Как правильно впаять резистор: Как припаять резистор к плате

Содержание

Как припаять резистор к плате

Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.

Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).

Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.

Проверка ёмкости

Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.

Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.

Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.

Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.

Проверка конденсатора цифровым мультиметром:

Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.

Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.

Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.

При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.

Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.

Проверка в плате

Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.

Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.

При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).

Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.

Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.

Меры предосторожности при измерении

Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.

  • Обязательно проследите за тем, чтобы со схемы было полностью снято напряжение. Для этого тем же мультиметром, включённым в режим измерения напряжения, следует проверить отсутствие его во всех контрольных точках платы.
  • При измерении встроенных в схему «подозрительных» конденсаторов следует внимательно следить за тем, чтобы случайно не повредить включённые параллельно ему элементы.
  • И, наконец, паять дополнительно монтируемые в схему элементы нужно с предельной осторожностью, чтобы не повредить остальную её часть.

Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.

Как перепаивать конденсатор на «материнке»

Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.

Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.

Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.

Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.

Последовательность действий такая:

  1. Вначале обесточивают компьютер, отключают не только сетевой кабель, но и другие питающие провода.
  2. Снимают крышку и отвинчивают материнскую плату.
  3. Осматривают плату и находят поврежденный элемент, изучают его параметры (на маркировке), покупают замену.
  4. Замечают, какая полярность подключения конденсатора была (можно сделать фото).
  5. С помощью паяльной станции или пальника выпаивают поврежденный конденсатор.
  6. Устанавливают и припаивают новый.

После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.

Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.

Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.

По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.

Процесс пайки

Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.

Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.

Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.

Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.

Как паять резисторы

Для того чтобы запаять резистор в схему той же материнской платы или любого другого электронного изделия действуют точно так же, как в случае с конденсатором. Паять резисторы надо крайне осторожно, поскольку любое неаккуратное движение паяльником может повредить расположенные поблизости детали.

С особым вниманием следует менять переменные резисторы, у которых имеется три ножки. Для того чтобы выпаять его из платы, удобнее всего воспользоваться уже упоминавшимся ранее отсосом, посредством которого припой легко извлекается из крепёжных отверстий.

После его удаления резистор беспрепятственно достаётся из освобождённых гнёзд.

Паять миниатюрные элементы схем следует, стараясь подбирать соответствующий температурный режим нагрева паяльника, обычно это 270-300 ℃. В противном случае можно повредить как устанавливаемый элемент, так и контактную площадку, предназначенную для его монтажа.

Ленточные или проволочные выводы постоянных резисторов нельзя изгибать ближе, чем в 3-5 мм от корпуса. Изгибы должны быть плавными и с закруглениями, иначе вывод может надломиться. Перегрев резисторов может привести к изменению их сопротивления. Чтобы избежать этого, гибкие выводы постоянных резисторов паяют не менее 5 мм от их корпуса. При этом вывод у самого корпуса плотно захватывают плоскогубцами, отводящими тепло и уменьшающими нагрев резисторов во время пайки. Процесс припаивания гибкого вывода постоянного резистора на печатную плату, а также припаивание монтажного провода к лепестку переменного резистора должен занимать не более 10 секунд. Если пайка не удалась, её можно повторить не ранее через 2-3 минуты. При навесном монтаже резисторы необходимо перед пайкой механически закрепить.[12]

Перед монтажом резисторов необходимо произвести входной контроль, сначала визуальный, для чего необходимо проверить целостность корпуса и покрытия резистора, наличие и крепление выводов, а затем провести контроль его электрических параметров.

Монтаж необходимо производить таким образом, чтобы маркировка резистора хорошо читалась.

Установка всех элементов электрорадиоаппаратуры производится согласно отраслевому стандарту ОСТ4.010.030-81 «Варианты установки электрорадиоэлементов на печатные платы».

Различные способы монтажа резисторов изображены на рисунках 7.1-7.4:

Рисунок 7.1 – Вариант установки резистора Iа

Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.

Рисунок 7.2 – Вариант установки резистора Iб

Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.

Рисунок 7.3 – Вариант установки резистора IIa

Применяется на платах с односторонним и двухсторонним расположением печатных проводников без электроизоляционной защиты под корпусами ЭРЭ.

Рис.7.4– Вариант установки резистора III

Применяется на платах с односторонним и двухсторонним расположением печатных проводников.

Перед пайкой выводы конденсаторов должны быть облужены припоем. Пайку выводов конденсаторов следует производить с флюсом, при этом не должно происходить опасного перегрева конденсатора. При монтаже неполярных конденсаторов с оксидными диэлектриками необходимо обеспечить изоляцию их корпусов от других элементов, шасси и друг от друга. При плотном монтаже конденсаторов для обеспечения изоляции их корпусов допускается надевать изолирующие трубки.

Различные варианты установки конденсаторов согласно отраслевому стандарту ОСТ 4.010.030-81 указаны на рисунках 7.5-7.10.

Рисунок 7.5 – Вариант установки конденсаторов Iа

Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.

Рисунок 7.6 – Вариант установки конденсаторов Iб

Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.

Рисунок 7.7 – Вариант установки конденсаторов IIa

Применяется на платах с односторонним и двухсторонним расположением печатных проводников без электроизоляционной защиты под токопроводящими корпусами ЭРЭ.

Рисунок 7.8 – Вариант установки элементов IIб

Применяется на платах с односторонним и двухсторонним расположением печатных проводников без электроизоляционной защиты под токопроводящими корпусами ЭРЭ.

Рисунок 7.9 – Вариант установки элементов IIв

Применяется на платах с односторонним и двухсторонним расположением печатных проводников без электроизоляционной защиты под токопроводящими корпусами ЭРЭ.

Рисунок 7.10– Вариант установки конденсаторов ХIб

Применяется на платах с односторонним и двухсторонним расположением печатных проводников с использованием электроизоляционной прокладки.

Элементы, установленные по данному варианту, демонтажу не подлежат.

4 Техническое задание

4.1 Выбрать радиокомпоненты согласно варианту задания.

4.2 Произвести формовку выводов радиокомпонентов.

4.3 Произвести монтаж радиокомпонентов на печатную плату. Способы монтажа выбрать самостоятельно (смотри рисунки 7.1 – 7.10).

4.4 Сделать вывод о проделанной работе.

5 Контрольные вопросы

5.1 Области применения резисторов.

5.2 Основные параметры резисторов?

5.3 Достоинства и недостатки электролитических конденсаторов

5.4 Допускается ли изгиб выводов конденсаторов и резисторов вблизи корпуса прибора?

Практическая работа №8

Выполнение подготовки полупроводниковых приборов к монтажу

Цель работы

Закрепить полученные знания о маркировке полупроводниковых приборов и о входном контроле полупроводниковых приборов. Освоить особенности монтажа и демонтажа полупроводниковых приборов (диодов, транзисторов).

Инструменты и материалы

2.2 Набор диодов и транзисторов.

2.3 Печатная плата.

2.4 Паяльник 36В.

2.5 Набор инструментов (бокорезы, плоскогубцы с насечкой, плоскогубцы «утконосы»).

Теоретические сведения

К монтажу полупроводниковых приборов предъявляют самые жесткие требования, т.к. они чувствительны к ста­тическому напряжению и изменению температуры. Полупроводниковые приборы имеют в большинстве случаев гибкие выводы. Поэтому их включают в схему путем пайки. Пайка выводов производится на расстоянии не менее 10 мм. от корпуса полупроводникового прибора (от вершины изолятора) с помощью легкоплав­кого припоя. Изгиб выводов допускается на расстоянии не менее 3–5 мм от корпуса. Процесс пайки должен быть кратковременным (не более 3 – 5 с.) Мощность паяльника не должна превышать 50 Вт. Припаиваемый вывод плотно зажимают плоскогубцами. Плоскогубцы в данном случае играют роль теплоотвода. Необходимо следить за тем, чтобы нагретый паяльник даже на короткое время не прикасался к корпусу полупроводникового прибора, а также недопус­тимо попадание на корпус расплавленных капель припоя.

Во избежание перегрева полупроводниковых приборов не следует располагать их вблизи силовых трансформаторов, электрон­ных ламп и других излучающих тепло деталей аппаратуры. Желательно снижать рабочую температуру прибора. Если она будет на 10ºС ниже предельной, то число отказов снижается вдвое. Крепление полупроводниковых приборов на выводах не рекомендуется, особенно если аппаратура может находиться в условиях вибрации. Рабочие напряжения, токи и мощности должны быть ниже предельных величин.

Срок службы диодов увеличивается, если их эксплуатировать при обратных напряжениях не свыше 80% предельно допустимых.

Нельзя допускать короткого замыкания выпрямителя на полупроводниковых диодах (испытание «на искру»). Это может привести к повреждению диодов. Полупроводниковый диод может быть поврежден, если на него подать напряжение в пропускном направлении (даже от одного аккумуляторного элемента) без последовательно включенного ограничительного сопротивления.

Транзисторы не должны даже короткое время работать с отключенной базой. При включении ис­точников питания вывод базы транзистора должен присоединяться первым (при отключении – последним).

Нельзя использовать транзисторы в режиме, когда одновременно достига­ются два предельных параметра (например, предельно допустимое напряжение коллектора иодновре­менно предельная допустимая рассеиваемая мощность).

Срок службы транзистора и надежность его работы увеличиваются, если при его эксплуатации напряжение коллектора не превышает 80% предельно допустимой величины.

При работе транзистора в условиях повышенных температур нужно обязательно снижать рассеиваемую мощность и напряжение на коллекторе.

Необходимо следить за тем, чтобы подаваемое на транзистор питающее напряжение было правильной полярности (например, нельзя включать отрицательный полюс напряжения на коллектор транзистора n-p-n типа, или положительный на коллектор транзистора p-n-р типа). Чтобы по указанной причине транзистор не пришел в негодность при установке его в схему, нужно твердо знать, какого он типа: p-n-р. или n-p-n.

Если необходимо удалить транзистор из схемы (или включить его в схему), нужно предварительно выключить питание схемы.

Различные варианты установки транзисторов согласно отраслевому стандарту ОСТ 4.010.030-81 указаны на рисунках 8.1- 8.4

Рисунок 8.1 – Вариант установки транзисторов Va.

Применяется на платах с односторонним и двухсторонним расположением печатных проводников, имеющих электроизоляционную защиту печатных проводников и металлизированных отверстий под токопроводящими корпусами ЭРЭ.

Рисунок 8.2 – Вариант установки транзисторов Vб

Применяется на платах с односторонним и двухсторонним расположением печатных проводников, с применением электроизоляционных подставок, стоек, втулок и т.п.

Элементы, установленные по данному варианту, демонтажу не подлежат.

Рисунок 8.3 – Вариант установки элементов Vв

Применяется на платах с односторонним и двухсторонним расположением печатных проводников, с применением механических держателей.

Рисунок 8.4 – Вариант установки элементов Vг

Применяется на платах с односторонним и двухсторонним расположением печатных проводников, с применением электроизоляционных подставок.

4 Техническое задание

4.1 Получить задание у мастера.

4.2 Произвести входной контроль диодов и транзисторов. Данные занести в отчет.

4.3 Произвести монтаж диодов и транзисторов на печатную плату. Способы монтажа выбрать самостоятельно.

4.4 Сделать вывод о проделанной работе.

5 Контрольные вопросы

5.1 Классификация полупроводниковых диодов.

5.2 Классификация полупроводниковых транзисторов.

5.3 Опишите маркировку и параметры полупроводниковых диодов.

5.4 Опишите маркировку и параметры полупроводниковых транзисторов.

5.5 Какие требования предъявляются к монтажу полупроводниковых приборов?

Практическая работа №9

Выполнение подготовки интегральных микросхем к монтажу

Цель работы

Закрепить полученные знания о маркировке интегральных микросхем и о монтаже микросхем на печатные платы. Освоить особенности монтажа интегральных микросхем.

Инструменты и материалы

2.1 Набор микросхем.

2.2 Паяльник 36В.

2.3 Набор инструментов (бокорезы, плоскогубцы с насечкой, плоскогубцы «утконосы»).

Теоретические сведения

При подготовке микросхем к монтажу на печатные платы (операции рихтовки, формовки и обрезки выводов) выводы подвергаются растяжению, изгибу и сжатию. Поэтому при выполнении операций по формовке необходимо следить, чтобы растягивающее усилие было минимальным. В зависимости от сечения выводов микросхем оно не должно превышать определенных значений (например, для сечения выводов от 0,1 до 2 мм 2 — не более 0,245. 19,6 Н).

Формовка выводов прямоугольного поперечного сечения должна производиться с радиусом изгиба не менее удвоенной толщины вывода, а выводов круглого сечения — с радиусом изгиба не менее двух диаметров вывода (если в ТУ не указывается конкретное значение). Участок вывода на расстоянии 1 мм от тела корпуса не должен подвергаться изгибающим и крутящим деформациям. Обрезка незадействованных выводов микросхем допускается на расстоянии 1 мм от тела корпуса.

В процессе операций формовки и обрезки не допускаются сколы и насечки стекла и керамики в местах заделки выводов в тело корпуса и деформация корпуса.

В процессе производства для формовки и подрезки применяют шаблоны, а так же специальные полуавтоматические и автоматические устройства.

В радиолюбительской практике формовка выводов может проводиться вручную с помощью пинцета с соблюдением приведенных мер предосторожности, предотвращающих нарушение герметичности корпуса микросхемы и его деформацию.

Основным способом соединения микросхем с печатными платами является пайка выводов, обеспечивающая достаточно надежное механическое крепление и электрическое соединение выводов микросхем с проводниками платы.

Для получения качественных паяных соединений производят лужение выводов корпуса микросхемы припоями и флюсами тех же марок, что и при пайке. При замене микросхем в процессе настройки и эксплуатации РЭА производят пайку различными паяльниками с предельной температурой припоя 250° С, предельным временем пайки не более 2 с и минимальным расстоянием от тела корпуса до границы припоя по длине вывода 1,3 мм.

Качество операции лужения должно определяться следующими признаками:

минимальная длина участка лужения по длине вывода от его торца должна быть не менее 0,6 мм, причем допускается наличие «сосулек» на концах выводов микросхем;

равномерное покрытие припоев выводов;

отсутствие перемычек между выводами.

При лужении нельзя касаться припоем гермовводов корпуса. Расплавленный припой не должен попадать на стеклянные и керамические части корпуса.

Необходимо поддерживать и периодически контролировать (через 1,2 ч) температуру жала паяльника с погрешностью не хуже ± 5° С. Кроме того, должен быть обеспечен контроль времени контактирования выводов микросхем с жалом паяльника, а также контроль расстояния от тела корпуса до границы припоя по длине выводов. Жало паяльника должно быть заземлено (переходное сопротивление заземления не более 5 Ом).

Рекомендуются следующие режимы пайки выводов микросхем для различных типов корпусов:

максимальная температура жала паяльника для микросхем с планарными выводам 265° С, со штырьковыми выводами 280° С;

максимальное время касания каждого вывода жалом паяльника 3 с; минимальное время между пайками соседних выводов 3 с;

минимальное расстояние от тела корпуса до границы припоя по длине вывода 1 мм;

минимальное время между повторными пайками одних и тех же выводов 5 мин.

4 Техническое задание

4.1 Изучить маркировку микросхем.

4.2 Произвести подготовку микросхем к монтаж плату, согласно задания мастера.

4.3 Сделать вывод о проделанной работе.

5 Контрольные вопросы

5.1 Перечислить этапы подготовки микросхемы к монтажу

5.2 Какие типы корпусов отечественных микросхем вы знаете?

5.3 Как определить первый вывод микросхемы?

Практическая работа №10

Последнее изменение этой страницы: 2017-02-05; Нарушение авторского права страницы

ну к примеры кондера когда паяешь нужно СТРОГО соблюдать полярность,транзисторы-не запутатся в выводах(и опять-таки СТРОГО СОБЛЮДАТЬ ПОЛЯРНОСТЬ).

А при монтаже РЕЗИСТОРОВ есть такие правила.
и какие правила вообще существуют при пайке элементов(кроме выше описаных,интересуют ОСОБО значемые)?

Урок 3 — Основы монтажа и пайки

Основы монтажа и пайки

Необходимые для работы инструменты и материалы рассмотрены в уроке №1.
Кратко напомню о том, что потребуется для сборки конструктора: паяльник, припой с каналом канифоли, радиотехнические бокорезы, пинцет, держатель платы типа «третья рука», спирт, салфетки, старая зубная щётка, стол, настольная лампа, стул.
Итак, приступим к сборке.
Мы будем собирать набор Мастер Кит NS073 – «Живое сердце», хотя для целей обучения совершенно не важно, сборку какого набора рассматривать.
Вот что должно получиться в итоге:

Светодиоды собранного устройства эффектно перемигиваются, создавая очень красивый эффект «бегущего огня».
Но сначала нужно собрать набор. Для этого потребуется установить каждую деталь на своё место, а затем припаять все детали.
Глаза боятся – руки делают. Приступим!

 

Общие требования к рабочему месту. Основы безопасности

Несмотря на то, что мы уже говорили об этом в уроке №1, о таких серьёзных вещах, касающихся безопасности, нелишне напомнить снова:

— рабочее место (стол) не должен быть захламлён. На свободном столе работать приятнее и эффективнее. Кроме того, радиодетали не смогут легко потеряться в окружающем хламе;
— Так как радиодетали мелкие, во избежание излишнего перенапряжения глаз рабочее место должно быть хорошо освещено. Всегда включайте настольную лампу;
— во время пайки предусмотрите хорошую вентиляцию рабочего места. Открывайте форточку, или включайте настольный вентилятор, отгоняющий дым от паяльника в сторону;
— паяльник горячий! Держитесь только за его ручку. Не допускайте прикосновений пальцев к жалу;
— после пайки, как и после любой другой работы, всегда мойте руки.

 

Печатная плата

Печатная плата является основной, шасси всей конструкцией.
Все детали устанавливаются с лицевой стороны платы (с той, где есть надписи), а выводы деталей припаиваются с тыльной стороны (где имеются токопроводящие дорожки).

 

Монтаж резисторов

Допустим, мы хотим установить резистор R1. По таблице из инструкции определяем, что R1 должен иметь сопротивление 1 МОм. Находим в наборе резистор соответствующего номинала (как определить номинал резистора, рассказывается в уроке №2). Ищем на печатной плате установочное место R1. Чтобы резистор R1 удобно «улёгся» на предназначенное для него место на печатной плате, выводы резистора нужно отформовать, то есть изогнуть определённым образом. Изгибать выводы можно пальцами или с помощью пинцета. Если с первого раза не получилось изогнуть выводы правильно – ничего страшного, можно поправить формовку. Но надо помнить, что если изгибать вывод в одном месте более нескольких раз, то он может обломиться.

Вот так выглядит установленный резистор с разных ракурсов:

Резистор R1 установлен «вертикально», то есть его корпус находится над поверхностью платы. Угол между компонентом и корпусом может быть любым, это не влияет на качество работы схемы. Также вспомним из урока №2, что резистор не имеет полярности, то есть может быть установлен как коричневой полосой вверх (как на рисунке), так и коричневой полосой вниз.

Чтобы деталь не выпадала при поворотах платы, с обратной стороны платы выводы резистора загибаем в разные стороны:

Мы можем сразу же обрезать излишки вывода резистора и припаять его. Затем установить следующую деталь, опять обрезать его выводы и припаять… Но можно сначала установить все детали, затем обрезать их выводы, а затем все сразу припаять. Так получится быстрее, технологичнее, именно так поступают профессиональные монтажники на производстве. Мы тоже будем действовать таким образом.

Установим резистор R2. Обратите внимание, что этот резистор устанавливается «горизонтально», то есть его корпус вплотную прилегает к плоскости печатной платы. Соответственно, и формовка выводов этого резистора несколько другая.

Снова напомню, что резисторы не имеют полярности. В данном случае синяя полоса резистора находится справа. Но можно установить его и в обратную сторону – синей полосой влево.
Таким же образом устанавливаем все остальные резисторы (в данном наборе их 9 штук).

 

Монтаж конденсаторов

В данном наборе всего один конденсатор – С1, поэтому перепутать его с каким-то другим невозможно. Но всё-таки проверим, что на конденсаторе в полном соответствии с перечнем компонентов указан код ёмкости 104.
В данном случае выводы конденсатора можно не формовать, так как компонент прекрасно устанавливается на плату в заводском состоянии выводов.
Также мы знаем из урока №2, что керамический конденсатор полярности не имеет и может устанавливаться на плату в любом положении.
Если в каком-то другом наборе будет несколько керамических конденсаторов, необходимо по указанному на компоненту коду ёмкости определить, на какое посадочное место следует его установить – С1, С4 или С17, например.
В наборе NS073 нет других конденсаторов, но в целях обучения на примере другого набора рассмотрим также монтаж электролитического конденсатора.
Помним о том, что электролитический конденсатор должен устанавливаться с учётом его полярности.

 

Монтаж диода

Находим на печатной плате посадочное место диода VD1. Вспомним из урока №2, что диод имеет полярность. Обратите внимание, что на печатной плате имеется обозначение «ключа» диода – полоса вблизи одного из выводов. Такая же полоса имеется и на самом диоде. При установке диода необходимо строго придерживаться меток полярности. Если установить диод в неправильной полярности (в данном случае неправильная установка — полосой вверх), то схема не заработает. Более того, диод или другие элементы схемы в таком случае могут выйти из строя.

Формовка выводов диода аналогична резистору R2.

 

Монтаж транзистора

В наборе NS073 нет транзисторов, но для полноты изложения материала на примере другого набора рассмотрим монтаж транзистора. Помним о том, что транзистор имеет «ключ», который при установке необходимо совмещать с соответствующей меткой на печатной плате.

Кроме того, важно помнить, что разные транзисторы могут быть одинаковыми по внешнему виду. И если в набор входят два или более транзисторов, необходимо проверять маркировку на их корпусах и устанавливать компоненты строго на нужные позиции – VT1, VT2 и т.п.

 

Монтаж микросхем

В данный набор входят две микросхемы. При установке необходимо соблюдать их ключи, обозначенные выемками как на печатной плате, так и на самом компоненте.
Загибаем выводы микросхемы – не обязательно все, достаточно двух противоположных. Микросхема зафиксирована и не выпадет.
Кроме того, надо учитывать, что микросхемы DD1 и DD2 разные. Правда, в данном случае у микросхем разное количество выводов: у одной – 14, а у другой – 16, поэтому при установке вы сразу поймёте, если что-то делаете неправильно. Но бывает так, что разные микросхемы имеют одинаковые корпуса с одинаковым количеством выводов. Поэтому всегда обращайте внимание на маркировку на корпусах микросхем и информацию в табличке-перечне компонентов инструкции.

 

Монтаж перемычки

В некоторых наборах, и в NS073 в частности, требуется такая технологическая операция, как установка перемычки. Перемычка на печатной плате обозначается чертой:

 

Перемычка не является электронным компонентом и в состав набора не входит. Её можно выполнить как из небольшого обрезка провода, так и из обрезка одного из выводов любой радиодетали. Формуют перемычку так же, как и резистор.

 

Монтаж светодиодов

Светодиод – это разновидность диода. И он тоже имеет полярность, которую важно соблюдать при монтаже.

На печатной плате обозначен вывод «+» (анод) светодиода.

У самого светодиода вывод «+» (анод) длиннее. Но ориентироваться на этот ключ можно только до обрезки выводов диода. Есть и другая метка полярности – скос на корпусе диода у вывода катода («-»).
Монтируем все светодиоды (в наборе NS073 их 20 штук). Загибаем их выводы с обратной стороны платы. Торчащих выводов становится много, плата принимает неаккуратный вид, но не нужно этого бояться, на следующем этапе мы обрежем лишние выводы. Если же выводы очень мешают – можно обрезать некоторые из них или вообще все в процессе монтажа. Как это делать, рассказывается ниже.

 

Обрезка выводов

 

Вот такой «ужас» наблюдается у нас с обратной стороны платы после установки всех компонентов.

Сейчас мы приведём плату в аккуратный вид, обрезав выводы (или, как говорится на жаргоне радиомонтажников, «причешем» плату).

Нам потребуются радиотехнические бокорезы (подробнее об этом инструменте описано в уроке №1). Инструмент держим практически перпендикулярно плате. От каждого вывода оставляем около 1-2 мм. Слишком длинный вывод будет некрасиво торчать. Кроме того, длинные выводы разных компонентов могут в процессе последующей пайки замкнуться друг с другом и образовать паразитные перемычки. Слишком коротко обрезанный вывод может привести к выпадению компонента.
Желательно, чтобы вывод не выходил за пределы контактной площадки.
На картинках ниже излишне длинный вывод и вывод оптимальной длины.

Таким образом. обрезаем все выводы. В итоге у нас получится примерно такая картина:

Плата готова к пайке.

 

Пайка конструкции

О необходимом для сборки набора паяльном инструменте рассказывается в уроке №1.
Кратко напомню: потребуется паяльник (или паяльная станция) и припой с каналом канифоли. Удобно также применять фиксатор платы – так называемую «третью руку».

Плату удобно зафиксировать с помощью специального держателя типа «третья рука», или каким-либо другим образом.

В одну руку (для правшей – в правую) берём паяльник, в другую – пруток припоя.
Конечно, паяльник должен быть горячим. Таковым он становится не мгновенно после включения в розетку, а через несколько минут после этого.
Если подвести горячее жало к припою, тот начнёт плавиться.

Жало паяльника ставим на точку пайки. Обратите внимание – не на кончик вывода детали, а именно на контактную площадку. Одновременно подаём в эту же точку пруток припоя.
Как и жало паяльника, пруток подаём не на кончик вывода, не на паяльник, а на контактную площадку. Припой начинает плавиться. Немного как бы подаём пруток на точку пайки, при этом слегка перемещая паяльник. Всё, у нас сформировалась точка пайки. Убираем припой, а затем паяльник. Ждём секунду – припой застыл, точка пайки готова. На точку пайки уходит 2-3 миллиметра прутка припоя (это очень ориентировочные данные, зависящие от типа припоя и контактной площадки).
Процесс идёт гораздо быстрее, чем я об этом рассказываю. На одну точку пайки у меня уходит около секунды. Допустимо – до трёх секунд. Если греть точку пайки дольше, теоретически могут возникнуть проблемы: можно перегреть деталь, или контактная площадка или дорожка могут отклеиться от основы платы. Но на практике это маловероятно. В комплекте Мастер Кит только качественные платы, а компоненты в конструкторах для начинающих не такие «нежные» и прощают многие ошибки, в том числе и перегрев.

Качественная пайка блестит и ровная. Если пайка рыхлая, матовая – значит, вы используете некачественный припой (либо припой без канала канифоли), или паяльник либо недостаточно горячий, либо, что чаще всего бывает, слишком горячий.
Я рассказал о технологии пайки, при которой пруток припоя подаётся непосредственно в зону пайки, а жало же используется только как нагреватель. Для современных жал из малообгораемых материалов это единственно правильная техника. Если же вы используете паяльник с обычным медным жалом, можно расплавлять некоторое количество припоя на жале, и переносить жидкий припой в точку пайки на жале, как на лопате. Попробуйте – возможно, так вам будет удобнее.
Всё очень просто. Но это как футбол: требуется практика. Можно прочесть многие тома по теории футбола, но это не значит, что вы научитесь в него играть. Практика – это что-то другое и совершенно необходимое.

 

Промывка платы

 

Строго говоря, современные флюсы, входящие в состав припоев, допускают безотмывочный процесс. То есть можно плату не промывать. Но такая печатная плата выглядит некрасиво, на ней плохо видны дефекты пайки, да и вообще есть такое понятие – «культура производства», и каждый уважающий себя производитель платы промывает. На производстве применяют специальные отмывочные машины, но тратить несколько тысяч долларов и приобретать такую машину размером с половину комнаты для радиолюбителя нецелесообразно. Хороших результатов можно достичь с помощью спирта, старой зубной щётки и салфеток. Смачивая щётку, хорошенько надраиваем плату со стороны пайки, на заключительно же этапе удобно применять для очистки и просушки платы салфетки. Теперь наша смонтированная плата чистенькая, красивая, её и людям не стыдно показать.
После отмывки на плате легче найти дефекты. Поэтому ещё раз внимательно посмотрите на плату и убедитесь, что все контактные площадки хорошо припаяны, а паразитных замыканий нет. При необходимости дефекты устраняем.

 

Устранение дефектов пайки

На рисунке ниже имеются два дефекта пайки: один из выводов пропаян неполностью, только с одной стороны. Такой контакт ненадёжный (на профессиональном жаргоне это называется «непропай»). Другой же вывод мы просто забыли припаять.
Собранная с такими дефектами пайки конструкция может или совсем не заработать, или работать нестабильно.

Исправим дефекты, заново пропаяв обнаруженные проблемные точки пайки.

Иногда в процессе пайки допускаются паразитные соединения припоем соседних выводов:

Если не заметить такие дефекты пайки, то готовая конструкция может не только не заработать, но и вообще выйти из строя сразу же после включения. Поэтому необходимо внимательно проверять монтаж. Допустим, мы обнаружили паразитное замыкание (на радиотехническом жаргоне такой дефект часто называют неблагозвучно – «соплёй»). Я расскажу вам, как восстановить нормальную пайку.


1. С помощью ножа (скальпеля). Прогреваем паяльником дефектную пайку, и проводим острым лезвием между точками пайки. Дефект устранён.
2. С помощью специального инструмента – вакуумной помпы, которая по-другому называется «радиотехнический отсос». Прогреваем место пайки, подносим отсос, нажимаем его кнопку – излишки припоя втягиваются в инструмент. Пайка исправлена!
3. С помощью специальной радиотехнической «оплётки». Прогреваем место пайки, вводим в место пайки многожильную медную «оплётку» — под действием сил натяжения лишний припой впитывается на «оплётку». Пайка исправлена!

В следующем уроке я расскажу о том, как настраивать и подключать собранную конструкцию.

 

Скачать урок в формате PDF

Пайка и советы по вольтмоддингу для начинающих / Overclockers.ua

Вступление

Ответственность за свои действия вы несете сами!

Допустим, вы разогнали свою видеокарту до предела. А что если хочется разогнаться еще? Остается вольтмод. Найти схему вольтмода для своей карты сегодня обычно не сложно. Затем нужно сделать выбор в пользу определенного вида вольтмоддинга. Можно выбрать карандашный вольтмод, приклеить резистор с помощью токопроводящего клея, или же осуществить пайку. Последний метод заслуженно считается самым надежным, и сложным одновременно.

О карандашном вольтмоде

Самый простой метод. Пара движений грифелем, и напряжение выросло. Минусов, конечно, много, но неоспоримым плюсом является сохранение гарантии. В качестве минусов следует отметить регулирование сопротивления в определенных пределах (если сопротивление резистора менее 100 Ом, то про карандаш можете забыть), ненадежность, и еще добавлю кое-что от себя. Когда я вольтмодил память на ATI Radeon X1600 Pro, мне было очень сложно найти подходящий карандаш. Были проверены все имеющиеся в наличии простые и цветные карандаши, а также женские косметические карандаши (!), а снизить сопротивление смог только завалявшийся с перестроечных времен старичок.

Снаряжение

Итак, вы — человек, никогда не державший в руках паяльника (или осиливший только детекторный приемник 🙂 ), решили делать «паяльный» вольтмод. Скорее всего, пальника у вас нет. А если и есть, то он похож на изображенный снизу агрегат.

Вольтмодить таким можно, но сложно (проверял). Советую приобрести паяльник изображенный сверху. Паять им куда удобнее.

Так же необходим флюс. Он используется для обезжиривания припаиваемых элементов. По старой привычке, в большинстве случаев, для этих целей используется канифоль. Также в сети появлялась информация, что в качестве флюса можно использовать анальгин или же аспирин, но эти данные не проверялись.

В обязательном порядке должен быть припой, который выступает в качестве проводника при пайке. Сейчас обычно производится в форме проволоки, скрученной в спираль. Нам нужен сплав Розе.

Провода. Можно использовать любые подходящие медные провода.

Резисторы бывают постоянные и переменные. Как следует из названия, сопротивление постоянных резисторов неизменно, а у переменных изменяется. Вот, например, резисторы постоянного сопротивления:

А вот переменные:

Можно, конечно, использовать и «махину», изображенную слева, но для вольтмоддинга обычно используются подстроечники (справа).

Мультиметр служит для замера сопротивления, напряжения, силы тока, поиска коротких замыканий, прозвонки цепей и т. д. Вольтмод без него — лотерея.

Также для вольтмоддинга следует использовать пинцет.

Приступим

Паять необходимо либо к микросхеме-стабилизатору, отвечающей за питание, либо к определенному резистору. Что выбрать? Зависит от того, где это сделать проще. Порой ноги микросхемы и расстояние между ними крайне малы, а альтернативных точек вольтмода нет. В этом случае на помощь приходит мультиметр. Для начала, как правило, одна из ног микросхемы, к которой надо паять — это земля. Как это проверить? Включаете мультиметр на поиск короткого замыкания и тыкаете одним щупом в ногу микросхемы, а другим к минусу электролитического конденсатора. Если контакт есть, то пайку можно осуществлять вместо этой ноги на минус конденсатора, или просто воткнуть провод в минус разъема «молекс». Вместо другой ноги тоже можно отыскать место для пайки, например, ближайшие к нужной микросхеме резисторы.

Итак, место пайки выбрано. Теперь нужно подпаять провода к ногам подстроечника. Для этого его ноги следует залудить. Делается это так. Сначала дотрагиваемся паяльником канифоли.

Затем проводим концом пальника с канифолью по ноге, потом «подбираем» на паяльник немного припоя.

Далее проводим по ноге, которая при этом покрывается ровным тонким слоем припоя. Теперь наматываем на ногу виток провода, «трогаем» канифоль и припой и дотрагиваемся ноги с проводом — провод припаян. Можно сразу, макнув паяльник в канифоль, взять на него припоя и паять. Эффект тот же, действий меньше.

Проводки следует припаять к одной из крайних и средней ног переменника. Также можно закоротить вторую крайнюю ногу со средней.

Другие концы проводов необходимо уже паять непосредственно к видеокарте. Оголенный конец провода при этом должен быть достаточно коротким. Можно залудить 1 см провода, а потом оставить от него около 2 мм.

На этом кончике следует оставить лишнюю капельку припоя. Затем прикладываем провод к месту пайки (можно использовать для этого пинцет)

И прикасаемся на пару секунд (не более!) паяльником, так чтобы оставленная лишняя капля растаяла и «соединилась» с уже имеющимся в месте пайки припоем. При этом важно следить за тем, как бы не спаять воедино несколько близлежащих площадок. Получится примерно так:

Таким же образом припаиваем и второй провод.

Теперь выкручиваем переменник на максимум (не забывая проверить сопротивление мультиметром), проверяем, не закоротили ли чего, и затем вставляем видеокарту в материнскую плату. Включаем и замеряем напряжение. Оно почти не изменилось, лишь чуть-чуть выросло. Понемногу уменьшаем сопротивление подпаянного резистора и замеряем напряжение.

Останавливаемся на запланированной, и при этом разумной (!) отметке. Убеждаемся, что видеокарта при данном напряжении ведет себя стабильно. Для этого очень желательно пару часов поиграть в любимую 3D игру, или прогнать в течение такого же времени специальные тесты типа 3DMark.

Когда желаемый результат достигнут, извлекаем карту из «системника», отпаиваем переменник, замеряем его сопротивление и подбираем постоянный резистор близкого по значению сопротивления. Припаивать его можно так: изгибаем ножки в нужной форме.

Отрезаем необходимую длину и залуживаем, оставляя немного лишнего припоя (на фото для наглядности припоя несколько больше, чем надо):

Затем просто подпаиваем его к нужным ногам микросхемы, резистору. Например, вот так:

А вот, для примера, разные варианты:

Предупреждение

Не стоит задирать напряжения очень высоко. Повышенное напряжение понижает ресурс чипов. Очень часто один и тот же видеочип или память имеют разные напряжения питания в зависимости от частоты. Если хотите жить с видеокартой долго и счастливо, то лучше ограничиться 10% прибавкой к максимальному документированному напряжению данного чипа/памяти. Также следует позаботиться об улучшении охлаждения видеокарты, так как с повышением напряжения повышается температура элементов.

Пример

В качестве примера рассмотрим вольтмод Sapphire Radeon X1600 XT.

За напряжения, как чипа, так и памяти отвечают стабилизаторы RT3292A. Паять надо к 5-ой и 7-ой ноге микросхемы. По умолчанию сопротивление между этими ножками 660 и 80 Ом для памяти/чипа соответственно. Используем подстроечники на 22 и 5 кОм.

Для чипа:

Для памяти:

Повышение напряжения памяти к положительным результатам не привело. При вольтмоде чипа было решено остановиться на 1,57 В вместо дефолтных 1,4 В.

Место подстроечника занял постоянный резистор:

Частоты карты по умолчанию — 587/1377. Разгон с родным охлаждением — 634/1502, разгон Zalman VF700 AlCu+Vmod — 695/1530. Цифр из Марков приводить не буду, не об этом статья :)

Последний совет

Итак, вольтмод помогает немного повысить производительность видеокарты. Надеюсь, она поможет оверклокерам сделать первый в жизни вольтмод, а кого-нибудь убережет от ошибок. И напоследок, если что-то пошло не так, в сети есть интересный материал об избавлении от следов пайки.

Удачи!

Благодарю Tune’D за рецензирование.

Как паять переменный резистор — flagman-ug.ru

Что такое подстроечный резистор: описание устройства и область его применения

Чтобы понять, что такое подстроечный резистор, и зачем он нужен, предлагаем ознакомиться с подробной статьей. Из нее вы узнаете все об области применения и тонкостях работы с данной деталью. А тех, кто дочитает интересный материал до конца, в конце статьи ждет небольшой бонус – документ с ГОСТ 24237-84 (Общие технические условия по резисторам).

В статье разобраны главные принципы работы подстроечных резисторов, характеристики и различия в этих деталях. В качестве бонуса в статье читатель найдет видео c наглядным разбором устройства. Интересующие подробности можно уточнить в комментариях, эксперты ответят на любые ваши вопросы.

Что это за резистор

Подстроечный резистор — это миниатюрная версия стандартного переменного резистора. Они разработаны для установки непосредственно на печатную плату и регулируются только при настройке схемы. Например, для настройки чувствительности какого-нибудь датчика или установки усиления усилителя мощности.

Для управления подстроечным резистором нужна маленькая отвертка или что-то другое, похожее на нее. Так же, как и подстроечные конденсаторы, подстроечные резисторы бывают однооборотные и многооборотный, сделанные по принципу червячной передачи.

Но в отличие от них, для работы с подстроечным резистором не нужна специальная настроечная отвертка. Близкое нахождение вблизи резистора руки или стальной отвертки никак не влияет на его сопротивление. Подстроечный резистор регулируется обычной отверткой, которая вставляется в специальный паз регулировочного механизма, связанного с круговым ползунком.

Многооборотные подстроечные резисторы используются в тех участках схемы, где нужна прецизионная точность в установке нужного сопротивления. Однооборотными подстроечными резисторами большой точности настройки добиться невозможно.

Подстроечные резисторы служат для одноразовой настройки сопротивления, например в качестве потенциометров на схемах обратной связи импульсных источников питания всегда можно встретить подстроечные резисторы. Существуют также многооборотные подстроечные резисторы.

Поэтому подстроечные резисторы не являются очень стойкими и прочными, по сравнению с переменными резисторами, и рассчитаны максимум на несколько десятков циклов регулировки. Очевидно, что подстроечный резистор никогда не заменит переменный, и если этот принцип нарушить, то можно поплатиться низкой надежностью конструируемого устройства.

Как проверить исправность мультиметром

Для измерения сопротивления понадобится цифровой мультиметр. Для того, чтобы замерять сопротивление, нам нужно повернуть крутилку на “измерение сопротивления”. С помощью палочки мы можем крутить резистор по часовой стрелке, либо против часовой стрелки, тем самым меняя сопротивление между средним контактом и двумя крайними контактами. Правила при измерении сопротивления:

  1. Прижимайте щупы с некоторой силой к выводам резистора. Тем самым вы исключите появление контактного сопротивления, которое при слабом нажатии будет суммироваться с измеряемым сопротивлением.
  2. При измерении сопротивления резистора на печатной плате, еще раз убедитесь, что плата обесточена. Потом отпаяйте один конец резистора и уже тогда замеряйте его сопротивление.
  3. Не касайтесь выводов резистора при измерении его сопротивления! Тело человека в среднем обладает сопротивлением около 1 КилоОма и зависит от многих факторов. Поэтому, касаясь выводов резистора при измерении сопротивления вы вносите погрешность в измерения.
  4. Если вы хотите, как можно точнее измерить сопротивления резистора, зачистите его выводы либо с помощью ножа, либо с помощью самой нежной наждачной бумаги. В этом случае вы уберете слой окисла, который в некоторых случаях вносит ощутимую погрешность в измерение сопротивления.

Ставим щупы по крайним контактам. Замеряем полное сопротивление переменного резистора. Для того, чтобы проверить рабочий ли он, крутим ручку переменного резистора до упора против часовой стрелки и замеряем сопротивление между левым и средним контактом. Должно получиться близко к нулю.

Далее крутим ручку по часовой стрелке, но не до конца. Замеряем снова сопротивление между средним и левым контактом, далее между средним и правым. В сумме должен получиться результат сопротивления двух крайних контактов.

Предлагаем также почитать интересный материал про малоизвестные факты о двигателях постоянного тока в другой нашей статье.

Типы и виды устройства

Типов подстроечных резисторов на современном рынке множество. Это и неразборные подстроечные резисторы типа СП4-1, залитые эпоксидным компаундом, и предназначенные для аппаратуры оборонного назначения и подстроечные типа СП3-16б для вертикального монтажа на плату.

При изготовлении бытовой аппаратуры, на платы впаивают маленькие подстроечные резисторы, которые, кстати, могут по мощности достигать 0,5 ватт. В некоторых из них, например в СП3-19а, в качестве резистивного слоя применяется металлокерамика.

Есть и совсем простые подстроечные резисторы на основе лаковой пленки, такие как СП3-38 с открытым корпусом, уязвимые для влаги и пыли, и мощностью не более 0,25 ватт. Такие резисторы регулируются диэлектрической отверткой, дабы избежать случайного короткого замыкания. Такие простые резисторы часто встречаются в бытовой электронике, например в блоках питания мониторов.

Некоторые подстроечные резисторы имеют герметичный корпус, например R-16N2, они регулируются специальной отверткой, и являются более надежными, поскольку на резистивную дорожку не попадает пыль и не конденсируется влага.

Мощные трехваттные резисторы типа СП5-50МА в корпусе имеют отверстия для вентиляции, в них проводник намотан в форме тороида, а контактный ползунок скользит по нему при повороте ручки отверткой.

В некоторых телевизорах с ЭЛТ до сих пор можно встретить высоковольтные подстроечные резисторы, такие как НР1-9А, сопротивлением 68 МОм и номинальной мощностью 4 ватта. По сути, это набор металлокерамических резисторов в одном корпусе, а типичное рабочее напряжение для данного резистора составляет 8,5 кВ, при максимуме в 15 кВ. Сегодня подобные резисторы встроены в ТДКС.

В аналоговой аудиоаппаратуре можно встретить ползунковые или движковые переменные резисторы, типа СП3-23а, которые отвечают за регулировку громкости, тембра, баланса и т. д. Это линейные резисторы, которые бывают и сдвоенными, как например СП3-23б.

Подстроечные многооборотные резисторы часто встречаются в электронной аппаратуре, в измерительных приборах и т. д. Их механизм позволяет точно регулировать сопротивление, и количество оборотов измеряется несколькими десятками.

Червячная передача делает возможным медленный поворот и плавное перемещение скользящего контакта по резистивной дорожке, благодаря чему схемы настраиваются очень и очень точно.

Например, подстроечный многооборотный резистор СП5-2ВБ настраивается именно посредством червячной передачи внутри корпуса, и для полного прохода всей резистивной дорожки нужно совершить 40 оборотов отверткой. Резисторы данного типа в разных модификациях имеют мощность от 0,125 до 1 ватта, и рассчитаны на 100 — 200 циклов регулировки.

Это далеко не полный обзор типов и видов детали. Как мы видим из предыдущего описания, подстроечные резисторы по своей сути близки к переменным, но строго говоря, ими не являются. В данном видеоролике кратко, но доходчиво рассказано о том, как переделать подстроечный резистор в переменный.

Получение значения с устройства при помощи ардуино

То, что ножка резистора подключена к аналоговому пину ардуино, позволяет отловить 1024 положения потенциометра, это даст возможность довольно точно производить подстройку.

Ниже приведен код с подробными комментариями. Чтобы посмотреть значения с подстроечного резистора можно выводить информацию на дисплей или индикатор, но в примере все проще – результат можно посмотреть в мониторе порта.

// пин для получения данных

int pin_rezistor = A0;

// переменная для хранения значения

// порт работает на чтение

// соединение с компьютером для дебага

// получаем значение с пина

У резистора есть три ножки: первая, отставленная отдельно, будет использоваться для считывания значения, а к двум другим будут подключены плюс и минус. Для считывания данных необходимо использовать аналоговый пин arduino, например, pin A0.

Чистка подстроечника обычным спиртом

Резистор в схемах может стать грязным, его ползунковая дорожка со временем покрывается слоем пыли. И чтобы вернуть электрическому сопротивлению прежнюю работоспособность его нужно просто почистить.

Делается чистка подстроечных резисторов достаточно просто и быстро. Лучше всего для этих целей использовать чистый спирт. Различные средства типа для снятия лака, самогон, очистители лучше не применять, так как в них могут содержаться примеси, отрицательно влияющие на чистоту резистора.

Чтобы лучше овладеть материалом, рекомендуем также прочитать следующий материал: все что нужно знать о шаговых электродвигателях.

Итак, разбираем резистор (если на нем имеется защитный кожух), для этого обычно достаточно разогнуть небольшие металлические зажимчики на самом корпусе резистора после чего нужно снять эту крышку. Внутри резистора мы увидим дорожку, по которой двигается ползунок среднего вывода резистора. Именно эту дорожку и нужно почистить спиртом от грязи.

Удобно делать так: взять шприц (допустим на 2 куба), набрать в него спирта, и аккуратно через иголку шприца нанести несколько капель прямо на дорожку резистора. После этого мы начинаем в разные стороны вращать это сопротивление, чтобы спирт разошелся по всей дорожке и тем самым расчистил путь для ползунка.

В принципе и этого достаточно, чтобы после сборки и установки подстроечного резистора на свое рабочее место схемы мы наслаждались нормальной его работой без прежних неполадок. Хотя если позволяет место на самом резисторе, можно еще аккуратно пройтись и ваткой, что полностью уберет всю грязь с ползунковой дорожки.

Ну, а далее нам нужно обратно собрать наш обновленный резистор и поставить его на свое рабочее место. В большинстве случаев после такой чистки электрическое сопротивление полностью восстанавливается, пропадает прерывистость его работы.

Сложные случаи очистки

В очень редких случаях дело не в грязи, а например разрушении этой дорожки в результате чрезмерного перегрева. Это может произойти в случае, когда случайно на этот резистор было подано слишком большое напряжение, а мощность этого сопротивления недостаточно большая, чтобы быстро рассеять выделяемое тепло от большого тока. Вот и происходит сильный нагрев дорожки переменного резистора с последующим ее разрушением. Тут уж чистка спиртом не поможет.

Нужна полная замена этого резистора на новый, заведомо рабочий. И, естественно, перед установкой нового резистора на старую схему проверьте ее, чтобы не повторился процесс разрушения дорожки уже с новым сопротивлением.

Тут можно пойти на крайние меры. Сделать в корпусе небольшое отверстие (сверлом 0,8-1 мм). Ну и через него уже шприцом через иглу влить спирт. Далее опять крутим в разные стороны ручку резистора и потом нужно подождать пока спирт полностью испарится.

Можно этот переменный резистор немного подогреть (градусов так до 50), это ускорит испарение спирта. Хотя чистый спирт является диэлектриком, ток он через себя не проводит. Следовательно, и не будет отрицательно влиять на работу переменного резистора, если даже на нем и останется немного спирта, который все равно испарится.

Заключение

Всевозможные переменные резисторы находят широкое применение в роли потенциометров в различных приборах, начиная с бытовых, таких как обогреватели, водонагреватели, акустические системы, заканчивая музыкальными инструментами, такими как электрогитары и синтезаторы.

Подстроечные резисторы можно встретить практически на любых печатных платах, начиная с телевизоров, заканчивая цифровыми осциллографами и техникой оборонного значения. Подробно с устройством данного типа можно ознакомиться, скачав файл с ГОСТ 24237-84. Резисторы переменные непроволочные. Общие технические условия.

Надеемся, теперь вам полностью понятен принцип работы подстроечного резистора. Всю новую информацию по этой теме, а также по теме металлоискателей, вы сможете найти в группе. Подписывайтесь на нашу группу в социальной сети «Вконтакте».

Урок 3 — Основы монтажа и пайки

Основы монтажа и пайки

Необходимые для работы инструменты и материалы рассмотрены в уроке №1.
Кратко напомню о том, что потребуется для сборки конструктора: паяльник, припой с каналом канифоли, радиотехнические бокорезы, пинцет, держатель платы типа «третья рука», спирт, салфетки, старая зубная щётка, стол, настольная лампа, стул.
Итак, приступим к сборке.
Мы будем собирать набор Мастер Кит NS073 – «Живое сердце», хотя для целей обучения совершенно не важно, сборку какого набора рассматривать.
Вот что должно получиться в итоге:

Светодиоды собранного устройства эффектно перемигиваются, создавая очень красивый эффект «бегущего огня».
Но сначала нужно собрать набор. Для этого потребуется установить каждую деталь на своё место, а затем припаять все детали.
Глаза боятся – руки делают. Приступим!

Общие требования к рабочему месту. Основы безопасности

Несмотря на то, что мы уже говорили об этом в уроке №1, о таких серьёзных вещах, касающихся безопасности, нелишне напомнить снова:

— рабочее место (стол) не должен быть захламлён. На свободном столе работать приятнее и эффективнее. Кроме того, радиодетали не смогут легко потеряться в окружающем хламе;
— Так как радиодетали мелкие, во избежание излишнего перенапряжения глаз рабочее место должно быть хорошо освещено. Всегда включайте настольную лампу;
— во время пайки предусмотрите хорошую вентиляцию рабочего места. Открывайте форточку, или включайте настольный вентилятор, отгоняющий дым от паяльника в сторону;
— паяльник горячий! Держитесь только за его ручку. Не допускайте прикосновений пальцев к жалу;
— после пайки, как и после любой другой работы, всегда мойте руки.

Печатная плата

Печатная плата является основной, шасси всей конструкцией.
Все детали устанавливаются с лицевой стороны платы (с той, где есть надписи), а выводы деталей припаиваются с тыльной стороны (где имеются токопроводящие дорожки).

Монтаж резисторов

Допустим, мы хотим установить резистор R1. По таблице из инструкции определяем, что R1 должен иметь сопротивление 1 МОм. Находим в наборе резистор соответствующего номинала (как определить номинал резистора, рассказывается в уроке №2). Ищем на печатной плате установочное место R1. Чтобы резистор R1 удобно «улёгся» на предназначенное для него место на печатной плате, выводы резистора нужно отформовать, то есть изогнуть определённым образом. Изгибать выводы можно пальцами или с помощью пинцета. Если с первого раза не получилось изогнуть выводы правильно – ничего страшного, можно поправить формовку. Но надо помнить, что если изгибать вывод в одном месте более нескольких раз, то он может обломиться.

Вот так выглядит установленный резистор с разных ракурсов:

Резистор R1 установлен «вертикально», то есть его корпус находится над поверхностью платы. Угол между компонентом и корпусом может быть любым, это не влияет на качество работы схемы. Также вспомним из урока №2, что резистор не имеет полярности, то есть может быть установлен как коричневой полосой вверх (как на рисунке), так и коричневой полосой вниз.

Чтобы деталь не выпадала при поворотах платы, с обратной стороны платы выводы резистора загибаем в разные стороны:

Мы можем сразу же обрезать излишки вывода резистора и припаять его. Затем установить следующую деталь, опять обрезать его выводы и припаять… Но можно сначала установить все детали, затем обрезать их выводы, а затем все сразу припаять. Так получится быстрее, технологичнее, именно так поступают профессиональные монтажники на производстве. Мы тоже будем действовать таким образом.

Установим резистор R2. Обратите внимание, что этот резистор устанавливается «горизонтально», то есть его корпус вплотную прилегает к плоскости печатной платы. Соответственно, и формовка выводов этого резистора несколько другая.

Снова напомню, что резисторы не имеют полярности. В данном случае синяя полоса резистора находится справа. Но можно установить его и в обратную сторону – синей полосой влево.
Таким же образом устанавливаем все остальные резисторы (в данном наборе их 9 штук).

Монтаж конденсаторов

В данном наборе всего один конденсатор – С1, поэтому перепутать его с каким-то другим невозможно. Но всё-таки проверим, что на конденсаторе в полном соответствии с перечнем компонентов указан код ёмкости 104.
В данном случае выводы конденсатора можно не формовать, так как компонент прекрасно устанавливается на плату в заводском состоянии выводов.
Также мы знаем из урока №2, что керамический конденсатор полярности не имеет и может устанавливаться на плату в любом положении.
Если в каком-то другом наборе будет несколько керамических конденсаторов, необходимо по указанному на компоненту коду ёмкости определить, на какое посадочное место следует его установить – С1, С4 или С17, например.
В наборе NS073 нет других конденсаторов, но в целях обучения на примере другого набора рассмотрим также монтаж электролитического конденсатора.
Помним о том, что электролитический конденсатор должен устанавливаться с учётом его полярности.

Монтаж диода

Находим на печатной плате посадочное место диода VD1. Вспомним из урока №2, что диод имеет полярность. Обратите внимание, что на печатной плате имеется обозначение «ключа» диода – полоса вблизи одного из выводов. Такая же полоса имеется и на самом диоде. При установке диода необходимо строго придерживаться меток полярности. Если установить диод в неправильной полярности (в данном случае неправильная установка — полосой вверх), то схема не заработает. Более того, диод или другие элементы схемы в таком случае могут выйти из строя.

Формовка выводов диода аналогична резистору R2.

Монтаж транзистора

В наборе NS073 нет транзисторов, но для полноты изложения материала на примере другого набора рассмотрим монтаж транзистора. Помним о том, что транзистор имеет «ключ», который при установке необходимо совмещать с соответствующей меткой на печатной плате.

Кроме того, важно помнить, что разные транзисторы могут быть одинаковыми по внешнему виду. И если в набор входят два или более транзисторов, необходимо проверять маркировку на их корпусах и устанавливать компоненты строго на нужные позиции – VT1, VT2 и т.п.

Монтаж микросхем

В данный набор входят две микросхемы. При установке необходимо соблюдать их ключи, обозначенные выемками как на печатной плате, так и на самом компоненте.
Загибаем выводы микросхемы – не обязательно все, достаточно двух противоположных. Микросхема зафиксирована и не выпадет.
Кроме того, надо учитывать, что микросхемы DD1 и DD2 разные. Правда, в данном случае у микросхем разное количество выводов: у одной – 14, а у другой – 16, поэтому при установке вы сразу поймёте, если что-то делаете неправильно. Но бывает так, что разные микросхемы имеют одинаковые корпуса с одинаковым количеством выводов. Поэтому всегда обращайте внимание на маркировку на корпусах микросхем и информацию в табличке-перечне компонентов инструкции.

Монтаж перемычки

В некоторых наборах, и в NS073 в частности, требуется такая технологическая операция, как установка перемычки. Перемычка на печатной плате обозначается чертой:

Перемычка не является электронным компонентом и в состав набора не входит. Её можно выполнить как из небольшого обрезка провода, так и из обрезка одного из выводов любой радиодетали. Формуют перемычку так же, как и резистор.

Монтаж светодиодов

Светодиод – это разновидность диода. И он тоже имеет полярность, которую важно соблюдать при монтаже.

На печатной плате обозначен вывод «+» (анод) светодиода.

У самого светодиода вывод «+» (анод) длиннее. Но ориентироваться на этот ключ можно только до обрезки выводов диода. Есть и другая метка полярности – скос на корпусе диода у вывода катода («-»).
Монтируем все светодиоды (в наборе NS073 их 20 штук). Загибаем их выводы с обратной стороны платы. Торчащих выводов становится много, плата принимает неаккуратный вид, но не нужно этого бояться, на следующем этапе мы обрежем лишние выводы. Если же выводы очень мешают – можно обрезать некоторые из них или вообще все в процессе монтажа. Как это делать, рассказывается ниже.

Обрезка выводов

Вот такой «ужас» наблюдается у нас с обратной стороны платы после установки всех компонентов.

Сейчас мы приведём плату в аккуратный вид, обрезав выводы (или, как говорится на жаргоне радиомонтажников, «причешем» плату).

Нам потребуются радиотехнические бокорезы (подробнее об этом инструменте описано в уроке №1). Инструмент держим практически перпендикулярно плате. От каждого вывода оставляем около 1-2 мм. Слишком длинный вывод будет некрасиво торчать. Кроме того, длинные выводы разных компонентов могут в процессе последующей пайки замкнуться друг с другом и образовать паразитные перемычки. Слишком коротко обрезанный вывод может привести к выпадению компонента.
Желательно, чтобы вывод не выходил за пределы контактной площадки.
На картинках ниже излишне длинный вывод и вывод оптимальной длины.

Таким образом. обрезаем все выводы. В итоге у нас получится примерно такая картина:

Плата готова к пайке.

Пайка конструкции

О необходимом для сборки набора паяльном инструменте рассказывается в уроке №1.
Кратко напомню: потребуется паяльник (или паяльная станция) и припой с каналом канифоли. Удобно также применять фиксатор платы – так называемую «третью руку».

Плату удобно зафиксировать с помощью специального держателя типа «третья рука», или каким-либо другим образом.

В одну руку (для правшей – в правую) берём паяльник, в другую – пруток припоя.
Конечно, паяльник должен быть горячим. Таковым он становится не мгновенно после включения в розетку, а через несколько минут после этого.
Если подвести горячее жало к припою, тот начнёт плавиться.

Жало паяльника ставим на точку пайки. Обратите внимание – не на кончик вывода детали, а именно на контактную площадку. Одновременно подаём в эту же точку пруток припоя.
Как и жало паяльника, пруток подаём не на кончик вывода, не на паяльник, а на контактную площадку. Припой начинает плавиться. Немного как бы подаём пруток на точку пайки, при этом слегка перемещая паяльник. Всё, у нас сформировалась точка пайки. Убираем припой, а затем паяльник. Ждём секунду – припой застыл, точка пайки готова. На точку пайки уходит 2-3 миллиметра прутка припоя (это очень ориентировочные данные, зависящие от типа припоя и контактной площадки).
Процесс идёт гораздо быстрее, чем я об этом рассказываю. На одну точку пайки у меня уходит около секунды. Допустимо – до трёх секунд. Если греть точку пайки дольше, теоретически могут возникнуть проблемы: можно перегреть деталь, или контактная площадка или дорожка могут отклеиться от основы платы. Но на практике это маловероятно. В комплекте Мастер Кит только качественные платы, а компоненты в конструкторах для начинающих не такие «нежные» и прощают многие ошибки, в том числе и перегрев.

Качественная пайка блестит и ровная. Если пайка рыхлая, матовая – значит, вы используете некачественный припой (либо припой без канала канифоли), или паяльник либо недостаточно горячий, либо, что чаще всего бывает, слишком горячий.
Я рассказал о технологии пайки, при которой пруток припоя подаётся непосредственно в зону пайки, а жало же используется только как нагреватель. Для современных жал из малообгораемых материалов это единственно правильная техника. Если же вы используете паяльник с обычным медным жалом, можно расплавлять некоторое количество припоя на жале, и переносить жидкий припой в точку пайки на жале, как на лопате. Попробуйте – возможно, так вам будет удобнее.
Всё очень просто. Но это как футбол: требуется практика. Можно прочесть многие тома по теории футбола, но это не значит, что вы научитесь в него играть. Практика – это что-то другое и совершенно необходимое.

Промывка платы

Строго говоря, современные флюсы, входящие в состав припоев, допускают безотмывочный процесс. То есть можно плату не промывать. Но такая печатная плата выглядит некрасиво, на ней плохо видны дефекты пайки, да и вообще есть такое понятие – «культура производства», и каждый уважающий себя производитель платы промывает. На производстве применяют специальные отмывочные машины, но тратить несколько тысяч долларов и приобретать такую машину размером с половину комнаты для радиолюбителя нецелесообразно. Хороших результатов можно достичь с помощью спирта, старой зубной щётки и салфеток. Смачивая щётку, хорошенько надраиваем плату со стороны пайки, на заключительно же этапе удобно применять для очистки и просушки платы салфетки. Теперь наша смонтированная плата чистенькая, красивая, её и людям не стыдно показать.
После отмывки на плате легче найти дефекты. Поэтому ещё раз внимательно посмотрите на плату и убедитесь, что все контактные площадки хорошо припаяны, а паразитных замыканий нет. При необходимости дефекты устраняем.

Устранение дефектов пайки

На рисунке ниже имеются два дефекта пайки: один из выводов пропаян неполностью, только с одной стороны. Такой контакт ненадёжный (на профессиональном жаргоне это называется «непропай»). Другой же вывод мы просто забыли припаять.
Собранная с такими дефектами пайки конструкция может или совсем не заработать, или работать нестабильно.

Исправим дефекты, заново пропаяв обнаруженные проблемные точки пайки.

Иногда в процессе пайки допускаются паразитные соединения припоем соседних выводов:

Если не заметить такие дефекты пайки, то готовая конструкция может не только не заработать, но и вообще выйти из строя сразу же после включения. Поэтому необходимо внимательно проверять монтаж. Допустим, мы обнаружили паразитное замыкание (на радиотехническом жаргоне такой дефект часто называют неблагозвучно – «соплёй»). Я расскажу вам, как восстановить нормальную пайку.

1. С помощью ножа (скальпеля). Прогреваем паяльником дефектную пайку, и проводим острым лезвием между точками пайки. Дефект устранён.
2. С помощью специального инструмента – вакуумной помпы, которая по-другому называется «радиотехнический отсос». Прогреваем место пайки, подносим отсос, нажимаем его кнопку – излишки припоя втягиваются в инструмент. Пайка исправлена!
3. С помощью специальной радиотехнической «оплётки». Прогреваем место пайки, вводим в место пайки многожильную медную «оплётку» — под действием сил натяжения лишний припой впитывается на «оплётку». Пайка исправлена!

В следующем уроке я расскажу о том, как настраивать и подключать собранную конструкцию.

Разборка и ремонт переменных резисторов на примере советских СПЗ-30 и СП-1

Как известно, переменные резисторы, которые во всевозможной звуковой аппаратуре служат для регулировки громкости, тембра и прочего стереобаланса, со временем изнашиваются. И при вращении ручек регуляторов из колонок раздаётся хрип, треск, щёлканье, и другие немузыкальные звуки.
Причём громкость их по мере износа меняется от едва заметного шороха до треска вполне сравнимого с уровнем полезного сигнала.

Сейчас, когда в продажу хлынула музыкальная техника с цифровым кнопочным управлением, для многих меломанов проблема отошла в прошлое.
Но и сейчас ещё много найдётся любителей музыки предпочитают слушать её через старый добрый советский, импортный или самодельный усилитель со старыми добрыми переменниками.

Надеюсь, что кому-то из вас эта статья пригодится. Хотя возможно, что я очередной раз берусь с умным видом объяснять очевидные вещи.

Приходит время и регулятор, верой и правдой прослуживший не один десяток лет и переживший иногда сам аппарат, в котором был установлен изначально, начинает хрипеть. Обычно за это ругают советские переменные резисторы. Но, рано или поздно, беда настигает регулятор независимо от страны-производителя.

У того, кто взялся сию беду устранять, есть два пути решения проблемы. Попытаться вернуть работоспособность старому переменнику или заменить на новый.

Заменить, конечно, хороший выход, только на что?
Если повезёт, в куче запчастей, скопившихся у радиолюбителя с незапамятных времён, можно найти другой такой же переменник или с близкими параметрами. Но где гарантия, что и он скоро не захрипит. По возрасту он, возможно, почти ровесник заменяемому и неизвестно где стоял, как часто его крутили и в каких условиях аппарат эксплуатировался.

Если поблизости есть магазин, или ещё какое заведение торгующее радиодеталями можно купить там изделие «братской узкоглазой республики», представляющее из себя подстроечник, к которому наспех приделали корпус и ось. Такой резистор обычно практически никак не защищённое от попадания внутрь пыли влаги и прочего наружного мусора. А выводы иногда приклёпаны к угольной «подкове» так, что болтаются даже у нового резистора, гарантируя те же хрипы, треск и пропадание звука.

Возможно, где-то поближе к цивилизации можно добыть качественную деталь, но судя по ценам в музыкальных магазинах, где иногда продаются переменники для электрогитар, цена может составить очень большую долю от цены самого ремонтируемого изделия.

Поэтому я рекомендую вскрыть хрипящий переменник и оценить возможность приведения его в чувство своими силами.

↑ Вскрытие покажет. Потенциометр СПЗ-30 изнутри

Будем считать, что сопротивление между крайними выводами измерено, существует, не сильно превышает указанное на корпусе и не «плавает». В противном случае деталь можно спокойно выбросить, ну или пустить на запчасти. Где-то в литературе встречал способ изготовления из деталей СП3, малогабаритного многопозиционного переключателя.

Отгибаем 4 усика, помеченные стрелками, и снимаем крышку. Любуемся на нехитрый внутренний мир:

А пока, небольшое «лирическое отступление».
Почти к каждому, кто связал свою жизнь с радиолюбительством, рано или поздно все знакомые, родственники, родственники знакомых и знакомые родственников тащат на ремонт свою убитую технику. Бывает что и из-за «хрипатого» регулятора.

Приносящие делятся на две категории.
1. Простые пользователи — как правило, несут свой аппарат сразу же, как только неисправность дала о себе знать.
2. Более или менее продвинутые пользователи — перед тем как принести, пытаются исправить сами, пользуясь своими «знаниями» или советами «знающих».
От таких частенько слышал примерно такой монолог: «Я сам пытался сделать. Спиртом, водкой, „тройным одеколоном“ протирал. Маслом капал, карандашом подкову натирал, толчёный карандаш с маслом смешивал и капал. Пара дней и снова то же самое. Сделай что-нибудь! Задолбало, блин. »

Вот так и выглядят обычные советы, которые гуляют в народе и даже иногда помогают (иначе б не гуляли).

Действительно — глядя на заляпанную старой почерневшей смазкой угольную «подкову» первая мысль, которая приходит в голову — почистить всё это хозяйство прямо так — через щель между диэлектрической шайбой одетой на вал и стенкой пластмассового корпуса.
Но всё же лучше продолжить разборку. И доступ к очищаемым поверхностям лучше будет, а там глядишь — и ещё что интересное обнаружится.

Разгибаем упорное кольцо:

И вытаскиваем ось, вместе с текстолитовой шайбой с закреплённым на ней подвижным контактом.
Сразу же внимательно рассматриваем состояние угольного слоя на «подкове».

В данном случае неплохо сохранился. Значит, в дальнейших действиях есть какой-то смысл. Если же он стёрся настолько, что на месте где должен быть графит видно текстолитовую основу — «медицина бессильна». Хотя если честно — за время с 80-х годов встречал только два (!) настолько затёртых переменника. Один из них стоял в магнитофоне «Маяк-232», работавшем в одной из школ. Там, видимо из-за заводского брака, рассыпалась угольная щётка на подвижном контакте и подкову просто сточило металлическим пружинным электродом. Я так подумал, потому что переменник был сдвоенный, а второй резистор блока был ещё вполне нормальным. Магнитофону на тот момент лет десять было, если не больше.

Теперь поверхность подковы можно, и даже нужно очистить от «вековой грязи» (особенно после «толчёного карандаша в масле») спиртом или чистым бензином для зажигалок. Заодно нужно почистить пружинные контакты, соединяющие центральный вывод с движком.
А потом внимательно посмотреть на поверхность, по которой эти контакты должны скользить:

Даже при таком качестве фото видно, что выглядит это место, мягко скажем, страшновато. Контакты протёрли заметную «траншею», которая из-за слоя смазки кажется глубже, чем на самом деле. А если разглядеть получше, можно увидеть, что поверхность металла где-то замазалась, где-то окислилась и надёжный контакт видит только во снах о давно ушедшей молодости.

Очищаем металл от старой, иногда затвердевшей до полного сходства с парафином, смазки и грязи, графитной пыли. При необходимости счищаем окись ластиком. Жаль старые добрые советские красные ластики уже не найти. А сколько ими было двоек в дневнике подтёрто, чтобы легче на тройки исправить. А контактов в телевизионных ПТК почищено (часто зря). О прочих тумблерах и П2К вообще молчу.

Пришло время заняться угольной щёткой подвижного контакта

За «долгую счастливую жизнь» поизносилась, конечно. Жаль нет под рукой совершенно нового такого же переменника, чтобы уточнить насколько. Поэтому чаще оценивал степень износа «на глазок».
Если осталось около одного миллиметра — ещё поживёт, если меньше 0,5 мм — делал новую из грифеля карандаша, или угольного стержня от случайно подвернувшейся разряженной пальчиковой батарейки (АА). Вырезал обычно тем ножом, который в этот момент был под рукой, потом выравнивал контактную поверхность об напильник. Что-то похожее когда-то описывалось в журнале «Радио».

Насчёт материала: как-то встречал в Сети спор, что лучше — угольный стержень от батарейки или карандаш. А если карандаш, то какой твёрдости. Сам пока к определённому выводу не пришёл. То, что делал для себя пока работает и то хорошо. А использовал в основном те карандаши, которыми в тот момент пользовался сам, твёрдостью где-то на уровне «ТМ» — «Т». А твёрдость угольных стержней из батареек, кто ж её знает-то.

Перед установкой щётки на законное место я делал ещё одну вещь. Кончик пружинного контакта, примерно от отверстия для щётки, отгибал на небольшой угол (зелёная стрелка на фото). А также стачивал мелкой шкуркой, надфилем или, в крайнем случае, ножом заусенцы на краях этого отверстия и торцах пружины, если были. Как-то спокойней потом, хотя в реальной пользе от этого действия не уверен.

Перед окончательной сборкой все трущиеся поверхности смазывал машинным маслом (самым густым, какое было в наличии), Если была возможность – «Литолом» или «ЦИАТИМ-ом». Что-то другое в наших краях достать сложнее.

После подобных процедур все посторонние звуки обычно пропадают и надолго.

↑ Немного про СП-1

И контакт этот между выводом и движком переменника появляется и пропадает по собственному желанию. Не исключено, что встречаются и СП3 с болтающимся на заклёпке центральным контактом, но мне такие пока не попадались.

Для устранения неисправности, как многие догадались, достаточно пропаять это соединение. Для большей надёжности можно пропаять и со стороны вывода, хотя чаще всего это не требуется.
Кстати, угольный слой очень даже неплохо сохранился для переменного резистора с металлическими щётками из устройства конца 70-х годов.

Вот такие достаточно простые рекомендации по возвращению к активной жизни захрипевших переменных резисторов. Правда, здесь я рассмотрел только один тип, но повторюсь — другие отличаются только способом разборки-сборки. Составные части и места возможного появления неисправностей одинаковы.

ЭЛЕКТРОНИКА Электронный переменный резистор (электронный потенциометр)

Иногда аналоговый потенциометр в виде крутилки не совсем то, что хотелось бы видеть в своем проекте. А прибор с кнопками на лицевой панели гораздо компактнее, чем с обыкновенными ручками-крутилками. При этом, если использовать сенсорные кнопки и SMD компоненты, то такой потенциометр можно интегрировать в какой-нибудь плоский корпус. Мне, например, необходимо было изменять яркость свечения самодельного светильника для аквариума из светодиодной тенты.

Схема имеет малые габариты, выполняет функцию обыкновенного переменного резистора.
Основу схемы составляет полевой транзистор КП 501 (или любой другой его аналог).

Я выбрал в SMD корпусе D-PAK

ПРИНЦИП РАБОТЫ:
Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.

Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С1 и номинала резистора R1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R2.

После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С1. При использовании нового и качественного конденсатора С1 настройки схемы могут продержаться около суток.

РАЗВЕДЕННАЯ ПЛАТА:

ГОТОВАЯ ПЛАТА:


Для тех, кто захочет повторить, я прикрепил архив с шаблонами дорожек, маски и шелкографии для технологии травления плат с фоторезистом и по технологии ЛУТ

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Светодиод состоит из нескольких частей:

  • анод, по которому подается положительная полуволна на кристалл;
  • катод, по которому подается отрицательная полуволна на кристалл;
  • отражатель;
  • кристалл полупроводника;
  • рассеиватель.

Эти элементы есть в любом светодиоде, вне зависимости от его модели.

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

  • ширина запрещенной зоны должна быть близка к энергии кванта света;
  • полупроводниковый кристалл должен иметь минимум дефектов.

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.

По типу исполнения выделяют:

    Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света. Dip светодиоды
  • Sp >
    • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам. Smd
  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров. Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий. Filament
  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
    • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.

    Светодиоды могут быть:

    • мигающими – используются для привлечения внимания;
    • многоцветными мигающими;
    • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
    • RGB;
    • монохромными.

    Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.

    Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).

    По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.

    Полярность светодиодов

    При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

    Полярность моно определить несколькими способами:

    • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
    • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
    • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
    • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

    Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

    Расчет сопротивления для светодиода

    Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.

    Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.

    Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.

    Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.

    Когда нужно использовать токоограничивающий резистор:

    • когда вопрос эффективности схемы не является основным – например, индикация;
    • лабораторные исследования.

    В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.

    Онлайн – сервисы и калькуляторы для расчета резистора:

    Правила проверки и пайки конденсаторов

    Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.

    Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).

    Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.

    Проверка ёмкости

    Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.

    Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.

    Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.

    Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.

    Проверка конденсатора цифровым мультиметром:

    Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.

    Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.

    Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.

    При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.

    Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.

    Проверка в плате

    Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.

    Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.

    При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).

    Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.

    Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.

    Меры предосторожности при измерении

    Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.

    • Обязательно проследите за тем, чтобы со схемы было полностью снято напряжение. Для этого тем же мультиметром, включённым в режим измерения напряжения, следует проверить отсутствие его во всех контрольных точках платы.
    • При измерении встроенных в схему «подозрительных» конденсаторов следует внимательно следить за тем, чтобы случайно не повредить включённые параллельно ему элементы.
    • И, наконец, паять дополнительно монтируемые в схему элементы нужно с предельной осторожностью, чтобы не повредить остальную её часть.

    Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.

    Как перепаивать конденсатор на «материнке»

    Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.

    Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.

    Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.

    Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.

    Последовательность действий такая:

    1. Вначале обесточивают компьютер, отключают не только сетевой кабель, но и другие питающие провода.
    2. Снимают крышку и отвинчивают материнскую плату.
    3. Осматривают плату и находят поврежденный элемент, изучают его параметры (на маркировке), покупают замену.
    4. Замечают, какая полярность подключения конденсатора была (можно сделать фото).
    5. С помощью паяльной станции или пальника выпаивают поврежденный конденсатор.
    6. Устанавливают и припаивают новый.

    После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.

    Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.

    Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.

    По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.

    Процесс пайки

    Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.

    Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.

    Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.

    Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.

    Как паять резисторы

    Для того чтобы запаять резистор в схему той же материнской платы или любого другого электронного изделия действуют точно так же, как в случае с конденсатором. Паять резисторы надо крайне осторожно, поскольку любое неаккуратное движение паяльником может повредить расположенные поблизости детали.

    Ознакомьтесь с версией для Vimeo здесь.

    Резюме

    Это действительно так просто! Следуйте простым правилам Дэйва, чтобы каждое паяное соединение было надежным.

    • Будьте осторожны при обращении с горячим утюгом
    • Во время пайки
    • удерживайте платы третьими руками или тисками.
    • Поставьте утюг на хороший средний огонь (325-375 градусов C)
    • Если вы видите дым от припоя, уменьшите нагрев
    • Лужите наконечник припоем перед каждым соединением, чтобы подготовить соединение
    • Используйте сторону наконечника (также известную как золотая середина), а не самый наконечник утюга
    • Нагрейте площадку и деталь, которую вы хотите припаять, равномерно и одновременно
    • Снимаем припой, затем утюг
    • Хороший паяный шов должен быть похож на вулкан или поцелуй Херси, а не на клубок или комок

    Мы также составили эту биграмму, чтобы помочь вам лучше понять, что делает хорошее паяное соединение.

    Щелкните, чтобы увеличить изображение.

    Когда вы закончите, залудите жало, чтобы продлить срок его службы, прежде чем выключать паяльник.


    Расширенные методы и устранение неполадок

    Расширенный PTH

    Когда вы освоите основы создания хороших паяных соединений, пора изучить некоторые из более продвинутых методов PTH, которые вы можете использовать. В этом видео рассматривается использование флюса, снятие перемычек припоя, демонтаж компонентов, а также некоторые другие советы и рекомендации.

    Вот еще несколько советов по пайке PTH:

    • Удаление припоя часто может быть лучшим способом научиться паять. Есть много причин для демонтажа детали: ремонт, модернизация, утилизация и т. Д. Многие методы, используемые в видео, помогают в процессе демонтажа.

    • Существует еще один метод удаления припоя из сквозных отверстий, который мы называем методом щелчка.

    • Если вы не уверены, что созданное паяное соединение обеспечивает электрическое соединение, вы можете использовать мультиметр для проверки целостности.

    Удерживание заголовков напротив платы

    Для тех, у кого есть ловкость, вы можете установить ряд заголовков, удерживая штифты напротив платы! Вы можете попробовать использовать ленту и липкую ленту, как упоминалось ранее. Ниже приведен пример установки женских заголовков на ProtoShield. Тем не менее, вы можете использовать штыревые разъемы или использовать эту технику для пайки разъемов на любой плате.

    Возьмите штабелируемый жаток с внутренней резьбой и сдвиньте его с верхней стороны щита.Рукой для пайки потяните головку указательным и большим пальцами к краю платы. Другой рукой прижмите заголовок указательным пальцем и возьмитесь за доску большим пальцем. Удерживайте заголовок средним пальцем. Старайтесь не прикасаться к контактам разъема в местах соприкосновения паяльника.

    Возьмите паяльник рукой и закрепите один из контактов. Повторите для каждого заголовка.Прикрепив по одному штырю к каждому заголовку, вы должны убедиться, что штифты прямые и перпендикулярны вашей доске. Если это не так, вы можете попытаться разогреть штифт жатки и отрегулировать выравнивание жатки.

    Если заголовки выровнены, вы можете припаять остальные штырьки на плате, чтобы завершить установку заголовков на плате!

    Продвинутый SMD

    Ищете другие советы и рекомендации, используя только свой паяльник? По словам Пита, ознакомьтесь с этими передовыми методами переделки SMD-компонентов.

    Очистка остатков флюса

    При работе с бессвинцовым припоем флюс имеет тенденцию попадать повсюду, будь то флюс в припое или внешний флюс, нанесенный пользователем. Определенные типы флюса могут со временем разъедать печатную плату и компоненты, поэтому полезно знать, как чистить печатные платы, чтобы на них не было остатков флюса. Это также может вызвать короткое замыкание между контактами из-за влажности воздуха и образования крошечных дендритов.Общие проблемы могут варьироваться от загрузки кода в Arduino с помощью преобразователя последовательного порта в USB до ошибок при отправке данных через I 2 C.

    Как они выглядят? Что ж, давайте посмотрим на изображения ниже. На изображении слева видны остатки водорастворимого флюса на паяных соединениях. Они могут проявляться в виде желтого или коричневого налета на паяных соединениях или вокруг них. На изображении справа нет чистого потока, который использовался на SparkFun Edge. Они могут казаться белыми на доске.Он непроводящий, поэтому его можно оставить на плате.

    Если у вас есть остатки водорастворимого флюса на плате, вы захотите удалить их с платы. Никакого чистого флюса, удалять его не нужно. Самый простой способ удалить водорастворимый флюс с доски — использовать маленькую щетку с жесткой щетиной (зубные щетки отлично подходят) или ватную палочку. Затем протрите паяное соединение горячей деионизированной водой, чтобы удалить водорастворимый флюс. Изопропиловый спирт можно использовать вместо воды. Если вам необходимо удалить с доски не подлежащий очистке флюс, лучше всего использовать изопропиловый спирт, а не воду.Имейте в виду, что вам нужно будет проверить документацию на свой припой, чтобы узнать о правильной методике очистки, поскольку для других типов флюсов может потребоваться ацетон.

    Удаление водорастворимого флюса с помощью кисти Удаление водорастворимого флюса с помощью ватной палочки Удаление чистого флюса с помощью ватной палочки

    Если вы паяете несколько плат, возможно, придется чистить их партиями.Для этого мы рекомендуем мультиварку, наполненную дистиллированной водой. Дистиллированная вода защищает ваш контур от других загрязнений и загрязнений. Ниже показано изображение очищаемых держателей батарей. Не все доски можно так окунуть в воду. Поэтому может потребоваться очистка паяных соединений вручную. Если наполнить мультиварку горячей деионизированной водой, процесс ускорится.

    Макать доски в мультиварке Очистка паяных соединений светодиодной ленты вручную

    Избегайте попадания датчиков воды или компонентов, которые могут удерживать воду.Некоторые компоненты чувствительны к воде, поэтому вам следует избегать погружения этих плат в воду и не допускать намокания этих компонентов. Вот краткий список компонентов, которым следует избегать контакта с водой. Если в них попадет вода и вы включите плату, это, вероятно, повредит компонент.

    • Символьные ЖК-дисплеи
    • 7-сегментные светодиодные дисплеи
    • Батареи
    • Модули GPS
    • Беспроводные модули
    • Датчики атмосферного давления
    • Потенциометры скользящие
    • Микрофоны
    • Динамики
    • ИС для монитора сердечного ритма

    Когда вы закончите чистку доски, удалите с нее лишнюю воду.Сжатый воздух творит чудеса, так что вам не нужно ждать, пока он испарится. Вы также можете сушить доску бумажными полотенцами, но при этом могут остаться ворсинки. Таким образом, для сушки доски лучше использовать салфетки с низким содержанием ворса. Если у вас есть термофен, вы также можете использовать его для нагрева доски. Только убедитесь, что на доске ничего не расплавлено.

    Сжатый воздух для сушки картона Салфетки с низким содержанием ворса для сушки доски

    Нет необходимости чистить плату на 100%, однако это значительно увеличит срок службы вашей схемы.Кроме того, данные, передаваемые через последовательный порт, будут надежными, когда плата чистая. Для получения дополнительной информации о чистке печатной платы щелкните ниже.

    Сборка электроники: мойка

    Проверка и устранение неисправностей паяных соединений

    После того, как вы закончите чистку, не стесняйтесь проверять свои паяные соединения с помощью мультиметра, установленного в режим непрерывности, как указано ранее. Это полезно, если вы столкнулись с проблемами и вам нужно проверить, правильно ли припаян штырь к плате. Для получения дополнительной информации ознакомьтесь с нашим руководством по использованию мультиметра.

    Ищете советы по устранению неполадок? Ознакомьтесь с контрольным списком оборудования в нашем руководстве для получения дополнительной информации!

    Ресурсы и дальнейшее развитие

    Мы только начали спускаться по кроличьей норе для пайки. После того, как вы освоите пайку PTH, вы можете попробовать свои силы в этих других навыках и учебных пособиях.

    Для получения дополнительной информации о пайке корончатых монтажных отверстий на контактных площадках ознакомьтесь с нашим руководством по пайке зубчатых отверстий.

    Как паять: зубчатые монтажные отверстия

    12 мая 2015

    Учебное пособие, показывающее, как паять зубчатые отверстия (или зубцы). Это может пригодиться, если вам нужно припаять модуль или печатную плату к другой печатной плате. Эти звенья становятся популярными благодаря встроенным модулям Wi-Fi и Bluetooth.

    Или ознакомьтесь со следующими руководствами, чтобы припаять компонент поверхностного монтажа (SMD) к коммутационной плате.

    Ищете другие руководства по пайке? Попробуйте взглянуть на любой учебник, посвященный пайке!

    Саймон говорит об экспериментах

    Итак, вы создали комплект Саймона Сэйса? Что дальше? Это руководство поможет вам начать работу с программным обеспечением Arduino, познакомит вас с несколькими примерами эскизов и отправит вас на путь создания собственного. Осторожно, это вызывает сильное привыкание. 🙂

    И, конечно же, какая инструкция по пайке без чего припаять.SparkFun продает множество наборов, которые отлично подходят для оттачивания ваших навыков пайки. Есть даже серия наборов «Научиться паять», в которых есть все инструменты, необходимые для начала работы.

    Комплект для пайки ночника

    На пенсии КОМПЛЕКТ-14638

    Night Light — это промежуточный комплект, который дает хорошие уроки тем, кто хочет расширить свои знания в области пайки…

    2 Пенсионер

    Звуковой комплект SparkFun SparkPunk

    На пенсии КОМПЛЕКТ-11177

    SparkFun SparkPunk Kit — это звуковой генератор, выполненный в духе Atari Punk Console.Вместо того, чтобы просто воссоздать t…

    6 Пенсионер

    Или просмотрите эти сообщения в блоге, связанные с пайкой и инструментами!

    Согласно Питу: Пайка точка-точка

    27 февраля 2017 г.

    2017 Rocky Mountain Invitational Solder-Off

    20 декабря 2017 г.

    Friday Product Post: Где припой? Припой там!

    30 марта 2018 г.

    3D-печать для пайки Helping Hands

    16 апреля 2018 г.

    Enginursday: В центре внимания поставщиков Weller Tools

    4 октября 2018 г.

    Технологии и искусство

    15 января 2019 г.,

    Крепление печатной платы для скрытой прокладки

    18 ноября 2019 г.,

    Работа на дому в электронике

    1 апреля 2020 г.

    Reflow Toaster Oven — взлом Qwiic!

    25 июня 2020 г.

    Контурная скульптура как новое хобби

    11 августа 2020 г.

    Пайка резисторов для поверхностного монтажа — Curious Inventor

    (и другие небольшие корпуса, такие как конденсаторы, MELF, DPAK, SOT и т. Д.)

    Основные шаги для пайки большинства этих компонентов: добавить флюс на плату, закрепить один контакт компонент, а затем припаяйте другую сторону.На рисунке ниже показаны эти шаги; более подробная информация приводится ниже.

    Основные этапы пайки микросхем для поверхностного монтажа (показан резистор 1206): залить флюсом плату, закрепить компонент и затем припаять другую сторону.

    Вкратце о корпусах: Резистивный элемент — это цветная сторона резистора, поэтому он должен быть направлен вверх для рассеивания тепла. 1206 относится к размерам его формы: 120 тысячных дюйма на 60 тысячных. 603 — это 60 × 30 тысячных и так далее.

      1. добавьте флюс на плату: Для более крупных компонентов, таких как резистор 1206, вам может не понадобиться флюс, если вы расплавляете припой с флюсовой сердцевиной непосредственно на контактной площадке. Однако для небольших микросхем часто лужение контактной площадки проволочным припоем приводит к слишком большому количеству припоя — все, что требуется, — это легкое прикосновение луженым наконечником. В этом случае необходим дополнительный флюс, потому что в припое на луженом наконечнике не останется активного флюса. Флюс становится активным и быстро расходуется на кончике горячего утюга.
      2. добавьте небольшое количество припоя на одну площадку: Опять же, припоя нужно совсем немного. Прикосновение к пэду луженым наконечником обеспечит все необходимое для стружки размером 603 и 402. Если вы подключаете DPAK или SOT (транзистор с малым контуром), сначала залудите самую большую площадку (обычно радиатор). Также можно использовать сначала меньший штырь, но у вас больше шансов разогреть все штифты, когда позже вы нагреете больший радиатор.

    Первая контактная площадка с добавленным припоем.

    1. закрепите одну сторону: Используя пинцет, слегка нажмите на резистор и коснитесь стыка между чипом и площадкой чистым железным наконечником. Вы должны почувствовать, как резистор встал на место. В идеале он должен лежать совершенно ровно, но это не является абсолютным требованием.

      Одна сторона резистора 1206 приклеена.

    2. Добавьте припой на другую сторону: Поверните плату и добавьте небольшое количество припоя на другую сторону. Для этого удерживайте наконечник так, чтобы он касался как компонента, так и контактной площадки, а затем слегка коснитесь его припоем.Иногда перед этим мне нравится добавлять больше флюса на вторую сторону, но если вы собираетесь плавить припой прямо с провода, в этом нет необходимости. Для корпусов меньшего размера сначала добавьте небольшую каплю припоя на конец чистого железного наконечника, а затем коснитесь наконечником компонента и контактной площадки. Это поможет избежать добавления большого количества припоя.

      Добавление небольшой капли припоя на конец чистого наконечника

    3. прикоснитесь к первой стороне: При необходимости добавьте еще припоя на первую сторону.
    4. готовый результат: Самое главное, чтобы припой выглядел так, как будто он прилип к металлу.Должен быть ровный желоб или пандус, соединяющий площадку и резистор. Большая капля припоя может подойти, но трудно сказать, сидит ли капля только на стыке или действительно приклеилась к металлу. Блеск сустава менее критичен. Бессвинцовый припой вообще не будет блестящим, а некоторые типы флюса в припое, содержащем свинец, приводят к более тупым соединениям, которые все еще остаются в отличном состоянии.

      Идеальное паяное соединение 1206

    Эти же шаги можно использовать для пайки практически любого корпуса с несколькими выводами.

    Другие ссылки и руководства:

    Step by Step Паяльные жала для печатных плат для новичков

    Традиционный, старый тип припоя представляет собой смесь свинца (Pb) и олова (Sn). Этот тип припоя (60/40 — Pb / Sn) плавится при 200 ° C и обычно состоит из 60 процентов олова и 40 процентов свинца. Однако сегодня желательно использовать бессвинцовый припой, чтобы избежать токсичной окружающей среды. Бессвинцовый припой — это более современный сплав, который по-прежнему содержит олово, но заменяет свинец нетоксичными металлами, такими как медь и серебро.Типичный бессвинцовый припой плавится при 220 ° C. Свинец ядовит при проглатывании, вдыхании или всасывании через кожу. Свинец может в конечном итоге вызвать повреждение мозга или смерть, поэтому используйте вентилятор для вентиляции рабочего места и мойте руки после работы с припоем на основе свинца.

    Рисунок 1: Пайка компонентов со сквозным отверстием на печатной плате. (Изображение: Эрик Арчер, CC BY-SA 2.0 через Wikimedia Commons.)

    Необходим приличный паяльник с контролем температуры . Убедитесь, что у выбранного вами утюга есть легко заменяемые наконечники.Если вы новичок в пайке, рекомендуется использовать термостойкий силиконовый кабель, чтобы он не расплавился при прикосновении к горячему утюгу. Кроме того, вам понадобится подставка для пайки, влажная губка для очистки паяльного жала и припой. Паяльная оплетка отводит излишки припоя в случае ошибки, а для «больших разливов припоя» есть ручной инструмент, называемый вакуумным насосом для удаления припоя или «присосой для припоя», который отсасывает излишки припоя.

    Новички в пайке могут также захотеть использовать радиатор, так как тепло, вызванное процессом пайки, может повредить некоторые компоненты.Радиаторы устраняют некоторые проблемы, вызванные избыточным теплом, предотвращая чрезмерное повышение температуры таких компонентов, как герконы, транзисторы и интегрированные микросхемы (ИС). Даже простой зажим из кожи аллигатора предпочтительнее, чем ничего, так как он легко ложится на бумажник и рассеивает тепло, поэтому вы можете дольше прикладывать тепло во время пайки и не повредить компоненты. Чтобы использовать зажим, прикрепите его к проводу, который находится между корпусом компонента и предполагаемым паяным соединением.

    Внутри припоя для электроники вы можете найти небольшую сердцевину из флюса, которая улучшает текучесть припоя, но также вызывает коррозию.Флюс также является химическим очищающим средством. [1] При плавлении припой очищает металлические поверхности. Припой может правильно стекать по чистой металлической поверхности (т. Е. Не окисляться). Если окисление является проблемой, перед пайкой вы можете взять мелкозернистую наждачную бумагу и аккуратно стереть окисленный материал, чтобы соединения, выполненные припоем, были надежными. Окисленные покрытия возникают естественным образом и могут создавать барьер между припоем и выводами или проводами, который может мешать потоку электронов, действуя как изолятор.Однако припой доступен не только для электроники. Сантехники используют его, чтобы «пропотеть» трубы и арматуру, а в витражах используется свинец, который проникает между кусками стекла, стыки которых необходимо спаять, чтобы скрепить стекла вместе. Припой для сантехники или витражей нельзя использовать для электроники.

    Рис. 3. Припой для электроники имеет канифольный флюсовый сердечник, который улучшает текучесть. Изображение: Кевин Хэдли (собственная работа) [CC-BY-SA-3.0], через Wikimedia Commons Обратите внимание, что для электроники припой подходящего размера имеет диаметр около 1 мм и канифольный стержень.Водопроводный припой имеет кислотный припой, а припой для витражей имеет твердый сердечник диаметром 1/8 дюйма (~ 3 мм). Однако не используйте ни один из них для электроники.

    Независимо от того, что вы паяете (сантехнику, витражи или электронику), не кладите паяльник ни на что, кроме подставки для паяльника. Можно сделать самодельную подставку, которая отталкивает наконечник от поверхностей, но паяльники могут вызвать серьезные ожоги, возгорание и появление токсичных паров горючих материалов.

    Препарат

    Для чистки кончика утюга можно использовать губку. Намочите губку на подставке для пайки и отожмите лишнюю воду, так как она должна быть влажной, а не насквозь мокрой. Если на вашей подставке нет губки, подойдет обычная губка из продуктового магазина. Не покупайте губку, пропитанную моющими средствами. Не покупайте губку типа «волшебный ластик» с мелкопористой поверхностью. Вам нужно немного трения, чтобы стереть мусор, образующийся при пайке.Натуральные губки приемлемы, но излишне дороги и не подходят для протирки жала паяльника. Губку некуда положить? Вы можете намочить дешевую губку, сложить ее пополам и положить в банку с кормом для тунца или кошки краями вверх. Наконечник припоя хорошо очистит эти края.

    Поместите паяльник на подставку и подождите от 30 секунд до нескольких минут (в зависимости от вашего паяльника), чтобы он нагрелся до 400 ° C. Ваш паяльник достаточно горячий, когда немного припоя быстро тает на жало, что вы должны сделать перед запуском.Когда припой начинает плавиться, легкое лужение наконечника припоем способствует хорошей теплоотдаче при начале пайки.

    Пайка компонентов под заказ

    Начните с какой-нибудь организации, разложив все свои компоненты и пометив их. Организация может сделать процесс менее напряженным. Многие компоненты имеют сквозное отверстие, что означает, что вы будете вставлять ножки компонентов через отверстие на печатной плате.

    Перед тем, как приступить к пайке микросхем или других компонентов, которые также чувствительны к разряду статического электричества, обязательно заземлите себя и наденьте заземленный браслет, предназначенный для предотвращения накопления статического разряда.Это похоже на ремень безопасности; никто не хочет этого делать, но это должно быть привычкой ради безопасности. Большинство микросхем никогда не демонстрируют повреждения, вызванные статическим разрядом сразу после этого. Тем не менее, характеристики микросхем, безусловно, могут ухудшиться намного быстрее, если они будут заблокированы изношенным, скользящим по ковру наполнителем для печатных плат. Если вы должны припаять микросхему без браслета, по крайней мере, заземлите себя перед работой с микросхемами. (То, что статический разряд может сделать с чипсами, очень похоже на то, что микробы могут сделать с людьми.Вы не можете этого видеть, но это может нанести ущерб.)

    Когда вы припаиваете компоненты к печатной плате, это помогает начать с пайки компонентов, которые в наименьшей степени подвержены тепловыделению. Начните с пайки разъемов IC (еще не добавляя чип в разъем). Далее припаиваем резисторы. Следующими будут конденсаторы, начиная с конденсаторов ниже 1 мкФ. Затем припаяйте любые колпачки на 1 мкФ или выше, которые, скорее всего, будут электролитическими (которые очень похожи на крошечную жестяную банку).

    Затем припаиваем диоды, светодиоды, затем транзисторы.Транзисторы более склонны к повреждению из-за чрезмерного нагрева, поэтому, чтобы быть осторожным, закрепите радиатор (зажим из крокодила) на ножке транзистора рядом, но не касаясь банки, если это возможно. Затем добавьте провода, перемычки и любые другие компоненты. Плата уже может быть захламлена, но вам нужно разместить свои ИС в последнюю очередь. Установите микросхему на место, затем плотно и равномерно надавите на нее. Обратите внимание, что некоторые микросхемы будут в антистатической упаковке из-за статической чувствительности, и вам следует оставлять их в упаковке до тех пор, пока они не понадобятся.

    В процессе пайки

    Держите паяльник за основание ручки, как карандаш, чтобы не обжечься наконечником. Паяльник должен контактировать с ножкой или выводом компонента и дорожкой на печатной плате. Затем подержите металлический наконечник на желаемом стыке / стыке на пару секунд и нанесите немного припоя на наконечник припоя, где он касается стыка. Припой должен плавиться и плавно течь. Используйте только столько припоя, чтобы образовалось крошечное соединение в форме вулкана.Затем удалите припой и утюг, оставив только что соединенные компоненты на несколько секунд, пока соединение не затвердеет. Стык должен быть конусообразным и блестящим. Если нет, повторно нагрейте и введите еще припой или средство для удаления припоя и попробуйте еще раз.

    Удаление припоя

    Если вы не являетесь хорошо испытанным роботом, вам нужно будет в какой-то момент удалить припой (отпаивать) стык. Будь то изменение положения, удаление или добавление компонента, есть два способа выполнить работу.

    Первый метод — использовать демонтажный насос с соплом электростатического разряда (ESD). Электростатический разряд защищает ИС, которые могут быть повреждены статическим электричеством. Для начала вы нажимаете подпружиненный поршень вниз до фиксации, настраивая насос. Затем приложите железный наконечник и сопло к стыку и подождите несколько секунд, пока припой не расплавится. Чтобы освободить плунжер и всосать расплавленный припой, просто нажмите кнопку на насосе для удаления припоя. Удалите как можно больше припоя и повторите при необходимости.Наконец, не забывайте время от времени опорожнять насос, откручивая насадку и выбрасывая маленькие деформированные шарики припоя в мусор. (Никогда, никогда не позволяйте детям или домашним животным есть красивые, блестящие маленькие шарики припоя.)

    Другой способ распайки стыка — это наложить припойную оплетку или фитиль. Устройство для снятия паяльной оплетки действует как фитиль для расплавленного припоя; она стекает из стыка на тесьму.

    Сначала приложите железный наконечник и конец медной оплетки к стыку.Затем, когда припой начнет плавиться, он потечет из стыка на оплетку. Затем просто снимаем оплетку и потом пайку. (Если оплетка будет последней, припой может быстро затвердеть и прилепить всю оплетку к стыку, который вы пытаетесь очистить.) Отрежьте и выбросьте покрытую припоем часть оплетки.

    В большинстве случаев вы сможете легко удалить провод или компонент после того, как он остынет. Если нет, снова примените паяльник, чтобы расплавить оставшийся припой, осторожно потянув за компонент, чтобы освободить его.(Постарайтесь не обжечься.)

    Микросхемы больше не большие, поэтому их легко паять

    К сожалению, большие микросхемы PDIP, которые были распространены десять или два года назад, сейчас очень трудно найти. Многие производители сейчас вообще не делают свои чипы в упаковке PDIP, так как большая часть пайки выполняется машинами для набивки печатных плат в больших объемах. Любая компания, которая до сих пор производит чип в корпусе, достаточно большом, чтобы его можно было легко припаять вручную, — это святая. Никто не зарабатывает деньги на больших упаковках, поскольку большая часть электроники должна быть как можно меньше, чтобы сэкономить деньги, особенно при больших тиражах.Тем не менее, не только любители должны создавать прототипы; Каждый продукт начинается с дюжины или около того прототипов, которые используются для тестирования и настройки в реальной жизни перед запуском в серийное производство.

    Примечание. В этой статье вкратце описаны наиболее важные аспекты сквозной пайки. Однако на YouTube и на многих других сайтах есть сотни учебных пособий, демонстрирующих искусство пайки в видеороликах, которые невозможно описать в одной статье. Одной из наиболее сложных задач пайки является пайка очень маленьких устройств с крошечными ножками / выводами / контактами, которые расположены очень близко друг к другу и находятся на поверхности печатной платы, а не через отверстия в печатной плате, такие как устройства для поверхностного монтажа (SMD).

    [1] https://en.wikipedia.org/wiki/Flux_ (металлургия)

    Руководство по пайке | Electronics Club

    Руководство по пайке | Клуб электроники

    Как паять | Радиатор | Компоненты | Припой | Демонтаж | Бернс

    Информацию о паяльниках и других инструментах см. На странице «Инструменты».

    Загрузите PDF-версию этой страницы: Руководство по пайке (PDF)


    Как припаять

    Сначала несколько мер предосторожности:

    Никогда не прикасайтесь к элементу или наконечнику паяльника. Они очень горячие (около 400 ° C) и могут вызвать неприятный ожог.

    Соблюдайте осторожность, чтобы не прикасаться кончиком утюга к сетевому шнуру. Утюг должен иметь термостойкий изгиб для дополнительной защиты. Обычный пластик flex сразу же расплавится, если к нему прикоснуться горячим утюгом, и возникнет серьезный опасность ожога и поражения электрическим током.

    Всегда возвращайте паяльник на подставку, когда он не используется. Никогда не кладите его на рабочий стол, даже на мгновение!

    Работайте в хорошо вентилируемом помещении. Дым, образующийся при плавлении припоя, в основном возникает из-за флюса и весьма раздражает. Не дышите им, держите голову сбоку от работы, а не над ней.

    Вымойте руки после использования припоя. Традиционный припой содержит свинец, который является ядовитым металлом.

    Если вы обожжетесь, см. «Первая помощь при ожогах».

    Настоятельно рекомендую использовать паяльник с термостойким силиконовым кабелем в целях безопасности, потому что он не расплавится при случайном прикосновении к горячему утюгу.

    Например, паяльник 230 В от Rapid Electronics: паяльник

    Подготовка паяльника:

    Поместите паяльник в подставку и подключите. Утюгу потребуется несколько минут, чтобы достичь своей рабочей температуры около 400 ° C.

    Смочите губку в подставке. Лучший способ сделать это — приподнять подставку и подержать под струей холодной воды в течение на мгновение, затем нажмите, чтобы удалить лишнюю воду. Он должен быть влажным, а не мокрым.

    Подождите несколько минут, чтобы паяльник нагрелся. Вы можете проверить, готов ли он, попытавшись расплавить немного припоя на наконечнике.

    Протрите кончик утюга влажной губкой. Это очистит наконечник.

    Расплавьте немного припоя на кончике утюга. Это называется лужением, и оно помогает теплу отводиться от кончика утюга. к суставу. Это нужно делать только тогда, когда вы подключаете утюг, и иногда во время пайки, если вам нужно протереть наконечник о губку.

    Теперь вы готовы приступить к пайке:

    Держите паяльник как ручку у основания ручки (представьте, что вы собираетесь написать свое имя). Не прикасайтесь к горячему элементу или наконечнику.

    Коснитесь паяльником соединяемого соединения. Убедитесь, что он касается как вывода компонента, так и дорожки. Держи кончик там на несколько секунд и …

    Нанесите немного припоя на соединение. Он должен плавно перетекать на свинец и гусеницу, чтобы сформировать форму вулкана, как показано на рисунке. на диаграмме.Наносите припой на соединение, а не на железо.

    Удалите припой, затем утюг, сохраняя соединение неподвижным. Прежде чем перемещать монтажную плату, подождите несколько секунд, пока соединение остынет.

    Внимательно осмотрите соединение. Он должен выглядеть блестящим и иметь форму вулкана. Если нет, вам нужно будет разогреть его. и подайте еще немного припоя. На этот раз убедитесь, что и ведут и отслеживают полностью нагреваются перед нанесением припоя.

    Если вы получили ожог, см. Раздел «Первая помощь при ожогах» ниже.


    Использование радиатора

    Некоторые компоненты, такие как транзисторы, могут быть повреждены нагревом при пайке, поэтому, если вы не специалист, разумно использовать радиатор, закрепленный на проводе между стыком и тело компонента. Можно купить специальный инструмент, но стандартный зажим «крокодил» (без пластиковой крышки). работает так же хорошо и дешевле.

    Радиатор работает, забирая часть тепла от паяльника и этого помогает предотвратить чрезмерное повышение температуры компонента.

    Rapid Electronics: зажим «крокодил»



    Рекомендации по пайке компонентов

    Очень заманчиво сразу приступить к пайке компонентов на печатной плате, но сначала найдите время, чтобы определить все детали. Наклеивая их на лист макулатуры и маркировка каждого из них имеет смысл, и вы с меньшей вероятностью сделаете ошибку, если сделаете это.

    Некоторые ИС чувствительны к статическому электричеству и будут поставляться в антистатической упаковке — оставьте эти микросхемы в упаковке до тех пор, пока они вам не понадобятся, затем заземлите руки, прикоснувшись к металлическому водопроводную трубу или оконную раму перед работой с ИС.

    1. Наклейте компоненты на бумагу с помощью липкой ленты.
    2. Определите каждый компонент и напишите рядом с ним его имя или значение.
    3. При необходимости добавьте метки (R1, R2, C1 и т. Д.), Используемые на схеме проекта.
    4. Значения резистора
    5. можно найти с помощью цветового кода. объяснено на странице резисторов. Вы можете сделать свой собственный калькулятор цветового кода.
    6. Значения конденсатора могут быть немного сложнее, различные системы маркировки объяснено на странице конденсаторов.

    Некоторые компоненты требуют особого ухода при пайке.

    Многие должны быть размещены правильно, а некоторые могут быть легко повреждены теплом от пайки.

    В таблице приведены рекомендации по различным компонентам и предлагаемый порядок их установки. на борту. Как правило, лучше начинать с мельчайших деталей, но не для стрип-картона. Полезно начать с держателя (ов) ИС в качестве ориентира для других деталей.

    Перемычки проволочные

    Соединения проводов между точками на плате могут быть выполнены с помощью одножильного провода с пластиковым покрытием, который необходимо зачистить, или луженую медную проволоку, если звено не будет касаться других частей.Луженая медная проволока выглядит как припой, но вы можете Почувствуйте разницу, он жестче припоя (и не плавится).

    Провода к частям вне платы должны быть гибкими, поэтому используйте для них многожильный провод с пластиковым покрытием, популярным типом является проволока 7 / 0,2 мм (7 жил проволоки диаметром 0,2 мм). Одножильный провод непригоден, потому что он ломается при многократном сгибании.

    Rapid Electronics: набор проводов 7 / 0,2 мм

    Пайка компонентов
    Установите компоненты на плату в следующем порядке:
    1.Держатели микросхем
    Подключите правильно — выемка напомнит вам, в какую сторону разместить ИС. Пока НЕ ​​вставляйте микросхемы.
    2. Резисторы
    Подключите в любом направлении.
    3. Конденсаторы малой емкости
    Конденсаторы малой емкости (<1 мкФ) не поляризованы. Подключите в любом случае.
    4. Электролитические конденсаторы (1 мкФ +)
    Подключите правильным образом, поищите плюс или минус рядом с одним проводом.Они могут быть радиального типа (оба вывода на одном конце) или осевого типа (выводы на каждом конце).
    5. Диоды
    Подключите правильно. Полоса отмечает катод (линия на символе), обычно обозначаемый буквой k на диаграммах.
    Для германиевых диодов используйте радиатор.
    6. Светодиоды
    Подключите правильно, катод — это короткий провод. На диаграмме будет отображаться знак «+» для анода, «k» или «-» для катода.
    7.Транзисторы У транзисторов
    есть 3 «ножки» (вывода), поэтому будьте особенно внимательны, чтобы правильно их подключить. Они могут быть повреждены нагреванием, используйте радиатор, пока не сможете быстро паять.
    8. Связи проводов
    Связи между точками на плате могут быть выполнены одножильным проводом с пластиковым покрытием, или луженую медную проволоку, если звено не будет касаться других частей.
    9. Детали с собственными проводами
    Зажимы аккумулятора, зуммеры и т. Д. При необходимости подключите правильным образом.
    10. Провода к частям вне платы
    Используйте многожильный провод для переключателей, реле, громкоговорители, переменные резисторы и т. д.
    11. Микросхемы (микросхемы)
    Подключите правильно, найдите выемку или точку рядом с контактом 1. Убедитесь, что все штифты совпадают с гнездом, прежде чем сильно надавить на него большим пальцем.

    Что такое припой?

    Традиционный припой представляет собой сплав (смесь) олова и свинца, обычно 60% олова и 40% свинца.Плавится при температуре около 200 ° C.

    Современный бессвинцовый припой представляет собой сплав олова с другими металлами, включая медь и серебро. Плавится при температуре около 220 ° C.

    Покрытие поверхности припоем называется «лужением» из-за содержания в припое олова.

    Фотография © Rapid Electronics

    Всегда мойте руки после использования припоя , это особенно важно при использовании традиционных припой, поскольку он содержит токсичный свинец.

    Наилучший размер припоя для электроники — 22 swg (swg = стандартный калибр проводов) и Я рекомендую использовать бессвинцовый припой.

    Rapid Electronics: бессвинцовый припой

    Припой для электроники содержит крошечные сердечники из флюса, похожие на провода внутри гибкого кабеля. Флюс вызывает коррозию, как кислота, и очищает металлические поверхности по мере плавления припоя. Вот почему вы должны плавить припой непосредственно на стыке, а не на наконечнике железа. Без флюс выйдет из строя, потому что металлы быстро окисляются, а сам припой не должным образом стечь на грязную окисленную металлическую поверхность.



    Удаление припоя

    На каком-то этапе вам, вероятно, потребуется распаять соединение, чтобы удалить или переместить провод или компонент. Удалить припой можно двумя способами:

    1. С демонтажным насосом

    Также известен как «присоска для припоя». Лучше всего использовать один с ESD (электростатический разряд). насадка для защиты некоторых микросхем, которые могут быть повреждены статическим электричеством.

    1. Настройте насос, нажав на подпружиненный поршень вниз до фиксации.
    2. Приложите к стыку сопло насоса и наконечник паяльника.
    3. Подождите секунду или две, чтобы припой расплавился.
    4. Затем нажмите кнопку на насосе, чтобы освободить поршень и всосать расплавленный припой в инструмент.
    5. Повторите, если необходимо, чтобы удалить как можно больше припоя.
    6. Время от времени необходимо опорожнять насос, открутив форсунку.

    Rapid Electronics: насос для удаления припоя

    С помощью демонтажного насоса (присоски для припоя)

    2.С оплеткой для удаления припоя

    Медная оплетка действует как фитиль для расплавленного припоя, который легко течет на оплетку вдали от стыка.

    1. Приложите конец медной оплетки и наконечник паяльника к стыку.
    2. По мере плавления припоя большая часть его будет стекать на оплетку в сторону от стыка.
    3. Снимите сначала оплетку, затем паяльник.
    4. Отрежьте и выбросьте конец оплетки, покрытой припоем.

    Rapid Electronics: оплетка для удаления припоя

    После удаления большей части припоя из стыка (-ов) вы можете удалить провод или компонентный провод (подождите несколько секунд, чтобы он остыл).Если соединение не разваливается, легко примените паяльник, чтобы расплавить оставшиеся следы припоя одновременно с разъединением стыка, снятием осторожность, чтобы не обжечься.


    Первая помощь при ожогах

    Большинство ожогов от пайки, вероятно, будут незначительными, и лечение простое:

    1. Немедленно охладите пораженный участок под слабой струей холодной воды.
      Подержите ожог в холодной воде не менее 5 минут (рекомендуется 15 минут).Если лед легко доступен, это тоже может быть полезно, но не откладывайте первый охлаждение холодной водой.
    2. Не применять кремы или мази.
      Ожог лучше заживет без них. Сухая повязка, например, чистый носовой платок, может применяться, если вы хотите защитить участок от грязи.
    3. Обратитесь за медицинской помощью, если ожог охватывает область больше, чем ваша рука.

    Для снижения риска ожогов:

    • Всегда возвращайте паяльник на подставку сразу после использования.
    • Дайте соединениям и компонентам примерно минуту остыть, прежде чем прикасаться к ним.
    • Никогда не прикасайтесь к элементу или наконечнику паяльника, если не уверены, что он холодный.

    Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад рекомендую их как поставщика.


    Политика конфиденциальности и файлы cookie

    Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

    electronicsclub.info © Джон Хьюс 2021 г.

    Направляющая для пайки

    Направляющая для пайки

    Главная | Карта | Проекты | Строительство | Пайка | Исследование | Компоненты | 555 | Символы | FAQ | Ссылки
    Как паять | Консультации по компонентам | Что такое припой? | Демонтаж | Бернс

    Информацию о паяльниках и других инструментах см. Инструменты Требуемая страница.

    Скачать PDF-версию этой страницы

    Как припаять

    Сначала несколько мер предосторожности:
    • Никогда не прикасайтесь к элементу или наконечнику паяльника.
      Они очень горячие (около 400 ° C) и могут вызвать неприятный ожог.
    • Соблюдайте осторожность, чтобы не прикасаться кончиком утюга к сетевому шнуру.
      Утюг должен иметь термостойкую пластину для дополнительной защиты.Обычный пластик flex сразу же расплавится, если к нему прикоснуться горячим утюгом, и возникнет серьезный опасность ожога и поражения электрическим током.
    • Всегда возвращайте паяльник на подставку, когда он не используется.
      Ни на мгновение не кладите его на рабочий стол!
    • Работайте в хорошо вентилируемом помещении.
      Дым, образующийся при плавлении припоя, в основном вызван флюсом и вызывает сильное раздражение. Не дышите им, держите голову сбоку от работы, а не над ней.
    • Вымойте руки после использования припоя.
      Припой содержит свинец, который является ядовитым металлом.
    Если вам не повезло (или по неосторожности!) Вы можете обжечься, пожалуйста, прочтите Секция первой помощи.
    Подготовка паяльника:
    • Установите паяльник на подставку и подключите его.
      Утюгу потребуется несколько минут, чтобы достичь своей рабочей температуры около 400 ° C.
    • Смочите губку в подставке.
      Наилучший способ сделать это — приподнять подставку и подержать под струей холодной воды в течение на мгновение, затем нажмите, чтобы удалить лишнюю воду. Он должен быть влажным, а не мокрым.
    • Подождите несколько минут, чтобы паяльник нагрелся.
      Вы можете проверить, готов ли он, попытавшись расплавить немного припоя на наконечнике.
    • Протрите кончик утюга влажной губкой.
      Это очистит наконечник.
    • Расплавьте немного припоя на кончике утюга.
      Это называется «лужение», и оно помогает теплу отводиться от кончика утюга. к суставу. Это нужно делать только тогда, когда вы подключаете утюг, и иногда во время пайки, если вам нужно протереть наконечник о губку.
    Теперь вы готовы приступить к пайке:
    • Держите паяльник как ручку рядом с основанием ручки.
      Представьте, что вы собираетесь написать свое имя! Не прикасайтесь к горячему элементу или наконечнику.
    • Коснитесь паяльником соединяемого соединения.
      Убедитесь, что он касается как вывода компонента, так и гусеницы. Держи кончик там на несколько секунд и …
    • Нанесите немного припоя на соединение.
      Он должен плавно течь на свинец и гусеницу, чтобы сформировать форму вулкана, как показано на рисунке. на диаграмме. Наносите припой на соединение, а не на железо.
    • Удалите припой, затем утюг, сохраняя соединение неподвижным.
      Дайте стыку остыть в течение нескольких секунд, прежде чем перемещать печатную плату.
    • Внимательно осмотрите соединение.
      Он должен выглядеть блестящим и иметь форму «вулкана». Если нет, вам нужно будет разогреть его. и подайте еще немного припоя. На этот раз убедитесь, что и ведут впереди и следят за ними. полностью нагреваются перед нанесением припоя.
    Если вам не повезло (или по неосторожности!) Вы можете обжечься, пожалуйста, прочтите Секция первой помощи.
    Использование радиатора
    Некоторые компоненты, такие как транзисторы, могут быть повреждены нагревом при пайке, поэтому, если вы не специалист, разумно использовать радиатор, закрепленный на проводе между стыком и тело компонента. Можно купить специальный инструмент, но стандартный зажим «крокодил» работает так же, как ну и дешевле.
    Дополнительная информация
    Более подробное руководство по пайке, включая поиск и устранение неисправностей, см. В Базовое руководство по пайке на сайте журнала Everyday Practical Electronics Magazine.

    Вверх страницы | Как паять | Консультации по компонентам | Что такое припой? | Демонтаж | Первая медицинская помощь


    Рекомендации по пайке компонентов

    Очень заманчиво приступить к пайке компонентов на печатной плате прямо прочь, но сначала найдите время, чтобы определить все детали. Если вы сделаете это, у вас гораздо меньше шансов совершить ошибку!
    1. Наклейте все компоненты на лист бумаги с помощью липкой ленты.
    2. Определите каждый компонент и напишите его имя или значение рядом с ним.
    3. При необходимости добавьте код (R1, R2, C1 и т. Д.).
      Многие проекты из книг и журналов маркируют компоненты кодами. (R1, R2, C1, D1 и т. Д.), И вы должны использовать список частей проекта, чтобы найти эти коды, если они есть.
    4. Значения резистора можно найти с помощью цветового кода резистора который объясняется на нашей странице резисторов.Вы можете распечатать и сделать свой собственный калькулятор цветовой кодировки резистора. чтобы помочь вам.
    5. Значения конденсатора может быть трудно найти, потому что есть много типов с разными системами маркировки! Различные системы объяснено на нашей странице конденсаторов.
    Некоторые компоненты требуют особого ухода при пайке. Многие должны быть помещены правильное расположение, и некоторые из них легко повредить тепло от пайки. Соответствующие предупреждения приведены в таблице ниже вместе с другими советами. что может пригодиться при пайке.

    Для получения дополнительной информации о конкретных компонентах см. Страница «Компоненты» или щелкните имя компонента в таблице.

    Для большинства проектов лучше всего размещать компоненты на плате в порядке, указанном ниже:

    Компоненты Изображения Напоминания и предупреждения
    1 Держатели чипов
    (гнезда DIL)
    Правильное подключение убедившись, что выемка находится на правильном конце.
    Пока НЕ ​​вставляйте микросхемы (чипы).
    2 Резисторы Никаких особых мер предосторожности с резисторами не требуется.
    3 Конденсаторы малой емкости
    (обычно менее 1 мкФ)
    Они могут быть подключены любым способом.
    Будьте осторожны с конденсаторами из полистирола, потому что они легко повреждается нагреванием.
    4 Электролитические конденсаторы
    (1 мкФ и больше)
    Подключите правильно. Они будут отмечены знаком + или — рядом с одним отведением.
    5 Диоды Подключите правильно.
    Будьте осторожны с германиевыми диодами (например.грамм. OA91), потому что они легко повреждается нагреванием.
    6 Светодиоды Подключите правильно.
    Схема может быть обозначена a или + для анода и k или для катода; да, для катода действительно k, а не c! Катод — это короткий вывод, и быть небольшой плоской на корпусе круглых светодиодов.
    7 Транзисторы Подключите правильно. Транзисторы
    имеют 3 ножки (вывода), поэтому требуется дополнительная осторожность, чтобы соединения правильные.
    Легко повреждается жарой.
    8 Провод Связывает между точками на печатной плате. одножильный провод Используйте одножильный провод, это цельный провод с пластиковым покрытием.
    Если нет опасности прикоснуться к другим частям, можно использовать луженую медную проволоку, он не имеет пластикового покрытия и выглядит как припой, но более жесткий.
    9 Зажимы аккумулятора , зуммеры и другие детали с собственными проводами Подключите правильно.
    10 Провода к частям от печатной платы, включая переключатели , реле , переменные резисторы и громкоговорители . многожильный провод Следует использовать гибкий многожильный провод с пластиковым покрытием.
    Не используйте одножильный провод, потому что он сломается при неоднократно сгибались.
    11 ИС (микросхемы) Подключите правильно.
    Многие ИС чувствительны к статическому электричеству.
    Оставьте микросхемы в антистатической упаковке до тех пор, пока они вам не понадобятся, а затем заземлите руки. прикоснувшись к металлической водопроводной трубе или оконной раме, прежде чем прикасаться к ИС.
    Осторожно вставьте микросхемы в держатели : убедитесь, что все контакты совпадают с затем сильно надавите на гнездо большим пальцем.

    Вверх страницы | Как паять | Консультации по компонентам | Что такое припой? | Демонтаж | Первая медицинская помощь


    Что такое припой?

    Припой представляет собой сплав (смесь) олова и свинца, обычно 60% олова и 40% свинца.Плавится при температуре около 200 ° C. Покрытие поверхности припоем называется «лужением» из-за содержания в припое олова. Свинец ядовит, поэтому после использования припоя всегда следует мыть руки.

    Припой для использования в электронике содержит крошечные сердечники из флюса, как провода внутри гибкого кабеля. Флюс вызывает коррозию, как кислота, и очищает металлические поверхности по мере плавления припоя. Вот почему вы должны плавить припой непосредственно на стыке, а не на наконечнике железа.Без флюс выйдет из строя, потому что металлы быстро окисляются, а сам припой не должным образом стечь на грязную окисленную металлическую поверхность.

    Наилучший размер припоя для электроники — 22swg (swg = стандартный калибр проводов).

    Вверх страницы | Как паять | Консультации по компонентам | Что такое припой? | Демонтаж | Первая медицинская помощь


    Удаление припоя

    На каком-то этапе вам, вероятно, потребуется распаять соединение, чтобы удалить или переместить провод или компонент.Удалить припой можно двумя способами:
    С помощью демонтажного насоса (присоски для припоя)
    1. С помощью демонтажного насоса (присоски для припоя)
    • Настройте насос, нажав на подпружиненный плунжер вниз до его фиксации.
    • Приложите сопло насоса и наконечник паяльника к стыку.
    • Подождите секунду или две, пока припой расплавится.
    • Затем нажмите кнопку на насосе, чтобы освободить поршень и всосать расплавленный припой в инструмент.
    • Повторите, если необходимо, чтобы удалить как можно больше припоя.
    • Время от времени потребуется опорожнение насоса путем откручивания форсунки.

    2. С фитилем для удаления припоя (медная оплетка)
    • Приложите конец фитиля и кончик паяльника к стыку.
    • По мере таяния припоя большая часть его будет стекать на фитиль в сторону от стыка.
    • Снимите сначала фитиль, затем паяльник.
    • Отрежьте и выбросьте конец фитиля, покрытый припоем.

    После удаления большей части припоя из стыка (-ов) вы сможете удалить провод или компонентный провод (подождите несколько секунд, чтобы он остыл). Если соединение не разваливается, легко примените паяльник, чтобы расплавить оставшиеся следы припоя одновременно с разъединением стыка, снятием осторожность, чтобы не обжечься.

    Вверх страницы | Как паять | Консультации по компонентам | Что такое припой? | Демонтаж | Первая медицинская помощь


    Первая помощь при ожогах

    В большинстве случаев ожоги от пайки незначительны, и их лечение несложно:
    • Немедленно охладите пораженный участок под слабой струей холодной воды.
      Подержите ожог в холодной воде не менее 5 минут (рекомендуется 15 минут). Если лед легко доступен, это тоже может быть полезно, но не откладывайте первый охлаждение холодной водой.
    • Не применять кремы или мази.
      Ожог лучше заживет без них. Сухая повязка, например, чистый носовой платок, может применяться, если вы хотите защитить участок от грязи.
    • Обратитесь за медицинской помощью, если ожог охватывает область больше, чем ваша рука.
    Чтобы снизить риск ожогов:
    • Всегда возвращайте паяльник на подставку сразу после использования.
    • Дайте соединениям и компонентам примерно минуту остыть, прежде чем прикасаться к ним.
    • Никогда не прикасайтесь к элементу или наконечнику паяльника, если не уверены, что он холодный.

    Вверх страницы | Как паять | Консультации по компонентам | Что такое припой? | Демонтаж | Первая медицинская помощь



    © Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
    Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker. Это сообщение не появляется на лицензированной копии WebWhacker.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *