Зарядное устройство из компьютерного блока питания
Понадобилась зарядка для аккумулятора автомобиля. Перебрав несколько вариантов, остановился на переделке блока питания компьютера. Переделывать решил по-простому. Зарядное не будет иметь регулировок, нет у меня такой задачи. В принципе можно все сделать за пару часов.
Для самоделки нам понадобится:
— блок питания АТХ;
— провода;
— зажимы типа «крокодил»;
— сетевой выключатель;
— фольгированный стеклотекстолит;
— пластик plexiglas;
— радиокомпоненты;
— инструменты.
О комплектующих.
Переделывать будем блок АТХ. Фирма JNC, модель LC-D300ATX.
Данный блок питания имеет на борту малоизвестную микросхему 2003. По данной микросхеме мало информации. Вроде как это ШИМ контроллер с мультивизором. Будем разбираться по схеме, о схеме далее.
Подключаться к аккумулятору буду при помощи проводов с «крокодилами». У меня уже были распаянные.
В роли сетевого выключателя у меня тумблер ТВ2-1. Выдернул со старого телевизора.
Сборка.
Нужно удалить все лишние компоненты. Красным отмечено, что нужно выпаять. Желтым отмечен резистор на 13кОм, его заменим на 2.4 кОм. Вместо резистора отмеченного голубым, временно установим переменный резистор на 200 кОм. Переменный резистор, желательно поставить на 100 кОм, но у меня такого не оказалось. Пришлось долго регулировать нужное напряжение.
Главное установить в максимальное сопротивление. Так же имеются зеленые метки, что подключать к ним, расскажу позже.
Выпаиваем лишние компоненты. На схеме все разборчиво. Получается плата вот такая. Временно выпаял силовые диоды. Так же выпаял дроссель групповой стабилизации, его буду перематывать. Коричневой перемычкой замкнуты пятачки от земли и PS-ON, необходимо для запуска.
Переменный резистор вынес на проводах за пределы платы.
Верхние два отрезка схемы подключаются к нижнему отрезку на 12 В. Платку, сделал по технологии «процарапывания». Делается за минут 30.
На схеме были указаны точки для подключения платы «обманки». Распаиваем согласно со схемой. На схеме отмечено зелеными точками соответственно. Плата «обманка» имеет цвета согласно напряжениям. Получилось что-то подобное.
Переменным резистором устанавливаем на выходе нужное напряжение (забыл сфотографировать). Оставляю стоп кадр. Измеряю, сопротивление резистора получилось около 11.7 кОм. Собираю из двух резисторов на 10 и 1.8 кОм. Напряжение чуть изменилось, но не значительно.
Подключил провода с зажимами «крокодилами». Установил светодиод для индикации включения. Все закрепил термо клеем. Сетевой провод пустил в разрыв через тумблер.
Первоначально не думал ставить пластину на переднюю панель, но прикрутил. Так выглядит приличней. Такое вот гаражное зарядное устройство получилось. Единственное чего нет в данном устройстве, это защиты от КЗ и переполюсовки. Позже возможно добавлю.
Зарядное устройство из компьютерного блока питания
Всем привет, сегодня я расскажу, как из компьютерного блока питания сделать зарядное устройство для автомобильного аккумулятора своими руками. Итак, берем блок питания и снимаем верхнюю крышку или просто разбираем его.На плате ищем микросхему и внимательно смотрим на нее, вернее на её обозначение, если вы обнаружили там микросхему TL494 или KA7500 ( или их аналоги), значит вам очень повезло и мы сможем с легкостью переделать этот блок питания, без всяких дополнительных заморочек. Разбираем блок питания, вытаскиваем плату и отпаиваем от неё все провода, они нам больше не понадобятся.Для нормальной зарядки аккумулятора следует повысить выходное напряжение блока питания, так как 12 вольт для зарядки это мало, нам надо, где-то 14.4 вольта.
Делаем так, берём тестер и с помощью его находим пять вольт, которые подходят к 13, 14 и 15 ноге микросхемы и обрезаем дорожку, этим мы отключаем защиту блока питания от повышения напряжения. И соответственно при включении блока в сеть, он будет у нас сразу включаться. Далее находим на микросхеме 1 ногу, следуя по этой дорожке находим 2 резистора их удаляем, в моём случае это резисторы R2 и R1. На их места впаиваем переменные резисторы. Один регулируемый резистор с ручкой на 33 Ком, а второй под отвёртку на 68 Ком. Тем самым мы добились то, что на выходе мы теперь сможем регулировать напряжение в широком диапазоне.
Должно получиться примерно так как на фото. Далее берем кусок провода, длинной в полтора метра и сечением в 2.5 квадрата очищаем от оболочки.Потом берем два крокодила и припаиваем к ним наши провода. На плюсовой провод, желательно установить предохранитель на 10 ампер.
Теперь находим на плате + 12 вольт и землю, и припаяйте к ним провода.
Установите ручку переменного резистора в левое положение, вторым резистором (который под отвёртку) вращая его установите нижнее значение напряжения 14,4 вольта. Теперь вращая переменный резистор,
мы можем видеть, как поднимается у нас напряжение, а вот ниже 14,4 вольт оно теперь опускаться не будет. На этом настройка блока завершена.
Начинаем сборку блока питания. Прикручиваем плату на место.Для красоты я установил во внутрь светодиодную подсветку. Если вы будете устанавливать, как я светодиодную ленту, то не забудь подпаять, последовательно к ней резистор на 22 Ома, иначе она перегорит. На вентилятор в разрыв любого провода установите также резистор на 22 Ома.
Переменный резистор, я установил на пластину из текстолита и вывел наружу. Нужен для регулировки силы выходного тока за счёт повышения напряжения на выходе, короче, чем больше ёмкость аккумулятора, тем сильнее крутим ручку вправо.
Введите электронную почту и получайте письма с новыми поделками.
Когда я все собрал, провода закрепил термоклеем. Вот такое вот получилось зарядное устройство. Теперь у вас не будет проблем с зарядкой аккумулятора.
схемы переделки в лабораторный или регулируемый, в зарядное устройство
Автор Акум Эксперт На чтение 13 мин Просмотров 56.9к. Опубликовано
Достать бывший в употреблении блок питания компьютера сегодня несложно, а стоит он сущие копейки. Но как его можно использовать без самого компьютера? В этой статье мы это выясним, а заодно сделаем своими руками зарядное устройство и лабораторный блок питания (ЛБП) из компьютерного блока питания.
Как включить блок питания (БП) от компьютера без компьютера
Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.
На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.
Для подачи напряжения на этот БП служит механический выключательВажно. В большинстве блоков питания ATX предусмотрен дополнительный служебный механический выключатель, расположенный на задней стенке ПК. Напряжение сети на БП этих моделей подается после включения этого тумблера.
Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал
Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается – это слышно даже по шуму вентилятора.
Перемычка имитирует команду процессора “включить БП”Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой
Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.
Расцветка и назначение проводов блока питания ATXЦвет | Назначение | Примечание |
черный | GND | провод общий минус |
красный | +5 В | основная шина питания |
желтый | +12 В | основная шина питания |
синий | -12 В | основная шина питания (может отсутствовать) |
оранжевый | +3.3 В | основная шина питания |
белый | -5 В | основная шина питания |
фиолетовый | +5 VSB | дежурное питание |
серый | Power good | питание в норме |
зеленый | Power on | команда запустить БП |
Табличка особых пояснений не требует. С зеленым проводом (Power on) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.
Фиолетовый провод (+5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу (Power good) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.
Переделка БП ATX в регулируемый или лабораторный блок питания
А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросСразу оговоримся – хотя типовые схемы включения этих микросхем одинаковы, некоторые отличия в зависимости от модели БП все же есть. Поэтому универсального решения для переделки всех БП не существует.
Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.
Схема блока питания ATX, переделкой которого мы займемсяРазбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.
Лишние провода нужно выпаятьТакже выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.
Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.
Назначение выводов интегральной микросхемы TL494 и ее аналоговИзменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.
Эти дорожки надо перерезатьТеперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.
Доработанная схема ШИМ контроллера теперь уже лабораторного блока питанияКак видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.
Приборы могут быть любого типа, важен лишь предел измеренияМнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросПервое включение нашего лабораторного блока питания производим через лампу накаливания 220 В мощностью 60 Вт. Это поможет избежать проблем, если мы наделали ошибок в монтаже. Если лампа не светится или светится вполнакала, а блок питания запустился, то все в порядке. Если лампа горит в полный накал, а блок питания молчит, то придется искать ошибки.
Включение блока питания через балластную лампуВсе в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку – 2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.
Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.
Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.
Как сделать зарядное устройство
Теперь займемся переделкой компьютерного блока питания в автомобильное зарядное устройство.
Прибор для зарядки постоянным напряжением
Это устройство заряжает аккумулятор постоянным фиксированным напряжением 14 В. По мере зарядки батареи зарядный ток будет падать. Как только напряжение на клеммах батареи достигнет 14 В, ток станет равным нулю, а зарядка прекратится.
Благодаря такому алгоритму аккумуляторную батарею невозможно перезарядить, даже если оставить ее на зарядке на неделю. Это полезно при обслуживании AGM и GEL автомобильных аккумуляторов, которые очень не любят перезарядки.
А теперь за дело, тем более, что схема доработки простая. Дорабатывать будем БП ATX на контроллере TL494 или его аналогах (см. раздел выше). Наша задача – повысить выходное напряжение по шине +12 В до 14 вольт. Сделать это несложно. Вскрываем блок питания, вынимаем плату и отпаиваем все провода питания, оставив лишь желтый, черный и зеленый.
Оставляем только те провода, которые нам нужны, остальные выпаиваем или просто откусываемВпаиваем зеленый провод на место любого черного – подаем команду БП на безусловное включение при подключении к сети (см. раздел выше). Выпаиваем электролитические сглаживающие конденсаторы со всех линий питания. На место, где стоял конденсатор по шине +12 В устанавливаем конденсатор той же емкости, но на рабочее напряжение 35 В. Переходим к доработке контроллера. Находим резистор, который соединяет первый вывод микросхемы с шиной +12 В. На схеме ниже он обозначен стрелкой.
Этот резистор отвечает за величину выходного напряженияНам нужно сменить его номинал. Но на какой? Выпаиваем, измеряем его сопротивление. В нашем случае его номинал – 27 кОм, но в зависимости от модели БП значение может меняться. На место выпаянного устанавливаем переменный резистор номиналом примерно вдвое большим. Движок резистора устанавливаем в среднее положение.
Установленный переменный резистор вместо постоянногоВключаем блок питания и, измеряя напряжение на шине +12 В (желтый провод относительно черного), вращаем ползунок. Напряжение легко уменьшается, но увеличить его не получается – мешает защита от перенапряжения. Для того чтобы поднять напряжение до необходимых нам 14 В, ее нужно отключить. Находим на схеме резистор и диод, обозначенные на рисунке ниже стрелками, и выпаиваем их.
Эти детали нужно выпаятьСнова включаем БП, выставляем напряжение между черным и желтым проводами величиной 14 В. Выключаем, выпаиваем резистор, не трогая его движок, измеряем сопротивление. На место переменного устанавливаем постоянный того же номинала. Устанавливаем на корпус две клеммы, подпаиваем к ним черный и желтый провода, помечаем, где плюс и минус (желтый – плюс, черный – минус).
Снова включаем БП, теперь уже переделанное в зарядку для аккумуляторов устройство. К клеммам подключаем нагрузку – лампу дальнего света автомобиля. Измеряем на клеммах напряжение: если оно не снизилось более чем на 0.2 В, то доработка окончена. Собираем прибор и пользуемся.
Важно! Конечным напряжением зарядки AGM и GEL аккумуляторов является значение 13.8 В, поэтому выходное напряжение имеет смысл снизить с 14 В до 13.8 В.
Единственный, пожалуй, недостаток этой самодельной конструкции – она не имеет защиты от короткого замыкания и переполюсовки (мы ее отключили). Поэтому пользоваться прибором нужно внимательно.
Зарядник с регулировкой тока и напряжения
Теперь попробуем переделать компьютерный БП так, чтобы можно было плавно регулировать напряжение и ток зарядки. Это позволит обслуживать батареи любой емкости и на любое напряжение. Кроме того, это зарядное устройство имеет защиту от короткого замыкания, перегрузки и перегрева. С его помощью можно изменять зарядное напряжение от 0 до 25 В и ток от 0 до 8 А.
В первую очередь производим манипуляции, которые подробно описаны в пункте «Прибор для зарядки постоянным напряжением». Выпаиваем лишние провода, оставив желтый, черный и зеленый. Меняем сглаживающий конденсатор на шине +12 В на прибор с напряжением 35 В. Подключаем зеленый провод на общую шину.
Теперь надо поднять напряжение на шине +12 В до величины 28 В. Для этого удаляем резисторы, соединяющие первый вывод ШИМ контроллера с шинами +5 и +12 В. На схеме ниже они обозначены стрелками.
Отключаем стабилизацию напряженияТеперь ШИМ контроллер будет работать «на всю», а напряжение на шине +12 В поднимется до максимума – 28 В. Но опять сработает защита по перенапряжению. Отключаем ее так же, как и в конструкции выше: выпаиваем диод, помеченный на схеме ниже стрелкой.
Отключаем узел защиты по перенапряжениюВключаем блок питания и измеряем напряжение между желтым и черным проводами – оно должно увеличиться до указанных значений. С блоком питания все. Теперь перейдем к сборке узла регулировки напряжения и тока, представленного на схеме ниже.
Схема узла регулировки напряжения и токаНа транзисторах VT1 и VT2 собран простейший узел регулировки напряжения. Сама регулировка осуществляется при помощи потенциометра R14. В узле управления током используются микросхемы DA2 и DA4, представляющие собой интегральные регулируемые стабилизаторы напряжения/тока. Каждая из микросхем способна выдать ток до 5 А. Включив их параллельно, мы удвоили это значение. Регулировка тока производится потенциометром R17. Резисторы R7 и R8 – токовыравнивающие. Далее напряжение через амперметр PA1 подается на клеммы, к которым подключается заряжаемая батарея. Напряжение на батарее контролируется при помощи вольтметра PV1.
Вольтметр и амперметр можно использовать любые – хоть цифровые, хоть стрелочные. Первый должен иметь предел измерения 30 В, второй – 10 А. В качестве токовыравнивающих резисторов используются отрезки монтажного провода длиной 20 см и сечением 1 мм. кв. Если блок выполнен навесным монтажом, то в их качестве будут выступать монтажные провода.
Мощный полевой транзистор, который можно взять из неисправного компьютерного БП, и микросхемы стабилизатора устанавливаются на общий радиатор через слюдяные прокладки. Очень удобно использовать для этих целей радиатор от процессора ПК. Ниже представлен один из возможных вариантов монтажа блока регулировок.
Здесь транзистор и стабилизаторы размещены на радиаторе от процессораЕсли все готово, то включаем зарядное устройство, нагружаем его лампой дальнего света и проверяем работу, регулируя выходные ток и напряжение и контролируя их по приборам.
Что касается защиты, то она уже встроена в микросхемы DA2 и DA4. Эти приборы имеют внутреннюю защиту от перегрузки, короткого замыкания и перегрева.
Вот мы и разобрались с тонкостями доработки компьютерных блоков питания. Теперь нам не составит труда переделать их в зарядное устройство для автомобильного аккумулятора или лабораторный блок питания.
Зарядное устройство для автомобильных аккумуляторов из компьютерного блока питания
Делаем зарядное устройство для автомобильных акб из блока питания от компа.
У каждого автолюбителя должно быть зарядное устройство. Кто знает, когда сядет аккумулятор, да и лампочки можно проверять. Купить всегда можно, но сделать своими руками всегда здорово. Самым дешевым решением в сборке будет переделка готового решения. Я взял старенький блок питания от компьютера.
Материалы для изготовления
Для самоделки нам понадобится:- БП компьютера;
- листовой пластик;
- тумблер;
- зажимы «крокодил»;
- радиокомпоненты не из БП ПК;
- инструменты.
Часть компонентов
ок питания я взял как на картинке. Думал, переделаю быстро, но не тут то было.
Провода с зажимами применю валяющиеся без дела. Разве что поменяю «крокодилы» на побольше.
Сборка
рыв блок питания, я слегка разочаровался. Микросхема, на которой он собран, очень специфическая.
кросхема. Это такой себе ШИМ контроллер и контроллер отклонения основных напряжений.
порывшись в интернете, я нашел схему своего БП.
Довольно простая доработка получится. Разве что не будет регулировки тока.
На схеме, красным маркером, отмечены элементы под выпаивание. Используем шину +12 вольт.
Выпаиваем все лишнее.
Оставил мощный диод. Точней, перепаял его с шины +5 вольт. Он по току с запасом.
Установил мощный дроссель, применил тот, что был установлен по шине +3,3 вольта.
Дросель групповой стабилизации размотал, оставил только обмотку с +12 вольтовой шины.
R60-й резистор временно заменил регулировочным. С помощью его, осуществляется регулировка выходного напряжения. Коричневая перемычка нужна для запуска БП, замыкает PC-ON на общий.
Нам нужно обойти контроль выходных напряжений. Для этого нужно собрать три стабилизатора на основные напряжения. Номиналы резисторов рассчитаны в калькуляторе, который можно найти в сети.
Такая вот платка, сделанная на коленке, получилась.
Распаиваем провода по измененной схеме. Зеленым маркером указаны точки, куда будут припаяны стабилизаторы. Два верхних стабилизатора припаиваем к выходу третьего. Выхода верхних стабилизаторов, и выход нижнего распаиваем на указанные точки: +3,3; +5; +12 вольт.
Включаем. Если все выпаяно как на фото, то блок стартует. Если не стартует, то проверяем все внимательно. Выставляем выходное напряжение на 14.4 вольта. Замеряем сопротивление, у меня получилось почти 12 кОм. Устанавливаю постоянный резистор, собрал его из двух.
Для индикации включения установил светодиод. Припаял его на шину дежурного напряжения по пяти вольтам.
На переднюю панель закрепил отрезок пластика. Панель на себе содержит тумблер включения и индикаторный светодиод. Закручиваем крышку и готово.
Видео по сборке
Зарядное устройство для автомобильного аккумулятора из блока питания компьютера.
Здравствуйте, дорогие дамы и уважаемые господа!
На этой странице я вкратце расскажу Вам о том, как своими руками переделать блок питания персонального компьютера в зарядное устройство для автомобильных (и не только) аккумуляторов.
Зарядное устройство для автомобильных аккумуляторов должно обладать следующим свойством: максимальное напряжение, подводимое к аккумулятору — не более 14.4В, максимальный зарядный ток — определяется возможностями самого устройства. Именно такой способ зарядки реализуется на борту автомобиля (от генератора) в штатном режиме работы электросистемы автомобиля.
Однако, в отличие от материалов из этой статьи, мною была избрана концепция максимальной простоты доработок без использования самодельных печатных плат, транзисторов и прочих «наворотов».
Блок питания для переделки подарил мне друг, сам он его нашел где-то у себя на работе. Из надписи на этикетке можно было разобрать, что полная мощность данного блока питания составляет 230Вт, но по каналу 12В можно потреблять ток не более 8А. Вскрыв этот блок питания я обнаружил, что в нем нет микросхемы с цифрами «494» (как то было описано в предлагаемой выше статье), а основой его является микросхема UC3843. Однако, эта микросхема включена не по типовой схеме и используется только как генератор импульсов и драйвер силового транзистора с функцией защиты от сверхтоков, а функции регулятора напряжения на выходных каналах блока питания возложены на микросхему TL431, установленную на дополнительной плате:
На этой же дополнительной плате установлен подстроечный резистор, позволяющий отрегулировать выходное напряжение в узком диапазоне.
Итак, для переделки этого блока питания в зарядное устройство, сперва необходимо убрать все лишнее. Лишним является:
1. Переключатель 220 / 110В с его проводами. Эти провода просто нужно отпаять от платы. При этом наш блок всегда будет работать от напряжения 220В, что устраняет опасность его сжечь при случайном переключении этого переключателя в положение 110В;
2. Все выходные провода, за исключением одного пучка черных проводов (в пучке 4 провода) — это 0В или «общий», и одного пучка желтых проводов (в пучке 2 провода) — это «+».
Теперь необходимо сделать так, чтобы наш блок работал всегда, если включен в сеть (по умолчанию он работает только если замкнуть нужные провода в выходном пучке проводов), а также устранить действие защиты по перенапряжению, которая отключает блок, если выходное напряжение станет ВЫШЕ некоторого заданного предела. Сделать это необходимо потому, что нам нужно получить на выходе 14.4В (вместо 12), что воспринимается встроенными защитами блока как перенапряжение и он отключается.
Как оказалось, и сигнал «включение-отключение», и сигнал действия защиты по перенапряжению проходит через один и тот же оптрон, которых всего три — они связывают выходную (низковольтную) и входную (высоковольтную) части блока питания. Итак, чтобы блок всегда работал и был нечувствителен к перенапряжениям на выходе, необходимо замкнуть контакты нужного оптрона перемычкой из припоя (т. е. состояние этого оптрона будет «всегда включен»):
Теперь блок питания будет работать всегда, когда он подключен к сети и независимо от того, какое напряжение мы сделаем у него на выходе.
Далее следует установить на выходе блока, там где раньше было 12В, выходное напряжение, равное 14.4В (на холостом ходу). Поскольку только с помощью вращения подстроечного резистора, установленного на дополнительной плате блока питания, не удается установить на выходе 14.4В (он позволяет сделать только что-то где-то около 13В), необходимо заменить резистор, включенный последовательно с подстроечным, на резистор чуть меньшего номинала, а именно 2.7кОм:
Теперь диапазон настройки выходного напряжения сместился в большую сторону и стало возможным установить на выходе 14.4В.
Затем, необходимо удалить транзистор, находящийся радом с микросхемой TL431. Назначение этого транзистора неизвестно, но включен он так, что имеет возможность препятствовать работе микросхемы TL431, т. е. препятствовать стабилизации выходного напряжения на заданном уровне. Этот транзистор находился вот на этом месте:
Далее, чтобы выходное напряжение было более стабильным на холостом ходу, необходимо добавить небольшую нагрузку на выход блока по каналу +12В (который у нас будет +14.4В), и по каналу +5В (который у нас не используется). В качестве нагрузки по каналу +12В (+14.4) применен резистор 200 Ом 2Вт, а по каналу +5В — резистор 68 Ом 0.5Вт (на фото не виден, т. к. находится за дополнительной платой):
Только после установки этих резисторов, следует отрегулировать выходное напряжением на холостом ходу (без нагрузки) на уровне 14.4В.
Теперь необходимо ограничить выходной ток на допустимом для данного блока питания уровне (т. е. порядка 8А). Достигается это путем увеличения номинала резистора в первичной цепи силового трансформатора, используемого как датчик перегрузки. Для ограничения выходного тока на уровне 8…10А этот резистор необходимо заменить на резистор 0.47Ом 1Вт:
После такой замены выходной ток не превысит 8…10А даже если мы замкнем накоротко выходные провода.
Наконец, необходимо добавить часть схемы, которая будет защищать блок от подключения аккумулятора обратной полярностью (это единственная «самодельная» часть схемы). Для этого потребуется обычное автомобильное реле на 12В (с четырьмя контактами) и два диода на ток 1А (я использовал диоды 1N4007). Кроме того, для индикации того факта, что аккумулятор подключен и заряжается, потребуется светодиод в корпусе для установки на панель (зеленый) и резистор 1кОм 0.5Вт. Схема должна быть такая:
Работает следующим образом: когда к выходу подключается аккумулятор правильной полярностью, реле срабатывает за счет энергии, оставшейся в аккумуляторе, а после его срабатывания аккумулятор начинает заряжатся от блока питания через замкнутый контакт этого реле, о чем сигнализирует зажженный светодиод. Диод, включенный параллельно катушке реле, нужен для предотвращения перенапряжений на этой катушке при ее отключении, возникающих за счет ЭДС самоиндукции.
Реле приклеивается к радиатору блока питания с помощью силиконового герметика (силиконового — потому что он остается эластичным после «засыхания» и хорошо выдерживает термические нагрузки, т. е. сжатие-расширение при нагревании-охлаждении), а после «засыхания» герметика на контакты реле монтируются остальные компоненты:
Провода к аккумулятору выбраны гибкие, с сечением 2.5мм2, имеют длину примерно 1 метр и оканчиваются «крокодилами» для подключения к аккумулятору. Для закрепления этих проводов в корпусе прибора использованы две нейлоновые стяжки, продетые в отверстия радиатора (отверстия в радиаторе необходимо предварительно просверлить).
Вот, собственно, и все:
В заключении, с корпуса блока питания были удалены все этикетки и наклеена самодельная наклейка с новыми характеристиками прибора:
К недостаткам полученного зарядного устройства следует отнести отсутствие какой-либо индикации степени заряженности аккумулятора, что вносит неясность — заряжен аккумулятор или нет? Однако, на практике установлено, что за сутки (24 часа) обычный автомобильный аккумулятор емкостью 55А·ч успевает полностью зарядится.
К достоинствам можно отнести то, что с данным зарядным устройством аккумулятор может сколь угодно долго «стоять на зарядке» и ничего страшного при этом не произойдет — аккумулятор будет заряжен, но не «перезарядится» и не испортится.
как сделать зарядку из компьютерного блока питания своими руками
Самодельное ЗУ из блока питанияДля подзарядки аккумуляторной батареи лучший вариант — готовое зарядное устройство (ЗУ). Но его можно сделать своими руками. Существует множество разных способов сборки самодельного ЗУ: от самых простых схем с использованием трансформатора, до импульсных схем с возможностью регулировки. Средним по сложности исполнения является ЗУ из компьютерного блока питания. В статье описано, как своими руками изготовить зарядное устройство из БП компьютера для автомобильного аккумулятора.
Содержание
[ Раскрыть]
[ Скрыть]
Инструкция по изготовлению
Переделать компьютерный БП в зарядное устройство не сложно, но нужно знать основные требования, предъявляемые к ЗУ, предназначенным заряжать автомобильные аккумуляторы. Для аккумуляторной батареи машины ЗУ должно иметь следующие характеристики: подводимое к батарее максимальное напряжение должно иметь значение 14,4 В, максимальный ток зависит от самого зарядного устройства. Именно такие условия создаются в электрической системе автомобиля при подзарядке аккумулятора от генератора (автор видео Rinat Pak).
Инструменты и материалы
Учитывая, описанные выше требования, для изготовления ЗУ своими руками сначала нужно найти подходящий блок питания. Подойдет б/у АТХ в рабочем состоянии, мощность которого составляет от 200 до 250 ВТ.
За основу мы берем компьютер, который имеет следующие характеристики:
- выходное напряжение 12В;
- номинальное напряжение 110/220 В;
- мощность 230 Вт;
- значение максимального тока не больше 8 А.
Из инструментов и материалов понадобится:
- паяльник и припой;
- отвертка;
- резистор на 2,7 кОм;
- резистор на 200 Ом и 2 Вт;
- резистор на 68 Ом и 0,5 Вт;
- резистор 0,47 Ом и 1 Вт;
- резистор 1 кОм и 0,5 Вт;
- два конденсатора на 25 В;
- автомобильное реле на 12 В;
- три диода 1N4007 на 1 А;
- силиконовый герметик;
- зеленый светодиод;
- вольтамперметр;
- «крокодилы»;
- гибкие медные провода длиной 1 метр.
Приготовив все необходимые инструменты и запчасти можно приступать к изготовлению ЗУ для АКБ из блока питания компьютера.
Алгоритм действий
Зарядка АКБ должна проходить под напряжением в интервале 13,9-14,4 В. Все компьютеры работают с напряжением 12В. Поэтому основная задача переделки – поднять напряжение, идущее от БП до 14,4 В.
Основная переделка будет проводиться с режимом работы ШИМ. Для этого используется микросхема TL494. Можно использовать БП с абсолютными аналогами этой схемы. Данная схема используется, чтобы генерировать импульсы, а также в качестве драйвера силового транзистора, который выполняет функцию защиты от высоких токов. Для регулирования напряжения на выходе компьютерного блока питания предназначена микросхема TL431, которая установлена на дополнительной плате.
Там же находится резистор для настройки, который дает возможность регулировки выходного напряжения в узком интервале.
Работы по переделке блока питания состоят из следующих этапов:
- Для переделок в блоке сначала нужно убрать из него все лишние детали и отпаять провода.Лишним в этом случае является переключатель 220/110 В и провода, идущие к нему. Провода следует отпаять от БП. Для работы блока необходимо напряжение 220 В. Убрав переключатель, мы исключим вероятность сгорания блока при случайном переключении выключателя в положение 110 В.
- Далее отпаиваем, откусываем ненужные провода или применяем любой другой способ их удаления. Сначала отыскиваем синий провод 12В, идущий от конденсатора, его выпаиваем. Проводов может быть два, выпаять надо оба. Нам понадобятся только пучок желтых проводов с выводом 12 В, оставляем 4 штуки. Еще нам понадобится масса – это черные провода, их также оставляем 4 штуки. Кроме того, нужно оставить один провод зеленого цвета. Остальные провода полностью удаляются или выпаиваются.
- На плате по желтому проводу находим два конденсатора в цепи с напряжением 12В, они обычно имеют напряжение 16В, их надо заменить на конденсаторы на 25В. Со временем конденсаторы приходят в негодность, поэтому даже если старые детали еще в рабочем состоянии, их лучше заменить.
- На следующем этапе нам нужно обеспечить работу блока при каждом включении в сеть. Дело в том, что БП в компьютере работает лишь в том случае, если замкнуты соответствующие провода в выходном пучке. Кроме того, нужно исключить защиту от перенапряжения. Эта защита устанавливается для того, чтобы отключать блок питания от электрической сети, если выходное напряжение, которое на него поступает, превышает заданный предел. Исключить защиту необходимо, так как для компьютера допустимо напряжение 12 В, а нам нужно получить на выходе 14,4 В. Для встроенной защиты это будет считаться перенапряжением и она отключит блок.
- Сигнал действия от защиты по перенапряжению отключения, а также сигналы включения и отключения проходят по одному и тому же оптрону. Оптронов на плате всего три. С их помощью осуществляется связь между низковольтной (выходной) и высоковольтной (входной) частями БП. Чтобы защита не смогла сработать при перенапряжении, нужно замкнуть контакты соответствующего оптрона перемычкой из припоя. Благодаря этому блок будет все время находиться во включенном состоянии, если он подключен к электрической сети и не будет зависеть от того, какое напряжение будет на выходе.
Перемычка из припоя в красном кружочке
- На следующем этапе нужно достичь исходящего напряжения 14,4 В при работе в холостую, ведь на БП изначально напряжение равно 12 В. Для этого нам понадобится микросхема TL431, которая расположена на дополнительной плате. Найти ее не составит труда. Благодаря микросхеме регулируется напряжение на всех дорожках, которые идут от блока питания. Повысить напряжение позволяет подстроечный резистор, находящийся на этой плате. Но он позволяет повысить значение напряжение до 13 В, а получить значение 14,4 В невозможно.
- Необходимо сделать замену резистора, который включен в сеть последовательно с подстроечным резистором. Его мы меняем на аналогичный, но с меньшим сопротивлением — 2,7 кОм. Это дает возможность расширить диапазон настройки напряжения на выходе и получить выходное напряжение 14,4 В.
- Далее нужно заняться удалением транзистора, который расположен недалеко от микросхемы TL431. Его наличие может повлиять на правильную работу TL431, то есть он может помешать поддерживать выходное напряжение на необходимом уровне. В красном кружке место, где находился транзистор.
Место нахождения транзистора
- Затем для получения стабильного выходного напряжения на холостом ходу, необходимо увеличить нагрузку на выход БП по каналу, где было напряжение 12 В, а станет 14,4 В, и по каналу 5 В, но его мы не используем. В качестве нагрузки для первого канала на 12 В будет использоваться резистор сопротивлением 200 Ом и мощностью 2 Вт, а канал 5 В будет дополнен для нагрузки резистором сопротивлением 68 Ом и мощностью 0,5 Вт. Как только будут установлены эти резисторы, можно настроить выходное напряжение без нагрузки на холостом ходу до значения 14,4 В.
- Далее нужно ограничить силу тока на выходе. Для каждого блока питания она индивидуальна. В нашем случае ее значение не должно превышать 8 А. Чтобы добиться этого, нужно увеличить номинал резистора в первичной цепи обмотки у силового трансформатора, который применяется как датчик, служащий для определения перегрузки. Для увеличения номинала установленный резистор нужно заменить на более мощный сопротивлением 0,47 Ом и мощностью 1 Вт. После этой замены резистор будет функционировать как датчик перегрузки, поэтому выходной ток не будет выше значения 10 А даже, если сомкнуть выходные провода, имитируя короткое замыкание.
Резистор для замены
- На последнем этапе нужно добавить схему защиты блока питания от подключения ЗУ к аккумулятору неправильной полярности. Это та схема, которая действительно будет создана своими руками и отсутствует в блоке питания компьютера. Чтобы собрать схему, понадобится автомобильное реле на 12 В с 4 клеммами и 2 диода, рассчитанные на ток в 1 А, например, диоды 1N4007. Кроме того, нужно подключить светодиод зеленого цвета. Благодаря диоду можно будет определить состояние зарядки. Если он будет светится, значит, аккумуляторная батарея подключена правильно и идет ее зарядка. Кроме этих деталей, нужно еще взять резистор сопротивлением 1 кОм и мощностью 0,5 Вт. На рисунке изображена схема защиты.
Схема защиты блока питания
- Принцип работы схемы следующий. Аккумуляторная батарея с правильной полярностью подключается к выходу ЗУ, то есть блоку питания. Реле срабатывает благодаря оставшейся в батарее энергии. После того как сработает реле, АКБ начинает заряжаться от собранного зарядного устройства через замкнутый контакт релюшки БП. Подтверждением зарядки будет светящийся светодиод.
- Чтобы предотвратить перенапряжение, которое возникает во время отключения катушки за счет электродвижущей силы самоиндукции, в схему параллельно реле включается диод 1N4007. Реле лучше приклеивать к радиатору блока питания силиконовым герметиком. Силикон сохраняет эластичность после высыхания, устойчив к термическим нагрузкам, таким как: сжатие и расширение, нагревание и охлаждение. Когда герметик подсохнет, на контакты реле крепятся остальные элементы. Вместо герметика в качестве крепежа можно использовать болты.
Монтаж оставшихся элементов
- Подбирать провода для зарядного устройства лучше разных цветов, например, красного и черного цвета. Они должны иметь сечение 2,5 кв. мм, быть гибкими, медными. Длина должна составлять не менее метра. На концах провода должны быть оборудованы крокодилами, специальными зажимами, с помощью которых ЗУ подключается к клеммам АКБ. Для закрепления проводов в корпусе собранного устройства, нужно просверлить в радиаторе соответствующие отверстия. Через них нужно продеть две нейлоновые стяжки, которые и будут держать провода.
Чтобы контролировать силу тока зарядки, в корпус зарядного устройства можно еще вмонтировать амперметр. Его нужно подключать параллельно к цепи блока питания. В итоге, мы имеем ЗУ, которое мы можем использовать для зарядки аккумуляторной батареи автомобиля и не только.
Заключение
Достоинством данного зарядного устройства является то, что аккумулятор не будет перезаряжаться при использовании прибора и не испортится, как бы долго ни был подключен к ЗУ.
Недостатком данного зарядного устройства является отсутствие каких-либо индикаторов, по которым можно было бы судить о степени заряженности аккумуляторной батареи.
Трудно определить, зарядился аккумулятор или нет. Рассчитать примерное время зарядки можно, воспользовавшись показаниями на амперметре и применив формулу: силу тока в Амперах, помноженную на время в часах. Экспериментально было получено, что на полную зарядку обычного аккумулятора емкостью 55 А/ч необходимо 24 часа, то есть сутки.
В данном зарядном устройстве сохранена функция от перегрузки и короткого замыкания. Но если оно не защищено от неправильной полярности, нельзя подключать зарядник к аккумулятору с неправильной полярностью, прибор выйдет из строя.
Загрузка …Видео «Зарядка для автомобильного аккумулятора»
Зарядное Устройство для аккумулятора из компьютерного блока питания
Недавно на халяву досталось несколько компьютерных блоков питания и к моему удивлению некоторые из них оказались полностью рабочими. Было решено поделится опытом переделки такого блока питания в зарядное устройство для авто. Переделка не профессиональная, так, что ее может сделать любой желающий.В компьютерных блоках питания силовой (импульсный) трансформатор имеет две мощные обмотки на 5 и 12 Вольт, нам разумеется нужна только обмотка на 12 Вольт. В некоторых блоках питания с этой обмотки можно снять достаточно большой ток (7-20Ампер), в нашем случае блок питания на 350 ватт, 12-Вольтовая обмотка дает 12-14Ампер, что более, чем достаточно для зарядки автомобильного аккумулятора.
Итак, все, что нужно нам сделать — это найти зеленый провод и замкнуть его с черным проводом (землей), это запустит блок питания без подключения к компьютеру. В более старых блоках питания используется кнопочный выключатель и необходимость замыкания указанных проводов отпадает.
В единичных случаях вместо зеленого провода использован провод серого цвета (как право в дешевых китайских блоках).
Далее нужно отрезать все лишние провода которые имеются на блоке питания, оставляем только ЖЕЛТЫЕ И ЧЕРНЫЕ. Позже нужно снять изоляции с кончиков проводов и скрутить их. Таким образом, получаем две толстые шины, одна из которых набрана желтыми, вторая черными проводами. Черный провод у нас минус, а желтый соответственно плюс. Можно сказать, что блок питания готов. Для повышения надежности нашего ЗУ, можно заменить диодные сборки внутри. Дело в том, что в компьютерных блоках питания применяются мощные диодные сборки Шоттки, их всего две (в некоторых случаях 3).
Дело в том, что на шине 5 Вольт поставлен более мощный диод, чем на обмотке 12 Вольт, при желании их можно поменять местами, но и без этого блок работает отлично.
Данный источник достаточно компактный и легкий, выходной ток приличный, поэтому можно заряжать даже автомобильные аккумуляторы большой емкости.
Блок питания имеет встроенный кулер, вся схема находится под интенсивным отдувом, так, что вашему зарядному устройству перегрев тоже не страшен.
батарей — Зарядка батареи от компьютерного блока питания?
батареи — Зарядка батареи от компьютерного блока питания? — Обмен электротехнического стекаСеть обмена стеков
Сеть Stack Exchange состоит из 177 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 21к раз
\ $ \ begingroup \ $У меня новый компьютерный блок питания ATX мощностью 600 Вт.Я соединил зеленый и черный провода вместе, чтобы источник питания включался при подключении к розетке. Я хотел зарядить свою пустую батарею на 12 В постоянного тока, не нанося ей повреждений «или не перегревая ее с помощью блока питания». Я знаю цветовые коды блоков питания ATX (черный = земля / 0 В, оранжевый = 3,3 В, красный = 5 В, желтый = 12 В). Я видел, как некоторые люди использовали контроллер, чтобы «ограничить передачу». Я не хочу повредить аккумулятор или блок питания для использования в будущем. Поскольку у меня нет мультиметра … РЕДАКТИРОВАТЬ: Я забыл упомянуть, что я подключил желтый (12 В) от БП к «+» на батарее, а черный (земля / 0 В) от БП к «-» на батарее.Вопрос: Правильно ли я сделал?
Создан 01 июл.
ОмегаЭкстерн13111 золотой знак11 серебряный знак44 бронзовых знака
\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $Аккумулятор с номинальным напряжением 12 В обычно заряжается чуть более высоким напряжением.Если это свинцово-кислотный аккумулятор — это напряжение должно быть 13,8 — 14,4 В.
Блок питания компьютера определенно не предназначен для подключения к батарее. Частично разряженный аккумулятор 12 В может иметь напряжение выше 12 В. Если подключить его к блоку питания компьютера — можно питать блок питания энергией. Блок питания «увидит» слишком высокое напряжение на своем выходе и попытается снизить его до 12 В. В зависимости от конструкции этого блока питания могут случиться неприятности.
В любом случае вам понадобится схема для ограничения тока или схема зарядки аккумулятора.В зависимости от типа и размера батареи вы, вероятно, повредите батарею или блок питания. Аккумулятор может даже взорваться, поэтому никогда не пытайтесь зарядить его, если не можете измерить ток.
Многие (если не все) компьютерные блоки питания не могут работать без минимальной нагрузки. Запрещается включать питание компьютера без нагрузки.
Если у вас нет мультиметра и вообще нет опыта работы с электроникой — я бы порекомендовал вам купить зарядное устройство для этого типа (химического состава) и размера батареи.
Создан 01 июля ’14 в 18: 552014-07-01 18:55
КамилКамил5,51888 золотых знаков3434 серебряных знака5656 бронзовых знаков
\ $ \ endgroup \ $ 3 Очень активный вопрос .Заработайте 10 репутации, чтобы ответить на этот вопрос. Требование репутации помогает защитить этот вопрос от спама и отсутствия ответов. Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Зарядные конденсаторы с компьютерным блоком питания?
Во-первых, использование компьютерного блока питания в этой ситуации не является безопасным, потому что он может создавать очень высокие токи перед плавлением.Однако это определенно выполнимо.
Чтобы точно ответить на ваш вопрос: перейдите к блоку питания ATX на википедии и посмотрите на разъем. Для включения источника питания необходимо замкнуть контакт №16 [Power_ON] на массу. Источник питания подтягивает этот вывод до 5 В, поэтому его короткое замыкание приведет к включению источника питания.
Даже при коротком замыкании на этом штыре блок питания может не запускаться. Это связано с тем, что это SMPS (импульсный источник питания), и поэтому для запуска каждой шины питания требуется минимальная нагрузка (обычно 3.Рельсы 3В, 5В и 12В должны быть достаточно нагружены). Другие рельсы (-12 В, -5 В и т. Д.), Возможно, не нужно загружать. Сила тока, который вам нужно потреблять, обычно довольно высока, поэтому использование компьютерного блока питания не так уж и безопасно. Вам понадобятся большие резисторы 1-5 Ом с номинальной мощностью до 15Вт. Я не буду перечислять ожидаемые нагрузки, потому что это зависит от конструкции и, следовательно, от вашего источника питания. Иногда он указан на блоке питания, но в большинстве случаев производители ожидают, что ваш компьютер потребляет достаточно тока для загрузки блока питания.
Если вам не нужен высокий ток или идеально регулируемое напряжение, вы можете использовать вывод POWER_GOOD в качестве источника 5 В. Я этого не рекомендую. Кроме того, не забудьте подключить плавкий предохранитель последовательно с любым контактом, который вы используете, чтобы защитить себя в случае короткого замыкания с контактом заземления.
С уважением, вы можете использовать батарею 9V для зарядки вашего конденсатора. Вы взяли их из камеры с батарейным питанием, так что она будет работать и будет намного безопаснее. Конденсатор на 100 мкФ довольно мал, поэтому вы должны иметь возможность заряжать его много раз с помощью 9-вольтовой батареи, прежде чем она разрядится.(Как 10’000 раз …)
Я не знаю, что вы хотите делать со своим конденсатором, но никогда не забывайте подключать резистор последовательно, чтобы избежать высокого пускового тока, который может привести к его поломке или взрыву.
Вот безопасная схема зарядки конденсатора:
смоделировать эту схему — Схема создана с помощью CircuitLab
Напряжение как функция времени определяется выражением: V (t) = 1 / C * int [I (t)] dt + V0
Или проще:
Время зарядки ~ = 5 * R * C
В примере схемы для достижения 99,3% максимального заряда потребуется примерно 0,05 с.
Изменение блока питания компьютера для зарядки аккумулятора LiPo
В этом руководстве мы модифицируем старый блок питания компьютера, чтобы вы могли использовать его для зарядного устройства LiPo, такого как ISDT. Этот проект стоит не так дорого, как сборный блок питания, а материалы для него легко найти. Делая этот блок питания, нет необходимости тратить еще 20-40 долларов на блок питания, который можно использовать для деталей FPV. Кроме того, если вы умеете резать и зачищать провода и имеете базовые знания о пайке (чему вы можете научиться здесь), это легко построить!
Эта статья была отправлена Эрвином Ляо в рамках программы сообщества GetFPV.Вы можете посмотреть больше контента Эрвина на его YouTube и в Instagram.
Заявление об ограничении ответственности: эта статья была написана исключительно членом сообщества FPV. Взгляды и советы в этой статье принадлежат автору и не обязательно отражают мнение или взгляды GetFPV.
Материалы и инструменты для сборки
Материалы
- Блок питания для старых компьютеров (можно найти в магазинах запчастей для старых ПК или даже в Goodwill)
- Гнездовой разъем XT60 или разъем для питания зарядного устройства (имеется здесь)
- Термоусадочная или изолента (доступна здесь)
- Припой (доступен здесь)
Необходимые инструменты *
- Паяльник (доступен здесь)
- Кусачки (доступны здесь)
- Устройства для зачистки проводов (доступны здесь)
* Лень покупать все инструменты по отдельности? На GetFPV есть набор с большинством необходимых инструментов для этой сборки.Кроме того, если вы спешите сделать это и у вас есть материалы, инструменты можно найти в местном хозяйственном магазине, таком как Home Depot или Lowe’s.
Модификация источника питания
Шаг 1
В блоке питания должен быть один разъем 2 × 2 контакта, что дает четыре контакта. На разъеме должно быть два разных цвета (обычно желтый и черный). Мы будем использовать это для питания зарядного устройства. Отрежьте разъем от четырех проводов и зачистите их. После этого скрутите провода одного цвета и спаяйте их.Затем возьмите кусок термоусадки на провода и сдвиньте его до упора.
Вы должны выяснить, какой из проводов положительный или отрицательный. Положительный провод обычно желтого цвета, а заземляющий провод — черного или коричневого цвета.
С помощью мультиметра следует выяснить, какой из проводов положительный, а какой отрицательный. Положительный провод обычно желтого цвета, а заземляющий провод — черного или коричневого цвета.
Шаг 2
Теперь подготовьте разъем XT60. Я не буду показывать, как это сделать, но если вам нужна помощь, вы можете следовать этому руководству от Crash and Learn FPV. После подготовки разъема XT60 припаяйте положительные провода (обычно желтые) к положительной стороне XT60. Припаяйте минус к другой стороне. Он должен выглядеть примерно так, как на картинке ниже: положительный цвет должен быть коричневым, а отрицательный — черным.
По окончании пайки потяните термоусадочный элемент вверх и усадите.Если у вас нет термоусадки, можно также использовать изоленту. Однако, на мой взгляд, с изолентой, как показано на фото ниже, больше беспорядка.
Шаг 3
Если вы сейчас подключите блок питания, вы не получите никакого питания и вентилятор блока питания не начнет вращаться. Этот третий шаг показывает вам, как исправить эту проблему.
На блоке питания должен быть один разъем, на котором больше всего контактов. При обычном блоке питания компьютера должно быть либо 18, либо 20 контактов.На этом разъеме перережьте зеленый провод с надписью «PS_ON #» и провод заземления или COM. Чтобы блок питания включился, вам необходимо перемелить зеленый и COM-провод. Любая земля / COM на разъеме будет работать.
Провод PS_ON # — это сигнальный провод, который необходимо заземлить для работы источника питания. В компьютере он имеет внутреннее заземление.
Обрезав провод PS_ON # и заземляющий провод, зачистите их и залудите паяльником.Положите термоусадочную пленку с одной стороны и спаяйте два провода вместе. Теперь, когда источник питания подключен к разъему XT60, он должен получать питание и будет работать при подключении к зарядному устройству. Один из способов проверить это — если вентилятор вращается, блок питания работает. Это должно выглядеть примерно так, как на фото ниже.
Внимание!
Самое главное, чего не следует делать, — это отрезать оставшиеся неиспользуемые провода на разъеме. Хотя это может выглядеть чище и эстетичнее, но много раз, когда я пытался это сделать, это никогда не работало.Блок питания просто отключается, и иногда, когда вентилятор все еще включен, блок питания не может обеспечить достаточную мощность для питания XT60. Вы можете просто убрать провода в сторону с помощью стяжки.
Заключение
Это довольно простая сборка, которую можно сделать дешево. Кроме того, этот блок питания позволяет вам использовать свои деньги на большем количестве деталей для FPV. Однако одним из недостатков этого источника питания является то, что он будет подавать только 12 вольт по сравнению с рекомендуемыми 24 вольт. Я давно использую 12 вольт, и меня это не особо беспокоило.Надеюсь, это руководство помогло вам, ребята, сделать блок питания для зарядного устройства.
Ознакомьтесь с этим готовым блоком питания здесь.
Ознакомьтесь со всеми зарядными устройствами и аксессуарами, которые GetFPV может предложить здесь
Хотите вместо этого посмотреть видео? Посмотрите это видео от NewBeeDrone здесь
Автор: GetFPV
http://getfpv.comСайт GetFPV Learn — идеальное место для расширения ваших знаний о гоночном дроне FPV.Посетите магазин GetFPV, где представлен огромный выбор лучших гоночных дронов для FPV.
Сообщение навигации
Зарядное устройствоот блока питания ПК Зарядное устройство
от блока питания ПКМой мустанг провел зиму в гараже, а этой весной оказался с незаряжаемым аккумулятором. Батареи было всего около 6 месяцев, поэтому я начал исследовать, как батареи умирают и что с этим делать. Этот проект возник в результате этого исследования.
Вроде все сделал не так.Батарею пустил полностью разрядился, поплавковой зарядки нет. Зимой я заводил машину несколько раз, но никогда не позволял полностью подзарядить аккумулятор. Я неправильно зарядил аккумулятор стендовым блоком питания. Результат — аккумулятор с сульфонированием.
Итак, я хотел создать зарядное устройство, которое заряжало бы батарею примерно на 10 ампер, если она сильно разряжена, а затем переключалось бы на плавающий заряд около 100 мА, когда батарея почти заряжена. Я хотел использовать один из старых блоков питания для ПК, который у меня валялся, в качестве источника питания для зарядного устройства.В дополнение к зарядке и поддержанию плавающего режима, я хотел периодически прикладывать нагрузку, чтобы немного разрядить аккумулятор, и после разряда перезарядить.
В середине этого проекта я нашел информацию о десульфаторах и начал исследовать использование десульфонатора вместо зарядного устройства для ПК. После создания этого зарядного устройства я приступил к созданию комбинированного десульфатора-зарядного устройства. Щелкните здесь, чтобы перейти на новую страницу об десульфаторе.
Блок питания ПК был изменен на питание от 10 до 14.1 вольт.
Обмотки инверторного трансформатора + 5 В и фильтрующие элементы были отключены, как и выпрямитель + 12 В, а также все цепи -12 В и -5 В. Обмотка инвертора на 12 В затем была подключена к тому, что раньше было сильноточным выпрямителем +5 В. При таком расположении инвертор должен быть способен производить 10 ампер при +14,1 В при входной мощности 200 Вт. Обмотка инвертора на 12 В, однако, может быть не рассчитана на постоянную подачу такого большого тока.
Цепь перенапряжения была изменена для отключения инвертора при напряжении> 15 вольт.Цепь перегрузки по току осталась в покое. Управление напряжением представляет собой делитель напряжения, подключенный к выходу источника питания, и был изменен с тремя точками переключения: 10 В, 13,6 В и 14,1 В.
Схема управления зарядным током была построена для установки напряжения источника питания для правильной зарядки аккумулятора.
Ток в батарее контролируется через резистор сопротивлением 0,1 Ом. Операционные усилители сравнивают полученное напряжение с опорными и возвращают сигнал в источник питания. Когда батарея сильно разряжена, напряжение источника питания падает до +10 вольт, чтобы ограничить зарядный ток до 10 ампер и предотвратить срабатывание цепи перегрузки по току источника питания.По мере того, как аккумулятор принимает некоторый заряд, напряжение питания увеличивается, и ток поддерживается на уровне 10 ампер. Когда напряжение питания достигает 14,1 вольт, напряжение перестает расти, а зарядный ток начинает уменьшаться. При зарядном токе 1 ампер аккумулятор практически заряжен, а напряжение источника питания снижается до 13,6 В для поддержания постоянного тока заряда около 100 мА.
Когда аккумулятор не используется в течение длительного времени, даже с плавающим зарядом, он разлагается из-за расслоения электролита.Чтобы предотвратить это ухудшение, была построена схема, которая периодически немного разряжает аккумулятор, а затем подзаряжает его. Пузырьки и тепло, возникающие при перезарядке, перемешивают электролит.
Блок питания ПК
Большинство блоков питания ПК имеют очень похожие схемы. В разделе «Ссылки» ниже есть несколько ссылок на сайты, на которых описывается модификация компьютерных блоков питания для питания оборудования с напряжением 13,8 В. Я только проследил схему конкретного источника питания, который использовал достаточно, чтобы иметь возможность модифицировать его для вывода 14.1 вольт.
После удаления компонентов -5 и -12 В я отключил обмотку трансформатора +5 В и перемыл плату, чтобы подключить обмотку 12 В к сильноточному выпрямителю. Затем я изменил схему защиты от перенапряжения.
Схема перенапряжения сравнивает опорное напряжение 1,7 В с отводом напряжения на цепочке резисторов. Внизу гирлянды был диод на -5 вольт и резистор на -12 вольт. Это поместило соединение этих двух компонентов на -5.6 вольт при нормальном напряжении питания. Верх строки был подключен через диод к +5 вольт. Общее напряжение на цепочке составляло [5,5–0,6 В, падение напряжения на диоде + 5,6 В] = 10,5 В. Струна была отпущена для создания входного сигнала в 0,73 раза. Итак (0,73 x 10,5 В) -5,6 = 1,7 вольт. Я подключил соединение двух компонентов отрицательного напряжения к земле, что фактически подняло нижний конец цепочки делителя напряжения на 5,6 вольт. Поскольку верхний конец струны изначально был на линии +5 вольт, но теперь идет на +14.Линия 1 вольт, я поставил стабилитрон на 12 вольт последовательно с входом 5 вольт. Таким образом, выходное напряжение из цепочки становится равным 0,73 x (14,1–12–0,6 В на диоде) = 1,1 вольт. Повышенное напряжение отключает питание при 14,9 В [0,73 x (падение на диоде 14,9–12–0,6 В) = 1,75 В.
Микросхема контроллера ШИМ (TL494) регулирует ширину импульса инвертора, чтобы поддерживать напряжение обратной связи на уровне 2,5 вольт. Для блока питания, который я модифицировал, была цепочка резисторов, подключаемых к +5 В, +12 В и земле. Удаление резистора +5 вольт и пересчет +12 вольт на +14.Подключение на 1 вольт было довольно простым. Эта цепочка резисторов была дополнительно разделена, чтобы обеспечить переключение диапазона для части управления током зарядного устройства.
Регулятор токаКогда я начал этот проект, я искал в Интернете конструкцию зарядного устройства для аккумулятора. Я выбрал зарядное устройство на сайте Энтони ван Руна от Яна Хамера, но потом начал думать о возможных изменениях. У меня не было под рукой регулятора напряжения или сильноточного трансформатора, поэтому мне пришлось бы проектировать регулятор и покупать или перематывать трансформатор.Я скупец; спроси мою жену. У меня было несколько старых блоков питания для ПК, поэтому я решил изменить схему для управления блоком питания вместо микросхемы последовательного регулятора напряжения.
Операционный усилитель U1B поддерживает зарядный ток на уровне 10 ампер до тех пор, пока напряжение аккумулятора не достигнет 14,1 вольт. Операционный усилитель U1A устанавливает выходное напряжение зарядного устройства на 13,6 вольт после того, как зарядный ток упадет до 1,1 ампера при напряжении заряда 14,1 вольт.
U1A-OUT имеет низкий уровень, пока ток через R21 не станет меньше 1.1 A. D1 имеет обратное смещение.
U1B-OUT высокий для разряженной батареи. Резисторы с R4 по D2 подключаются параллельно к цепочке резисторов R22 / R23 / R24 / R25, которые вместе с R26 определяют напряжение обратной связи источника питания. U1B-OUT включается достаточно, чтобы уменьшить ток в цепочке делителя и изменить напряжение обратной связи. Выходное напряжение источника питания варьируется от 10 до 14,1 вольт, пока ток через R21 не даст 1 вольт. Это зарядный ток 10 ампер. Ток поддерживается на уровне 10 ампер, поскольку батарея заряжается за счет включения U1B-OUT и уменьшения большей части тока, идущего на строку делителя.Таким образом, выходное напряжение источника питания увеличивается, чтобы поддерживать напряжение обратной связи источника питания на уровне 2,5 вольт.
U1B выходит за пределы диапазона регулирования, когда напряжение питания достигает 14,1 В. Обратная связь источника питания устанавливается R25 в цепочке резисторов R22 / R23 / R24 / R25 / R26. По мере того, как аккумулятор продолжает заряжаться при фиксированном напряжении 14,1 вольт, ток через R21 и напряжение на нем уменьшаются. Когда напряжение на R21 падает ниже 110 мВ, что соответствует скорости заряда 1,1 А, U1A-OUT становится высоким.Это позволяет соединить R2 и R3 параллельно через смещенный в прямом направлении D1 с цепочкой резисторов R22 / R23 / R24 / R25 и установить напряжение зарядки на 13,6 В для «плавающей» зарядки.
Приношу свои извинения за запутанное описание следующей строки счетчика. Чтобы оптимизировать пространство на плате, мне пришлось перебросить количество пульсаций с U2A на U3A, на U2B, на U3B.
Из цепи управления током зарядный ток проходит через реле в кондиционере аккумулятора к аккумулятору.Реле переключается между подачей зарядного тока и разрядкой аккумулятора через заряжающую лампочку.
U1C — это релаксационный генератор с частотой 0,1 Гц, слегка несимметричный из-за D12, который предназначен для ускорения спада тактового импульса счетчика 74393. Семь с половиной дней спустя выход Q3 четвертого счетчика (второй счетчик в двойном счетчике 74393, U3) становится высоким и подает + 2,4 В на R45. Другой конец R45 зажимается на 0,8 В из-за низкого выхода второго счетчика (выход Q3 первого счетчика в U3).Двадцать одна минута спустя выходной сигнал второго счетчика становится высоким на 42 минуты и отключает зажимы R45, и на U1D подается + 2,4 В. Выходной сигнал U1D имеет высокий уровень, включая Q11 и реле. Аккумуляторная батарея разряжается через лампу дальнего света фар автомобиля в течение 42 минут или до тех пор, пока напряжение аккумулятора не упадет ниже 11,6 В. Когда напряжение на R51 падает ниже 11,6 В, D15 понижает напряжение, приложенное к U1D, ниже опорного значения + 1,6 В на стыке R54 и R55.
Q6 был включен, когда U1D включил реле.Это разрядил C12. Теперь, когда на выходе U1D падает низкий уровень, Q6 отключается, и конденсатор подает положительный импульс сброса на счетчики. Цикл кондиционирования начинается снова, когда реле подключает аккумулятор к зарядному току.
При выходе из строя цепи питания аккумулятор может быть подключен к лампе фары и разрядиться, когда не будет источника для подзарядки аккумулятора после разряда. Кроме того, батарея будет продолжать незаметно разряжаться через электронику зарядного устройства, если источник питания действительно идет на юг.Имеется сигнализация низкого потребления тока, чтобы предупредить меня, если возникнет такая ситуация, и отключить разрядную нагрузку. Транзистор Q12 включается сигналом исправности питания от источника питания и отключает Q13 и сигнализацию. Если источник питания выходит из строя, потеря сигнала хорошего питания включает аварийный сигнал, который получает питание от батареи, и подтягивает вход U1D к низкому уровню, чтобы разблокировать реле разряда. Состояние счетчика сохраняется благодаря снятию напряжения + 5В с батареи. Таким образом, если сбой источника питания был просто кратковременным сбоем питания, счет продолжится, как только источник питания перезапустится.
В начало
После того, как компоненты + 5V, -5V и -12V были удалены из источника питания ПК, было место для добавления небольшой печатной платы для добавленной схемы. Лампа фары была установлена в небольшом ящике на передней части корпуса блока питания ПК. Он изготовлен из перфорированного металла и охлаждается воздухом, выходящим из блока питания компьютера. Добавленная коробка также содержит резистор измерения тока, R21, и реле заряда-разряда.
Маленькая печатная плата содержит большинство компонентов, добавленных к блоку питания ПК. Доска была вытравлена в технике фотобумаги, упомянутой на главной странице моего сайта. Я подумывал об использовании программного обеспечения для создания схем, рисования и автотрассировки на печатной плате, но кривая обучения этим специализированным пакетам высока для тех, кто делает, может быть, две небольшие платы в год. В настоящее время я использую ручной метод, в котором задействованы три программы. Однако я использую эти три программы в других областях, поэтому я уже могу управлять программами.
Я рисую макет с помощью DesignCAD, затем отделяю слой, на котором есть необходимые вырезы, и зеркально отражаю изображение. Затем я распечатываю вырезанный слой на виртуальном принтере. Виртуальный принтер использует драйвер принтера Postscript и программу Ghostscript. Виртуальный принтер создает файл PNG, который я открываю с помощью Irfan View. Используя Irfan View, я меняю изображение на негатив и распечатываю его на струйной фотобумаге с помощью лазерного принтера. Наконец, я глажу изображение и протравляю доску.Вы можете получить все подробности, перейдя в раздел «Случайные ссылки, не умещающиеся ни в каком месте» на моей главной странице.
Я сделал резистор 0,1 Ом для R21 из нихромовой проволоки от старого нагревательного элемента сушилки. Нихромовая проволока диаметром 0,052 дюйма имеет сопротивление 0,2595 Ом на фут, поэтому 4 витка проволоки диаметром 3/8 дюйма дают 0,1 Ом.
Чтобы убедиться, что сопротивление паяного соединения не влияет на измеряемое напряжение, я использовал контакты Кельвина. К нихромовому проводу были припаяны четыре провода: два для измерения напряжения и два для прохождения тока от источника питания к батарее.Один из проводов с контактом Кельвина также является источником питания для схемы на дополнительной плате компьютера, поэтому провода измерения напряжения не являются чисто контактами Кельвина.
Я припаял провода к нихромовой проволоке, отшлифуя проволоку и используя водопроводный флюс, содержащий хлорид цинка. Этот кислотный флюс требует тщательной очистки после пайки с использованием растворителя, чтобы избавиться от парафина во флюсе, и длительного замачивания в растворе бикарбоната натрия, моющего средства и теплой воды для нейтрализации кислоты.
В начало
Авторские права Дейл Томпсон.
Последняя редакция: 29 ноября 2006 г.
Зарядка автомобильного аккумулятора от блока питания компьютера
Большое спасибо, ребята, за вашу помощь,
, теперь мне нужно знать, регулирую ли я выходное напряжение источника питания до 13,4 или 13,8 вместо 12
и подключаю его к автомобильному аккумулятору.
будет ли он заряжать его или нет.
и очень просто, пожалуйста, объясните мне, почему блок питания после модификации, выдающий 13,4 В при 33 А, не считается приличным зарядным устройством? !!
, если у вас есть необходимое напряжение и сила тока, что может пойти не так и как это может повлиять на срок службы батареи ?!
Друг мой, ничто не заменит хороший трансформатор.Свитчеры хороши до тех пор, пока не перестанут работать, потому что сгорела какая-то деталь. Если у вас есть подходящие напряжение и сила тока, вы можете зарядить аккумулятор. Я говорю в контексте надежности и долговечности конструкции. Хорошие зарядные устройства с трансформаторами можно передавать из поколения в поколение, но коммутатор будет работать до тех пор, пока не остановится какой-нибудь вентилятор из-за плохого качества или пыли. Пожалуйста, не поймите меня неправильно, я просто хочу сэкономить ваше время и деньги.
Посмотрите этот проект:
Контроллер заряда для свинцово-кислотных аккумуляторов 12 В или аккумуляторов SLA
https: // electronicseverywhere.blogspot.com/2012/04/charge-controller-for-12v-lead-acid-or.html
У вас есть исходный код, и вы можете регулировать токи или функции зарядного устройства в соответствии с вашими потребностями.
Второй проект:
Зарядное устройство для аккумуляторов глубокого цикла на 12 В (проект не для батарей глубокого цикла, они просто так называют проект. Вы можете регулировать токи в фазах зарядки, по умолчанию проект достигает 16 А)
https://www.siliconchip.com.au/cms/A_103191/article.html
У вас есть исходный код, и вы можете регулировать токи или функции зарядного устройства в соответствии с вашими потребностями.
Вы понимаете, что я не могу разместить весь проект на форуме.
Простое и дешевое решение:
Зарядное устройство с использованием LM338K (корпус TO-3) ограничено током до 5 А
Вы можете установить плавающее напряжение 13,5 В и 13,8 В в зависимости от температуры, ток ограничен внутри LM338K . Конденсатор 4700uF не нужен, замените его на 220uF-330uF.
Пример для тока до 10 А вы можете увидеть здесь:
https://wiringschematic.net/lm338-based-1-20v-10a-adjustable-dc-power-supply-wiring/
Можно даже сделать небольшие более умные улучшения этого зарядного устройства с выбором резисторов вручную или каким-либо контроллером или микроконтроллером и тем самым выбрать выходное напряжение для зарядки.
или посмотрите этот проект:
AVR450: Зарядное устройство для SLA, NiCd, NiMH и Li-Ion аккумуляторов
https: // www.atmel.com/Images/doc1659.pdf
Есть множество проектов и дизайнов, я не могу опубликовать их много из-за правил и авторских прав, но ваша клавиатура встает между вами и Интернетом и полем поиска Google ….
Мой совет по безопасности специально для зарядных устройств:
Когда вы делаете зарядные устройства для аккумуляторов LA, убедитесь, что они безопасны и их можно оставить без присмотра долгое время, чтобы зарядные устройства имели полный контроль над запуском и остановкой, а также с напряжением и напряжением. Текущий.Детали должны иметь размеры, подходящие для работы, и всегда использовать хорошие детали. Печатная плата должна быть защищена вместе с частями на ней защитным покрытием, чтобы избежать попадания влаги, кислоты и других вещей, которые могут разрушить печатную плату, дорожки и детали на ней. Используйте металлический корпус для зарядного устройства с температурной защитой, также хороши предохранитель и варистор.
: wink:
Найдите подходящий адаптер питания и кабель для ноутбука Mac
Узнайте, какой адаптер питания, кабель и вилка подходят для вашего ноутбука Mac.
Адаптеры питаниядля ноутбуков Mac доступны в вариантах мощностью 29 Вт, 30 Вт, 45 Вт, 60 Вт, 61 Вт, 85 Вт, 87 Вт и 96 Вт. Вы должны использовать адаптер питания соответствующей мощности для вашего ноутбука Mac. Вы можете без проблем использовать совместимый адаптер питания большей мощности, но он не заставит ваш компьютер заряжаться быстрее или работать иначе.Если вы используете адаптер питания, мощность которого ниже, чем у адаптера, поставляемого с вашим Mac, он не сможет обеспечить достаточную мощность для вашего компьютера.
Ноутбуки Mac, которые заряжаются через USB-C, поставляются с адаптером питания Apple USB-C со съемной вилкой переменного тока (или «утиной головкой») и зарядным кабелем USB-C.
Ноутбуки Mac, которые заряжаются через MagSafe, поставляются с адаптером переменного тока с разъемом MagSafe и съемной вилкой переменного тока, а также кабелем переменного тока.
На изображениях ниже показан стиль адаптера, который поставляется с каждым MacBook, MacBook Pro и MacBook Air.Если вы не уверены, какая у вас модель Mac, используйте эти статьи:
USB-C
Адаптер питания Apple USB-C мощностью 29 или 30 Вт и зарядный кабель USB-C
- Модели MacBook 2015 года выпуска или новее
Адаптер питания Apple USB-C мощностью 30 Вт и зарядный кабель USB-C
- Модели MacBook Air, представленные в 2018 году или новее
Адаптер питания Apple USB-C мощностью 61 Вт и зарядный кабель USB-C
- 13-дюймовые модели MacBook Pro, представленные в 2016 году или новее
Адаптер питания Apple USB-C мощностью 87 Вт и зарядный кабель USB-C
- 15-дюймовые модели MacBook Pro, представленные в 2016 году или новее
Адаптер питания Apple USB-C мощностью 96 Вт и зарядный кабель USB-C
- 16-дюймовые модели MacBook Pro, представленные в 2019 году
Убедитесь, что вы используете правильный зарядный кабель USB-C
Для оптимальной зарядки используйте зарядный кабель USB-C, который идет в комплекте с ноутбуком Mac.Если вы используете кабель USB-C более высокой мощности, ваш Mac по-прежнему будет заряжаться в обычном режиме. Кабели USB-C мощностью 29 Вт или 30 Вт будут работать с любым адаптером питания USB-C, но не обеспечат достаточной мощности при подключении к адаптеру питания мощностью более 61 Вт, например адаптеру питания USB-C мощностью 96 Вт.
Вы можете убедиться, что используете правильную версию зарядного кабеля Apple USB-C с ноутбуком Mac и его адаптером переменного тока USB-C. Серийный номер кабеля напечатан на его внешнем корпусе рядом со словами «Разработан Apple в Калифорнии.Собран в Китае. »
- Если первые три символа серийного номера — C4M или FL4, кабель предназначен для использования с адаптером питания Apple USB-C мощностью до 61 Вт.
- Если первые три символа серийного номера — DLC, CTC, FTL или G0J, кабель предназначен для использования с адаптером питания Apple USB-C мощностью до 100 Вт.
- Если на кабеле написано «Разработано Apple в Калифорнии. Собран в Китае», но нет серийного номера, возможно, вы имеете право на замену зарядного кабеля USB-C.
MagSafe 2
Адаптер питания MagSafe мощностью 85 Вт с разъемом типа MagSafe 2
- 15-дюймовые модели MacBook Pro, выпущенные с 2012 по 2015 год
Адаптер питания MagSafe мощностью 60 Вт с разъемом типа MagSafe 2
- 13-дюймовые модели MacBook Pro, выпущенные с 2012 по 2015 год
Адаптер питания MagSafe мощностью 45 Вт с разъемом типа MagSafe 2
- моделей MacBook Air, выпущенных с 2012 по 2017 год
О преобразователе MagSafe в MagSafe 2
Если у вас есть более старый адаптер MagSafe, вы можете использовать его с новыми компьютерами Mac, имеющими порты MagSafe 2, с помощью преобразователя MagSafe в MagSafe 2 (показано).
Адаптеры MagSafe L- и T-образной формы
Адаптер питания MagSafe мощностью 60 Вт с Т-образным разъемом
- 13-дюймовые модели MacBook Pro, представленные в 2009 году
- моделей MacBook, выпущенных с 2006 г. по середину 2009 г.
Адаптер питания MagSafe мощностью 60 Вт с L-образным разъемом
- 13-дюймовые модели MacBook Pro, выпущенные с 2010 по 2012 год
- моделей MacBook, выпущенных с конца 2009 по 2010 год
Адаптер питания MagSafe мощностью 85 Вт с Т-образным разъемом
- 15-дюймовые модели MacBook Pro, выпущенные с 2006 по 2009 год
- 17-дюймовых моделей MacBook Pro, представленных в 2006–2009 годах
Адаптер питания MagSafe мощностью 85 Вт с L-образным разъемом
- 15-дюймовые модели MacBook Pro, представленные с 2010 по 2012 год
- 17-дюймовых моделей MacBook Pro, представленных в 2010–2011 годах
Адаптер питания MagSafe мощностью 45 Вт с L-образным разъемом
- 13-дюймовые модели MacBook Air, представленные с 2008 по 2011 годы *
- 11-дюймовых моделей MacBook Air, представленных в 2010–2011 годах
* Адаптеры, входящие в комплект поставки MacBook Air (оригинал), MacBook Air (конец 2008 г.) и MacBook Air (середина 2009 г.), не рекомендуются для использования с моделями MacBook Air (конец 2010 г.).По возможности используйте оригинальный адаптер вашего компьютера или более новый адаптер.
Дата публикации:
3 различных способа зарядки ноутбука без зарядного устройства
Представьте, что вы отправляетесь за город на выходные.Может быть, вы собираетесь на свадьбу к другу, или в семейную поездку на пляж, или, может быть, вы собираетесь в поход с друзьями. Вы решаете взять с собой ноутбук, потому что было бы неплохо транслировать фильмы, поработать или поиграть в компьютерные игры в свободное от работы время. Ноутбук поможет вам чувствовать себя как дома, когда вы находитесь вдали от дома.
Ой! Распаковывая вещи в номере отеля, вы понимаете, что забыли упаковать зарядное устройство для ноутбука (или, что еще хуже, случайно оставили его в розетке в аэропорту).У вашего ноутбука осталось всего 10% заряда, так что, похоже, вам придется обойтись без него в этой поездке. Это важное электронное письмо боссу придется подождать.Но подождите! Так не должно быть. Вы не поверите, но вы действительно можете зарядить свой ноутбук без стандартного зарядного устройства. Это действительно довольно легко сделать, и вам следует научиться это делать, если вы — житель 21-го века, который чувствует себя обязанным брать свой ноутбук с собой в любое время, когда вы отправляетесь в дорогу.
Здесь есть не 1, не 2, а 3 различных способа зарядки ноутбука, если зарядное устройство для ноутбука MIA.
Как заряжать ноутбук без зарядного устройства
В каждый ноутбук встроен аккумулятор. Чтобы зарядить аккумулятор, вам просто нужно подать на него немного электричества. Большую часть времени мы подключаем наш ноутбук к розетке дома, и электричество проходит через кабель в аккумулятор.
Зарядное устройство для ноутбука, пожалуй, самый эффективный способ передать энергию аккумулятору ноутбука, но есть и другие способы сделать это. Все, что вам нужно, это:
- Источник питания
- Способ передачи энергии на аккумулятор
Давайте поработаем.
Можно ли заряжать ноутбук через USB?
Один из самых частых вопросов, который я получаю, — это : «Могу ли я зарядить свой ноутбук с помощью USB-разъема?» На самом деле это зависит от типа USB-порта вашего ноутбука.
USB Type A не запускается.
Если вы в настоящее время используете проводную мышь или проводную клавиатуру и отсоединяете одну из них, вы увидите, что на конце шнура есть прямоугольный разъем; металлическую деталь, которую вы вставляете в компьютер. Это называется разъемом типа А.Это самый распространенный USB-разъем, и всякий раз, когда кто-то говорит «USB», можно разумно предположить, что он имеет в виду USB-тип A. Скорее всего, зарядное устройство вашего мобильного телефона также имеет USB-соединение типа A. К сожалению, хотя вы можете использовать тип A для питания интеллектуальных устройств, вы не можете использовать его для питания своего ноутбука.
Тип A может обмениваться значительными объемами данных, но он не способен передавать огромное количество энергии, необходимой для зарядки аккумулятора вашего ноутбука. Тип А просто не может обеспечить достаточную мощность.
USB Type C — мощный союзник
Однако USB 3.1 представил новый тип разъема под названием USB Type C, или «USB-C». В отличие от Type A, USB-C имеет более овальную форму. Он разработан для подключения с высокой мощностью, что означает, что он может передавать гораздо больше энергии, чем тип A, и на более высоких скоростях. Намного быстрее:
- Тип A (USB 3.1): скорость до 10 Гбит / с
- USB-C (USB 3.2): скорость до 20 Гбит / с
Скоро станет еще лучше
USB4 выйдет в 2019 году, а прилагаемый к нему разъем USB-C может передавать данные со скоростью до 40 Гбит / с.
Короче говоря, вы не можете заряжать свой ноутбук с помощью USB Type A, но вы можете заряжать свой ноутбук с помощью USB-C.
1. Как зарядить ноутбук с помощью USB-C
Если ваш ноутбук имеет встроенный порт USB-C, вы сможете заряжать свой ноутбук с помощью кабеля USB-C — вам просто нужно убедиться кабель имеет переходник (вилка в форме коробки на конце зарядного устройства телефона, которую можно вставить в розетку). Некоторые ноутбуки фактически используют кабель USB-C в качестве основного зарядного устройства.Для зарядки ноутбука через USB-C:
- Подключите один конец кабеля USB-C к розетке
- Подключите другой конец кабеля USB-C к портативному компьютеру
Вот и все! Легко, как пирог, если у вас есть доступ к кабелю USB-C.Но вот в чем вопиющая проблема — а что, если у вас нет к нему доступа? К сожалению, заказать кабель USB-C не будет проще, чем новое зарядное устройство для ноутбука. И сделать остановку в магазине компьютерных принадлежностей может быть невозможно, особенно если вы застряли на Карибском острове на свадебные выходные.
Планируйте варианты заранее
Но если вы хотите купить новый ноутбук, вы можете серьезно подумать о том, чтобы приобрести хотя бы один порт USB-C. Разъем USB-C стремительно набирает популярность.Можно с уверенностью предположить, что в будущем большинство ноутбуков будут поставляться с портами USB-C, и мы можем даже увидеть полное исключение USB Type-A. Дело в том, что в будущем больше людей, вероятно, будут иметь кабели USB-C, поэтому будет больше шансов, что кто-то одолжит вам один, если вы потеряете свой в поездке. В настоящее время вам нужно найти кого-нибудь, у кого есть такое же зарядное устройство для ноутбука, что и у вас, что может оказаться более трудным.Практически все наши популярные бренды ноутбуков HP имеют хотя бы один порт USB-C:
Примечание: Всегда проверяйте технические характеристики продукта перед покупкой.
2. Как заряжать ноутбук в машине
В машине есть электричество, верно? И независимо от того, путешествуете ли вы на собственном автомобиле или берете автомобиль напрокат, когда самолет приземляется, вы можете воспользоваться производимой им мощностью. Его довольно просто использовать для зарядки ноутбука. Однако вам понадобятся две вещи:
- Адаптер переменного тока (разъем USB типа A на одном конце, разъем USB-C на другом конце). Этот адаптер USB Type A — USB-C идеально подходит для использования в автомобиле.
- Автомобильное зарядное устройство USB
Это просто, как один, два, три.Чтобы зарядить ноутбук в автомобиле:
- Включите двигатель
- Подключите автомобильное зарядное устройство к зарядному порту вашего автомобиля (вам может даже не понадобиться автомобильное зарядное устройство, так как многие новые автомобили имеют USB-порты, к которым вы можете подключаться)
- Вилка разъем USB-C к портативному компьютеру
Примечание: Никогда не оставляйте ноутбук без присмотра в автомобиле и на открытом воздухе. Это может сделать его более уязвимым для кражи или повреждения от перегрева.
3. Как зарядить ноутбук с помощью внешнего блока питания
Один из самых простых способов зарядить ноутбук — использовать аккумуляторный блок питания.Внешний аккумулятор — это, по сути, портативный аккумулятор для вашего ноутбука. Все, что вам нужно сделать, это подключить внешний аккумулятор к ноутбуку. Лучшее в пауэрбанках — это то, что их не нужно подключать к розетке, пока они заряжают ваш ноутбук. Блоки питания
бывают разных моделей, и не все они имеют одинаковую емкость для зарядки. Вы сможете заряжать менее мощные ноутбуки с помощью внешнего аккумулятора USB типа A. Если вы хотите зарядить более мощный ноутбук, например мобильную рабочую станцию, вам понадобится внешний аккумулятор на базе USB-C.Внешние банки USB-C также могут питать другие USB-устройства, такие как ваш смартфон или планшет.Скорее всего, у вашего павербанка будет достаточно заряда, чтобы пополнить аккумулятор ноутбука только один или два раза, особенно если вы заряжаете более мощный ноутбук. Важно не забыть подключить его к розетке и восстановить заряд. Когда ваш внешний аккумулятор разрядится, вы не сможете использовать его для подзарядки ноутбука.
Вот почему лучше зарезервировать внешний аккумулятор только на время, когда он вам действительно нужен — например, когда вы случайно потеряете зарядное устройство для ноутбука.Всегда держите блок питания в сумке для ноутбука.
Купите сумку или чехол для ноутбука
Каждый раз, когда вы отправляетесь в путь, путешествуете ли вы на большие расстояния, путешествуете по Европе или просто собираетесь на выходные, вы всегда должны брать с собой сумку или рюкзак для ноутбука. Сумка для ноутбука предназначена не только для хранения ноутбука. Вы также должны хранить в нем аксессуары, которые можно использовать для подзарядки ноутбука в случае потери шнура питания. Фактически, вам следует иметь аксессуары, которые могут заряжать все ваши электронные устройства.Первое, что сделает сумка для ноутбука, — это защитит ваш ноутбук. Многие сумки для ноутбуков HP сделаны из атмосферостойкой ткани и застегиваются на молнии, которые выдерживают дождь или град. Внутренняя часть сумок обычно набита мягкими амортизирующими материалами, которые защитят ваш ноутбук, если вы случайно уроните его или если ваша поездка станет тяжелой, и ваша сумка для ноутбука начнет подпрыгивать на заднем сиденье.
Пожалуй, самой прочной сумкой для ноутбуков HP является разделенный кожаный чехол HP Spectre 13.3, который достаточно прочен, чтобы отправиться в приключение калибра Индианы Джонса.
Лучшие сумки также обладают специальными защитными функциями от считывателей RFID. Если вы носите с собой кредитную или дебетовую карту, знайте, что есть устройства, которые могут сканировать информацию о вашей карте с небольшого расстояния. Верно. Кибер-вор, имеющий доступ к такому устройству, может стоять за вами в очереди в кафе и сканировать вашу личную и финансовую информацию прямо с вашей карты без вашего ведома.
На самом деле они могут не делать этого в кафе, потому что это было бы трудно сделать, не привлекая к себе внимание.Но часто бывает на улице или в общественном транспорте. Многие сумки для ноутбуков HP имеют внешние карманы на молнии, устойчивые к сканированию RFID, поэтому, путешествуете ли вы по миру или по городу, вы можете безопасно хранить свои кредитные и дебетовые карты в сумке, не беспокоясь о том, что вас взломает кибер вор.
Также неплохо было бы обзавестись полноценным рюкзаком для ноутбука. Рюкзак немного более эргономичен, чем чехол для ноутбука, и он позволит вам втиснуть в кучу больше электронных устройств.Что упаковать в дорожный рюкзак для ноутбука
Когда вы в пути, возьмите за привычку брать с собой рюкзак для ноутбука, в котором есть все необходимое для успешного путешествия, наполненного технологиями, в то время как вы находитесь вдали от домашний офис. Вот что вы должны туда вложить.1. Прежде всего, держите там ноутбук. Если вы хотите быть в большей безопасности, сначала положите ноутбук в чехол для ноутбука, а затем положите чехол в рюкзак. Вы никогда не знаете, когда дорога станет неровной, поэтому вам следует принять все возможные меры, чтобы защитить свой ноутбук.Помните, что на вашем ноутбуке, вероятно, хранится много конфиденциальной или ценной рабочей или личной информации, например рабочие проекты или семейные фотографии. Не рискуйте потерять их.
2. Во-вторых, следует вставить полностью заряженный павербанк. Старайтесь не использовать свой внешний аккумулятор, если в этом нет необходимости. Это должно быть в основном для аварийного использования, если шнур питания вашего ноутбука не работает. 3. В-третьих, возьмите с собой дорожный адаптер. Если вы путешествуете за границу, вы можете оказаться в стране, где нет розеток, совместимых с вашим ноутбуком.У дорожного адаптера есть сменные вилки, которые позволяют подключать его к другой розетке.Когда вы путешествуете за границу, наличие полностью функциональной электроники может быть ключевым фактором для вашей безопасности и гарантии того, что вы не пропустите ни одного транспорта. Не забудьте взять с собой одну из них, когда собираетесь уезжать из страны.
4. Наконец, упакуйте концентратор USB-порта. Концентратор с портом USB — невероятно полезное устройство, когда вы путешествуете с ноутбуком. Его основная функция — предоставить вашему ноутбуку большее количество доступных USB-портов.Как правило, концентратор USB поставляется с 4–7 дополнительными USB-портами, поэтому вы можете легко подключить все свои USB-устройства, когда вас убирают из организованного рабочего места в домашнем офисе.Существуют концентраторы портов с питанием и концентраторы портов без питания. Концентраторы портов с питанием хороши тем, что они обеспечивают питание подключенных устройств (поэтому вашим устройствам не нужно получать питание от ноутбука). Если у вас есть ограниченное время для зарядки ваших USB-устройств, вы можете использовать концентратор с питанием, чтобы заряжать их все одновременно, и вам даже не нужно дополнительное количество розеток.Некоторые концентраторы HP с питанием оснащены слотами для SD-карт и портами USB-C.