наличие импульсного напряжения на аноде D8, входе микросхемы IC3 и ее выходе. Если на холостом ходу напряжение во всех точках в норме, подключить к выходу канала резистор 10 Ом мощностью не менее 2 Вт и проверить нагрузочную способность микросхемы IC3.

4. Если обнаружено, что микросхема IC3 неисправна, то ее необходимо заменить. Затем повторно проверить правильность формирования напряжения питания для элементов дежурного режима.

При включении питания блок питания не вырабатывает вторичные напряжения. Автогенератор работает нормально.

Возможная причина: отказ микросхемы IC1 или элементов в промежуточном усилителе на транзисторах Q7 и Q8.

Алгоритм поиска неисправности:

1. Нормальная работа автогенераторного каскада указывает на то, что в первичной цепи импульсного преобразователя нет повреждений. Выход из строя силовых транзисторов вызвал бы перегорание предохранителя. Неисправность связана с работой IC1, элементов подключенных к ней или промежуточного усилителя на Q7 и Q8.

2. Поиск неисправного элемента можно производить, подключив блок питания к первичной сети. Предварительно к выходному контакту канала +5 В следует подсоединить внешний источник стабилизированного напряжения с таким же выходным уровнем. Для выключения защиты временно отключить резистор R8, отпаяв один из его выводов.

3. Подключить питание первичной сети и внешнего источника. Проверить появление положительного напряжения на выводе IC1/14. Напряжение на выводе IC1/4 должно иметь уровень, близкий к потенциалу общего провода.

4. На нормальное функционирование микросхемы ШИМ преобразователя указывают следующие признаки:

– наличие пилообразного напряжения на выводе IC1/5 с амплитудой 3 В;

– появление на выводе IC1/14 напряжения +5 В;

– при подаче на микросхему напряжения питания от 7 до 40 В от выпрямителя на диоде D9 на выходах IC1/8, 11 появляются импульсные последовательности. Отсутствие хотя бы одного из перечисленных признаков свидетельствует об отказе внутренних узлов IC1. Если выходные последовательности на выходах микросхемы сформированы, то следует проверить правильность функционирования каскада на транзисторах Q7 и Q8. Пользуясь описанием этого каскада, приведенным в разделе 2.4 и иллюстрациями его работы, необходимо проверить режимы работы элементов и коммутацию транзисторов в соответствии с импульсными сигналами, поступающими на их базы с выводов IC1.

Возможная причина: ложные срабатывания защиты из-за повреждения транзисторов в системе блокировки микросхемы IC1.

Алгоритм поиска неисправности:

1. Немотивированная блокировка работы микросхемы IC1 может быть вызвана неисправностью хотя бы одного из транзисторов Q1, Q2, Q4 – Q6.

2. Для выявления неисправного элемента следует включить блок питания в обычном режиме. Определить через какой транзистор из пары Q1 или Q5 на вывод IC1/4 поступает напряжение +5 В. Затем, отключив блок питания от сети, проверить омметром исправность транзистора, который во время проверки находился в проводящем состоянии, и транзисторов, подключенных к его базовой цепи.

Возможная причина: отказ пассивных элементов в базовых цепях Q9 и Q10.

Алгоритм поиска неисправности:

1. Произвести подключение внешних источников питания в соответствии со схемой, приведенной на рис. 2.22, и рекомендациями по конфигурации, изложенными в подразделе 2. 5.2. Если внешний источник стабилизированного напряжения не указывает на перегрузку по току, это является признаком того, что транзисторы Q9, Q10 не повреждены.

2. Проверить формирование импульсных последовательностей транзисторами Q7 и Q8. Если осциллограммы импульсов на коллекторах транзисторов промежуточного усилителя соответствуют изображению на рис. 2.10, проконтролировать поступление этих импульсов со вторичных обмоток трансформатора T2 в базовые цепи транзисторов Q9 и Q10.

3. Используя материал описания работы силового каскада и рис. 2.12, 2.13, проверить правильность прохождения импульсного сигнала через базовые цепи силовых транзисторов и формирование с их помощью трехуровнего сигнала на коллекторе Q10. Если в базовой цепи присутствуют неисправные элементы, то вид осциллограмм импульсных напряжений в базовой цепи и на коллекторе Q10 будет отличаться от приведенных на рис. 2.12, 2.13.

Компьютер с данным блоком питания не работает. Уровни вторичных напряжений в норме.

Возможная причина: не вырабатывается сигнал «питание в норме» (POWERGOOD).

Алгоритм поиска неисправности:

1. Вероятно, на микросхему IC2 не поступает какое-либо из подаваемых напряжений или она неисправна.

2. Подключить блок питания к сети стандартным образом. Проверить поступление напряжений через резистор R43 от входа сигнала PS-ON на вывод IC2/6, с вывода IC1/2 на контакты IC2/2, 5, исправность резисторов R33 и R42. Рабочий уровень входного сигнала PS-ON низкий. Если все элементы в норме и напряжение поступает на соответствующие выводы, на контакте IC2/7 должно быть напряжение примерно +5 В. Такое же напряжение устанавливается на IC2/1.

3. Если этого не происходит, микросхема IC2 неисправна и требует замены.

Плохая стабилизация вторичного напряжения +3,3 В.

Возможная причина: нарушение работы стабилизатора на ZIC1 и Q11.

Алгоритм поиска неисправности:

1.  Непосредственная стабилизация вторичного напряжения +3,3 В производится каскадом на транзисторе Q11 и маломощном стабилизаторе ZIC1. Вторичное напряжение на этот стабилизатор подается от тех же обмоток, что и на канал +5 В. Между выводом 4 вторичной обмотки трансформатора T3 и анодом одного из выпрямительных диодов сборки SBD3 включен сглаживающий дроссель L6. Благодаря этому дросселю, импульсы на аноде указанного диода имеют меньшую амплитуду, чем непосредственно на выводе 4 вторичной обмотки. На катодах диодов SBD3 напряжение несколько ниже, чем в аналогичной точке канала +5 В, но без введения дополнительной регулировки будет превосходить номинал, установленный в +3,3 В. Выходной уровень канала +3,3 В регулируется частичным разрядом положительной обкладки конденсатора C34 через транзистор Q11 при подключении ее к источнику отрицательного напряжения, образованного выпрямительным диодом D31 и конденсатором С28.

2. Для проверки работы стабилизатора следует установить различные нагрузки по каналам +5 и +3,3 В. Для этого надо подключить к выходу канала +5 В резистивную нагрузку с номиналом «1,5 Ом и общей мощностью 20 Вт. К выходу канала +3,3 В присоединить резистивную нагрузку 3 Ом мощностью 4 Вт. В таком режиме разбаланса нагрузок энергии по каналу +5 В поступает больше, чем по цепи +3,3 В. При нормальной работе стабилизатора напряжение в точке соединения ZIC1 и резистора R54 поддерживается постоянным на уровне «2,72,8 В. Напряжение же на эмиттере транзистора Q11 изменяется в некоторых пределах. При повышении выходного напряжения канала +3,3 В транзистор Q11 открывается. Происходит замыкание положительной обкладки конденсатора C34 через резистор R55 и открытый транзистор Q11 на конденсатор C28, напряжение на правой по схеме обкладке которого имеет отрицательный уровень.

3. Следует проконтролировать работу этого каскада и проверить уровень напряжения на выходе ZIC1. Если реальная логика работы стабилизатора отличается от описанной или уровень напряжения на ZIC1 превышает указанное значение, требуется замена Q11 или маломощного стабилизатора.

При коротком замыкании по основным каналам вторичного напряжения не происходит блокировки ШИМ преобразователя.

Возможная причина: неисправность транзистора Q4 или элементов в его базовой цепи.

Алгоритм поиска неисправности:

1. Режим длительной блокировки работы микросхемы IC1 устанавливается либо при отсутствии низкого уровня сигнала PS-ON, либо при срабатывании пары транзисторов Q4 и Q1. В первом случае микросхема блокируется только в течение периода, когда транзистор Q2 находится в состоянии насыщения. Работа ШИМ преобразователя возобновляется, когда транзистор Q2 установлен в состояние отсечки. Во втором случае блокирующее напряжение через открытый транзистор Q1 подается на вывод IC1/4. Проводящее состояние транзистора Q1 поддерживается открытым транзистором Q4, подключенным к базовой цепи Q1. Включение транзистора Q4 может происходить от сигналов, поданных в его базовую цепь через диоды D4 и D5. После переключения Q1 к базовой цепи Q4 подключается положительное напряжение, поступающее через Q1, D3, R11. Это напряжение удерживает как Q4, так и Q1 в проводящем состоянии. Если транзистор Q4 неисправен, то защита не будет блокировать работу IC1 при КЗ по отрицательным каналам вторичных напряжений. При возникновении КЗ по каналу +5 В блокировка будет возникать только в течение промежутка времени, когда КЗ действует. Источник питания будет возобновлять свою работу автоматически после устранения КЗ.

2. Чтобы выяснить причину кратковременной блокировки блока питания его необходимо подключить к сети и искусственно создать КЗ по каналу -5 В. Проследить подачу положительного напряжения через D4 на базу Q4. Если открывающее положительное напряжение на базу транзистора поступает, а он не переходит в проводящее состояние, то Q4 неисправен и требуется его замена.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Всё о компьютерном блоке питания

Компьютерный блок питания — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электроэнергией постоянного тока путём преобразования сетевого напряжения до требуемых значений.

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.

А вот схема электрическая принципиальная, разбитая на блоки.

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Типовая схема с ШИМ-контроллером выглядит примерно так:

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.

Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.

Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.

Дополнительные функции

Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.

В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.

Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.

Проверка работоспособности

К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.

Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.

Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3…5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.

Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.

При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.

В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.

Использование блока питания без компьютера

Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.

На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.

Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.

Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.

Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.

Один из вариантов исполнения подобной схемы:

Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3. 3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.

Ранее ЭлектроВести писали, что глава Tesla подтвердил, что после внедрения полного автопилота Tesla больше не будет считаться автомобилем. Это будет прибыльный бизнес роботакси, так что стоить электрокары будут в несколько раз дороже «обычных» машин. Вероятно, индивидуальным покупателям их и вовсе продавать не будут.

По материалам: electrik.info.

возможные причины и способы решения — ABC IMPORT

Содержание статьи:

Блок питания — это аппаратный компонент ПК, который подает энергию на внутренние устройства. Он получает ее от домашней электросети и преобразует переменный ток в постоянный, который нужен элементам компьютера. И также он регулирует напряжение внутри компьютерной сети до рабочего уровня, что позволяет машине работать стабильно и не перегреваться. Он является неотъемлемой частью любого ПК и должен работать исправно, чтобы другие компоненты надежно функционировали. Поэтому если блок питания не запускается, пользователю необходимо провести его проверку, а при необходимости, ремонт или замену.

Все о блоках питания

Переменный ток сети не может напрямую подаваться в ПК, поскольку его компоненты используют энергию постоянного тока и нужно предварительно выполнить процесс выпрямления. Этот переход и обусловливает основную задачу блока питания (БП) в качестве выпрямителя переменного тока.

Вам будет интересно:Как узнать конфигурацию компьютера? Основные составные части персонального компьютера

Источник устроен таким образом, что гарантирует нормативное напряжение всем узлам ПК. Для этого он распределяет мощность по разным кабелям с рабочим напряжением. Например, разъем жесткого диска DVD обеспечивает 5 вольт для электронных узлов и 12 вольт для двигателя своего привода.

Компоненты ПК имеют различные соединения, но каждый источник имеет все необходимые разъемы для стандартной сборки. Особенно важно: блок должен иметь такое количество штепсельных вилок для жестких дисков и дисководов CD / DVD, чтобы можно было легко установить дополнительные дисководы.

Большинство офисных ПК имеют небольшую модель с мощностью 300 Вт. Адаптер для ПК с поддержкой игр должен обеспечивать мощность не менее 400 Вт, потому что сильные процессоры и быстрые видеокарты требуют много энергии. В этом случае может появиться сбой, когда блок питания запускается и выключается сразу же.

Если в ПК работает несколько видеокарт, то может потребоваться модель мощностью 500 или 650 Вт. В настоящее время продаются устройства мощностью 1 000 Ватт. Но они редко применимы. Если приобрести маломощный блок, компьютер может выйти из строя, например, во время игр или просмотра видео. Это происходит потому, что соответствующие компоненты ПК потребляют много энергии. Перегрев является основной причиной того, почему блок питания не запускается.

Описание источника постоянного тока ATX

Блок ATX — это преобразователь энергии. Он преобразует переменный ток (AC), подаваемый энергоснабжающей компанией, в постоянный ток (DC) с необходимым уровнем напряжения, достаточным для компонентов ПК, что соответствует 110-115 или 220-230 вольт.

Это преобразование выполняется с помощью процессов:

  • переключения;
  • выпрямления;
  • фильтрации.

На многих ПК установлены блок, называемый SMPS или импульсным. Когда не запускается импульсный блок питания и потребуется провести тестирование его работы, пользователям необходимо строго выполнять технику безопасности и меры по защите от ударов электрическим током. В БП присутствуют опасные напряжения и токи. Внутри есть конденсаторы, которые накапливают энергию и могут поразить человека электротоком, поэтому ремонт блока должен выполняться только квалифицированным персоналом.

Вам будет интересно:Что делать, если SSD-диск не определяется?

Рекомендации и меры защиты в случаях, если не запускается блок питания ATX:

  • Пользователь может легко найти источник на системном блоке, увидев вход, к которому подключен шнур, не открывая компьютер.
  • Если отключить и снять БП, то он будет выглядеть в виде металлической коробки с вентилятором внутри и несколькими кабелями, прикрепленными к нему.
  • Рядовому пользователю не рекомендуется отсоединять блок питания, лучше оставить его в корпусе.
  • PSU: аппаратный компонент компьютера

    PS, P / S или PSU являются аббревиатурами для блока питания. Ниже приведен список элементов, которые поставляются в комплекте с БП:

  • Шнур питания к компьютеру.
  • Корпус для предотвращения попадания пыли в БП.
  • Вентилятор для охлаждения и отвода воздуха.
  • Выключатель для изменения напряжения.
  • Пакеты кабелей, размещенные на передней внутренней панели БП. Они подключаются к материнской плате компьютера и внутренним компонентам. Поэтому если не запускается блок питания, материнская плата – это первое устройство которое перестанет работать.
  • Разъемы для дисков.
  • Разъем материнской платы представляет собой 24-контактный ATX, который при подключении обеспечивает ее питанием.
  • Селектор входного напряжения.
  • Функциональный блок ATX обеспечивает ток в режиме ожидания +5 В, 720 мА по фиолетовому проводу на контакт двигателя. Этот ток также подается на слоты PCI, даже когда компьютер выключен и поврежден. Поэтому, когда блок питания не запускается, есть дежурка. Поэтому рекомендуются при отключении БП, подождать 30 секунд перед началом работы внутри системного блока, чтоб принять надлежащие меры предосторожности против электростатического разряда.

    Диагностика проблем с питанием

    Проблемы с электропитанием могут трудно диагностироваться, особенно если пользователь не знает, что искать. Вот несколько советов о том, как быстро определить неисправность, если блок питания не запускается и как устранить этот сбой.

    Плохой источник может быть предпосылкой многих проблем с ПК. Опыт может помочь техническому специалисту в диагностике проблем, вызванных неисправным источником, который обычно игнорируют новички.

    Любая непостоянная проблема может быть вызвана неисправным источником. Общие симптомы, когда компьютерный блок питания не запускается:

  • Сбой при включении напряжения.
  • Самопроизвольная перезагрузка или прерывистая блокировка во время стабильной работы.
  • Ошибки памяти.
  • HDD и вентилятор не вращаются.
  • Перегрев из-за отключенного вентилятора.
  • Частые отключения, которые вызывают перезапуск системы.
  • Удары током, которые ощущаются при прикосновении к корпусу.
  • Есть также некоторые очевидные подсказки, которые должны дать ответ на вопрос, почему не запускается блок питания. Они включают:

  • Система, которая полностью мертва, в ней ничего не происходит, когда ПК включен.
  • Дым, который появляется при включении ПК.
  • Другой способ проверить БП — это использовать специальное программное обеспечение. Оно позволяет обнаружить перепады температуры или производительности, покажет, сколько энергии подается на какие компоненты, что поможет быстрее решить проблему.

    Электрическая проверка БП

    Вам будет интересно:Графический ускоритель Intel Media Graphics Accelerator 3150. Характеристики и специализация

    Сначала убеждаются, что компьютер подключен к электросети через розетку. При необходимости можно использовать лампу или фен, чтобы удостовериться, что электрическая розетка работает. В некоторых случаях на БП присутствует переключатель, убеждаются, что он включен. Иногда на блоке может быть установлен красный выключатель меньшего размера для выбора типа напряжения.

    Источники питания последних выпусков иногда имеют электрический фильтр, который предотвращает перезагрузки компьютера после короткого замыкания. Чтобы исправить этот сбой, просто отсоединяют шнур питания от компьютера, затем нажимают и удерживают кнопку питания в течение нескольких секунд, чтобы разрядить накопленную энергию и сбросить защиту.

    Блок питания работает правильно, если напряжения в проводах соответствует параметрам:

    • синий + 11,20 В;
    • желтый + 11,20 В;
    • фиолетовый + 5,20 В;
    • оранжевый + 3,33 В;
    • красный + 5,20 В;
    • белый + 5,20 В;
    • серый + 5,20 В.

    Источники питания не предназначены для работы в режиме ожидания, поэтому напряжения могут отличаться незначительно от приведенной ниже таблицы, и по этой причине источник должен работать таким образом только в течение короткого времени. Напряжение по номерам контактов:

    • № 1 — 3,3 В;
    • № 2 — 12 В;
    • № 3, 5, 6, 7 — GND;
    • № 4 — питание;
    • № 8 — 5 В;
    • № 9, 10 — 5 В;
    • № 11, 12 — 3,3 В;
    • № 13, 15, 17 — GND;
    • № 14, 16 — 5 В;
    • № 18 — PW-OK;
    • № 19 — 5 В;
    • № 20 — 12 В.

    Для текущих источников питания линия управления Power/On обычно зеленого цвета.

    Упрощенный метод проверки ATX

    Если блок питания ATX не запускается, то проверяют правильность работы на соответствие его напряжений техническим данным производителя. Для выполнения этих тестов используют отвертку, чтобы открыть коробку, кабель для обхода питания. В этом случае используют простую скрепку и один мультиметр для выполнения необходимых измерений. Прежде всего, нужно принять определенные меры предосторожности перед тем, как открывать корпус БП. Источник должен быть отключен от электросети и кнопка питания на задней панели в выключенном положении.

    Для начала необходимо открыть коробку с помощью отвертки и найти разъем БП, состоящий из 24 (20 + 4) контактов. После нахождения отключают его от материнской платы. Следующим шагом находят зеленый провод, называемый PS_ON (PowerSupply ON), который подключен к общему черному кабелю БП. С помощью перемычки с зажимом зеленый провод соединяют с любым черным проводом разъема, после чего будет искусственно включаться источник без необходимости подключения базовой платы. После этого подключают кабель питания к электросети и нажимают кнопку на задней панели, чтобы перевести его во включенное состояние. Для того чтобы убедиться, что мост сделан правильно, включают источник питания, и если вентилятор вращается и гонит воздух, то все сделано правильно.

    Теперь нужно провести измерения, для чего используют мультиметр. Красный и черный разъемы расположены в положении измерения натяжения: черный разъем для COM и красный для V Гц.

    Поворотный переключатель расположен в зоне измерения постоянного напряжения в положении 20, поскольку будет измерять напряжение 3,3 В, 5 В и 12 В.

    Краткое примечание о полярности

    Если блок питания не запускается с первого раза, при проведении проверки нужно обеспечить полярность измерений мультимером. Помещают черный измерительный провод мультимера в любой общий кабель, а красный по очередности в кабель разных цветов, которые находятся в разъеме БП. Замеряют напряжения на соответствие паспортным значениям, указанным производителем. Все напряжения, которые будут определяться, являются постоянными. Провода БП имеют цветовую кодировку.

    Измерительные выводы также имеют цветовую кодировку: красный — положительный (+), а черный — отрицательный (-). Чтобы проверить выходное напряжение на материнской плате, помещают черный измерительный провод на черный контакт, а красный — на вывод Power_Good (P8-1) источников питания AT, Baby AT и LPX, а также контакт 3 на 20-контактных разъемов ATX. Он должен показывать от +3 до +6 вольт постоянного тока. Если пользователь не видит это напряжение, то блок неисправный.

    Любое напряжение в пределах 10 процентов от указанного приемлемо для целей тестирования. Некоторые проблемы не могут быть обнаружены с помощью прямого измерения, поэтому наличие запаса для замены крайне важно.

    Ревизия с помощью расширенного тестера

    Следующие инструкции относятся только к специализированному тестеру для блоков питания ATX Coolmax PS-228, или для любого другого аналогичного тестера с ЖК-экраном.

    Важно: этот процесс считается сложным, пользователю нужно внимательно следовать инструкциям ниже.

    Необходимое время: тестирование БП с тестовым устройством для блока питания обычно занимает около 30 минут или чуть больше для новичков.

    Алгоритм действий:

  • Ознакомиться с важными советами по безопасности при ремонте ПК. Проверка БП включает в себя работу с электричеством высокого напряжения, потенциально опасную деятельность. Безопасность должна быть главной заботой во время проверки блока.
  • Открыть корпус, предварительно выключив компьютер, отсоединив шнур питания и все, что подключено к внешней стороне компьютера.
  • Переместить отключенный блок в место, где можно легко работать, например, на столе. Пользователю не понадобится клавиатура, мышь, монитор или другие внешние периферийные устройства.
  • Отсоединить разъемы питания каждого внутреннего устройства на боковой панели. Простой способ убедиться в том, что каждый разъем питания отключен, — это снять комплект шнура питания, который идет от БП. Каждая группа кабелей должна заканчиваться одним или несколькими разъемами питания. Нет необходимости отсоединять отсоединять кабели данных или другие кабели, которые не подключены к БП.
  • Сгруппировать все силовые кабели и разъемы для удобства тестирования. При организации силовых кабелей рекомендуется отсоединить их и вынуть из корпуса компьютера, как можно дальше. Это позволит максимально легко подключить разъемы питания к расширенному тестеру.
  • Убедиться, что переключатель напряжения источника питания, расположенный на задней панели, правильно настроен для страны пребывания. В США этот переключатель должен быть настроен на 110 В / 115 В, а в России на 220/230.
  • Подключить 24-контактный разъем питания ATX и 4-контактный разъем питания ATX на материнской плате в тестере для блоков питания ПК. В зависимости от источника может не быть 4-контактного разъема материнской платы, но может быть 6 или 8 контактов. Если имеется более одного типа, просто подключаются поочередно вместе с 24-контактным разъемом основного питания.
  • Подключить БП к электрической розетке и включить выключатель. Некоторые блоки не имеют переключателя на задней панели. Если источник, который тестируется, не работает, просто подключают устройство для подачи питания. Нажать и удерживать кнопку включения / выключения тестера для блоков питания ПК. Пользователь должен услышать, что вентилятор внутри источника начинает работать.
  • Вам будет интересно:Как подключить миди-клавиатуру к компьютеру: необходимый переходник, порядок сборки и настройки

    Некоторые версии усовершенствованного тестера Coolmax PS-228 для БП не требуют постоянного нажатия кнопки питания. Тот факт, что вентилятор работает, не означает, что источник питания правильно подает питание на остальные устройства. Если не запускается вентилятор блока питания при тестировании, даже если источник находится в хорошем состоянии, возможно он перегорел и его нужно проверить отдельно.

    ЖК-дисплей расширенного тестера для источников должен быть включен, и пользователь увидит цифры тестирования по всем показателям. Если напряжение показывает «LL» или «HH» или если ЖК-дисплей не горит, БП не работоспособный, поэтому придется заменить его.

    Контроль периферийных разъемов питания

    Если нужна проверка отдельных разъемов, продолжают тестирование БП. Алгоритм проверки:

  • Выключают выключатель на панели БП и отключают его от розетки.
  • Подключают разъем гнезда тестера к соответствующему разъему SATA с 15-контактной модификацией Molex. Нельзя подключать более одного из этих периферийных разъемов одновременно, иначе можно повредить тестер.
  • Два разъема на материнской плате должны оставаться подключенными для этих тестов с другими разъемами.
  • Подключают источник, а затем включают кнопку на панели.
  • Индикаторы с маркировкой +12 В, + 3,3 В и +5 В соответствуют напряжением, подаваемым через подключенный периферийный разъем питания, и должны гореть должным образом. В противном случае требуется замена источника питания.
  • Разъем SATA обеспечивает +3,3 В постоянного тока. Можно увидеть напряжение, подаваемое различными разъемами, просмотрев таблицы выходных контактов разъемов ATX.
  • Повторить этот процесс для других разъемов питания по одному, кроме разъема на материнской плате, которые все время остаются подключенными к тестеру.
  • После завершения испытаний выключают подачу энергии, отсоединяют кабели тестера, а затем подключают внутренние устройства ПК к источнику.
  • После того как БП был протестирован или заменен на новый, можно снова включить ПК.
  • Замена неисправного устройства

    Если блок питания компьютера не запускается, вентилятор не работает, а тестирование показывает, что источник не обеспечивает надлежащее выходное напряжение, его следует отремонтировать или заменить. Поскольку БП не содержит много частей, обслуживаемых пользователем, для большинства людей это означает замену. Перед началом убеждаются, что новый источник имеет правильный форм-фактор и номинальную мощность. Мощность в ваттах должна быть такой, как и у старой модели. Лучше при замене выбирать по мощности на один размер больше.

    Замена БП выполняется довольно просто:

  • Отключают все кабели от задней части устройства.
  • Открывают корпус и отсоединяют все кабели привода и кабели, питающие материнскую плату.
  • Проверяют провод к вентилятору процессора. Обычно это небольшая пара, которая может сломаться, если ее слишком сильно потянуть. На некоторых компьютерах также необходимо отключить выключатель.
  • Отсоединяют источник питания от корпуса после того, как все провода питания будут свободны, и вынимают его из корпуса.
  • Вставляют новый БП в корпус и подключают все провода, начиная с материнской платы.
  • Все, тестирование и замена БП завершены.

    Аналогично можно выполнить проверку, если не запускается блок питания телевизора. Источник питания ЖК-телевизора соединен с большой печатной платой, расположенной посередине корпуса, и связан с большим количеством трансформаторов, двух микросхем и конденсаторов. Как бы не хотелось, чтобы телевизор работал вечно, все же приходится столкнуться с проблемами неисправности источника. Тестирование источника энергии ЖК-телевизора позволит точно определить, в чем заключается сбой, и какой требуется ремонт.

    После того как пользователь провел успешно все тесты и определил, что блок питания исправен, а компьютер не запускается, то, скорее всего, БП уходит в защиту. В этом случае рекомендуется отсоединять поочередно все устройства (CD-ROM, FDD, HDD, звук, видео, память) от блока и материнки, таким образом устанавливая источник поломки.

    Источник

    Импульсные блоки питания.Виды и работа.Особенности и применение

    Практически в каждом электронном приборе есть блок питания – важный элемент монтажной схемы. Блоки применяются в устройствах, требующих пониженного питания. Базовой задачей блока питания считается уменьшение сетевого напряжения. Первые импульсные блоки питания сконструированы после изобретения катушки, которая работала с переменным током.

    Применение трансформаторов дало толчок развития блоков питания. После выпрямителя тока осуществляется выравнивание напряжения. В блоках с преобразователем частоты этот процесс проходит по-другому.

    В импульсном блоке основу составляет инверторная система. После выпрямления напряжения образуются прямоугольные импульсы с высокой частотой, подаются на фильтр выхода низкой частоты. Импульсные блоки питания преобразовывают напряжение, отдают мощность на нагрузку.

    Рассеивание энергии от импульсного блока не происходит. От линейного источника идет рассеивание на полупроводниках (транзисторах). Его компактность и малый вес также дает превосходство над трансформаторными блоками при одинаковой мощности, поэтому часто линейные блоки заменяют импульсными.

    Принцип действия

    Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

    Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

    Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

    Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

    После выпрямления напряжения сети в действие вступает инвертор, который преобразовывает ток. Пройдя через коммутатор, имеющий большую энергию выхода, из постоянного получается переменный ток. С обмоткой трансформатора в несколько десятков витков и частотой сотни герц блок питания работает в качестве усилителя низкой частоты, она получается больше 20 кГц, она не доступна слуху человека. Коммутатор изготовлен на транзисторах с многоступенчатым сигналом. Такие транзисторы имеют низкое сопротивление, высокую возможность прохода токов.

    Схема работы ИБП

    В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

    Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:
    • Быстрое восстановление, что дает возможность иметь малые потери.
    • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.

    Далее напряжение сглаживается фильтром, в него входят конденсатор, дроссель. Для частот коммутации выше требуются составляющие с малой индуктивностью и емкостью.

    Схема импульсного блока минимального размера

    В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

    Некоторые виды ИБП
    • Простой ИБП на IR2153, распространен в России.
    • Импульсные блоки питания на TL494.
    • Импульсные блоки питания на UC3842.
    • Гибридного типа, из энергосберегающей лампы.
    • Для усилителя с повышенными данными.
    • Из электронного балласта.
    • Регулируемый ИБП, механическое устройство.
    • Для УМЗЧ, узкоспециализированный блок питания.
    • Мощный ИБП, имеет высокие характеристики.
    • На 200 В – на напряжение не более 220 вольт.
    • Сетевой ИБП на 150 ватт, только для сети.
    • Для 12 В – нормально работает при 12 вольтах.
    • Для 24 В – работает только на 24 вольта.
    • Мостовой – применена мостовая схема.
    • Для усилителя на лампах – характеристики для ламп.
    • Для светодиодов – высокая чувствительность.
    • Двухполярный ИБП, отличается качеством.
    • Обратноходовый, имеет повышенные напряжение и мощность.
    Особенности

    Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

    Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

    Особенности лабораторных блоков

    Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

    В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

    Применение импульсных блоков

    Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

    Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

    Достоинства и недостатки
    ИБП имеет следующие преимущества и достоинства:
    • Небольшой вес.
    • Увеличенный КПД.
    • Небольшая стоимость.
    • Интервал напряжения питания шире.
    • Встроенные защитные блокировки.

    Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

    У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

    Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

    Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

    Недостатки

    Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

    Импульсные блоки питания не рекомендуется подключать как с низкой нагрузкой, так и с высокой. Если на выходе резко упадет ток ниже установленного предела, то запуск может оказаться невозможным, а питание будет с искажениями данных, которые не подходят к диапазону работ.

    Похожие темы:

    мир электроники — Шасси ETA-5. Не запускается источник питания. Из практики ремонта

    Секреты телемастера

    материалы в категории

    Из практики ремонта

    Шасси ETA-5. Применяется в бюджетных телевизорах Калининградской сборки. Самы распространенные модели Akai 29CTU80BB, Erisson 21SF40, Thomson 21U18, Shivaki CRT-2186UX и некоторые другие.

    Схема шасси ETA-5— ниже во вложении.

    Неисправность- не запускается источник питания.
    Предварительные замеры показали следующее: на ШИМ STRG 65653 напряжения: вывод 1: 300V, вывод 4: 11V. На выходах ТПИ- напряжения отсутствуют. Из ТПИ слышен «тикающий» звук.

    Вспоминаем теорию: как импульсный источник питания: ШИМ-генератор (на микрухе или транзисторный- не важно), раскачивает первичную обмотку ТПИ. За счет этого и появляются выходные напряжения. Но импульсный источник питания (ИИП) должен обязательно иметь цепи стабилизации и регулировки. Для управления работой ШИМ могут применяться два варианта цепей стабилизации- либо с отдельной обмотки ТПИ, либо путем замера выходных напряжений. Во втором случае управление работой ШИМ производится через оптопару.
    Кроме этого в каждом ИИП должен быть предусморен еще и режим перегрузки на случай непредвиденного замыкания во вторичных цепях.
    Если кому нужно более подробно и с примерами- то вам сюда 

    Вернемся к нашему случаю: так как ТПИ издает характерное «цыкание», следовательно ШИМ пытается запустится.

     Для того чтобы ШИМка начала работать ей необходимо питание. Питание в данном случае питание здесь осуществляется так: для того чтобы запустится на вывод 4 подается напряжение с сети через гасящий резистор R806. После того как ИИП запустился, питание на ШИМку будет поступать с вывода 1 ТПИ через R811 и VD807. Фильтрует все это дело конденсатор C812 (смотрим кусок схемы)

    ШИМ здесь у нас STRG5653, смотрим даташит: (даташит полностью во вложении)


    Напряжение питания ШИМ должно быть в пределах 14…17V. В реальности имеем всего 11V. Маловато….

    Причиною может быть сухой конденсатор C812. Под рукою ESR- метра не оказалось, поэтому просто подкинул еще один кондер с обратной стороны- напряжение на выводе 4 поднялось до 15V, но ИИП все равно не запускается- только «цыкания» стали более редкими.

    Едем дальше- необходимо исключить перегрузки по выходам: для начала просто проверяем мультиметром выходные диоды.
    Проблема обнаружилась практически сразу- по выходу +16V (диод VD809 оказалось КЗ- мертвая микросхема УНЧ).


    УНЧ пока временно отключил чтобы избавится от КЗ. Из осторожности не попалить аппарат дальше- отпаял строчный транзистор и подвешал лампочку на +B.

    Включаем- ИИП запустился, но напряжения занижены. На +B напруга всего +80V. Начинаем проверять цепи стабилизации:
    Цепь стабилизации на данном шасси выполнены привязана к выходу +17V (не к +B) как обычно- от конденсатора C822 через R814 напряжение поступает на оптрон. С оптрона-же два варианта: в рабочем режиме- через VD816, VD819 оптрон подвязан к стабилитрону VD817, а в дежурке- открывается транзистор VD803 и напряжение должно упасть. проверяем транзистор- так и есть: «битый» переход К-Э.

    Как выяснилось чуть позже- аппарат грозовой был…

    Основы поиска и устранения неисправностей источников питания

    Когда часть оборудования оказывается полностью мертвой, первое, на что следует обратить внимание, — это источник питания. Если для поиска неисправностей такого рода используется осциллограф, это должен быть ручной прибор с батарейным питанием, изолированный от земли, по крайней мере, вначале. Причина в том, что могут быть внутренние напряжения, которые упоминаются, но плавают над землей, состояние, которое может создавать опасные токи короткого замыкания при подключении к настольному осциллографу.Это особенно верно для импульсных источников питания (SMPS), где обе стороны цепи плавают над землей.

    В SMPS возможен ряд конфигураций, в первую очередь понижающая, повышающая и инвертирующая понижающая-повышающая. В каждом из них MOSFET — это главный разум. Он выполняет переключение, в то время как диод определяет направление, в котором текут носители заряда, а катушки индуктивности и конденсаторы накапливают электрическую энергию. SMPS регулирует выход, непрерывно изменяя рабочий цикл, в отличие от линейного источника питания, который регулирует выход, внося необходимые изменения, регулируя количество рассеиваемой мощности.

    Понижающий преобразователь SMPS аналогичен линейному источнику питания с понижающим трансформатором. Когда переключатель замкнут, на катушку индуктивности подается напряжение. Когда переключатель разомкнут, ток через катушку индуктивности продолжает течь. Обратная связь контролирует ширину импульса с постоянной частотой повторения или регулирует частоту повторения с постоянной шириной импульса.

    Повышающий преобразователь SMPS аналогичен линейному источнику питания с повышающим трансформатором. Когда переключатель замкнут, ток индуктора увеличивается.Когда переключатель выключается, возникают скачки напряжения, поскольку индуктор пытается поддерживать постоянный ток, чего он не может сделать, поскольку индуктор использует всю доступную энергию для создания своего магнитного поля. В этом месте диод проводит ток, и ток из катушки индуктивности течет в конденсатор. Это объясняет более высокое выходное напряжение по сравнению с входным.

    В SMPS транзистор, переведенный в область насыщения, периодически прикладывает нерегулируемый постоянный ток на входе к катушке индуктивности, которая функционирует как запоминающее устройство. Во время каждого импульса его магнитное поле увеличивается до тех пор, пока переключатель не будет выключен. Затем сохраненная энергия фильтруется. Опорное напряжение сравнивается с выходным сигналом в цепи обратной связи, изменение ширины импульса или частоты. SMPS может работать с частотным входом переменного тока или с нерегулируемым входом постоянного тока.

    В типичном SMPS сетевое питание поступает в сеть через сетевой фильтр. Затем мощность выпрямляется и сглаживается до высокого постоянного напряжения (несколько сотен вольт). Затем один или несколько транзисторов (или полевых МОП-транзисторов) включают и выключают это высокое постоянное напряжение для управления первичной обмоткой трансформатора.(Хотя некоторые топологии SMPS бестрансформаторные.) Напряжение выпрямляется и фильтруется на вторичной стороне трансформатора.

    Регулировка выхода осуществляется путем переключения транзисторов через схему управления, которая определяет выходное напряжение (и входной ток) и соответственно регулирует время включения и выключения транзистора. Эта цепь управления часто находится на первичной стороне и может получать питание от дополнительной обмотки трансформатора. Образец выходного напряжения обычно возвращается через оптрон.(Опять же, некоторые конструкции SMPS реализуют обратную связь без использования оптопары.) В некоторых случаях схема управления находится на вторичной стороне и управляет переключателем через небольшой дополнительный трансформатор.

    Следует отметить, что у ИИП есть стороны высокого и низкого напряжения (первичная и вторичная стороны). Трансформатор изолирует первичную и вторичную стороны. (Опять же, существуют бестрансформаторные ИИП, в которых не реализована изоляция.) Часто, если земля выхода не подключена к заземлению сети, небольшой высоковольтный конденсатор соединяет эти две земли с высокой частотой.

    Поскольку половина компонентов SMPS напрямую подключается к сетевому напряжению, на первичной стороне источника питания есть опасные напряжения. Накопительный конденсатор большой емкости заряжается при высоком напряжении и может сохранять опасное напряжение даже при отключении сетевого питания. SMPS часто включают в себя истекающие резисторы для рассеивания этого напряжения, но эти резисторы могут быть сломаны, чтобы конденсаторы могли оставаться заряженными. Следовательно, лучше всего разряжать конденсаторы через подходящий резистор (обычно несколько кОм) через изолированные щупы, как на мультиметре.Затем измерьте напряжение, чтобы убедиться, что оно равно нулю, прежде чем продолжить. Также имейте в виду, что радиаторы часто не заземлены и могут находиться под напряжением сети.

    Аналогичным образом убедитесь, что все конденсаторы разряжены. Многие неисправные электролитические конденсаторы деформируются или раздуваются. Другие визуальные индикаторы включают сгоревшие черные резисторы и компоненты, которые пахнут горелым, особенно трансформатор. У трансформатора, который пахнет горелым, возможно короткое замыкание. Если это так, часто лучше просто заменить SMPS.

    Хотя это может показаться очевидным, поиск неисправности при пропадании питания начинается с проверки сетевого предохранителя. Перегоревший предохранитель обычно означает наличие большого количества неисправных компонентов; исправный предохранитель может означать, что проблема вызвана одним компонентом.

    Состояние предохранителя тоже полезно. То, что горело медленно, означает, что отказ не был катастрофическим. Аварийный предохранитель подразумевает сильный ток, повредивший множество компонентов. К сожалению, некоторые предохранители заполнены песком и скрывают то, что произошло.

    Уловка для первого испытания источника питания с перегоревшим предохранителем — это временно заменить предохранитель на лампочку. Лампа должна иметь примерно такую ​​же мощность, что и SMPS. Это предотвращает более катастрофические отказы и позволяет избежать неудобств, связанных с повторной заменой предохранителей. Если все в порядке, лампочка должна мигать долю секунды, а затем слегка светиться. Если короткое замыкание все еще есть, лампочка будет ярко светиться — пора искать причину.

    Разомкнутый предохранитель сигнализирует о том, что с питанием действительно что-то пошло не так, например, короткое замыкание. Типичные проблемы включают закороченные силовые транзисторы или выпрямительные диоды, особенно в первичной обмотке. Диодная функция мультиметра может помочь обнаружить короткие замыкания. Также может быть полезно найти техническое описание микросхемы регулятора в SMPS, если она используется. Многие SMPS имеют схему, близкую к эталонным проектам, указанным в таблице данных.

    Если предохранитель исправен, но нет выхода, это может вызывать подозрение на ограничитель пускового тока (NTC). Также следует проверить высокомощные резисторы на первичной стороне.Если номинал резистора не совпадает с его цветовым кодом или схемным значением, распаяйте одну клемму и повторите измерения. Замените новым, если значения не совпадают.

    В первую очередь необходимо проверить резисторы, включенные последовательно с силовыми транзисторами. Иногда в первичную обмотку входит резистор большой мощности, соединенный последовательно с стабилитроном. Проверьте все диодные переходы с помощью функции диода мультиметра. ИС регулятора могут быть неисправными, но обычно это не так.

    Неисправный силовой транзистор увеличивает вероятность выхода из строя других компонентов.Часто SMPS включают в себя компоненты защиты, такие как дополнительный резистор или стабилитрон, чтобы ограничить повреждение в случае катастрофического отказа.
    Один из приемов проверки микросхемы контроллера — это отключить ее от небольшого внешнего источника постоянного тока и проверить наличие импульсов на базе (или затворе) транзистора. Но некоторые ИС не будут работать без высокого напряжения на переключение, и это может быть указано в таблице данных.

    Еще одно замечание: мертвые полупроводники следует заменять точно такими же деталями. Альтернативы хороши, только если оригинал недоступен или слишком дорогой.Для диодов также проверьте время переключения — замена диодов должна быть как минимум такой же или более быстрой, чем старые. Аналогичным образом заменяемые транзисторы должны иметь одинаковое усиление и частоту отсечки. Основное правило гласит, что частота среза должна быть как минимум в десять раз выше частоты переключения. Для полевых МОП-транзисторов емкость затвора не должна превышать емкость старого компонента, а пороговое напряжение затвора должно быть близко к таковому у старого устройства.

    Иногда SMPS работает только частично.Он может запуститься, а затем выключиться, или он может пульсировать, пытаясь запустить каждые несколько секунд, или он может выдавать неправильное выходное напряжение. Силовые полупроводники, вероятно, хороши, а вот конденсаторы — подозрительны. Или может быть проблема в цепи обратной связи.

    Один из приемов состоит в том, чтобы подать внешнее регулируемое постоянное напряжение на выход SMPS, предварительно убедившись, что SMPS не подключен к сети. Когда напряжение постоянного тока постепенно увеличивается, цепь обратной связи должна работать, когда постоянное напряжение приближается к номинальному выходному напряжению.Здесь нет опасного линейного напряжения, поэтому осциллограф может помочь в диагностике цепи обратной связи. Другой способ — подать на ИС контроллера тот же источник низкого напряжения и изучить, что происходит на другой стороне оптопары.

    Электролитические конденсаторы часто вызывают проблемы с ИИП. В менее дорогих конструкциях SMPS они часто работают слишком близко к своим пределам тепловыделения. Их жидкий электролит имеет свойство испаряться и изменять свои рабочие характеристики. Очевидно, что колпачки, которые деформированы физически, — это плохо.Но некоторые могут быть плохими и не иметь проблем с внешним видом. Полезно просто измерить емкость, но простого измерения недостаточно. Лучше всего измерить эквивалентное последовательное сопротивление (ESR) и сравнить его с сопротивлением заведомо исправного конденсатора. К сожалению, для этого нужен измеритель ESR (или мост RLC). Электролитические конденсаторы бывают версий 85 ° C и 105 ° C. Если есть возможность, разумно выбрать более высокую температуру.

    Как отремонтировать импульсный источник питания (SMPS)

    В этом посте мы пытаемся диагностировать сгоревшую цепь SMPS и пытаемся устранить неполадки и отремонтировать цепь. Представленный блок представляет собой дешевую готовую схему ИИП китайского производства. Эта статья написана по запросу г-на Кесавы.

    Мой SMPS сгорел

    Нижеприведенное приложение — SMPS 12 В, 1,3 А для зарядки сельскохозяйственного опрыскивателя. Если зарядка полная, зеленый светодиод будет светиться … Если заряд низкий, красный светодиод будет светиться …

    Но теперь эта зарядка не работает … И я проверяю внутри, входной мостовой выпрямитель переменного тока IN4007 1 диод поврежден … Я заменяю его новым диодом..Теперь новый диод также поврежден …. Пожалуйста, посоветуйте мне, сэр ….

    В нашем магазине … этот тип зарядных устройств недоступен, сэр … Но моя цель не в том, чтобы покупать новые. .Я сам хочу исправить с вашим руководством, сэр …. Пожалуйста, помогите мне, сэр ….

    Извините за плохой английский. Я не хороший, сэр …

    Спасибо и привет Н.Кесаварадж

    Устранение неполадок

    Hi Kesava,

    Это, скорее всего, сгоревший МОП-транзистор, тот, который можно увидеть на радиаторе. Вы можете попробовать заменить его новым, а также не забудьте заменить соседний резистор на 10 Ом, который также выглядит так, как будто он сгорел.

    С уважением.

    Ремонт цепи SMPS

    Ссылаясь на изображения выше, первичная сторона устройства, похоже, представляет собой популярный адаптер SMPS на 1 А 12 В, использующий схему переключения на основе MOSFET, и включает в себя секцию зарядного устройства с автоматическим отключением на базе операционных усилителей на вторичной Часть платы

    Из первых двух изображений мы можем ясно видеть, что один из диодов полностью разлетелся на части и отвечает за отключение всей печатной платы.

    Мостовой выпрямитель обычно можно увидеть в начале любой цепи SMPS и вводится в первую очередь для выпрямления сетевого переменного тока в двухполупериодный постоянный ток, который далее фильтруется с помощью конденсатора фильтра и подается на ступень МОП-транзистора / индуктора для предполагаемого обратная операция переключения первичной стороны.

    Это переключение первичной стороны вызывает наведение эквивалентного пульсирующего постоянного тока низкого напряжения на вторичной стороне трансформатора, который затем сглаживается с помощью конденсатора фильтра большой емкости на вторичной стороне для получения окончательного пониженного выхода постоянного тока SMPS.

    Из изображения видно, что вся конструкция основана на топологии переключения МОП-транзистора, индуктивности, в которой МОП-транзистор становится основным переключающим элементом в схеме.

    Диоды в мостовом выпрямителе выглядят как обычные диоды 1N4007, которые способны выдерживать ток не более 1 А, поэтому, если это значение на 1 А превысит, диоды могут проскочить и повредиться.

    Диод мог сгореть из-за прохождения большого тока, что, в свою очередь, могло произойти из-за остановки работы индуктора mofet.Это означает, что МОП-транзистор мог перестать соприкасаться, что вызвало короткое замыкание, позволяя всему переменному току проходить через компоненты внутри входной линии питания.

    Как отремонтировать цепь SMPS.

    Показанный сгоревший SMPS можно отремонтировать, выполнив следующие простые шаги.

    1) Снимите МОП-транзистор с печатной платы и проверьте его с помощью мультиметра

    2) Несомненно, вы обнаружите, что МОП-транзистор является неисправным компонентом, поэтому вы можете быстро заменить его, используя правильно подобранный МОП-транзистор

    .

    3) После замены mosfet не забудьте также заменить сгоревший выпрямительный диод, а в идеале заменить все 4 диода в мосте, чтобы убедиться, что ослабленные диоды не присутствуют в сети.

    4) Вы также можете проверить, есть ли какие-либо другие детали, такие как резисторы или термисторы, которые могут выглядеть подозрительно, и заменить их новыми.

    5) После замены всех сомнительных элементов пора включить ИИП для окончательной проверки.

    Однако это должно быть сделано с последовательной защитной нагрузкой в ​​виде последовательной лампы накаливания, чтобы гарантировать, что цепь не сгорит из-за какой-либо другой скрытой неисправности. Лампа на 25 Вт будет как раз хороша для защиты устройства от любых катастрофических обстоятельств.

    6) Если при включении SMPS лампочка не горит, это, вероятно, означает, что все в порядке и ремонт блока прошел успешно. Теперь вы можете свободно проверять выходное напряжение SMPS с помощью измерителя и убедиться, что он дает правильные показания.

    7) Наконец, не снимая лампу, подключите соответствующую нагрузку постоянного тока и проверьте, правильно ли она работает.

    8) Если кажется, что все работает нормально, вы можете снять серийную лампу и повторить процесс тестирования, но обязательно включите небольшой предохранитель последовательно с входным источником питания.

    9) Однако, если лампа горит ярким светом, это указывает на наличие серьезной проблемы в цепи SMPS и ее необходимо исследовать заново, это можно сделать, сначала выключив устройство, а затем проверив каждый компонент в первичная сторона трафанформера.

    10) Компоненты, требующие повторной проверки, будут в основном теми, которые подвержены высокому напряжению и току повреждения, например, небольшие BJT, диоды и резисторы с низким сопротивлением.

    11) Компоненты, которые можно не проверять, — это те, которые имеют соответствующие характеристики и способны защитить себя от скачков высокого напряжения и тока.Сюда могут входить резисторы высокого номинала выше 50 кОм или резисторы с проволочной обмоткой низкого номинала выше 1 кОм.

    Точно так же конденсаторы, которые могут быть номиналом выше 200 В, можно не проверять, если только один из них не выглядит несколько поврежденным снаружи.

    Испытание сгоревшего трансформатора индуктивности

    Каждая цепь SMPS по существу будет включать небольшой ферритовый трансформатор, который эта часть также может стать причиной сгоревшей цепи SMPS, хотя вероятность повреждения трансформатора может быть слишком мала.

    Это связано с тем, что проводам внутри катушки индуктивности может потребоваться некоторое время, чтобы сгореть, и прежде, чем это может произойти, другие более уязвимые части, такие как диоды и транзисторы, будут вынуждены взорваться, чтобы предотвратить дальнейшее повреждение катушки индуктивности.

    Таким образом, вы можете быть уверены, что трансформатор — это единственный элемент, который может быть самым безопасным и неповрежденным элементом в данной неисправной цепи SMPS.

    Если в редких случаях горит индуктор, это будет отчетливо видно по пригоревшей изоляционной ленте, которая также может расплавиться и прилипнуть к обмотке.SMPS с сгоревшим трансформатором может быть практически непоправимым, потому что сгоревший трансформатор будет означать сгорание большинства элементов вместе с выкорчеванными дорожками на печатной плате. Пора покупать новый SMPS.

    Вторичная сторона в большинстве случаев не требует какой-либо проверки, поскольку она изолирована от первичной и, как можно ожидать, будет в стороне от опасностей.

    На этом мы завершаем эту статью, в которой объясняются советы по ремонту цепи SMPS. Если вы думаете, что я упустил некоторые важные моменты, или если у вас есть что-то важное, что нужно добавить в список, сообщите нам об этом в своих ценных комментариях.

    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

    Анатомия импульсных источников питания

    [nextpage title = ”Введение”]

    Источники питания

    , используемые в ПК, основаны на технологии, называемой «режим переключения», и поэтому также известны как источники питания с импульсным режимом (SMPS) (преобразователь постоянного тока в постоянный — это еще одно прозвище для импульсных источников питания).В этом руководстве мы объясним вам, как работают импульсные блоки питания, и познакомимся с блоком питания ПК, показав вам его основные компоненты и то, что они делают.

    Мы уже опубликовали руководство по источникам питания, в котором мы рассмотрели форм-факторы, как рассчитать номинальную мощность блока питания, а также объяснили основные характеристики блока питания. В этом руководстве мы идем дальше, объясняя, что находится внутри коробки, каковы основные компоненты блока питания, как их идентифицировать и что они делают.

    Существует два основных исполнения источников питания: линейный и импульсный.

    Линейные источники питания работают, получая 127 В или 220 В от электросети и понижая его до более низкого значения (например, 12 В) с помощью трансформатора. Это более низкое напряжение по-прежнему является переменным током. Затем выпрямление выполняется набором диодов, преобразующих это переменное напряжение в пульсирующее (цифра 3 на рисунках 1 и 2). Следующим шагом является фильтрация, которая выполняется электролитическим конденсатором, преобразующим это пульсирующее напряжение почти в постоянное (цифра 4 на рисунках 1 и 2).Постоянный ток, полученный после конденсатора, немного колеблется (это колебание называется пульсацией), поэтому необходим каскад регулирования напряжения, выполненный с помощью стабилитрона или интегральной схемы регулятора напряжения. После этого этапа на выходе будет истинное постоянное напряжение (цифра 5 на рисунках 1 и 2).

    Рисунок 1: Блок-схема стандартной конструкции линейного источника питания.

    Рис. 2: Осциллограммы линейного источника питания.

    Хотя линейные блоки питания очень хорошо подходят для нескольких приложений с низким энергопотреблением (беспроводные телефоны и игровые приставки — это два приложения, которые приходят в голову), когда требуется высокая мощность, линейные блоки питания могут быть буквально очень большими для этой задачи.

    Размер трансформатора и емкость (и, следовательно, размер) электролитического конденсатора обратно пропорциональны частоте входного переменного напряжения: чем ниже частота переменного напряжения, тем больше размер этих компонентов и наоборот. Поскольку линейные источники питания по-прежнему используют частоту 60 Гц (или 50 Гц, в зависимости от страны) от электросети, что является очень низкой частотой, трансформатор и конденсатор очень большие.

    Кроме того, чем выше ток (т.е. мощность), требуемая цепью, питаемой от источника питания, тем больше трансформатор.

    Создание линейного блока питания для ПК было бы безумием, поскольку он был бы очень большим и очень тяжелым. Решением было использовать подход высокочастотного переключения.

    В высокочастотных импульсных источниках питания частота входного напряжения повышается перед подачей на трансформатор (типовые значения 50-60 кГц). При увеличении частоты входного напряжения трансформатор и электролитический конденсатор могут быть очень маленькими.Это источник питания, используемый в ПК и другом электронном оборудовании, например видеомагнитофонах. Имейте в виду, что «переключение» — это сокращение от «высокочастотное переключение», не имеющее никакого отношения к тому, есть ли у источника питания переключатель включения / выключения или нет…

    Блок питания, используемый в ПК, использует еще лучший подход: это система с обратной связью. Схема, которая управляет переключающим транзистором, получает обратную связь от выходов источника питания, увеличивая или уменьшая рабочий цикл напряжения, подаваемого на трансформатор, в соответствии с потреблением ПК (этот подход называется ШИМ, широтно-импульсной модуляцией).Таким образом, блок питания самостоятельно настраивается в зависимости от потребления подключенного к нему устройства. Когда ваш компьютер не потребляет много энергии, блок питания подстраивается под меньший ток, в результате чего трансформатор и все другие компоненты рассеивают меньше энергии, т. Е. Вырабатывается меньше тепла.

    В линейных источниках питания источник питания настроен на максимальную мощность, даже если цепь, которая к нему подключена, не потребляет большой ток. В результате все компоненты работают на полную мощность, даже если в этом нет необходимости.В результате выделяется большее количество тепла.

    [nextpage title = «Схема импульсного источника питания»]

    На рисунках 3 и 4 представлена ​​блок-схема импульсного источника питания с обратной связью ШИМ, используемого на ПК. На рисунке 3 мы показываем блок-схему источника питания без схемы PFC (коррекции коэффициента мощности), используемой дешевыми источниками питания, а на рисунке 4 мы показываем блок-схему источника питания с активной схемой PFC, которая используется в высоких -концевые блоки питания.

    Рисунок 3: Блок-схема импульсного источника питания с ШИМ (без PFC).

    Рисунок 4: Блок-схема импульсного источника питания с ШИМ и активной коррекцией коэффициента мощности.

    Вы можете увидеть, в чем разница между блоком питания с активным PFC и блоком без этой схемы, сравнив рисунки 3 и 4. Как видите, блоки питания с активным PFC не имеют переключателя 110/220 В, а также не имеют У них нет схемы удвоения напряжения, но, конечно, у них есть активная коррекция коэффициента мощности, о которой мы поговорим позже.

    Это очень простая диаграмма.Мы не включали дополнительные схемы, такие как защита от короткого замыкания, резервная цепь, генератор сигналов хорошего питания и т. Д., Чтобы упростить понимание схемы. Если вам нужны подробные схемы, см. Рисунок 5. Если вы не разбираетесь в электронике, не волнуйтесь. Эта цифра предназначена для читателей, которые хотят углубиться.

    Рисунок 5: Схема типичного блока питания ATX начального уровня.

    Вы можете спросить себя, где находится ступень регулирования напряжения на рисунках выше.Схема ШИМ регулирует напряжение. Входное напряжение выпрямляется перед прохождением через переключающие транзисторы, и они посылают на трансформатор прямоугольную волну. Таким образом, на выходе трансформатора мы имеем сигнал прямоугольной формы, а не синусоидальный. Поскольку форма волны уже имеет квадратную форму, очень просто преобразовать ее в напряжение постоянного тока. Значит, после выпрямления после трансформатора напряжение уже постоянное. Вот почему иногда импульсные источники питания также называют преобразователями постоянного тока в постоянный.

    Петля, используемая для питания схемы управления ШИМ, отвечает за выполнение всех необходимых регулировок. Если выходное напряжение неправильное, схема управления ШИМ изменяет рабочий цикл сигнала, подаваемого на транзисторы, чтобы скорректировать выходной сигнал. Это происходит, когда потребление энергии ПК увеличивается, когда выходное напряжение имеет тенденцию к падению, или когда потребление энергии ПК снижается, когда выходное напряжение имеет тенденцию к увеличению.

    Все, что вам нужно знать перед переходом к следующей странице (и что вы можете узнать, обратив внимание на рисунки 3 и 4):


    • Все, что до трансформатора, называется «первичным», а все, что после него — «вторичным».

    • Источники питания с активной схемой коррекции коэффициента мощности не имеют переключателя на 110/220 В. У них также нет удвоителя напряжения.

    • В источниках питания без PFC, если 110 В / 220 В настроено на 110 В, источник питания будет использовать удвоитель напряжения, чтобы всегда поддерживать напряжение около 220 В перед выпрямительным мостом.

    • В блоках питания ПК два силовых MOSFET-транзистора образуют коммутатор. Можно использовать несколько различных конфигураций, об этом мы поговорим позже.

    • Форма волны, подаваемая на трансформатор, квадратная. Таким образом, форма волны на выходе трансформатора является квадратной, а не синусоидальной.

    • Схема управления ШИМ, которая обычно представляет собой интегральную схему, изолирована от первичной обмотки через небольшой трансформатор. Иногда вместо трансформатора используется оптопара (небольшая интегральная схема, содержащая светодиод и фототранзистор, упакованные вместе).

    • Как мы уже упоминали, схема управления ШИМ использует выходы источника питания для управления тем, как она будет управлять переключающими транзисторами.Если выходное напряжение неправильное, схема управления ШИМ изменяет форму сигнала, подаваемого на переключающие транзисторы, чтобы скорректировать выходной сигнал.

    • На следующих страницах мы рассмотрим каждый из этих этапов с изображениями, показывающими, где их можно найти внутри источника питания.
    [nextpage title = «Внутри блока питания ПК»]

    После первого включения источника питания (не делайте этого с подсоединенным шнуром питания, иначе вы получите удар электрическим током), вы можете потеряться, пытаясь понять, что к чему.Но вы узнаете как минимум две вещи, которые уже знаете: вентилятор блока питания и некоторые радиаторы.

    Рисунок 6: Внутри блока питания ПК.

    Но вы должны легко распознавать компоненты, принадлежащие первичному, и компоненты, принадлежащие вторичному.

    Вы найдете один (для блоков питания с активным PFC) или два (для блоков питания без PFC) больших электролитических конденсаторов. Найдите их, и вы найдете основной.

    Обычно блоки питания ПК имеют три трансформатора между двумя большими радиаторами, как вы можете видеть на Рисунке 7.Главный трансформатор — самый большой. Средний трансформатор используется для генерации выхода + 5VSB, а наименьший трансформатор используется схемой управления ШИМ для изоляции вторичной обмотки от первичной (это трансформатор, обозначенный как «изолятор» на рисунках 3 и 4). В некоторых источниках питания вместо трансформатора в качестве изолятора используется одна или несколько оптопар (они выглядят как небольшие интегральные схемы), поэтому в источниках питания, использующих эти компоненты, вы, вероятно, найдете только два трансформатора.Об этом мы поговорим позже.

    Один из радиаторов принадлежит первичной обмотке, а другой — вторичной.

    На первичном радиаторе вы найдете переключающие транзисторы, а также транзисторы PFC и диод, если в вашем источнике питания есть активный PFC. Некоторые производители могут использовать отдельный радиатор для активных компонентов PFC, поэтому в источниках питания с активным PFC вы можете найти два радиатора в его первичной обмотке.

    На вторичном радиаторе вы найдете несколько выпрямителей.Они похожи на транзисторы, но внутри у них два силовых диода.

    Вы также найдете несколько небольших электролитических конденсаторов и катушек, которые относятся к фазе фильтрации — найдя их, вы найдете вторичную.

    Более простой способ найти вторичную и первичную — просто проследить за проводами источника питания. Выходные провода будут подключены к вторичной обмотке, а входные провода (те, что идут от шнура питания) будут подключены к первичной. См. Рисунок 7.

    Рисунок 7: Расположение первичного и вторичного.

    Теперь поговорим о компонентах, которые есть на каждой ступени источника питания.

    [nextpage title = «Переходная фильтрация»]

    Первым этапом питания ПК является фильтрация переходных процессов. На рисунке 8 вы можете увидеть схему рекомендованного переходного фильтра для блока питания ПК.

    Рисунок 8: Переходный фильтр.

    Мы говорим «рекомендуются», потому что многие блоки питания, особенно дешевые, не имеют всех компонентов, показанных на рисунке 8.Поэтому хороший способ проверить, исправен ли ваш блок питания, — это проверить, есть ли в его ступени переходной фильтрации все рекомендуемые компоненты или нет.

    Его главный компонент называется MOV (Металлооксидный варистор) или варистор, обозначенный на нашей схеме RV1, который отвечает за резку скачков напряжения (переходных процессов), обнаруживаемых на линии электропередачи. Это точно такой же компонент, как и в ограничителях перенапряжения. Проблема, однако, в том, что в дешевых источниках питания нет этого компонента, чтобы сократить расходы.В источниках питания с MOV ограничители перенапряжения бесполезны, поскольку в них уже есть ограничитель перенапряжения.

    L1 и L2 — ферритовые катушки. C1 и C2 — дисковые конденсаторы, обычно синие. Эти конденсаторы также называют «Y-конденсаторами». C3 — это металлизированный полиэфирный конденсатор, обычно со значениями, такими как 100 нФ, 470 нФ или 680 нФ. Этот конденсатор также называют «конденсатором X». В некоторых источниках питания есть второй конденсатор X, установленный параллельно основной линии питания, где RV1 показано на рисунке 8.

    Конденсатор

    X — это любой конденсатор, выводы которого подключены параллельно основной линии питания. Конденсаторы типа Y идут парами, их необходимо соединять последовательно, причем точка соединения между ними должна быть заземлена, т. Е. Подключена к шасси источника питания. Затем их подключают параллельно к основной линии электропередачи.

    Фильтр переходных процессов не только фильтрует переходные процессы, исходящие от линии электропередачи, но также предотвращает возврат шума, создаваемого переключающими транзисторами, в линию электропередачи, что могло бы вызвать помехи для другого электронного оборудования.

    Давайте посмотрим на несколько реальных примеров. Обратите внимание на рисунок 9. Вы видите здесь что-то странное? В этом блоке питания просто нет переходного фильтра! Этот блок питания — дешевый «универсальный» блок. Если вы обратите внимание, то на печатной плате блока питания можно увидеть маркировку, на которой должны быть установлены фильтрующие элементы.

    Рисунок 9: Этот дешевый «универсальный» блок питания даже не имеет ступени фильтрации переходных процессов.

    На Рисунке 10 вы можете увидеть переходную фильтрацию дешевого источника питания.Как видите, MOV отсутствует, и у этого блока питания только одна катушка (отсутствует L2). С другой стороны, у него есть один дополнительный конденсатор X (размещенный там, где RV1 на рисунке 8).

    Рисунок 10: Фильтрация переходных процессов на дешевом блоке питания.

    На некоторых источниках питания фильтр переходных процессов можно разделить на два отдельных каскада, один из которых припаян к входному разъему питания, а другой — на печатной плате источника питания, как вы можете видеть на источнике питания, показанном на рисунках 11 и 12.

    На этом блоке питания вы можете найти конденсатор X (заменяющий RV1 на рисунке 8) и первую ферритовую катушку (L1), припаянную на небольшой печатной плате, которая подключена к основному разъему питания переменного тока.

    Рисунок 11: Первая ступень переходного фильтра.

    На печатной плате блока питания находятся остальные компоненты. Как видите, у этого источника питания есть MOV, хотя он и находится в необычном положении после второй катушки. Если вы обратите внимание, в этом источнике питания больше, чем рекомендовано, количество компонентов, так как в нем есть все компоненты, показанные на рисунке 8, плюс дополнительный конденсатор X.

    Рисунок 12: Вторая ступень переходного фильтра.

    MOV этого блока питания желтого цвета, однако чаще всего используется темно-синий цвет.

    Вы также должны найти предохранитель рядом с переходным фильтром (F1 на рисунке 8, см. Также рисунки 9, 10 и 12). Если этот предохранитель перегорел, будьте осторожны. Предохранители не перегорают сами по себе, а перегоревший предохранитель обычно указывает на неисправность одного или нескольких компонентов. Если вы замените предохранитель, новый, вероятно, перегорит сразу после включения компьютера.

    [nextpage title = «Удвоитель напряжения и первичный выпрямитель»]

    На блоках питания без активной цепи PCF вы найдете удвоитель напряжения. В удвоителе напряжения используются два больших электролитических конденсатора. Таким образом, к этому этапу относятся конденсаторы большего размера в блоке питания. Как мы уже упоминали ранее, удвоитель напряжения используется только в том случае, если вы подключаете источник питания к электросети 127 В.

    Рисунок 13: Электролитические конденсаторы от удвоителя напряжения.

    Рисунок 14: Электролитические конденсаторы от удвоителя напряжения, снятые с источника питания.

    Рядом с двумя электролитическими конденсаторами находится выпрямительный мост. Этот мост может состоять из четырех диодов или из одного компонента, см. Рисунок 15. В высокопроизводительных источниках питания этот выпрямительный мост подключен к радиатору.

    Рисунок 15: Выпрямительный мост.

    На первичной обмотке вы также найдете термистор NTC, который представляет собой резистор, который изменяет свое сопротивление в зависимости от температуры.Он используется для перенастройки источника питания после того, как он некоторое время использовался в горячем состоянии. NTC означает отрицательный температурный коэффициент. Этот компонент напоминает керамический дисковый конденсатор и обычно имеет оливково-зеленый цвет.

    [заголовок следующей страницы = «Активный PFC»]

    Очевидно, что эта схема встречается только в источниках питания с активной коррекцией коэффициента мощности. На рисунке 16 вы можете изучить типичную активную схему коррекции коэффициента мощности.

    Рисунок 16: Активная коррекция коэффициента мощности.

    В активной схеме PFC обычно используются два силовых полевых МОП-транзистора.Эти транзисторы прикреплены к радиатору первичного каскада источника питания. Для лучшего понимания мы обозначили название каждого терминала MOSFET: S — источник, D — сток, а G — ворота.

    Диод PFC — это силовой диод, обычно использующий корпус, аналогичный силовым транзисторам (но имеющий только два вывода), и он также прикреплен к радиатору на первичном каскаде источника питания.

    Катушка PFC, показанная на рисунке 16, является самой большой катушкой в ​​блоке питания.

    Электролитический конденсатор — это большой электролитический конденсатор, который вы найдете в первичной части источников питания с активным PFC.

    И показанный резистор представляет собой термистор NTC, который представляет собой резистор, который изменяет свое сопротивление в зависимости от температуры. Он используется для перенастройки источника питания после того, как он некоторое время использовался в горячем состоянии. NTC означает отрицательный температурный коэффициент.

    Активная схема управления PFC обычно основана на интегральной схеме.Иногда эта интегральная схема также отвечает за управление схемой ШИМ (используемой для управления переключающими транзисторами). Такой вид интегральной схемы называется «комбинация PFC / PWM».

    Давайте теперь посмотрим на несколько реальных примеров. На рисунке 17 мы сняли первичный радиатор, чтобы вы могли лучше видеть компоненты. Справа вы можете увидеть компоненты переходной фильтрации, которые мы уже обсуждали. С левой стороны вы можете увидеть активные компоненты PFC. Поскольку мы сняли радиатор, активные транзисторы PFC и диод PFC на этом рисунке отсутствуют.Если вы обратите внимание, вы увидите, что в этом источнике питания используется конденсатор X между его выпрямительным мостом и активной схемой PFC (коричневый компонент под радиатором выпрямительного моста). Как видите, термистор, напоминающий керамический дисковый конденсатор и обычно оливково-зеленого цвета, имеет резиновую защиту. Как мы уже упоминали, самая большая катушка источника питания — это обычно активная катушка PFC.

    Рисунок 17: Активные компоненты PFC.

    На Рисунке 18 вы можете увидеть компоненты, которые прикреплены к радиатору, находящемуся на первичной части блока питания, изображенном на Рисунке 17.Вы можете увидеть два силовых MOSFET-транзистора и силовой диод из активной схемы PFC.

    Рисунок 18: Компоненты, прикрепленные к первичному радиатору.

    На рисунке 18 вы также можете увидеть два переключающих транзистора, используемых в этом источнике питания, который является нашей следующей темой.

    [nextpage title = «Коммутационные транзисторы»]

    Секция переключения импульсных источников питания может быть построена с использованием нескольких различных конфигураций. Мы собрали наиболее распространенные из них в таблице ниже.

    Конфигурация Количество транзисторов Количество диодов Количество конденсаторов Выводы трансформатора
    Одинарный транзистор вперед 1 1 1 4
    Двухтранзисторный передний 2 2 0 2
    Полумост 2 0 2 2
    Полный мост 4 0 0 2
    Толкай-толкай 2 0 0 3

    Конечно, мы просто анализируем количество необходимых компонентов, есть и другие аспекты, которые инженеры должны учитывать при принятии решения, какую конфигурацию использовать.

    Две наиболее распространенные конфигурации для блоков питания ПК — это двухтранзисторная прямая и двухтактная, и в обеих используются два переключающих транзистора. Физический аспект этих транзисторов — силовых полевых МОП-транзисторов — можно увидеть на предыдущей странице. Они прикреплены к радиатору на первичной части блока питания.

    Ниже мы покажем вам схемы для каждой из этих пяти конфигураций.

    Рисунок 19: Прямая однотранзисторная конфигурация.

    Рисунок 20. Прямая конфигурация с двумя транзисторами.

    Рисунок 21: Конфигурация полумоста.

    Рисунок 22: Полная мостовая конфигурация.

    Рисунок 23: Двухтактная конфигурация.

    [nextpage title = «Трансформаторы и схема управления ШИМ»]

    Как мы упоминали ранее, типичный блок питания ПК имеет три трансформатора. Большой — это тот, который показан на нашей блок-схеме (рисунки 3 и 4) и схемах (рисунки с 19 по 23), где его первичная обмотка соединена с переключающими транзисторами, а вторичная — с выпрямительными диодами и схемами фильтрации, которые обеспечивают выходы блока питания постоянного тока (+12 В, + 5 В, +3.3 В, -12 В и -5 В). Второй трансформатор используется для генерации выхода + 5VSB. Независимая схема генерирует этот выходной сигнал, также известный как «резервная мощность». Причина в том, что этот выход всегда включен, даже когда питание вашего ПК «отключено» (т.е. он находится в режиме ожидания). Третий трансформатор представляет собой изолирующий трансформатор, соединяющий схему управления ШИМ с переключающими транзисторами (на нашей блок-схеме обозначены как «изолятор»). Третий трансформатор может не существовать, его заменяют одна или несколько оптопар, которые выглядят как небольшая интегральная схема (см. Рисунок 25).

    Рисунок 24: Трансформаторы питания.

    Рисунок 25: В этом источнике питания для изоляции цепи ШИМ используются оптопары вместо трансформатора.

    Схема управления ШИМ основана на интегральной схеме. В источниках питания без активной коррекции коэффициента мощности обычно используется интегральная схема TL494 (в блоке питания, показанном на рисунке 26, использовалась совместимая часть DBL494). В источниках питания с активным PFC иногда используется интегральная схема, которая сочетает в себе управление PWM и PFC.CM6800 — хороший пример комбинированной интегральной схемы PWM / PFC. Другая интегральная схема обычно используется в источнике питания, чтобы генерировать хороший сигнал мощности. Об этом мы поговорим позже.

    Рисунок 26: Схема управления ШИМ.

    [nextpage title = «Второстепенная»]

    Наконец, второстепенный этап. Здесь выходы главного трансформатора выпрямляются и фильтруются, а затем передаются на ПК. Выпрямление отрицательных напряжений (-5 В и -12 В) осуществляется обычными диодами, поскольку они не требуют большой мощности и тока.Но для выпрямления положительных напряжений (+3,3 В, +5 В и +12 В) используются силовые выпрямители Шоттки, которые представляют собой трехконтактные компоненты, которые выглядят как силовые транзисторы, но имеют внутри два силовых диода. Способ выполнения исправления зависит от модели источника питания, и возможны две конфигурации, показанные на рисунке 27.

    Рисунок 27: Конфигурации исправления.

    Конфигурация «A» больше используется источниками питания низкого уровня. Как видите, для этой конфигурации требуется три вывода от трансформатора.Конфигурация «B» больше используется в источниках питания высокого класса. Здесь используются только два вывода трансформатора, однако ферритовая катушка должна быть физически больше и, следовательно, дороже, и это одна из основных причин, по которой источники питания низкого уровня не используют эту конфигурацию.

    Также в источниках питания высокого класса, чтобы увеличить максимальный ток, источник питания может обеспечивать два силовых диода, которые могут быть подключены параллельно, таким образом удваивая максимальный ток, который может выдержать схема.

    Все блоки питания имеют полную схему выпрямления и фильтрации для выходов +12 В и +5 В, поэтому все блоки питания имеют как минимум две цепи, подобные показанной на рисунке 27.

    Но для выхода +3,3 В можно использовать три варианта:


    • Добавление регулятора напряжения +3,3 В к выходу +5 В. Это наиболее распространенный вариант для бюджетных блоков питания.

    • Добавление полной схемы выпрямления и фильтрации, подобной показанной на Рисунке 27 для выхода +3,3 В, но с тем же выходом трансформатора, который используется схемой выпрямления +5 В. Это наиболее распространенный вариант для источников питания высокого класса.

    • Использование полностью независимого +3.Схема выпрямления и фильтрации 3 В. Это очень редко и встречается в очень дорогих и дорогих источниках питания. На сегодняшний день мы видели только один блок питания, использующий эту опцию (для записи, Enermax Galaxy 1000 W).

    Поскольку для выхода +3,3 В обычно используется цепь +5 В полностью (в источниках питания низкого уровня) или частично (в источниках питания высокого класса), выход +3,3 В ограничен выходом +5 В. наоборот. Вот почему блоки питания ПК имеют рейтинг «комбинированной мощности», указывающий максимальную мощность, которую эти два выхода могут объединить вместе, в дополнение к максимальной выходной мощности каждого выхода (объединенная мощность ниже суммы +3.Номинальная мощность 3 В и +5 В).

    На рис. 28 вы в целом видите вторичную обмотку источника питания низкого уровня. Здесь вы можете увидеть интегральную схему, отвечающую за формирование сигнала Power Good. Обычно для этой задачи в бюджетных источниках питания используется LM339 или аналогичный.

    Вы найдете несколько электролитических конденсаторов (намного меньших, чем те, что есть на удвоителе напряжения или активной схеме PFC) и несколько катушек. Они отвечают за этап фильтрации (см. Рисунок 27).

    Рисунок 28: Вторичная ступень источника питания.

    Для лучшего снимка мы перерезали все провода и удалили две большие фильтрующие катушки. На рисунке 29 вы можете увидеть диоды меньшего размера, используемые для выпрямления линий -12 В и -5 В, которые имеют меньшие номинальные значения тока (и, следовательно, мощности) (по 0,5 А каждый для этого конкретного источника питания). Для других выходов напряжения требуется ток, намного превышающий 1 А, и для выполнения выпрямления требуются силовые диоды.

    Рисунок 29: Выпрямительные диоды для линий –12 В и –5 В.

    [nextpage title = ”The Secondary (Cont’d)”]

    На Рисунке 30 у нас есть пример компонентов, которые прикреплены к радиатору, находящемуся на вторичном каскаде низкоуровневого источника питания.

    Рисунок 30: Компоненты, обнаруженные на вторичном радиаторе блока питания низкого уровня.

    Слева направо вы найдете:

    • Интегральная схема регулятора напряжения — хотя она имеет три вывода и выглядит как транзистор, это интегральная схема. В случае с нашим источником питания это был 7805 (регулятор 5 В), отвечающий за регулирование выхода + 5VSB. Как мы упоминали ранее, этот выход использует схему, которая не зависит от стандартной линии +5 В (см. Рисунок 5 для лучшего понимания), так как он будет продолжать подавать +5 В на выход + 5VSB, даже когда ваш компьютер «включен». выкл »(режим ожидания).Вот почему этот выход также называют «резервным питанием». ИС 7805 может обеспечивать ток до 1 А.
    • Силовой MOSFET-транзистор для регулирования выхода +3,3 В. В случае с нашим источником питания использовался тот, который был PHP45N03LT, который может обрабатывать до 45 А. Как мы упоминали на предыдущей странице, только в источниках питания низкого уровня будет использоваться стабилизатор напряжения для выхода +3,3 В, что является подключен к линии +5 В.
    • Силовой выпрямитель Шоттки, который представляет собой просто два диода, склеенных в одном корпусе.В случае с нашим источником питания использовался STPR1620CT, который может выдерживать до 8 А на каждый диод (всего 16 А). Этот выпрямитель используется для линии +12 В.
    • Другой силовой выпрямитель Шоттки. В случае с нашим источником питания использовался E83-004, который может выдерживать ток до 60 A. Этот специальный выпрямитель мощности используется для линий +5 В и + 3,3 В. Поскольку в линиях +5 В и +3,3 В используется один и тот же выпрямитель, их добавленный ток не может быть больше максимального тока выпрямителя. Эта концепция называется комбинированной мощностью.Другими словами, линия +3,3 В генерируется из +5 В; трансформатор не имеет выходного напряжения 3,3 В, в отличие от всех остальных напряжений, обеспечиваемых источником питания. Эта конфигурация используется только в источниках питания начального уровня. Источники питания высшего класса используют отдельные выпрямители для выходов +3,3 В и +5 В.

    Теперь давайте взглянем на основные компоненты, используемые на вторичной ступени источника питания высокого класса.

    Рисунок 31: Компоненты вторичного радиатора высококачественного источника питания.

    Рисунок 32: Компоненты вторичного радиатора высококачественного источника питания.

    Здесь вы можете найти:

    • Два мощных выпрямителя Шоттки для выхода +12 В, соединенных параллельно, вместо одного, как в младших блоках питания. Эта конфигурация удваивает максимальный ток (и, следовательно, мощность), который может выдать выход +12 В. В этом источнике питания используются два выпрямителя Шоттки STPS6045CW, каждый из которых может выдавать ток до 60 А.
    • Один мощный выпрямитель Шоттки для выхода +5 В.На этом конкретном блоке питания использовался один STPS60L30CW, который поддерживает до 60 А.
    • Один силовой выпрямитель Шоттки для выхода +3,3 В, что является основным различием между источниками питания высокого и низкого уровня (как мы только что показали вам, в источниках питания низкого уровня выход +3,3 В генерируется через + Линия 5 В). На изображенном источнике питания использовалась схема STPS30L30CT, поддерживающая до 30 А.
    • Один регулятор напряжения из схемы защиты источника питания. Эта функция зависит от модели источника питания.

    Обратите внимание, что указанные нами максимальные токи относятся только к компонентам. Максимальный ток, который может обеспечить источник питания, будет зависеть от других компонентов, которые к ним подключены, таких как катушки, трансформатор, калибр используемых проводов и даже ширина дорожек на печатной плате.

    В качестве упражнения вы можете рассчитать максимальную теоретическую мощность для каждого выхода, умножив максимальный ток выпрямителя на выходное напряжение. Например, для источника питания, изображенного на Рисунке 30, максимальная теоретическая мощность на выходе +12 В составляет 192 Вт (16 А x 12 В).Но имейте в виду то, что мы только что сказали в предыдущем абзаце.

    Apple не произвела революцию в источниках питания; новых транзисторов сделал

    Новая биография Стив Джобс содержит замечательное заявление о блоке питания Apple II и его разработчике Роде Холте: [1]
    Вместо обычного линейного источника питания Холт построил тот, который используется в осциллографах. Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему сохранять энергию в течение гораздо меньшего времени и, следовательно, отбрасывать меньше тепла.«Этот импульсный источник питания был столь же революционным, как и материнская плата Apple II», — сказал позже Джобс. «Род не получил большого признания за это в учебниках истории, но он должен. Каждый компьютер теперь использует импульсные блоки питания, и все они копируют дизайн Рода Холта».
    Мне показалось удивительным то, что в компьютерах теперь используются блоки питания, основанные на дизайне Apple II, поэтому я провел небольшое расследование. Оказывается, блок питания Apple не был революционным ни в концепции использования импульсного блока питания для компьютеров, ни в особой конструкции блока питания.Современные компьютерные блоки питания совершенно разные и не копируют дизайн Рода Холта. Оказывается, Стив Джобс делал свое обычное заявление о том, что все воруют революционные технологии Apple, что полностью противоречит действительности.

    История импульсных блоков питания оказывается довольно интересной. Хотя большинство людей рассматривают блок питания как скучную металлическую коробку, на самом деле за этим стоит много технологических разработок. Фактически произошла революция в источниках питания в конце 1960-х — середине 1970-х годов, когда импульсные источники питания пришли на смену простым, но неэффективным линейным источникам питания, но это произошло за несколько лет до выхода Apple II в 1977 году.Заслуга этой революции должна быть достигнута за счет достижений в полупроводниковой технологии, в частности, усовершенствований переключающих транзисторов, а затем и инновационных ИС для управления импульсными источниками питания [2].

    Некоторые сведения об источниках питания

    В стандартном настольном компьютере источник питания преобразует сетевое напряжение переменного тока в постоянное, обеспечивая несколько тщательно регулируемых низких напряжений при высоких токах. Источники питания могут быть построены различными способами, но линейные и импульсные источники питания — это два метода, относящиеся к этому обсуждению.(См. Примечания для получения дополнительной информации об устаревших технологиях, таких как большие механические системы двигатель-генератор [3] и феррорезонансные трансформаторы [4] [5].)

    Типичный линейный источник питания использует громоздкий силовой трансформатор для преобразования 120 В переменного тока в низкое напряжение переменного тока, преобразует его в постоянное напряжение низкого напряжения с помощью диодного моста, а затем использует линейный регулятор для понижения напряжения до желаемого уровня. Линейный регулятор — это недорогой, простой в использовании компонент на основе транзистора, который превращает избыточное напряжение в отходящее тепло для получения стабильного выходного сигнала.Линейные источники питания почти несложно спроектировать и изготовить. [6] Однако одним большим недостатком является то, что они обычно тратят около 50-65% энергии в виде тепла [7], часто требуя больших металлических радиаторов или вентиляторов для отвода тепла. Второй недостаток — они большие и тяжелые. С другой стороны, компоненты (кроме трансформатора) в линейных источниках питания должны работать только с низкими напряжениями, а выход очень стабильный и бесшумный.

    Импульсный источник питания работает по совершенно иному принципу: быстрое включение и выключение питания, а не превращение избыточной мощности в тепло.В импульсном источнике питания входная линия переменного тока преобразуется в высоковольтный постоянный ток, а затем источник питания включает и выключает постоянный ток тысячи раз в секунду, тщательно контролируя время переключения, чтобы выходное напряжение в среднем составляло желаемое значение. Теоретически энергия не тратится зря, хотя на практике КПД составляет 80% -90%. Импульсные источники питания намного эффективнее, выделяют намного меньше тепла и намного меньше и легче линейных источников питания. Основным недостатком импульсного источника питания является то, что он значительно сложнее линейного источника питания и намного сложнее в проектировании.[8] Кроме того, это гораздо более требовательно к компонентам, требующим транзисторов, которые могут эффективно включаться и выключаться на высокой скорости при большой мощности. Переключатели, катушки индуктивности и конденсаторы в импульсном источнике питания могут быть расположены в нескольких различных схемах (или топологиях) с такими названиями, как Buck, Boost, Flyback, Forward, Push-Pull, Half Wave и Full-Wave [9]. ]

    История импульсных источников питания до 1977 г.

    Принципы импульсных источников питания были известны с 1930-х годов [6] и создавались из дискретных компонентов в 1950-х годах.[10] В 1958 году в компьютере IBM 704 использовался примитивный импульсный регулятор на основе электронных ламп. [11] Компания Pioneer Magnetics начала производство импульсных источников питания в 1958 году [12] (а спустя десятилетия внесла ключевое новшество в блоки питания для ПК [13]). General Electric опубликовала первый проект импульсного источника питания в 1959 году [14]. В 1960-х годах аэрокосмическая промышленность и НАСА [15] были основной движущей силой разработки импульсных источников питания, поскольку преимущества небольшого размера и высокой эффективности компенсировали высокую стоимость.[16] Например, НАСА использовало переключатели для спутников [17] [18], таких как Telstar в 1962 году. [19]

    Компьютерная промышленность начала использовать импульсные блоки питания в конце 1960-х годов, и их популярность неуклонно росла. Примеры включают миникомпьютер PDP-11/20 в 1969 г. [20] Honeywell h416R в 1970 г. [21] и мини-компьютер Hewlett-Packard 2100A в 1971 г. [22] [23] К 1971 году компании, использующие импульсные регуляторы, «читали как« Кто есть кто »компьютерной индустрии: IBM, Honeywell, Univac, DEC, Burroughs и RCA, и это лишь некоторые из них.»[21] В 1974 году HP использовала импульсный источник питания для миникомпьютера 21MX, [24] Data General для Nova 2/4, [25] Texas Instruments для 960B, [26] и Interdata для своих мини-компьютеров. [27] В 1975 году HP использовала автономный импульсный источник питания в терминале дисплея HP2640A, [28] Matsushita для своего миникомпьютера для управления трафиком [29] и IBM для своего подобного пишущей машинке Selectric Composer [29] и портативного компьютера IBM 5100. . [30] К 1976 году Data General использовала импульсные блоки питания для половины своих систем, Hitachi и Ferranti использовали их [29], настольный компьютер Hewlett-Packard 9825A [31] и калькулятор 9815A [32] использовали их, а decsystem 20 [33] — большой импульсный блок питания.К 1976 году в жилых комнатах появились импульсные источники питания, питающие цветные телевизионные приемники. [34] [35]

    Импульсные блоки питания также стали популярными продуктами для производителей блоков питания с конца 1960-х годов. В 1967 году RO Associates представила первый импульсный источник питания 20 кГц [36], который, как они утверждают, также был первым коммерчески успешным импульсным источником питания [37]. NEMIC начала разработку стандартизированных импульсных источников питания в Японии в 1970 году.[38] К 1972 году большинство производителей блоков питания предлагали импульсные блоки питания или собирались предложить их. [5] [39] [40] [41] [42] HP продала линейку импульсных источников питания мощностью 300 Вт в 1973 году [43], а также компактный импульсный источник питания мощностью 500 Вт [44] и импульсный источник питания мощностью 110 Вт [45] в 1975 году. К 1975 году импульсные источники питания составляли 8% мощности. рынок поставок и быстро растет, движимый улучшенными компонентами и желанием иметь меньшие блоки питания для таких продуктов, как микрокомпьютеры. [46]

    Импульсные источники питания были представлены в журналах по электронике той эпохи, как в рекламе, так и в статьях. Electronic Design рекомендовали импульсные источники питания в 1964 году для повышения эффективности [47]. На обложке журнала Electronics World за октябрь 1971 года был представлен импульсный блок питания мощностью 500 Вт и статья «Блок питания импульсного регулятора». В длинной статье о блоках питания в Computer Design в 1972 году подробно обсуждались импульсные источники питания и растущее использование импульсных источников питания в компьютерах, хотя в ней упоминается, что некоторые компании все еще скептически относились к импульсным источникам питания.[5] В 1973 г. в журнале Electronic Engineering была опубликована подробная статья «Импульсные источники питания: зачем и как» [42]. В 1976 году обложка журнала Electronic Design [48] была озаглавлена ​​«Внезапно переключиться стало проще», описывая новые ИС контроллера импульсного источника питания, Электроника опубликовала длинную статью об импульсных источниках питания [29] Powertec разместила двухстраничную рекламу преимуществ своих импульсных источников питания с крылатой фразой «Большой переключатель — это переключатели» [49], а журнал Byte объявил о импульсных источниках питания Boschert для микрокомпьютеров.[50]

    Ключевым разработчиком импульсных блоков питания был Роберт Бошерт, который бросил свою работу и в 1970 году начал собирать блоки питания на своем кухонном столе [51]. Он сосредоточился на упрощении импульсных источников питания, чтобы сделать их экономически конкурентоспособными по сравнению с линейными источниками питания, и к 1974 году он начал массовое производство недорогих источников питания для принтеров [51] [52], за которым последовала недорогая коммутация мощностью 80 Вт. источник питания в 1976 г. [50] К 1977 году Boschert Inc. выросла до компании с 650 сотрудниками [51], которая производила блоки питания для спутников и истребителей F-14 [53], а затем блоки питания для таких компаний, как HP [54] и Sun.Люди часто думают, что настоящее время — уникальное время для технологических стартапов, но Бошерт показывает, что стартапы на кухонном столе происходили даже 40 лет назад.

    Развитие импульсных источников питания в 1970-х годах во многом было обусловлено новыми компонентами. [55] Номинальное напряжение переключаемых транзисторов часто было ограничивающим фактором [5], поэтому появление в конце 1960-х — начале 1970-х годов высокоскоростных и мощных транзисторов с низким напряжением значительно увеличило популярность импульсных источников питания.[5] [6] [21] [16] Технология транзисторов развивалась так быстро, что коммерческий источник питания мощностью 500 Вт, изображенный на обложке Electronics World в 1971 году, не мог быть построен с транзисторами всего 18 месяцев назад [21]. Как только силовые транзисторы смогут выдерживать сотни вольт, источники питания смогут отказаться от тяжелого силового трансформатора с частотой 60 Гц и работать в автономном режиме непосредственно от сетевого напряжения. Более высокие скорости переключения транзисторов позволили использовать более эффективные и гораздо меньшие блоки питания. Введение интегральных схем для управления импульсными источниками питания в 1976 году широко рассматривается как начало эры импульсных источников питания за счет их радикального упрощения.[10] [56]

    К началу 1970-х годов стало ясно, что происходит революция. Производитель блоков питания Уолт Хиршберг заявил в 1973 году, что «революция в конструкции блоков питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен» [57]. В 1977 году во влиятельной книге по источникам питания сказано: считалось, что импульсные регуляторы совершают революцию в отрасли электроснабжения »[58].

    Apple II и его блок питания

    Персональный компьютер Apple II был представлен в 1977 году.Одной из его особенностей был компактный импульсный блок питания без вентилятора, который обеспечивал мощность 38 Вт при 5, 12, -5 и -12 вольт. Блок питания Apple II Холта имеет очень простую конструкцию с автономным обратноходовым преобразователем. [59]

    Стив Джобс сказал, что теперь каждый компьютер копирует революционный дизайн Рода Холта [1]. Но революционен ли этот дизайн? Был ли он сорван с любого другого компьютера?

    Как показано выше, импульсные блоки питания использовались на многих компьютерах к моменту выпуска Apple II.Конструкция не является особенно революционной, поскольку аналогичные простые автономные обратноходовые преобразователи продавались Boschert [50] [60] и другими компаниями. В долгосрочной перспективе создание схемы управления из дискретных компонентов, как это сделала Apple, было тупиковой технологией, поскольку будущее импульсных источников питания было за ИС контроллеров ШИМ. [2] Удивительно, что Apple продолжала использовать дискретные генераторы в источниках питания даже через Macintosh Classic, так как контроллеры IC были представлены в 1975 году. [48] Apple действительно перешла на контроллеры IC, например, в Performa [61] и iMac.[62]

    Блок питания, который Род Холт разработал для Apple, был достаточно инновационным, чтобы получить патент [63], поэтому я подробно изучил патент, чтобы увидеть, есть ли какие-нибудь менее очевидные революционные особенности. В патенте описаны два механизма защиты источника питания от неисправностей. Первый (пункт 1) — это механизм безопасного запуска генератора через вход переменного тока. Второй механизм (пункт 8) возвращает избыточную энергию от трансформатора к источнику питания (особенно при отсутствии нагрузки) через зажимную обмотку на трансформаторе и диод.

    Это блок питания AA11040-B для Apple II Plus. [59] Питание переменного тока поступает слева, фильтруется, проходит через большой переключающий транзистор к трансформатору обратного хода в середине, выпрямляется диодами справа (на радиаторах), а затем фильтруется конденсаторами справа. Схема управления находится внизу. Фотография использована с разрешения kjfloop, Copyright 2007.

    Механизм запуска переменного тока не использовался Apple II [59], но использовался Apple II Plus, [64] Apple III, [65] Lisa, [66] Macintosh, [67] и Mac 128K через Classic.[68] Я не смог найти никаких источников питания сторонних производителей, которые использовали бы этот механизм, [69] кроме блока питания телевизора 1978 года, [70] и он стал устаревшим контроллерами IC, так что этот механизм, похоже, не повлиял на компьютерный блок питания.

    Второй механизм, описанный в патенте Холта, — обмотка зажима и диод для возврата энергии в обратном преобразователе — использовался в различных источниках питания до середины 1980-х годов, а затем исчез. Некоторые примеры — источник питания Boschert OL25 (1978), [60] Apple III (1980), [65] Документация Apple по источникам питания (1982), [59] Жесткий диск Tandy (1982 г.), [71] Тэнди 2000 (1983), [72] [73] Яблочная Лиза (1983), [66] Apple Macintosh (1984), [67] Commodore Model B128 (1984), [74] Тэнди 6000 (1985), [75] и От Mac Plus (1986) до Mac Classic (1990).[68] Эта обмотка с обратным зажимом, по-видимому, была популярна в Motorola в 1980-х годах, она фигурирует в таблице данных микросхемы контроллера MC34060 [76], руководстве разработчика 1983 года [77] (где обмотка описывалась как обычная, но необязательная) и в примечании к применению 1984 года . [78]

    Является ли этот обратный зажим намоткой на инновации Холта, которые сорвали другие компании? Я так думал, пока не нашел в 1976 году книгу по источникам питания, в которой подробно описывалась эта обмотка [35], которая испортила мой рассказ. (Также обратите внимание, что в прямых преобразователях (в отличие от обратных преобразователей) эта зажимная обмотка использовалась еще в 1956 г. [79] [80] [81], поэтому ее применение в обратном преобразователе в любом случае не кажется большим скачком. .)

    Один озадачивающий аспект обсуждения источников питания в книге Стива Джобса [1] — это утверждение, что источник питания Apple II «похож на те, что используются в осциллографах», поскольку осциллографы — это всего лишь одно небольшое применение для переключения источников питания. Это заявление, по-видимому, возникло из-за того, что Холт ранее разработал импульсный источник питания для осциллографов [82], но другого соединения между источником питания Apple и источниками питания осциллографов нет.

    Наибольшее влияние Apple II на индустрию блоков питания оказала Astec — гонконгская компания, производившая блоки питания.До появления Apple II Astec была малоизвестным производителем импульсных инверторов постоянного тока. Но к 1982 году Astec стала ведущим в мире производителем импульсных источников питания, почти полностью опираясь на бизнес Apple, и удерживала первое место в течение ряда лет [83] [84]. В 1999 году Astec была приобретена компанией Emerson [85], которая в настоящее время является второй по величине компанией в области энергоснабжения после Delta Electronics. [86]

    Малоизвестный факт об источнике питания Apple II заключается в том, что он был первоначально собран калифорнийскими домохозяйками из среднего класса как сдельная.[83] Однако по мере роста спроса строительство источника питания было передано Astec, хотя оно стоило на 7 долларов больше. К 1983 году Astec производила 30 000 блоков питания Apple в месяц. [83]

    Блоки питания post-Apple

    В 1981 году был выпущен IBM PC, который оказал долгосрочное влияние на дизайн блоков питания компьютеров. Блоки питания для оригинального ПК IBM 5150 производились компаниями Astec и Zenith. [83] В этом источнике питания мощностью 63,5 Вт используется обратная схема, управляемая микросхемой контроллера источника питания NE5560.[87]

    Я буду подробно сравнивать блок питания для ПК IBM 5150 с блоком питания Apple II, чтобы показать их общие черты и различия. Оба они представляют собой автономные источники питания с обратным ходом и несколькими выходами, но это все, что у них общего. Несмотря на то, что в блоке питания ПК используется контроллер IC, а в Apple II используются дискретные компоненты, в блоке питания ПК используется примерно в два раза больше компонентов, чем в блоке питания Apple II. В то время как в блоке питания Apple II используется генератор переменной частоты, построенный на транзисторах, в блоке питания ПК используется генератор ШИМ фиксированной частоты, обеспечиваемый микросхемой контроллера NE5560.В ПК используются оптоизоляторы для обеспечения обратной связи по напряжению с контроллером, а в Apple II используется небольшой трансформатор. Apple II напрямую управляет силовым транзистором, а ПК использует управляющий трансформатор. ПК проверяет все четыре выхода мощности на соответствие нижнему и верхнему пределам напряжения, чтобы убедиться, что питание хорошее, и выключает контроллер, если какое-либо напряжение выходит за пределы спецификации. Apple II вместо этого использует лом SCR на выходе 12 В, если это напряжение слишком высокое. В то время как трансформатор обратного хода ПК имеет одну первичную обмотку, Apple II использует дополнительную первичную обмотку фиксатора для возврата мощности, а также другую первичную обмотку для обратной связи.ПК обеспечивает линейное регулирование от источников питания 12 В и -5 В, а Apple II — нет. В ПК используется вентилятор, а в Apple II — нет. Понятно, что блок питания IBM 5150 не «сдирает» конструкцию блоков питания Apple II, поскольку между ними почти нет ничего общего. А позже конструкции блоков питания стали еще более разными.

    Блок питания IBM PC AT стал де-факто стандартом для блоков питания компьютеров. В 1995 году Intel представила спецификацию материнской платы ATX [88], а блок питания ATX (вместе с вариантами) стал стандартом для блоков питания настольных компьютеров, при этом компоненты и конструкции часто ориентированы именно на рынок ATX.[89]

    Компьютерные системы питания стали более сложными с появлением в 1995 году модуля регулятора напряжения (VRM) для Pentium Pro, который требовал более низкого напряжения при более высоком токе, чем источник питания мог обеспечить напрямую. Для обеспечения этого питания Intel представила VRM — импульсный стабилизатор постоянного тока, установленный рядом с процессором, который снижает 12 вольт от источника питания до низкого напряжения, используемого процессором [90]. (Если вы разгоняете свой компьютер, именно VRM позволяет поднять напряжение.) Кроме того, видеокарты могут иметь собственный VRM для питания высокопроизводительного графического чипа. Для быстрого процессора может потребоваться 130 Вт от VRM. Сравнение этого с половиной ватта мощности, используемой процессором Apple II 6502 [91], показывает огромный рост энергопотребления современных процессоров. Один только современный процессорный чип может использовать более чем в два раза мощность всего компьютера IBM 5150 или в три раза больше, чем Apple II.

    Поразительный рост компьютерной индустрии привел к тому, что потребление энергии компьютерами стало причиной беспокойства об окружающей среде, что привело к появлению инициатив и нормативных актов, направленных на повышение эффективности источников питания.[92] В США сертификация Energy Star и 80 PLUS [93] подталкивает производителей к производству более эффективных «зеленых» источников питания. Эти источники питания обеспечивают большую эффективность с помощью различных методов: более эффективное резервное питание, более эффективные схемы запуска, резонансные схемы (также известные как мягкое переключение и ZCT или ZVT), которые снижают потери мощности в переключающих транзисторах, гарантируя отсутствие питания проходит через них, когда они выключаются, и схемы «активного зажима» для замены переключающих диодов на более эффективные транзисторные схемы.[94] Усовершенствования в технологии MOSFET-транзисторов и высоковольтных кремниевых выпрямителей за последнее десятилетие также привели к повышению эффективности. [92]

    Источники питания могут более эффективно использовать мощность сети переменного тока с помощью метода коррекции коэффициента мощности (PFC). [95] Активная коррекция коэффициента мощности добавляет еще одну схему переключения перед основной схемой источника питания. Специальная микросхема контроллера PFC переключает его с частотой до 250 кГц, аккуратно извлекая плавное количество энергии из источника питания для создания постоянного высокого напряжения, которое затем подается в обычную схему импульсного источника питания.[13] [96] PFC также иллюстрирует, как блоки питания превратились в товар с очень тонкой маржой, где доллар — это большие деньги. Активная коррекция коэффициента мощности считается особенностью источников питания высокого класса, но ее фактическая стоимость составляет всего около 1,50 доллара США [97].

    На протяжении многих лет для блоков питания IBM PC использовалось множество различных микросхем контроллеров, конструкций и топологий, как для поддержки различных уровней мощности, так и для использования преимуществ новых технологий. [98] Микросхемы контроллеров, такие как NE5560 и SG3524, были популярны в ранних ПК IBM.[99] Микросхема TL494 стала очень популярной в конфигурации полумоста, [99] самой популярной конструкции в 1990-х. [100] Серия UC3842 также была популярна для конфигураций прямого преобразователя. [99] Стремление к повышению эффективности сделало двойные прямые преобразователи более популярными [101], а коррекция коэффициента мощности (PFC) сделала контроллер CM6800 очень популярным [102], поскольку одна микросхема управляет обеими цепями. В последнее время стали более распространены прямые преобразователи, генерирующие только 12 В, с использованием преобразователей постоянного тока для получения очень стабильных 3.Выходы 3 В и 5 В. [94] Более подробную информацию о современных источниках питания можно получить из многих источников. [103] [104] [98] [105]

    В этом типичном блоке питания XT мощностью 150 Вт используется популярная полумостовая конструкция. Входная фильтрация переменного тока находится справа. Слева от него находится схема управления / драйвера: микросхема TL494 вверху управляет маленьким желтым приводным трансформатором внизу, который управляет двумя переключающими транзисторами на радиаторах внизу. Слева от него находится больший желтый главный трансформатор, с вторичными диодами и регулятором на радиаторах и выходной фильтром слева.Этот полумостовой блок питания полностью отличается от конструкции Apple II с обратной связью. Авторское право на фотографию: larrymoencurly, использовано с разрешения.

    Современные компьютеры содержат удивительный набор импульсных источников питания и регуляторов. Современный источник питания может содержать переключающую схему PFC, переключающий обратноходовой источник питания для резервного питания, переключающий прямой преобразователь для генерации 12 вольт, переключающий преобразователь постоянного тока в постоянный для генерации 5 вольт и переключающий преобразователь постоянного тока в постоянный ток для генерации 3 .3 вольта, [94] поэтому блок питания ATX можно рассматривать как пять различных импульсных блоков питания в одной коробке. Кроме того, на материнской плате есть импульсный регулятор VRM для питания процессора, а на видеокарте есть еще один VRM, всего семь переключаемых источников питания в типичном настольном компьютере.

    Технология импульсных источников питания продолжает развиваться. Одно из разработок — цифровое управление и цифровое управление питанием. [106] Вместо использования аналоговых схем управления микросхемы цифрового контроллера оцифровывают управляющие входы и используют программные алгоритмы для управления выходами.Таким образом, проектирование контроллера источника питания становится вопросом программирования не меньше, чем проектирования оборудования. Цифровое управление питанием позволяет источникам питания обмениваться данными с остальной системой для повышения эффективности и регистрации. Хотя сейчас эти цифровые технологии в основном используются для серверов, я ожидаю, что со временем они перейдут на настольные компьютеры.

    Подводя итог, можно сказать, что исходный блок питания для ПК IBM 5150 почти во всех отношениях отличался от блока питания Apple II, за исключением того, что оба блока питания были обратноходовыми.Более современные блоки питания не имеют ничего общего с Apple II. Абсурдно утверждать, что блоки питания копируют дизайн Apple.

    Известные конструкторы импульсных источников питания

    Стив Джобс сказал, что Род Холт должен быть более известен тем, что разработал блок питания для Apple II: «Род не получил большого признания за это в учебниках истории, но он должен» [1]. Но даже в лучшем случае разработчики блоков питания не известны за пределами очень небольшого сообщества. Роберт Бошерт был занесен в Зал славы электронной инженерии Electronic Design в 2009 году за работу в области энергоснабжения.[51] Роберт Маммано получил награду за заслуги перед Power Electronics Technology в 2005 году за начало производства ИС для контроллеров с ШИМ [10]. В 2008 году Руди Севернс получил награду за заслуги перед Power Electronics Technology за свои инновации в импульсных источниках питания. [107] Но никто из этих людей даже не известен в Википедии. Другим крупным новаторам в этой области уделяется еще меньше внимания. [108] Я неоднократно сталкивался с работой Эллиота Джозефсона, который проектировал спутниковые системы питания в начале 1960-х [18], имеет несколько патентов на источники питания, включая Tandy 6000 [75], и даже номер его патента напечатан на Apple II Plus. и платы источника питания Osborne 1 [59], но он, похоже, полностью не распознан.

    Ирония в комментарии Стива Джобса о том, что Роду Холту не уделяют должного внимания, заключается в том, что работа Рода Холта описана в десятках книг и статей об Apple, от Revenge of the Nerds в 1982 [109] до лучших 2011-го. Продам биографию Стива Джобса, что делает Рода Холта самым известным дизайнером блоков питания за всю историю.

    Заключение

    Блоки питания — это не скучные металлические коробки, как думает большинство людей; у них много интересной истории, во многом обусловленной усовершенствованием транзисторов, благодаря которым импульсные источники питания стали практичными для компьютеров в начале 1970-х годов.Совсем недавно стандарты эффективности, такие как 80 PLUS, вынудили источники питания стать более эффективными, что привело к появлению новых конструкций. Apple II продавал огромное количество импульсных блоков питания, но его конструкция блока питания была технологическим тупиком, который не был «сорван» другими компьютерами.

    Если вас интересуют блоки питания, вам также может понравиться моя статья «Крошечный, дешевый и опасный: внутри (поддельного) зарядного устройства для iPhone».

    Примечания и ссылки

    Я потратил слишком много времени на изучение источников питания, анализ схем и копание в старых журналах по электронике.Вот мои заметки и ссылки на случай, если они кому-то пригодятся. Мне было бы интересно услышать от разработчиков источников питания, которые имели непосредственный опыт разработки источников питания в 1970-х и 1980-х годах.

    [1] Стив Джобс , Уолтер Айзексон, 2011. Дизайн блока питания Рода Холта для Apple II обсуждается на странице 74. Обратите внимание, что описание импульсного блока питания в этой книге довольно искажено.

    [2] ШИМ: от одного чипа к гигантской отрасли, Джин Хефтман, Power Electronics Technology, стр 48-53, октябрь 2005 г.

    [3] Предварительное планирование площадки: компьютер Cray-1 (1975) В Cray-1 использовались два мотор-генератора мощностью 200 л.с. (150 кВт) для преобразования входного переменного тока 250 А 460 В в регулируемую мощность 208 В, 400 Гц; каждый мотор-генератор был примерно 3900 фунтов. Мощность 208 В, 400 Гц подавалась на 36 отдельных источников питания, в которых использовались двенадцатифазные трансформаторы, но не было внутренних регуляторов. Эти блоки питания образуют 12 верстаков вокруг компьютера Cray. Фотографии силовых компонентов Cray можно найти в Справочном руководстве по аппаратному обеспечению Cray-1 серии S (1981).Эта установка высокочастотный двигатель-генератор может показаться странной, но IBM 370 использовал аналогичную установку, см. Объявление: IBM System / 370 Model 145.

    [4] Во многих больших компьютерах для регулирования использовались феррорезонансные трансформаторы. Например, в блоке питания компьютера IBM 1401 использовался феррорезонансный регулятор мощностью 1250 Вт, см. Справочное руководство, 1401 Data Processing System (1961), стр. 13. В HP 3000 Series 64/68/70 также использовались феррорезонансные трансформаторы, см. Руководство по установке компьютеров Series 64/68/70 (1986), стр. 2-3.DEC использовала феррорезонансные и линейные источники питания почти исключительно в начале 1970-х годов, в том числе для PDP-8 / A (рисунок в «Выбор источника питания вырисовывается в сложных конструкциях», Electronics , Oct 1976, volume 49, p111).

    [5] «Источники питания для компьютеров и периферийных устройств», Computer Design , июль 1972 г., стр. 55-65. В этой длинной статье о источниках питания много говорится об импульсных источниках питания. Он описывает понижающую (последовательную), повышающую (шунтирующую), двухтактную (инверторную) и полную мостовую топологии.В статье говорится, что номинальное напряжение переключающего транзистора является ограничивающим параметром во многих приложениях, но «высоковольтные высокоскоростные транзисторы становятся все более доступными по низкой цене, что является важным фактором более широкого использования источников импульсного стабилизатора». В нем делается вывод, что «Доступность высоковольтных, высокомощных переключающих транзисторов по умеренным ценам дает дополнительный стимул к использованию высокоэффективных импульсных обычных [sic] источников питания. В этом году ожидается существенное увеличение их использования.»

    В статье также говорится: «Одной из наиболее спорных тем является продолжающаяся дискуссия о ценности импульсных источников питания для компьютерных приложений по сравнению с традиционными последовательными транзисторными регуляторами». Это подтверждается некоторыми комментариями поставщиков. Одним из скептиков была компания Elexon Power Systems, которая «не считает импульсные регуляторы« ответом ». В ближайшем будущем они планируют раскрыть совершенно новый подход к источникам питания ». Другой был Modular Power Inc, который «рекомендовал не переключать регуляторы, за исключением случаев, когда малый размер, легкий вес и высокая эффективность являются первоочередными требованиями, как в портативном и бортовом оборудовании.Sola Basic Industries заявила, что «их инженеры крайне скептически относятся к долговременной надежности импульсных стабилизаторов в практических конструкциях массового производства и прогнозируют проблемы с отказом транзисторов».

    Раздел статьи, посвященный комментариям производителей, дает представление о технологиях в отрасли электроснабжения в 1972 году: Hewlett Packard »указывает, что на сегодняшний день большое влияние оказывает доступность высокоскоростных, сильноточных и недорогих транзисторов, чему способствует нынешняя тенденция к импульсным регуляторам.Компания широко использует переключатели в полном спектре конструкций высокой мощности ». Lambda Electronics «широко использует импульсные регуляторы на выходную мощность более 100 Вт», которые предназначены для предотвращения охлаждения вентилятора. Компания Analog Devices предложила прецизионные расходные материалы, в которых для повышения эффективности используются методы переключения. RO Associates «считает, что рост числа импульсных источников питания является серьезным изменением в области проектирования источников питания». Они предлагали миниатюрные источники на 20 кГц и недорогие источники на 60 кГц. Sola Basic Industries »прогнозирует, что производители миникомпьютеров будут использовать больше бестрансформаторных импульсных регуляторов в 1972 году для повышения эффективности и уменьшения размера и веса.» Trio Laboratories «указывает на то, что производители компьютеров и периферийных устройств обращаются к переходу на другой тип, потому что цены сейчас более конкурентоспособны, а приложения требуют меньшего размера».

    [6] Практическая конструкция импульсного источника питания, Марти Браун, 1990, стр. 17.

    [7] См. Раздел комментариев для подробного обсуждения эффективности линейного источника питания.

    [8] Справочник по источникам питания , Марти Браун, 2001. На странице 5 обсуждается относительное время разработки для различных технологий электропитания: линейный регулятор занимает 1 неделю общего времени разработки, а импульсный стабилизатор с ШИМ требует 8 человеко-месяцев.

    [9] Сводка различных топологий находится в обзорах SMPS и топологиях источников питания. Подробности см. В Microchip AN 1114: Топологии SMPS и Топологии импульсных источников питания

    [10] Лауреат премии за выслугу лет Роберт Маммано, Power Electronics Technology , сентябрь 2005 г., стр. 48-51. В этой статье Silicon General SG1524 (1975) описывается как ИС, открывшая эру импульсных стабилизаторов и импульсных источников питания.

    [11] Справочное руководство по проектированию заказчиков IBM: источник питания 736, источник питания 741, блок распределения питания 746 (1958), стр. 60-17.Блок питания для компьютера 704 состоит из трех шкафов размером с холодильник, заполненных электронными лампами, предохранителями, реле, механическими таймерами и трансформаторами, потребляющими мощность 90,8 кВА. Он используется несколько методов регулирования, включая трансформаторы насыщаемых-реакторы и термистор на основе опорного напряжения. Выходы постоянного тока регулировались переключающим механизмом тиратрона 60 Гц. Тиратроны — это переключающие вакуумные лампы, которые управляют выходным напряжением (подобно триакам в обычных диммерных переключателях). Это можно рассматривать как импульсный источник питания (см. Источники питания, импульсные регуляторы, инверторы и преобразователи , Ирвинг Готтлиб, стр. 186-188).

    [12] В своей рекламе Pioneer Magnetics заявляет, что они разработали свой первый импульсный источник питания в 1958 году. Например, см. Electronic Design , V27, p216.

    [13] Источник питания с коэффициентом мощности Unity, патент 4677366. Pioneer Magnetics подала этот патент в 1986 году на активную коррекцию коэффициента мощности. См. Также статью Pioneer Magnetics «Почему PFC? страница.

    [14] Один из первых импульсных источников питания был описан в «Транзисторный преобразователь-усилитель мощности», Д. А. Пейнтер, General Electric Co., Конференция по твердотельным схемам , 1959, стр. 90-91. Также см. Соответствующий патент 1960 г. 3067378, Transistor Converter.

    [15] Исследование бездиссипативного преобразователя постоянного тока в постоянный, Центр космических полетов Годдарда, 1964. Этот обзор транзисторных преобразователей постоянного тока показывает около 20 различных схем переключения, известных в начале 1960-х годов. Обратный преобразователь заметно отсутствует. Многие другие отчеты НАСА о преобразователях энергии за этот период доступны на сервере технических отчетов НАСА.

    [16] Подробная история импульсных источников питания представлена ​​в S.J. M.Phil Уоткинса. дипломная работа Автоматическое тестирование импульсных источников питания, в главе История и развитие импульсных источников питания до 1987 г.

    [17] История развития импульсных источников питания, TDK Power Electronics World. Здесь представлена ​​очень краткая история импульсных источников питания. В TDK также есть удивительно подробное обсуждение импульсных источников питания в комической форме: TDK Power Electronics World.

    [18] «Спутниковый источник питания с переменной шириной импульса», Electronics , февраль 1962 г., стр. 47-49. В этой статье Эллиота Джозефсона из Lockheed описывается ШИМ-преобразователь постоянного тока с постоянной частотой для спутников. См. Также патент 3219907 Устройство преобразования мощности.

    [19] Система электропитания космического корабля, Telstar, 1963. Спутник Telstar получал энергию от солнечных элементов, сохраняя энергию в никель-кадмиевых батареях. Эффективность была критической для спутника, поэтому использовался импульсный стабилизатор напряжения постоянного тока с понижающим преобразователем, преобразующим переменное напряжение батареи в стабильное -16 В постоянного тока при мощности до 32 Вт при КПД до 92%.Поскольку спутнику требовался широкий диапазон напряжений, до 1770 вольт для ВЧ усилителя, были использованы дополнительные преобразователи. Регулируемый постоянный ток преобразовывался в переменный, подавался на трансформаторы и выпрямлялся для получения необходимых напряжений.

    [20] В некоторых моделях PDP, таких как PDP-11/20, использовался источник питания H720 (см. Руководство по PDP, 1969). Этот источник питания подробно описан в Руководстве по блоку питания и монтажной коробке H720 (1970). В источнике питания весом 25 фунтов используется силовой трансформатор для генерации 25 В постоянного тока, а затем импульсные регуляторы (понижающий преобразователь) для генерации 230 Вт регулируемого напряжения +5 и -15 вольт.Поскольку транзисторы той эпохи не могли работать с высоким напряжением, напряжение постоянного тока пришлось снизить до 25 вольт с помощью большого силового трансформатора.

    [21] «Источник питания импульсного регулятора», Electronics World v86 October 1971, p43-47. Эта длинная статья об импульсных источниках питания была размещена на обложке журнала Electronics World . Статью стоит поискать, хотя бы для изображения импульсного источника питания самолета F-111, который выглядит настолько сложным, что я почти ожидал, что он посадит самолет.Импульсные источники питания, обсуждаемые в этой статье, сочетают в себе импульсный инвертор постоянного и переменного тока с трансформатором для изоляции с отдельным понижающим или повышающим импульсным стабилизатором. В результате в статье утверждается, что импульсные блоки питания всегда будут дороже линейных блоков питания из-за двух каскадов. Однако современные блоки питания сочетают в себе оба этапа. В статье обсуждаются различные источники питания, в том числе импульсный блок питания мощностью 250 Вт, используемый в Honeywell h416R. В статье говорится, что импульсные блоки питания для стабилизаторов достигли совершеннолетия благодаря новым достижениям в области быстродействующих и мощных транзисторов.На обложке изображен импульсный блок питания мощностью 500 Вт, который, согласно статье, не мог быть построен с транзисторами, доступными всего полтора года назад.

    [22] Источник питания Bantam для миникомпьютера, Hewlett-Packard Journal , октябрь 1971 г. Подробная информация о схемах в патенте «Высокоэффективный источник питания» 3,852,655. Это автономный источник питания мощностью 492 Вт с инверторами, за которыми следуют импульсные стабилизаторы на 20 В.

    [23] HP2100A был представлен в 1971 году с импульсным источником питания (см. Основные характеристики HP2100A).Утверждается, что он имеет первый импульсный источник питания в миникомпьютере 25 лет работы в режиме реального времени, но PDP-11/20 был раньше.

    [24] Компьютерная система питания для тяжелых условий эксплуатации, стр. 21, Hewlett-Packard Journal , октябрь 1974 г. В миникомпьютере 21MX использовался автономный переключающий пререгулятор мощностью 300 Вт для генерации регулируемого постоянного тока 160 В, который подавался на переключающие преобразователи постоянного тока в постоянный.

    [25] Общее техническое руководство по данным Nova 2, 1974. В Nova 2/4 использовался импульсный стабилизатор для генерации 5 В и 15 В, а в более крупном 2/10 использовался трансформатор постоянного напряжения.В руководстве сказано: «При более высоких потерях тока, связанных с компьютером, потери [от линейных регуляторов] могут стать чрезмерными, и по этой причине часто используется импульсный стабилизатор, как в NOVA 2/4».

    [26] Модель 960B / 980B для обслуживания компьютеров Модель: источник питания В блоке питания миникомпьютера Texas Instruments 960B использовался импульсный стабилизатор для источника питания 5 В мощностью 150 Вт и линейные регуляторы для других напряжений. Импульсный стабилизатор состоит из двух параллельных понижающих преобразователей, работающих на частоте 60 кГц и использующих переключающие транзисторы 2N5302 NPN (введены в 1969 году).Поскольку транзисторы имеют максимальное напряжение 60 В, в блоке питания используется трансформатор, чтобы понижать напряжение до 35 В, которое подается на регулятор.

    [27] Руководство по эксплуатации импульсных источников питания M49-024 и M49-026, Interdata, 1974. Эти автономные полумостовые источники питания обеспечивали мощность 120 Вт или 250 Вт и использовались в миникомпьютерах Interdata. В генераторе переключения используются микросхемы таймера 555 и 556.

    [28] Блок питания 2640A, Hewlett-Packard Journal , июнь 1975 г., стр. 15.«Импульсный источник питания был выбран из-за его эффективности и занимаемой площади». Также техническая информация о терминале данных. Другой интересный момент — его корпус, отлитый из структурной пены (p23), который очень похож на формованный из пенопласта корпус Apple II (см. Стр. 73 из Steve Jobs ) и парой лет назад.

    [29] «В сложных конструкциях большое значение имеет выбор источников питания», Электроника , октябрь 1976 г., том 49. с107-114. В этой длинной статье подробно рассматриваются источники питания, в том числе импульсные.Обратите внимание, что Selectric Composer сильно отличается от популярной пишущей машинки Selectric.

    [30] Информационное руководство по обслуживанию портативного компьютера IBM 5100. IBM 5100 был портативным компьютером весом 50 фунтов, который использовал BASIC и APL, а также включал монитор и ленточный накопитель. Источник питания описан на стр. 4-61 как небольшой, высокомощный, высокочастотный импульсный импульсный стабилизатор, обеспечивающий 5 В, -5 В, 8,5 В, 12 В и -12 В.

    [31] Настольный компьютер HP 9825A 1976 года использовал импульсный стабилизатор для источника питания 5 В.Он также использовал формованный корпус из пеноматериала, предшествующий Apple II; см. 98925A Product Design, Hewlett-Packard Journal , июнь 1976 г., стр. 5.

    [32] Калькулятор среднего уровня обеспечивает большую мощность при меньших затратах, Журнал Hewlett-Packard , июнь 1976 г. обсуждает импульсный источник питания 5 В, используемый в калькуляторе 9815A.

    [33] Блок питания DEC H7420 описан в Decsystem 20 Power Supply System Description (1976). Он вмещает 5 импульсных регуляторов для обеспечения нескольких напряжений и обеспечивает мощность около 700 Вт.В источнике питания используется большой трансформатор для снижения линейного напряжения до 25 В постоянного тока, которое передается на отдельные импульсные регуляторы, которые используют понижающую топологию для получения желаемого напряжения (+5, -5, +15 или +20).

    Миникомпьютер Decsystem 20 представлял собой большую систему, состоящую из трех шкафов размером с холодильник. Потребовалось внушительное трехфазное питание мощностью 21,6 кВт, которое регулируется комбинацией импульсных и линейных регуляторов. Он содержал семь источников питания H7420 и около 33 отдельных блоков импульсных регуляторов, а также линейный регулятор для ЦП, который использовал -12 В постоянного тока при 490 А.

    [34] Импульсные источники питания для телевизионных приемников стали набирать обороты примерно в 1975–1976 годах. Philips представила TDA2640 для телевизионных импульсных источников питания в 1975 году. Philips опубликовала книгу Импульсные источники питания в телевизионных приемниках в 1976 году. Одним из недостатков все более широкого использования импульсных источников питания в телевизорах было то, что они вызывали помехи. с любительским радио, как обсуждалось в Wireless World, v82, p52, 1976.

    [35] «Электронное управление мощностью и цифровые методы», Texas Instruments, 1976.В этой книге подробно рассматриваются импульсные источники питания.

    Глава IV «Системы инвертора / преобразователя» описывает простой источник обратноходового питания мощностью 120 Вт, использующий силовой транзистор BUY70B, управляемый тиристором. Следует отметить, что в этой схеме используется дополнительная первичная обмотка с диодом для возврата неиспользованной энергии источнику.

    В главе V «Импульсные источники питания» описывается конструкция импульсного источника питания 5 В 800 Вт на основе автономного импульсного шунтирующего регулятора, за которым следует преобразователь постоянного тока в постоянный.Здесь также описывается довольно простой обратноходовой источник питания с несколькими выходами, управляемый SN76549, разработанный для цветного телевидения с большим экраном.

    [36] Вехи развития силовой электроники, Ассоциация производителей источников энергии.

    [37] В 1967 году RO Associates представила первый успешный импульсный источник питания, импульсный источник питания 20 кГц, 50 Вт, модель 210 (см. «RO сначала в импульсные источники питания», Electronic Business , Volume 9, 1983, p36 К 1976 году они претендовали на лидерство в области импульсных источников питания.В их патенте 1969 года 3564384 «Высокоэффективный источник питания» описан полумостовой импульсный источник питания, который удивительно похож на источники питания ATX, популярные в 1990-х годах, за исключением того, что схемы усилителя управляют ШИМ, а не широко распространенной ИС контроллера TL494.

    [38] Компания Nippon Electronic Memory Industry Co (NEMIC, которая в итоге стала частью TDK-Lambda) начала разработку стандартизированных импульсных источников питания в 1970 году. История ТДК-Лямбда Корпорация.

    [39] «Я прогнозирую, что большинство компаний после нескольких неудачных попыток в области источников питания к концу 1972 года предложат ряд импульсных источников питания с приемлемыми характеристиками и ограничениями радиопомех.», стр. 46, Электронная инженерия , том 44, 1972.

    [40] Производитель блоков питания Coutant построил блок питания под названием Minic, используя «относительно новую технику импульсного стабилизатора». Инструментальная практика для управления технологическими процессами и автоматизации , Том 25, стр. 471, 1971.

    [41] «Импульсные источники питания выходят на рынок», стр. 71, Electronics & Power , февраль 1972 г. Первый «бестрансформаторный» импульсный источник питания появился на рынке Великобритании в 1972 году, APT SSU1050, который представлял собой регулируемый импульсный источник питания мощностью 500 Вт с использованием полумостовой топологии.Этот 70-фунтовый блок питания считался легким по сравнению с линейными блоками питания.

    [42] В этой статье подробно рассказывается о импульсных источниках питания и описываются преимущества автономных источников питания. Он описывает миниатюрный импульсный источник питания полумостового типа MG5-20, созданный Advance Electronics. В статье говорится: «Широкое применение микроэлектронных устройств подчеркнуло огромное количество обычных источников питания. Переключаемые преобразователи теперь стали жизнеспособными и предлагают заметную экономию в объеме и весе.» «Импульсные источники питания: почему и как», Малкольм Берчалл, технический директор, подразделение источников питания, Advance Electronics Ltd. Electronic Engineering , Volume 45, Sept 1973, p73-75.

    [43] Высокоэффективные модульные источники питания с использованием импульсных регуляторов, Hewlett-Packard Journal , декабрь 1973 г., стр. 15-20. Серия 62600 обеспечивает мощность 300 Вт при использовании автономного импульсного источника питания с полумостовой топологией. Ключевым моментом было внедрение транзисторов на 400 В, 5 А с субмикросекундным временем переключения.«Полный импульсный регулируемый источник питания мощностью 300 Вт едва ли больше, чем просто силовой трансформатор эквивалентного источника с последовательным регулированием, и он весит меньше — 14,5 фунтов против 18 фунтов трансформатора».

    [44] Сильноточный источник питания для систем, в которых широко используется 5-вольтовая ИС-логика, Hewlett-Packard Journal , апрель 1975 г., стр. 14-19. Импульсный источник питания 62605M мощностью 500 Вт для OEM-производителей, размер и вес которых составляет 1/3 и 1/5 от линейных источников питания. Использует автономную полумостовую топологию.

    [45] Модульные источники питания: модели 63005C и 63315D: в этом источнике питания мощностью 110 Вт и 5 В используется топология автономного прямого преобразователя и конвекционное охлаждение без вентилятора.

    [46] «Проникновение коммутационных источников питания на рынок источников питания США вырастет с 8% в 1975 году до 19% к 1980 году. Это увеличение проникновения соответствует мировой тенденции и представляет собой очень высокие темпы роста». Для такого прогнозируемого роста было названо несколько причин, в том числе «доступность более качественных компонентов, снижение […] общей стоимости и появление более мелких продуктов (таких как микрокомпьютеры), которые делают желательными меньшие блоки питания». Электроника, Том 49. 1976. Стр. 112, врезка «Что насчет будущего?»

    [47] Сеймур Левин, «Импульсные регуляторы питания для повышения эффективности».»Electronic Design, 22 июня 1964 года. В этой статье описывается, как импульсные регуляторы могут повысить эффективность с менее чем 40 процентов до более чем 90 процентов при существенной экономии размера, веса и стоимости.

    [48] На обложке журнала Electronic Design 13 от 21 июня 1976 г. написано: «Внезапно переключиться стало проще. Импульсные источники питания могут быть разработаны с использованием на 20-50 дискретных компонентов меньше, чем раньше. Одна ИС выполняет все функции управления, необходимые для двухтактный выходной дизайн.ИС называется регулирующим широтно-импульсным модулятором. Чтобы узнать, предпочитаете ли вы переключение, перейдите на страницу 125. «На странице 125 есть статья» Управление импульсным источником питания с помощью одной схемы LSI «, в которой описаны ИС импульсных источников питания SG1524 и TL497.

    [49] В 1976 году Powertec запустила двухстраничную рекламу, описывающую преимущества импульсных источников питания, под названием «Большой переход к коммутаторам». В этой рекламе описывались преимущества блоков питания: с удвоенной эффективностью они выделяли 1/9 тепла.Они имели 1/4 размера и веса. Это обеспечило повышенную надежность, работало в условиях обесточивания и могло выдерживать гораздо более длительные перебои в подаче электроэнергии. Powertec продала линейку импульсных блоков питания мощностью до 800 Вт. Они предложили импульсные источники питания для систем с дополнительной памятью, компьютерных мэйнфреймов, телефонных систем, дисплеев, настольных приборов и систем сбора данных. Страницы 130-131, Электроника в49, 1976.

    [50] Byte magazine, p100 В июне 1976 года был анонсирован новый импульсный блок питания Boschert OL80, обеспечивающий 80 Вт при двухфунтовом блоке питания по сравнению с 16 фунтами для менее мощного линейного блока питания.Это также было объявлено в Microcomputer Digest, февраль 1976 г., стр. 12.

    [51] Роберт Бошерт: человек многих шляп меняет мир источников питания: он начал продавать импульсные источники питания в 1974 году, сосредоточившись на том, чтобы сделать импульсные источники питания простыми и недорогими. В заголовке говорится, что «Роберт Бошерт изобрел импульсный источник питания», что должно быть ошибкой редактора. В статье более обоснованно утверждается, что Бошерт изобрел недорогие импульсные источники питания для массового использования. В 1974 году он произвел недорогие импульсные блоки питания.

    [52] Руководство по техническому обслуживанию коммуникационного терминала Diablo Systems HyTerm модели 1610/1620 показаны двухтактный источник питания Boschert 1976 года и полумостовой источник питания LH Research 1979 года.

    [53] Опыт Boschert с F-14 и спутниками рекламировался в рекламе Electronic Design , V25, 1977, где также упоминалось серийное производство для Diablo и Qume.

    [54] Необычный импульсный источник питания использовался в компьютере HP 1000 A600 (см. Техническую и справочную документацию) (1983).Блок питания 440 Вт обеспечивал стандартные выходы 5 В, 12 В и -12 В, а также выход переменного тока 25 кГц 39 В, который использовался для распределения мощности на другие карты в системе, где она регулировалась. В автономном двухтактном источнике питания, разработанном Boschert, использовалась специальная микросхема HP IC, чем-то напоминающая TL494.

    [55] В 1971 году для поддержки автономных импульсных источников питания были представлены многочисленные линейки переключающих транзисторов 450 В, такие как серия SVT450, серия 40850–4085 от RCA и серия 700V SVT7000.

    [56] ШИМ: от одного чипа к гигантской отрасли, Power Electronics Technology , октябрь 2005 г. В этой статье описывается история создания ИС управления источником питания, от SG1524 в 1975 году до индустрии с многомиллиардными оборотами.

    [57] «Революция в конструкции источников питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен», — Вальтер Хиршберг, ACDC Electronics Inc, Калифорния. «Новые компоненты вызывают революцию в источниках питания», p49, Canadian Electronics Engineering , v 17, 1973.

    [58] Импульсный и линейный источник питания, конструкция преобразователя питания , Pressman 1977 «Импульсные регуляторы, которые совершают революцию в отрасли электроснабжения из-за их низких внутренних потерь, небольшого размера, веса и стоимости, конкурентоспособной по сравнению с традиционными последовательными или линейными источниками питания».

    [59] Несколько источников питания Apple описаны в документе Apple Products Information Pkg: Astec Power Supplies (1982). Блок питания Apple II Astec AA11040 представляет собой простой дискретный блок питания с обратным ходом и несколькими выходами.В нем используется переключающий транзистор 2SC1358. Выход 5 В сравнивается с стабилитроном и обратной связью управления и изолируется через трансформатор с двумя первичными обмотками и одной вторичной. В нем используется зажимная обмотка обратного диода.

    AA11040-B (1980) имеет существенные модификации схемы обратной связи и управления. Он использует переключающий транзистор 2SC1875 и опорного напряжения TL431. AA11040-B, по-видимому, использовался для Apple II + и Apple IIe (см. Форум hardwaresecrets.com).Шелкография на печатной плате источника питания говорит о том, что она защищена патентом 4323961, который, как оказалось, является «автономным источником питания постоянного тока с обратным ходом», разработанным Эллиотом Джозефсоном и переданным Astec. Схема в этом патенте в основном представляет собой немного упрощенный AA11040-B. Изолирующий трансформатор обратной связи имеет одну первичную и две вторичные обмотки, противоположные AA11040. Этот патент также напечатан на плате источника питания Osborne 1 (см. Разборку Osborne 1), которая также использует 2SC1875.

    В Apple III Astec AA11190 используется зажимная обмотка обратного диода, но не схема запуска переменного тока Холта.Используется переключающий транзистор 2SC1358; схема обратной связи / управления очень похожа на AA11040-B. В источнике питания дисковода Apple III Profile AA11770 использовалась обмотка с обратным диодом, переключающий транзистор 2SC1875; опять же, схема обратной связи / управления очень похожа на AA11040-B. AA11771 аналогичен, но добавляет еще один TL431 для выхода AC ON.

    Интересно, что в этом документе Apple перепечатывает десять страниц «Руководства по источникам питания постоянного тока» HP (версия 1978 года, используемая Apple), чтобы предоставить справочную информацию о импульсных источниках питания.

    [60] Обратные преобразователи: твердотельное решение для недорогого импульсного источника питания, Electronics , декабрь 1978 г. В этой статье Роберта Бошерта описывается источник питания Boschert OL25, который представляет собой очень простой дискретно-компонентный источник обратноходового питания мощностью 25 Вт с 4 выходами. Он включает в себя зажимную обмотку обратного диода. Он использует опорный сигнал TL430 напряжения и оптрон для обратной связи с выхода 5V. В нем используется переключающий транзистор MJE13004.

    [61] В Macintosh Performa 6320 использовалась микросхема контроллера SMPS AS3842, как видно на этом рисунке.AS3842 — это версия контроллера тока UC3842 от Astec, который был очень популярен для преобразователей прямого тока.

    [62] Детали блока питания для iMac найти сложно, и используются разные блоки питания, но, если собрать воедино различные источники, iMac G5, похоже, использует контроллер PFC TDA4863, пять силовых МОП-транзисторов 20N60C3, ШИМ-контроллер SG3845, напряжение TL431. ссылки и контроль мощности с помощью WT7515 и LM339. Также используется 5-контактный встроенный коммутатор TOP245, вероятно, для резервного питания.

    [63] Источник питания постоянного тока, №4130862. который был подан в феврале 1978 г. и выдан в декабре 1978 г. Блок питания, указанный в патенте, имеет некоторые существенные отличия от блока питания Apple II, созданного Astec. Большая часть логики управления находится на первичной стороне в патенте и вторичной стороне в реальном источнике питания. Кроме того, в патенте обратная связь является оптической, и в ней используется трансформатор в источнике питания. Блок питания Apple II не использует обратную связь по переменному току, описанную в патенте.

    [64] Подробное обсуждение блока питания Apple II Plus можно найти на сайте applefritter.com. В описании источник питания ошибочно называется топологией прямого преобразователя, но это топология обратного хода. Неудобно, что это обсуждение не совпадает со схемой блока питания Apple II Plus, которую я нашел. Заметные отличия: в схеме используется трансформатор для обеспечения обратной связи, в то время как в обсуждении используется оптоизолятор. Кроме того, обсуждаемый источник питания использует вход переменного тока для запуска колебаний транзистора, а схема — нет.

    [65] Apple III (1982 г.). Этот блок питания Apple III (050-0057-A) практически полностью отличается от блока питания Apple III AA11190. Это дискретный источник питания обратного хода с переключающим транзистором MJ8503, управляемым тиристором, зажимной обмоткой обратного хода и 4 выходами. Он использует схему запуска переменного тока Холта. Коммутационная обратная связь контролирует выход -5 В с операционным усилителем 741 и подключается через трансформатор. Он использует линейный регулятор на выходе -5 В.

    [66] Яблочная Лиза (1983).Еще один дискретный источник питания с обратным ходом, но значительно более сложный, чем Apple II, с такими функциями, как резервное питание, дистанционное включение через симистор и выход +33 В. Он использует для переключения силовой транзистор MJ8505 NPN, управляемый тиристором. Он использует схему запуска переменного тока Холта. Обратная связь по переключению контролирует напряжение + 5 В (по сравнению с линейно регулируемым выходом -5 В) и подключается через трансформатор.

    [67] Блок питания Macintosh. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта.В нем используется переключающий транзистор 2SC2335, управляемый дискретным генератором. Коммутационная обратная связь контролирует выход +12 В с помощью стабилитронов и операционного усилителя LM324 и подключается через оптоизолятор.

    [68] Схема Mac 128K, Обсуждение Mac Plus. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта. В нем используется переключающий транзистор 2SC2810, управляемый дискретными компонентами. Обратная связь по переключению контролирует выход 12 В и подключается через оптоизолятор.Интересно, что в этом документе утверждается, что блок питания, как известно, был склонен к сбоям из-за того, что в нем не использовался вентилятор. Блок питания Mac Classic выглядит идентичным.

    [69] TEAM ST-230WHF 230 Вт импульсный источник питания. Эта схема — единственный компьютерный блок питания стороннего производителя, который я обнаружил, который подает чистый переменный ток в схему привода (см. R2), но я уверен, что это всего лишь ошибка чертежа. R2 должен подключаться к выходу диодного моста, а не к входу. Сравните с R3 в почти идентичной схеме привода в этом блоке питания ATX.

    [70] Микропроцессоры и микрокомпьютеры и импульсные источники питания , Брайан Норрис, Texas Instruments, McGraw-Hill Company, 1978 г. В этой книге описаны импульсные источники питания для телевизоров, которые используют сигнал переменного тока для запуска колебаний.

    [71] Блок питания жесткого диска Tandy (Astec AA11101). В этом обратноходовом источнике питания мощностью 180 Вт используется обмотка с зажимом диода. В нем используется переключающий транзистор 2SC1325A. В генераторе используются дискретные компоненты. Обратная связь от шины 5 В сравнивается с опорным напряжением TL431, а обратная связь использует трансформатор для изоляции.

    [72] Блок питания Tandy 2000 (1983 г.). Этот источник питания с обратным ходом мощностью 95 Вт использует микросхему контроллера MC34060, переключающий транзистор MJE12005 и имеет обмотку фиксатора обратного хода. Он использует MC3425 для контроля напряжения, имеет линейный регулятор для выхода -12 В и обеспечивает обратную связь на основе выхода 5 В по сравнению с опорным сигналом TL431, проходящим через оптоизолятор. На выходе 12 В используется стабилизатор магнитного усилителя.

    [73] В The Art of Electronics подробно обсуждается блок питания Tandy 2000 (стр. 362).

    [74] Модель Commodore B128. Этот источник питания с обратным ходом использует обмотку с зажимом диода. Он использует MJE8501 переключающий транзистор, управляемый дискретных компонентов, а также переключающие мониторы обратной связи выходного 5V с использованием опорного TL430 и изолирующий трансформатор. Выходы 12 В и -12 В используют линейные регуляторы.

    [75] Tandy 6000 (Astec AA11082). В этом обратноходовом источнике питания мощностью 140 Вт используется обмотка с зажимом диода. Схема представляет собой довольно сложную дискретную схему, поскольку в ней используется повышающая схема, описанная в патенте Astec 4326244, также разработанном Эллиотом Джозефсоном.В нем используется переключающий транзистор 2SC1325A. У него немного необычный выход 24 В. Один выход 12 В линейно регулируется LM317, а выход -12 В управляется линейным регулятором MC7912, но другой выход 12 В не имеет дополнительной регулировки. Обратная связь осуществляется с выхода 5 В с использованием источника напряжения TL431 и развязывающего трансформатора. Вот красивая фотография блока питания.

    [76] Документация на микросхему контроллера MC34060 (1982 г.).

    [77] Руководство разработчика по переключению цепей и компонентов источника питания, The Switchmode Guide , Motorola Semiconductors Inc., Паб. № SG79, 1983. R J. Haver. Для обратного преобразователя фиксирующая обмотка описана как дополнительная, но «обычно присутствует, чтобы позволить энергии, накопленной в реактивном сопротивлении утечки, безопасно вернуться в линию, вместо того, чтобы лавина переключающего транзистора».

    [78] «Обеспечение надежной работы силовых полевых МОП-транзисторов», в примечании к приложению 929 компании Motorola (1984) показан источник питания с обратным ходом, использующий MC34060 с зажимной обмоткой и диодом. Его можно скачать с datasheets.org.uk.

    [79] Для получения дополнительной информации о прямых преобразователях см. История прямого преобразователя, Switching Power Magazine , vol.1, № 1, стр. 20-22, июл 2000 г.

    [80] Первый импульсный преобразователь с диодной обмоткой был запатентован в 1956 году компанией Philips, патент 2,920,259 преобразователя постоянного тока.

    [81] Другим патентом, показывающим обмотку с возвратной энергией с диодом, является патент Hewlett-Packard от 1967 года 3313998. Источник питания импульсно-регуляторный с цепью возврата энергии

    [82] Маленькое королевство: частная история Apple Computer Майкл Мориц (1984) говорит, что Холт проработал в компании на Среднем Западе почти десять лет и помог разработать недорогой осциллограф (стр. 164).Стив Джобс, «Путешествие — награда», Джеффри Янг, 1988 г., утверждает, что Холт разработал импульсный источник питания для осциллографа за десять лет до прихода в Apple (стр. 118). Учитывая состояние импульсных источников питания в то время, это почти наверняка ошибка.

    [83] «Коммутационные блоки растут в чреве компьютеров», Электронный бизнес , том 9, июнь 1983 г., стр. 120-126. В этой статье подробно описывается бизнес-сторона импульсных источников питания. В то время как Astec была ведущим производителем импульсных источников питания, Lambda была ведущим производителем источников питания переменного и постоянного тока, поскольку она продавала большие количества как линейных, так и импульсных источников питания.

    [84] «Стандарты: переключение вовремя для поставок», Electronic Business Today , vol 11, p74, 1985. В этой статье говорится, что Astec является ведущим в мире производителем блоков питания и лидером в области импульсных блоков питания. Astec выросла почти исключительно на поставках блоков питания Apple. В этой статье также упоминаются компании-поставщики электроэнергии из «большой пятерки»: ACDC, Astec, Boschert, Lambda и Power One.

    [85] Astec становится 100% дочерней компанией Emerson Electric, Business Wire , 7 апреля 1999 г.

    [86] Отраслевой отчет о крупнейших энергоснабжающих компаниях за 2011 год — Power Electronics Industry News, v 189, март 2011 г., Micro-Tech Consultants. Также, Энергетическая отрасль продолжает движение к консолидации, Power Electronics Technology, май 2007 обсуждает различные консолидации.

    [87] В документации по фотофакту SAMS для IBM 5150 приведена подробная схема источника питания.

    [88] В Википедии представлен обзор стандарта ATX. Официальная спецификация ATX находится в formfactors.орг.

    [89] ON Semiconductor, как и Fairchild, имеет эталонные образцы блоков питания ATX. Некоторые ИС, разработанные специально для приложений ATX, — это SG6105 Power Supply Supervisor + Regulator + PWM, NCP1910 High Performance Combo Controller for ATX Power Supplies, ISL6506 Multiple Linear Power Controller with ACPI Control Interfaces, и SPX1580 Ultra Low Dropout Voltage Regulator.

    [90] Корпорация Intel представила рекомендацию о коммутационном преобразователе постоянного тока рядом с процессором в документе Intel AP-523 Pentium Pro Processor Power Distribution Guidelines, в котором представлены подробные характеристики модуля регулятора напряжения (VRM).Подробная информация об образце VRM приведена в разделе «Заправка мегапроцессора — обзор конструкции преобразователя постоянного тока в постоянный ток» с использованием UC3886 и UC3910. Более свежие спецификации VMR содержатся в Рекомендациях по проектированию Intel Voltage Regulator Module (VRM) и Enterprise Voltage Regulator-Down (EVRD) 11 (2009).

    [91] В таблице данных микропроцессоров R650X и R651X указано типичное значение рассеиваемой мощности 500 мВт.

    [92] Технологии преобразования энергии для компьютерных, сетевых и телекоммуникационных систем питания — прошлое, настоящее и будущее, М.М. Йованович, Лаборатория силовой электроники Delta, Международная конференция по преобразованию энергии и приводам (IPCDC), Санкт-Петербург, Россия, 8-9 июня 2011 г.

    [93] Программа 80 Plus описана в разделе «Сертифицированные источники питания и производители 80 PLUS», где описаны различные уровни 80 PLUS: бронзовый, серебряный, золотой, платиновый и титановый. Базовый уровень требует КПД не менее 80% при различных нагрузках, а более высокие уровни требуют все более высокого КПД. Первые блоки питания 80 PLUS вышли в 2005 году.

    [94] Несколько случайных примеров источников питания, которые сначала генерируют всего 12 В и используют преобразователи постоянного тока для генерации выходных сигналов 5 В и 3,3 В: Эталонный дизайн высокоэффективного блока питания ATX 255 Вт от ON Semiconductor (80 Plus Silver), мощность NZXT HALE82 обзор блока питания, обзор блока питания SilverStone Nightjar.

    [95] Источники питания используют только часть электроэнергии, подаваемой по линиям электропередач; это дает им плохой «коэффициент мощности», который тратит энергию и увеличивает нагрузку на нижние линии.Вы можете ожидать, что эта проблема возникает из-за быстрого включения и выключения импульсных источников питания. Однако плохой коэффициент мощности на самом деле возникает из-за начального выпрямления переменного и постоянного тока, которое использует только пики входного переменного напряжения.

    [96] Основы коррекции коэффициента мощности (PFC), Примечание по применению 42047, Fairchild Semiconductor, 2004.

    [97] Правильный выбор размеров и разработка эффективных источников питания утверждает, что активная коррекция коэффициента мощности добавляет около 1,50 доллара к стоимости источника питания мощностью 400 Вт, активный фиксатор добавляет 75 центов, а синхронное выпрямление добавляет 75 центов.

    [98] Многие источники схем электроснабжения доступны в Интернете. Некоторые андизм danyk.wz.cz, и smps.us. Несколько сайтов, которые предоставляют загрузку схем источников питания, — это eserviceinfo.com и elektrotany.com.

    [99] Информацию о типовой конструкции блока питания ПК см. В FAQ по SMPS. В разделах «Описание Боба» и «Комментарии Стива» обсуждаются типичные блоки питания для ПК на 200 Вт, использующие микросхему TL494 и конструкцию полумоста.

    [100] В тезисе 1991 г. говорится, что TL494 все еще использовался в большинстве импульсных источников питания ПК (по состоянию на 1991 г.).Разработка импульсного источника питания 100 кГц (1991 г.). Мыс Техникон Тезисы и диссертации. Документ 138.

    [101] Введение в двухтранзисторную прямую топологию для источников питания с эффективностью 80 PLUS, EE Times, 2007.

    [102] hardwaresecrets.com заявляет, что CM6800 — самый популярный контроллер PFC / PWM. Это замена ML4800 и ML4824. CM6802 — более «зеленый» контроллер из того же семейства.

    [103] Анатомия импульсных источников питания, Габриэль Торрес, Hardware Secrets, 2006.В этом учебном пособии очень подробно описывается работа и внутреннее устройство блоков питания ПК с подробными изображениями реальных внутренних устройств блока питания. Если вы хотите точно знать, что делает каждый конденсатор и транзистор в блоке питания, прочтите эту статью.

    [104] Презентация блока питания ON Semiconductor’s Inside представляет собой подробное математическое руководство по работе современных блоков питания.

    [105] Справочное руководство по источнику питания SWITCHMODE, ON Semiconductor. Это руководство включает в себя большой объем информации об источниках питания, топологиях и множество примеров реализации.

    [106] Некоторые ссылки по цифровому управлению питанием: «Дизайнеры обсуждают достоинства цифрового управления питанием», EE Times , декабрь 2006 г. Глобальный рынок ИС для цифрового управления питанием к 2017 году достигнет 1,0 миллиарда долларов. Системный контроллер цифровой ШИМ TI UCD9248. Эталонная схема цифрового питания переменного / постоянного тока с универсальным входом и коррекцией коэффициента мощности, EDN , апрель 2009 г.

    [107] Руди Севернс, лауреат премии за выслугу лет, Power Electronics Technology , сентябрь 2008 г., стр. 40-43.

    [108] Куда делись все гуру ?, Power Electronics Technology , 2007. В этой статье обсуждается вклад многих новаторов в области источников питания, включая Сола Гиндоффа, Дика Вайза, Уолта Хиршберга, Роберта Окада, Роберта Бошерта, Стива Голдмана, Аллена Розенштейна, Уолли Херсома , Фил Кётч, Яг Чопра, Уолли Херсом, Патрицио Винчиарелли и Марти Шлехт.

    [109] История разработки Холтом источника питания для Apple II впервые появилась в статье Пола Чотти Revenge of the Nerds (не имеющей отношения к фильму) в журнале California в 1982 году.

    Пять основных причин выхода из строя блоков питания — и что с этим можно сделать

    Данные по источникам питания были проанализированы из источников на всех рынках, от недорогих до чрезвычайно дорогих приложений.

    Автор: KEVIN PARMENTER
    VP NA Разработка приложений
    Excelsys Technologies
    www.excelsys.com

    Источники питания — основа любой электронной системы. В этой статье я использую отраслевые исследования и свой многолетний опыт, чтобы представить пять причин выхода из строя блоков питания.Он также предложит необходимые меры предосторожности, которые вы, как инженеры-проектировщики, должны предпринять, чтобы избежать сбоев системы.

    Анализ данных

    Данные по источникам питания, проанализированные в этой статье, частично основаны на исследованиях, проведенных Excelsys во многих приложениях по всему миру, а также на исследованиях североамериканской компании по восстановлению / ремонту источников питания Power Clinic. С 1987 года Power Clinic собрала данные о сбоях в электроснабжении более 12 000 различных моделей, присланных более чем 1600 различными компаниями.Сюда входят данные от более чем 1700 устройств, отправленных им только в 2015 году, что дает вам представление о том, сколько неработающих источников питания наблюдается на регулярной основе.

    Чтобы охватить все сегменты электроэнергетики, эта статья также опирается на анализ исследования, проведенного доктором Рэем Ридли из Ridley Engineering на основе данных его группы LinkedIn «Источники питания». В группе более 6000 участников, которые взвешивают эту тему.

    Данные, проанализированные из этих источников, охватывают все рынки и приложения, включая промышленность, медицинскую электронику, военное дело, телекоммуникации, передачу данных, вычислительную и научную сферы.Он включает в себя наиболее распространенные приложения силовой электроники, от недорогих до чрезвычайно дорогих, включая имитаторы полета, цифровые вывески, испытательное и измерительное оборудование для медицинского оборудования, а также полупроводниковое оборудование.

    Источники питания или продукты, такие как блоки питания ATX или продукты, предназначенные для сверхнизкозатратных приложений, не анализировались, поскольку трудно получить данные о возвратах, предназначенных для одноразового использования.

    Основные причины сбоев в электроснабжении

    Фундаментальный закон физики состоит в том, что на каждые 10 ° C, которые вы можете поддерживать в окружающей среде источника питания ниже 40 ° C, вы удваиваете среднее время наработки на отказ (MTBF).И наоборот, на каждые 10 ° C повышения температуры окружающей среды вашего блока питания среднее время безотказной работы сокращается вдвое (то есть блок питания становится вдвое менее надежным). Многие, но не все, механизмы отказа в этом списке связаны с температурой.

    Мы все чаще видим использование пластиковых шасси для конечного оборудования по сравнению с металлическими шасси, которые использовались с незапамятных времен, что влияет на термические характеристики, а также на ЭМС. Все, что вы можете сделать для улучшения управления температурой вокруг источника питания в системе, имеет решающее значение.

    1. Вентиляторы

    Вентиляторы — это механизм отказов номер один в источниках питания, что было обнаружено военными симуляторами наработки на отказ, а также стандартами Belcore, а также смоделировано и продемонстрировано на практике. Как единственная электромеханическая подвижная часть, встроенная в блоки питания, вентиляторы подвержены выходу из строя даже в наиболее правильно спроектированных блоках питания. Часто мы видим требование об отсутствии вентиляторов в блоке питания только для того, чтобы конечный пользователь добавил вентиляторы, чтобы избавиться от тепла всей системы.Но такой подход просто переносит проблему из одного места в другое.

    Еще одна проблема в отрасли — распространение поддельных вентиляторов в цепочку поставок. В одном известном мне случае покупатель обнаружил заменяющий вентилятор, который они купили, который был неотличим от оригинала — за исключением того, что он перемещал на 30% меньше воздуха и потреблял иную мощность, чем оригинал. Важно убедиться, что у вашего партнера по энергоснабжению есть процессы, исключающие попадание контрафактных деталей в цепочку поставок; в противном случае этот дешевый источник питания очень быстро станет дорогим.

    Безвентиляторную систему можно герметизировать, что также устраняет другие проблемы, включая попадание влаги. В случае наружных применений, таких как цифровые вывески, герметичная система может защищать от листьев, насекомых, веток и птичьих гнезд, а также от дождя и влаги, а в случае использования на море — от соли и тумана.

    Удаление вентилятора увеличивает надежность на 25% и является лучшим решением для предотвращения сбоев. Хорошая конструкция, обеспечивающая достаточно высокий КПД блока питания, делает ненужными вентиляторы.

    Ключ к хорошему дизайну силовой электроники: «Не нужно вентилятор, если вы можете помочь». Чтобы удовлетворить эту потребность, Excelsys недавно представила модульный источник питания с конвекционным охлаждением, который обеспечивает выходную мощность 600 Вт без использования охлаждения с помощью вентилятора (см. Рис. 1 ).


    Рис. 1: Безвентиляторный источник питания CoolX 600 Series обеспечивает очень высокую потребляемую мощность и встроенную защиту от скачков напряжения.

    2. Конденсаторы

    Вопреки распространенному мнению, с каждым годом в конденсаторных технологиях наблюдается большой прогресс; однако они склонны к выходу из строя при чрезмерном напряжении, производстве заменителей или подделке.

    Конденсаторы

    , особенно электролитические, могут выйти из строя во многих различных состояниях отказа, включая вздутие, утечку, взрыв, короткое замыкание, пониженную емкость или повышенное ESR в цепи. Иногда избыточное тепло вызывает повреждение конденсатора. Из электролитических конденсаторов могут протекать химические вещества, что может вызвать дальнейшее повреждение в результате коррозии, разъедания следов печатной платы и других проблем (см. Рис. 2 ).

    Рис. 2: В этом примере показано повреждение, вызванное утечкой электролитического материала из конденсатора.

    Для предотвращения сбоев используйте качественные конденсаторы известных производителей. Кроме того, снизьте номинальные характеристики. По возможности держите конденсаторы в холодном состоянии и следите за токами пульсаций, чтобы убедиться, что они не подвергаются чрезмерной нагрузке. Важно знать, что срок хранения электролитических конденсаторов ограничен двумя годами без подачи питания на источник питания, на что обычно не обращают внимания. Как проектировщики электропитания, мы по возможности избегаем электролитических конденсаторов, но если мы не можем избежать их, мы получаем лучшее, что можем найти.(Мы указываем максимум два года хранения без питания, чтобы избежать воздействия на электролит длительного хранения без питания.)

    3. Силовые элементы

    Компоненты переключения питания, или МОП-транзисторы, на которые приходится основная нагрузка от источника питания, могут иногда вызывать отказ, если теплоотвод недостаточен, или если перенапряжение стока, избыточный ток стока, перенапряжение затвора или внутренний антипараллельный диод перенапрягаются. .

    Правильная конструкция и снижение характеристик компонентов будут иметь большое значение для того, чтобы MOSFET имел долгую жизнь в приложении.Правильная конструкция, внимание к схемам управления, тестирование контуров и снижение номинальных характеристик могут обеспечить надлежащую работу и долгий срок службы этих компонентов.

    Диоды питания

    также могут выйти из строя из-за неправильного теплоотвода или управления температурой, воздушного потока и т. Д. Диоды Шоттки могут быть повреждены перенапряжением в индуктивных цепях возбуждения. Они не так просты, как МОП-транзисторы, при перенапряжениях. Кроме того, коммутационные потери в выпрямителях могут быть большим источником тепла. Хвосты TRR могут возникать, когда время переключения немного увеличивается с температурой, вызывая повышение тепла, и может возникнуть петля положительной обратной связи, и деталь может быть повреждена.Эта потенциальная проблема должна быть тщательно рассмотрена при проектировании, чтобы снизить рассеяние. Правильный дизайн, выбор компонентов и характеристика, наряду со снижением номинальных характеристик, творит чудеса.

    4. Управляющие ИС

    Управляющие ИС

    часто имеют необычную область работы и, если их неправильно понять или неправильно использовать, могут привести к отказу. Это включает в себя неправильную работу часов или неправильную компоновку печатной платы, что сделает управляющую ИС уязвимой к шуму или колебаниям. Все ИС контроллеров имеют свое собственное уникальное поведение и должны быть хорошо поняты в приложении, включая обходные пути и «недокументированные функции» для предполагаемого приложения.

    Во избежание отказов промышленных ИС управления необходимо понимать условия запуска. Ограничение тока, режимы плавного пуска, правильный привод затвора, расстояние и измерение контуров управления — все должно быть сделано для обеспечения стабильной работы во всех условиях. ИС управления должны каждый раз работать идеально; в противном случае, скорее всего, будут видны повреждения полевых МОП-транзисторов, поскольку они принимают на себя основной удар энергии, когда управляющая ИС выходит из строя или становится нестабильной. Поскольку цифровые контроллеры все чаще используются в конструкциях силовой электроники, мы видим, что программное обеспечение и управляющие ИС являются одной проблемой, и иногда именно управляющая ИС выходит из строя; однако обычно в конечном итоге вынимаются переключающие полевые МОП-транзисторы.

    5. Причины, связанные с окружающей средой

    Проблемы окружающей среды из-за попадания влаги иногда наблюдаются в медицинской электронике, когда оборудование очищается дезинфицирующими растворами, которые попадают в вентиляционные отверстия источника питания и отверстия для вентиляторов (еще одна причина для отказа от вентиляторов). Влага разъедает электронику и в конечном итоге приводит к поломке. Другие режимы отказа из-за пользовательской среды включают скачки и переходные процессы, которые намного превышают номинальные значения и многие стандарты IEC, которые обычно приводят к повреждению полупроводниковых компонентов на входе источника питания.Некоторые из этих экологических проблем можно контролировать с помощью дизайна в приложении, а некоторые нет.

    Другими экологическими проблемами являются удары молнии и другие индуцированные скачки и переходные процессы в линиях электропередач (см. Рис. 3 ). Ущерб от этих причин можно минимизировать путем тщательного проектирования и тестирования источника питания, а также путем добавления внешних компонентов защиты. Например, есть отличные устройства защиты от перенапряжения от Littelfuse, такие как серия LSP10240, которые могут обрабатывать огромные переходные процессы и скачки напряжения для защиты входа переменного тока системы.В новые блоки питания встроена защита от перенапряжения, а некоторые из них также рассчитаны на работу с напряжением 300 В переменного тока в течение пяти секунд, поскольку глобальная стабильность линии питания не является гарантией.

    Рис. 3: На этой фотографии показаны сгоревшие конденсаторы в результате дуги на открытом воздухе от удара молнии.

    Другими факторами воздействия на окружающую среду являются нагрузки — реактивные нагрузки, такие как рекуперативные двигатели, зарядка аккумуляторов, суперконденсаторы и многое другое. Следует учитывать нагрузки и, возможно, можно добавить схемы защиты, такие как диоды.В вашем приложении это может помешать подаче 250 В от генератора с мотором на выходы 24 В вашего источника питания.

    Во многих приложениях, с которыми я работаю, которые имеют реактивную нагрузку, проблема решается модулями реактивной нагрузки, такими как модули XGR и XGT от Excelsys. В этих модулях используются обходные диоды и встроенная блокирующая схема, что устраняет необходимость в каких-либо внешних схемах для защиты источника питания от обратной ЭДС. Такой подход часто творит чудеса.

    Извлеченные уроки

    Существуют и другие условия, которые могут привести к отказу блоков питания, но, согласно исследованиям, описанные мною случаются наиболее часто. При проектировании системы главное правило — сделать сам источник питания в первую очередь, а не в последнюю очередь.

    Инженеры должны попытаться устранить вентилятор, используя безвентиляторный источник питания, если это возможно. Они также должны использовать допустимые компоненты и создавать хорошо продуманную и надежную систему.Также важно выбрать партнера по источникам питания, который предлагает расширенную гарантию, чтобы убедиться, что они знают, что делают. Но понимание гарантийных обязательств инженеру также жизненно важно. Например, если ваш дешевый блок питания выходит из строя, это может означать, что когда вы разместите свой следующий заказ MOQ на 1000 единиц из далекой страны, вам будет отправлен новый блок питания. Однако это решение еще не окупает стоимость сбоя.

    Компания по производству высококачественного электроснабжения извлечет уроки, извлеченные из опыта, и включит их в новые проекты, чтобы повысить надежность и уменьшить количество проблем на местах.А предоставление долгосрочной гарантии означает, что у вас не возникнет никаких проблем в полевых условиях.

    Чтобы узнать больше об упрощении схем питания, зарегистрируйтесь для участия в бесплатном вебинаре «Упрощение схем питания с помощью микромодулей», спонсируемом Analog Devices

    Подробнее об Excelsys

    Распространенные проблемы с блоком питания, часть 1

    Введение

    Спроектировать блоки питания — непростая задача, особенно с импульсными регуляторами.Это требует детального знания

    • Аналоговая схема
    • Magnetics
    • Пассивные и активные компоненты
    • Теория управления
    • EMI, ESD, EFT

    Поставщики ИС импульсного стабилизатора предлагают руководства по проектированию, помогающие пользователю разрабатывать блоки питания для их конечного использования. Эти руководства по проектированию могут быть просто предложениями в таблице для инструментов онлайн-моделирования, которые спроектируют для вас источник питания и сгенерируют полную спецификацию.

    Будь то питание ПЛИС на цифровой плате или изготовление OEM-источника питания, сам источник питания должен быть надежным, чтобы удовлетворить потребности конечного пользователя. Однако руководства по проектированию, предлагаемые поставщиками интегральных схем, не всегда помогают выбрать наиболее подходящий компонент на основе надлежащей практики проектирования. В большинстве случаев руководства по проектированию сообщают вам значение компонента, такое как емкость, но не требуемое напряжение или номинальный ток пульсаций RMS.

    Эта серия официальных документов охватывает то, на чем остановились поставщики ИС.Мы почти 30 лет занимаемся разработкой источников питания, анализом отказов и анализом конструкции, вот список основных постоянно возникающих проблем.

    Стабильность

    Любая цепь, имеющая петлю обратной связи, может быть нестабильной. Некоторые поставщики ИС дают уравнения или рекомендации для компенсационной сети, чтобы стабилизатор переключения оставался стабильным. Вы хотели бы иметь запас по фазе 60 градусов или более, чтобы он хорошо демпфировал и оставался стабильным при колебаниях компонентов. Однако не всегда полагайтесь на их рекомендации.Для некоторых топологий в уравнениях могут быть неточности. Кроме того, выбранные вами компоненты могут иметь характеристики, отличные от тех, что предполагал поставщик микросхем. Поэтому всегда измеряйте стабильность схемы с помощью контура обратной связи, создавая график Боде или ступенчато изменяя нагрузку на выходе и наблюдайте, как откликнется выходное напряжение. Система с хорошим демпфированием провалится во время переходного процесса нагрузки и вернется в точку регулирования. Нет, серьезный выброс и звонок в течение нескольких циклов, прежде чем напряжение стабилизируется.

    Имейте в виду, что даже простые устройства, такие как линейные регуляторы, имеют цепи обратной связи для поддержания регулирования напряжения. В правильно составленном техническом описании будет информация о том, какой диапазон емкости и ESR требуется для выхода для поддержания стабильной системы. В частности, более старые линейные регуляторы, которые были скомпенсированы для конденсаторов с высоким ESR, таких как алюминиевые электролитические и танталовые конденсаторы. Керамический конденсатор может привести к их нестабильности.

    Сегнетоэлектрический эффект для керамических конденсаторов

    Керамические конденсаторы высокой плотности страдают сегнетоэлектрическим эффектом.Это похоже на поведение ферромагнетика, когда индуктивность больше не увеличивается с увеличением поля H. Вместо этого накопленный заряд больше не увеличивается с увеличением напряжения, что эффективно снижает емкость с увеличением напряжения. Это не имеет никакого отношения к диэлектрическим материалам, таким как Y5V или Z5U, где емкость падает с напряжением смещения. Этот эффект можно увидеть с материалом X7R, который сам по себе не сильно зависит от напряжения. Например, конденсатор 10 мкФ, рассчитанный на 10 В с использованием диэлектрика X7R и в корпусе 1210, может упасть до 9 мкФ при 5 В.Тот же конденсатор в корпусе 0603 может упасть до 5 мкФ при 5 В. Этот эффект также будет отличаться от поставщика к поставщику. Поэтому при проектировании блока питания нужно это учитывать. Это повлияет не только на переходную характеристику преобразователя, но и на стабильность.

    Номинальное напряжение резисторов

    В автономных преобразователях входное напряжение может находиться в диапазоне от 85 до 265 В (среднеквадр.). Чтобы измерить это напряжение для ИС, необходимо разделить высокое напряжение. Для этого обычно требуется цепочка резисторов.Количество необходимых резисторов зависит от напряжения пробоя выбранного физического размера резистора. Это будет зависеть от поставщика к поставщику. Например, от одного поставщика их 0603 может обрабатывать 75 В, 0805 → 150 В и 1206 → 200 В, в то время как другой, их 0603 обрабатывает только 50 В. Для надежности необходимо снизить максимальное номинальное напряжение как минимум на 80%. Если вы разрабатываете переменный / постоянный ток с максимальным среднеквадратичным напряжением 265 В, это 375 В пик. При снижении рейтинга на 80% вам понадобится три 1206 для проектирования.

    Если на резисторе будет превышено напряжение, он не выйдет из строя немедленно.Это может занять до нескольких месяцев. К тому времени вы можете иметь большое количество юнитов в поле.

    Пробой затвор-исток силового полевого МОП-транзистора

    Обычно напряжение пробоя VGS (напряжение затвор-исток) составляет ± 20 В. Обычно вы управляете VGS до ± 12 В, это точка, в которой RDSON силового MOSFET будет минимальным, и больше не будет усиления при более высоком напряжении возбуждения. Это позволит получить скачки напряжения до 8 В, не повредив устройство.

    В последнее время снова появляются силовые полевые МОП-транзисторы с напряжением пробоя VGS до ± 8 В.Для этого поставщики силовых полевых МОП-транзисторов уменьшили толщину оксида, что помогает уменьшить RDSON для заданного размера кристалла, при этом емкость осталась прежней. Это значительное улучшение.

    Однако возникло несколько проблем с этими устройствами:

    • Я обнаружил, что некоторые конструкторы вставляют эти детали в свою схему привода 12 В, не понимая, что напряжение VGS меньше 20 В. Со временем эти детали начнут выходить из строя.
    • Пороговое значение VGS на этих силовых полевых МОП-транзисторах меньше 1 В.Большинство интегральных схем управления затвором для топологий Buck используют схему защиты от прострела, чтобы определить, что силовой MOSFET выключен, когда его VGS составляет менее 1–2 В, прежде чем позволить другому включиться. Это нормально для устройств, которые обычно имеют напряжение пробоя ± 20 В, потому что их пороговое напряжение составляет от 2 до 4 В. С этими низковольтными устройствами пробоя силовой полевой МОП-транзистор может оставаться включенным, даже если цепь защиты от прострела определяет, что он отключен. Затем он позволяет другому силовому полевому МОП-транзистору включиться, что вызовет проблему со сквозным прохождением.Затем устройства нагреются и, возможно, выйдут из строя.
    • Эти низковольтные силовые полевые МОП-транзисторы с пробоями не оставляют много места для скачков напряжения, если они питаются от трансформаторов управления затвором. С более тонким оксидом они также могут быть более склонны к отказу от электростатического разряда.
    Высоковольтные диоды Шоттки
    Диоды Шоттки

    имеют защитное кольцо PN, которое помогает от всплесков высокого напряжения и электростатических разрядов. Фактически, защитное кольцо PN параллельно диоду Шоттки и в том же направлении.Они оба находятся на одном кремниевом кристалле. Диод Шоттки обычно имеет более низкое прямое напряжение (0,3 В), чем защитное кольцо PN (0,7 В). Следовательно, когда диод проводит ток в прямом направлении, защитное кольцо PN не проводит.

    Однако в высоковольтных диодах Шоттки (≥150 В) дело обстоит иначе. Чтобы увеличить обратное напряжение пробоя диода Шоттки, кремний меньше легируется, но это увеличивает прямое напряжение диода Шоттки. Поскольку кремний слегка легирован под металлом в области диода Шоттки на кристалле, сопротивление будет выше.При высоких токах прямое падение на диоде Шоттки и падение напряжения из-за сопротивления кремния могут быть выше, чем у защитного кольца PN. В этом случае PN-диод будет проводить, и теперь у вас будет ток обратного восстановления. Это может привести к повреждению схемы и, по крайней мере, вызвать чрезмерное напряжение в цепях с трансформаторной связью.

    Существуют некоторые новые технологии с высоковольтными диодами Шоттки, которые могут решить эту проблему. Это включает использование различных металлических барьеров и конструкции устройства для снижения прямого напряжения.

    Следующее:

    Неисправен блок питания моего компьютера?

    Если ваш компьютер ведет себя странно или случайно дает сбой, выявить виновника может быть сложно. И как бы вы не хотели верить, что это проблема, тестирование источника питания должно быть частью вашего поиска и устранения неисправностей — это может быть уже скоро. Из этого туториала Вы узнаете, как это сделать.

    Признаки неисправности блока питания компьютера

    Есть несколько явных признаков неисправности блока питания компьютера.К сожалению, многие из них носят очень общий характер и могут быть разными.

    Типичные симптомы включают:

    1. Случайные сбои компьютера.
    2. Случайный синий экран вылетает.
    3. Избыточный шум от корпуса ПК.
    4. Периодический отказ компонентов ПК.
    5. ПК не запускается, но у вас крутятся вентиляторы корпуса.

    Как видите, у этих симптомов может быть много возможных причин. Неисправный блок питания — лишь один из многих. Я стараюсь в первую очередь устранять неполадки в другом оборудовании, а в последнюю — в блоке питания.Если вы покупаете качественный блок питания, он редко выходит из строя.

    Как проверить ваш блок питания, чтобы увидеть, жив он или мертв

    Проверка неисправного блока питания — это процесс устранения. Этот процесс не является исчерпывающим, но должен дать вам хорошее представление о том, работает ли ваш блок питания должным образом или нет.

    Если вы выполнили диагностику программного обеспечения и считаете, что проблема может быть аппаратной, выполните следующие действия. Повторно тестируйте после каждого шага.

    1. Убедитесь, что любой внешний переключатель на задней панели источника питания не был случайно выключен.
    2. Убедитесь, что шнур питания надежно вставлен в розетку и заднюю часть компьютера.
    3. Попробуйте использовать другой кабель питания и розетку, чтобы убедиться, что они не разряжены.
    4. Проверьте все внутренние соединения внутри вашего ПК, особенно разъемы питания периферийных устройств.
    5. Удалите из компьютера все периферийные устройства и оборудование, кроме загрузочного диска и видеокарты, если у вас нет встроенной графики. Если в вашем ЦП есть встроенная графика, снимите также и видеокарту.

    Обязательно сначала проверьте шаг 1.Проработав более десяти лет в сфере компьютерных технологий, я потерял счет, сколько раз внешний переключатель включения / выключения щелкал вакуумом или даже домашним котом, который возился за компьютером!

    При выполнении шага 4 обратите особое внимание на большой разъем на материнской плате и любой разъем, идущий к видеокарте. Оба они подают большое напряжение, поэтому их необходимо надежно вставить в соответствующие гнезда. Перед тестированием тщательно проверьте все соединения.

    Дальнейшее тестирование блока питания компьютера

    Если вы выполнили описанные выше базовые тесты и не уверены, правильно ли работает блок питания, у вас есть несколько вариантов.Во-первых, это быстрый и грязный тест на скрепку. Это видео проведет вас через это. Не забудьте, что : будьте осторожны, .

    Другой вариант, если у вас есть другой компьютер, запасной блок питания или приятель, который имеет, — это проверка подкачки.

    Тестирование подкачки

    1. Отключите имеющийся блок питания, но не вынимайте его из корпуса.
    2. Поместите запасную часть рядом с ПК и подключите материнскую плату, внешний графический процессор, если у вас нет встроенной платы, и загрузочный диск.
    3. Подключите запасной блок питания к стене и проверьте.

    Если ваш компьютер работает нормально, вы доказали, что это был блок питания, и можете его заменить. Если это не блок питания, вам нужно выполнить лишь минимальную перестройку, прежде чем продолжить устранение неполадок.

    Мониторинг программного обеспечения

    Если вы подозреваете, что проблемы с напряжением вызывают сбои, вы можете использовать инструмент мониторинга программного обеспечения, чтобы следить за происходящим. Такие программы, как Open Hardware Monitor или HWMonitor , могут отображать напряжения для компонентов.Вам нужно будет активно контролировать эти напряжения и записывать среднее значение, но это простой способ контролировать мощность вашего компьютера.

    Обратной стороной здесь является то, что для отслеживания скачков или падений напряжения требуется внимательное наблюдение. Плюс в том, что программа бесплатна и предлагает гораздо больше полезных функций, помимо контроля напряжения.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *