Как генератор вырабатывает электричество: Принцип работы электрического генератора

Содержание

Как работает генератор переменного тока?

Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки {рисунок справа). Электроны {голубые шарики) перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.

Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита {дальний рисунок справа), т. е. когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное.

Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Принцип действия генератора переменного тока

Простейший генератор переменного тока состоит из проволочной рамки, вращающейся между полюсами неподвижного магнита. Каждый конец рамки соединен со своим контактным кольцом, скользящим по электропроводной угольной щетке (рисунок над текстом). Индуцированный электрический ток течет к внутреннему контактному кольцу, когда соединенная с ним половина рамки проходит мимо северного полюса магнита, и, наоборот, к внешнему контактному кольцу, когда мимо северного полюса проходит другая половина рамки.

Трехфазный генератор переменного тока

Одним из наиболее экономически выгодных способов выработки сильного переменного тока является использование одного магнита, вращающегося относительно нескольких обмоток. В типичном трехфазном генераторе три катушки расположены равноудалено от оси магнита. Каждая катушка вырабатывает переменный ток, когда мимо нее проходит полюс магнита (правый рисунок).

Изменение направления электрического тока

Когда магнит вдвигается в проволочную катушку, он индуцирует в ней электрический ток. Этот ток заставляет стрелку гальванометра отклоняться в сторону от нулевого положения. Когда магнит вынимается из катушки, электрический ток изменяет свое направление на противоположное, и стрелка гальванометра отклоняется в другую сторону от нулевого положения.

Переменный ток

Магнит не будет индуцировать электрический ток до тех пор, пока его силовые линии не начнут пересекать проволочную петлю. Когда полюс магнита вдвигается в проволочную петлю, в ней индуцируется электрический ток. Если магнит прекращает движение, электрический ток (голубые стрелки) также прекращается (средняя диаграмма). Когда магнит вынимается из проволочной петли, в ней индуцируется электрический ток, текущий в противоположном направлении.

Электричество из воздуха своими руками: схемы

Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально.

Виды добычи

Альтернативное электричество может добываться из воздуха двумя способами:

  1. Ветрогенераторами;
  2. За счет полей, пронизывающих атмосферу.

Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

Фото — грозовая батарея

Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра.

Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

Фото — ветряки

Видео: создание электричества из воздуха

Как добыть энергию из воздуха

Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».

Фото — схема

Схема имеет свои достоинства:

  1. Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
  2. Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.

Недостатки:

  1. Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
  2. При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.

С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).

Фото — люстра Чижевского

Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.

Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:

  1. Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера; Фото — основание
  2. Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
  3. Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала; Фото — четыре катушки
  4. Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
  5. Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания. Фото — конечная обмотка

На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.

Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.

Фото — предположительная схема генератора Капанадзе

В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.

Почему автомобильные генераторы вырабатывают переменный ток?

Вот почему автомобили используют генераторы переменного тока, хотя все устройства на борту работают от постоянного электричества

Задумывались ли вы когда-нибудь о том, что питает все системы вашего автомобиля? За счет чего заводится мотор, горят лампочки на приборной панели, движутся стрелки и работают бортовые компьютеры? Откуда берется электричество на борту? Конечно, их вырабатывает генератор и аккумулирует химический накопитель энергии многоразового действия – электрический аккумулятор. Это знают все. Скорее всего, вы также в курсе, что аккумуляторная батарея вырабатывает постоянный ток, который используется в любом автомобиле для запитывания приборов. Однако во всей этой стройной теории, проверенной практикой, присутствует одно странное звено, не желающее поддаваться логике, – генератор вырабатывает ток переменный, тогда как все механизмы на борту машины потребляют ток постоянный. Это не кажется вам странным? Почему так происходит?

 

На самом деле это интересный вопрос, потому что в этой истории на первый взгляд нет никакого смысла. Если все потребители электричества в вашем автомобиле работают на 12 вольтах постоянного тока, почему автопроизводители больше не используют генераторы, которые производят постоянный ток? Ведь раньше так и делали. Почему необходимо сперва сгенерировать переменный ток, а затем преобразовывать его в постоянное электричество?

 

Задавшись такого рода вопросами, мы начали докапываться до истины. Ведь есть же в этом какая-то тайная причина. И вот что мы выяснили.

 

Во-первых, давайте проясним, что мы подразумеваем под переменным и постоянным током. Автомобили используют постоянный ток, или прямой ток, как его еще называют. В названии скрыта суть феномена. Это тип электричества, который производится батареями, он течет в одном постоянном направлении. Этот же тип электричества производился генераторами, которые ставились на первые автомобили с начала 1900-х годов до 60-х годов прошлого века. На старушках ГАЗ М-20 «Победа» и ГАЗ-69 ставились именно генераторы постоянного тока.

 

Другой вид электричества – переменный ток – назван так из-за того, что он периодически обращает течение по направлению, а также изменяется по величине, сохраняя свое направление в электрической цепи неизменным. Доступ к этому типу электричества можно получить в любой розетке обычной квартиры по всему миру. Мы используем его для питания электроприборов в частных домах, зданиях, огни больших городов также дают свет благодаря переменному току, потому что его легче передавать на большие расстояния.

 

Большая часть электроники, в том числе почти вся в вашем автомобиле, использует постоянный ток, преобразуя переменный ток в постоянный для выполнения полезной работы. В бытовых приборах установлены так называемые блоки питания, в которых происходит конвертация одного вида энергии в другой. Побочным результатом работы преобразования является немного тепла на выходе. Чем сложнее бытовая утварь, к примеру компьютер или Smart TV, тем сложнее цепочка преобразований. В некоторых случаях переменный ток частично не изменяется, а лишь корректируется его частота. Поэтому очень важно при замене вышедшего из строя блока питания заменять его на оригинальный, требуемого типа. Иначе технике наступит очень быстрый конец.

 

Но что-то мы отошли от главных вопросов, поставленных на повестку дня сегодня.

 

Итак, зачем в автомобилях вырабатывать «неправильный» вид электричества?

В общем, ответ очень прост: таков принцип работы генератора переменного тока. Наиболее высокий КПД при переводе механической энергии вращения двигателя в электрическую энергию происходит именно по такому принципу. Но есть нюансы.

 

Кратко принцип работы автомобильного генератора таков:

При включении зажигания на обмотку возбуждения подается напряжение через блок щеток и контактные кольца.

Инициируется появление магнитного поля.

Магнитное поле воздействует на обмотки статора, что приводит к появлению электрического переменного тока.

Далее переменный ток отправляется на выпрямительный блок, где происходит его преобразование в постоянный ток.

Завершающая стадия «готовки» правильного тока – регулятор напряжения.

 

После всего процесса часть электричества запитывает электропотребители, часть идет на подзарядку аккумулятора, некоторая часть уходит обратно на щетки альтернатора (так когда-то называли генератор переменного тока) для самовозбуждения генератора.

 

Выше был описан принцип работы современного генератора переменного тока, но так было не всегда. Ранние автомобили с двигателями внутреннего сгорания использовали магнето – простейшее приспособление для преобразования механической энергии в электрическую (переменного тока). Внешне, да и внутренне, эти машинки были даже схожи с более поздними генераторами, но использовались на очень простых автомобильных электрических системах без батарей. Все было просто и безотказно. Не зря некоторые сохранившиеся до наших времен 90-летние автомобили заводятся до сих пор.

 

Индукторы (второе название магнето) впервые были разработаны человеком с неподражаемым именем – Ипполит Пикси.

 

Смотрите также: Сколько стоит зарядить электромобиль?

 

На данный момент мы с вами выяснили, что тип вырабатываемого генераторами тока зависит от продуктивности перевода механической энергии в электрическую, но также немаловажную роль во всей этой истории сыграло снижение массы и габаритов устройства по сравнению с аналогичными по мощности устройствами-производителями постоянного тока. Разница в весе и габаритах оказалась почти в три раза! Но есть еще один секрет, почему автомобильные генераторы сегодня вырабатывают переменный ток. Вкратце это более передовой эволюционный путь развития генераторов постоянного тока, которых, признаться честно, по сути, и не существовало в чистом виде.

 

Историческая справка:

Более того, генераторы постоянного тока на самом деле также производили переменный ток, когда якорь (подвижная часть) вращался внутри статора (внешний «корпус», который имеет постоянное магнитное поле). Разве что частота тока была иной и «сгладить» ее в постоянный ток можно было проще – при помощи коммутатора.

Коммутатором тогда называлось механическое приспособление с вращающимся цилиндром, поделенным на сегменты с щетками для создания электрического контакта.

 

Система работала, но была неидеальна. В ней было множество механических частей, контактные щетки быстро изнашивались, и общая надежность системы была так себе. Тем не менее это был лучший способ получить постоянный ток, который был нужен вам для зарядки аккумулятора и системы запуска автомобиля.

 

Так было до конца 1950-х годов, когда начала появляться твердотельная электроника, ставшая решением проблемы преобразования переменного тока в постоянный посредством кремниевых диодных выпрямителей.

Эти выпрямители тока (иногда называемые диодным мостом) показали себя с гораздо лучшей стороны в качестве преобразователей переменного тока в постоянный, что, в свою очередь, позволило использовать более простые, а значит, более надежные генераторы переменного тока в автомобилях.

 

Первым зарубежным автопроизводителем, который развил эту идею и вывел ее на рынок легковых автомобилей, был Chrysler, имевший опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны США. В Википедии отмечается, что американская разработка «…повторяла разработку авторов из СССР», первая конструкция генератора переменного тока была представлена в Советском Союзе за шесть лет до этого. Единственным, но важным улучшением американцев стало применение кремниевых выпрямительных диодов вместо селеновых.

 

Смотрите также: Разряд автомобильного аккумулятора: причины и как его избежать

 

В СССР же, хоть и опоздали на 7 лет с введением в серию генераторов переменного тока на легковые автомобили, опередили весь мир в самой разработке новых типов генераторов. Еще в 1955 году на Горьковском автозаводе было выпущено 2.000 машин с альтернаторами вместо магнето.

 

«Одними из ведущих разработчиков, благодаря которым в СССР и на европейском континенте появилась первая серийная конструкция генераторов переменного тока, были Ю. А. Купеев (НИИ автоприборов) и В. И. Василевский (КЗАТЭ г. Самара)», – говорится на страницах Википедии.

 

Итог. Почему генераторы на авто вырабатывают переменный ток?

Ну, а мы завершаем наш рассказ. Первым легковым автомобилем, в базовой комплектации которого устанавливался генератор новой конструкции, стал Plymouth 1960 года выпуска. Некоторыми из наиболее очевидных преимуществ генератора было то, что на низкой скорости или на холостом ходу он по-прежнему производил достаточно тока, чтобы заряжать аккумулятор, что большинство генераторов того времени были не в состоянии сделать.

 

Оказалось, что альтернаторы, после того как был налажен массовый выпуск, производить дешевле, чем генераторы старой конструкции, они надежнеевыносливее и производят больше электричества на разных скоростях вращения коленчатого вала. Они сделали настолько большой шаг вперед, что все их плюсы запросто перекрывали единственный минус – они не могли производить постоянный ток. Позиция закрепилась после того, как инженерами был разработан дешевый и надежный твердотельный выпрямитель.

 

Видите? В конце концов, в этом есть смысл!

Как работает электрический генератор 🚩 как работают генераторы 🚩 Естественные науки

Чтобы понять принцип работы устройства, именуемого генератором электрического тока, необходимо хотя бы немного вспомнить закон электромагнитной индукции. Именно благодаря ему человечество беспрепятственно пользуется всеми благами цивилизации.

Принцип действия генератора постоянного и переменного тока, использующего вращение

Закон электромагнитной индукции гласит, что в любом замкнутом проводнике величина индуцированной электродвижущей силы прямо пропорциональна скорости изменения магнитного потока.

Когда магнитное поле, создаваемое постоянным магнитом, вращается со стабильной угловой скоростью вокруг оси, в рамке возбуждается электродвижущая сила. Вертикальные стороны рамки являются активными, а горизонтальные – неактивными. Это определяется тем, какие стороны пересекают линии магнитного поля в конкретной схеме. При этом в каждой из сторон возбуждается своя электродвижущая сила, которая прямо пропорциональна магнитной индукции (B), длине стороны (L) и линейной скорости магнитного поля (v):

Е1 = B*L*v*sin(w*t)
E2=B*L*v*sin(w*t+π)= — B*L*v*sin(w*t)

Результирующая электродвижущая сила удваивается, т. е.: Е = Е1-Е2= 2*B*L*v*sin(w*t), потому что Е1 и Е2 действуют согласно друг с другом.

Графическое отображение результирующей электродвижущей силы является синусоидой. Это – переменный ток. Чтобы получить постоянный ток, необходимо контакты от рабочих сторон рамки вывести не к контактным кольцам, а к полукольцам, произойдет выпрямление электрического напряжения.

Принцип действия генератора постоянного тока, использующего химическую энергию

Системы, которые превращают химическую энергию в электрическую, называются химическими источниками тока (ХИТ). Он бывают первичные и вторичные. Первичные ХИТ не способны перезаряжаться – это батарейки, вторичные ХИТ способны – это аккумуляторы.

Последние 20 лет произошел фурор в области ХИТ. Это относится к созданию литий-ионных аккумуляторов. Их принцип действия похож на кресло-качалку: ионы лития переходят то с катода на анод, то с анода на катод.

Химический источник тока может работать только тогда, когда есть следующие элементы:
1) Электроды (катод и анод).
2) Электролит.
3) Внешняя цепь.

Разница потенциалов между электродами называется электродвижущей силой. ХИТ генерирует электрическую энергию во внешнюю цепь потому, что при ее помощи протекает окислительно-восстановительный процесс, разнесенный в пространстве. На отрицательно заряженном аноде происходит окисление восстановителя. Образуются электроны, которые переходят во внешнюю цепь и направляются к положительно заряженному катоду. Здесь происходит восстановление окислителя при помощи этих электронов. В аккумуляторе процесс окисления и восстановление неоднократно может быть повторим.

КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

Верходанов И.А. 1

1

Литвиновская Н.Ю. 1

1

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

Электричество имеет большое значение в нашей жизни. Почти все, что нас окружает, работает на электричестве. Например, бытовая техника у нас дома: телевизоры, стиральные машины, холодильники, компьютеры, лампочки для освещения. На улице за счет электрического тока ездят троллейбусы, трамваи, электрички, и, даже машины, используют электричество для управления и освещения дороги фарами. На заводах на электричестве работают станки, печи и другие сложные механизмы.

Так откуда же берется электричество, которое поступает к нам в дом по проводам?

В своей работе я изучу, как вырабатывается электричество на электростанциях: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Как по электрическим проводам, закрепленным на специальных опорах, электричество направляется в город, затем в каждый дом, в каждую квартиру.

В экспериментальной части докажу, как «маленький» генератор вырабатывает ток, которого будет достаточно для освещения домика.

Тема «Как получают электричество» мне особенно интересна, потому что, чтобы изготовить макеты, надо паять настоящие схемы.

Цель исследования: изучение возникновения электричества.

Задачи исследования:

  1. Изучить, как появляется электричество за счет преобразования энергии воды, ветра, солнца и газа.

  2. Понять, как устроен генератор, который вырабатывает электричество.

  3. Рассмотреть, как устроена батарейка (переносной источник энергии).

  4. Провести эксперименты: подключить игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. Затем, таким же образом включить вентилятор.

  5. Изготовить самодельную батарейку из соленой воды и металлических пластинок.

Содержание работы:

Первое, что необходимо сделать: проанализировать учебную литературу. Из нее я узнал следующее: Электричество вырабатывается на электростанциях, затем по электрическим проводам, закрепленным на специальных опорах, направляется в город, затем в каждый дом, в каждую квартиру.

Электростанции

Электричество вырабатывается на электростанциях за счет преобразования энергии воды, ветра, солнца и газа в электрическую энергию (рис.1).

а б

в г

Рис.1 Электростанции: а – теплоэлектроцентраль (ТЭЦ), б — атомная электростанция, в – гидроэлектростанция, г – ветроэлектростанции.

Теплоэлектроцентраль (рис.1а), одна из самых распространенных станций, дает городу не только электричество, но и тепло для отопления домов зимой. Таких станций построено очень много. Как она работает? В большой печке сжигают газ, тот самый газ, на котором мы готовим еду в кухне, см. схему на рис.2. Газ нагревает котел с водой. Вода, нагреваясь, превращается в пар. Пар вращает турбину, а она в свою очередь вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. Дым от сгоревшего газа выходит в трубу, а пар охлаждаясь в градирне, превращаясь обратно в воду, возвращается в котел. Зимой эта горячая вода направляется в наши дома, для отопления квартир. Теперь мы видим, что механическая энергия вращения, превращается в электрическую энергию, в генераторе . [1, 4]

Рис.2. Схема работы ТЭЦ

Атомная электростанция (АЭС) сложнее предыдущей электростанции, см. рис.1б. Их меньше у нас в стране. Все дело в том, что в них не сжигают газ, а используют тепло от ядерной реакции (рис. 3). Получение такой ядерной энергии очень сложный процесс. На АЭС внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия. Вода, циркулируя через активную зону, омывая топливные элементы, нагревается до 320 0С. Проходя внутри теплообменных трубок парогенератора, вода первого контура отдает тепло воде второго контура, не соприкасаясь с ней, что исключает попадание радиоактивных веществ за пределы реакторного зала. В остальном схема точно такая же, как и предыдущая. Вода второго контура превращается в пар. Пар с бешеной скоростью вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город [1, 4].

Рис. 3 Схема работы АЭС

Гидроэлектростанция есть у нас в Перми (рис.1-в). В таких электростанциях используют энергию падающей воды. Для этого — строят поперек реки плотину. С ее высоты вода падает вниз и вращает турбину, а турбина вращает генератор, который вырабатывает электричество. Схема работы гидроэлектростанции показана на рис.4 [1, 4].

Рис. 4 Схема работы гидроэлектростанции

Ветроэлектростанции используют энергию ветра (рис.1-г). Такие электростанции не очень мощные. Ветер вращает лопасти вентилятора, похожие на лопасти самолета, только очень большие. А они уже вращают генератор (рис.5) [4].

Рис. 5 Схема работы ветроэлектростанции

Есть и другие электростанции, в которых ничего не вращается, и в них нет генератора. Это солнечные электростанции [4]. Энергия солнечного света преобразуется в электрическую в солнечных панелях, изготовленных из специального материала, который под воздействием солнечной энергии начинает вырабатывать электрический ток (рис.6).

Рис. 6 Схема работы солнечной электростанции

Устройство генератора

Так как же устроен генератор, который вырабатывает электричество?

Все мы знаем, что такое магнит, любой с ним сталкивался и играл. Магнит притягивает к себе металлические предметы. Магниты бывают разные: большие и маленькие, сильные и слабые [1].

Если в магнитное поле поместить рамку, сделанную из электрического провода, закрепить ее так, чтобы можно было вращать за ручку, то получится простейший генератор [1, 3]. Если вращать рамку, в ней возникнет электрический ток. И, если ток будет достаточно мощный, то им можно будет зажечь электрическую лампочку (рис.7). В настоящих генераторах используют вместо рамки очень длинный провод, намотанный на специальные катушки и за счет этого, генераторы получаются очень мощные.

Рис.7 Схема устройства генератора

Но что будет, если к генератору подвести электрический ток?

Если к генератору подвести электрический ток, то рамка начнет сама вращаться, то есть произойдет обратный эффект (рис.8). Такие устройства называются электродвигатели [1, 3]. Они так же бываю большими и маленькими, мощными и слабыми.

Рис.8 Схема устройства двигателя

Что делать, если источник энергии нужен переносной, а не связанный с розеткой проводами? Для этого существуют, всем нам знакомые, батарейки.

Батарейки

Батарейка — это, емкость в которой происходит химическая реакция. Самая простая батарейка состоит из цинкового стаканчика, графитового стержня и электролита между ними (рис.9).

Рис.9 Устройство батарейки

В процессе использования батарейки, химическая реакция разрушает ее изнутри и батарейка «садится», то есть разряжается. Чем больше мы нагружаем батарейку, тем сильнее химическая реакция и тем быстрее она разрядится [1, 2].

Самую простую батарейку можно изготовить дома [2]. Для этого необходимо взять два разных «металла»: гвоздик и монетка — это будут электроды (рис.10), а в качестве электролита можно использовать лимон.

Рис.10 Самодельная батарейка

Но надо учесть, что такая батарейка будет очень слабая и ее не хватит даже для того, чтобы загорелась лампочка. То, что электричество появилось, мы видим только на приборе, который называется вольтметр.

Еще самодельную батарейку можно изготовить из соленой воды и металлических пластинок (рис.11). Ее устройство очень простое. Имеется три баночки, наполненные простой соленой водой. В каждую из них опускаем по два электрода, изготовленных из металлических пластинок. Одна пластинка покрыта медью, а вторая — цинком.

Рис. 11 Самодельная батарейка

Вот такую батарейку я и продемонстрирую в экспериментальной части моей работы. А также проведу другие эксперименты: подключу игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. И докажу следующее: механическая энергия вращения преобразуется в электрическую энергию, в генераторе.

Экспериментальная часть:

В первом эксперименте я подключу игрушечный домик к маленькой электростанции (рис.12). Буду вращать ручку, и маленький генератор будет вырабатывать ток, которого хватит, чтобы в домике заработало освещение.

Материалы для изготовления макета: картон, деревянные фанерки размером 90х170 мм, 70х165 мм, розетка, механизм от фонарика, провода, вилка, лампочки (5 шт.), клей.

Рис. 12 Первый эксперимент

Во втором эксперименте я подключу к электростанции вентилятор (рис.13). Мы увидим, как механическая энергии вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения.

Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель.

Рис.13 Второй эксперимент

В третьем эксперименте я подключу к батарейкам, по-очереди, все тот же домик и вентилятор (рис.14-а,-б).

Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, 90х170 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель, лампочки (5 шт.), батарейки.

а б

Рис.14 Третий эксперимент

В следующем – четвертом эксперименте я продемонстрирую самодельную батарейку (рис.15-а). Берем баночки заполненные соленой водой. В каждую из них опускаем по два электрода, изготовленные из металлических пластинок. Одна пластинка покрыта медью, а вторая цинком.

Материалы для изготовления макета: картон Ø 20 мм, часовой механизм, лампочка (1 шт.), провода, три баночки с соленой водой, деревянная фанерка 75х330 мм для основания, медные и цинковые пластинки длиной 75 мм, клей.

а б

Рис.15 Четвертый эксперимент

Энергии этих трех батареек хватило, чтобы загорелась лампочка и пошли часы (рис.15-б).

Выводы

В своей работе я рассмотрел, как работают: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Схема работы ТЭЦ и АЭС в целом похожи: нагревается котел с водой, вода превращается в пар. Пар вращает турбину, а турбина вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. В одном случае сжигают газ, а, во втором — используют тепло от ядерной реакции. В гидроэлектростанциях используют энергию падающей воды для вращения турбины, а турбина вращает генератор, который вырабатывает электричество. В ветроэлектростанциях ветер вращает лопасти вентилятора, а они уже вращают генератор.

Во всех электростанциях реализуется следующее: механическая энергия вращения превращается в электрическую энергию, в генераторе. Но есть и другие электростанции, в которых ничего не вращается, и, в них нет генератора. Это — солнечные батареи. Они изготовлены из специального материала, и, под воздействием солнца вырабатывают электрический ток.

Далее в работе я рассмотрел устройство батарейки — переносного источника энергии. И как можно самую простую батарейку изготовить дома.

В практической части я провел несколько экспериментов. В первом эксперименте подключил игрушечный домик к «маленькой электростанции». «Маленький» генератор вырабатывает ток, которого достаточно для включения в доме электричества. Во втором — подключил к электростанции вентилятор. Механическая энергия вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения. В третьем эксперименте я подключил к батарейкам, по очереди, все тот же домик и вентилятор. В четвертом эксперименте я продемонстрировал самодельную батарейку. В каждую из трех баночек с соленой водой опустил по два электрода, изготовленные из металлических пластинок из меди и цинка.

В проведенных двух экспериментах, я подтвердил и наглядно продемонстрировал следующее: механическая энергия вращения в генераторе, преобразуется в электрическую. А также изготовил самодельную батарейку, энергии которой хватило, чтобы загорелась лампочка и пошли часы.

Но, у меня остались вопросы, на которые мне предстоит найти ответы:

Как протекает ядерная реакция? Какие АЭС есть у нас в стране? А еще мне интересно почему произошла авария в Чернобыле.

О, сколько нам открытий чудных

Готовит просвещенья дух,

И опыт – сын ошибок трудных,

И гений, парадоксов друг.

А.С. Пушкин

Список литературы

1 Ю.И. Дик, В. А. Ильин, Д.А. Исаев и др. /Физика: Большой справочник для школьников и поступающих в вузы / Издательство «Дрофа», 2000 год.

2 «Энциклопедия для детей от А до Я» / Издательство «Махаон», Москва, 2010.

3 А.А. Бахметьев/ Электронный конструктор «Знаток»/ Практические занятия по физике. 8, 9, 10, 11 классы.// Москва, 2005 год.

4 Получение и использование электрической энергии: [электронный ресурс] // Мир знаний. URL: http://mirznanii.com/info/id-9244

Просмотров работы: 7777

Как сделан генератор электричества

Постоянное повышение стоимости электроэнергии заставляет многих задумываться о необходимости организации независимой системы собственного энергообеспечения. Кроме того, иногда это единственный способ оборудования электричеством надлежащего качества. Поиск вариантов решения проблемы самообеспечения напряжением приводит к необходимости разобраться в том, как сделан генератор.

Хотя сейчас существует довольно много революционных решений, позволяющих получать электроэнергию практически «из ничего», они не находят практического применения, будучи не всегда работоспособными, уступая место проверенному временем варианту с электродвигателем.

Предпосылки создания генерирующего устройства

Изучать, как сделать генератор электричества, следует с вспоминания азов электротехнической науки. В разделе, посвященном двигателям, четко указано, что любой из них может работать не только в качестве потребителя, выполняя конвертацию работы заряда в механическую энергию вращения вала, но и в противоположном режиме, преобразовывая механический момент в потенциал на клеммах. Эта особенность получила название закона обратимости электротехнических машин. Собственно, это основа того, как сделан генератор.

Двигатели

При выборе электромотора следует знать, что они могут быть постоянного или переменного тока. Так как рассматривая то, как сделан генератор, чаще всего подразумевают именно «переменку», то о «постоянке» мы говорить не будем. Машины переменного тока существуют в вариациях с фазным и короткозамкнутым ротором. В первом случае концы обмоток выведены на специальное устройство с набором контактных площадок, подача питания на которые выполняется при помощи графитных «щеток». Использование таких решений в качестве генератора более сложно.

Принцип работы

Чтобы понять, как сделан генератор, нужно представлять процессы, происходящие в двигателе при работе. Рассмотрим трехфазную модель. При подаче питания на выводы обмотки статора (неподвижная часть) в нем возникает магнитное поле, линии напряженности которого пересекают замкнутую обмотку ротора (вращающийся «барабан»). Благодаря этому в последней индуцируется ток, который генерирует собственное магнитное поле. Взаимодействие этих двух полей создает вращающий момент. Вот так все просто.

Следовательно, исходя из закона обратимости, необходимо внешним воздействием раскрутить ротор, а с обмоток статора снимать напряжение. В генераторах, продающихся в торговых сетях, вращающий момент создает бензиновый двигатель. Хотя КПД такой системы мало, она работает.

Несколько нюансов

Люди, уже изучавшие, как сделан генератор, знают, что есть ряд особенностей подключаемых схем. Раскрутив вал и подсоединив к выводам нагрузку, не удастся в полной мере раскрыть потенциал устройства. Причина этого кроется в том, что в витках обмотки ротора ток не возникает (намагниченность мала и угасает). Для решения этой проблемы используют эффективное решение: между тремя выводами рассматриваемого трехфазного двигателя размещают блок конденсаторов, включенных треугольником. То есть, к каждому углу подводится провод от клеммы статорной обмотки, отсюда же отходят три вывода на нагрузку. Должны использоваться конденсаторы неэлектролитического типа, такие как МБГТ, МБГО и пр. Их напряжение должно быть не меньше 600 В. Емкость же зависит от нагрузки (чем она мощнее, тем выше класс конденсаторов) и характеристик двигателя. Например, для 2 кВА генератора емкость батареи составляет не менее чем 28 мкФ.

Без нагрузки использовать генератор не рекомендуется из-за возникающего нагрева. Также нужно учесть, что для трехфазного электродвигателя, с которого в режиме генератора снимается 220 В, мощность составит треть от паспортной.

Скорость вращения вала должна быть не ниже синхронной. В противном случае наблюдается снижение частоты и/или напряжения.

Чаще всего у людей возникает вопрос: «Как сделать ветровой генератор?» Все логично: ветер – бесплатный ресурс, который всегда доступен. В состав такого решения входят: двигатель; лопасти на валу, настроенные на определенный угол; блок конденсаторов. Если изначально планируется выработка низкого напряжения, то дополнительно потребуются инвертор и аккумуляторная батарея.

Как работает ядерный реактор

Комбинированный логотип ShapeemailfaxFS 2017PDF IconphoneplayShapeПерейти к основному содержанию

Вторичная навигация

Новости Голоса за ядерную энергию Действовать Конференции Членам Поиск Поиск представить

Закрыть поиск

Институт ядерной энергии

Навигация по сайту

Основы Развернуть навигацию

Основы

Что такое ядерная энергия? Как работает ядерный реактор Ядерное топливо Ядерные отходы Безопасность Ядерная энергия обеспечивает безуглеродную энергию 24/7 Помимо электричества Пропаганда Развернуть навигацию

Пропаганда

Сохранить атомные станции

Производство электроэнергии — скачать ppt

Презентация на тему: «Производство электроэнергии» — стенограмма презентации:

1 Производство электроэнергии
Электрогенератор вырабатывает электроэнергию.Он НЕ создает энергию. Энергия не может быть создана или уничтожена, она просто меняет форму! Генератор преобразует механическую энергию в электрическую.

2 Производство электроэнергии
3. Части генератора U-образный магнит Катушка из медной проволоки Если вы вращаете проволоку внутри магнита или вращаете магнит вокруг проволочной катушки, это заставляет электроны в проволоке двигаться. (Электричество — это поток электронов).Это вызывает электрический ток.

3 Производство электроэнергии
5. Чтобы получить более сильный электрический ток, вы: Получите более крупный (более сильный) магнит Получите большую катушку из медной проволоки Заставьте магнит или катушку вращаться быстрее

4 Производство электроэнергии
Электростанции Все электростанции вырабатывают электричество с помощью генератора.Электростанции имеют турбину, подключенную к генератору. Когда турбина вращается, это вызывает вращение проволочной петли в генераторе. Это создает электрический ток.

5 Турбина и генератор


7 Производство электроэнергии
Турбину на электростанции можно вращать несколькими способами: Ветер Турбина помещается непосредственно в ветер (ветровая энергия).

9 Производство электроэнергии
б. Вода. Турбина размещается в реке (гидроэлектростанция) или в океане (приливная вода).

Электрогенератор: базовое введение в принцип работы генераторов, их особенности и применение

Как работают электрические генераторы?
Электрогенератор — это устройство, которое используется для производства электроэнергии, которая может храниться в батареях или может подаваться напрямую в дома, магазины, офисы и т. Д.Электрогенераторы работают по принципу электромагнитной индукции. Катушка-проводник (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами магнита подковообразного типа. Катушка проводника вместе с ее сердечником известна как якорь. Якорь соединен с валом источника механической энергии, такого как двигатель, и вращается. Требуемая механическая энергия может обеспечиваться двигателями, работающими на таких видах топлива, как дизельное топливо, бензин, природный газ и т. Д., Или за счет возобновляемых источников энергии, таких как ветряная турбина, водяная турбина, турбина на солнечной энергии и т. Д.Когда катушка вращается, она разрезает магнитное поле, которое находится между двумя полюсами магнита. Магнитное поле будет мешать электронам в проводнике, вызывая в нем электрический ток.

Характеристики электрогенераторов

  • Мощность: Электрогенераторы с широким диапазоном выходной мощности легко доступны. Как низкие, так и высокие требования к мощности можно легко удовлетворить, выбрав идеальный электрический генератор с соответствующей выходной мощностью.
  • Топливо: Для электрических генераторов доступны различные варианты топлива, такие как дизельное топливо, бензин, природный газ, сжиженный нефтяной газ и т. Д.
  • Мобильность: На рынке доступны генераторы, на которых установлены колеса или ручки, чтобы их можно было легко перемещать с одного места на другое.
  • Шум: Некоторые модели генераторов оснащены технологией снижения шума, которая позволяет держать их в непосредственной близости без каких-либо проблем с шумовым загрязнением.

Применение электрогенераторов
  • Электрогенераторы полезны для домов, магазинов, офисов и т. Д., Которые часто сталкиваются с перебоями в подаче электроэнергии. Они действуют как резервные, чтобы гарантировать бесперебойное питание устройств.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *