Генератор из электродвигателя
Трехфазные асинхронные электродвигатели – агрегаты, применяемые в промышленности, сельском хозяйстве для привода различных механизмов. Применяя специальную схему включения, такой электродвигатель можно использовать в качестве генератора.
Как использовать электродвигатель в качестве генератора
- По стандартной схеме подключения асинхронного электродвигателя в качестве генератора номинальное напряжение и мощность электромотора равны напряжению и мощности двигателя. По формуле определяют реактивную мощность.
- Индуктивная нагрузка на электродвигатель, снижающая коэффициент мощности, сразу же вызывает увеличение нужной емкости. Чтобы поддерживать напряжение в номинальной величине, следует значительно увеличить емкость конденсаторов, подключив дополнительные конденсаторы.
- Частота вращения такого асинхронного генератора в номинальном режиме превышает величину скольжения на 10 процентов, и соответствуют синхронной частоте электродвигателя.
- Наиболее опасны сниженные генерируемые частоты для индуктивных сопротивлений обмоток электрических двигателей, трансформаторов, так как могут привести к повышенному нагреву и выходу агрегатов из строя.
- Генератор из электродвигателя можно сделать, используя асинхронный короткозамкнутый мотор существующей мощности без особых переделок. При этом мощность генератора определяют общей мощностью устройств, которые будут к нему подключены.
- Данный способ является далеко не единственным. В настоящее время есть масса других способов, которые отлично используются на практике. Один из них – батарею конденсатора подключают к одной или же двум обмоткам электромотора-генератора.
Двухфазный режим работы генератора из электродвигателя
Когда нет необходимости получить трехфазное напряжение, можно ограничиться двухфазным и подключить электродвигатель в качестве генератора по другой схеме. Следует отметить, двухфазный режим значительно уменьшает емкость используемых конденсаторов и существенно снижает нагрузку на подключаемые механизмы, позволяя экономить топливо.
Просмотров: 1668
Дата: Воскресенье, 15 Декабрь 2013
Генератор из асинхронного двигателя своими руками
Самодельный генератор на 220V из асинхронного двигателя и мотоблока, фото и описание изготовления самоделки своими руками.
Автор этой самоделки Олег Мошняга, решил сделать генератор из асинхронного электродвигателя и мотоблока. Для этого автор, изготовил основание площадку на раме мотоблока и закрепил на ней электродвигатель мощностью 2.2 кВт.
Небольшое уточнение: ротор, асинхронного двигателя, имеет остаточный магнетизм, который, при вращении этого ротора другим двигателем, значительно улавливается обмотками статора.
Чтобы асинхронный двигатель работал в режиме генератора, нужно к обмоткам подключить конденсаторы в соотношении 80 Мкф на 5 Квт мощности асинхронника. Это будет система возбуждения реактивной энергией.
На рисунке показана схема подключения асинхронного двигателя в режиме генератора.
Обмотки электродвигателя подключил соединением по типу «звезда», также между фазами подключил конденсаторы по 60 мкф на каждую фазу.
На мотоблоке установлен ДВС мощностью 7 л.с.
На шкивы двигателей, одел клиновидный ремень, также поставил натяжной ролик для ремня.
Вот так выглядит конструкция генератора из асинхронного двигателя и мотоблока.
Испытания самоделки прошли удачно, подключенные к генератору, болгарка и дрель, работают. Правда сварочный аппарат такой генератор не тянет, но и такой результат вполне хорош, генератор можно использовать для работы электроинструментов. Автор не покупал готовый бензогенератор, а решил изготовить его из того, что у него уже было, поэтому ничего покупать не пришлось.
Более подробно о своей самоделке, автор рассказывает в этом видео:
Асинхронный электродвигатель в качестве генератора для ветряка
Бытовой ветрогенератор – простой и экологически безопасный способ получения энергии. Промышленные ветряки обладают большой мощностью и сложными системами управления для накапливания энергии или передачи ее в сеть. Однако конструктивно ветрогенератор от этого не изменяется: в каждом ветрогенераторе есть лопасти, электрический генератор и мачта. Поэтому собрать бытовой ветрогенератор для установки на приусадебном участке сможет практически любой человек, обладающий минимальным набором инструментов и познаний в области электричества.Горизонтальный ветрогенератор: типы, основные особенности
Роторный ветрогенератор своими руками: материалы, особенности сборки и установки
В качестве лопастей для ветрогенератора можно использовать деревянные или пластиковые лопасти, которые также можно изготовить самостоятельно. Мачту ветрогенератора проще всего сделать из металлического уголка или трубы, скрепив все элементы конструкции между собой сваркой. Генератором для ветряка может послужить простой асинхронный двигатель с короткозамкнутым ротором (в соответствующем влагозащищенном исполнении для установки на улице) – самый распространенный тип электродвигателей.
Мачта для ветрогенератора: конструкция, установка и эксплуатация
Самодельный ветряк за 150$
По сравнению с остальными электродвигателями постоянного или переменного тока, асинхронные обладают важной характеристикой — отсутствием щеточного механизма. Поэтому конструкция асинхронного электродвигателя очень проста – обмотка статора неподвижна и закреплена на корпусе электродвигателя, ротор – короткозамкнутый. Выходные параметры (напряжение и частота) электродвигателя при подключении ветрогенератора к сети никаких отрицательных влияний на бытовую технику не окажут.
Однако для использования асинхронного электродвигателя с короткозамкнутым ротором в бытовом ветрогенераторе необходимо его немного модернизировать, заменив короткозамкнутый ротор на ротор с постоянными магнитами. Для этого ротор электродвигателя протачивается на токарном станке на толщину магнитов. В качестве магнитов применяем достаточно сильные магниты размером 7,6х6 мм в количестве 160 штук. Перед наклейкой магнитов размечаем ротор на четыре полюса (для четырехполюсного электродвигателя), и со скосом располагаем на нем магниты. Каждый магнитный полюс чередуется. После размещения на роторе магниты фиксируются скотчем и заливаются эпоксидной смолой.
В некоторых случаях, помимо изменения ротора электродвигателя, перематывают статор более толстым проводом, чтобы уменьшить напряжение и поднять силу тока.
Проверить работу генератора лучше всего еще до его установки на мачте. Для этого к валу электродвигателя присоединяем дрель, а к выходным клемма – нагрузку (мощную лампочку, кипятильник) и измерительные приборы (мультиметр или вольтметр с амперметром).
Генератор для ветряка из асинхронного двигателя
В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.> Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор.
>
> Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно «север», второй полюс «юг». Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.
После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой.
>
После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.
>
В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.
Далее дошла очередь до винта. Лопасти для ветрогенератора были вырезаны из ПВХ трубы диаметром160мм. Ниже на фото сам винт диаметром 1,7 м., и расчетные данные, по которым делались лопасти.
>
После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.
>
Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.
>
Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку .
Пока к сожалению никаких подробных данных по мощности ветрогенератора нет, так-как пользователь разместивший свой ветрогенератор вот здесь Фотоальбом ветряки ВК. не оставил эти данных. Но руководствуясь расчетами попробую немного просчитать что все-таки дает генератор на ветру 8-9 м/с, так-как напряжение холостого хода 80 вольт на этом ветре.
Данные на шиндике электродвигателя говорили 220/380 вольт 6,2/3,6 А.значит сопротивление генератора 35,4Ом треугольник/105,5 Ом звезда. Если он заряжал 12-ти вольтовый аккумулятор по схеме включения фаз генератора в треугольник, что скорее всего, то 80-12/35,4=1,9А. Получается при ветре 8-9 м/с ток зарядки был примерно 1,9 А, а это всего 23 ватт/ч, да немного, но может я где-то ошибся, если что поправьте в комментариях и я исправлю.
Такие большие потери из-за высокого сопротивления генератора, поэтому статор обычно перематывают более толстым проводом чтобы уменьшить сопротивление генератора, которое влияет на силу тока, и чем выше сопротивление обмотки генератора, тем меньше сила тока и выше напряжение.
Некоторые данные по ветрогенератору. Автор данного ветрогенератора Сергей написал что ток короткого замыкания 3,5А..При ветре 5-7м,с ,75в холостого хода,с нагрузкой надва АКБ,это 24в,2,5А и при этом на контролере срабатывал постоянно баласт..Это показания на 14.09.13г..А так получилось всё отлично..
Самодельный генератор
Уют и комфорт в современном жилье во многом зависит от стабильного обеспечения электрической энергией. Бесперебойное электроснабжение достигается различными способами, среди которых считается достаточно эффективным самодельный генератор асинхронного типа, изготавливаемый в домашних условиях. Качественно изготовленное устройство позволяет решить множество бытовых проблем, начиная от выработки переменного тока и заканчивая обеспечением питания инверторных сварочных аппаратов.
Принцип действия электрогенератора
Генераторы асинхронного типа являются устройствами переменного тока, способными вырабатывать электрическую энергию. Принцип действия этих аппаратов аналогичен работе асинхронных двигателей, поэтому они имеют другое название – индукционные электрогенераторы. По сравнению с синхронными генераторами в этих агрегатах намного быстрее поворачивается ротор, соответственно, скорость вращения становится более высокой. В качестве генератора можно использовать обыкновенный асинхронный двигатель переменного тока, которому не требуются какие-либо преобразования схемы или дополнительные настройки.
Включение однофазного асинхронного генератора осуществляется под действием входящего напряжения, для чего требуется подключение устройства к источнику питания. В некоторых моделях используются конденсаторы, подключаемые последовательно, обеспечивающие им самостоятельную работу за счет самовозбуждения.
В большинстве случаев генераторам требуется какое-то внешнее движущее устройство, вырабатывающее механическую энергию, которая, затем, преобразуется в электрический ток. Чаще всего используются бензиновые или дизельные двигатели, а также ветровые и гидроустановки. Независимо от источника движущей силы, все электрогенераторы состоят из двух основных элементов – статора и ротора. Статор находится в неподвижном положении, обеспечивая движение ротора. Его металлические блоки позволяют регулировать уровень электромагнитного поля. Это поле создается ротором за счет действия магнитов, находящихся на равноудаленном расстоянии от сердечника.
Однако, как уже отмечалось, стоимость даже самых маломощных устройств остается высокой и недоступной для многих потребителей. Поэтому единственным выходом остается собрать генератор тока своими руками, и заранее заложить в него все необходимые параметры. Но, это вовсе не простая задача, особенно для тех, кто слабо разбирается в схемах и не имеет навыков работы с инструментами. Домашний мастер должен обладать специфическим опытом по изготовлению таких устройств. Кроме того, необходимо подобрать все необходимые элементы, детали и запасные части с нужными параметрами и техническими характеристиками. Самодельные устройства успешно используются в быту, несмотря на то, что по многим показателям они значительно уступают заводским изделиям.
Преимущества асинхронных генераторов
В соответствии с вращением ротора все генераторы разделяются на устройства синхронного и асинхронного типа. Синхронные модели обладают более сложной конструкцией, повышенной чувствительностью к перепадам сетевого напряжения, из-за чего снижается их эффективность. У асинхронных агрегатов подобные недостатки отсутствуют. Они отличаются упрощенным принципом работы и прекрасными техническими характеристиками.
Синхронный генератор имеет ротор с магнитными катушками, существенно усложняющими процесс движения. У асинхронного устройства эта деталь напоминает обыкновенный маховик. Особенности конструкции оказывают влияние на коэффициент полезного действия. В синхронных генераторах потери КПД составляют до 11%, а в асинхронных – всего 5%. Поэтому наиболее эффективным будет самодельный генератор из асинхронного двигателя, обладающий и другими преимуществами:
- Простая конструкция корпуса обеспечивает защиту двигателя от попадания внутрь влаги. Таким образом, снижается потребность с слишком частом техническом обслуживании.
- Более высокая устойчивость к перепадам напряжения, наличие на выходе выпрямителя, защищающего от поломок подключенные приборы и оборудование.
- Асинхронные генераторы обеспечивают эффективное питание для сварочных аппаратов, ламп накаливания, компьютерной техники, чувствительной к перепадам напряжения.
Благодаря этим преимуществам и высокому сроку эксплуатации, асинхронные генераторы, даже собранные в домашних условиях, бесперебойно и эффективно обеспечивают электроэнергией бытовые приборы, оборудование, освещение и другие важные участки.
Подготовка материалов и сборка генератора своими руками
Перед началом сборки генератора нужно подготовить все необходимые материалы и детали. В первую очередь понадобится электродвигатель, который может быть изготовлен своими силами. Однако это очень трудоемкий процесс, поэтому в целях экономии времени, нужный агрегат рекомендуется снять со старого нерабочего оборудования. Лучше всего подходят двигатели от стиральных машинок и водяных насосов. Статор должен быть в сборе, с готовой обмоткой. Для выравнивания выходного тока может понадобиться выпрямитель или трансформатор. Также, нужно подготовить электрический провод, а также изоленту.
Перед тем как сделать из электродвигателя генератор, необходимо рассчитать мощность будущего устройства. С этой целью двигатель включается в сеть для определения скорости вращения с помощью тахометра. К полученному результату прибавляется 10%. Эта прибавка является компенсаторной величиной, предупреждающей излишний нагрев двигателя во время работы. Конденсаторы выбираются в соответствии с запланированной мощностью генератора с помощью специальной таблицы.
В связи с выработкой агрегатом электрического тока, необходимо обязательно выполнить его заземление. Из-за отсутствия заземления и некачественной изоляции, генератор не только быстро выйдет из строя, но и станет опасным для жизни людей. Сама сборка не представляет особой сложности. К готовому двигателю по очереди подключаются конденсаторы, в соответствии со схемой. В результате получается генератор переменного тока 220В своими руками малой мощности, достаточный для снабжения электричеством болгарки, электродрели, циркулярной пилы и другого аналогичного оборудования.
В процессе эксплуатации готового устройства необходимо учитывать следующие особенности:
- Требуется постоянно контролировать температуру двигателя во избежание перегрева.
- В процессе эксплуатации наблюдается снижение КПД генератора в зависимости от продолжительности его работы. Поэтому периодически агрегату необходимы перерывы, чтобы его температура снизилась до 40-45 градусов.
- При отсутствии автоматического контроля, эту процедуру нужно периодически выполнять самостоятельно с использованием, амперметра, вольтметра и других измерительных приборов.
Большое значение имеет правильный выбор оборудования, расчет его основных показателей и технических характеристик. Желательно наличие чертежей и схем, существенно облегчающих сборку генераторного устройства.
Плюсы и минусы самодельного генератора
Самостоятельная сборка электрогенератора позволяет сэкономить значительные денежные средства. Кроме того, генератор, собранный собственноручно, будет иметь запланированные параметры и отвечать всем техническим требованиям.
Однако, у таких устройств имеется ряд серьезных недостатков:
- Возможные частые поломки агрегата из-за невозможности герметично соединить все основные части.
- Неисправность генератора, значительное снижение его продуктивности в результате неправильного подключения и неточных расчетов мощности.
- В работе с самодельными устройствами требуются определенные навыки и соблюдение осторожности.
Тем не менее, самодельный генератор на 220В вполне подходит как альтернативный вариант бесперебойного электроснабжения. Даже маломощные устройства способны обеспечить работу основных приборов и оборудования, поддерживая должный уровень комфорта в частном доме или в квартире.
10 простых советов по продлению срока службы двигателя
10 простых советов по продлению срока службы двигателя
«Вечный двигатель» или 10 советов, как продлить его срок службы
Искать ответ на вопрос как долго вам прослужит электродвигатель нужно не в ходе его эксплуатации, а намного раньше. Правильный выбор машины с учетом условий и регулярности ее применения — верный залог того, что она будет работать долго, надежно и эффективно. При этом, конечно, не стоит забывать о соблюдении рекомендаций по эксплуатации, грамотном монтаже и профессиональном обслуживании машины. Именно эти параметры будут определяющими в продолжительности ее жизни.
Теперь рассмотрим каждый из них подробнее и дадим еще несколько советов, на что стоит обратить внимание при эксплуатации электродвигателя, чтобы срок его службы был максимально долгим.
1. Покупайте правильный электродвигатель
Чтобы не приобрести очередную «головную боль» (в виде электродвигателя) на свой объект, посоветуйтесь со своими механиками. Именно эти люди будут сутки напролет обхаживать и заботиться о двигателях, чтобы машина не подвела в самый неподходящий момент. Они профессионалы и подберут то, что необходимо, а не то, что дешево или выгодно. Они умеют правильно, и главное — технически грамотно:
- определить производителя и серию двигателя;
- указать необходимую мощность и обороты;
- уточнить вопрос по рабочему напряжению, способу монтажа, климатическому исполнению;
- обратить внимание на значения КПД и cos φ;
- указать дополнительные требования к машине.
В том случае, если вы живете по правилу — доверяй, но поверяй — можете совершенно бесплатно получить необходимые рекомендации у наших специалистов.
2. Установите прямую связь со специалистами завода-изготовителя
Это позволит вам напрямую с разработчиками электродвигателя технически грамотно и быстро решать все вопросы, связанные с обслуживанием и ремонтом. Предоставляя обратную связь производителю, вы, хотите того сами или нет, делаете неоценимый вклад в повышения уровня качества производимой производителями продукции.
3. Соблюдайте технику безопасности при проведении монтажных работ и советы по эксплуатации
Установка электродвигателя производится, как правило, с помощью кранов или ручных лебедок, а также талей и других устройств, расположенных над местом его эксплуатации. Обязательно проверяйте возможности их нагрузки!
Также не забывайте, что центровка электродвигателей с технологической машиной, проверка воздушных зазоров, замена смазки в подшипниках, подгонка и регулировка щеток у электродвигателя с фазным ротором, проверка сопротивления изоляции обмоток должны происходить только при отключенном рубильнике, вынутых плавких вставках предохранителей на питающей линии с вывешиванием запрещающего плаката на рубильнике.
При монтаже необходимо обратить особое внимание на состояние электродвигателя и не допускать использования инструмента, имеющего дефекты.
4. Своевременно выполняйте регламентные работы
В первую очередь, проводите регулярный внешний осмотр во время работы двигателя. Эта мера носит профилактический характер, но очень важна. Она позволит предупредить возникновение неисправностей и, как следствие, предотвратить сбой в работе. Во время проведения осмотра очищается поверхность электродвигателя, производится затяжка болтовых соединений и крепления заземлений.
Не менее важно проведение работ по контролю основных параметров электрической машины. Сюда входят замер токов и проверка их на соответствие заводским параметрам. Перегрузка двигателя значительно сокращает срок его службы. Также необходимо убедиться в отсутствии посторонних шумов и вибрации, в том, что двигатель смазан, а его температура не превышает допустимые нормы (подробнее п. 7, 10).
5. Выбирайте энергоэффективные двигатели
Основным показателем энергоэффективности электродвигателя является его коэффициент полезного действия (далее КПД), который рассчитывается по формуле:
η=P2/P1=1 – ΔP/P1,
где Р2 — полезная мощность на валу электродвигателя,
Р1 — активная мощность, потребляемая электродвигателем из сети,
ΔP — суммарные потери, возникающие в электродвигателе.
Как мы видим, чем выше КПД (и соответственно ниже потери), тем меньше энергии потребляет электродвигатель из сети для создания полезной мощности.
Согласно эмпирическому закону срок службы изоляции уменьшается в два раза при увеличении температуры на 100 °C. Таким образом, срок службы двигателя с повышенной энергоэффективностью несколько больше, так как потери и нагрев меньше.
6. Применяйте электродвигатели с преобразователями частоты
Преобразователи частоты позволяют регулировать скорость вращения электродвигателя за счет изменения входной частоты. Это позволяет сэкономить как минимум 30% электроэнергии по сравнению с традиционными способами управления двигателями. Например, если снизить рабочую частоту всего на 20% (с 50 до 40 Гц), то потребление электроэнергии уменьшится вдвое!
Помимо энергосбережения преобразователи частоты увеличивают срок службы электродвигателя, повышают надежность всей системы, не требуют технического обслуживания.
7. Контролируйте температуру двигателя
Нормативный срок службы электродвигателя определяется допустимой температурой нагрева его изоляции. В современных двигателях применяется несколько классов изоляции, допустимая температура нагрева которых составляет:
- Класс В — 130 °C,
- Класс F — 155 °C,
- Класс H — 180 °C.
Превышение допустимой температуры ведет к преждевременному разрушению изоляции и существенному сокращению срока его службы.
8. Следите за обмоткой электродвигателя
Здесь есть два варианта развития событий:
- обрыв обмотки в треугольнике,
- обрыв обмотки в звезде.
Рассмотрим каждый из них.
Обрыв обмотки в «треугольнике». Из практики известно, что оборванная обмотка никак не мешает нормальной работе электродвигателя. Оставшиеся две обмотки берут на себя всю мощность через подсоединение к сети по топологии «открытый треугольник». В результате двигатель набирает обороты, держит нагрузку, но происходит чрезмерный нагрев двух подключенных фаз. При относительно долгой эксплуатации асинхронного силового агрегата под нагрузкой на валу в таком неверном режиме включения происходит неминуемое выгорание задействованных обмоток статора.
Обрыв обмотки в «звезде». Обрыв обмотки статора в трехфазном электродвигателе, включенном в сеть по топологии «звезда», приводит к тому, что машина отказывается запускаться, если ее остановить. Двигатель греется, издает неприятный гул, вибрирует ротором, но не запускается. Обрыв обмотки приводит к тому, что не образуется вращающееся магнитное поле. Безусловно, двигатель можно запустить, но для этого необходимо предварительно раскрутить вал ротора. Естественно, возрастает электропотребление, шум, а также общий износ двигателя.
Единственно верное решение проблемы обрыва обмотки — это нахождение дефектной обмотки и ее перемотка. Любая скрутка, спайка внутри обмотки неприемлема. Лучше и надежнее перемотать всю обмотку, сохраняя число витков, а также сечение обмоточной проволоки.
9. Особое внимание — аварийный режим!
Многолетний опыт эксплуатации электродвигателей показал, что большинство существующих защит не обеспечивают безаварийную работу электродвигателя. Например, тепловые реле рассчитывают на длительную перегрузку 25-30% от номинальной. Но чаще всего они срабатывают при обрыве одной фазы при нагрузке 60% от номинальной. При меньшей нагрузке реле не срабатывает, электродвигатель продолжает работать на двух фазах и выходит из строя в результате перегрева изоляции обмоток.
Правильный выбор защитного устройства — это важный фактор в обеспечении безопасной эксплуатации электродвигателя. Приборы защиты электродвигателя от аварийных режимов можно разделить на несколько видов:
- тепловые защитные устройства — тепловые реле, расцепители;
- защитные устройства от сверхтоков — плавкие предохранители, автоматы;
- термочувствительные защитные устройства — термисторы, термостаты;
- защита от аварий в электросети — реле напряжения и контроля фаз, мониторы сети;
- приборы МТЗ (максимальной токовой защиты), электронные токовые реле;
- комбинированные устройства защиты.
При выборе релейной защиты проконсультируйтесь со специалистом.
10. Обращайте внимание на вибрацию и шум
Обращайте самое пристальное внимание на такие параметры электрической машины как вибрация и шум. Если они не в пределах нормы, то свидетельствуют о механической неисправности. Очень важно вовремя уловить данные изменения в работе машины, определить причины возникновения, и конечно же устранить их.
Если самостоятельно решить данный вопрос не получается, рекомендуем обращаться напрямую к производителям, обладающим необходимым оборудованием, и специалистам, регулярно решающими подобного рода задачи. Это сэкономит вам время и деньги!
Новый подход к производству энергии — Энергетика и промышленность России — № 10 (174) май 2011 года — WWW.EPRUSSIA.RU
Газета «Энергетика и промышленность России» | № 10 (174) май 2011 года
Современную цивилизацию невозможно представить без источников энергии. Средства транспорта, различные производства, освещение, отопление и многое другое – все это требует энергии. Сейчас ее получают, в основном, сжиганием органического топлива, гораздо меньшую часть – на атомных и гидроэлектростанциях и совсем ничтожную – за счет ветра, солнца, тепла земли и пр.На энергетические нужды ежегодно безвозвратно расходуются миллионы тонн топлива. Отравляется окружающая среда, уродуется лицо планеты, отбираются земли из сельхозоборота.
Гидро- и атомная энергия воздействуют на природу еще хуже. Трудно даже оценить наносимый ими вред.
Остальные же источники порой даже не стоит рассматривать всерьез. Их эксплуатация слишком дорога, удельная мощность производства слишком мала, существует большая зависимость от состояния окружающей среды и т. д.
А человечеству с каждым годом требуется все большее количество энергии. Получается тупик.
Но давайте посмотрим внимательнее на суть вопроса. Что такое энергия и откуда она берется? Полного и четкого ответа на этот вопрос сегодня не может дать ни один человек.
Ведь на самом деле энергия существует вокруг нас, но при этом независимо от нас. По большому счету, мы не можем ее получать и не можем уничтожать. Человеку дано лишь переводить ее из одного вида в другой, однако общее ее количество при этом не меняется.
Собственно, это и есть закон сохранения энергии. Что бы мы ни делали, мы не можем нарушить равновесие в полномасштабном мире!
Воздействие электродвижущей силы
Переводить энергию из одного вида в другой проще всего в электрических устройствах. Электричество наиболее широко применяется и легко обратимо в любой другой вид энергии.
Для преобразования электрической энергии в механическую широко используются электродвигатели. Считается, что эти устройства имеют наивысший КПД, превышающий 80‑90 процентов, среди всех устройств, переводящих энергию в механическое движение.
Но так ли это?
Рассмотрим работу электродвигателя подробнее. При вращении ротора в его обмотке наводится, по закону Ленца, так называемая генераторная ЭДС, всегда направленная навстречу питающему напряжению. И эта электродвижущая сила очень велика. Она составляет до 95‑98 процентов от величины питающего двигатель напряжения.
То есть при напряжении источника питания двигателя 100 вольт 95 вольт уходят на бесполезную работу по уменьшению напряжения питания двигателя! Получается, что истинное напряжение питания всего 5 вольт! А практически приходится подавать в двадцать раз больше!
Подсчитаем мощность, потребляемую двигателем, при истинном и практически осуществляемом напряжении питания. При токе потребления 1 А истинная мощность будет всего 5 ватт, а практическая – 100! Механическая же мощность (КПД = 80 %) будет 80 ватт.
То есть мы имеем огромные резервы по повышению эффективности работы электродвигателей. И тот КПД, который указан во всех учебниках электротехники, – совершенно неправильный. Считать можно только полезно преобразуемые величины. При правильном подсчете мы получаем КПД всего около 5 процентов… Меньше, чем у паровоза.
Истинное значение КПД в электрических машинах не соотносится прямо пропорционально с их потребляемой и выходной мощностью. Этот вопрос очень сложен и ждет своего глубокого изучения. Ведь тут оказываются вовлеченными параметры, которые никогда прежде не учитывались.
Многие скажут, что это фантастика: невозможно получить большую энергию, чем подвели. Но это совсем не так. Были проведены большие теоретические исследования, поставлен ряд опытов, которые неопровержимо доказали: это не только возможно, но и очень легко достижимо!
По пути Громова
Уже разработаны десятки вариантов электродвигателей и генераторов с эффективностью, в десятки раз превышающей ту, что имеется у используемых сейчас агрегатов. Большое значение в этих работах сыграли труды Н. Н. Громова из Нижнего Новгорода – ныне, к сожалению, покойного. Он широко разрабатывал эту тему и опубликовал множество решений. К сожалению, почти никто не обратил на его труды внимания. Его решения были слишком смелы и отличались от известных в электротехнике.
Тем не менее оказалось, что задачу повышения энергоэффективности можно решить даже в рамках уже выпускаемых промышленностью конструкций электродвигателей и генераторов.
Была разработана общая теория построения данного класса устройств, согласно которой двигатель практически любого типа может стать сверхэффективным, а электрогенераторы смогут вырабатывать энергию, потребляя только ту ее часть, которая нужна для покрытия потерь на трение. То есть генератор, вырабатывающий сотни киловатт, будет потреблять только несколько киловатт.
Теория была подтверждена практически группой экспериментаторов из Болгарии. Они испытали тестовую модель генератора, ротор которого не тормозился при подключении нагрузки. При самых тщательных измерениях не удалось заметить увеличение потребляемой механической мощности.
Изобилие без затрат
При должном финансировании данных работ уже в течение нескольких лет можно создать основные типы промышленных электрогенераторов и электродвигателей для всех отраслей народного хозяйства, в том числе и транспорта. Можно начать производить индивидуальные энергоблоки для частных лиц. Выпускать электромобили без аккумуляторов, которые не требуют станций подзарядки, но при этом имеют неограниченный радиус действия. Оснащать на новых принципах любые типы судов и многие типы летательных аппаратов, даже космические корабли (есть разработки движителей и для них).
Следующий этап – постепенно выводить изношенные мощности АЭС, ТЭЦ, ГЭС. И в течение нескольких десятилетий можно будет плавно и безболезненно перейти на принципиально новую энергетику.
Автор рассказал только об очень небольшой части исследований в этой области. Предлагаемые им способы настолько просты, доступны, что почти все можно сделать без значительных затрат и дорогого оборудования. Материалы требуются самые обычные. Особых технологий тоже не требуется. Если, например, деньги, что мы пустили на мифическую термоядерную энергетику, потратить на новые устройства, то, возможно, человечество получит энергетическое изобилие в кратчайшие сроки.
В заключение хотелось бы отметить, что работа над принципиально иным подходом к энергообеспечению продолжается энтузиастами и сейчас. Так, несколько месяцев назад был построен и испытан простейший макет электродвигателя без противоЭДС. Выходная механическая мощность превысила потребляемую электрическую более чем в два раза. Теория была подтверждена практически, и на основе этих испытаний изобретатели разработали гораздо более совершенные конструкции.
NTTI Урок: Электродвигатели: Зеленые машины!
NTTI Урок: Электродвигатели: Зеленые машины!Электродвигатели: Зеленые машины!
4–6 классы
Студентам очень важно понимать, что учёные и изобретатели приходят из всех слоев общества. История учит нас, что многие ученые не преуспели в школа, и что им нужно альтернативное образование, чтобы преуспеть в жизни. Майкл Фарадей получил образование на рабочем месте («на практике»). обучения, и стал одним из самых известных в мире ученых-экспериментаторов.В первой части урока студенты узнают о законе электромагнитного поля Фарадея. индукция при сборке электрогенератора. Вторая часть на уроке рассматриваются иллюстрации различных источников питания, которые можно использовать для работают генераторы и электродвигатели.
3-2-1 Контактное лицо в классе №19 «Больше власти для вас»
Студенты смогут:
- Перескажите историю изобретателя первого электрогенератора.
- Приведите и продемонстрируйте закон индукции.
- Собрать и проверить электрогенератор, чтобы продемонстрировать закон Фарадея.
- Продемонстрируйте, как энергия перемещает катушку внутри магнита генератора.
- Перечислите примеры источников питания, которые могут управлять генератором
- Нарисуйте картинку, демонстрирующую понимание различных источников питания запуск генератора
- Сравните генератор с двигателем и оцените их эффективность.
Для студентов:
- бумага для рисования и написания ответов
- Рабочий лист: «Электродвигатели: Зеленая машина» (Находится в конце урок.)
Для изготовления генератора:
- медный провод (# 24)
- неоновая лампа
- Стальной гвоздь 4 дюйма
- пластиковая соломинка
- маленький стержневой магнит
Словарь:
- Ток — поток электроэнергии
- Катушка — петли провода, принимающие ток
- Турбина — колесоподобная машина, вращающая генератор.
- Электрогенератор — машина, вырабатывающая электричество из магнитов.
- Электромагнит — комбинация катушки и магнита
- Источник энергии — вид энергии, который может работать
- Электродвигатель — машина, преобразующая электрическую энергию в механическую.
Часть I:
Индукция Фарадея
Учитель установит качели с двумя катушками, чтобы продемонстрировать, как действует электричество. создается в проволоке путем перемещения магнита. Толкайте один магнит вперед и назад через первую петлю. Попросите учеников объяснить, что заставляет катушки качаться, и дайте им одну или две минуты, чтобы написать ответ на этот вопрос. Расскажи они должны быть готовы поделиться своим ответом с классом.УЧИТЕЛЬ: Давайте посмотрим, что, по вашему мнению, заставляет катушки качаться.Мужчина у Имя Майкла Фарадея было первым, кто попытался ответить на этот вопрос. В 1832 году он сказал, что электричество генерируется в проводе всякий раз, когда магнит проходит мимо него. Его гениальная идея стала законом индукции Фарадея, но на самом деле это было случайно. что он сделал это открытие. Майкл не ходил в среднюю школу. Вместо этого он был обучался переплету, с 14 лет в течение 8 лет, затем стал лабораторией ассистент в большом вузе. Большую часть времени он пытался преобразовать магнетизм в электричество.На сегодняшнем уроке мы исследуем эти отношения. между электричеством и магнетизмом — связь E и M — и тогда мы построить генератор. Позже мы будем использовать некоторые источники питания, такие как аккумулятор, перевернуть мотор собственного творения! ЦЕЛЬ 1.
УЧИТЕЛЬ: (Учитель указывает на демонстрацию.) Первая петля — электрическая. генератор, подобный тому, который Фарадей сделал в 1832 году. Он преобразует механическую энергию в электроэнергия. Второй контур — это двигатель, который преобразует электричество в механическая сила, например, в автомобильном двигателе.Нам нужно узнать разницу между этими двумя машинами.
Очень важно сосредоточить внимание студентов на просмотре. Это помогает им сосредоточиться их внимание к целям урока. Таким образом студенты узнают, что видео не только для их развлечения.УЧИТЕЛЬ: Давайте посмотрим видео, показывающее участница актёрского состава Стефани вырабатывает электричество, используя генератор. Позже она покажет нам разные источники энергии, которые мы можем использовать для бега. наши генераторы и моторы.
Производство электроэнергии
УЧИТЕЛЬ: Как я могу производить электричество? Посмотрите видео сейчас и вы сможете объясните, как создается электричество.НАЧАЛО видео на тему «Больше энергии для вас».
PAUSE видео после того, как вы услышите: «Разве я не говорил вам, что это просто».УЧИТЕЛЬ: Назовите два различных способа производства электричества. (Вы производите электричество перемещение магнита мимо проволоки. Или, проведя проволокой мимо магнита.Это не независимо от того, какой из них движется. Невежественный провод не заметит разницы!) Студент продемонстрирует генерацию электричества с помощью провода и магнита. Мы наблюдаем открытие Фарадеем создания электричества с помощью магнитов. Почему разве не практично производить электричество таким образом? Внимательно посмотрите видео, чтобы узнать почему нет? ЦЕЛЬ 2.
РЕЗЮМЕ видео.
PAUSE видео после того, как вы услышите предложения: «Вам нужен постоянный поток электричество.Вам нужен генератор «.УЧИТЕЛЬ: Почему это не практично? (Электричество поступает рывками. Свет в вашем дом будет то включаться, то выключаться, то включаться, то выключаться …. Это очень раздражает!) Что вы нужно сделать постоянный поток электричества? (Генератор.) Ученые называют этот поток электричества «ток». Напишите на доске слово «ток». Попросите ученика прочитать Определение. Чтобы увидеть, как генератор вырабатывает постоянный ток, понаблюдайте за Стефани в видео показывает, как генератор работает для создания постоянный ток.
РЕЗЮМЕ видео.
ОСТАНОВИТЕ видео после того, как вы услышите слова: «Через некоторое время ваша рука действительно устает».
УЧИТЕЛЬ: Что происходит, когда петли проволоки поворачиваются внутри магнита? (Это создает постоянный ток электричества согласно знаменитому закону Фарадея.) У ученых есть причудливое слово для обозначения петель из проволоки — они называют это катушкой. (Напиши слово «катушка» на доске.) Куда уходит электрический ток из катушки? (По проводам а потом в лампочку, которая загорается!) Что значит Стефани использует для поворота провод внутри магнита? (Сила ребенка — она использовала ее собственная мышечная сила.) Производила ли она постоянный поток электричества? (Да как много электричества? (Достаточно, чтобы зажечь лампочку.)
Создание генератора E-M
УЧИТЕЛЬ : Давайте воспользуемся законом Фарадея о производстве электричества и сделаем игрушку. генератор. Вам понадобятся следующие материалы: моток проволоки, стержневой магнит, 4-дюймовый стальной гвоздь, пластиковая трубочка и неоновая лампа. Ваша задача — построить генератор из этих материалов и произвести достаточно электричества, чтобы включить на маленькой неоновой лампе.Сделайте следующее: Сделайте около 50 витков оголенного провода. вокруг соломки, чтобы сделать катушку. Вставьте стальной гвоздь в катушку. Подключите выводы катушки к неоновой лампе. Затем погладьте магнит взад и вперед. поперек катушки. Когда неоновая лампа светится, вы получили электричество из «электромагнитный генератор», или сокращенно генератор E-M. Как еще мы можем сделать электричество? (Согласно закону индукции Фарадея, вы также можете перемещать провод мимо магнита.) Дайте ученикам 10-15 минут, чтобы построить свои генераторы.Разместите их в классе, чтобы все могли наблюдать. Постройте большой баннер со знаменитым законом индукции Фарадея: «Электричество вырабатывается в проводе. всякий раз, когда магнит проходит мимо него ». ЦЕЛЬ 3 и 4.
Часть II:
Источники энергии: А вот и Солнце!
УЧИТЕЛЬ : Подумайте, почему ваш генератор непрактичен. (Потому что это не вырабатывает достаточно электричества, чтобы включить свет в вашем доме или в вашем телевизоре.А также, через некоторое время ваша рука действительно устает от включения генератора.) Итак, что делать мы используем для производства всего электричества, которое мы используем каждый день? (Генератор побольше!) Что мы используем вместо детской силы? Составим список классов того, что мы можем использовать. (Сила воды, пара, солнечная энергия. Попросите ученика пойти в классной доске и начните составлять список с помощью всего класса.) У ученых есть слова для обозначения всех этих вещей, например, сила ребенка, которая может включить или сделать работу с генератором.Они называют их источниками энергии. (Писать «источники питания» вверху списка и определите его.)
Touring Electric Power Plants
УЧИТЕЛЬ: Вернемся к видео, чтобы проверить наш список источников питания. Мы будем собираетесь совершить электронную экскурсию в Лас-Вегас, чтобы познакомиться с одним из мировых крупнейшие электростанции.START видео, как говорит Стефани: «Итак, что мы используем, чтобы сделать все электричество, которое мы используем каждый день? »
PAUSE видео после того, как вы услышите слова «Ну и что? держит свет в Лас-Вегасе? Гидроэнергия от плотины Гувера, вот что » с изображением плотины Гувера.УЧИТЕЛЬ: Что вращает генератор — вращает катушку с проволокой внутри магнита? (Проточная вода — гидроэнергетика! Укажите в списке классов на «гидроэнергетику».) Что название дано колесообразной машине, которая вращает вал внутри генератор? (Турбина. Укажите на иглу (вал) игрушечного генератора.) Как можем ли мы производить больше электроэнергии для Лас-Вегаса? (Увеличьте расход воды на Плотина Гувера. Это быстрее вращает турбину и производит больше электроэнергии.)
REWIND видео до начала анимационной последовательности.
УЧИТЕЛЬ: Давайте еще раз посмотрим, как работает гидроэнергетика. Внимательно слушай это время для различных частей генератора с водным приводом.
РЕЗЮМЕ видео.
PAUSE сразу после того, как вы услышите, как Стефани объясняет, как вода силовые работы.УЧИТЕЛЬ: Вы должны нарисовать на листе бумаги картинку, показывающую, как электричество производится от воды. Пометьте турбину, вал и генератор. Попросите добровольца нарисовать электрический ток на воде. машина на доске.Хотя открытие Фарадея поначалу восприняли скептически, сегодня вся наша электроэнергия вырабатывается движущимся гигантом катушки с проволокой возле магнитов. Удивительно, что просто подключив медный провод и стальные магниты на электростанции, падающая вода может вращать турбины, которые вырабатывает достаточно электричества, чтобы осветить весь Лас-Вегас и многие другие крупные города. миль отсюда! Что можно использовать для энергии ветра? (Ветряная мельница.) Давайте понаблюдаем Мигель, помощник Стефани в поле, объясняет, как ветер может электричество — вниз на «ветряной электростанции» в Калифорнии.
РЕЗЮМЕ видео.
ПАУЗА видео в конце электронной производственной поездки.УЧИТЕЛЬ: Как ветер может производить электричество? (Ветер крутит лопасти ветряная мельница, известная как турбина, которая по очереди вращает вал, который вращает катушку внутри магнита, известного как генератор, и он производит электричество.) Нарисуйте на листе бумаги вторую картинку, на которой показаны части ветряной машины, производящей электричество. Итак, ветер может производить электричество, а воду можно производить электричество.Как пар может производить электричество? Настройте эксперимент, чтобы показать, что пар может производиться из различных видов топлива, например, лампового масла, природного газ и алкоголь. Давайте посмотрим видео, чтобы увидеть, как работает масляная энергия.
РЕЗЮМЕ видео.
ПАУЗА видео по окончании выезда на нефтяную электростанцию.УЧИТЕЛЬ: Как из нефти вырабатывается электричество? (Масло сжигается, чтобы нагреть воду, которая делает пар. Пар перемещает лопатки турбины, которые вращают вал внутри генератор.Вал вращает катушку с проволокой внутри магнита в генераторе, который производит ток электричества.) После того, как электричество произведено, где оно пойти оттуда? (Он идет до проводов высокого напряжения. Нарисуйте третий рисунок, показывает, как электричество получают из горящего масла. Дайте студентам 1-2 минуты чтобы завершить их рисунок.) Есть несколько способов вскипятить воду, чтобы готовить на пару. Вместо нефти, какое еще топливо, по нашему мнению, можно использовать для производства электричество? (Природный газ, уголь.)
УЧИТЕЛЬ: Эти виды топлива называются «ископаемыми видами топлива», потому что они получены из мертвых. растения или животные, которые были закопаны в землю и стали ископаемыми. Ученые называют ископаемое топливо «похороненным солнечным светом», потому что растения производят пищу или топливо из сила солнца, затем умри и похоронен. Какое топливо похоронено солнышком — подсолнечное масло или моторное масло? (Моторное масло, потому что оно получено из закопанных растений или животных.) Как и подсолнечное масло, моторное масло на самом деле является подсолнечным маслом. Вместо использования похороненного солнечный свет или «масло для загара», мы собираемся узнать, как мы можем использовать само солнце, чтобы сделать электричество.Давайте совершим экскурсию на электростанцию Solar I в Калифорнии. с гидом Мигелем. Расскажи мне, что Мигель говорит о солнце мощность (солнечная энергия).
РЕЗЮМЕ видео.
ПАУЗА видео в конце электронной производственной поездки.УЧИТЕЛЬ: Как солнечная энергия производит электричество? (Большие зеркала отражают солнечного света и сфокусируйте его, чтобы нагреть воду в приемнике. Пар, произведенный нагретым вода под давлением поступает по трубам к турбине и вращает ее лопатки.Турбина прикреплена к вращающемуся валу, который входит в генератор, и вот где вырабатывается электричество.) Потратьте две минуты, чтобы нарисовать картинку, которая показывает части солнечной электростанции. Затем мы посмотрим видео, чтобы проверить что мы узнали до сих пор.
РЕЗЮМЕ видео.
СТОП видео в конце.
УЧИТЕЛЬ: Итак, перейдем к обзору. Как можно получить электричество с помощью магнита и провод? (Проведите проволокой мимо магнита или магнитом мимо проволоки.Это Фарадея Индукция!) Как сделать постоянный ток электричества? (Вращая катушку внутри магнита. Две части составляют генератор.) Какая мощность источники, используемые для запуска генератора? (Проточная вода, пар, ископаемое топливо, солнце.) Перечислите этапы получения электричества из источника питания. (Например, ветер вращает турбину, которая вращает вал внутри генератора, где электричество из-за вращения катушки внутри магнита.) Проверьте список классов источников питания.Мы пропустили один? ЦЕЛЬ 5 и 6 .
Чистая, зеленая машина
УЧИТЕЛЬ : Давайте определим чистые источники энергии для производства электроэнергии. От список классов, дайте мне примеры чистых источников энергии? (Солнце, ветер или вода.) Почему масло не является чистым источником энергии? Зажигаем керосиновую лампу маслом для студентов наблюдать дым. (Это загрязняет воздух.) Является ли батарея чистой силой? источник? (Да, это источник энергии, поскольку из него можно производить электричество.Если это не содержит токсичных химикатов, значит, это чистый или не загрязняющий окружающую среду источник. А аккумулятор действительно является «химическим генератором».) А как насчет солнечного элемента? (Да, это производит электричество, не загрязняя окружающую среду. Это чистый, зеленый машина!)УЧИТЕЛЬ : Можем ли мы использовать наш чистый химический генератор — батарею — для изготовления мотор? Рабочий лист под названием «Зеленая машина» [находится в конце урока] показывает вам, как построить и управлять двигателем. Используйте эту диаграмму для построения мотор и заставить его работать.
Учитель циркулирует среди учеников, чтобы помочь им построить мотор. Позвольте учащимся поэкспериментировать со вторым магнитом, чтобы увидеть, смогут ли они изменить скорость мотора. Попросите их попробовать поставить пару притягивающих магнитов на верхней части батареи вместо одного магнита. Дайте студентам 15 минут на то, чтобы строят свои моторы.
УЧИТЕЛЬ : Сравните моторы и генераторы ваших игрушек. Перечислите различия между двумя. (Предлагается, чтобы учитель нарисовал диаграмму Венна, чтобы показать сравнение.Генераторы производят электричество, но двигатели производят движение или механическая сила. Кроме того, генераторы используют источник энергии для перемещения турбины или механическая энергия, которая преобразуется в электричество. Электродвигатели — это напротив: они используют электричество в качестве источника энергии, например батареи.) Итак, как вы Как видите, мотор — это действительно генератор, работающий «задом наперед»! Теперь используйте свой знание электричества и магнетизма, чтобы объяснить, что делает двойные катушки качать? Если вы понимаете связь E и M, вы можете увидеть, что включается генератор и мотор.Власть преобразуется туда и обратно из электричество (E) в магнетизм (M). ЦЕЛЬ 7 .
ОЦЕНКА : Оцените обучение студентов, продемонстрировав двойную катушку качели и попросили студентов написать один абзац, объясняющий, что делает катушки качаются. Попросите их сделать набросок качелей двойной катушки и пометить следующие: мотор, генератор. Дайте им одну или две минуты, чтобы написать ответ на этот вопрос.
Организовать экскурсию на электростанцию.Назначьте домашнее задание для каждого студент должен подготовить не менее пяти вопросов об электричестве, чтобы задать гиду во время визита. Организуйте поездку в электрическую компанию. Узнайте о карьере в сфере электричества.
История и наука :
1. Исследование английского ученого Майкла Фарадея. Напишите отчет о его жизни как мальчик и события, которые привели его к тому, что он стал великим ученым и изобретателем.
2. Изучите разнообразие двигателей, которые производились с восемнадцатого века.Сравните выходную мощность бензиновых двигателей с электродвигателями.Искусство и наука :
Спроектировать и сконструировать химический генератор — аккумулятор. Проверьте аккумулятор с помощью небольшая лампочка лампы.Математика и естественные науки :
1. Учащиеся измеряют ток и напряжение, вырабатываемые их игрушечными генераторами. Скомпилируйте данные как целый класс и вычислите среднее значение и диапазон данные. Сравните их значения с коммерческими электрическими генераторами.
2.Ученики конструируют два игрушечных электродвигателя, используя один и два магнита. Сравните напряжение и скорость двигателей. Постройте график результатов.Карьера в области науки, математики и технологий :
1. Исследовательская карьера в области электричества и электроники.
2. Просмотрите другие курсы ASSET о карьере в науке, такие как Futures и Futures2, «Открывая женщин в науке» и «Прорыв», взаимодействия: Реальная наука Реальная математика, №4, «Солнечная энергия».Laserdisc :
Электричество, Глава A16, «Электрические силы и поля.»Сиэтл, Вашингтон: Videodiscovery, Inc., 1992.CD Rom / компьютерное программное обеспечение :
Time Shift Radio, Tom Snyder Productions, 1995.
Нажмите здесь, чтобы просмотреть рабочий лист, связанный с этим уроком.Главный учитель: Стив Мартин
База данных планов уроков
NTTI
Thirteen Ed Online
wNetStation
Электродвигатели и генераторы: преобразование электрической и механической энергии — Видео и стенограмма урока
Электромагнетизм
И двигатели, и генераторы работают из-за того, что называется электромагнитной индукцией .Обнаружил Майкл Фарадей, это когда напряжение индуцируется изменяющимся магнитным полем. С помощью электромагнитной индукции электрический ток может создаваться в катушке с проволокой, перемещая магнит внутрь или из этой катушки или перемещая катушку через магнитное поле. В любом случае напряжение создается движением.
Величина индуцированного напряжения зависит от количества витков в катушке с проволокой, а также от скорости, с которой магнит перемещается через катушку. Чем больше катушек, тем больше индуцируется напряжение.Точно так же, чем быстрее магнит перемещается через катушку, тем большее напряжение вы получаете.
При чем здесь двигатели и генераторы? Итак, генератор вырабатывает электричество, вращая катушку в постоянном магнитном поле, а в двигателе через катушку пропускается ток, который заставляет ее вращаться. В обоих случаях применяется закон электромагнитной индукции Фарадея, позволяющий производить электричество в своем доме, а затем использовать его для пылесоса пола, мытья посуды в посудомоечной машине, сохранения свежих продуктов в холодильнике и многого другого.
Помните, раньше мы говорили, что двигатель и генератор — одно и то же устройство, но дают противоположные результаты? Здесь мы имеем в виду, что поток электричества обратный, а не то, что сама машина работает в обратном направлении. Итак, вы не можете просто взять генератор и превратить его в двигатель, «поменяв местами» компоненты машины. Точно так же с электродвигателем вы не можете просто щелкнуть выключателем, который заставляет компоненты работать в обратном направлении для выработки электричества. Вместо этого вам нужно изменить направление потока электричества: внутрь для двигателя и наружу для генератора.
переменного и постоянного тока
Вы когда-нибудь слышали о переменном и постоянном токе? Мы не говорим об австралийской рок-группе — это ведь урок физики! Когда мы говорим о AC и DC для двигателей и генераторов, мы говорим о переменном токе и постоянном токе. Как следует из названия, переменный ток меняет направление при прохождении через цепь. Напротив, постоянный ток не меняет направления, когда он течет по цепи.
Двигатели и генераторы обычно бывают переменного или постоянного тока.Тип тока, используемого в устройстве, зависит от того, что вас больше волнует: эффективность или стоимость. Например, двигатели и генераторы переменного тока более эффективны, но и стоят дороже. Большая часть используемой вами электроники, такой как ваш мобильный телефон и планшет, полагается на питание переменного тока из-за его эффективности. В большинстве гибридных и электрических автомобилей также используется переменный ток.
Вы, наверное, слышали и о Томасе Эдисоне, и о Николе Тесла, но знаете ли вы, что они были вовлечены в долгую ожесточенную битву за эти два типа течения тока? Вы не поверите, но такая простая вещь, как токи переменного и постоянного тока, долгое время вызывала широкие споры и конфликты!
В то время как Эдисон был ярым сторонником постоянного тока, Тесла поддерживал использование переменного тока.Оба были сильными и решительными личностями, и конфликт между ними привел к крупным ставкам, клеветническим кампаниям и натянутым отношениям между двумя мужчинами. В конце концов, поскольку AC лучше подходит для посылки большого количества энергии на большие расстояния, он победил в этой «текущей битве». Сегодня в результате ваш дом, офис и большинство других зданий подключены к сети переменного тока.
Резюме урока
Хотя вы могли бы назвать их одним и тем же устройством, генератор и электродвигатель на самом деле больше похожи на две стороны одной медали.Генератор преобразует механическую энергию в электрическую, а двигатель наоборот — преобразует электрическую энергию в механическую. Оба устройства работают из-за электромагнитной индукции , когда напряжение индуцируется изменяющимся магнитным полем.
Двигатели и генераторы обычно либо AC , либо DC , что означает, что они работают на переменном или постоянном токе. Как следует из их названий, переменный ток меняет направление при протекании, в то время как постоянный ток не меняет направление при движении по цепи.
Большинство устройств, с которыми вы знакомы, используют переменный ток, потому что он намного более эффективен, чем постоянный ток. Гибридные и электрические автомобили, ваш дом, ваш мобильный телефон и даже ваш офис подключены к сети переменного тока. Но даже несмотря на то, что они используют один и тот же ток, важно помнить, что вы не можете «переключить» двигатель на генератор или генератор на двигатель. Обратный ход — это поток электричества, а не деятельность самой машины.
Результаты обучения
После того, как вы закончите этот урок, вы должны иметь возможность:
- Объяснять, что генераторы и электродвигатели похожи на две стороны одной медали
- Опишите, как работают генераторы и двигатели из-за электромагнитной индукции
- Различия между переменным и постоянным током, плюсы и минусы каждого из них
Электрогенератор
Электродвигатель — устройство для преобразования электрической энергии в механическую; электрический генератор делает обратное, используя механическую энергию для выработки электричества.В основе двигателей и генераторов лежит катушка с проводом в магнитном поле. Фактически, одно и то же устройство можно использовать как двигатель или генератор.
Когда устройство используется в качестве двигателя, через катушку пропускается ток. Взаимодействие магнитного поля с током заставляет катушку вращаться. Чтобы использовать устройство в качестве генератора, катушка вращается, вызывая в катушке ток.
Магнитное поле при моделировании находится в экране. Когда площадь контура уменьшается, в каком направлении индуцируется ток в контуре?
- по часовой стрелке
- против часовой стрелки
Индуцированный ток идет по часовой стрелке, когда область, которую мы видим, уменьшается, и против часовой стрелки, когда область увеличивается.
В какой момент величина тока максимальна?
- Когда плоскость петли перпендикулярна полю (максимальная площадь)
- Когда плоскость петли параллельна полю (нулевая зона)
- Поскольку петля вращается с постоянной скоростью, величина тока постоянна.
График зависимости потока от времени имеет наибольший наклон по величине, когда плоскость контура параллельна полю, так что именно тогда наведенная ЭДС и наведенный ток имеют максимальную величину.
Допустим, мы вращаем катушку из N витков и площади A с постоянной скоростью в однородном магнитном поле B. По закону Фарадея наведенная ЭДС определяется выражением:
ε | = |
|
B и A являются константами, и если угловая скорость ω контура постоянна, угол равен:
θ = ωt
Тогда наведенная ЭДС равна:
ε | = | -NBA |
| = | ωНБА sin (ωt) | = | ε o sin (ωt) |
Вращение петли в магнитном поле с постоянной скоростью — простой способ генерировать синусоидально колеблющееся напряжение… Другими словами, для выработки электроэнергии переменного тока. Амплитуда напряжения составляет:
ε o = ωNBA
В Северной Америке частота переменного тока от настенной розетки составляет 60 Гц. Следовательно, угловая частота катушек или магнитов, на которых вырабатывается электричество, составляет 60 Гц.
Для выработки электроэнергии постоянного тока используйте тот же тип коммутатора с разъемным кольцом, который используется в двигателе постоянного тока, чтобы полярность напряжения всегда была одинаковой. В очень простом генераторе постоянного тока с одним вращающимся контуром уровень напряжения будет постоянно колебаться.Напряжение от многих контуров (не синхронизированных друг с другом) обычно складывается, чтобы получить относительно стабильное напряжение.
Вместо того, чтобы использовать вращающуюся катушку в постоянном магнитном поле, другой способ использования электромагнитной индукции состоит в том, чтобы удерживать катушку в неподвижном состоянии и вращать постоянные магниты (обеспечивающие магнитное поле и поток) вокруг катушки. Хорошим примером этого является способ производства электроэнергии, например, на гидроэлектростанции. Энергия падающей воды используется для вращения постоянных магнитов вокруг фиксированного контура, производящего мощность переменного тока.
20.2 Двигатели, генераторы и трансформаторы — физика
Электродвигатели, генераторы и трансформаторы
Как мы узнали ранее, на провод с током в магнитном поле действует сила — вспомните, F = IℓBsinθF = IℓBsinθ. Электродвигатели, которые преобразуют электрическую энергию в механическую, являются наиболее распространенным приложением магнитной силы к токоведущим проводам. Двигатели состоят из витков провода в магнитном поле. Когда ток проходит через петли, магнитное поле оказывает на петли крутящий момент, который вращает вал.При этом электрическая энергия преобразуется в механическую работу. На рисунке 20.23 показан схематический чертеж электродвигателя.
Рисунок 20.23 Крутящий момент в токовой петле. Вертикальная петля из проволоки в горизонтальном магнитном поле прикреплена к вертикальному валу. Когда ток проходит через проволочную петлю, на нее действует крутящий момент, заставляющий вращать вал.
Давайте исследуем силу на каждом сегменте петли на рисунке 20.23, чтобы найти крутящие моменты, возникающие вокруг оси вертикального вала — это приведет к полезному уравнению для крутящего момента на петле.Считаем, что магнитное поле однородно по прямоугольной петле, ширина которой составляет w , а высота, ℓ, как показано на рисунке. Сначала рассмотрим силу, действующую на верхний сегмент петли. Чтобы определить направление силы, мы используем правило правой руки. Ток идет на страницу слева направо, а магнитное поле идет слева направо в плоскости страницы. Согните пальцы правой руки от вектора тока к вектору магнитного поля, а большой палец правой руки направлен вниз.Таким образом, сила на верхнем сегменте направлена вниз, что не создает крутящего момента на валу. Повторение этого анализа для нижнего сегмента — пренебрегая небольшим зазором, в котором выходят подводящие провода — показывает, что сила на нижнем сегменте направлена вверх, снова не создавая крутящего момента на валу.
Рассмотрим теперь левый вертикальный сегмент петли. Снова используя правило правой руки, мы обнаруживаем, что сила, действующая на этот сегмент, перпендикулярна магнитному полю, как показано на рисунке 20.23. Эта сила создает крутящий момент на валу.Повторение этого анализа на правом вертикальном сегменте петли показывает, что сила на этом сегменте направлена в направлении, противоположном направлению силы на левом сегменте, тем самым создавая равный крутящий момент на валу. Таким образом, общий крутящий момент на валу вдвое превышает крутящий момент на одном из вертикальных сегментов петли.
Чтобы определить величину крутящего момента при вращении проволочной петли, рассмотрите рисунок 20.24, на котором показан вид проволочной петли сверху. Напомним, что крутящий момент определяется как τ = rFsinθ, τ = rFsinθ, где F — приложенная сила, r — расстояние от оси до места приложения силы, а θ — угол между r . и F .Обратите внимание, что при вращении петли ток в вертикальных сегментах петли всегда перпендикулярен магнитному полю. Таким образом, уравнение F = IℓBsinθF = IℓBsinθ дает величину силы на каждом вертикальном сегменте как F = IℓB.F = IℓB. Расстояние × от вала до места приложения этой силы составляет × /2, поэтому крутящий момент, создаваемый этой силой, равен
τsegment = rFsinθ = w / 2IℓBsinθ = (w / 2) IℓBsinθ.τsegment = rFsinθ = w / 2IℓBsinθ = (w / 2) IℓBsinθ.20,10
Поскольку есть два вертикальных сегмента, общий крутящий момент вдвое больше, или
τ = wIℓBsinθ.τ = wIℓBsinθ.20,11
Если у нас есть многократный контур с Н витков, мы получаем Н, раз превышающий крутящий момент одиночного контура. Используя тот факт, что площадь петли равна A = wℓ; A = wℓ; выражение для крутящего момента становится
τ = NIABsinθ. τ = NIABsinθ.20,12
Это крутящий момент на токоведущей петле в однородном магнитном поле. Можно показать, что это уравнение справедливо для петли любой формы.
Рисунок 20.24 Вид сверху на проволочную петлю с рисунка 20.23. Магнитное поле создает силу F на каждом вертикальном сегменте проволочной петли, которая создает крутящий момент на валу. Обратите внимание, что токи Iin, IoutIin и Iout имеют одинаковую величину, потому что они оба представляют ток, протекающий в проводной петле, но IinIin течет на страницу, а IoutIout вытекает из страницы.Из уравнения τ = NIABsinθ, τ = NIABsinθ, мы видим, что крутящий момент равен нулю, когда θ = 0.θ = 0. По мере вращения проволочной петли крутящий момент увеличивается до максимального положительного крутящего момента wℓBwℓB при θ = 90 °.θ = 90 °. Затем крутящий момент уменьшается до нуля, когда проволочная петля поворачивается на θ = 180 ° .θ = 180 °. От θ = 180 ° θ = 180 ° до θ = 360 °, θ = 360 ° крутящий момент отрицательный. Таким образом, крутящий момент меняет знак каждые пол-оборота, поэтому проволочная петля будет колебаться вперед и назад.
Чтобы катушка продолжала вращаться в том же направлении, ток меняется на противоположный, когда катушка проходит через θ = 0 и θ = 180 ° θ = 0 и θ = 180 ° с использованием автоматических переключателей, называемых щетками , как показано на рисунке 20.25.
Рисунок 20.25 (a) Поскольку угловой момент катушки переносит ее через θ = 0, θ = 0, щетки меняют направление тока, и крутящий момент остается по часовой стрелке. (b) Катушка непрерывно вращается по часовой стрелке, при этом ток меняет направление на каждую половину оборота, чтобы поддерживать вращающий момент по часовой стрелке.Теперь подумайте, что произойдет, если мы запустим двигатель в обратном направлении; то есть мы прикрепляем ручку к валу и механически заставляем катушку вращаться в магнитном поле, как показано на рисунке 20.26. Согласно уравнению F = qvBsinθF = qvBsinθ, где θθ — угол между векторами v → v → и B → -chargesB → — заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле.Снова используя правило правой руки, когда мы сгибаем пальцы от вектора v → v → к вектору B → B →, мы обнаруживаем, что заряды в верхнем и нижнем сегментах ощущают силу, перпендикулярную проводу, которая не вызывает тока. . Однако заряды в вертикальных проводах испытывают силы, параллельные проводу, заставляя ток течь через провод и через внешнюю цепь, если она подключена. Такое устройство, которое преобразует механическую энергию в электрическую, называется генератором.
Рисунок 20.26 Когда эта катушка вращается на одну четверть оборота, магнитный поток Φ изменяется от максимального до нуля, вызывая ЭДС, которая пропускает ток через внешнюю цепь.
Поскольку ток индуцируется только в боковых проводах, мы можем определить наведенную ЭДС, рассматривая только эти провода. Как объясняется в разделе «Наведенный ток в проводе», ЭДС движения в прямом проводе, движущемся со скоростью v через магнитное поле B , равна E = Bℓv, E = Bℓv, где скорость перпендикулярна магнитному полю.В генераторе скорость составляет угол θθ с B (см. Рисунок 20.27), поэтому составляющая скорости, перпендикулярная B , равна vsinθ.vsinθ. Таким образом, в этом случае ЭДС, наведенная на каждом вертикальном сегменте провода, равна E = Bℓvsinθ, E = Bℓvsinθ, и они направлены в одном направлении. Полная ЭДС вокруг контура тогда составляет
E = 2Bℓvsinθ.E = 2Bℓvsinθ.20,13
Хотя это выражение действительно, оно не дает ЭДС как функцию времени. Чтобы узнать, как ЭДС изменяется во времени, предположим, что катушка вращается с постоянной угловой скоростью ω.ω. Угол θθ связан с угловой скоростью соотношением θ = ωt, θ = ωt, так что
E = 2Bℓvsinωt.E = 2Bℓvsinωt.20,14
Напомним, что тангенциальная скорость v связана с угловой скоростью ωω соотношением v = rω.v = rω. Здесь r = w / 2r = w / 2, так что v = (w / 2) ωv = (w / 2) ω и
E = 2Bℓ (w2ω) sinωt = Bℓwωsinωt. E = 2Bℓ (w2ω) sinωt = Bℓwωsinωt.20,15
Заметив, что площадь петли A = ℓwA = ℓw и учитывая N петель, мы находим, что
E = NABωsinωtE = NABωsinωt20.16
— ЭДС, индуцированная в катушке генератора из N, витков и области A, , вращающейся с постоянной угловой скоростью ωω в однородном магнитном поле B . Это также можно выразить как
E = E0sinωtE = E0sinωt20,17
где
— максимальная (пиковая) ЭДС.
Рис. 20.27. Мгновенная скорость вертикальных отрезков провода составляет угол θθ с магнитным полем. Скорость показана на рисунке зеленой стрелкой, и указан угол θθ.На рис. 20.28 показан генератор, подключенный к лампочке, и график зависимости ЭДС от времени. Обратите внимание, что ЭДС колеблется от положительного максимума E0E0 до отрицательного максимума −E0. − E0. Между тем, ЭДС проходит через ноль, что означает, что в это время через лампочку протекает нулевой ток. Таким образом, лампочка на самом деле мигает с частотой 2 f , потому что за период происходит два перехода через ноль. Поскольку такой переменный ток используется в домах по всему миру, почему мы не замечаем мерцания света? В Соединенных Штатах частота переменного тока составляет 60 Гц, поэтому свет мигает с частотой 120 Гц.Это быстрее, чем частота обновления человеческого глаза, поэтому вы не заметите мерцания огней. Кроме того, другие факторы препятствуют такому быстрому включению и выключению различных типов лампочек, поэтому светоотдача немного сглаживается .
Рис. 20.28 ЭДС генератора направляется на лампочку с показанной системой колец и щеток. График показывает зависимость ЭДС генератора от времени. E0E0 — пиковая ЭДС. Период равен T = 1 / f = 2π / ω, T = 1 / f = 2π / ω, где f — частота, с которой катушка вращается в магнитном поле.Виртуальная физика
Генератор
Используйте это моделирование, чтобы узнать, как работает электрический генератор. Управляйте подачей воды, которая заставляет водяное колесо вращать магнит. Это вызывает ЭДС в соседней катушке провода, которая используется для зажигания лампочки. Вы также можете заменить лампочку вольтметром, который позволяет увидеть полярность напряжения, которая меняется с положительной на отрицательную.
Проверка захвата
Установите количество проволочных петель равным трем, силу стержневого магнита примерно на 50 процентов и площадь петли на 100 процентов.Обратите внимание на максимальное напряжение на вольтметре. Предполагая, что одно из основных делений вольтметра составляет 5 В, какое максимальное напряжение при использовании только однопроводной петли вместо трехпроводной петли?
- 5 В
- 15 В
- 125 В
- 53 В
В реальной жизни электрические генераторы сильно отличаются от рисунков в этом разделе, но принципы те же. Источником механической энергии, вращающей катушку, может быть падающая вода — гидроэнергия — пар, образующийся при сжигании ископаемого топлива, или кинетическая энергия ветра.Рисунок 20.29 показывает паровую турбину в разрезе; пар движется по лопастям, соединенным с валом, который вращает катушку внутри генератора.
Рисунок 20.29 Паротурбинный генератор. Пар, образующийся при сжигании угля, ударяет по лопаткам турбины, вращая вал, соединенный с генератором. (Источник: Nabonaco, Wikimedia Commons)
Еще одно очень полезное и распространенное устройство, использующее магнитную индукцию, называется трансформатором. Трансформаторы делают то, что подразумевает их название — они преобразуют напряжение из одного значения в другое; термин напряжение используется, а не ЭДС, потому что трансформаторы имеют внутреннее сопротивление.Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшая бытовая техника имеют встроенный в подключаемый модуль трансформатор, который преобразует 120 В или 240 В переменного тока в любое напряжение, используемое устройством. На рисунке 20.30 показаны два разных трансформатора. Обратите внимание на катушки проводов, которые видны на каждом устройстве. Назначение этих катушек поясняется ниже.
Рис. 20.30 Слева изображен обычный трансформатор с многослойным сердечником, который широко используется в передаче электроэнергии и в электроприборах.Справа — тороидальный трансформатор, который меньше трансформатора с многослойным сердечником для той же мощности, но более дорогой в изготовлении из-за оборудования, необходимого для наматывания проводов в форме пончика.
На рисунке 20.31 показан трансформатор с многослойной обмоткой, который основан на законе индукции Фарадея и очень похож по конструкции на устройство Фарадея, которое использовалось для демонстрации того, что магнитные поля могут генерировать электрические токи. Две катушки с проволокой называются первичной и вторичной катушками.При нормальном использовании входное напряжение подается на первичную катушку, а вторичная обмотка создает преобразованное выходное напряжение. Железный сердечник не только улавливает магнитное поле, создаваемое первичной катушкой, но также его намагниченность увеличивает напряженность поля, что аналогично тому, как диэлектрик увеличивает напряженность электрического поля в конденсаторе. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток проходит через вторичную катушку, вызывая выходное напряжение переменного тока.
Рисунок 20.31 Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник. Магнитное поле, создаваемое первичной катушкой, в основном ограничивается и увеличивается сердечником, который передает его на вторичную катушку. Любое изменение тока в первичной катушке вызывает ток во вторичной катушке.
Ссылки на физику
Магнитная веревочная память
Чтобы отправить людей на Луну, программе Apollo нужно было спроектировать бортовую компьютерную систему, которая была бы надежной, потребляла мало энергии и была достаточно маленькой, чтобы поместиться на борту космического корабля.В 1960-х годах, когда была запущена программа Apollo, целые здания регулярно выделялись для размещения компьютеров, вычислительная мощность которых была бы легко превзойдена самыми простыми современными портативными калькуляторами.
Чтобы решить эту проблему, инженеры Массачусетского технологического института и крупного оборонного подрядчика обратились к памяти с магнитным канатом , которая была ответвлением аналогичной технологии, использовавшейся до того времени для создания запоминающих устройств с произвольным доступом. В отличие от памяти с произвольным доступом, память с магнитным тросом была постоянным запоминающим устройством, которое содержало не только данные, но и инструкции.Таким образом, на самом деле это было больше, чем память: это была компьютерная программа, зашитая зашитой.
Компонентами магнитной веревочной памяти были проволока и железные кольца, которые назывались сердечниками . Железные сердечники служили трансформаторами, как показано на предыдущем рисунке. Однако вместо того, чтобы наматывать провода несколько раз вокруг сердечника, отдельные провода пропускали через сердечники только один раз, создавая эти одновитковые трансформаторы. До 63 проводов word может проходить через одну жилу вместе с одним проводом бит .Если словарный провод проходит через данный сердечник, импульс напряжения на этом проводе вызывает в разрядном проводе ЭДС, которая интерпретируется как , . Если бы провод слова не проходил через сердечник, на разрядном проводе не наведалась бы ЭДС, что было бы интерпретировано как ноль .
Инженеры будут создавать программы, которые будут жестко встраиваться в эти магнитные тросы. Процесс подключения мог занять до месяца, так как рабочие кропотливо протягивали провода через одни жилы и вокруг других.Если были допущены какие-либо ошибки в программировании или подключении, отладка была бы чрезвычайно трудной, если не невозможной.
Эти модули хорошо справились со своей задачей. Им приписывают исправление ошибки астронавта в процедуре посадки на Луну, что позволило Аполлону-11 совершить посадку на Луну. Сомнительно, чтобы Майкл Фарадей когда-либо мог представить себе такое применение магнитной индукции, когда открыл ее.
Проверка захвата
Если бы разрядный провод был дважды обмотан вокруг каждой жилы, как это повлияло бы на напряжение, индуцированное в разрядном проводе?
- Если количество витков вокруг провода удвоено, ЭДС уменьшается вдвое.
- Если количество витков вокруг провода удвоится, ЭДС не изменится.
- Если количество витков вокруг провода удваивается, то удваивается и ЭДС.
- Если количество витков вокруг провода удвоено, ЭДС в четыре раза превышает начальное значение.
Для трансформатора, показанного на рисунке 20.31, выходное напряжение VSVS из вторичной катушки почти полностью зависит от входного напряжения VPVP на первичной катушке и количества петель в первичной и вторичной катушках.Закон индукции Фарадея для вторичной обмотки дает наведенное выходное напряжение VSVS равным
. VS = −NSΔΦΔt, VS = −NSΔΦΔt,20,19
где NSNS — количество витков во вторичной катушке, а ΔΦ / ΔtΔΦ / Δt — скорость изменения магнитного потока. Выходное напряжение равно индуцированной ЭДС (VS = ES), (VS = ES) при небольшом сопротивлении катушки — разумное предположение для трансформаторов. Площадь поперечного сечения катушек одинакова с каждой стороны, как и напряженность магнитного поля, поэтому ΔΦ / ΔtΔΦ / Δt одинаковы с каждой стороны.Входное первичное напряжение VPVP также связано с изменением магнитного потока на
VP = −NPΔΦΔt.VP = −NPΔΦΔt.20,20
Из соотношения этих двух последних уравнений получаем полезное соотношение
VSVP = NSNP (3,07) .VSVP = NSNP (3,07).20,21
Это известно как уравнение трансформатора. Он просто заявляет, что отношение вторичного напряжения к первичному напряжению в трансформаторе равно отношению количества петель во вторичной катушке к количеству петель в первичной катушке.
Передача электроэнергии
Трансформаторышироко используются в электроэнергетике для повышения напряжения — так называемые повышающие трансформаторы — перед передачей на большие расстояния по высоковольтным проводам. Они также используются для снижения напряжения — так называемые понижающие трансформаторы — для подачи энергии в дома и на предприятия. Подавляющая часть электроэнергии вырабатывается с помощью магнитной индукции, когда катушка из проволоки или медный диск вращается в магнитном поле.Первичная энергия, необходимая для вращения катушек или диска, может быть получена различными способами. Гидроэлектростанции используют кинетическую энергию воды для привода электрогенераторов. Угольные или атомные электростанции создают пар для привода паровых турбин, вращающих змеевики. Другие источники первичной энергии включают ветер, приливы или волны на воде.
После выработки энергии ее необходимо передать потребителю, что часто означает передачу мощности на сотни километров. Для этого напряжение силовой установки повышается с помощью повышающего трансформатора, который повышается, и ток уменьшается пропорционально, потому что
Ptransmitted = ItransmittedVtransmitted⋅Ptransmitted = ItransmittedVtransmitted⋅20.22
Более низкий ток ItransmittedItransmitted в передающих проводах снижает потери Джоулей , которые представляют собой нагрев провода из-за протекания тока. Этот нагрев вызван небольшим, но ненулевым сопротивлением RwireRwire проводов передачи. Потери энергии в окружающую среду из-за этого тепла составляют
Plost = Itransmitted2Rwire, Plost = Itransmitted2Rwire,20,23
, который пропорционален текущему в квадрате в проводе передачи.Вот почему передаваемый ток ItransmittedItransmitted должен быть как можно меньше, и, следовательно, напряжение должно быть большим для передачи мощности Ptransmitted⋅Ptransmitted
Для передачи мощности на большие расстояния используются напряжения от 120 до 700 кВ. Напряжение повышается на выходе из электростанции повышающим трансформатором, как показано на рисунке 20.32.
Рисунок 20.32 Трансформаторы изменяют напряжение в нескольких точках системы распределения электроэнергии.Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях от 120 до 700 кВ для ограничения потерь энергии. Местное распределение электроэнергии по районам или промышленным предприятиям проходит через подстанцию и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.
После подачи электроэнергии в населенный пункт или промышленный центр напряжение на подстанции понижается до 5–30 кВ.Наконец, в частных домах или на предприятиях мощность снова понижается до 120, 240 или 480 В. Каждое повышающее и понижающее преобразование выполняется с помощью трансформатора, разработанного на основе закона индукции Фарадея. Мы прошли долгий путь с тех пор, как королева Елизавета спросила Фарадея, как можно использовать электричество.
На видео ниже кривошип одного из устройств поворачивается для передачи механической энергии, в результате чего на выходе получается электрическая энергия. Ручка другого устройства повернута, потому что электрический ввод работает как двигатель.Последний отрезок пленки выравнивает ручки устройств и затем поворачивает генератор на 1 оборот. Вы можете заметить, что ручка «двигателя» поворачивается примерно на 60% оборота, что указывает на эффективность примерно 60% для замены генератора / двигателя. Но это почти вдвое выше эффективности системы производства электроэнергии в США, которая дает электричество с КПД около 33%! Причина в том, что эта пара генератор / двигатель не должна проходить через «тепловое узкое место», накладываемое вторым законом термодинамики на обычные электростанции, работающие как тепловые машины. Высокая эффективность передачи энергии от генератора к двигателю находит широкое применение при эксплуатации дизель-электрических локомотивов. Трудно механически передать энергию от мощных дизельных двигателей на колеса локомотива, которые имеют металлический контакт со стальными рельсами с низким коэффициентом трения. Таким образом, мощность дизельных двигателей используется для запуска генератора, а вырабатываемая электроэнергия используется для приведения в действие тяговых электродвигателей, приводящих в движение колеса.Вырабатываемая электроэнергия может очень медленно и плавно передаваться на колеса с помощью электродвигателей, приводящих в движение оси. На большом локомотиве со стальными колесами нельзя «щелкнуть сцеплением»! Вы просто сидели и крутили колеса, пока не расплавили рельсы. | Индекс Концепции трансформатора Концепции магнитного поля |
Детский электродвигатель-генератор
Есть вопросы? Обратитесь в службу поддержки клиентов.406-256-0990 или же Живой чат в
- Возраст 10+
- На складе, готово к отправке
- Это нужно быстро? Смотрите варианты доставки в корзине.
Исследуйте чудеса электричества, создав и экспериментируя с работающими электродвигателем и генератором !. Читать Более
Участники My Science Perks зарабатывают не менее $ 0.76 обратно на этот товар. Войдите или создайте Бесплатный HST Аккаунт для начала зарабатывать сегодня
ОПИСАНИЕ
Исследуйте чудеса электричества, создав и экспериментируя с работающими электродвигателем и генератором! Вырабатывайте электричество, запускайте двигатели, производите свет и многое другое.Этот полный комплект включает все компоненты и 30-страничный иллюстрированный путеводитель с идеями проектов.
Эти вопросы могут помочь вам составить хороший проект для научной выставки: Как проходит электричество по цепи? Как можно контролировать скорость своего самодельного мотора? Сколько мощности у вашего самодельного генератора?
См. Ниже инструкции Science Buddies и советы по поиску и устранению неисправностей при использовании этого набора ниже.
БОЛЬШЕ ИНФОРМАЦИИ
ВКЛАДКА С СОДЕРЖАНИЕМ
Электродвигатель-генератор
- Компасы
- Магнитный провод
- Дисковые, неодимовые магниты и магниты-защелки
- Весна
- Сердечник из мягкого железа
- Светодиод (LED)
- Железные опилки
- Комплектующие и монтажные детали в ассортименте
- Проектная книга
ТАБЛИЦА ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК
- Описание
- ЭЛЬ-МОТРГЕН
- Технические характеристики
- СОДЕРЖАНИЕ
Мы хотим, чтобы этот предмет был живым, когда вы его получите! Следовательно, нам необходимо знать, когда вы будете дома, чтобы получить его (минимизируя воздействие стихии).Укажите дату доставки, среда — Пятница, это минимум 7 дней с сегодняшнего дня.
Физика и инженерия / Электричество и электроника / Двигатели, генераторы, редукторы
/ физика-инженерия /, / физика-техника / электричество-электроника /, / физика-инженерия / электричество-электроника / двигатели-генераторы /
Мы поняли. Наука может быть беспорядочной.Но продукты и услуги Home Science Tools справятся с этим.
Наша продукция долговечна, надежна и доступна по цене, позволяя вам перемещаться из полевых условий в лабораторию и на кухню. Они не подведут вас, независимо от того, с чем они столкнутся. Будь то (чрезмерно) нетерпеливые молодые ученые из года в год или строгие требования, которые возникают раз в жизни.
И если ваш научный запрос идет не так, как ожидалось, вы можете рассчитывать на помощь нашей службы поддержки клиентов. Рассчитывайте на дружеские голоса на другом конце телефона и советы экспертов в вашем почтовом ящике.Они не будут счастливы, пока вы не станете счастливыми.
Нижняя строка? Мы гарантируем, что наши продукты и услуги не испортят ваше научное исследование, каким бы беспорядочным оно ни было.
Вопросы? Свяжитесь с нашей службой поддержки клиентов.
Электрические машины — генераторы и двигатели | Электродинамика
11.2 Электрические машины — генераторы и двигатели (ESCQ4)
Мы видели, что когда проводник перемещается в магнитном поле или когда перемещается магнит около проводника в проводнике течет ток.Величина тока зависит от:
- скорость, с которой проводник испытывает изменяющееся магнитное поле,
- количество витков, составляющих проводник, а
- положение плоскости проводника относительно магнитного поле.
Рисунок 11.1: Серия рисунков, показывающих, что магнитный поток через проводник зависит от от угла, который плоскость проводника составляет с магнитным полем.Величайший поток проходит через проводник, когда плоскость проводника перпендикулярна силовые линии магнитного поля, как на Рисунке 11.1 (а). Номер силовых линий, проходящих через проводник, уменьшается, так как проводник вращается до тех пор, пока он параллелен магнитному полю Рис. 11.1 (c).
Если наведенная ЭДС и ток в проводнике были представлены как функция угла между плоскостью проводника и магнитным полем для проводника, имеющего постоянной скорости вращения, то наведенные ЭДС и ток будут варьируются, как показано на рисунке 11.2. Ток меняется около нуля. и известен как переменный ток (сокращенно AC).
Рисунок 11.2: Изменение наведенной ЭДС и тока как угол между плоскостью проводника и проводником. магнитное поле изменяется.
Угол изменяется как функция времени, поэтому приведенные выше графики могут быть нанесены на временную ось. также.
Вспомните закон Фарадея, о котором вы узнали в 11 классе:
- Закон Фарадея
ЭДС, \ (\ mathcal {E} \), индуцированная вокруг одиночной петли проводника, пропорциональна скорость изменения магнитного потока φ через площадь, \ (A \) петли.Математически это можно выразить как:
\ [\ mathcal {E} = -N \ frac {\ Delta \ phi} {\ Delta t} \]где \ (\ phi = B · A \ cos \ theta \) и \ (B \) — сила магнитного поля.
Закон Фарадея связывает наведенную ЭДС со скоростью изменения магнитного потока, который является произведением напряженности магнитного поля и поперечного сечения область, через которую проходят силовые линии. Площадь поперечного сечения изменяется при вращении петли проводника. что дает фактор \ (\ cos \ theta \).\ (\ theta \) — угол между нормаль к поверхности витка проводника и магнитному полю. Когда проводник замкнутого контура меняет ориентацию по отношению к магнитному полю, величина магнитного потока, проходящего через область контура, изменяется, и в проводящем контуре индуцируется ЭДС.
Электрогенераторы (ESCQ5)
Генератор переменного тока (ESCQ6)
Используется принцип вращения проводника в магнитном поле для генерации тока. в электрических генераторах.Генератор преобразует механическую энергию (движение) в электрическую.
- Генератор
Генератор — это устройство, преобразующее механическую энергию в электрическую.
Схема простого генератора переменного тока показана на рисунке 11.3. Проводник представляет собой катушку с проволокой, помещенную в магнитное поле. В проводник вручную вращается в магнитном поле. Это порождает чередование ЭДС.Переменный ток нужно передать от проводника к нагрузке, это система, для функционирования которой требуется электрическая энергия.
Нагрузка и проводник соединены контактным кольцом. Скользящее кольцо это соединитель, который может передавать электричество между вращающимися частями машины. Он состоит из кольца и щеток, одна из которых неподвижна. по отношению к другому. Здесь кольцо прикрепляется к проводнику и щеткам. прикреплены к нагрузке.Ток генерируется во вращающемся проводнике, проходит в контактные кольца, которые вращаются против щеток. Ток передается через щетки в нагрузку, и, таким образом, система получает питание.
Рисунок 11.3: Схема генератора переменного тока.
Направление тока меняется с каждой половиной оборота катушки. Когда одна сторона петли переходит в другую полюс магнитного поля, ток в контуре меняет направление.Этот тип тока, который меняет направление, известен как переменный. current, а на рис. 11.4 показано, как это происходит. как проводник вращается.
Рисунок 11.4: Красные (сплошные) точки обозначают ток, исходящий со страницы, а крестики показывают текущий ток. переходя на страницу. Генераторы переменного токатакже известны как генераторы переменного тока. Они используются в легковых автомобилях для зарядки автомобильного аккумулятора.
Генератор постоянного тока (ESCQ7)
Простой генератор постоянного тока устроен так же, как генератор переменного тока, за исключением того, что представляет собой одно контактное кольцо, которое разделено на две части, называемые коммутатором, поэтому ток в внешняя цепь не меняет направление.Схема генератора постоянного тока показана на Рисунок 11.5. Коммутатор с разъемным кольцом учитывает изменение направление тока в контуре, создавая тем самым постоянный ток (DC), проходящий через щетки и в цепь. Ток в петле меняет направление, но если вы посмотрите Внимательно изучив 2D-изображение, вы увидите, что секция коммутатора с разъемным кольцом также изменилась. какой стороны цепи он касается. Если ток одновременно меняет направление что коммутатор меняет местами внешнюю цепь всегда будет иметь ток, идущий в в том же направлении.
Рисунок 11.5: Схема генератора постоянного тока.
Форма ЭДС от генератора постоянного тока показана на рисунке 11.6. ЭДС не является постоянной, но представляет собой абсолютное значение синусоидальной / косинусоидальной волны.
Рисунок 11.6: Изменение ЭДС в генераторе постоянного тока.
Генераторы переменного и постоянного тока (ESCQ8)
Проблемы, связанные с замыканием и разрывом электрического контакта с движущейся катушкой, — это искрение и нагрев, особенно если генератор вращается с высокой скоростью.Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.
Если вращается магнитное поле, а не катушка / проводник, то в генераторе переменного тока (генераторе переменного тока) щетки не нужны, поэтому генератор переменного тока не будет иметь тех же проблем, что и генераторы постоянного тока. Те же преимущества переменного по сравнению с постоянным током для конструкции генератора применимы и к электродвигателям. В то время как электродвигатели постоянного тока нуждаются в щетках для электрического контакта с движущимися катушками провода, электродвигатели переменного тока этого не делают.Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы. Электродвигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки с проволокой, заставляющими магнит вращаться. Двигатель постоянного тока зависит от замыкания и размыкания щеточных контактов. соединения для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).
Электродвигатели (ESCQ9)
Основные принципы работы электродвигателя такие же, как и у генератора, за исключением того, что электродвигатель преобразует электрическую энергию в механическую энергию (движение).
- Электродвигатель
Электродвигатель — это устройство, преобразующее электрическую энергию в механическую.
Если поместить движущуюся заряженную частицу в магнитное поле, она испытал бы силу, называемую силой Лоренца .
- Сила Лоренца
Сила Лоренца — это сила, испытываемая движущейся заряженной частицей в электрическом и магнитное поле.{-1} $} \)) и \ (B \) — напряженность магнитного поля (в теслах, Тл).
На этой диаграмме показан положительный заряд, движущийся между двумя противоположными полюсами магнитов. В направление движения заряда указано оранжевой стрелкой. Он испытает Сила Лоренца, которая будет направлена зеленой стрелкой.
Токоведущий провод, в котором ток идет в направлении оранжевого стрелка, также будет испытывать магнитную силу, зеленая стрелка, из-за Лоренца сила на движущиеся отдельные заряды в текущем потоке.
Если направление тока обратное для того же направления магнитного поля, то направление магнитной силы также будет обратным, как показано на этой диаграмме.
Мы можем, если есть два параллельных проводника с током в противоположных направлениях, они будут испытывать магнитные силы в противоположных направлениях.
Электродвигатель работает за счет использования источника ЭДС, заставляя ток течь по петле проводник так, чтобы сила Лоренца на противоположных сторонах петли была противоположной направления, которые могут вызвать вращение петли вокруг центральной оси.
Сила, действующая на проводник с током из-за магнитного поля, называется законом Ампера.
Направление магнитной силы перпендикулярно обоим направлениям потока тока и направления магнитного поля и можно найти используя Правило для правой руки , как показано на рисунке ниже. Используйте ваш правая ; ваш первый палец указывает в сторону ток, второй палец по направлению магнитного поля и большой палец будет указывать в направлении силы.
И двигатели, и генераторы можно объяснить с помощью катушки, вращающейся в магнитном поле. В генераторе катушка присоединена к внешней цепи, которая вращается, что приводит к изменению потока, вызывающему ЭДС. В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, создавая крутящую силу (называемую крутящим моментом , , произносится как «разговор»), которая заставляет ее вращаться.
Если используется переменный ток, для создания электродвигателя переменного тока необходимы два контактных кольца.Двигатель переменного тока показан на рисунке 11.7
Рисунок 11.7: Схема двигателя переменного тока.
Если используется постоянный ток, для создания двигателя постоянного тока требуются коммутаторы с разъемным кольцом. Это показано на рисунке 11.8.
Рисунок 11.8: Схема двигателя постоянного тока.
Реальные приложения (ESCQB)
Автомобили
В автомобиле есть генератор. Когда двигатель автомобиля работает, Генератор заряжает аккумулятор и питает электрическую систему автомобиля.
Генераторы
Постарайтесь выяснить, какие значения тока вырабатываются генераторами переменного тока для разных типов машин. Сравните их, чтобы понять, какие числа имеют смысл в реальном мире. Вы найдете разные значения для автомобилей, грузовиков, автобусов, лодок и т. Д. Попытайтесь выяснить, какие другие машины могут иметь генераторы переменного тока.
Автомобиль также содержит электродвигатель постоянного тока, стартер, который вращает двигатель и запускает его. Стартер состоит из очень мощного электродвигателя постоянного тока и соленоида стартера, прикрепленного к двигателю.Стартерному двигателю требуется очень большой ток для запуска двигателя, и он соединен с аккумулятором с помощью больших кабелей для передачи большого тока.
Производство электроэнергии
Для производства электроэнергии для массового распределения (в дома, офисы, фабрики и т. д.) обычно используются генераторы переменного тока. Электроэнергия, производимая массивными Электростанции обычно имеют низкое напряжение, которое преобразуется в высокое напряжение. это эффективнее распределять электроэнергию на большие расстояния в виде высоких напряжение в линиях электропередач.
Затем высокое напряжение снижается до 240 В для потребления в домах и офисах. Этот обычно делается в пределах нескольких километров от того места, где он будет использоваться.
Рисунок 11.9: Генераторы переменного тока используются на электростанциях (все типы, гидро- и угольные станции) для выработки электроэнергии.
Зарегистрируйтесь, чтобы получить стипендию и возможности карьерного роста. Используйте практику Сиявулы, чтобы получить наилучшие возможные оценки.
Зарегистрируйтесь, чтобы разблокировать свое будущееГенераторы и двигатели
Упражнение 11.1Укажите разницу между генератором и двигателем.
Электрический генератор — это механическое устройство для преобразования энергии источника в электрическую.
Электродвигатель — это механическое устройство для преобразования электрической энергии из источника в другую форму энергии.
Используйте закон Фарадея, чтобы объяснить, почему в катушке, вращающейся в магнитном поле, индуцируется ток.
Закон Фарадея гласит, что изменяющийся магнитный поток может индуцировать ЭДС, когда катушка вращается в магнитном поле. Вращение может изменять магнитный поток, тем самым вызывая ЭДС.
Если вращение катушки такое, что поток не меняется, т.е. поверхность катушки остается параллельно магнитному полю, то наведенной ЭДС не будет.
Объясните основной принцип работы генератора переменного тока, в котором катушка механически вращается в магнитном поле.Нарисуйте диаграмму, подтверждающую ваш ответ.
Решение еще не доступно
Объясните, как работает генератор постоянного тока. Нарисуйте диаграмму, подтверждающую ваш ответ. Также опишите, чем генератор постоянного тока отличается от генератора переменного тока.
Решение еще не доступно
Объясните, почему катушка с током, помещенная в магнитное поле (но не параллельно полю), будет вращаться. Обратитесь к силе, действующей на движущиеся заряды со стороны магнитного поля и крутящего момента на катушке.
Катушка с током в магнитном поле испытывает силу с обеих сторон катушки, параллельно магнитному полю, создавая крутящую силу (называемую крутящим моментом), которая заставляет его вращаться. Любая катушка, по которой проходит ток, может чувствовать силу в магнитном поле. Сила обусловлена Магнитная составляющая силы Лоренца на движущихся зарядах в проводнике, называемая законом Ампера. Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движется в противоположных направлениях.
Объясните основной принцип работы электродвигателя. Нарисуйте диаграмму, подтверждающую ваш ответ.
Решение еще не доступно
Приведите примеры использования генераторов переменного и постоянного тока.
Автомобили (как переменного, так и постоянного тока), производство электроэнергии (только переменного тока), везде, где требуется электропитание.
Приведите примеры использования двигателей.
Насосы, вентиляторы, бытовая техника, электроинструменты, бытовая техника, оргтехника.
.