Ковкий чугун где применяется: Ковкий чугун — преимущества, маркировка, применение

Содержание

Ковкий чугун — преимущества, маркировка, применение

Ковкий чугун

Ковкий чугун – это сплав железа и углерода, который принимает вид графитовых хлопьев в структуре металла. Ковкий чугун производят из заготовок белого чугуна путём длительной термообработки. Отжиг меняет структуру металла, превращая цементит в графит (процесс граффитизации). Термообработка меняет механические свойства сплава — уменьшается прочность и твёрдость, металл становится пластичным.

Отжиг состоит из 5 этапов:

  • Плавный нагрев заготовки в течение 25 часов до температуры 950 — 1000 С.
  • Выдержка при температуре 950 – 1000 С на протяжении 15 -20 часов — первый этап графитизации.
  • Постепенное охлаждение до температуры 740 — 720 С, длительность 6 — 12 часов.
  • Продолжительная выдержка заготовки при температуре 720 С или постепенное снижение температуры с 760 до 720 С. Продолжительность — около 30 часов — второй этап графитизации.
  • Полное охлаждение заготовки.

Также, исходя из требуемых свойств отливки, можно выделить 4 способа отжига.Они отличаются четвертым этапом (на диапазоне температур от 760 — 720 С). Остальные этапы остаются идентичными. Ниже перечислены различные вариации 4 этапа для достижения тех или иных свойств:

Вариант 1. Быстрое охлаждение до температуры ниже критической  720 С и выдержка 30 часов при этой температуре.

Вариант 2. Постепенное охлаждение на протяжении 30 часов, в критическом интервале температур от 760 – 720 С.

Вариант 3. Ступенчатое охлаждение в интервале температур от 760 до 720 С.

Вариант 4. Технология чередующегося нагрева выше 760 С и охлаждения ниже 720 С.

Рекомендуемый химический состав ковкого чугуна характеризуется пониженным содержанием графитизирующих элементов C=2,4-2,9%; Si=1,0-1,6%; C+Si=3,6-4,2%, что обусловлено необходимостью получения отливок из ковкого чугуна в литом состоянии со 100% отбелом по всему сечению отливки, по той простой причине, что при наличии в литой структуре чугуна пластинчатого графита, в процессе последующего проведения отжига будет формироваться пластинчатый графит (т.е. серый чугун), а не компактный, присущий ковкому чугуну.

Существуют 2 вида ковкого чугуна — черносердечный  и белосердечный. Черносердечный  ковкий чугун получают графитизирующим отжигом ( эта технология используется в Украине) Белосердечный ковкий чугун получают с помощью процесса обезуглероживающего отжига в окислительной среде. При этом отливки располагают в контейнерах вместе с железной рудой при температуре 1000-1050°C в течение 60-70 ч. Такую технологию используют во Франции, Германии, Италии и других странах. Основными достоинствами такого чугуна являются повышенная вязкость и свариваемость без предварительной и последующей термической обработки.

Преимущества ковкого чугуна

Ковкий чугун имеет следующие преимущества:

  1. Сочетание отличных механических свойств и высокой обрабатываемости резанием
  2. Однородность структуры по всему сечению отливки
  3. Отсутствие внутренних напряжений в отливке
  4. Способность воспринимать высокие знакопеременные нагрузки
  5. Хорошая коррозионностойкость

Ковкий чугун используется в производстве мелких тонкостенных отливок (3-50 мм) ответственного назначения, которые работают в условиях динамических знакопеременных нагрузок в автомобильной промышленности, тракторостроении и сельскохозяйственной технике. Из ковкого чугуна изготавливают коробки передач, детали приводных механизмов, шасси, рычаги, коленчатые и распределительные валы, детали сцепления, поршни дизельных двигателей, коромысла клапанов, фитинги и другие изделия.

Ковкий чугун — маркировка

Ковкий чугун маркируется буквами КЧ, за которыми следуют две цифры, отображающие предел прочности при растяжении σB (в кгс/мм2), а за ними, через дефис, следует одна или две цифры, отображающие относительное удлинение δ (в %), через дефис заканчивают маркировку буквы Ф или П, отобраражающие класс чугуна ферритный или перлитный. К примеру, КЧ 37-12-Ф означает — ковкий чугун ферритного класса с пределом прочности на растяжение не ниже — 37 кг/мм2 и относительным удлинением не ниже — 12%.

Классификация ковкого чугуна

В зависимости от микроструктуры металлической матрицы ковкий чугун подразделяют на ферритный (Ф) и перлитный (П):

  • Ковкий чугун ферритного класса с ферритной или феррито-перлитной микроструктурой металлической матрицы, могут быть следующих марок: КЧ 30-6, КЧ 33-8, КЧ 35-10, КЧ 37-12
  • Ковкий чугун перлитного класса с перлитной микроструктурой металлической матрицы, могут быть следующих марок: КЧ 45-7, КЧ 50-5, КЧ 55-4, КЧ 60-3, КЧ 65-3, КЧ 70-2, КЧ 80-1,5

Ковкий чугун — механические свойства

Механические свойства материала отливок из ковкого чугуна ферритного и перлитного классов должны удовлетворять требованиям ГОСТ 1215-79, приведенным в табл. 1.

Таблица 1: Механические свойства ковкого чугуна по ГОСТ 1215-79

 

МаркаВременное сопротивление
разрыву, МПа, (кгс/мм2)
Относительное
удлинение, %
Твердость по
Бринеллю, НВ
не менее
КЧ 30-6294 (30)6100-163
КЧ 33-8323 (33)8100-163
КЧ 35-10333 (35)10100-163
КЧ 37-12362 (37)12110-163
КЧ 45-7441 (45)7*150-207
КЧ 50-5490 (50)5*170-230
КЧ 55-4539 (55)4*192-241
КЧ 60-3588 (60)3200-269
КЧ 65-3637 (65)3212-269
КЧ 70-2686 (70)2241-285
КЧ 80-1,5784 (80)1,5270-320

Примечание: * По согласованию изготовителя с потребителем допускается понижение на 1%.

Ковкий чугун — химический состав

Рекомендуемый химический состав ковкого чугуна согласно ГОСТ 1215-79, приведен в табл. 2.

Таблица 2: Химический состав ковкого чугуна по ГОСТ 1215-79

МаркаМассовая доля, %
Основные компонентыПримеси, не более
CSiC+SiMnPSCr
Ферритного класса
КЧ 30-62,6-2,91,0-1,63,7-4,20,4-0,60,180,200,08
КЧ 33-82,6-2,91,0-1,63,7-4,20,4-0,60,180,200,08
КЧ 35-102,5-2,81,1-1,33,6-4,00,3-0,60,120,200,06
КЧ 37-122,4-2,71,2-1,43,6-4,00,2-0,40,120,060,06
Перлитного класса
КЧ 45-72,5-2,81,1-1,33,6-3,90,3-1,00,100,200,08
КЧ 50-52,5-2,81,1-1,33,6-3,90,3-1,00,100,200,08
КЧ 55-42,5-2,81,1-1,33,6-3,90,3-1,00,100,200,08
КЧ 60-32,5-2,81,1-1,33,6-3,90,3-1,00,100,200,08
КЧ 65-32,4-2,71,2-1,43,6-3,90,3-1,00,100,060,08
КЧ 70-22,4-2,71,2-1,43,6-3,90,3-1,00,100,060,08
КЧ 80-1,52,4-2,71,2-1,43,6-3,9
0,3-1,0
0,100,060,08

 

Применение ковкого чугуна

С экономической точки зрения, применение отливок из ковкого чугуна всегда обосновано. Отливки из ковкого чугуна значительно дешевле, чем отливки из стали.

Ковкий чугун широко используются в автомобильной промышленности и производстве тракторов, а также других отраслях:

  • Машиностроительные предприятия используют отливки в основном на ферритной основе и относительно немного на перлитной. Но литейно-механические свойства ковкого чугуна на перлитной основе значительно выше.
  • Перлитный ковкий чугун применяется в сельском хозяйстве как современный конструкционный сплав и заменитель углеродистой стали. Ковкий чугун привлекает своими высокими эксплуатационными, конструкционными и технологическими свойства, а также зачастую имеет лучшее сочетание этих характеристик.

Ключевая особенность ковкого чугуна – это его применение в производстве как деталей с небольшим весом (например, поршневые кольца), так и крупных элементов с весом до 150т независимо от толщины стенки отливки. Изделия из ковкого чугуна могут также подвергаться необходимой термической и механической обработке.

Хорошим примером использования ковкого чугуна, который заменил стальные изделия — это коленчатые валы для двигателей больших дизельных автомобилей и тракторов. При этом преимуществом чугунного изделия является не только низкая цена (по сравнению со сталью), но и отличные эксплуатационные свойства (гашение вибрации, работа при высоких температурах).

Таблица 3. Чугуны ковкие, их основные свойства и применение

 

МаркаНВСвойства и применение
КЧ 35-10 КЧ37-12160Чугуны ферритного класса используют для производства деталей,

эксплуатируемых при высоких динамических и статических нагрузках

(картеров, редукторов, ступиц, крюков, скоб, задних мостов, кронштейнов)

КЧ 30-6

КЧ 33-8

160Для изготовления менее ответственных деталей

(хомутов, гаек, вентилей, деталей сельскохозяйственных машин,

глушителей, фланцев, муфт, тормозных деталей, педалей,

гаечных ключей, колодок, кронштейнов)

КЧ 45-7203Ковкие чугуны перлитного класса марок обладают высокой прочностью,

умеренной пластичностью и хорошими антифрикционными свойствами.

Из них получают вилки карданных валов, шестерни, червячные колеса,

поршни, подшипники, звенья и ролики конвейерных цепей, втулки,

муфты, тормозные колодки, коленчатые валы

КЧ 50-5226
КЧ 55-4236
КЧ 60-3264
КЧ 65-3264
КЧ 70-2280
КЧ 80-1,5314

 

 

 

Основные свойства и области применения ковкого чугуна

Основные свойства и области применения ковкого чугуна

Основной особенностью микроструктуры ковкого чугуна (КЧ), определяющей его свойства, является наличие компактных включений графита, что придает чугуну высокую прочность и пластичность. Обезуглероженный КЧ является единственным конструкционным чугуном, который хорошо сваривается и может быть использован для получения сварнолитых конструкций. Детали можно соединять дуговой сваркой в среде защитного газа и стыковой сваркой с оплавлением. Ковкий чугун хорошо поддается запрессовке, расчеканке и легко заполняет зазоры. Отливки из ферритного КЧ можно подвергать холодной правке, а из перлитного – правке в горячем состоянии.

Применяемый в промышленности ковкий чугун получается в результате графитизирующего отжига белого чугуна. Матрица ковкого чугуна может быть как ферритной, так и перлитной. Основные преимущества ковкого чугуна заключаются в однородности его свойств по сечению, практическом отсутствии напряжений в отливках, высоких механических свойствах и очень хорошей обрабатываемости резанием.

Механические свойства ковкого чугуна регламентируются ГОСТ 1215-79 (табл.1.14). В основу маркировки и стандартизации ковкого чугуна положен принцип регламентирования допустимых значений механических свойств при растяжении В и . Так же, как в сером и высокопрочном, в ковком чугуне твердость зависит главным образом от матрицы, а прочность и пластичность — от матрицы и графита.

В отличие от чугуна с шаровидным графитом, большое влияние оказывает не только форма, но и количество графита. В связи с этим максимальной прочности можно достичь при дисперсном перлите и малом количестве наиболее компактного графита, а наибольшей пластичности — при феррите и таком же графите.

Таблица 1.14 — Механические свойства ковкого чугуна по ГОСТ 1215-79

Кроме свойств, обусловленных ГОСТом, в некоторых случаях представляют интерес и другие свойства, приведенные в табл.1.15-1.17.

Таблица 1.15 – Механические свойства ковкого чугуна при растяжении и сжатии (не вошедшие в ГОСТ 1215-79)

Влияние химического состава на механические свойства ковкого чугуна проявляется в изменении структуры металла и степени легированности феррита и перлита.

Таблица 1.16 – Механические свойства ковкого чугуна при изгибе (не вошедшие в ГОСТ 1215-79)

Таблица 1.17 – Механические свойства ковкого чугуна при кручении и срезе (не вошедшие в ГОСТ 1215-79)

Углерод в ковком чугуне является главным элементом, изменение содержания которого непосредственно определяет механические свойства. Чем выше марка ковкого чугуна, тем ниже должно быть содержание углерода, так как при этом не только уменьшаются количество графита и его размеры, но и улучшается его форма.

Основные физические свойства ковкого чугуна различных типов приведены в табл.1.18.

Таблица 1.18 — Физические свойства ковкого чугуна

Влияние кремния на свойства ковкого чугуна в целом подобно рассмотренному выше его влиянию на свойства чугуна с шаровидным графитом. Повышение содержания кремния в допускаемых пределах увеличивает предел прочности и твердость и понижает коэффициент температурного расширения вследствие легирования феррита.

Марганец сверх количества, необходимого для связывания серы, оказывая тормозящее влияние на графитизацию и легируя феррит, снижает пластичность ковкого чугуна и повышает при этом прочность и твердость.

Сера, способствуя перлитизации структуры, повышает прочность и твердость ковкого чугуна. В КЧ сера, препятствуя ферритизации структуры, улучшает форму графита. Более совершенная форма графита при повышенном содержании серы делает перлитный ковкий чугун с отношением серы к марганцу в пределах 1,0-2,0 благоприятным конструкционным материалом.

Допустимое содержание фосфора в ковком чугуне обычно принимается до 0,12%. При повышении содержания фосфора в ковком чугуне механические свойства изменяются подобно механическим свойствам чугуна с шаровидным графитом. Понижение содержания фосфора вызывает смещение порога хрупкости ковкого чугуна в сторону отрицательных температур.

Действие большинства легирующих элементов на механические свойства ковкого чугуна в целом подобно рассмотренному ранее легированию серого чугуна. При этом следует, конечно же, иметь в виду, что технология производства ковкого чугуна предусматривает отжиг.

Отливки из ковкого чугуна широко используются во многих отраслях промышленности для широкого спектра номенклатуры деталей ответственного назначения: автомобилестроение, тракторное и сельскохозяйственной машиностроение, вагоностроение, судостроение, электропромышленность, станкостроение, санитарно-техническое и строительное оборудование, тяжелое машиностроение и пр. При этом масса отливок может быть от нескольких граммов до 250 кг, минимальная толщина стенок отливки 3 мм, максимальная для обезуглероженного чугуна 25 мм, для графитизированного 60 мм, а в отдельных случаях до 100 мм. Можно с уверенностью утверждать, что, обладая механическими свойствами, близкими к литой стали и ЧШГ, высоким сопротивлением ударным нагрузкам при комнатной и низких температурах, износостойкостью, лучшей, чем ЧШГ, обрабатываемостью резанием и свариваемостью, КЧ сохранит в ближайшие годы свое применение, особенно для мелких отливок, сварных конструкций, несмотря на склонность к образованию трещин и энергоемкость получения готовых отливок.



Ковкий чугун. Получение ковкого чугуна. Ковкий чугун применение.

Ковкий чугун получают отжигом белого доэвтектического чугуна. Хорошие свойства у отливок обеспечиваются, если в процессе кристаллизации и охлаждения отливок в форме не происходит процесс графитизации. Чтобы предотвратить графитизацию, чугуны должны иметь пониженное содержание углерода и кремния.

Диаграмма железо-графит. Диаграмма состояния железо-графит.

Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.

Отжиг ковкого чугуна

Отливки выдерживаются в печи при температуре 950…1000оС в течении 15…20 часов. Происходит разложение цементита:

Fe3C -> Feγ (C) +  C

Классификация чугунов. Маркировка чугунов.

Структура после выдержки состоит из аустенита и графита (углерод отжига). При медленном охлаждении в интервале 760…720oС, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).

При относительно быстром охлаждении (режим б, рисунок) вторая стадия полностью устраняется, и получается перлитный ковкий чугун.

Структура чугуна, отожженного по режиму в, состоит из перлита, феррита и графита отжига (получается феррито-перлитный ковкий чугун).

Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.

Различают 7 марок ковкого чугуна: три с ферритной (КЧ30–6) и четыре с перлитной (КЧ65–3) основой (ГОСТ 1215).

По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным (см. Высокопрочный чугун. Высокопрочный чугун с шаровидным графитом. Состав высокопрочного чугуна.) является ограничение толщины стенок для отливки и необходимость отжига.

Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках. Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы. Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.

Механические свойства металлов. Механические свойства сталей. Механические свойства сплавов.

Обозначаются индексом КЧ (высокопрочный чугун) и двумя числми, первое из которых показывает значение предела прочности, умноженное на 10-1, а второе – относительное удлинение — КЧ30-6.

Область применения ковкого чугуна — Энциклопедия по машиностроению XXL

Область применения Ковкий чугун применяется в основном для небольших отливок, работающих в условиях динамических нагрузок, а также требующих незначительной рихтовки. Главной причиной его ограниченного применения являются технологические затруднения в процессе изготовления отливок, необходимость длительной термической обработки, ограниченные допускаемые размеры сечений (не более 30—40 мм) и др.  [c.482]
Несмотря на большое разнообразие номенклатуры изделий и различные области применения, ковкий чугун используют главным образом при получении тонкостенного литья (толщина стенок 3—40 мм). Это связано прежде всего со стремлением обеспечить безусловное получение отбела и однородность свойств во всех сечениях отливки как при первичной кристаллизации белого чугуна, так и в процессе термической обработки. Требование равномерности толщины стенок отливок из ковкого чугуна является обязательным условием обеспечения высокого качества и экономичности производства изделий.  [c.112]

Области применения. Ковкий чугун как конструкционный материал широко применяют в различных отраслях машиностроения благодаря высоким физико-механическим свойствам отливок, несложной и стабильной технологии их производства и более низкой стоимости по сравнению с отливками из стали, поковками и штамповками. Основным потребителем отливок из ковкого чугуна является автомобиле-и тракторостроение, сельхозмашиностроение и другие отрасли промышленности (табл. 27).  [c.133]

КЧ 30-6 Области применения ковкого чугуна Санитарно-техническое и строительное оборудование арматура и фитинги, работающие при невысоких температуре и давлении  [c.339]

Область применения ковкого чугуна  [c.144]

Области применения 581 Чугун ковкий  [c.776]

Область применения шпилек с длиной ввинчиваемого резьбО вого конца I, 1 = d — для резьбовых отверстий в стальных, бронзовых и латунных деталях а достаточной пластичностью (fii не менее 8%) и деталях из титановых сплавов I, = 1.25d — для резьбовых отверстий в деталях из ковкого и серого чугуна, а также в стальных и бронзовых о пониженной пластичностью (6i менее 8%) /, = 2d — для резьбовых отверстий в деталях из легких сплавов.  [c.305]

Помимо отливок из серого чугуна, при изготовлении различных деталей машин широко применяют высокопрочный и ковкий чугуны. Эти чугуны по сравнению с обычным серым обладают более высокими качествами, что позволяет значительно уменьшить массу и удлинить срок эксплуатации деталей, а также расширить область применения чугуна при замене им других металлов.  [c.322]

Одна из конструкций крючковых цепей представлена на рис. 3.93. Эти цепи отливают из ковкого чугуна. Они допускают малые скорости. Основная область их применения — сельскохозяйственное машиностроение.  [c.406]

Ковкие чугуны. Получение, структура, химический состав, область применения, маркировка.  [c.157]

Область применения [10, 22, 32] высокопрочный чугун применяется как новый материал и как заменитель стали, ковкого чугуна и серого чугуна с пластинчатым графитом. По сравнению со сталью обладает большей износостойкостью, лучшими антифрикционными и антикоррозионными свойствами, лучшей обрабатываемостью. Вследствие меньшего удельного веса отливки легче стальных на 8—10%. Из высокопрочного чугуна, в отличие от ковкого, можно отливать детали любого сечения, веса и размеров.  [c.480]


Механические свойства и область применения отливок из ковкого чугуна (по ГОСТ 1215—59)  [c.481]

Сильно снижают обрабатываемость ковкого чугуна поверхностные дефекты, возникающие при отжиге в недостаточно герметизированной печи, имеющей окислительную атмосферу. В результате такого отжига образуется слой окалины, глубоко внедренной в приповерхностные слои отливки по границам зерен в обезуглеро-женном слое на глубину до 0,7—1 мм и неудаляющейся при пескоструйной и дробеструйной обработке. Создание защитной атмосферы в печи и защита отливок от окисления на всех стадиях графитизации позволяет почти полностью избавиться от этих дефектов и тем самым улучшить качество отливок и расширить области их применения.  [c.133]

Чугун. Серый, белый и ковкий чугун состав, особенности к область применения. Механические и технологические свойства чугуна. Термическая обработка чугуна. Применение чугуна для изготовления деталей кранов. Образование раковин, трещин и способы их распознавания.  [c.505]

Области применения чугунных отливок для обогреваемых элементов котлов ограничены требованиями табл. 3.97. При этом следует иметь в виду, что обогреваемые чугунные детали должны иметь диаметр условного прохода не более 60 мм. Как для обогреваемых деталей из чугуна, так и для необогреваемых нормированные показатели и объемы контроля должны соответствовать указанным в стандартах. Температура горячих продуктов сгорания, обогревающих детали из серого чугуна, не должна превышать 550 °С, а из ковкого чугуна — 650 °С. Предельные параметры для обогреваемых ребристых чугунных элементов с залитыми в их середину стальными трубами определяются свойствами металла стальных труб однако давление в них должно быть не более 9 МПа при температуре не выше 350°С. Применение серого чугуна марки Сч-10 допускается в обогреваемых и необогреваемых элементах при условии, что его фактическое временное сопротивление будет не ниже 120 МПа.  [c.147]

У каждого подшипникового материала есть своя область применения. Вкладыши из чугуна используют в подшипниках с большими удельными нагрузками на вкладыш при малых скоростях перемещения вала относительно вкладыша подшипника. Коэффициент трения у пары чугун — сталь выше, чем у стали с бронзой или баббитом. Но чугун значительно лучше переносит высокие удельные нагрузки без смятия. Чугун дешевле, чем другие антифрикционные сплавы. Антифрикционные серые, ковкие и высокопрочные чугуны имеют перлитную металлическую основу и повышенное содержание графита. Графит хорошо впитывает смазки, а при износе сам играет роль смазки. Графитовые включения должны быть средних размеров.  [c.243]

Составить отчет о проделанной работе, в который включить наименования и диаметры замеренных труб и фитингов, тип уплотнительного материала и область его применения и конструкцию трубных ключей. Описать, как можно отличить соединительную часть, изготовленную из ковкого чугуна, от стальной соединительной части.  [c.21]

Область применения чугунных отливок для необогреваемых элементов котлов, деталей трубопроводов и арматуры из серого, ковкого и высокопрочного чугуна см. в табл. 3.99. Чем больше условный диаметр прохода чугунных деталей, тем меньше допустимое значение давления. Чугун по своим литейным качествам и обрабатываемости резанием существенно превосходит сталь. Но изделия из серого чугуна плохо переносят динамические нагрузки. Чугун при повышенных температурах склонен к росту — детали, изготовленные из него, в результате изменений в строении графитных включений и окисления, несколько увеличиваются в размере при этом одновременно существенно снижаются механические свойства чугуна. Поэтому существуют ограничения применения чугунных деталей по температурам.  [c.161]

Замена ковкого чугуна этим новым материалом дает возможность резко сократить цикл отжига, и в связи с доступностью получения высокопрочного чугуна практически в любом литейном цехе расширяется область применения отливок со свойствами, присущими ковкому чугуну.  [c.253]


Ковкий чугун ( получение, структура, механические свойства, маркировка, области применения).  [c.20]

Такое разнообразие свойств и высокие значения их показателей обусловливагет широкую область применения ковкого чугуна (табл, 2) в столь же разнообразньк условиях нагружения, эксплуатации и видах напряженного состояния изгиба, кручения, растяжения, среза при знакопеременных и особенно ударных нагрузка , в различных условиях износа, повышенных давлений, температур, коррозионной среды.  [c.296]

Белый (или предельный) чугун имеет в изломе белый оттенак и мелкозернистую структуру. Он отличается высокой твердостьк и хрупкостью, что затрудняет его обработку и ограничивает область применения. Белый чугун перерабатывают (переделывают) в сталь и ковкий чугун. Ковкий чугун получают в результате томления (длительного нагрева и выдержки при высокой температуре) белого чугуна, вследствие чего изменяется его структура и повышается пластичность. Название ковкий чугун является условным ковать его нельзя. По механическим свойствам он занимает промежуточное положение между серым чугуном и стальным литьем и допускает некоторое изменение формы изделия в холодном состоянии.  [c.75]

В табл. 3.96 приводятся области применения чугунных отливок для необогреваемых элементов котлов, деталей трубопроводов и арматуры из серого, ковкого и высокопрочного чугуна. Чем больше условный диаметр прохода чугунных деталей, тем меньшее разрешается давление. Чугун по своим литейным качествам и обрабатываемости резанием существенно превосходит сталь. Но изделия из серого чугуна плохо цереносят динамические нагрузки. Чугун при повышенных температурах  [c.146]

Основной областью применения смешанной минералокерамики является точение и фрезерование ковких, высокопрочных, отбеленных, модифицированных чугунов, сталей, закаленных до 35-55 НКСэ и 56-65 НКСэ (табл. 4.4.7, 4.4.8). Оксидная и смешанная режущая керамика (см. табл. 4.4.4 и 4.4.6) успешно может использоваться также в качестве конструкционной керамики для изготовления деталей, стойких к воздействию абразивосодержащих и химически активных сред при отсутствии ударных и вибрационных нагрузок.  [c.754]

При всех вариантах содержания С и структуры, кроме ферритной, ковкий чугун отличается хорошими антифрикционными свойствами [3J, [4], [5J, [6], (71, [8 , что позволило ему завоевать значительную область применения взамен антифрикционных сплавов и цветных металлов. При легировании даже такилш доступными элементами, как Мп, Ti, Сг и Си. и соответствующей термической обработке ковкий чугун приобретает хорошую износостойкость при одновременном легировании хролюм и никелем достигается сочетание износостойкости с жаростойкостью, чю делает возможным использование такого тппа ковкого чугуна для производства деталей, работающих прн повышенных температурах 21, 19],  [c.296]

Высокопрочный чугун с шаровидным графитом находит все большее применение в машиностроительной промышленности. По прочности и пластическим свойствам он превышает все известные марки чугунов и приближается к среднеуглеродистым сталям. Высокопрочный чугун во многих случаях является полноценным заменителем среднеуглеродистой стали и ковкого Чугуна. Взамен стали из него изготовляют такие ответственные детали, как коленчатые валы тракторных, автомобильных и тепловозных двигателей. В этом случае достигается большой технико-экономический эффект вследствие упрошения технологии, экономии металла, значительного сокращения станочного времени и трудовых затрат. С таким же успехом чугун с шаровидным графитом применяется в станкостроении и других областях машиностроения.  [c.201]


Чугун серый ковкий высокопрочный

 

 

Надежность и долговечность изделия в современном машиностроении, в значительной мере зависит от свойств применяемых конструкционных материалов. Свыше 80% машиностроительных деталей различной массы и сложности изготавливают из сплавов на основе железа. В зависимости от содержания углерода сплавы на основе железа разделяют на стали и чугуны.

В отличие от стали в чугуне при определенных условиях часть углерода выделяется в виде розеток графита. В сечении такой розетки видны лишь отдельные пластины. Поэтому, на полированном шлифе чугуна заметны изолированные включения графита. Структура матрицы, чаще всего, бывает феррито-перлитной или перлитной. Такой чугун называют серым.

Обычно, в сером чугуне содержится от 2,5% до 3,6% углерода. В определенных количествах в него входят кремний и марганец. Как примеси, постоянно присутствует сера и фосфор.

Прочность чугуна определяется наличием в его структуре графита пластинчатой формы. Такие графитовые включения значительно ослабляют матрицу. Под действием нагрузки возникает напряжение в металле с наибольшей концентрацией у концов у графитовых включений. В этих местах появляются микротрещины. Серый чугун имеет относительно невысокую прочность и разрушается без пластической деформации.

Чугун – литейный сплав.

Условия охлаждения чугуна после заполнения литейной формы оказывает решающее влияние на формирование его структуры. В тонких сечениях отливки, где скорость охлаждения в период кристаллизации высокая, образуется структура белого чугуна. Углерод в нем находится в виде цементита, графит отсутствует. В остальных сечениях образуется структура серого чугуна. Химический состав также оказывает влияние на структуру. С повышением содержания марганца и серы увеличивается зона отбела. Увеличение содержания графитизирующих элементов – углерода и кремния, уменьшает склонность чугуна к отбелу. Для получения отливок с заданными свойствами, необходимо в каждом конкретном случае учитывать как химический состав, так и скорость охлаждения чугуна в литейной форме.

Серый чугун

Несмотря на относительно невысокие механические свойства, серый чугун нашел широкое применение. Потому что легко обрабатывается, обладает повышенной демпфирующей способностью, а так же антифрикационными свойствами. Поскольку графит чугуна удерживает смазку и сам служит смазочным материалом. Сопряженные детали из чугуна легко перемещаются относительно друг друга.

Серый чугун с небольшими добавками хрома и никеля приобретает хорошие упругие свойства. Поршневое кольцо из такого чугуна после снятия нагрузки вновь принимает первоначальные размеры.

Серый чугун обладает высокой жидкотекучестью. При реальных температурах заливки длина спиральной пробы из чугуна почти вдвое больше стальной, что позволяет изготавливать отливки сложной конфигурации.

Серый чугун отличается малой объемной усадкой при кристаллизации, позволяющей во многих случаях обходиться без установки и прибыли. Наиболее распространенный агрегат для выплавки серого чугуна — вагранка с капельником, в котором происходит накапливание металла, а также усреднение его состава и температуры. Для уменьшения склонности чугуна к отбелу, его модифицируют, вводя в жидкий металл кремнийсодержащие добавки. Модифицирование позволяет выравнивать свойства металла в различных сечениях отливки. Что видно на примере измерения твердости чугунов. Не модифицированного и модифицированного.

Глубина отбела на клиновой пробе модифицированного чугуна значительно меньше, чем не модифицированного. Форма графитовых включений в результате модифицирования также изменяется.

Кроме вагранок для выплавки серого чугуна используют электрические печи. Они позволяют выплавлять металл с более высокой температурой, что имеет важное значение для последующей, внепечной обработки чугуна. Формы для получения отливок из серого чугуна изготавливают уплотнением формовочной смеси в опоках. В полость литейной формы для выполнения внутренней конфигурации отливки устанавливают стержни.

В массовом производстве для мелких чугунных отливок широко применяют автоматические линии безопочной формовки, в том числе с установкой стержней при помощи стержнеукладчика.

Металл формы также заливается автоматически. Отливки из серого чугуна изготавливают не только в песчаных формах, но и металлических. Для получения отливок, имеющих форму тел вращения, широко применяют центробежный способ литья. При этом, повышается производительность труда, не расходуются формовочные материалы, отсутствует литниковая система.

Серый чугун — общепризнанный конструкционный материал. Его применяют для изготовления различных деталей, работающих в условиях статичных нагрузок, вибрации, повышенного трения.

Ковкий чугун

Известно, что такие детали автомобиля, как ступицы колеса, корпус дифференциала, испытывают динамические нагрузки. Можно ли использовать для их изготовления чугун? Можно, если значительно повысить его пластичность. Таким свойством обладает ковкий чугун, в котором графит имеет не пластинчатую, а хлопьевидную форму. По сравнению с серым чугуном в ковком, концентрация графитизирующих элементов – углерода  и кремния ниже.

По прочности и пластичности ковкий чугун превосходит серый.  Изменения химического состава привело к снижению жидкотекучести и росту усадки при затвердевании, что требует установки прибылей даже на мелких отливках. При производстве ковкого чугуна обычно используют дуплекс-процесс.

Выплавляют чугун в огранке, затем транспортируют в раздаточном ковше и переливают в электрическую индукционную печь, где его прогревают перед заливкой для повышения жидкотекучести.

Технологический процесс получения отливок из ковкого чугуна аналогичен получению отливок из серого чугуна. Все большее распространение получают автоматические формовочные линии. Металл в формы заливается на конвейере. Изготовленные отливки должны иметь структуру белого чугуна по всему сечению. Для получения структуры ковкого чугуна их подвергают графитизирующему  отжигу в термических печах. В период выдержки происходит разложение цементита белого чугуна и образуется включение графита хлопьевидной формы. После термической обработки отливки правят на специальных прессах.

Необходимость использования длительной термической обработки и правки значительно повышает трудоемкость изготовления деталей из ковкого чугуна. Кованая стальная заготовка распределительного вала двигателя заметно отличается от готовой детали.

Литая заготовка по своей конфигурации к ней значительно ближе, что намного снижает трудоемкость механической обработки. То же относится и к коленчатым валам, деталям ответственного назначения. Для замены кованых заготовок литыми, нужен сплав, который совмещал бы механические свойства стали с технологическими и эксплуатационными свойствами чугуна.

Высокопрочный чугун

Такими свойствами обладает высокопрочный чугун, в котором при кристаллизации образуются включения графита шаровидной формы.По сравнению с серым чугуном, высокопрочный, характеризуется повышенным содержанием углерода и кремния. А так же низкой концентрацией серы.Механические свойства чугуна определяют при испытании образцов, специально изготовленных в соответствии с ГОСТом.

В высокопрочном чугуне шаровидная форма графита, в меньшей степени, чем пластинчатый графит в сером, ослабляет матрицу и значительно снижает концентрацию напряжения при воздействии нагрузки.

По прочности чугун с шаровидной формой графита приближается к стали. Отливки из высокопрочного чугуна подаются обработке так же хорошо, как и из серого. При этом, достигается требуемая точность и чистота поверхности.

Высокопрочный чугун обладает высокой герметичностью. Из него изготавливают цилиндры газомотокомпрессоров, выдерживающие при испытаниях давление до 100 атмосфер.

Вместе с тем, высокопрочный чугун склонен к образованию усадочных раковин, что требует установки прибылей для питания массивных частей отливок.

Для выплавки высокопрочного чугуна широко применяют индукционные тигельные печи, в которых получают чугун нужного состава и температуры, достаточной для последующего модифицирования. В качестве модификаторов используют магний, церий, иттрий, в виде чистых металлов или легатов. Для предотвращения быстрого всплывания и увеличения времени контакта с расплавом, модификатор накрывают стальными листами. Затем из печи выпускают металл в ковш. Такая технология повышает усвоение модификаторов в чугуне и обеспечивает стабильность процесса.

Для снижения склонности чугуна к отбелу, его дополнительно модифицируют ферросилицием. Формы для отливок большой массы, в основном, изготавливают на крупных встряхивающих столах.

Сборку форм и их заливку производят на специальном плацу. В процессе кристаллизации высокопрочного чугуна под воздействием модификаторов в расплаве происходит многократное ветвление пластин графита и образование его включений шаровидной формы. При недостаточном количестве модификатора или неравномерном его распределении в чугуне может образоваться обычный пластинчатый графит.

Для стабилизации структуры и обеспечении однородности физикомеханических свойств высокопрочного чугуна крупные отливки сложной формы подвергают термической обработке. Например, нормализации.

После механической обработки детали поступают на участок контроля. Детали ответственного назначения проходят дефектоскопию. Замена ряда стальных деталей, испытывающих при эксплуатации большие ударные нагрузки и давление, деталями из высокопрочного чугуна, существенно удешевляет производство некоторых видов машиностроительной продукции.

Из высокопрочного чугуна изготавливают около 50% коленчатых валов для двигателей различного назначения. Эксплуатационные и литейные свойства чугунов обеспечили их широкое применение в различных отраслях машиностроения. Из них получают выше двух третей литых заготовок, используемых промышленностью нашей страны. 

 

Графитизированные чугуны

Главное меню a> | Учебная работа
Графитизированные чугуны

В зависимости от формы графитных включений различают серые, высокопрочные, ковкие чугуны и чугуны с вермикулярным графитом.

Серые чугуны получают при меньшей скорости охлаждения отливок, чем белые. Они содержат 1–3 %Si, обладающего сильным графитизирующим действием.

Серый чугун широко применяется в машиностроении. Он хорошо обрабатывается режущим инструментом. Из него производят станины станков, блоки цилиндров, фундаментные рамы, цилиндровые втулки, поршни и т.д.

Серые чугуны согласно ГОСТ 1412–85 маркируются буквами «СЧ» и далее следует величина предела прочности при растяжении (в кГ/мм2 ), например СЧ 15, CЧ 20, СЧ 35 (табл. 1).


Графит в сером чугуне наблюдается в виде темных включений на светлом фоне нетравленного шлифа. По нетравленному шлифу оценивают форму и дисперсность графита, от которых в сильной степени зависят механические свойства серого чугуна.

Серые чугуны подразделяют по микроструктуре металлической основы в зависимости от полноты графитизации.

Степень или полноту графитизации оценивают по количеству свободно выделившегося (несвязанного) углерода.

Полнота графитизации зависит от многих факторов, из которых главными являются скорость охлаждения и состав сплава. При быстром охлаждении кинетически более выгодно образование цементита, а не графита. Чем медленнее охлаждение, тем больше степень графитизации. Кремний способствует графитизации, а марганец – карбидообразующий элемент – затрудняет графитизацию.


Рис. 3. Схемы микроструктур графитизированных чугунов:
а) серые; б) высокопрочные; в) ковкие; г) с вермикулярным графитом

Если графитизация в твердом состоянии прошла полностью, то чугун содержит две структурные составляющие – графит и феррит. Такой сплав называется серым чугуном на ферритной основе (рис. 3, а). Если же эвтектоидный распад аустенита прошел в соответствии с метастабильной системой

то структура чугуна состоит из графита и перлита. Такой сплав называют серым чугуном на перлитной основе. Наконец, возможен промежуточный вариант, когда аустенит частично распадается по эвтектоидной реакции на феррит и графит, а частично с образованием перлита. В этом случае чугун содержит три структурные составляющие – графит, феррит и перлит. Такой сплав называют серым чугуном на феррито-перлитной основе.

Феррит и перлит в металлической основе чугуна имеют те же микроструктурные признаки, что и в сталях. Серые чугуны содержат повышенное количество фосфора, увеличивающего жидкотекучесть и дающего тройную эвтектику.

В металлической основе серого чугуна фосфидная эвтектика обнаруживается в виде светлых, хорошо очерченных участков.

Высокопрочные чугуны с шаровидным графитом получают модифицированием серого чугуна щелочно-земельными элементами. Чаще для этого используют магний, вводя его в жидкий расплав в количестве 0,02–0,03 %. Под действием магния графит кристаллизуется в шаровидной форме (рис. 3, б). Шаровидные включения графита в металлической матрице не являются такими сильными концентраторами напряжений, как пластинки графита в сером чугуне. Чугуны с шаровидным графитом имеют более высокие механические свойства, не уступающие литой углеродистой стали.

Маркируют высокопрочный чугун согласно ГОСТ 7293–85 буквами «ВЧ» и далее следует величина предела прочности при растяжении (в кГ/мм2), например ВЧ 40, ВЧ 45, ВЧ 80 (табл. 2). Так же, как и серые чугуны, они подразделяются по микроструктуре металлической основы в зависимости от полноты графитизации и могут быть ферритными, феррито-перлитными и перлитными. Высокопрочный чугун используется во многих областях техники взамен литой и кованой стали, серого и ковкого чугунов. Высокие механические свойства дают возможность широко применять его для производства отливок ответственного назначения, в том числе и в судовом машиностроении: головок цилиндров, турбокомпрессоров, напорных труб, коленчатых и распределительных валов и т.п.


Ковкие чугуны получают путем отжига отливок из белого чугуна. Получение ковкого чугуна основано на том, что вместо неустойчивого цементита белого чугуна при повышенных температурах образуется графит отжига белого чугуна. Мелкие изделия сложной конфигурации, отлитые из белого чугуна, отжигают (получают ковкий чугун) для придания достаточной пластичности, необходимой при их использовании в работе. Ковкий чугун согласно ГОСТ 1215–79 маркируют буквами «КЧ» и далее следуют величина предела прочности при растяжении (в кГ/мм2) и относительного удлинения (в %), например, КЧ 35-10, КЧ 60-3 (табл. 3).


Графитизация идет путем растворения метастабильного цементита в аустените и одновременного выделения из аустенита более стабильного графита. Чем больше время выдержки при отжиге и меньше скорость охлаждения, тем полнее проходит графитизация. В зависимости от графитизации встречаются те же три основные типа структур, что и в сером чугуне: ковкие чугуны на ферритной, феррито-перлитной и перлитной основах (рис. 3, в). От серых (литейных) чугунов ковкие чугуны отличаются по микроструктуре только формой графита.

Если на шлифах (рис. 3, а) серых чугунов графит имеет форму извилистых прожилок, то в ковких чугунах графит, называемый углеродом отжига, находится в форме более компактных хлопьевидных включений с рваными краями. Более компактная форма графита обеспечивает повышение механических свойств ковкого чугуна по сравнению с серым чугуном с пластинчатым графитом. Обладая механическими свойствами, близкими к литой стали и высокопрочному чугуну, высоким сопротивлением ударным нагрузкам, износостойкостью, обрабатываемостью резанием, ковкий чугун находит свое применение во многих отраслях промышленности. Из него изготавливают поршни, шестерни, шатуны, скобы, иллюминаторные кольца и др.

Чугуны с вермикулярным графитом получают, как и высокопрочные чугуны, модифицированием, только в расплав при этом вводится комплексный модификатор, содержащий магний и редкоземельные металлы. Маркируют чугуны с вермикулярным графитом согласно ГОСТ 28394–89 буквами «ЧВГ» и далее следует цифра, обозначающая величину предела прочности при растяжении (кГ/мм2), например, ЧВГ 30, ЧВГ 45 (табл. 4). Вермикулярный графит подобно пластинчатому графиту виден на металлографическом шлифе в форме прожилок, но они меньшего размера, утолщенные, с округлыми краями (рис. 3, г). Микроструктура металлической основы ЧВГ также как у других графитизированных чугунов может быть ферритной, перлитной и феррито-перлитной.


По механическим свойствам чугуны с вермикулярным графитом превосходят серые чугуны и близки к высокопрочным чугунам, а демпфирующая способность и теплофизические свойства ЧВГ выше, чем у высокопрочных чугунов. Чугуны с вермикулярным графитом более технологичны, чем высокопрочные, и соперничают с серыми чугунами. Для них характерны высокая жидкотекучесть, хорошая обрабатываемость резанием, малая усадка. Чугуны с вермикулярньм графитом широко используются в мировом и отечественном автомобилестроении, тракторостроении, судостроении, дизелестроении, энергетическом и металлургическом машиностроении для деталей, работающих при значительных механических нагрузках в условиях износа, гидрокавитации, переменном повышении температуры. Например, ЧВГ используется для производства цилиндровых крышек и втулок, поршней судовых и тепловозных двигателей, корпусов газовых турбин и компрессоров.


Начало страницы

Чугун ковкий

Рекомендуемые марки чугуна

Детали

Условия работы

Автомобилестроение

Картер редуктора заднего моста, дифференциала, руля; ступицы колес, крон­штейны двигателя, рессор, тормозные колодки, на­кладки; балансиры, катки, барашки, пробки

Сложные переменные динамические (ударные) нагрузки

КЧ 45-7; КЧ 50-5; КЧ 55—4

Ступицы колес, тормозные барабаны, крышки под­шипников коленчатого вала, картеры распределитель­ной коробки, редуктора заднего моста, втулки

Статические и динамиче­ские нагрузки, износ

КЧ 60—3; КЧ 65—3; КЧ 70—2; КЧ 80-1,5

Шатуны, поршни, шестер­ни, коленчатые валы

Высокие статические и динамические нагрузки, износ

Сернистый перлитный чугун

Распределительные валы, направляющие втулки кла­панов, заготовки для на­плавки толкателей

Сильный износ

Обезуглероженный чу­гун

Сварные конструкции — выхлопные коллекторы, карданные валы, крон­штейны и др.

Статические и динамиче ские нагрузки

Тракторное и сельскохозяйственное машиностроение

КЧ 30-3; КЧ 33-8; КЧ 35—10; КЧ 45—7

Шестерни, муфты, храпо­вики, рычаги, звездочки, собачки, ступицы, вилки валов, катки, кронштейны, втулки, звенья цепей, клю­чи, барашки и др.

Изгибающие, скручиваю­щие, растягивающие ста­тические и динамические


нагрузки, износ

Вагоностроение и судостроение

КЧ 33-8; КЧ 35—10; КЧ 37—12; КЧ 45—7

Детали воздушных тормо­зов, кронштейны, скобы, иллюминаторные кольца

Изгиб, ударные нагрузки износ

Электропромышленность

КЧ 35—10; КЧ 45-7

Державки проводов, шап­ки, крючья изоляторов, клеммы и др.

Изгиб, ударные нагрузки

Станкостроение, текстильное машиностроение

КЧ 35-10; КЧ 45—7; АКЧ-1; АКЧ-2

Втулки, вилки, шестерни, банкоброши и др.

Износ, статические идинамические нагрузки

Санитарно-техническое и строительное оборудование

КЧ 33—8; КЧ 35—10 Обезуглероженный чу­гун

Фиттинги, вентили, уголь­ники, радиаторные нип­пели, кронштейны, пневмо­корпуса и др.

Внутреннее давление до


2 МПа

Ковкий чугун — обзор

ШАРИКОВЫЕ ЧУГУНЫ

В чугуне с шаровидным графитом (шаровидный графит) свободный графит присутствует в виде сфер или конкреций в литом состоянии. Графит в этой форме оказывает гораздо меньшее ослабляющее действие на матрицу, чем диспергированные чешуйки графита в серых ионах. Поэтому чугуны с шаровидным графитом обладают значительно более высокими показателями прочности, пластичности и ударной вязкости, чем серые чугуны.

Добавки церия и магния создают узловые структуры, но последние оказались более адаптивными и экономичными.Оба элемента являются десульфураторами, и образование конкреций невозможно до тех пор, пока содержание серы не будет снижено примерно до 0,02%. Очень небольшое количество микроэлементов, таких как 0,003% висмута, 0,004% сурьмы, 0,009% свинца и 0,12% титана, предотвращает образование узелков. Влияние этих элементов является аддитивным, но его можно нейтрализовать добавлением церия в количестве, достаточном для получения остаточного содержания 0,005–0,01%.

Магний можно добавлять непосредственно в ковш в виде сплава никель-магний, никель-кремний-магний или железо-кремний-магний.Более высокое извлечение магния достигается при использовании погружной техники, при которой добавки с более низкой плотностью и более высоким содержанием магния, такие как пропитанный магнием кокс, удерживаются ниже поверхности жидкого металла с помощью погружной головки. Максимальное извлечение достигается за счет добавления чистого магния к расплавленному чугуну в закрытом герметичном конвертере. Из-за стоимости оборудования использование этого последнего метода обычно ограничивается крупномасштабным производством.

Во всех случаях количество добавляемого магния определяется по формуле:

Mg = 34 (исходное содержание серы) + остаточное содержание магния (обычно 0.03–0,05%) ожидаемое извлечение магния

Чугун с шаровидным графитом после нодулирования модифицирован 0,4–0,8% кремния для улучшения структуры и минимизации охлаждения.

Содержание углерода в чугуне с шаровидным графитом обычно поддерживается выше 3,5% в интересах хорошей разливки. Содержание кремния, марганца и фосфора должно быть ниже 2,3%, 0,4% и 0,06% соответственно, чтобы обеспечить максимальную пластичность и ударную вязкость в ферритных условиях.

Чугун с шаровидным графитом немного более подвержен дефектам усадки, чем серый чугун.

Должен быть обеспечен подходящий материал для подачи, и следует отдавать предпочтение формам с высокой жесткостью. Рабочие системы должны быть спроектированы таким образом, чтобы свести к минимуму турбулентность, чтобы предотвратить улавливание окалины, которое имеет тенденцию образовываться в результате содержания магния.

Хотя чугуны с шаровидным графитом гораздо менее чувствительны к сечению, чем серые чугуны, в зависимости от присутствующих следовых количеств карбидных стабилизирующих элементов их матричная структура может варьироваться от полностью перлитной до полностью ферритной, а на сечениях тоньше 5 мм (0.2 дюйма).

Путем тщательного контроля за анализом и практикой внесения чугуна с шаровидным графитом можно производить чугун с шаровидным графитом в необработанном состоянии с широким диапазоном толщины сечения с любой требуемой структурой матрицы от полностью ферритной до полностью перлитной.

В качестве альтернативы, матричная структура отливок из чугуна с шаровидным графитом может быть модифицирована соответствующими термообработками, поскольку присутствие свободного углерода в форме графита делает возможным диффузию углерода к частицам графита или от них. Это невозможно для сталей, не содержащих свободного графита.Влияние изменения структуры матрицы на механические свойства гораздо более выражено для чугуна с шаровидным графитом, чем для чугуна с чешуйчатым графитом, и с помощью термообработки чугуна фиксированного состава литейные производства могут производить отливки, соответствующие полному диапазону марок BS 2789: 1985 г.

Практическая термообработка включает:

Отжиг Нагрев до 850–900 ° C, при котором матрица становится полностью аустенитной и медленно остывает в печи со скоростью 20–35 ° C в час до температуры ниже 700 ° C.В качестве альтернативы можно быстрее охладить до 700–720 ° C и выдержать 4–12 ч с последующим охлаждением на воздухе. Ферритное железо, произведенное таким образом, соответствует классам от 350/22 до 420/12 BS 2789: 1985.

Нормализация Осуществляется путем охлаждения на воздухе от 850 до 900 ° C и дает в основном перлитную матрицу, соответствующую маркам 700/2 и 800/2, в отливках легкого и среднего сечения. Использование легирующих элементов часто необходимо для получения перлитной матрицы в отливках более тяжелых профилей.

Закаленные и отпущенные структуры Их получают закалкой в ​​масле от 850 до 900 ° C и отпуском при 550–600 ° C.Материал, соответствующий BS 2789 Grade 800/2 и 900/2, иногда неизменно производится этим методом.

Austempering осуществляется путем нагрева отливок до 850–950 ° C с последующей закалкой до температуры изотермической обработки в диапазоне 230–400 ° C и выдержкой этой температуры обычно в течение 1–2 часов. Может быть получено множество бейнитных структур, что приводит к комбинациям прочности, пластичности и ударной вязкости, которые не могут быть достигнуты в ковких чугунах другими способами. Этот закаленный ковкий чугун (ADI) используется во многих различных инженерных приложениях, таких как шестерни, коленчатые валы, компоненты подвески транспортных средств и части землеройного оборудования.Предварительные спецификации для различных стран для покрытия ADI приведены в Таблице 26.63. Различные марки обычно могут быть произведены из одного и того же высокопрочного чугуна путем регулирования времени и температуры аустулирования.

Таблица 26.63. МЕХАНИЧЕСКИЕ СВОЙСТВА ПЛАСТИКОВОГО ЧУГУНА (ADI) (ПРЕДЛАГАЕМЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ)

900 93 GGG-150B 900 50
Марка ASTM A897M-90 Предел прочности при растяжении R м мин. Предел текучести мин. мин % Твердость HB Без надреза по Шарпи J
МПа тысяч фунтов / кв. дюйм МПа тысяч фунтов / кв. 550 80 10 269/321 100
1050/725/7 1050 152 700 101 7 302/363 80
1200/850/4 1200 174 850 123 4 341/444 60
1400/1 100/1 1400 203 1100 160 1 388/477 35
1600/1 300 / — 1600 232 1300 188 * 444/555 *
VDG (ФРГ)
GGG-80B 800 116 500 72 6 250/310
GGG-100B 1 000 145 700 101 5 280/340
GGG-120B 1 200 174 950 138 2 330/390
GGG-140B 1400 203 1 200 174 1 440/442
1500 217 421/475
BCIRA (Великобритания)
950/6 950 138 670 97 6 300/310
1050/3 1050 152 780 113 3 345/335
1200/1 1200 174 940 136 1 390/400
KYMI-KYME / ENE (FIN)
K-9007 900 130 730 106 6 280/310
K-1005 1 000 145 800 116 3 300/350
K-12003 1 200 174 1 000 145 1 380/430

ADI демонстрирует чувствительность к размеру секции, а испытательные стержни не являются репрезентативными для тяжелых секций.При -40 ° C у марок с высокой вязкостью может наблюдаться падение предела текучести на 15%, а также падение предела прочности при растяжении по сравнению со значениями при комнатной температуре. Никаких изменений свойств при повышенных температурах до 300 ° C не обнаружено. Также вызывает беспокойство низкотемпературная ударная вязкость и температура пластического-хрупкого превращения, хотя результаты образцов с надрезом указывают на постепенный переход вязкости при понижении температуры.

Таблица 26.60. МЕХАНИЧЕСКИЕ СВОЙСТВА ЧЕРНОГО СЕРДЦА

Марка BS 6681: 1986 Диаметр испытательного стержня d. мм Предел прочности на разрыв мин. R м МПа 0,2% Испытательное напряжение R p0,2 мин. МПа Относительное удлинение мин. % Типичная твердость макс. HB
B30-06 12 300 6 150
15 300 6
B32-10 12 320 190 10 150
15 320 190 10
B35-12 12 350 200 12 150
15 350 200 12

Ссылка Британская ассоциация исследований чугуна.

Таблица 26.61. МЕХАНИЧЕСКИЕ СВОЙСТВА ЖЕЛЕЗНОГО ЖЕЛЕЗА

9009 3430
Марка BS 6681: 1986 Диаметр испытательного стержня d. мм Предел прочности на разрыв мин. R м МПа 0,2% Испытательное напряжение R p0,2 мин. МПа Относительное удлинение мин. % Типичная твердость HB
P45-06 12 450 270 6 150/200
15 450 270 6
P50-05 12 500 300 5 160/220
15 500 300 5
P50-04 12 550 340 4 180/230
15 550 340 4
P60-03 12 600 390 3 200/250
15600 390 3
P65-02 12 650 2 210/260
15 650 430 2
P70-02 * 12 700530 2 240 / 290
15 700530 2

Арт.Британская ассоциация исследований чугуна.

Смешанные матричные структуры Структуры, промежуточные между отожженными и нормализованными сортами, имеют ряд механических свойств в зависимости от соотношения феррита и перлита. Соответствующие классы BS 2789 — 400/10, 500/7 и 600/3. На практике эти структуры производятся путем аустенитизации при 850–900 ° C с последующим либо контролируемым быстрым охлаждением примерно со скоростью примерно 100 ° C в час в критическом температурном диапазоне 720–800 ° C, либо быстрым охлаждением воздухом от соответствующей промежуточной температуры, т.е. .грамм. 730 ° C, в пределах критического диапазона.

Гибкое железо? Ковкий чугун против чугуна

Как инженеры выбирают сплав для металлических отливок

При выборе сплава чугуна дизайнеры могут выбрать серый, белый, ковкий или ковкий чугун.

При выборе сплава чугуна для отливки металлург принимает во внимание бюджет, требуемые механические свойства и этапы после литья, такие как механическая обработка и термообработка. Эти требования определяют, какой сплав использовать. В наши дни самый большой выбор — между ковким чугуном и чугуном.чугун.

С технической точки зрения, «чугун» означает сплавы железа, отлитые в литейном производстве. Ковкий чугун — один из таких сплавов. Однако пластичность — относительный новичок на рынке, с уникальными механическими свойствами, которые отличают его от других сплавов железа. Это различие означает, что «чугун» обычно означает сплавы серого или белого чугуна, которые веками использовались в металлообработке.

Какие виды чугуна отливают в литейном цехе?

  • Ковкий чугун: этот тип чугуна был разработан в 1948 году и стал очень важным сплавом для литейного производства черных металлов.Он намного менее хрупкий, чем другие чугуны.
  • Ковкий чугун: до изобретения ковкого чугуна этот сплав был более популярным. Это белый чугун, который очень долго подвергается термообработке. Условия в установке для термообработки должны строго контролироваться. Когда ковкое железо закончено, оно становится намного менее хрупким. Ковкий по-прежнему используется для небольших, тонких отливок, где пластичность менее успешна.
  • Белый чугун: этот сплав охлаждается быстрее, чем другие чугуны, образуя в его решетке молекулу цементита.Это хрупкий сплав, но он обладает отличной твердостью и стойкостью к истиранию. Он часто используется в подшипниках и других устройствах с высоким коэффициентом трения.
  • Серый чугун: Большинство стандартных «чугунных» изделий изготовлено из серого чугуна, поэтому, когда люди используют этот термин, скорее всего, имеется в виду сплав. В отличие от белого чугуна, серый чугун имеет графитовую микроструктуру. Он обладает отличной способностью гашения вибрации и отличной обрабатываемостью.

Белый и серый чугун создают очень похожие отливки.Их окраска видна только тогда, когда они ломаются.

Ковкий чугун — хороший выбор для изделия, которое может выдерживать ударную нагрузку транспортного средства.

Чем отличается ковкий чугун от чугуна?

Ковкий чугун менее хрупкий, чем другой чугун, даже до термической обработки. Он не так легко ломается при ударе. Пластичность позволяет чугуну изгибаться. Для сравнения, серый чугун тверже. Эта твердость означает, что он хорошо справляется с износом поверхности. Серый чугун также лучше гасит вибрации.Различия связаны с микроструктурой графита в этих сплавах железа.

Серый чугун состоит из 2,5–4% углерода и 1–3% по массе. Кремний в сплаве необходим для стабилизации молекул графита, которые придают серому чугуну его свойства. Однако этот кремний эффективен в поддержании и сохранении графита только в том случае, если металл не подвергается тепловому удару при охлаждении. Очень быстрое охлаждение приведет к образованию цементита и превращению серого чугуна в белое железо, даже с кремнием в смеси.В сером чугуне чешуйки графита вкраплены в поверхность и видны в полированном сером чугуне.

Ковкий чугун содержит 3,2–3,6% углерода, 2,2–2,8% кремния и небольшой процент «шаровидного элемента». Обнаруженный в 1943 году пластичный чугун имел многие из свойств ковкого чугуна, только эти свойства он проявлял прямо в пресс-форме. Длительная и техническая термообработка, необходимая для изготовления ковкого чугуна, сделала его более дорогим и подверженным ошибкам. Дуктиль был очевидным решением.(Ковкий по-прежнему используется в тонких отливках, где пластичный слишком быстро охлаждается и образует карбиды.)

Как и серый чугун, графит является важной частью микроструктуры высокопрочного чугуна. Однако узелковый элемент, такой как магний, церий или теллур, формирует молекулы графита в сферы, а не хлопья. Эти сферы скользят мимо друг друга, а не создают плоскости, вдоль которых железо может расколоться. Узлы делают ковкий чугун более гибким и менее твердым. Там, где требуется твердость поверхности, можно использовать термическую обработку.

Серый чугун твердый и износостойкий: отличный выбор там, где сила удара человеческая, а не механическая.

Сравнение ковкого чугуна, серого чугуна, белого чугуна и ковкого чугуна
Ковкий чугун
(ASTM A536)
Серый чугун
(ASTM 40)
Белый чугун
Ковкий чугун
(белый чугун, отожженный)

Отливка

Стандартное литье: намного проще, чем стальное литье

Предел текучести

50 тыс. Фунтов на кв. Дюйм

33 тыс. Фунтов на кв. Дюйм

Удлинение%

18

0.5

0

12

Прочность на разрыв

72 тыс. Фунтов на кв. Дюйм

40-50 тыс. Фунтов на кв. Дюйм

25 тыс. Фунтов на кв. Дюйм

52 тыс. Фунтов на кв. Дюйм

Твердость [по Бринеллю]

130-217

260

450

130

Коррозионная стойкость

Ржавчина, но на открытом воздухе может образовывать защитную патину.

Тепловое расширение 20C

6,46 * 10 -6 дюйм / (дюйм * ºF)

6,46 * 10 -6 дюйм / (дюйм * ºF)

5.0 * 10 -6 дюйм / (дюйм * ºF)

6,6 * 10 -6 дюйм / (дюйм * ºF)

Относительное демпфирование (логарифм последовательной амплитуды)

5-20 * 10 4

20-500 * 10 4

2-4 * 10 4

8-15 * 10 4

Стоимость

$$

$

$

$$$

Обрабатываемость

Средний

Хорошо

Хорошо

Средний

Свариваемость

Низкое-Среднее в зависимости от процедуры

Средний

Несвариваемый

Сварка возможна, но часть ковкого чугуна преобразуется в серый чугун

Скамейка с деталями из традиционного серого чугуна.

Выбор между высокопрочным и традиционным чугуном

Ковкий чугун немного дороже серого чугуна, но дешевле и легче лить, чем сталь. Обычно его выбирают из-за его механических свойств и стоимости. Как менее хрупкий сплав, чем чугун, он используется там, где важны пластичность и ударопрочность. Он лучше, чем сталь, по гашению вибрации и пределу прочности при сжатии, хотя серый чугун по-прежнему лучше по демпфированию.

Столбы

, разработанные для обеспечения ударопрочности, часто используют ковкий чугун.Это основной сплав железа, используемый для изготовления труб, особенно работающих под давлением. Пластичные детали можно найти в автомобильных компонентах, насосах и кабельных кожухах, где вероятен удар.

Серый чугун по-прежнему является важным и широко используемым сплавом для применений, где хрупкость традиционного чугуна не является проблемой. Детали, которые не будут подвергаться ударам при обычном износе, часто изготавливаются из серого чугуна. Чугунные сковороды обычно изготавливаются из серого чугуна. Hardscape, такие как решетки для деревьев, решетки траншей и крышки люков, также часто бывают из серого чугуна.Превосходное гашение вибрации делает серый чугун отличной основой для станков. Это также правильный выбор для тормозов или компонентов двигателя, которые не будут подвергаться ударам, но должны будут иметь дело с высокой вибрацией.

В любом проекте перед выбором сплава важно проконсультироваться с металлургом или инженером. Они изучат рабочую нагрузку на компонент и помогут выбрать материалы, с помощью которых можно безопасно управлять приложением. Выбор ковкого чугуна по сравнению с чугуном иногда может иметь значение.В других случаях необходимы особые свойства сплава.

Чугун | Конструкция машины


К чугунам относятся многие металлы, обладающие широким спектром свойств. Хотя чугун часто считается простым металлом в производстве и спецификациях, металлургия чугуна более сложна, чем металлургия стали и большинства других металлов.

И стали, и чугуны в основном состоят из железа с углеродом в качестве основного легирующего элемента. Стали содержат менее 2 и обычно менее 1% углерода; все чугуны содержат более 2% углерода.Два процента — это максимальное содержание углерода, при котором железо может затвердеть как однофазный сплав со всем раствором углерода в аустените. Таким образом, чугуны по определению затвердевают как гетерогенные сплавы и всегда имеют более одного компонента в своей микроструктуре. Помимо углерода, чугуны также должны содержать кремний, обычно от 1 до 3%; таким образом, они на самом деле представляют собой сплавы железо-углерод-кремний.

Высокое содержание углерода и кремния в чугунах придают им отличную литейную способность.Их температуры плавления заметно ниже, чем у стали. Расплавленное железо более жидкое, чем расплавленная сталь, и менее реагирует с формовочными материалами. Образование графита более низкой плотности во время затвердевания делает возможным изготовление изделий сложной формы. Однако чугуны не обладают достаточной пластичностью для прокатки или ковки.

Содержание углерода в железе является ключом к его отличительным свойствам. Осаждение углерода (в виде графита) во время затвердевания противодействует нормальной усадке затвердевающего металла, создавая прочные сечения.Графит также обеспечивает отличную обрабатываемость (даже при износостойких уровнях твердости), гасит вибрацию и способствует смазке изнашиваемых поверхностей (даже в пограничных условиях смазки). Когда большая часть углерода остается в сочетании с железом (как в белом чугуне), присутствие твердых карбидов железа обеспечивает хорошую стойкость к истиранию.

В некоторых случаях микроструктура железа может быть полностью ферритной — той же составляющей, которая делает низкоуглеродистые стали мягкими и легко обрабатываемыми. Но феррит железа отличается, потому что он содержит достаточно растворенного кремния, чтобы устранить характерную липкую природу низкоуглеродистой стали.Таким образом, чугуны, содержащие феррит, не требуют добавок серы или свинца для беспрепятственной обработки.

Поскольку размер и форма отливки определяют скорость ее затвердевания и прочность, при выборе типа чугуна необходимо учитывать конструкцию отливки и соответствующий процесс литья. В то время как большинство других металлов определяется стандартным химическим анализом, один анализ чугуна может дать несколько совершенно разных типов чугуна, в зависимости от литейной практики, формы и размера отливки, все из которых влияют на скорость охлаждения.Таким образом, железо обычно определяется механическими свойствами. Однако для приложений, связанных с высокими температурами или требующих особой коррозионной стойкости, также могут быть указаны некоторые требования к анализу.

Изготовление моделей больше не является необходимым этапом при производстве чугунных деталей. Многие детали из серого, пластичного и легированного чугуна можно обрабатывать непосредственно из прутка, непрерывно разливаемого до почти чистой формы. Этот метод «детали без рисунка» не только экономит время и затраты на изготовление рисунка, непрерывный чугун также обеспечивает однородно плотную мелкозернистую структуру, по существу свободную от пористости, песка или других включений.Ключи к однородной микроструктуре металла — это ферростатическое давление и контролируемая температура затвердевания, которые являются уникальными для данного процесса.

Для каждого основного типа чугуна существует ряд марок с сильно различающимися механическими свойствами. Эти отклонения вызваны различиями в микроструктуре металла, окружающего графит (или карбидов железа). В одной отливке могут существовать две разные конструкции. Микроструктуру чугуна можно контролировать с помощью термической обработки, но после образования графита он остается.

Марки перлитного чугуна состоят из чередующихся слоев мягкого феррита и твердого карбида железа. Эта слоистая структура, называемая перлитом, является прочной и износостойкой, но при этом вполне поддается механической обработке. По мере того, как слои становятся более тонкими, твердость и прочность чугуна увеличиваются. Размер ламинирования можно регулировать термической обработкой или скоростью охлаждения.

Чугун, закаленный пламенем, индукционной закалкой или нагретый в печи с последующей закалкой в ​​масле, содержит мартенситную структуру.После отпуска эта структура обеспечивает обрабатываемость с максимальной прочностью и хорошей износостойкостью.

Методы спецификации: Спецификации ASTM для чугунных отливок основаны на методе, отличном от метода SAE. Спецификации ASTM обозначают свойства металла, которые должны быть получены в отдельном литом испытательном бруске соответствующего размера, который разливают в тех же условиях, что и отливки. Спецификации SAE, с другой стороны, требуют, чтобы микроструктура отливки соответствовала указанной марке металла и чтобы твердость каждой отливки в указанном месте находилась в указанном диапазоне.

С коммерческой точки зрения, спецификация ASTM чаще используется для общих инженерных приложений, когда прочность железа, необходимая для детали, была установлена. Спецификации SAE обычно используются для больших количеств литых деталей меньшего размера, например, используемых в автомобилях, а также в сельскохозяйственном и холодильном оборудовании. В этих случаях пригодность чугуна определенной марки устанавливается не только по конструктивным соображениям, но и по фактическим испытаниям в эксплуатации; цель спецификации — обеспечить единообразный продукт, сопоставимый с продуктами, признанными на опыте удовлетворительными.

Серый чугун: Это перенасыщенный раствор углерода в железной матрице. Избыток углерода выпадает в виде чешуек графита. Серый чугун обозначается двузначным обозначением; Класс 20, например, определяет минимальную прочность на разрыв 20 000 фунтов на квадратный дюйм. Кроме того, серый чугун определяется поперечным сечением и минимальной прочностью специального испытательного стержня. Обычно поперечное сечение испытательного стержня соответствует или относится к особенно критическому участку отливки.Эта вторая спецификация необходима, потому что прочность серого чугуна очень чувствительна к поперечному сечению (чем меньше поперечное сечение, тем выше скорость охлаждения и выше прочность).

Ударная вязкость серого чугуна ниже, чем у большинства других литых черных металлов. Кроме того, у серого чугуна нет четкого предела текучести (определяемого классическими формулами), и его не следует использовать, когда остаточная пластическая деформация предпочтительнее разрушения. Еще одна важная характеристика серого чугуна, особенно для высокоточного оборудования, — это его способность гасить вибрацию.Демпфирующая способность определяется в основном количеством и типом чешуек графита. По мере уменьшения графита демпфирующая способность также уменьшается.

Высокая прочность на сжатие серого чугуна — от трех до пяти раз превышающая предел прочности — может быть использована в определенных ситуациях. Например, размещение ребер на стороне сжатия пластины вместо стороны растяжения дает более прочный и легкий компонент.

Серые чугуны обладают отличной износостойкостью. Даже более мягкие марки хорошо работают в определенных пограничных условиях смазки (например, в верхних стенках цилиндров двигателей внутреннего сгорания).

Для повышения твердости серого чугуна при абразивном износе можно добавлять легирующие элементы, использовать специальные методы литья или термообработку чугуна. Серый чугун можно закалить пламенным или индукционным методами, или литейный цех может использовать охлаждение в форме для получения закаленных поверхностей из белого чугуна.

Типичные области применения серого чугуна включают автомобильные блоки двигателей, шестерни, маховики, тормозные диски и барабаны, а также основания машин. Серый чугун хорошо используется в машиностроении из-за его хорошей усталостной прочности.

Ковкий чугун: Ковкое железо с шаровидным графитом содержит следовые количества магния, который, реагируя с серой и кислородом в расплавленном чугуне, выделяет углерод в виде небольших сфер. Эти сферы улучшают жесткость, прочность и ударопрочность высокопрочного чугуна по сравнению с серым чугуном. Различные сорта производятся путем контроля структуры матрицы вокруг графита, как в отливке, так и путем последующей термообработки.

Для обозначения ковкого чугуна используется трехкомпонентная система обозначений.Обозначение типичного сплава 60-40-18, например, определяет минимальный предел прочности на разрыв 60 000 фунтов на квадратный дюйм, минимальный предел текучести 40 000 фунтов на квадратный дюйм и 18% удлинение при 2 дюймах

.

Ковкий чугун используется в таких устройствах, как коленчатые валы, из-за его хорошей обрабатываемости, усталостной прочности и высокого модуля упругости; в зубчатых передачах для тяжелых условий эксплуатации из-за высокого предела текучести и износостойкости; и в дверных петлях автомобилей из-за их пластичности. Поскольку ковкий чугун содержит в качестве дополнительного легирующего элемента магний, он прочнее и устойчивее к ударам, чем серый чугун.Но хотя ковкий чугун также имеет более высокий модуль упругости, его демпфирующая способность и теплопроводность ниже, чем у серого чугуна.

По весу отливки из высокопрочного чугуна дороже серого чугуна. Однако, поскольку они обладают более высокой прочностью и лучшей ударопрочностью, общая стоимость деталей может быть примерно такой же.

Хотя это не новая технология обработки ковкого чугуна, за последние 5-10 лет она стала все более известной инженерному сообществу.В результате аустализа не образуется такой же тип структуры, как у стали, из-за высокого содержания углерода и кремния в железе. Матричная структура ковкого чугуна после закалки (ADI) отличает его от других чугунов, делая его действительно отдельным классом технических материалов.

Что касается свойств, матрица ADI почти вдвое превосходит обычный высокопрочный чугун с шаровидным графитом, сохраняя при этом превосходную вязкость. Как и высокопрочный чугун, ADI не является одним материалом; скорее, это семейство материалов, имеющих различные комбинации прочности, ударной вязкости и износостойкости.К сожалению, отсутствие стандартной спецификации для материалов ограничило его широкое признание и использование. Чтобы помочь устранить эту проблему, Общество ковкого чугуна предложило спецификации свойств для четырех марок ковкого чугуна после закалки.

В настоящее время ADI применяется в транспортном оборудовании — автомобилях, грузовиках, а также в железнодорожных и военных транспортных средствах. Ожидается, что такие же улучшенные характеристики и экономия средств сделают эти материалы привлекательными в оборудовании для других отраслей, таких как горнодобывающая промышленность, землеройные работы, сельское хозяйство, строительство и станкостроение.

Белый чугун: Белый чугун получают путем «охлаждения» выбранных участков отливки в форме, что предотвращает осаждение графитового углерода. И серый, и ковкий чугун можно охладить, чтобы получить поверхность из белого чугуна, состоящего из карбида железа или цементита, который является твердым и хрупким. Однако в отливках, полностью состоящих из белого чугуна, состав чугуна выбирается в соответствии с размером детали, чтобы обеспечить достаточно быстрое затвердевание соответствующего объема металла для образования структуры белого чугуна.

Главный недостаток белого чугуна — его хрупкость. Это можно несколько уменьшить, уменьшив содержание углерода или полностью сняв напряжение в отливке для придания сфероидальности карбидам в матрице. Однако эти меры увеличивают стоимость и снижают твердость.

Chills позволяют производить отливки с рабочими поверхностями и сердечниками из белого чугуна, которые представляют собой более твердый и более легкий в обработке серый или высокопрочный чугун. Во время охлаждения та часть отливки, которая должна противостоять износу, охлаждается металлическим или графитовым радиатором (охлаждающим элементом) в кристаллизаторе.Когда расплавленное железо контактирует с холодом, оно затвердевает так быстро, что железо и углерод не могут диссоциировать.

Охлаждение не следует путать с закалкой при термической обработке, в которой задействован совершенно другой металлургический механизм. Белое железо, так называемое из-за его очень белого излома, может образовываться только во время затвердевания. Он не размягчается, кроме как при длительном отжиге, и сохраняет свою твердость даже при температуре выше 1000 ° F.

Белый чугун используется в основном для применений, требующих устойчивости к износу и истиранию, таких как футеровка мельниц и сопла для дробеструйной обработки.Другие применения включают железнодорожные тормозные колодки, валки прокатных станов, оборудование для смешивания глины и производства кирпича, а также дробилки и измельчители. Как правило, белый (нелегированный) белый чугун стоит дешевле, чем другие чугуны.

Чугун с компактным графитом: До недавнего времени железо с компактным графитом (CGI), также известное как вермикулярное железо, было в первую очередь лабораторной диковинкой. Он давно известен как промежуточное звено между серым чугуном и высокопрочным чугуном, но обладает многими из них полезными свойствами. Однако из-за трудностей с контролем процесса и необходимости держать добавки сплава в очень жестких пределах, CGI было чрезвычайно трудно успешно производить в промышленных масштабах.Например, если добавление магния изменилось всего на 0,005%, результаты были бы неудовлетворительными.

Проблемы обработки были решены совместными усилиями разработчиков Foote Mineral Co. и Британской ассоциации исследований чугуна. Пакет с легирующими добавками содержит основные легирующие ингредиенты — магний, титан и редкоземельные элементы — в точно правильных пропорциях.

Прочность деталей CGI приближается к прочности высокопрочного чугуна. CGI также обладает высокой теплопроводностью, а его демпфирующая способность почти такая же, как у серого чугуна; Сопротивление усталости и пластичность аналогичны свойствам высокопрочного чугуна.Обрабатываемость превосходит чугун с шаровидным графитом, а производительность отливок высока, поскольку характеристики усадки и подачи больше похожи на характеристики серого чугуна.

Сочетание высокой прочности и высокой теплопроводности предполагает использование CGI в блоках двигателей, тормозных барабанах и выпускных коллекторах автомобилей. Пластины шестерен CGI заменили алюминий в шестеренчатых насосах высокого давления из-за способности железа сохранять стабильность размеров при давлении выше 1500 фунтов на квадратный дюйм.

Ковкий чугун: Ковкий чугун — это белый чугун, который путем двухэтапной термообработки был преобразован в состояние, в котором большая часть углерода содержится в виде графитовых узелков неправильной формы, называемых темперированным углеродом.Полученные свойства противоположны свойствам белого железа, из которого оно получено. Вместо того, чтобы быть твердым и хрупким, он податлив и легко обрабатывается. Отливки из ковкого чугуна обычно стоят немного дешевле, чем отливки из ковкого чугуна.

Три основных типа ковкого чугуна: ферритный, перлитный и мартенситный. Ферритные сорта более поддаются механической обработке и пластичны, тогда как перлитные сорта прочнее и тверже. Обычно мартенситные марки группируются с перлитными материалами; их можно рассматривать как продолжение (в конце диапазона более высокой прочности) перлитного ковкого чугуна.

В отличие от ферритного ковкого чугуна, микроструктура которого не содержит связанного углерода, перлитное ковкое железо содержит от 0,3 до 0,9% углерода в комбинированной форме. Поскольку эта составляющая может быть легко преобразована в самую твердую форму комбинированного углерода путем простого нагрева и закалки, отливки из перлитного ковкого чугуна могут быть выборочно упрочнены. Глубина затвердевания контролируется скоростью подводимого тепла, временем выдержки при температуре и скоростью закалки. Термическая обработка может обеспечить твердость поверхности примерно до C 60 по Роквеллу.

Углерод в ковком чугуне помогает удерживать и хранить смазочные материалы. В условиях экстремального износа поверхность перлитного ковкого чугуна изнашивается на безвредные частицы микронного размера, которые менее опасны, чем частицы железа других типов. Поверхность пористого ковкого чугуна улавливает абразивные частицы, которые скапливаются между поверхностями подшипников. На ковком чугуне могут образовываться полосы желчного пузыря, но истирание обычно не прогрессирует.

Отливки из ковкого чугуна часто используются для изготовления тяжелых опорных поверхностей в автомобилях, грузовиках, железнодорожном подвижном составе, а также в сельскохозяйственной и строительной технике.Марки перлитного класса обладают высокой износостойкостью и имеют твердость от 152 до более 300 Bhn. Однако применение ограничено отливками с относительно тонкими сечениями из-за высокой степени усадки и необходимости быстрого охлаждения для производства белого чугуна.

Высоколегированный чугун: Высоколегированный чугун — это ковкий серый или белый чугун, содержащий от 3 до более 30% сплава. Свойства специализированных литейных производств существенно отличаются от свойств нелегированного чугуна. Эти утюги обычно отличаются химическим составом, а также различными механическими свойствами.

Белые высоколегированные чугуны, содержащие никель и хром, образуют микроструктуру с мартенситной матрицей вокруг первичных карбидов хрома. Эта структура обеспечивает высокую твердость при экстремальной износостойкости и стойкости к истиранию. Чугуны с высоким содержанием хрома (обычно около 16%) сочетают износостойкость и стойкость к окислению с прочностью. Утюги, содержащие от 14 до 24% никеля, являются аустенитными; они обеспечивают отличную коррозионную стойкость для немагнитных применений. Чугуны с содержанием никеля 35% имеют чрезвычайно низкий коэффициент теплового расширения, а также немагнитны и устойчивы к коррозии.

ТБ Ковкий чугун Wood

Конструктивные преимущества ковкого чугуна

  • Превосходная литье и обрабатываемость по сравнению со сталью
  • Может быть изготовлен по более низкой цене, чем сталь
  • Обладает превосходными механическими свойствами по сравнению с серым чугуном
  • Имеет отличное соотношение прочности и веса
  • Отливки могут весить на 6% меньше, чем стальные детали идентичных размеров

Ковкий чугун был изобретен в середине двадцатого века и представляет собой современную версию чугуна (также известного как «серый чугун»).Серый чугун и высокопрочный чугун имеют разные физические свойства, вызванные различиями в их микроструктуре. Графит и углерод, содержащиеся в сером чугуне, встречаются в виде хлопьев.

Серый чугун выдерживает положительную сжимающую нагрузку; тем не менее, он хрупкий и практически не имеет удлинения, поэтому его не рекомендуется использовать при растяжении и ударных нагрузках.

Ковкий чугун, напротив, может быть вдвое прочнее серого чугуна. Он обладает значительной эластичностью, ударопрочностью и высоким пределом текучести.Превосходные механические свойства ковкого чугуна можно объяснить его уникальной формой графита. Графит внутри высокопрочного чугуна имеет сфероидальную форму, что позволяет материалу значительно удлиняться под действием растягивающего напряжения, при этом обеспечивая превосходные механические свойства по сравнению со сталью с аналогичными механическими свойствами.

В целом высокопрочный чугун имеет механические свойства, аналогичные стальным, с литейными качествами, обрабатываемостью и коррозионной стойкостью серого чугуна.

Микроструктура (матрица)

В процессе литья или термообработки структуру матрицы вокруг графита необходимо тщательно контролировать для создания различных марок высокопрочного чугуна.Чтобы создать желаемую матрицу или микроструктуру для определенного сорта высокопрочного чугуна, литейный завод должен внести незначительные изменения в состав.

Наиболее распространенные матрицы из ковкого чугуна:

  • Феррит: чистое гибкое железо с низкой прочностью. Эта матрица отличается высокой ударопрочностью и хорошая обрабатываемость, но имеет плохую износостойкость.
  • Перлит: слоистая смесь феррита и карбида железа. Эта высокопрочная матрица относительно жесткий с некоторой пластичностью.Он также обладает хорошей износостойкостью, хорошей обрабатываемостью и умеренная ударопрочность.

Для получения требуемых механических свойств в соответствии с индивидуальными требованиями заказчика требуются различные соотношения феррита и перлита. Например, в классах 65-45-12 и 80-55-06 ASTM A536 ферритный компонент обеспечивает материалу характеристики удлинения, которые не могут быть достигнуты с полностью перлитной матрицей. И наоборот, перлитный компонент обеспечивает предел прочности на разрыв и предел текучести, которые не могут быть достигнуты с полностью ферритной матрицей.

Шаровидность графита

Еще одно свойство, которое имеет решающее значение для характеристик высокопрочного чугуна, — это процент шаровидности графита. Процент неровности — это измерение ковкого чугуна с помощью микроскопа, которое определяет степень округлости графитовых конкреций. Поскольку именно шаровидная форма графита придает высокопрочному чугуну его превосходную прочность и пластичность. Во время производства требуются частые испытания, чтобы убедиться, что желаемая форма графита сохраняется.

Процент площади графита

Процентное содержание графита — это измерение чугуна с помощью микроскопа, которое определяет относительную площадь поверхности полированной поверхности железа, занятой графитом, по сравнению с площадью, занятой железными матрицами (ферритом, перлитом и т. Д.). графит не занимает слишком мало или слишком много объема отливки, что может отрицательно сказаться на желаемых механических свойствах.

Ковкий чугун имеет большую прочность и пластичность, чем серый чугун.Эти свойства делают его идеальным для использования в широком спектре промышленных применений, в том числе:

  • Применение ударных нагрузок, например дробление горных пород
  • Корпуса насосов
  • Рамы машин для ветроэнергетики
  • Шкивы клиновые и шкивы канатные
  • Коробки передач
  • Компрессоры
  • Трубы и детали трубопроводов
  • Автомобильные компоненты

На изображениях ниже показаны средние микроструктуры для каждой марки производимого высокопрочного чугуна пользователя TB Wood’s.Светлые области обозначают феррит, а темные области обозначают графит и перлит.

Класс 60-40-18

Эта марка высокопрочного чугуна представляет собой чугун с шаровидным графитом с практически полная ферритовая матрица. Эта микроструктура достигается за счет отжига и предлагает отличные пластичность и ударная вязкость.

Класс 65-45-12

Эта марка высокопрочного чугуна содержит шаровидный графит в матрице феррита с меньшим количеством перлита.Ферритная структура обеспечивает отличную обрабатываемость, а также оптимальную ударную вязкость и усталостные свойства.

Марка 80-55-06

Эта марка высокопрочного чугуна содержит шаровидный графит в матрице феррита и перлита. Перлит / феррит структура обеспечивает высокую износостойкость и прочность по сравнению с пластичным ферритом.

класс 100-70-03

Эта марка высокопрочного чугуна содержит шаровидный графит. в матрице из перлита с очень малым количеством феррит.Эта перлитная структура максимизирует прочность характеристики износостойкости чугуна с шаровидным графитом в литом состоянии.

Отливки из высокопрочного чугуна для всех отраслей промышленности

Ковкий чугун

Ковкий чугун, также известный как высокопрочный чугун, чугун с шаровидным графитом, чугун с шаровидным графитом, чугун с шаровидным графитом и чугун с шаровидным графитом, представляет собой тип чугуна, изобретенный в 1943 году Китом Миллисом. В то время как большинство разновидностей чугуна являются хрупкими, DI обладает гораздо большей стойкостью к ударам и усталости из-за включений графита с шаровидным графитом.
Большая часть годового производства DI производится в виде труб из высокопрочного чугуна, используемых для водопроводных и канализационных линий, но существует множество применений отливок из высокопрочного чугуна в различных сегментах рынка. Он конкурирует с полимерными материалами, такими как ПВХ, HDPE, LDPE и полипропилен, которые намного легче стали или высокопрочного чугуна; будучи более гибкими, они требуют защиты от физического повреждения.

Использование высокопрочного чугуна

Ковкий чугун особенно полезен во многих автомобильных компонентах, где прочность должна превосходить алюминий, но не обязательно сталь.Другие основные промышленные применения включают внедорожные дизельные грузовики, грузовики класса 8, сельскохозяйственные тракторы и насосы для нефтяных скважин. В ветроэнергетике чугун с шаровидным графитом используется для изготовления ступиц и конструктивных элементов, таких как рамы машин. Чугун с шаровидным графитом подходит для обработки больших и сложных форм, обычно отливок и высоких усталостных нагрузок. Таким образом, отливки из ковкого чугуна используются в самых разных отраслях промышленности.

Химический состав из высокопрочного чугуна

DI — это не отдельный материал, а часть группы материалов, которые можно производить с широким диапазоном свойств за счет управления их микроструктурой.Общей определяющей характеристикой этой группы материалов является форма графита. В высокопрочном чугуне графит имеет форму конкреций, а не чешуек, как в сером чугуне. В то время как острые чешуйки графита создают точки концентрации напряжений в металлической матрице, округлые утолщения в высокопрочном чугуне препятствуют образованию трещин, обеспечивая тем самым повышенную пластичность, благодаря которой сплав получил свое название. Формирование узелков достигается добавлением узловатых элементов, чаще всего магния (обратите внимание, что магний кипит при 1100 ° C, а железо плавится при 1500 ° C) и, реже, церия (обычно в форме мишметалла).Также использовался теллур.

Одним из явлений, которые необходимо контролировать при производстве отливок из чугуна с шаровидным графитом, является «выцветание магния», неровность теряется со временем, поэтому время, когда модификатор добавляется в расплавленный металл, до момента литья металла имеет решающее значение для поддержания необходимые свойства материала.

«Ковкий чугун с остаточной закалкой» (ADI) был изобретен в 1950-х годах, но был коммерциализирован и добился успеха лишь несколько лет спустя. В ADI металлургическая структура обрабатывается с помощью сложного процесса термообработки.Часть названия «аус» относится к аустениту.

Труба из высокопрочного чугуна | Канадская трубка

Чугунные трубы уже давно являются стандартным материалом для транспортировки воды и сточных вод в муниципальных, коммунальных и промышленных системах трубопроводов.

Реальный срок службы чугунных труб неизвестен, но обычно оценивается в 100 лет и более. Самая старая действующая чугунная магистраль — это магистраль в Версале, Франция, проложенная в 1664 году. В этой стране и в Канаде более 500 членов Клуба века чугунных труб — уникальной организации, состоящей из городов или коммунальных предприятий, у которых есть чугунные трубы. все еще находится в эксплуатации спустя 100 лет.

Труба из высокопрочного чугуна, продукт передовой металлургии, обладает уникальными свойствами для транспортировки воды под давлением и других применений в трубопроводах. Он сочетает в себе физическую прочность низкоуглеродистой стали с долгим сроком службы серого чугуна.

Ковкий чугун обеспечивает максимально возможный запас прочности при отказе в обслуживании из-за движения грунта и нагрузок на балку. Практически не ломается при обычной эксплуатации, он также обеспечивает повышенную устойчивость к поломке, вызванной небрежным обращением при транспортировке и установке.

Коррозионная стойкость труб из высокопрочного чугуна была подтверждена в большом количестве ускоренных испытаний и по крайней мере не уступает серому чугуну.

Ковкий чугун получают путем добавления строго контролируемого количества магниевого сплава в расплавленный чугун с низким содержанием фосфора и серы. Добавление магниевого сплава вызывает заметное изменение микроструктуры, заставляя углерод в чугуне принимать сфероидальную или узловую форму (в отличие от чешуйчатой ​​формы графита в сером чугуне) и в то же время создавая более мелкозернистую форму. железная матрица в окружающей ферритной структуре.В результате этого замечательного изменения получается гораздо более прочный, жесткий и пластичный материал.

В дополнение к преимуществам длительного срока службы, коррозионной стойкости, высокой конструкционной прочности и герметичности соединений ковкий чугун также легко обрабатывается, что является важным требованием к любой трубе, которую необходимо просверливать, нарезать резьбу или резать.

Компании McWane производят трубы из чугуна с шаровидным графитом в строгом соответствии с критериями проектирования, разработанными Американским национальным институтом стандартов, и которые соответствуют или превосходят требования всех опубликованных стандартов Американской ассоциации водопроводных сооружений.

Типы соединений труб из ковкого чугуна

Продукт и ресурсы для клиентов

Различия между отливками из высокопрочного чугуна и серого чугуна

Автор: Penticton Foundry на 18 июня 2015 г.

Серый чугун и высокопрочный чугун различаются по типу и структуре углерода, содержащегося в них. Вопрос, конечно, в том, какой из них подходит для вашего проекта? Прежде чем мы рассмотрим возможные ответы, давайте рассмотрим некоторые ключевые различия между двумя чугунами.Чтобы получить краткое изложение, прокрутите блог до конца и ознакомьтесь с нашей диаграммой.

Ключевые отличия

  1. Пластичность — Пластичность определяется большим процентом удлинения при растяжении. Добавление магния в ковкий чугун означает, что графит имеет шаровидную / сферическую форму, придающую более высокую прочность и пластичность, в отличие от серого чугуна, имеющего форму чешуек. Например, 18% удлинение может быть легко достигнуто с материалами классов 60-40-18 ASTM A395 и A536.
  2. Предел прочности на разрыв и предел текучести — Конечно, существуют различия, когда речь идет о прочности на разрыв и предел текучести серого и высокопрочного чугуна. Ковкий чугун имеет минимальный предел прочности на разрыв 60 000 фунтов на квадратный дюйм и минимальный предел текучести 40 000 фунтов на квадратный дюйм. Согласно стандарту ASTM A48 существует множество марок серого чугуна. Хотя у серого чугуна нет измеримого предела текучести, диапазон прочности на разрыв составляет 20 000–60 000 фунтов на квадратный дюйм.
  3. Ударопрочность — Ковкий чугун обладает большей устойчивостью к ударам и способен выдерживать как минимум 7-футовые удары (по сравнению с 2 фунтами для серого чугуна).
  4. Теплопроводность — Ковкий чугун имеет более низкую теплопроводность, чем серый чугун.
  5. Гашение вибрации — Серый чугун гасит вибрации более эффективно, чем ковкий чугун.

Серый чугун очень легко отливается и хорошо обрабатывается. Он обычно используется в следующих некритических приложениях , где прочность не является основным требуемым свойством:

  • Крышки люков
  • Противовесы
  • Основания для гашения вибрации

Ковкий чугун из-за повышенной прочности и пластичности используется в более сложных приложениях:

  • Барабаны кабельные
  • Рамки
  • Коробки передач
  • Насосы

Мы включили таблицу, в которой сравниваются два утюга по множеству факторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *