Медь это металл или неметалл: Медь — свойства, характеристики | Cu-prum.ru

Содержание

Медь — свойства, характеристики | Cu-prum.ru

Медь – это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.


Латинское название Cuprum произошло от имени острова Кипр. Известны факты, что на Кипре ещё в III веке до нашей эры находились медные рудники и местные умельцы выплавляли медь. Купить медь можно в комании «КУПРУМ».

По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции. Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры. Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.

Великим достижением древних металлургов можно назвать получение сплава с медной основой – бронзы.

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

2. Химические свойства.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.

Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды — это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование.
Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди – это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Применение меди

Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении. Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом. Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).

Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.

Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.

Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания. К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди. Если же посуда внутри покрыта слоем олова, то опасности отравления нет.

В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.

 

Медь. Химия меди и ее соединений

Медь

1. Положение меди в периодической системе химических элементов
2. Электронное строение меди
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства

Оксид меди (II)

Оксид меди (I)

Гидроксид меди (II)

Соли меди

 

 

Медь

 

 

Положение в периодической системе химических элементов

Медь расположена в 11 группе  (или в  побочной подгруппе II группы в короткопериодной  ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение меди

Электронная конфигурация  меди в основном состоянии:

+29Cu 1s22s22p63s23p63d104s1 1s  2s 2p

3s   3p    4s     3d

У атома меди уже в основном энергетическом состоянии происходит провал (проскок) электрона с 4s-подуровня на 3d-подуровень.

Физические свойства 

Медь – твердый металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Медь относительно легко поддается механической обработке.  В природе встречается в том числе в чистом виде и широко применяется в различных отраслях науки, техники и производства.

Изображение с портала zen.yandex.com/media/id/5d426107ae56cc00ad977411/uralskaia-boginia-liubvi-5d6bcceda660d700b075a12d

 

Температура плавления 1083,4оС, температура кипения 2567оС, плотность меди 8,92 г/см3.

 

 

Нахождение в природе

 

Медь встречается в земной коре (0,0047-0,0055 масс.%), в речной и морской воде. В природе медь встречается как в соединениях, так и в самородном виде. В промышленности используют халькопирит CuFeS

2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Также распространены и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2(OH)2CO3. Иногда медь встречается в самородном виде, масса которых может достигать 400 тонн.

 

Способы получения меди

 

Медь получают из медных руд и минералов. Основные методы получения меди — электролиз, пирометаллургический и гидрометаллургический.

  • Гидрометаллургический метод:
    растворение медных минералов в разбавленных растворах серной кислоты, с последующим вытеснением металлическим железом.

Например, вытеснение меди из сульфата железом:

CuSO4 + Fe = Cu + FeSO4

Видеоопыт взаимодействия сульфата меди (II) с железом можно посмотреть здесь.

 

  • Пирометаллургический метод: получение меди из сульфидных руд. Это сложный процесс, который включает большое количество реакций. Основные стадии процесса:

1) Обжиг сульфидов:

2CuS + 3O2 = 2CuO + 2SO2

2) восстановление меди из оксида, например, водородом:

CuO + H2 = Cu + H2O

  • Электролиз растворов солей меди:

2CuSO4 + 2H2O → 2Cu + O2 + 2H2SO4

 

Качественные реакции на ионы меди (II)

 

Качественная реакция на ионы меди +2 – взаимодействие солей меди (II) с щелочами. При этом образуется голубой осадок гидроксида меди(II).

Например, сульфат меди (II) взаимодействует с гидроксидом натрия:

CuSO4   +   2NaOH   →   Cu(OH)2   +  Na2SO4

 

 

Соли меди (II) окрашивают пламя в зеленый цвет.

 

 

Химические свойства меди

 

В соединениях медь может проявлять степени окисления +1 и +2.

1. Медь — химически малоактивный металл. При нагревании медь может реагировать с некоторыми неметаллами: кислородом, серой, галогенами.

1.1. При нагревании медь реагирует с достаточно сильными окислителями, например, с кислородом, образуя CuО, Cu2О в зависимости от условий:

4Cu  +  О2 → 2Cu2О

2Cu  +  О2 → 2CuО

 

1.2. Медь реагирует с серой с образованием сульфида меди (II):

Cu  +  S  → CuS

Видеоопыт взаимодействия меди с серой можно посмотреть здесь.

 

1.3. Медь взаимодействует с галогенами. При этом образуются галогениды меди (II):

Cu  +  Cl2  =  CuCl2

Сu  +  Br2  =  CuBr2

 

Видеоопыт взаимодействия меди с хлором можно посмотреть здесь.

 

1.4. С азотом, углеродом и кремнием медь не реагирует:

Cu   +  N2    ≠  

Cu   +  C    ≠  

Cu   +  Si    ≠  

1.5. Медь не взаимодействует с водородом.

Cu   +  H2    ≠  

 

1.6. Медь взаимодействует с кислородом с образованием оксида:

2Cu  +  O2  →  2CuO

 

2. Медь взаимодействует и со сложными веществами:

2.1. Медь в сухом воздухе и при комнатной температуре не окисляется, но во влажном воздухе, в присутствии оксида углерода (IV) покрывается зеленым налетом карбоната гидроксомеди (II):

2Cu   +  H2O  +  CO2  + O2 =  (CuOH)2CO3

 

2.2. В ряду напряжений медь находится правее водорода и поэтому не может вытеснить водород из растворов минеральных кислот (разбавленной серной кислоты и др.).

Например, медь не реагирует с разбавленной серной кислотой:

Cu   +  H2SO4 (разб.)    ≠  

Видеоопыт взаимодействия меди с соляной кислотой можно посмотреть здесь.

 

2.3. При этом медь реагирует при нагревании с концентрированной серной кислотой. При нагревании реакция идет, образуются оксид серы (IV), сульфат меди (II) и вода:

Cu  +  2H2SO4(конц.) →  CuSO4  +  SO2  +  2H2O

 

2.4. Медь реагирует даже при обычных условиях с азотной кислотой.

С концентрированной азотной кислотой:

Cu  +  4HNO3(конц.)  =  Cu(NO3)2  +  2NO2  +  2H2O

С разбавленной азотной кислотой:

3Cu  +  8HNO3(разб.)  =  3Cu(NO3)2  +  2NO  +  4H2O

 

Реакция меди с азотной кислотой

 

2.5. Растворы щелочей на медь практически не действуют.

2.6. Медь вытесняет металлы, стоящие правее в ряду напряжений, из растворов их солей.

Например, медь реагирует с нитратом ртути (II) с образованием нитрата меди (II) и ртути:

Hg(NO3)2   +  Cu  =   Cu(NO3)2   +  Hg

2.7. Медь окисляется оксидом азота (IV) и солями  железа (III)

2Cu   +   NO2   =   Cu2O   +  NO

2FeCl  +   Cu  =  2FeCl2  +  CuCl2

 

Оксид меди (II)

 

Оксид меди (II) CuO – твердое кристаллическое вещество черного цвета.

 

Способы получения оксида меди (II)

Оксид меди (II) можно получить различными методами:

1. Термическим разложением гидроксида меди (II) при 200°С: 

Cu(OH)2   →   CuO   +  H2O

2. В лаборатории оксид меди (II) получают окислением меди при нагревании на воздухе при 400–500°С:

2Cu   +   O2      2CuO           

 3. В лаборатории оксид меди (II) также получают прокаливанием солей (CuOH)2CO3, Cu(NO3)2:

(CuOH)2CO3     2CuO   +   CO2   +   H2O

2Cu(NO3)2       2CuO    +   4NO2   +   O2

 

Химические свойства оксида меди (II)

Оксид меди (II) – основный оксид (при этом у него есть слабо выраженные амфотерные свойства). При этом он является довольно сильным окислителем.

1. При взаимодействии оксида меди (II) с сильными и растворимыми кислотами образуются соли.

Например, оксид меди (II) взаимодействует с соляной кислотой:

СuO  +  2HBr  =  CuBr2  +  H2O

CuO  +  2HCl  =  CuCl2  +  H2O

Видеоопыт взаимодействия оксида меди (II) с серной кислотой можно посмотреть здесь.

 

2. Оксид меди (II) вступает в реакцию с кислотными оксидами. 

Например, оксид меди (II) взаимодействует с оксидом серы (VI) с образованием сульфата меди (II):

CuO  + SO3  → CuSO4

3. Оксид меди (II) не взаимодействует с водой.

4. В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства:

Например, оксид меди (II) окисляет аммиак:

3CuO + 2NH3 → 3Cu + N2 + 3H2O

Оксид меди (II) можно восстановить углеродом, водородом или угарным газом при нагревании:

СuO + C  → Cu + CO

Видеоопыт взаимодействия оксида меди (II) с водородом можно посмотреть здесь.

 

Более активные металлы вытесняют медь из оксида.

Например, алюминий восстанавливает оксид меди (II):

3CuO + 2Al = 3Cu + Al2O3

 

Оксид меди (I)

Оксид меди (I) Cu2O – твердое кристаллическое вещество коричнево-красного цвета.

 

Способы получения оксида меди (I)

В лаборатории оксид меди (I) получают восстановлением свежеосажденного гидроксида меди (II), например, альдегидами или глюкозой:

CH3CHO   +  2Cu(OH)2  → CH3COOH   +   Cu2O↓   +   2H2O

CH2ОН(CHOН)4СНО   +  2Cu(OH)2   →  CH2ОН(CHOН)4СООН  +   Cu2O↓   +   2H2O

Химические свойства оксида меди (I)

1. Оксид меди (I) обладает основными свойствами.

При действии на оксид меди (I) галогеноводородных кислот получают галогениды меди (I) и воду:

Например, соляная кислота с оксидом меди (I) образует хлорид меди (I):

Cu2O  +  2HCl   =   2CuCl↓   +  H2O

2. При растворении Cu2O в концентрированной серной, азотной кислотах образуются только соли меди (II):

Cu2O  +  3H2SO4(конц.)   =  2CuSO4  +  SO2  + 3H2O

Cu2O  +  6HNO3(конц.)  =  2Cu(NO3)2  +  2NO2  +  3H2O

5Cu2O  +  13H2SO4   +  2KMnO4   =  10CuSO4  +  2MnSO4  +   K2SO4  + 13H2O

3. Устойчивыми соединениями меди (I) являются нерастворимые соединения (CuCl, Cu2S) или комплексные соединения [Cu(NH3)2]+. Последние получают растворением в концентрированном растворе аммиака оксида меди (I), хлорида меди (I):

Cu2O  +  4NH3  +  H2O  =  2[Cu(NH3)2]OH

CuCl   +  2NH3   =  [Cu(NH3)2]Cl

Аммиачные растворы солей меди (I) взаимодействуют с ацетиленом:

СH ≡ CH   +  2[Cu(NH3)2]Cl    →   СuC ≡ CCu  +  2NH4Cl

 

4. В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность:

Например, при взаимодействии с угарным газом, более активными металлами или водородом оксид меди (II) проявляет свойства окислителя:

Cu2O  +  CO  =  2Cu  +  CO2

Cu2O  +  H2  =  2Cu  + H2O

 3Cu2O  +  2Al  =  6Cu  +  Al2O3

А под действием окислителей, например, кислорода свойства восстановителя:

2Cu2O  +  O=  4CuO

 

Гидроксид меди (II)

 

Способы получения гидроксида меди (II)

 

1. Гидроксид меди (II) можно получить действием раствора щелочи на соли меди (II).

Например, хлорид меди (II) реагирует с водным раствором гидроксида натрия с образованием гидроксида меди (II) и хлорида натрия:

CuCl +  2NaOH   →   Cu(OH)2  +  2NaCl

Химические свойства

Гидроксид меди (II) Сu(OН)2 проявляет слабо выраженные амфотерные свойства (с преобладанием основных).

 

1. Взаимодействует с кислотами.

Например, взаимодействует с бромоводородной кислотой с образованием бромида меди (II) и воды:

 

Сu(OН)2  +  2HBr  =  CuBr2  +  2H2O

Cu(OН)2  +  2HCl  =  CuCl2  +  2H2O

 

2. Гидроксид меди (II) легко взаимодействует с раствором аммиака, образуя сине-фиолетовое комплексное соединение:

 

Сu(OH)2  +  4(NH3 · H2O)   =  [Cu(NH3)4](OH)2   +  4H2O

Cu(OH)2  +  4NH3  =  [Cu(NH3)4](OH)2

 

3. При взаимодействии гидроксида меди (II) с концентрированными (более 40%) растворами щелочей образуется комплексное соединение:

Cu(OH)2  + 2NaOH(конц.)  =  Na2[Cu(OH)4]

Но этой реакции в ЕГЭ по химии пока нет!

 

4. При нагревании гидроксид меди (II) разлагается:

Сu(OH)2 → CuO  +  H2O

Соли меди

 

Соли меди (I)

 

В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность. Как восстановители они реагируют с окислителями.

Например, хлорид меди (I) окисляется концентрированной азотной кислотой:

CuCl  +  3HNO3(конц.)  =  Cu(NO3)2  +  HCl  +  NO2  +  H2O

Также хлорид меди (I) реагирует с хлором:

2CuCl   +  Cl2   =  2CuCl2

 Хлорид меди (I) окисляется кислородом в присутствии соляной кислоты:

4CuCl   +  O2  +  4HCl   =   4CuCl2   +  2H2O

Прочие галогениды меди (I) также легко окисляются другими сильными окислителями:

2CuI  +  4H2SO4  +  2MnO2  =  2CuSO4  +  2MnSO4  +  I2  +  4H2O

Иодид меди (I)  реагирует с концентрированной серной кислотой:

4CuI   +   5H2SO4(конц.гор.)  =  4CuSO4   +  I2   +   H2S   +  4H2O

Сульфид меди (I) реагирует с азотной кислотой. При этом образуются различные продукты окисления серы на холоде и при нагревании:

Cu2S  +  8HNO3(конц.хол.)   =  2Cu(NO3)2  +  S  +  4NO2  +  4H2O

 

Cu2S  +  12HNO3(конц.гор.)   =  Cu(NO3)2  +  CuSO4   +  10NO2  +  6H2O

 

Для соединений меди (I) возможна реакция диспропорционирования:

2CuCl  =  Cu   +  CuCl2

Комплексные соединения типа [Cu(NH3)2]+ получают растворением в концентрированном растворе аммиака:

CuCl  +  3NH3  +  H2O  →   [Cu(NH3)2]OH  +  NH4Cl

 

Соли меди (II)

 

В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства.

Например, соли меди (II) окисляют иодиды и сульфиты:

2CuCl2  +  4KI = 2CuI  +  I2  +  4HCl

 

2CuCl+  Na2SO3  +  2NaOH  =  2CuCl  +  Na2SO4  +  2NaCl  +  H2O

 

Бромиды и иодиды меди (II) можно окислить перманганатом калия:

 

5CuBr2  +  2KMnO4  +  8H2SO4  =  5CuSO4  +  K2SO4  +  2MnSO4  +  5Br2  +  8H2O

 

Соли меди (II) также окисляют сульфиты:

 

2CuSO4  +  Na2SO3   +  2H2O   =  Cu2O   +  Na2SO4     +  2H2SO4

 Более активные металлы вытесняют медь из солей.

Например, сульфат меди (II) реагирует с железом:

CuSO4  +  Fe  =  FeSO4  +  Cu

Cu(NO3) + Fe  =  Fe(NO3) +  Cu

 

Сульфид меди (II) можно окислить концентрированной азотной кислотой. При нагревании возможно образование сульфата меди (II):

 

CuS  +  8HNO3(конц.гор.)   =   CuSO4   +   8NO2   +  4H2O

 

Еще одна форма этой реакции:

 

CuS  +  10HNO3(конц.)     =  Cu(NO3)2  +  H2SO4  +    8NO2↑ +  4H2O

 

При горении сульфида меди (II) образуется оксид меди (II)  и диоксид серы:

 

2CuS  +  3O2    2CuO  +  2SO2

 

Соли меди (II) вступают в обменные реакции, как и все соли.

Например, растворимые соли меди (II) реагируют с сульфидами:

 

CuBr2  +  Na2S  =  CuS↓  +  2NaBr

 При взаимодействии солей меди (II) с щелочами образуется голубой осадок гидроксида меди (II):

CuSO4  +  2NaOH  =  Cu(OH)2↓  +  Na2SO4

 

Электролиз раствора нитрата меди (II):

 

2Cu(NO3)2    +   2Н2О →  2Cu   +   O2  +  4HNO3

 

Некоторые соли меди при нагревании разлагаются, например, нитрат меди (II):

 

2Cu(NO3)2 → 2CuO  +  4NO2  +  O2

 

Основный карбонат меди разлагается на оксид меди (II), углекислый газ и воду:

 

(CuOH)2CO3 →  2CuO  +  CO2  +  H2O

 

При взаимодействии солей меди (II) с избытком аммиака образуются аммиачные комплексы:

 

CuCl2  + 4NH3  =   [Cu(NH3)4]Cl2

 

При смешивании растворов солей меди (II) и карбонатов происходит гидролиз и по катиону слабого основания, и по аниону слабой кислоты:

 

2CuSO4  +  2Na2CO3  +  H2O  =  (CuOH)2CO3↓  +  2Na2SO4  +  CO2

 

 

 

 

 

 

Медь и соединения меди.

 

1) Через раствор хлорида меди (II) с помощью графитовых электродов пропускали постоянный электрический ток. Выделившийся на катоде продукт электролиза растворили в концентрированной  азотной кислоте. Образовавшийся при этом газ собрали  и пропустили через раствор гидроксида натрия. Выделившийся на аноде газообразный продукт электролиза пропустили через горячий раствор гидроксида натрия. Напишите уравнения описанных реакций.

 

2) Вещество, полученное на катоде при электролизе расплава хлорида меди (II), реагирует с серой. Полученный продукт обработали концентрированной азотной кислотой, и выделившийся газ пропустили  через раствор гидроксида бария. Напишите уравнения описанных реакций.

 

3) Неизвестная соль бесцветна и окрашивает пламя в желтый цвет. При легком нагревании этой соли с концентрированной серной кислотой отгоняется жидкость, в которой растворяется медь; последнее превращение сопровождается выделением бурого газа и образованием соли меди. При термическом распаде обеих солей одним из продуктов разложения является кислород. Напишите уравнения описанных реакций.

 

4) При взаимодействии раствора соли А со щелочью было получено студенистое нерастворимое в воде вещество голубого цвета, которое растворили в бесцветной жидкости Б с образованием раствора синего цвета. Твердый продукт, оставшийся после осторожного выпаривания раствора, прокалили; при этом выделились два газа, один из которых бурого цвета, а второй входит в состав атмосферного воздуха, и осталось твердое вещество черного цвета, которое растворяется в жидкости Б с образованием вещества А. Напишите уравнения описанных реакций.

 

5) Медную стружку растворили в разбавленной азотной кислоте, и раствор нейтрализовали едким кали. Выделившееся вещество голубого цвета отделили, прокалили (цвет вещества изменился на черный), смешали с коксом и повторно прокалили. Напишите уравнения описанных реакций.

 

6) В раствор нитрата ртути (II) добавили медную стружку. После окончания реакции раствор профильтровали, и фильтрат по каплям прибавляли к раствору, содержащему едкий натр и гидроксид аммония. При этом наблюдали кратковременное образование осадка, который растворился с образованием раствора ярко-синего цвета. При добавлении в полученный раствор избытка раствора серной кислоты происходило изменение цвета. Напишите уравнения описанных реакций.

 

7) Оксид меди (I) обработали концентрированной азотной кислотой, раствор осторожно выпарили и твердый остаток прокалили. Газообразные продукты реакции пропустили через большое количество воды и в образовавшийся раствор добавили магниевую стружку, в результате выделился газ, используемый в медицине. Напишите уравнения описанных реакций.

 

8) Твердое вещество, образующееся при нагревании малахита, нагрели в атмосфере водорода. Продукт реакции обработали концентрированной серной кислотой, внесли в раствор хлорида натрия, содержащий медные опилки, в результате образовался осадок. Напишите уравнения описанных реакций.

 

 

9) Соль, полученную при растворении меди в разбавленной азотной кислоте, подвергли электролизу, используя графитовые электроды. Вещество, выделившееся на аноде, ввели во взаимодействие с натрием, а полученный продукт реакции поместили в сосуд с углекислым газом. Напишите уравнения описанных реакций.

 

10) Твердый продукт термического разложения малахита растворили при нагревании в концентрированной азотной кислоте. Раствор осторожно выпарили, и твердый остаток прокалили, получив вещество черного цвета, которое нагрели в избытке аммиака (газ). Напишите уравнения описанных реакций.

 

11) К порошкообразному веществу черного цвета добавили раствор разбавленной серной кислоты и нагрели. В полученный раствор голубого цвета приливали раствор едкого натра до прекращения выделения осадка. Осадок отфильтровали и нагрели. Продукт реакции нагревали в атмосфере водорода, в результате чего получилось вещество красного цвета. Напишите уравнения описанных реакций.

 

12) Неизвестное вещество красного цвета нагрели в хлоре, и продукт реакции растворили в воде. В полученный раствор добавили щелочь, выпавший осадок голубого цвета отфильтровали и прокалили. При нагревании продукта прокаливании, который имеет черный цвет, с коксом было получено исходное вещество красного цвета. Напишите уравнения описанных реакций.

 

13) Раствор, полученный при взаимодействии меди с концентрированной азотной кислотой, выпарили и осадок прокалили. Газообразные продукты полностью поглощены водой, а над твердым остатком пропустили водород. Напишите уравнения описанных реакций.

 

14) Черный порошок, который образовался при сжигании металла красного цвета в избытке воздуха, растворили в 10%-серной кислоте. В полученный раствор добавили щелочь, и выпавший осадок голубого цвета отделили и растворили в избытке раствора аммиака. Напишите уравнения описанных реакций.

 

15) Вещество черного цвета получили, прокаливая осадок, который образуется при взаимодействии гидроксида натрия и сульфата меди (II). При нагревании этого вещества с углем получают металл красного цвета, который растворяется в концентрированной серной кислоте. Напишите уравнения описанных реакций.

 

16) Металлическую медь обработали при нагревании йодом. Полученный продукт растворили в концентрированной серной кислоте при нагревании. Образовавшийся раствор обработали раствором гидроксидом калия. Выпавший осадок прокалили. Напишите уравнения описанных реакций.

 

17) К раствору хлорида меди (II) добавили избыток раствора соды. Выпавший осадок прокалили, а полученный продукт нагрели в атмосфере водорода. Полученный порошок растворили в разбавленной азотной кислоте. Напишите уравнения описанных реакций.

 

18)  Медь растворили в разбавленной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали серной кислотой до появления характерной голубой окраски солей меди. Напишите уравнения описанных реакций.

 

 

19) Медь растворили в концентрированной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали избытком соляной кислоты. Напишите уравнения описанных реакций.

 

20) Газ, полученный при взаимодействии железных опилок с раствором соляной кислоты, пропустили над нагретым оксидом меди (II) до полного восстановления металла. полученный металл растворили в концентрированной азотной кислоте. Образовавшийся раствор подвергли электролизу с инертными электродами. Напишите уравнения описанных реакций.

 

21)  Йод поместили в пробирку с концентрированной горячей азотной кислотой. Выделившийся газ пропустили через воду в присутствии кислорода. В полученный раствор добавили гидроксид меди (II). Образовавшийся раствор выпарили и сухой твердый остаток прокалили. Напишите уравнения описанных реакций.

 

22)  Оранжевый оксид меди поместили в концентрированную серную кислоту и нагрели. К полученному голубому раствору прилили избыток раствора гидроксида калия. выпавший синий осадок отфильтровали, просушили и прокалили. Поученное при этом твердое черное вещество в стеклянную трубку, нагрели и пропустили над ним аммиак. Напишите уравнения описанных реакций.

 

23) Оксид меди (II) обработали раствором серной кислоты. При электролизе образующегося раствора на инертном аноде выделяется газ. Газ смешали с оксидом азота (IV) и поглотили с водой. К разбавленному раствору полученной кислоты добавили магний, в результате чего в растворе образовалось две соли, а выделение газообразного продукта не происходило. Напишите уравнения описанных реакций.

 

24)  Оксид меди (II) нагрели в токе угарного газа. Полученное вещество сожгли в атмосфере хлора. Продукт реакции растворили в в воде. Полученный раствор разделили на две части. К одной части добавили раствор иодида калия, ко второй – раствор нитрата серебра. И в том, и в другом случае наблюдали образование осадка. Напишите уравнения описанных реакций.

 

25) Нитрат меди (II) прокалили, образовавшееся твердое вещество растворили в разбавленной серной кислоте. Раствор полученной соли подвергли электролизу. Выделившееся на катоде вещество растворили в концентрированной азотной кислоте. Растворение протекает с выделением бурого газа. Напишите уравнения описанных реакций.

 

26) Щавелевую кислоту нагрели с небольшим количеством концентрированной серной кислоты. Выделившийся газ пропустили через раствор гидроксида кальция. В котором выпал осадок. Часть газа не поглотилась, его пропустили над твердым веществом черного цвета, полученным при прокаливании нитрата меди (II). В результате образовалось твердое вещество темно-красного цвета. Напишите уравнения описанных реакций.

 

27)   Концентрированная серная кислота прореагировала с медью. Выделившийся при газ полностью поглотили избытком раствора гидроксида калия. Продукт окисления меди смешали с расчетным количеством гидроксида натрия до прекращения выпадения осадка. Последний растворили в избытке соляной кислоты. Напишите уравнения описанных реакций.

 

 

Медь. Соединения меди.

 

  1. CuCl2       Cu      +      Сl2

на катоде    на аноде

Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

2Cu(NO3)2  2CuO   +  4NO2   +  O2

6NaOH(гор.)  +  3Cl2  =  NaClO3  +  5NaCl  +  3H2O

 

 

  1. CuCl2   Cu         +       Сl2

на катоде        на аноде

Cu   +   S    CuS

CuS  +  8HNO3(конц.гор.)     =  CuSO4  +  8NO2↑  +  4H2O

или CuS  +  10HNO3(конц.)     =  Cu(NO3)2  +  H2SO4  +    8NO2↑ +  4H2O

4NO2  +  2Ba(OH)2  =  Ba(NO3)2  +  Ba(NO2)2  +  2H2O

 

 

  1.  NaNO3(тв.)  +  H2SO4(конц.)  =  HNO3  +  NaHSO4

Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

2Cu(NO3)2  2CuO   +  4NO2↑ +  O2

2NaNO3   2NaNO2  +  O2

 

 

  1. Cu(NO3)2 +  2NaOH  =  Cu(OH)2↓  +  2NaNO3

Cu(OH)2  +  2HNO3  =  Cu(NO3)2  +  2H2O

2Cu(NO3)2  2CuO   +  4NO2   +  O2

CuO  +  2HNO3  =  Cu(NO3)2  +  H2O

 

 

  1. 3Cu   +   8HNO3(разб.)   =  3Cu(NO3)2  +  2NO2↑  +  4H2O

Cu(NO3)2  +  2КOH  =  Cu(OH)2↓  +  2КNO3

2Cu(NO3)2  2CuO   +  4NO2   +  O2

CuO  +  C  Cu  +  CO

 

 

  1. Hg(NO3)2 +  Cu  =   Cu(NO3)2   +  Hg

Cu(NO3)2   +  2NaOH  =  Cu(OH)2↓ +  2NaNO3

Сu(OH)2  +  4(NH3 · H2O)   =  [Cu(NH3)4](OH)2   +  4H2O

[Cu(NH3)4](OH)2   +  5H2SO4   =   CuSO4   +  4NH4HSO4  +  2H2O

 

 

  1. Cu2O +  6HNO3(конц.)  =  2Cu(NO3)2  +  2NO2  +  3H2O

2Cu(NO3)2  2CuO   +  4NO2   +  O2

4NO2   +  O2  +   2H2O  =  4HNO3

10HNO3  +  4Mg  =  4Mg(NO3)2  +  N2O  +  5H2O

 

 

 

  1. (CuOH)2CO3    2CuO  +  CO2  +  H2O

CuO  +  H2   Cu  +  H2O

Cu  +  2H2SO4(конц.)  =  CuSO4  +  SO2  +  2H2O

CuSO4  +  Cu  +  2NaCl  =  2CuCl↓  +  Na2SO4

 

 

  1. 3Cu   +   8HNO3(разб.)   =  3Cu(NO3)2  +  2NO2↑  +  4H2O

 

2Cu(NO3)2     +  2H2O     2Cu           +   O2          +     4HNO3

на катоде        на аноде

2Na  +  O2  =  Na2O2

2Na2O2  +  CO2  =  2Na2CO3  +  O2

 

 

  1. (CuOH)2CO3  2CuO  +  CO2  +  H2O

CuO  +  2HNO3     Cu(NO3)2  +  H2O

2Cu(NO3)2  2CuO   +  4NO2   +  O2

3CuO  +  2NH3  3Cu  +  N2  +  3H2O

 

 

  1. CuO  +  H2SO4  CuSO4  +  H2O

CuSO4  +  2NaOH  =  Cu(OH)2  +  Na2SO4

Cu(OH)2  CuO  +  H2O

CuO  +  H2   Cu  +  H2O

 

 

  1. Cu  +  Cl2  CuCl2

CuCl2  +  2NaOH  =  Cu(OH)2↓  +  2NaCl

Cu(OH)2  CuO  +  H2O

CuO  +  C   Cu  +  CO

 

 

  1. Cu +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

4NO2  +  O2  +  2H2O  =  4HNO3

2Cu(NO3)2  2CuO   +  4NO2   +  O2

CuO  +  H2   Cu  +  H2O

 

 

  1. 2Cu   +   O2   =   2CuO

CuO    +    H2SO4   =   CuSO4  +  H2O

CuSO4    +   NaOH    =    Cu(OH)2↓  +  Na2SO4

Сu(OH)2   +  4(NH3 · H2O)   =  [Cu(NH3)4](OH)2   +  4H2O

 

 

 

 

  1. СuSO4 +  2NaOH  =  Cu(OH)2  +  Na2SO4

Cu(OH)2  CuO  +  H2O

CuO  +  C   Cu  +  CO

Cu  +  2H2SO4(конц.)  =  CuSO4  +  SO2  +  2H2O

 

 

16)       2Cu  +  I2   =  2CuI

2CuI   +  4H2SO4     2CuSO4  +  I2  +  2SO2  +  4H2O

СuSO4  +  2KOH  =  Cu(OH)2  +  K2SO4

Cu(OH)2  CuO  +  H2O

 

 

17)       2CuCl2  +  2Na2CO3  +  H2O  =  (CuOH)2CO3  +  CO2  +  4NaCl

(CuOH)2CO3     2CuO   +  CO2  +  H2O

CuO  +  H2   Cu  +  H2O

3Cu   +   8HNO3(разб.)   =  3Cu(NO3)2  +  2NO2↑  +  4H2O

 

 

18)       3Cu   +   8HNO3(разб.)   =  3Cu(NO3)2  +  2NO2↑  +  4H2O

Сu(NO3)2  +  2NH3· H2O   =  Cu(OH)2↓  +  2NH4NO3

Cu(OH)2   +   4NH3· H2O   =  [Cu(NH3)4](OH)2   +  4H2O

[Cu(NH3)4](OH)2   +   3H2SO4    =  CuSO4   +   2(NH4)2SO4    +  2H2O

 

 

19)       Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

Сu(NO3)2  +  2NH3· H2O   =  Cu(OH)2↓  +  2NH4NO3

Cu(OH)2   +   4NH3· H2O   =  [Cu(NH3)4](OH)2   +  4H2O

[Cu(NH3)4](OH)2   +   6HCl    =  CuCl2   +   4NH4Cl    +  2H2O

 

 

20)       Fe   +   2HCl    =    FeCl2   +   H2

CuO    +  H2   =   Cu   +   H2O

Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

2Cu(NO3)2     +  2H2O       2Cu   +   O2  +  4HNO3

 

 

21)       I2   +   10HNO3    =   2HIO3   +   10NO2   +   4H2O

4NO2   +   2H2O  +  O2    =    4HNO3

Cu(OH)2  +  2HNO3  Cu(NO3)2  +  2H2O

2Cu(NO3)2  2CuO   +  4NO2   +  O2

 

 

22)       Cu2O   +  3H2SO4   =  2CuSO4   +   SO2   +   3H2O

СuSO4  +  2KOH  =  Cu(OH)2  +  K2SO4

Cu(OH)2  CuO  +  H2O

3CuO  +  2NH3  3Cu  +  N2  +  3H2O

 

 

23)       CuO   +  H2SO4  =  CuSO4  +  H2O

2CuSO4    +   2H2O   2Cu   +   O2  +  2H2SO4

4NO2   +  O2   +   2H2O  =  4HNO3

10HNO3   +   4Mg    =    4Mg(NO3)2   +   NH4NO3  +   3H2O

 

 

24)       CuO    +   CO   Cu   +   CO2

Cu   +   Cl2   =  CuCl2

2CuCl2   +   2KI   =   2CuCl↓   +   I2   +   2KCl

CuCl2    +   2AgNO3   =   2AgCl↓    +   Cu(NO3)2

 

 

25)       2Cu(NO3)2  2CuO   +  4NO2   +  O2

CuO   +  H2SO4  =  CuSO4  +  H2O

2CuSO4    +   2H2O   2Cu   +   O2  +  2H2SO4

Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

 

 

26)       H2C2O     CO↑   +   CO2↑   +   H2O

CO2   +   Ca(OH)2   =   CaCO3  +  H2O

2Cu(NO3)2  2CuO   +  4NO2   +  O2

CuO    +   CO   Cu   +   CO2

 

 

27)       Cu  +  2H2SO4(конц.)  =  CuSO4  +  SO2  +  2H2O

SO2   +   2KOH   =   K2SO3   +   H2O

СuSO4  +  2NaOH  =  Cu(OH)2  +  Na2SO4

Cu(OH)2  +  2HCl  CuCl2  +  2H2O

Щелочноземельные металлы и их соединения

Элементы II группы главной подгруппы

1. Положение в Периодической системе химических элементов
2. Электронное строение и закономерности изменения свойств
3. Физические свойства
 4. Нахождение в природе
 5. Способы получения
 6. Качественные реакции
 7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и фосфором
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие с оксидами неметаллов
7.2.6. Взаимодействие с солями и оксидами металлов

Оксиды щелочноземельных металлов
1. Способы получения
2. Химические свойства
2.1. Взаимодействие с кислотными и амфотерными оксидами
2.2. Взаимодействие с кислотами
2.3. Взаимодействие с водой
2.4. Амфотерные свойства оксида бериллия

Гидроксиды щелочноземельных металлов
1. Способы получения
2. Химические свойства
2.1. Взаимодействие с кислотами
2.2. Взаимодействие с кислотными оксидами
2.3. Взаимодействие с амфотерными оксидами и гидроксидами
2.4. Взаимодействие с кислыми солями
2.5. Взаимодействие с неметаллами
2.6. Взаимодействие с металлами
2.7. Взаимодействие с солями
2.8. Разложение при нагревании
2.9. Диссоциация
2.10. Амфотерные свойства гидроскида бериллия

Соли щелочноземельных металлов
Жесткость
1. Постоянная и временная жесткость
2. Способы устранения жесткости

 

Элементы II группы главной подгруппы

Положение в периодической системе химических элементов

Щелочноземельные металлы расположены во второй группе главной подгруппе периодической системы химических элементов Д.И. Менделеева (или просто во 2 группе в длиннопериодной форме ПСХЭ). На практике к щелочноземельным металлам относят только кальций Ca, стронций Sr, барий Ba и радий Ra. Бериллий Be по свойствам больше похож на алюминий, магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Однако, согласно номенклатуре ИЮПАК, щелочноземельными принято считать все металлы II группы главной подгруппы.

Электронное строение и закономерности изменения свойств 

Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов: ns2, на внешнем энергетическом уровне в основном состоянии находится 2 s-электрона. Следовательно, типичная степень окисления щелочноземельных металлов в соединениях +2.

Рассмотрим некоторые закономерности изменения свойств щелочноземельных металлов.

В ряду BeMgCaSrBaRa, в соответствии с Периодическим законом, увеличивается атомный радиус, усиливаются металлические свойства, ослабевают неметаллические свойства, уменьшается электроотрицательность.


Физические свойства 

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний  и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Кристаллическая решетка щелочноземельных металлов в твёрдом состоянии — металлическая. Следовательно, они обладают высокой тепло- и электропроводимостью. Кипят и плавятся при высоких температурах.

Нахождение в природе

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочноземельные металлы:

Доломит — CaCO3 · MgCO3 — карбонат кальция-магния.

Магнезит MgCO3 – карбонат магния.

Кальцит CaCO3 – карбонат кальция.

Гипс CaSO4 · 2H2O – дигидрат сульфата кальция.

Барит BaSO4 — сульфат бария.

Витерит BaCO3 – карбонат  бария.


Способы получения 

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

MgCl2 → Mg + Cl2

или восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

CaCl2 → Ca + Cl2

Барий получают восстановлением оксида бария алюминием в вакууме при 1200 °C:

4BaO+ 2Al → 3Ba + Ba(AlO2)2

Качественные реакции

Качественная реакция на щелочноземельные металлы — окрашивание пламени солями щелочноземельных металлов.

Цвет пламени:
Caкирпично-красный
Sr — карминово-красный (алый)
Baяблочно-зеленый

Качественная реакция на ионы магния:  взаимодействие с щелочами. Ионы магния осаждаются щелочами с образованием белого осадка гидроксида магния:

Mg2+ + 2OH → Mg(OH)2

Качественная реакция на ионы кальция, стронция, бария:  взаимодействие с карбонатами. При взаимодействии солей кальция, стронция и бария с карбонатами выпадает  белый осадок карбоната кальция, стронция или бария:

Ca2+ + CO32- → CaCO3

Ba2+ + CO32- → BaCO3

Качественная реакция на ионы стронция и бария: взаимодействие с карбонатами. При взаимодействии солей  стронция и бария с сульфатами выпадает  белый осадок сульфата бария и сульфата стронция:

Ba2+ + SO42- → BaSO4

Sr2+ + SO42- → SrSO4

Также осадки белого цвета образуются при взаимодействии солей кальция, стронция и бария с сульфитами и фосфатами.

Например, при взаимодействии хлорида кальция с фосфатом натрия образуется белый осадок фосфата кальция:

3CaCl2 + 2Na3PO4 → 6NaCl + 2Ca3(PO4)2

Химические свойства

1. Щелочноземельные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.

1.1. Щелочноземельные металлы реагируют с галогенами с образованием галогенидов при нагревании.

Например, бериллий взаимодействует с хлором с образованием хлорида бериллия:

Be + Cl2 → BeCl2

1.2. Щелочноземельные металлы реагируют при нагревании с серой и фосфором с образованием сульфидов и фосфоридов.

Например, кальций взаимодействует с серой при нагревании:

Ca + S → CaS

Кальций взаимодействует с фосфором с образованием фосфидов:

3Ca + 2P → Ca3P2

1.3. Щелочноземельные металлы реагируют с водородом при нагревании. При этом образуются бинарные соединения — гидридыБериллий с водородом не взаимодействует, магний реагирует лишь при повышенном давлении.

Mg + H2 → MgH2

1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:

6Mg + 2N2 → 2Mg3N2

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

1.5. Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов.

Например, кальций взаимодействует с углеродом с образованием карбида кальция:

Ca +  2C → CaC2

Бериллий реагирует с углеродом  при нагревании с образованием карбида — метанида:

2Be + C → Be2C

1.6. Бериллий сгорает на воздухе при температуре около 900°С:

2Be + O2 → 2BeO

Магний горит на воздухе при 650°С с выделением большого количества света. При этом образуются оксиды и нитриды:

2Mg + O2 → 2MgO

3Mg + N2 → Mg3N2

Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются оксиды и нитриды.

Видеоопыт: горение кальция на воздухе можно посмотреть здесь.

2. Щелочноземельные металлы взаимодействуют со сложными веществами:

2.1. Щелочноземельные металлы реагируют с водой. Взаимодействие с водой приводит к образованию щелочи и водорода. Бериллий с водой не реагирует. Магний реагирует с водой при кипячении. Кальций, стронций и барий реагируют с водой при комнатной температуре.

Например, кальций реагирует с водой с образованием гидроксида кальция и водорода:

2Ca0 + 2H2+O = 2Ca+(OH)2 + H20

2.2. Щелочноземельные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной, разбавленной серной кислотой и др.). При этом образуются соль и водород.

Например, магний реагирует с соляной кислотой:

2Mg  +  2HCl →  MgCl2  +  H2

2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.

Например, при взаимодействии кальция с концентрированной серной кислотой образуется сульфат кальция, сера и вода:

4Ca  +  5H2SO4(конц.)  → 4CaSO4  +  S  +  5H2O

2.4. Щелочноземельные металлы реагируют с азотной кислотой. При взаимодействии кальция и магния с концентрированной или разбавленной азотной кислотой образуется оксид азота (I):

4Ca + 10HNO3 (конц) → N2O + 4Сa(NO3)2 + 5H2O

При взаимодействии щелочноземельных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

4Ba  +  10HNO3  → 4Ba(NO3)2  +  NH4NO3  +  3H2O

2.5. Щелочноземельные металлы могут восстанавливать некоторые неметаллы (кремний, бор, углерод) из оксидов.

Например, при взаимодействии кальция с оксидом кремния (IV) образуются кремний и оксид кальция:

2Ca + SiO2 → 2CaO + Si

 Магний горит в атмосфере углекислого газа. При этом образуется сажа и оксид магния:

2Mg + CO2 → 2MgO + C

2.6. В расплаве щелочноземельные металлы могут вытеснять менее активные металлы из солей и оксидов. Обратите внимание! В растворе щелочноземельные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например, кальций вытесняет медь из расплава хлорида меди (II):

Ca + CuCl2 → CaCl2 + Cu

 

Оксиды щелочноземельных металлов

Способы получения

1. Оксиды щелочноземельных металлов можно получить из простых веществ — окислением металлов кислородом:

2Ca + O2 → 2CaO

2. Оксиды щелочноземельных металлов можно получить термическим разложением некоторых кислородсодержащих солей — карбонатов, нитратов.

Например, карбонат кальция разлагается на оксид кальция, оксид азота (IV) и кислород:

2Ca(NO3)2 → 2CaO + 4NO2 + O2

MgCO3 → MgO + CO2

СаСО3 → СаО + СО2

3. Оксиды магния и бериллия можно получить термическим разложением гидроксидов:

Mg(OH)2 → MgO + H2O

Химические свойства

Оксиды кальция, стронция, бария и магния — типичные основные оксиды. Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой. Оксид бериллия — амфотерный.

1. Оксиды кальция, стронция, бария и магния взаимодействуют с кислотными и амфотерными оксидами:

Например, оксид магния взаимодействует с углекислым газом с образованием карбоната магния:

MgO + CO2 → MgCO3

2. Оксиды щелочноземельных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например, оксид кальция взаимодействует с соляной кислотой с образованием хлорида кальция и воды:

CaO  +  2HCl →  CaCl2  +  H2O

3. Оксиды кальция, стронция и бария активно взаимодействуют с водой с образованием щелочей.

Например, оксид кальция взаимодействует с водой с образованием гидроксида кальция:

CaO  +  H2O →  2Ca(OH)2

Оксид магния реагирует с водой при нагревании:

MgO  +  H2O →  Mg(OH)2

Оксид бериллия не взаимодействует с водой.

4. Оксид бериллия взаимодействует с щелочами и основными оксидами.

При взаимодействии оксида бериллия с щелочами в расплаве или с основными оксидами образуются соли-бериллаты.

Например, оксид натрия  реагирует с оксидом бериллия с образованием бериллата натрия:

Na2O + BeO → Na2BeO2

Например, гидроксид натрия  реагирует с оксидом бериллия в расплаве с образованием бериллата натрия:

2NaOH + BeO → Na2BeO2 + H2O

При взаимодействии оксида бериллия с щелочами в растворе образуются комплексные соли.

Например, оксид бериллия реагирует с гидроксидом калия с растворе с образованием тетрагидроксобериллата калия:

2NaOH + BeO + H2O → Na2[Be(OH)4 

 

 

Гидроксиды щелочноземельных металлов 

Способы получения

1. Гидроксиды кальция, стронция и бария получают при взаимодействии соответствующих оксидов с водой.

Например, оксид кальция (негашеная известь) при взаимодействии с водой образует гидроксид кальция (гашеная известь):

CaO + H2O → Ca(OH)2 

Оксид магния взаимодействует с водой только при нагревании:

MgO + H2O → Mg(OH)2 

2. Гидроксиды кальция, стронция и бария получают при взаимодействии соответствующих металлов с водой.

Например, кальций реагирует с водой  с образованием гидроксида кальция и водорода:

2Ca + 2H2O → 2Ca(OH)2 + H2

Магний взаимодействует с водой только при кипячении:

2Mg + 2H2O → 2Mg(OH)2 + H2

3. Гидроксиды кальция и магния можно получить при взаимодействии солей кальция и магния с щелочами.

Например, нитрат кальция с гидроксидом калия образует нитрат калия и гидроксид кальция:

Ca(NO3)2 + 2KOH → Ca(OH)2↓ + 2KNO3

Химические свойства

1. Гидроксиды кальция, стронция и бария реагируют с всеми кислотами (и сильными, и слабыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Гидроксид магния взаимодействует только с сильными кислотами.

Например, гидроксид кальция с соляной кислотой реагирует с образова-нием хлорида кальция:

Ca(OH)2 + 2HCl → CaCl2 + 2H2O

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами. При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например, гидроксид бария с углекислым газом реагирует с образова-нием карбонатов или гидрокарбонатов:

Ba(OH)2(избыток)  + CO2 → BaCO3 + H2O

Ba(OH)2 + 2CO2(избыток)  → Ba(HCO3)2

3. Гидроксиды кальция, стронция и бария реагируют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например, гидроксид бария с оксидом алюминия реагирует в расплаве с образованием алюминатов:

Ba(OH)2 + Al2O3  → Ba(AlO2)2 + H2O

в растворе образуется комплексная соль — тетрагидроксоалюминат:

Ba(OH)2 + Al2O3 + 3H2O → Ba[Al(OH)4]2

4. Гидроксиды кальция, стронция и бария взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например: гидроксид кальция  реагирует с гидрокарбонатом кальция с образованием карбоната кальция:

Ca(OH)2 + Ca(HCO3)2 →  2CaCO3  +  2H2O

5. Гидроксиды кальция, стронция и бария взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода). Взаимодействие щелочей с неметаллами подробно рассмотрено в статье про щелочные металлы.

6. Гидроксиды кальция, стронция и бария взаимодействуют с амфотерными металлами, кроме железа и хрома. При этом в расплаве образуются соль и водород:

Ca(OH)2 + Zn → CaZnO2 + H2

В растворе образуются комплексная соль и водород:

Ca(OH)2 + 2Al  + 6Н2О = Ca[Al(OH)4]2 + 3Н2

7. Гидроксиды кальция, стронция и бария вступают в обменные реакции с растворимыми солями. Как правило, с этими гидроксидами реагируют растворимые соли тяжелых металлов (в ряду активности расположены правее алюминия), а также растворимые карбонаты, сульфитысиликаты, и, для гидроксидов стронция и бария — растворимые сульфаты.

Например, хлорид железа (II) реагирует с гидроксидом бария с образованием хлорида бария и осадка гидроксида железа (II):

Ba(OH)2 + FeCl2 = BaCl2+ Fe(OH)2

Также с гидроксидами кальция, стронция и бария взаимодействуют соли аммония.

Например, при взаимодействии бромида аммония и гидроксида кальция образуются бромид кальция, аммиак и вода:

2NH4Cl + Ca(OH)2 = 2NH3 + 2H2O + CaCl2

8. Гидроксид кальция разлагается при нагревании до 580оС, гидроксиды магния и бериллия разлагаются при нагревании:

Mg(OH)2 → MgO + H2O

9. Гидроксиды кальция, стронция и бария проявляют свойства сильных оснований. В воде практически полностью диссоциируют, образуя щелочную среду и меняя окраску индикаторов.

Ba(OH)2 ↔ Ba2+ + 2OH

Гидроксид магния — нерастворимое основание. Гидроксид бериллия проявляет амфотерные свойства.

10. Гидроксид и бериллия взаимодействует с щелочами. В расплаве образуются соли бериллаты, а в растворе щелочейкомплексные соли.

Например, гидроксид бериллия реагирует с расплавом гидроксида натрия:

Be(OH)2 + 2NaOH → Na2BeO2 + 2H2O

При взаимодействии гидроксида бериллия с избытком раствора щелочи образуется комплексная соль:

Be(OH)2 + 2NaOH → Na2[Be(OH)4]

 

Соли щелочноземельных металлов 

Нитраты щелочноземельных металлов

Нитраты кальция, стронция и бария при нагревании разлагаются на нитриты и кислород. Исключениенитрат магния. Он разлагается на оксид магния, оксид азота (IV)  и кислород.

Например, нитрат кальция разлагается при нагревании на нитрит кальция и молекулярный кислород:

Ca(NO3)2  → Ca(NO2)2  +  O2 

Карбонаты щелочноземельных металлов

1. Карбонаты щелочноземельных металлов при нагревании разлагаются на оксид и углекислый газ.

Например, карбонат кальция разлагается  при температуре 1200оС на оксид кальция и углекислый газ:

CaCO3 → CaO + CO2

2. Карбонаты щелочноземельных металлов под действием воды и углекислого газа превращаются в растворимые в воде гидрокарбонаты.

Например, карбонат кальция взаимодействует с углекислым газом и водой с образованием гидрокарбоната кальция:

CaCO3 + H2O + CO2 → Ca(HCO3)2

3. Карбонаты щелочноземельных металлов взаимодействуют с более сильными кислотами с образованием новой соли, углекислого газа и воды.

Более сильные кислоты вытесняют менее сильные из солей.

Например, карбонат магния взаимодействует с соляной кислотой:

CaCO3 + 2HCl → CaCl2 + CO2↑+ H2O

4. Менее летучие оксиды вытесняют углекислый газ из карбонатов при сплавлении. К менее летучим, чем углекислый газ, оксидам относятся твердые оксиды — оксид кремния (IV), оксиды амфотерных металлов.

Менее летучие оксиды вытесняют более летучие оксиды из солей при сплавлении.

Например, карбонат кальция взаимодействует с оксидом алюминия при сплавлении:

CaCO3 + Al2O3 → Ca(AlO2)2 + CO2

 

 

Жесткость воды

Постоянная и временная жесткость

Жесткость воды — это характеристика воды, обусловленная содержанием в ней растворенных солей щелочноземельных металлов, в основном кальция и магния (солей жесткости).

Временная (карбонатная) жесткость обусловлена присутствием гидрокарбонатов кальция Ca(HCO3)2 и магния Mg(HCO3)2 в воде.

Постоянная (некарбонатная) жесткость обусловлена присутствием солей, не выделяющихся при кипячении из раствора: хлоридов (CaCl2) и сульфатов (MgSO4) кальция и магния.

Способы устранения жесткости

Существуют химические и физические способы устранения жесткости. Химические способы устранения временной жесткости:

1. Кипячение. При кипячении гидрокарбонаты кальция и магния распадаются на нерастворимые карбонаты, углекислый газ и воду:

Ca(HCO3)2 → CaCO3 + CO2 + H2O

2. Добавление извести (гидроксида кальция). При добавлении щелочи растворимые гидрокарбонаты переходят в нерастворимые карбонаты:

Ca(HCO3)2 + Ca(OH)2 → CaCO3 + 2H2O

Химические способы устранения постоянной жесткостиреакции ионного обмена, которые позволяют осадить ионы кальция и магния из раствора:

1. Добавление соды (карбоната натрия). Карбонат натрия связывает ионы кальция и магния в нерастворимые карбонаты:

CaCl2 + Na2CO3 → CaCO3↓+ 2NaCl

2. Добавление фосфатов. Фосфаты также связывают ионы кальция и магния:

3CaCl2 + 2Na3PO4 → Ca3(PO4)2↓ + 6NaCl

Понятие о металлургии: общие способы получения металлов

Понятие о металлургии: общие способы получения металлов

Металлургия — это наука о промышленных способах получения металлов. Различают черную и цветную металлургию.

Черная металлургия — это производство железа и его сплавов (сталь, чугун и др.).

Цветная металлургия — производство  остальных металлов и их сплавов.

Широкое применение находят сплавы металлов. Наиболее распространенные сплавы железа — чугун и сталь.

Чугун — это сплав железа, в котором содержится 2-4 масс. % углерода, а также кремний, марганец и небольшие количества серы и фосфора. 

Сталь — это сплав железа, в котором содержится 0,3-2 масс. % углерода и небольшие примеси других элементов.

Легированные стали — это сплавы железа с хромом, никелем, марганцем, кобальтом, ванадием, титаном и другими металлами. Добавление металлов придает стали дополнительные свойства. Так, добавление хрома придает сплаву прочность, а добавление никеля придает стали пластичность.

Основные стадии металлургических процессов:

  1. Обогащение природной руды (очистка, удаление примесей)
  2. Получение металла или его сплава.
  3. Механическая обработка металла

 

 

Большинство металлов встречаются в природе в виде соединений. Наиболее распространенный металл в земной коре — алюминий. Затем железо, кальций, натрий и другие металлы.

 

Нахождение металлов в природе
Активные металлы — в виде солейМеталлов средней активности — в виде оксидов и сульфидовМалоактивные металлы -в виде простых веществ
Хлорид натрия NaCl

 

 

 

Активные металлы (щелочные и щелочноземельные) классическими «химическими» методами получить из соединений нельзя. Такие металлы в виде ионов — очень слабые окислители, а в простом виде — очень сильные восстановители, поэтому их очень сложно восстановить из катионов в простые вещества. Чем активнее металл, тем сложнее его получить в чистом виде — ведь он стремится прореагировать с другими веществами.

Получить такие металлы можно, как правило, электролизом расплавов солей, либо вытеснением из солей другими металлами в жестких условиях.

Натрий в промышленности получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl = 2Na + Cl2

Калий получают пропусканием паров натрия через расплав хлорида калия при 800°С:

KCl + Na = K↑ + NaCl

Литий можно получить электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl = 2Cs + CaCl2

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

MgCl→  Mg + Cl2

 

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

CaCl2 → Ca + Cl2

 

Барий получают из оксида восстановлением алюминием в вакууме при 1200 °C:

4BaO+ 2Al = 3Ba + Ba(AlO2)2

 

Алюминий получают электролизом раствора оксида алюминия Al2O3 в криолите Na3AlF6:

2Al2O3 → 4Al + 3O2

 

 

Металлы малоактивные и неактивные восстанавливают из оксидов углем, оксидом углерода (II) СО или более активным металлом. Сульфиды металлов сначала обжигают.

 

3.1. Обжиг сульфидов

 

При обжиге сульфидов металлов образуются оксиды:

2ZnS + 3O2 → 2ZnO + 2SO2

Металлы получают дальнейшим восстановлением оксидов.

 

3.2. Восстановление металлов углем

 

Чистые металлы можно получить восстановлением из оксидов углем. При этом до металлов восстанавливаются только оксиды металлов, расположенных в ряду электрохимической активности после алюминия

 

 

Например, железо получают восстановлением из оксида углем:

2Fe2O3 + 6C → 2Fe + 6CO

ZnO + C → Zn + CO

Оксиды металлов, расположенных в ряду электрохимической активности до алюминия, реагируют с углем с образованием карбидов металлов:

CaO + 3C → CaC2 + CO

 

3.3. Восстановление металлов угарным газом

 

Оксид углерода (II) реагирует с оксидами металлов, расположенных в ряду электрохимической активности после алюминия

 

 

Например, железо можно получить восстановлением из оксида с помощью угарного газа:

2Fe2O3 + 6CО → 4Fe + 6CO2

 

 

3.4. Восстановление металлов более активными металлами

 

Более активные металлы вытесняют из оксидов менее активные.  Активность металлов можно примерно оценить по электрохимическому ряду металлов:

 

 

Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний.  А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Например, цезий взрывается на воздухе.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например: алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al  =  Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

 

Железо можно вытеснить из оксида с помощью алюминия:

2Fe2O3 + 4Al → 4Fe + 2Al2O3

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

 

 

Активные металлы вытесняют менее активные из растворов их солей.

Например, при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

Медь покроется белыми кристаллами серебра.

При добавлении железа (Fe) в  раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4  + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

Pb(NO3)2  + Zn = Pb + Zn (NO3)2

 

 

3.5. Восстановление металлов из оксидов водородом

 

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Как правило, взаимодействие оксидов металлов с водородом протекает в жестких условиях – под давлением или при нагревании.

CuO + H2 = Cu + H2O

 

 

 

 

 

Чугун получают из железной руды в доменных печах.

Печь последовательно загружают сверху шихтой, флюсами, коксом, затем снова рудой, коксом и т.д.

 

1- загрузочное устройство, 2 — колошник, 3 — шахта, 4 — распар, 5 — горн, 6 — регенератор

 

Доменная печь имеет форму двух усеченных конусов, соединенных основаниями. Верхняя часть доменной печи — колошник, средняя — шахта, а нижняя часть — распар.

В нижней части печи находится горн. Внизу горна скапливается чугун и шлак и отверстия, через которые чугун и шлак покидают горн: чугун через нижнее, а шлак через верхнее. 

Наверху печи расположено автоматическое загрузочное устройство. Оно состоит из двух воронок, соединенных друг с другом. Руда и кокс сначала поступают в верхнюю воронку, а затем в нижнюю.

Из нижней воронки руда и кокс поступают в печь. во время загрузки руды и кокса печь остается закрытой, поэтому газы не попадают в атмосферу, а попадают в регенераторы. В регенераторах печной газ сгорает. 

 

Шихта — это железная руда, смешанная с флюсами.

Снизу в печь вдувают нагретый воздух, обогащенный кислородом, кокс сгорает:

C + O2 = CO2

Образующийся углекислый газ поднимается вверх и окисляет кокс до оксида углерода (II):

CO2 + С = 2CO

Оксид углерода (II) (угарный газ) — это основной восстановитель железа из оксидов в данных процессах. Последовательность восстановления железа из оксида железа (III):

Fe2O3 → Fe3O4 (FeO·Fe2O3) → FeO → Fe

Последовательность восстановления оксида железа (III):

3Fe2O3 + CO → 2Fe3O4 + CO2

Fe3O4 + CO → 3FeO + CO2

FeO + CO → Fe + CO2

Суммарное уравнение протекающих процессов:

Fe2O3 + 3CO → 2Fe + 3CO2

При этом протекает также частичное восстановление примесей оксидов других элементов (кремния, марганца и др.). Эти вещества растворяются в жидком железе.

Чтобы удалить из железной руды тугоплавкие примеси (оксид кремния (IV) и др.). Для их удаления используют флюсы и плавни (как правило, известняк CaCO3 или доломит CaCO3·MgCO3). Флюсы разлагаются при нагревании:

CaCO3 → CaO + CO2

и образуют с тугоплавкими примесями легкоплавкие вещества (шлаки), которые легко можно удалить из реакционной смеси:

CaO + SiO2 → CaSiO3

 

Медь — это… Что такое Медь?

Внешний вид простого вещества

Пластичный металл золотисто-розового цвета
Свойства атома
Имя, символ, номер

Медь/Cuprum (Cu), 29

Атомная масса
(молярная масса)

63,546 а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d10 4s1

Радиус атома

128 пм

Химические свойства
Ковалентный радиус

117 пм

Радиус иона

(+2e) 72 (+1e) 96 пм

Электроотрицательность

1,90 (шкала Полинга)

Электродный потенциал

+0,337 В/ +0,521 В

Степени окисления

3, 2, 1, 0

Энергия ионизации
(первый электрон)

745,0 (7,72) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

8,92 г/см³

Температура плавления

1356,55 (1 083,4 С)

Температура кипения

2840,15 K

Теплота плавления

13,01 кДж/моль

Теплота испарения

304,6 кДж/моль

Молярная теплоёмкость

24,44[1] Дж/(K·моль)

Молярный объём

7,1 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Параметры решётки

3,615 Å

Температура Дебая

315 K

Прочие характеристики
Теплопроводность

(300 K) 401 Вт/(м·К)

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

История и происхождение названия

Медь — один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом — бронзы для изготовления оружия и т. п. (см бронзовый век).

Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.

У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков считают русское слово медь (польск. miedz, чешск. med) родственным древненемецкому smida (металл) и Schmied (кузнец, англ. Smith). От этого слова произошли и родственные названия — медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь «венера» (Venus). В более древние времена встречается название «марс» (Mars).

См. также: История меди и бронзы

Нахождение в природе

Самородная медь

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн[2]. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Забайкальском крае, Джезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси)[3].

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Физические свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвертой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло-[4] и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C 55,5-58 МСм/м[5]. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Изотопы меди

Природная медь состоит из двух стабильных изотопов — 63Cu 65Cu с распространённостью 69 и 31 атомных процентов соответственно. Известны более двух деясятков нестабильных изотопов, самый долгоживущий из которых 67Cu с периодом полураспада 62 часа.

Химические свойства

Возможные степени окисления

В соединениях медь проявляет две степени окисления: +1 и +2. Первая из них склонна к диспропорционированию и устойчива только в нерастворимых соединениях (Cu2O, CuCl, CuI и т. п.) или комплексах (например [Cu(NH3)2]+. Её соединения бесцветны. Более устойчива степень окисления +2, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu(B11H11)23−, полученных в 1994 году.

Простое вещество

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

На влажном воздухе медь окисляется, образуя основный карбонат меди(II):

Реагирует с концентрированной холодной серной кислотой:

С концентрированной горячей серной кислотой:

С безводной серной кислотой при 200 °C:

C разбавленной серной кислотой при нагревании в присутствии кислорода воздуха:

Реагирует с концентрированной азотной кислотой:

С разбавленной азотной кислотой:

С царской водкой:

C разбавленной хлороводородной кислотой в присутствии кислорода:

С газообразным хлороводородом при 500—600 °C:

С бромоводородом:

Также медь реагирует с концентрированной уксусной кислотой в присутствии кислорода:

Медь растворяется в концентрированном гидроксиде аммония, с образованием аммиакатов:

Окисляется до оксида меди(I) при недостатке кислорода и 200 °C и до оксида меди(II), при избытке кислорода и температурах порядка 400—500 °C:

Медный порошок реагирует с хлором, серой (в жидком сероуглероде) и бромом (в эфире), при комнатной температуре:

При 300—400 °C реагирует с серой и селеном:

C оксидами неметаллов:

Медь реагирует с цианидом калия с образованием дицианокупрата(I) калия, щелочи и водорода:

С концентрированной соляной кислотой и хлоратом калия:

Соединения меди(I)

Степени окисления +1 соответствует оксид Cu2O красно-оранжевого цвета. Соответствующий гидроксид CuOH (жёлтого цвета) быстро разлагается с образованием оксида. Гидроксид CuOH проявляет основные свойства.

Многие соединения меди +1 имеют белую окраску либо бесцветны. Это объясняется тем, что в ионе Сu+ все пять Зd-орбиталей заполнены парами электронов.

Ионы меди(I) в водном растворе неустойчивы и легко диспропорционируют:

В то же время медь(I) встречается в форме соединений, которые не растворяются в воде, либо в составе комплексов. Например, дихлорокупрат(I)-ион [CuCl2] устойчив. Его можно получить, добавляя концентрированную соляную кислоту к хлориду меди(I):

Свойства соединений меди (I) похожи на свойства соединений серебра (I). В частности, CuCl, CuBr и CuI нерастворимы. Также существует нестабильный сульфат меди(I)

Соединения меди(II)

Степень окисления II — наиболее стабильная степень окисления меди. Ей соответсвует чёрный оксид CuO и голубой гидроксид Cu(OH)2, который при стоянии легко отщепляет воду и при этом чернеет:

Гидроксид меди (II) носит преимущественно основный характер и только в концентрированной щелочи частично растворяется с образованием синего гидроксокомплекса. Наибольшее значение имеет реакция гидроксида меди (II) с водным раствором аммиака, про которой образуется так называемый реактив Швейцера (растворитель целлюлозы):


Соли меди(II) образуются при растворении меди в кислотах-окислителях (азотной, концентрированной серной). Большинство солей в этой степени окисления имеют синюю или зелёную окраску.

Соединения меди(II) обладают слабыми окислительными свойствами, что используется в анализе (например, использование реактива Фелинга).

Карбонат меди(II) имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди и медных сплавов при взаимодействии оксидной плёнки с углекислым газом воздуха в присутствии воды. Сульфат меди(II) при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид.

Оксид меди (II) используются для получения оксида иттрия бария меди (YBa2Cu3O7-δ), который является основой для получения сверхпроводников.

Соединения меди(III) и меди(IV)

Степени окисления III и IV являются малоустойчивыми степенями окисления и представлены только соединениями с кислородом, фтором или в виде комплексов.

Аналитическая химия меди

Возбуждённые атомы меди окрашивают пламя в голубовато-зелёный цвет

Медь можно обнаружить в растворе по зелёно-голубой окраске пламени бунзеновской горелки, при внесении в него платиновой проволочки, смоченной исследуемым раствором.

  • Традиционно количественное определение меди в слабокислых растворах проводилось с помощью пропускания через него сероводорода, при этой сульфид меди выпадает в далее взвешиваемый осадок .
  • В растворах, при отсутствии мешающих ионов медь может быть определена комплексонометрически или потенциометрически, ионометрически.
  • Микроколичества меди в растворах определяют кинетическими и спектральными методами.

Применение

В электротехнике

Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C 0,01724-0,0180 мкОм·м[5]), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %[6].

Теплообмен

Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.

Для производства труб

В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

В России производство водогазопроводных труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005[7], а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Сплавы

Сплавы на основе меди

В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. Большое количество латуни идёт на изготовление гильз артиллейрийских боеприпасов и оружейных гильз, благодаря технологичности и высокой пластичности.

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30—40 кгс/мм² у сплавов и 25-29 кгс/мм² у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не изменяют механических свойств при термической обработке, и их механические свойства и износостойкость определяются только химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900—12000 кгс/мм², ниже, чем у стали). Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред (медно-никелевые сплавы и алюминиевые бронзы) и хорошей электропроводностью. Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных. Медноникелевый сплав (мельхиор) используются для чеканки разменной монеты[8].

Медноникелевые сплавы, в том числе и так называемый «адмиралтейский» сплав, широко используются в судостроении (трубки конденсаторов отработавшего пара турбин, охлаждаемых забортной водой) и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за высокой коррозионной устойчивости.

Медь является важным компонентом твёрдых припоев — сплавов с температурой плавления 590—880 градусов Цельсия, обладающих хорошей адгезией к большинству металлов, и применяющихся для прочного соединения разнообразных металлических деталей, особенно, из разнородных металлов, от трубопроводной арматуры до жидкостных ракетных двигателей

Сплавы, в которых медь значима

Дюраль (дюралюминий) определяют, как сплав алюминия и меди (меди в дюрали 4,4 %).

Ювелирные сплавы

В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото — очень мягкий металл и нестойко к этим механическим воздействиям.

Соединения меди

Оксиды меди используются для получения оксида иттрия бария меди YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов и батарей.

Другие сферы применения

Медь — самый широко употребляемый катализатор полимеризации ацетилена. Из-за этого трубопроводы из меди для транспортировки ацетилена можно применять только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006[9].

Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Пары меди используются в качестве рабочего тела в лазерах на парах меди, на длинах волн генерации 511 и 578 нм.

Стоимость

На 2011 год стоимость меди составляет около $8900 за тонну[10].

Биологическая роль

Продукты, богатые медью.

Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белком церулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина.

Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем молекулярный кислород белке гемоцианине. В крови всех головоногих и большинства брюхоногих моллюсков и членистоногих медь входит в состав гемоцианина в виде имидазольного комплекса иона меди, роль, аналогичная роли порфиринового комплекса железа в молекуле белка гемоглобина в крови позвоночных животных.

Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день.

При недостатке меди в хондро- и остеобластах снижается активность ферментных систем и замедляется белковый обмен, в результате замедляется и нарушается рост костных тканей[11].

Токсичность

Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен. Всемирная Организация Здравоохранения (ВОЗ) сформулировала в 1998 году это правило так: «Риски для здоровья человека от недостатка меди в организме многократно выше, чем риски от её избытка».

В 2003 году в результате интенсивных исследований ВОЗ пересмотрела прежние оценки токсичности меди. Было признано, что медь не является причиной расстройств пищеварительного тракта[12].

Существовали опасения, что Гепатоцеребральная дистрофия (болезнь Вильсона — Коновалова) сопровождается накоплением меди в организме, так как она не выделяется печенью в желчь. Эта болезнь вызывает повреждение мозга и печени. Однако причинно-следственная связь между возникновением заболевания и приёмом меди внутрь подтверждения не нашла[12]. Установлена лишь повышенная чувствительность лиц, в отношении которых диагностировано это заболевание к повышенному содержанию меди в пище и воде.

Бактерицидность

Бактерицидные свойства меди и её сплавов были известны человеку давно. В 2008 году после длительных исследований Федеральное Агентство по Охране Окружающей Среды США (US EPA) официально присвоило меди и нескольким сплавам меди статус веществ с бактерицидной поверхностью[13] (агентство подчёркивает, что использование меди в качестве бактерицидного вещества может дополнять, но не должно заменять стандартную практику инфекционного контроля). Особенно выражено бактерицидное действие поверхностей из меди (и её сплавов) проявляется в отношении метициллин-устойчивого штамма стафилококка золотистого, известного как «супермикроб» MRSA[14]. Летом 2009 была установлена роль меди и сплавов меди в инактивировании вируса гриппа A/h2N1 (т. н. «свиной грипп»)[15].

Органолептические свойства

Ионы меди придают излишку меди в воде отчётливый «металлический вкус». У разных людей порог органолептического определения меди в воде составляет приблизительно 2—10 мг/л. Естественная способность к такому определению повышенного содержания меди в воде является природным механизмом защиты от приёма внутрь воды с излишним содержанием меди.

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т, a в 2004 году — около 14 млн т[16][17]. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т подтверждённые запасы[16], на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов[16]. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 881,2 тыс. тонн, потребление — 591,4 тыс. тонн[18]. Основными производителями меди в России являлись:

К указанным производителям меди в России в 2009 году присоединился Холдинг «Металлоинвест», выкупивший права на разработку нового месторождения меди «Удоканское»[19]. Мировое производство меди в 2007 году составляло[20] 15,4 млн т, а в 2008 году — 15,7 млн т Лидерами производства были:

  1.  Чили (5,560 млн т в 2007 г. и 5,600 млн т в 2008 г.),
  2.  США (1,170/1,310),
  3.  Перу (1,190/1,220),
  4.  КНР (0,946/1,000),
  5.  Австралия (0,870/0,850),
  6.  Россия (0,740/0,750),
  7.  Индонезия (0,797/0,650),
  8.  Канада (0,589/0,590),
  9.  Замбия (0,520/0,560),
  10.  Казахстан (0,407/0,460),
  11.  Польша (0,452/0,430),
  12.  Мексика (0,347/0,270).

Смотрим также более полный список стран по производству меди.

По объёму мирового производства и потребления медь занимает третье место после железа и алюминия.

Разведанные мировые запасы меди на конец 2008 года составляют 1 млрд т, из них подтверждённые — 550 млн т. Причём, оценочно, считается что глобальные мировые запасы на суше составляют 3 млрд т, а глубоководные ресурсы оцениваются в 700 млн т.

Способы добычи

Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, на Украине, в Сибири, на Алтае.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров.

Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно медные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика.

Эскондида — самый большой в мире карьер, в котором добывают медную руду. Расположен в Чили.

Современные способы добычи

90 % первичной меди получают пирометаллургическим способом, 10 % — гидрометаллургическим. Гидрометаллургический способ — это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.

Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700—800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20—40 % железа, 22—25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 °C.

С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200—1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4—99,4 % меди, 0,01—0,04 % железа, 0,02—0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0—99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод — из меди огневого рафинирования, а катод — из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5—12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах[21].

Влияние на экологию

При открытом способе добычи после её прекращения карьер становится источником токсичных веществ. Самое токсичное озеро в мире — Беркли Пит — образовалось в кратере медного рудника.

Интересные факты

  • Индейцы культуры Чонос (Эквадор) ещё в XV—XVI веках выплавляли медь с содержанием 99,5 % и употребляли её в качестве монеты в виде топориков 2 мм по сторонам и 0,5 мм толщиной. Данная монета ходила по всему западному побережью Южной Америки, в том числе и в государстве Инков[22].
  • В Японии медным трубопроводам для газа в зданиях присвоен статус «сейсмостойких».
  • Инструменты, изготовленные из меди и её сплавов не создают искр, а потому применяются там, где существуют особые требования безопасности (огнеопасные, взрывоопасные производства).
  • В организме взрослого человека содержится до 80 мг меди.
  • Польские учёные установили, что в тех водоёмах, где присутствует медь, карпы отличаются крупными размерами. В прудах или озёрах, где меди нет, быстро развивается грибок, который поражает карпов[23].

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — М.: Советская энциклопедия, 1992. — Т. 3. — С. 7. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8
  2. Медь самородная в БСЭ
  3. Крупнейшие мономинеральные месторождения (рудные районы, бассейны)
  4. при 20 °С 394,279 Вт/(м·К), то есть 0,941 кал/(см·сек·°С)
  5. 1 2 Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006. — C. 246. — ISBN 5-93037-157-1
  6. Применение меди
  7. ГОСТ Р 52318-2005 Трубы медные круглого сечения для воды и газа. Технические условия
  8. Смирягин А. П.,Смирягина Н. А., Белова А. В. Промышленные цветные металлы и сплавы. 3-е изд. — Металлургия, 1974. — С. 321. — 488 с.
  9. СП 31-116-2006 Проектирование и устройство кровель из листовой меди
  10. Цена меди
  11. Медь и рост человека // Наука и жизнь. — М.: «Правда», 1990. — № 1. — С. 17.
  12. 1 2 CHEMICAL FACT SHEETS  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  13. US EPA
  14. В США наблюдается вспышка инфекции MRSA за пределами госпиталей
  15. British Scientist Shares Expertise on Swine Flu Control in Beijing
  16. 1 2 3 Производство меди
  17. В 2005 г. мировая добыча меди увеличится на 8 % до 15,7 млн т. — Новости металлургии
  18. Стратегия развития металлургической промышленности Российской Федерации на период до 2020 года. Минпромэнерго РФ (18 марта 2009). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  19. Металлонвест оплатил лицензию за Удокан
  20. MINERAL COMMODITY SUMMARIES 2009
  21. Получение меди
  22. Espinoza Soriano, Waldemar. Etnohistoria ecuatoriana: estudios y documentos. — Quito: Abya-Yala, 1988. — p. 135.
  23. Интересные факты о меди и медных трубах

Литература

Ссылки

  Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Соединения меди

 

Купрум — это… Что такое Купрум?

Медь / Cuprum (Cu)

Атомный номер

29

Внешний вид простого веществапластичный металл золотисто-розового цвета
Свойства атома
Атомная масса
(молярная масса)

63,546 а. е. м. (г/моль)

Радиус атома

128 пм

Энергия ионизации
(первый электрон)

745,0 (7,72) кДж/моль (эВ)

Электронная конфигурация

[Ar] 3d10 4s1

Химические свойства
Ковалентный радиус

117 пм

Радиус иона

(+2e) 72 (+1e) 96 пм

Электроотрицательность
(по Полингу)

1,90

Электродный потенциал

+0,337 В/ +0,521 В

Степени окисления

2, 1

Термодинамические свойства простого вещества
Плотность

8,96 г/см³

Удельная теплоёмкость

24,465 Дж/(K·моль)

Теплопроводность

401 Вт/(м·K)

Температура плавления

1356,6 K

Теплота плавления

13,01 кДж/моль

Температура кипения

2840 K

Теплота испарения

304,6 кДж/моль

Молярный объём

7,1 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Период решётки

3,615 Å

Отношение c/a

n/a

Температура Дебая

315,00 K

Медь — химический элемент с атомным номером 29 в периодической системе, обозначается символом Cu (лат. Cuprum от названия острова Кипр где добывали медь), красновато-золотистого цвета (розовый при отсутствии оксидной пленки). Простое вещество медь — это пластичный переходный металл, с давних пор широко применяемый человеком.

История и происхождение названия

Схема атома меди

Из-за сравнительной доступности для получения из руды и малой температуры плавления медь — один из первых металлов, широко освоенных человеком. В древности применялась в основном в виде сплава с оловом — бронзы для изготовления оружия и т. п. (см бронзовый век).

Нахождение в природе

Самородная медь

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Читинской области, Джезказган в Казахстане, Меденосный пояс Центральной Африки и Мансфельд в Германии.

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,4 до 1,0 %.

Физические свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра). Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два различных варианта распада с различными продуктами.

Плотность — 8,94*10³ кг/м³

Удельная теплоёмкость при 20 °С — 390 Дж/кг*К

Удельное электрическое сопротивление при 20-100 °С — 1,78·10-8 Ом·м

Существует ряд сплавов меди: латунь — сплав меди с цинком, бронза — сплав меди с оловом, мельхиор — сплав меди и никеля, и некоторые другие.

Химические свойства

Хорошо проводит тепло. На воздухе покрывается оксидной плёнкой.

Соединения

Медный купорос

В соединениях медь бывает двух степеней окисления: менее стабильную степень Cu+ и намного более стабильную Cu2+, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu(B11H11)23-, полученных в 1994 году.

Карбонат меди(II) имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди. Сульфат меди(II) при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид. Также существует нестабильный сульфат меди(I) Существует два стабильных оксида меди — оксид меди(I) Cu2O и оксид меди(II) CuO. Оксиды меди используются для получения оксида иттрия бария меди (YBa2Cu3O7-δ), который является основой для получения сверхпроводников. Хлорид меди(I) — бесцветные кристаллы (в массе белый порошок) плотностью 4,11 г/см³. В сухом состоянии устойчив. В присутствии влаги легко окисляется кислородом воздуха, приобретая сине-зелёную окраску. Может быть синтезирован восстановлением хлорида меди(II) сульфитом натрия в водном растворе.

Соединения меди(I)

Многие соединения меди(I) имеют белую окраску либо бесцветны. Это объясняется тем, что в ионе меди(I) все пять Зd-орбиталей заполнены парами электронов. Однако оксид Cu20 имеет красновато-коричневую окраску. Ионы меди(I) в водном растворе неустойчивы и легко подвергаются диспропорционированию:

2Cu+(водн.) → Cu2+(водн.) + Cu(тв.)

В то же время медь(I) встречается в форме соединений, которые не растворяются в воде, либо в составе комплексов. Например, дихлорокупрат(I)-ион [CuCl2] устойчив. Его можно получить, добавляя концентрированную соляную кислоту к хлориду меди(I):

CuCl(тв.) + Cl(водн.) → [CuCl] (водн.)

Хлорид меди(I) — белое нерастворимое твердое вещество. Как и другие галогениды меди(I), он имеет ковалентный характер и более устойчив, чем галогенид меди (II). Хлорид меди(I) можно получить при сильном нагревании хлорида меди(II):

CuCl2(тв.) → 2CuCl(тв.) + Cl2(г.)

Другой способ его получения заключается в кипячении смеси хлорида меди(II) с медью в концентрированной соляной кислоте. В этом случае сначала образуется промежуточное соединение — комплексный дихлорокупрат(I)-ион [CuCl2]. При выливании раствора, содержащего этот ион, в воду происходит осаждение хлорида меди(I). Хлорид меди(I) реагирует с концентрированным раствором аммиака, образуя комплекс диамминмеди(I) [Cu(NH3)2]+. Этот комплекс не имеет окраски в отсутствие кислорода, но в результате реакции с кислородом превращается в синее соединение.

Аналитическая химия меди

  • Традиционно количественное выделение меди из слабокислых растворов проводилось с помощью сероводорода.
  • В растворах, при отсутствии мешающих ионов медь может быть определена комплексонометрически или потенциометрически, ионометрически.
  • Микроколичества меди в растворах определяют кинетическими методами.

Применение

В электротехнике

Из-за низкого удельного сопротивления (уступает лишь серебру), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов.

Теплообмен

Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.

Для производства труб

В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления. В России производство водопроводных труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005 [3], а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Наиболее распространённые сплавы — бронза и латунь

В разнообразных областях техники широко используются сплавы с использованием меди, самыми широкораспространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, куда помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. В наше время находит применение в военном деле в кумулятивных боеприпасах благодаря высокой пластичности, большое количество латуни идёт на изготовление оружейных гильз. Медноникелевые сплавы используются для чеканки разменной монеты. Медноникелиевые сплавы, в том числе т. н. «адмиралтейский» сплав широко используются в судостроении и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за образцовой коррозионной устойчивости.

Ювелирные сплавы

В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.

Соединения меди

Оксиды меди используются для получения оксида иттрия бария меди YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов, и батарей.

Другие сферы применения

Медь самый широкоупотребляемый катализатор полимеризации ацетилена. Из-за этого трубопроводы из меди применять для транспортировки ацетилена можно только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в кровельном деле. Кровли из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006 [4]

Прогнозируемым новым массовым применением меди обещает стать ее применение в качестве бактерицидных поверхностей в лечебных учереждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Биологическая роль

Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белком церулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина. Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем кислород белке гемоцианине. В крови большинства моллюсков и членистоногих медь используется вместо железа для транспорта кислорода.

Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день.

Токсичность

Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен. Всемирная Организация Здравоохранения (ВОЗ) сформулировала в 1998 году это правило так: «Риски для здоровья человека от недостатка меди в организме многократно выше, чем риски от ее избытка».

В 2003 году в результате интенсивных исследований ВОЗ пересмотрела прежние оценки токсичности меди. Было признано, что медь не является причиной расстройств пищеварительного тракта [5].

Существовали опасения, что Гепатоцеребральная дистрофия (болезнь Вильсона — Коновалова) сопровождается накоплением меди в организме, так как она не выделяется печенью в желчь. Эта болезнь вызывает повреждение мозга и печени. Однако причинно-следственная связь между возникновением заболевания и приёмом меди внутрь подтверждения не нашла[1]. Установлена лишь повышенная чувствительность лиц, в отношении которых диагностировано это заболевание к повышенному содержанию меди в пище и воде. Общее число лиц, поражённых заболеванием, например, в США, составляет ок. 35 000 человек, то есть 0,01 % от общего числа водопользователей.

Бактерицидность

Бактерицидные свойства меди и ее сплавов были известны человеку давно. В 2008 году после длительных исследований Федеральное Агентство по Охране Окружающей Среды США (US EPA) [6] официально присвоило меди и нескольким сплавам меди статус веществ с бактерицидной поверхностью [7]. Особено выраженно бактерицидное действие поверхностей медных (и сплавов меди) проявляется в отношении метициллин-устойчивого штамма стафилококка золотистого, извесного как «супермикроб» MRSA [8]:

Органолептические свойства

Ионы меди придают излишку меди в воде отчётливый «металлический вкус». У разных людей порог органолептического определения меди в воде составляет приблизительно 2-10 мг/л. Естественная способность к такому определению повышенного содержания меди в воде является природным механизмом защиты от приема внутрь воды с излишним содержанием меди.

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т., a в 2004 году — около 14 млн т. [2][3]. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т., из них 687 млн т. подтверждённые запасы [2], на долю России приходилось 3.2 % общих и 3.1 % подтверждённых мировых запасов [2]. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 1,009 тыс. тонн, потребление — 714 тыс. тонн[4]. Основными производителями меди в России являются:

Как добывают медь Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Нашли однажды самородок, который весил 420 т. Наверняка медь была первым металлом, с которым познакомились древние люди. Первые свои орудия делали они из кремниевой и железной руды, из меди, и уже потом научились изготовлять их из бронзы и железа. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н.э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало ее пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. Добычу меди называют прабабушкой металлургии. Ее добыча и выплавка были налажены еще в Древнем Египте, во времена фараона Рамзеса II (1300—1200 гг. до н.э.). Древние египтяне нагнетали воздух в плавильные печи с помощью мехов, а древесный уголь получали из акации и финиковой пальмы. Они выплавили около 100 т чистой меди. На территории России и сопредельных стран медные рудники появились за два тысячелетия до н.э. Остатки их находят на Урале, в Закавказье, на Украине, в Сибири, на Алтае. В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. О нем напоминает теперешняя Пушечная улица в Москве. Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно мед-ные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика. Очень крупное Удоканское месторождение медной руды сравнительно недавно обнаружено на севере Читинской области.

Большая часть добываемой меди используется в электротехнике, потому что медь обладает высокой электропроводностью, уступая в этом только серебру, которое, конечно, намного дороже. Миллионы километров проводов опутали земной шар, и большинство из них медные. Медь нужна для производства двигателей, телевизоров, телефонных аппаратов, различных электроприборов, автомобилей, электровозов, холодильников и даже музыкальных инструментов. Ее используют в химической промышленности для борьбы с вредителями садов и огородов, для подкормки растений и животных. Всюду нужна медь. По объему мирового производства и потребления медь занимает третье место после железа и алюминия.

Ссылки

Примечания

  1. [1]
  2. 1 2 3 http://www.ecsocman.edu.ru/db/msg/142462.html
  3. http://www.metalinfo.ru/ru/news/12150
  4. Минпромэнерго РФ, «Стратегия развития металлургической промышленности Российской Федерации на период до 2015 года» [2]

Wikimedia Foundation. 2010.

Медь — Информация об элементе, свойства и использование

Расшифровка:

Химия в ее элементе: медь

(Promo)

Вы слушаете Химию в ее элементе, представленную вам журналом Chemistry World , журналом Королевского химического общества.

(Конец промо)

Крис Смит

Здравствуйте, на этой неделе монеты, проводимость и медь.Чтобы рассказать историю об элементе, который перенес нас из каменного века в информационный век, вот Стив Милон.

Steve Mylon

Плохая медь, до недавнего времени казалось, что она буквально и фигурально выделялась среди своих родственников из переходных металлов, серебра и золота. Я предполагаю, что это совокупный результат, которого история в изобилии. Практически никогда не бывает таких популярных элементов из-за их полезности и интересного химического состава. Но для Золота и Серебра все так поверхностно.Они более популярны, потому что красивее. Моя жена, например, не химик, и не мечтала носить медное обручальное кольцо. Возможно, это связано с тем, что оксид меди имеет раздражающую привычку окрашивать вашу кожу в зеленый цвет. Но если бы она только нашла время, чтобы узнать о меди, чтобы немного ее узнать; может быть, тогда она отвернется от других и с гордостью будет носить его.

Некоторые сообщают, что медь — это первый металл, который добывают и обрабатывают люди.Независимо от того, так ли это или нет, существуют свидетельства того, что цивилизации использовали медь еще 10 000 лет назад. Для перехода культур от каменного века к бронзовому веку им была нужна медь. Бронза состоит из 2 частей меди и одной части олова, а не серебра или золота. Важность меди для цивилизации никогда не снижалась, и даже сейчас из-за ее превосходной проводимости медь пользуется большим спросом во всем мире, поскольку быстро развивающиеся страны, такие как Китай и Индия, создают инфраструктуру, необходимую для подачи электричества в дома своих граждан.Например, за последние пять лет цена на медь выросла более чем в четыре раза. Возможно, самая большая пощечина этому важному металлу — его использование в монетах во многих странах мира. Оранжево-коричневые монеты обычно имеют низкий номинал, в то время как блестящие, более похожие на серебро монеты, занимают место наверху. Даже в 5-центовой монете Соединенных Штатов никель выглядит блестящим и серебристым, но на самом деле содержит 75% меди и только 25% никеля. Но мы даже не называем это медью.

Конечно, я мог бы продолжать и отмечать много интересных фактов и фактов о меди и о том, почему другие должны относиться к ней с доверием. Они легко могли бы, потому что это отличный проводник тепла, но я нахожу этот металл таким интересным и по многим другим причинам. Медь — один из немногих металлов-индикаторов, который необходим для всех видов. По большей части биологические потребности в меди довольно низки, поскольку только некоторые ферменты, такие как цитохромоксидаза и супероксиддисмутаза, нуждаются в меди в своих активных центрах.Обычно они основаны на цикле окисления-восстановления и играют важную роль в дыхании. Для людей потребность также довольно низкая, всего 2 мг меди в день для взрослых. Тем не менее, слишком мало меди в вашем рационе может привести к повышению артериального давления и уровня холестерина. Интересно для компании

Использование меди | Предложение, спрос, производство, ресурсы

На главную »Металлы» Применение меди


Информация об использовании, ресурсах, предложении, спросе и производстве меди

Переиздано из Информационного бюллетеня USGS [1] и Сводки по минеральным сырьевым товарам [2]

Статуя Свободы: В 1886 году Статуя Свободы представляла наибольшее использование меди в единой конструкции.Чтобы построить статую, было вырезано и забито около 80 тонн медного листа до толщины около 2,3 миллиметра (3/32 дюйма), что составляет около двух пенсов США, сложенных вместе. Право на фотографию принадлежит iStockphoto / А. Харрис.

Медь — металл, использовавшийся на протяжении веков

Медь была одним из первых металлов, когда-либо добытых и использовавшихся людьми, и с самого начала цивилизации она внесла жизненно важный вклад в поддержание и улучшение общества. Впервые медь использовалась в монетах и ​​украшениях примерно с 8000 г. до н. Э.Примерно в 5500 г. до н.э. медные орудия помогли цивилизации выйти из каменного века. Открытие того, что медь, сплавленная с оловом, дает бронзу, ознаменовало начало бронзового века примерно в 3000 году до нашей эры.


Медь против COVID-19: Исследования показали, что новый коронавирус, ответственный за пандемию COVID-19, может выжить в течение нескольких дней на поверхностях из стекла, пластика и нержавеющей стали, но умирает в течение нескольких часов на меди поверхность. [3] [4] Почему? Медь обладает антимикробными свойствами, которые эффективны против самых разных болезнетворных организмов.

В больницах использование меди и медных сплавов на поверхностях, к которым часто прикасаются, может снизить количество пациентов, которые заражаются инфекциями во время пребывания в больнице. К часто касающимся поверхностям, протестированным в ходе исследований, относятся прикроватные поручни, столики с подносами, стержни для внутривенных инъекций и подлокотники стульев [4]. Некоторые патогены погибали за считанные минуты на сухой медной поверхности. [5]

Преимущества меди на поверхностях, подверженных сильному касанию, известны уже много лет, но в больницах их внедряют медленно. Одна из причин заключается в том, что многие медицинские работники не знают о преимуществах меди.Другой — стоимость — медь может быть дороже других вариантов. Кроме того, замена существующих приспособлений и оборудования обходится дороже, чем проектирование с использованием меди с самого начала. [4] [6] Авторские права на вирусное изображение принадлежат iStockphoto и Ирине Шатиловой.


В Соединенных Штатах в 2017 году в захоронении коренных американцев на прибрежной равнине Джорджии был найден кусок того, что считается медным браслетом. Погребение было кремацией, датируемой примерно 3500 лет назад.Медь содержала микроэлементы, которые связывали ее с геологическими месторождениями в районе Великих озер. Эти открытия предполагают наличие дальних торговых связей между Грузией и районом Великих озер, на большем расстоянии, чем когда-либо было известно. [7]

Медь легко растягивается, деформируется и формуется; устойчив к коррозии; и эффективно проводит тепло и электричество. В результате медь была важна для древних людей и по сей день остается предпочтительным материалом для множества бытовых, промышленных и высокотехнологичных применений.

Использование меди: На этом графике показано, как медь использовалась в США в 2017 году по отраслям. В качестве примера: медь, используемая в строительстве, могла быть использована для проводки, водопровода, защиты от атмосферных воздействий и многих других индивидуальных типов использования. Данные для этой диаграммы взяты из Сводки минеральных ресурсов Геологической службы США за 2018 год.

Как мы используем медь сегодня?

В настоящее время медь используется в строительстве, производстве и передаче электроэнергии, производстве электронных продуктов, а также в производстве промышленного оборудования и транспортных средств.Медная проводка и сантехника являются неотъемлемой частью бытовых приборов, систем отопления и охлаждения, а также телекоммуникационных линий, используемых каждый день в домах и на предприятиях. Медь является важным компонентом двигателей, проводки, радиаторов, разъемов, тормозов и подшипников, используемых в легковых и грузовых автомобилях. Средний автомобиль содержит 1,5 км (0,9 мили) медного провода, а общее количество меди колеблется от 20 кг (44 фунта) в небольших автомобилях до 45 кг (99 фунтов) в автомобилях класса люкс и гибридных автомобилях.

Римская монета: Медь была одним из первых металлов, используемых для изготовления монет, и эта практика началась примерно в 8000 году до нашей эры.Представленная выше монета представляет собой римский фоллис с изображением Констанция I. Авторские права на фотографию принадлежат iStockphoto / craetive.

Древнее использование меди

Как и в древние времена, медь остается компонентом чеканки монет, используемых во многих странах, но было обнаружено много новых применений. Одно из недавних применений меди включает ее использование на поверхностях, к которым часто прикасаются (например, на латунных дверных ручках), где антимикробные свойства меди снижают перенос микробов и болезней.Производители полупроводников также начали использовать медь для схем в кремниевых микросхемах, что позволяет микропроцессорам работать быстрее и потреблять меньше энергии. Также недавно было обнаружено, что медные роторы повышают эффективность электродвигателей, которые являются основным потребителем электроэнергии.

Медь в автомобилях: Медь является важным компонентом двигателей, проводки, радиаторов, разъемов, тормозов и подшипников, используемых в легковых и грузовых автомобилях. Средняя машина вмещает 1.5 километров (0,9 мили) медного провода, и общее количество меди колеблется от 20 килограммов (44 фунтов) в небольших автомобилях до 45 килограммов (99 фунтов) в роскошных и гибридных автомобилях. Право на фотографию принадлежит iStockphoto / Rawpixel.

Какие свойства делают медь полезной?

Превосходные легирующие свойства меди сделали ее бесценной в сочетании с другими металлами, такими как цинк (для образования латуни), олова (для образования бронзы) или никеля. Эти сплавы имеют желаемые характеристики и, в зависимости от их состава, разработаны для узкоспециализированных применений.Например, медно-никелевый сплав наносят на корпуса судов, потому что он не подвергается коррозии в морской воде и уменьшает прилипание морских обитателей, таких как ракушки, тем самым снижая сопротивление и повышая эффективность использования топлива. Латунь более пластична и имеет лучшие акустические свойства, чем чистая медь или цинк; следовательно, он используется в различных музыкальных инструментах, включая трубы, тромбоны, колокола и тарелки.

Знаете ли вы? В природе обнаружено не менее 160 медьсодержащих минералов; некоторые из наиболее известных минералов — халькопирит, малахит, азурит и бирюза.

Медь в драгоценных камнях: Медь — важный элемент в ряде драгоценных камней, таких как бирюза, азурит, малахит и хризоколла. Это придает этим минералам зеленый или синий цвет и высокий удельный вес. Показанные выше кабошоны — одни из многих драгоценных камней, добываемых в Аризоне.

Виды месторождений меди

Медь встречается во многих формах, но обстоятельства, определяющие, как, когда и где она депонируется, сильно различаются.В результате медь содержится во многих различных минералах. Халькопирит — самый распространенный и экономически важный из минералов меди.

Исследования, направленные на лучшее понимание геологических процессов, приводящих к образованию месторождений полезных ископаемых, включая месторождения меди, являются важным компонентом программы USGS Mineral Resources Program. Месторождения меди широко классифицируются в зависимости от того, как они образовались. Медно-порфировые месторождения, связанные с магматическими интрузиями, дают около двух третей мировой меди и, следовательно, являются наиболее важным типом медных месторождений в мире.Крупные месторождения меди этого типа находятся в горных районах западной части Северной Америки и в Андах в Южной Америке.

Другой важный тип месторождения меди — тип, содержащийся в осадочных породах — составляет примерно четверть выявленных мировых запасов меди. Эти месторождения встречаются в таких областях, как медный пояс Центральной Африки и бассейн Цехштайн в Восточной Европе.

Отдельные месторождения меди могут содержать сотни миллионов тонн медьсодержащих пород и обычно разрабатываются с использованием методов открытой добычи.Горные работы, которые обычно следуют за открытием руды через много лет, часто длятся десятилетиями. Хотя многие исторические горнодобывающие предприятия не обязаны вести свою деятельность по добыче таким образом, чтобы уменьшить их воздействие на окружающую среду, действующие федеральные правила и нормы штата требуют, чтобы при добыче полезных ископаемых использовались экологически безопасные методы для минимизации воздействия разработки полезных ископаемых на здоровье человека и экосистемы. .

Геологическая служба США по исследованию окружающей среды полезных ископаемых помогает охарактеризовать естественные и антропогенные взаимодействия между месторождениями меди и окружающими водными и наземными экосистемами.Исследования помогают определить естественные фоновые условия до начала добычи и после закрытия рудника. Ученые USGS исследуют климатические, геологические и гидрологические переменные, чтобы лучше понять взаимодействие ресурсов и окружающей среды.

Добыча меди в Аризоне: Аризона производит больше меди, чем любой другой штат. Эта краткая история показывает, как добыча меди в Аризоне построила штат и изменила нацию.

Знаете ли вы? Соединенные Штаты были крупнейшим производителем меди в мире до 2000 г .; Начиная с 2000 года Чили стала ведущим производителем меди в мире.

Предложение, спрос и переработка меди

Мировое производство (предложение) и потребление (спрос) меди резко выросли за последние 25 лет. Когда крупные развивающиеся страны вышли на мировой рынок, спрос на минеральное сырье, включая медь, увеличился. За последние 20 лет Андский регион Южной Америки стал самым продуктивным медным регионом в мире. В 2007 году около 45 процентов мировой меди было произведено в Андах; Соединенные Штаты произвели 8 процентов.Практически вся медь, производимая в Соединенных Штатах, происходит в порядке убывания производства из Аризоны, Юты, Нью-Мексико, Невады или Монтаны.

Риск нарушения глобального предложения меди считается низким, поскольку производство меди рассредоточено по всему миру и не ограничивается одной страной или регионом. Однако из-за его важности для строительства и передачи электроэнергии последствия любого перебоя в поставке меди будут высокими.

Медь — один из наиболее широко перерабатываемых металлов; примерно треть всей меди, потребляемой во всем мире, перерабатывается.Рециклированная медь и ее сплавы могут быть переплавлены и использованы напрямую или в дальнейшей переработке в рафинированную медь без потери каких-либо химических или физических свойств металла.

Добыча меди в Аризоне: Аризона производит больше меди, чем любой другой штат. Эта краткая история показывает, как добыча меди в Аризоне построила штат и изменила нацию.

Медный рудник в штате Юта: Медный рудник Бингем-Каньон в штате Юта, видимый из космоса, произвел более 12 миллионов тонн порфировой меди.Шахта имеет поперечник более 4 км (2,5 мили) наверху и глубину 800 метров (0,5 мили) и является одним из инженерных чудес света. Фотография К.Г. Каннингем, Геологическая служба США.

Знаете ли вы? Медь необходима для здоровья человека; Лучшие источники диетической меди включают морепродукты, мясные субпродукты, цельнозерновые продукты, орехи, изюм, бобовые и шоколад.

Как обеспечить адекватные поставки меди в будущем?

Чтобы помочь предсказать, где могут быть расположены будущие ресурсы меди, ученые USGS изучают, как и где известные ресурсы меди сосредоточены в земной коре, и используют эти знания для оценки потенциала неоткрытых ресурсов меди.Методы оценки потенциала минеральных ресурсов были разработаны и усовершенствованы Геологической службой США для поддержки управления федеральными землями и для лучшей оценки наличия минеральных ресурсов в глобальном контексте.

В 1990-х годах Геологическая служба США провела оценку ресурсов меди в США и пришла к выводу, что еще предстоит найти почти столько же меди, сколько уже было обнаружено. В частности, Геологическая служба США обнаружила, что было обнаружено около 350 миллионов тонн меди, и по оценкам, около 290 миллионов тонн меди остались неоткрытыми в Соединенных Штатах.

Потребление меди: Качество меди, сделавшее ее предпочтительным материалом для различных бытовых, промышленных и высокотехнологичных применений, привело к устойчивому росту мирового потребления меди. Исследования USGS по потреблению меди показывают некоторые интересные тенденции за период с 1990 по 2012 годы. Потребление меди в странах с развивающейся экономикой, таких как Китай и Индия, значительно выросло, тогда как уровень потребления в Соединенных Штатах немного снизился.До 2002 года Соединенные Штаты были ведущим потребителем меди и ежегодно потребляли около 16 процентов от общего объема рафинированной меди в мире (около 2,4 миллиона тонн). В 2002 году Китай обогнал США как ведущего мирового потребителя рафинированной меди. Быстро развивающаяся экономика Китая способствовала четырехкратному увеличению годового потребления рафинированной меди за 12 лет с 2000 по 2012 год. График предоставлен Геологической службой США.

Знаете ли вы? До 1982 года американские пенни были целиком из меди; с 1982 года U.S. penny был покрыт только медью.

Глобальная оценка ресурсов меди

Геологическая служба США провела оценку неоткрытой меди по двум типам месторождений, на которые приходится около 80 процентов мировые поставки меди. Медно-порфировые месторождения составляют около 60 процентов мировой меди. В медно-порфировых месторождениях медные рудные минералы распространены в магматических интрузиях. С осадком слоистые месторождения меди, в которых медь концентрируется слоями в осадочных породах, составляют около 20 процентов выявленных мировых запасов меди.В мировом масштабе шахты этих двух типов месторождений производят около 12 миллионов тонн меди в год.

В этом исследовании рассматривался потенциал открытых и скрытых отложений в пределах 1 км от поверхности для порфировые месторождения и до 2,5 км поверхности отложений слоисто-отложенных пород. За порфировые месторождения, выделено 175 участков; 114 участков содержат 1 или несколько идентифицированных месторождений. Пятьдесят выделены участки отложений слоистых отложений меди; 27 содержат 1 или более идентифицированных депозиты.

Результаты оценки представлены по типам вкладов по 11 регионам (таблица 1). Средняя сумма неоткрытых Ресурсы порфировых месторождений составляют 3100 млн тонн, а средний суммарный неоткрытый ресурс по месторождения наносов составляют 400 миллионов тонн, в общей сложности 3 500 миллионов тонн меди в мире. В диапазоны оценок ресурсов (между 90-м и 10-м процентилями) отражают геологическую неопределенность в процесс оценки. Примерно 50 процентов общемирового количества приходится на Южную Америку, Южную Центральную Азию, Индокитай и Северную Америку вместе взятые.

Карта месторождений меди: Распределение известных месторождений меди в 2008 году. Красный цвет указывает на медь, связанную с магматическими интрузиями (медно-порфировые месторождения), а синий цвет указывает на медь, содержащуюся в осадочных породах (медные месторождения в осадках). Карта Геологической службы США. Увеличить карту.

Знаете ли вы? Медь — один из немногих металлов, встречающихся в природе в самородном виде. Из-за этого он был одним из первых металлов, используемых древними народами, и по сей день остается важным металлом.

Южная Америка имеет крупнейшие выявленные и неоткрытые ресурсы меди (около 20 процентов от общей неоткрытой суммы). В этом регионе разрабатываются крупнейшие в мире месторождения порфира. Чили и Перу входят в число ведущих стран-производителей меди.

Центральная Америка и Карибский бассейн содержат два неразработанных гигантских (> 2 миллиона тонн меди) порфира. месторождения меди в Панаме. Большинство неоткрытых ресурсов находится в поясе, простирающемся от Панамы до юго-западной Мексики.

Северная Америка содержит высокоминерализованные медно-порфировые участки, в том числе сверхгигантские (> 25 миллионов тонн меди) месторождения порфира в северной Мексике, западе США и на Аляске, а также гигантские месторождения в западной Канаде. Предполагаемые неоткрытые ресурсы медно-порфировых пород примерно равны выявленным.

Ведущие штаты по производству меди в США — Аризона, Юта, Нью-Мексико, Невада и Монтана.В Соединенных Штатах, по оценкам, неоткрытые залежи меди в слоистых отложениях в Мичигане, Монтане и Техасе содержат меди примерно в три раза больше, чем было идентифицировано. Известны два гигантских месторождения в Мичигане и Монтане.

Ведущие производители меди
(тыс. Метрических тонн)
9400003 900 Чили
Страна Производство (метрические тонны)
Австралия 920 000
Канада 5,330,000
Китай 1,860,000
Конго 850,000
Индонезия 650,000
Мексика 755,000
0 США 41

Северо-Восточная Азия относительно мало изучена, с небольшими выявленными ресурсами медно-порфирового ряда и только одним выявлено гигантское месторождение меди-порфира.Однако средние неоткрытые ресурсы оцениваются довольно большими. Этот регион имеет наибольшее соотношение неоткрытых и выявленных ресурсов в исследовании.

Северная Центральная Азия имеет 35 месторождений медно-порфировых пород, в том числе сверхгигантское месторождение в Монголии и гигантское месторождение в Казахстане. По оценкам, площадь тракта содержит примерно в три раза больше идентифицированных порфиров. ресурс меди. В этом регионе также находятся три гигантских залежи меди в слоях отложений в Казахстане и России.По оценкам USGS, может присутствовать столько отложенной слоистой меди, сколько уже было обнаружено.

Южная Центральная Азия и Индокитай изучены менее тщательно, чем многие другие части мира; Однако, На сегодняшний день на Тибетском плато выявлено четыре гигантских месторождения меди-порфиров. Неизведанные месторождения медно-порфировых пород может содержать в восемь раз больше установленной меди.

Архипелаги Юго-Восточной Азии содержат богатые золотом месторождения меди и порфира мирового класса, такие как сверхгигант в Индонезии и около 16 гигантских месторождений в Индонезии, Папуа-Новой Гвинее и на Филиппинах.Хотя некоторые части региона хорошо изучены, неоткрытые ресурсы порфира могут превышать идентифицированные ресурсы.

Восточная Австралия имеет одно гигантское медно-порфировое месторождение и несколько небольших порфировых месторождений. Скромный неоткрытый ресурсы ожидаются под прикрытием. Австралия уже несколько десятилетий является ведущим производителем меди.

Восточная Европа и Юго-Западная Азия добывали медь с древних времен, а гигантская порфировая медь месторождения были недавно обнаружены.По прогнозам, неизведанные запасы меди примерно вдвое превышают выявленные ресурсы, как для порфировые месторождения вдоль пояса от Румынии через Турцию и Иран, а также отложений слоистых отложений в Афганистане.

1,270,000
Замбия 755,000
Другие страны 4,300,000
Всего 19,700,000
Данные из USGS 40 Mineral Commodity
Информация о меди
[1] Медь — металл для веков, Джефф Добрих и Линда Масоник, Геологическая служба США, Информационный бюллетень 2009-3031, май 2009 г.

[2] Медь, Дэниел М. Фланаган, Геологическая служба США, Обзор минерального сырья для меди, январь 2018 г.

[3] Новый коронавирус, устойчивый в течение нескольких часов на поверхности, пресс-релиз на веб-сайте Национального института здравоохранения, 17 марта 2020 г.

[4] Способность меди убивать вирусы была известна даже древним, Джим Моррисон, статья на веб-сайте Smithsonian Magazine, 14 апреля 2020 года.

[5] Медь: Безжалостный убийца на нашей стороне, Каролина Лаарманн, статья на веб-сайте «Здравоохранение в Европе», 6 июня 2011 г.

[6] Медь хороша в уничтожении супербактерий — так почему бы больницам не использовать ее? », Билл Кивил, статья на веб-сайте Conversation, 24 февраля 2017 г.

[7] «Открытие медной ленты» показывает, что коренные американцы занимаются торговлей более широко, чем считалось ранее, статья с веб-сайта Бингемтонского университета, 2 августа 2018 года.


Западная Европа имеет крупнейшее в мире пластовое месторождение меди в осадочных породах в Польше. Неоткрытые залежи отложений на юго-западе Польши, по оценкам, превышают выявленные ресурсов примерно на 30 процентов.

Африка и Ближний Восток имеют самое большое в мире скопление отложений слоистых отложений меди в наносах, с 19 гигантскими месторождениями в Центральноафриканском медном поясе в Демократической Республике Конго и Замбии. Значительное неоткрытые ресурсы меди еще предстоит открыть.

Периодическая таблица элементов

Периодическая таблица элементов

ГРУППЫ Щелочные металлы Щелочноземельные металлы Блоки Газы (stp) Галогены Лантаноиды / Актиниды Жидкости (stp) Основная группаМеталлоидыМеталлы Благородные газыНеметаллыТвердые вещества (stp) Переходные металлы Периодические группы элементов
. Ссылки на таблицы элементов
[ Щелочные металлы ] [Щелочноземельные металлы] [Блоки] [Газы] [Галогены] [Лантаноиды / Актиниды] [Жидкости (stp)] [Основная группа] [Металлоиды] [Металлы] [ Благородные газы ] [Неметаллы] [Твердые вещества (stp)] [ Переходные металлы ] [Периодические]

Неметаллы

Неметаллы или неметаллические элементы; водород (H), углерод (C), азот (N), кислород (O), фосфор (P), сера (sulfer) (S), селен (Se) (здесь может принадлежать Uuo) и благородные газы образуют относительно небольшая группа со ступенчатым рисунком в направлении левой части таблицы Менделеева (водород является нечетной группой в правой части таблицы).Неметаллы строго не определены, но имеют тенденцию проявлять характерные свойства, такие как плохая тепло- и электропроводность, образование кислых оксидов, тусклый блеск и хрупкость, низкая плотность, низкие температуры плавления и высокая электроотрицательность.

Водород может стать металлическим при воздействии чрезвычайно высокого давления. Некоторые аллотропы элементов демонстрируют более выраженное поведение металлов, металлоидов или неметаллов, чем другие. Элемент углерод; его алмазный аллотроп неметаллический, однако графитовый аллотроп является электропроводным, показывая характеристики, больше похожие на металлоид.Фосфор и селен также имеют аллотропы, которые демонстрируют пограничное поведение.

Наведите указатель мыши на элемент или щелкните его, чтобы получить дополнительную информацию:

4 IIB
2B 13
IIIA
3A
554


6.941 9040 9
F
19,00
54 9040 42
Мо
95,94
Sn3 118 90,4037 3 9004
Ta
180,9
3
(223)
261) 6 109
Мт
(268)
Rg403
9019 9019 112

Uub
(285) 9173 67
Ho
164,9 3 .9 ** Actinide ** Actinide 89
Ac
(227) 9019
(259)
Группа ***

Период

1
IA
1A
2
IIA
2A
3
IIIB 4
IVB
4B
5
VB
5B
6
VIB
6B
7
VIIB
7B

8
9
VIII
8
10
VIII
8
11
IB
1B
12 14
IVA
4A
15 9040 3
VA
5A
16
VIA
6A
17
VIIA
7A
18
VIIIA
8A
1
1 1
H
1.008
2
He
4.003

4
Be
9.012
1 6
C
12.01
7
N
14.01
8 10
Ne
20,18
3 22.99 12
Мг
24,31
900 14
Si
28,09
15
P
30,97
16
S
07
17
Класс
35,45
18
Ar
39,95

39,10
20
Ca
40,08
21
Sc
44.96
22
Ti
47,88
23
V
50,94

9040 9

25
Mn
54,94

26
Fe
55,85
9040 900 27 40447 28
Ni
58,69

29
Cu
63,55

31
Ga
69,72
32
Ge
72,59
33
92
34
SE
78.96
35
Br
79.90
36 9040
5 37
Rb
85,47
38
Sr
87.62
39
Y
88,91
40
Zr
91,22
43
Tc
(98)
44
1
45
Прав. 48
Cd
112,4
49
дюйм
114,8
50 51
Sb
121,8
52
Te
127,6
54
Xe
131,3
6 55
CS
132.9
56
Ba
137,3

*
73 73 74
W
183,9
75
Re
186.2
76
Os
190,2
77
Ir
190,2
78 9040 79
Au
197,0
80
Hg
200,5
81
Tl403
.4
82
Pb
207,2
83
Bi
209,0
9040 85
при
(210)
86
Rn
(222)
7 88
Ra
(226)

**
104 105
Db
(262)
106
Sg
(266)
107
Bh
(264)
108
Hs
110
DS
(281)
111 113
Uut
(284)
114
9019 114 9019
Uuq 115
Uup
(288)
116
Uuh
(292)
117
Uus
()
118
Uuo
(294)
9057 9057 9057 9057 9057 9057 9057 9057 9057

Серия лантаноидов *
(лантаноид)
57
La
138.9
58
Ce
140,1
59
Pr
140,9
60 900 61
PM
(145)
62
Sm
150,4
63
Eu403 2 0
64
Gd
157,3
65
Tb
158,9
66403 68
Er
167,3
69 70
Yb
173.0
71
Lu
175.0
90
Th
232.0
91
Pa3
23403 9040 92
U
(238)
93
Np
(237)
94
Pu
9040 95
Am
(243)
96
Cm
9040 3 (247)
97
Bk
(247)
98
Cf
(251) 900 Es40
906 (252) 100
Fm
(257)
101
Md
(258) 9019
103
лр
(262)
*** Группы основаны на трех условных обозначениях.


Телефон: +44 (0) 1252 405186

Электронная почта: [email protected]

Знакомство с

Характер покрытий термическим напылением

Проектирование поверхности в двух словах

Форум инженеров поверхности

Услуги по ремонту пистолетов-распылителей

Расходные детали для плазменных панелей

Порошковые принадлежности для термического напыления

Применения:

на полимерах, армированных углеродным и стекловолокном

HVOF-покрытие рулона бумаги

Истираемые покрытия

Микрофотографии

Процессы термического напыления:

Проволока сгорания Процесс термического напыления

Процесс термического напыления

Процесс термического напыления Процесс термического напыления

Процесс термического напыления плазмой

Процесс термического напыления HVOF

Процесс термического напыления HVAF

Процесс термического напыления с детонацией

Теория плазменного пламени

Процесс нанесения покрытия холодным напылением

Износ и использование покрытия rmal Spray Coatings

Коррозия и использование покрытий с термическим напылением

Глоссарий терминов по термическому напылению и поверхности

Каталог изображений для покрытий с термическим напылением

Информация о потоке газа в плазме

Калькулятор коррекции потока газа в плазме

Контактная форма

Ссылки на другие интересные сайты, связанные с термическим напылением и инженерией поверхностей

Взаимные связи

Периодическая таблица элементов

Единицы СИ

Калькуляторы для преобразования единиц измерения

Испытания на твердость

Архив доски сообщений инженерной обработки поверхностей

Проектирование поверхностей Индекс архива доски сообщений

Фотогалерея2

Фотогалерея3

© Copyright Gordon England

Металлы и неметаллы | Примечания, видео, контроль качества и тесты | 7 класс> Наука> Металлы и неметаллы

Металлы и неметаллы
Введение

Вокруг нас встречаются различные типы веществ.Некоторые из них мягкие, некоторые твердые, некоторые чистые, а некоторые нечистые. Их можно встретить в разных состояниях. Среди них чистые вещества известны как элементы. На сегодняшний день открыто 118 элементов. Эти элементы делятся на три типа в зависимости от их свойств. Это металлы, неметаллы и металлоиды. Большинство элементов — металлы. Металлы твердые, хорошо проводят тепло и электричество, пластичны и пластичны. Некоторые из распространенных примеров металлов — медь, серебро, золото, алюминий и т. Д.Неметаллы не податливы и не пластичны. Они мягкие по своей природе и плохо проводят тепло и электричество. Некоторые из распространенных примеров неметаллов — углерод, сера, йод, азот и т. Д. Есть также некоторые элементы, которые проявляют свойства как металлов, так и неметаллов. Эти элементы известны как металлоиды. Они проводят тепло и электричество лучше, чем неметаллы, но не так хорошо, как металлы. Некоторые из распространенных примеров металлоидов — кремний, германий и сурьма.

Металлы
Источник :born2invest.com
Рис: Металлы

Металлы — это непрозрачные, блестящие элементы, которые хорошо проводят тепло и электричество. Большинство металлов ковкие и пластичные. Большинство из них тяжелые. Когда мы ударяемся о металл, он издает дребезжащий звук. Мы используем металлы в повседневной жизни. Металлы используются для изготовления мебели, посуды, ювелирных изделий и т. Д. Они используются в транспорте, связи, строительстве, промышленности, производстве и распределении электроэнергии и т. Д. Некоторые из распространенных примеров металлов — золото, серебро, железо, алюминий, медь. , латунь и др.Большинство металлов существуют в твердом состоянии при комнатной температуре, за исключением некоторых металлов, таких как ртуть, галлий и т. Д. Эти металлы существуют в жидком состоянии.

Свойства металлов
  • Они хорошо проводят тепло и электричество.
  • У них есть ши

Металлическая чеканка — Простая английская Википедия, бесплатная энциклопедия

Эта статья не имеет источников . Вы можете помочь Википедии, найдя хорошие источники и добавив их. (декабрь 2009 г.)

A Элемент 11 группы является одним из элементов группы 11 (стиль ИЮПАК) периодической таблицы, состоящей из переходных металлов, которые являются традиционными металлами для чеканки меди. ( Cu ), серебро ( Ag ) и золото ( Au ). Рентгений ( Rg ) принадлежит к этой группе элементов на основании его электронной конфигурации, но это короткоживущий трансактинид с 22.Период полураспада 8 секунд, который наблюдался только в лабораторных условиях. Название « чеканки металлов » часто используется в повседневной речи для обозначения этих элементов, но различные культуры использовали в чеканке многие другие металлы, включая алюминий, свинец, никель, нержавеющую сталь и цинк.

Все элементы группы, за исключением рентгения, известны с доисторических времен, поскольку все они встречаются в природе в металлической форме, и для их производства не нужно использовать экстракционную металлургию.

Как и другие группы, члены этого семейства демонстрируют закономерности в своей электронной конфигурации, особенно внешние оболочки, приводящие к тенденциям в химическом поведении:

Z Элемент Кол-во электронов на оболочку
29 медь 2, 8, 18, 1
47 серебро 2, 8, 18, 18, 1
79 золото 2, 8, 18, 32, 18, 1
111 рентген 2, 8, 18, 32, 32, 18, 1

Все они относительно инертные, устойчивые к коррозии металлы.Окрашены медь и золото.

Эти элементы обладают низким удельным электрическим сопротивлением, поэтому используются для электромонтажа. Медь — самая дешевая и широко используемая. Связующие провода для интегральных схем обычно золотые. Серебряная и посеребренная медная проводка используется в некоторых особых случаях.

Эти металлы, особенно серебро, обладают необычными свойствами, которые делают их незаменимыми для промышленного применения за пределами их денежной или декоративной ценности. Все они отличные проводники электричества.Самыми проводящими из всех металлов в этом порядке являются серебро, медь и золото. Серебро также является наиболее теплопроводным и наиболее светоотражающим элементом. Серебро также обладает необычным свойством: потускнение, которое образуется на серебре, по-прежнему обладает высокой электропроводностью.

Медь широко используется в электропроводке и схемах. Золотые контакты иногда встречаются в прецизионном оборудовании, поскольку они не подвержены коррозии. Серебро широко используется в критически важных приложениях в качестве электрических контактов, а также в фотографии (потому что нитрат серебра превращается в металл при воздействии света), сельском хозяйстве, медицине, аудиофилах и научных приложениях.

Золото, серебро и медь — довольно мягкие металлы, поэтому их легко повредить при повседневном использовании в качестве монет. Драгоценный металл также легко истирается и изнашивается в процессе эксплуатации. По своей нумизматической функции эти металлы должны быть сплавлены с другими металлами, чтобы монеты были более долговечными. Сплав с другими металлами делает полученные монеты более твердыми, менее подверженными деформации и более устойчивыми к износу.

Золотые монеты: Золотые монеты обычно производятся на 90% из золота (т.е.грамм. с монетами США до 1933 года) или 22 карата (92%) золота (например, текущие коллекционные монеты и крюгерранды), причем медь и серебро составляют остающийся вес в каждом случае. Слитковые золотые монеты производятся с содержанием золота до 99,999% (в серии Canadian Gold Maple Leaf).

Серебряные монеты: Серебряные монеты обычно производятся либо из серебра на 90% — в случае монет США, выпущенных до 1965 года (которые были в обращении во многих странах), либо из стерлингового серебра (92,5%) для монет Британского Содружества до 1920 года. и другие серебряные монеты, причем в каждом случае медь составляет оставшуюся массу.

Медные монеты: Медные монеты часто имеют довольно высокую чистоту, около 97%, и обычно легированы небольшим количеством цинка и олова.

Инфляция привела к тому, что номинальная стоимость монет упала ниже стоимости в твердой валюте исторически используемых металлов. Это привело к тому, что большинство современных монет изготавливаются из недрагоценных металлов — популярны медно-никель (около 80:20, цвет серебра), а также никель-латунь (медь (75), никель (5) и цинк (20), золото в цвет), марганец-латунь (медь, цинк, марганец и никель), бронза или сталь с простым покрытием.

Пояснение к правой части среза таблицы Менделеева: Переходные металлы атомных номера черного цвета — твердые тела твердых границ старше Земли (Первоэлементы) пунктирных границ не имеют изотопов старше Земли

Металлы и неметаллы

Металлы и неметаллы

Вторник, 24 ноября 2020 г.,

CBSE Металлы и неметаллы Предметные примечания

CBSE Guess> Электронные книги> Class X> Metals and Non-Metals by Mrs.Критика Бхола

Металлы и неметаллы

Химические свойства металлов —

1. Реакция металлов с кислородом (воздуха) —

Металлы реагируют с кислородом с образованием оксидов металлов, которые являются основными по своей природе и окрашиваются в красный лакмусовый синий цвет. Сильная реакция кислорода зависит от химической активности металла.

i) Металлы натрия и калия реагируют с кислородом при комнатной температуре. с образованием оксида натрия.

4Na + O 2 2Na 2 O

  • Натрий, калий и литий очень реактивны, поэтому при хранении на открытом воздухе они загораются и начинают гореть. Поэтому они хранятся в керосиновом масле, чтобы предотвратить их реакцию с кислородом, влагой и углекислым газом воздуха.
  • Большинство оксидов металлов нерастворимы в воде, но некоторые растворяются в воде с образованием щелочей.
    Оксид натрия и оксид калия растворимы в воде и щелочах, называемых гидроксидом натрия (NaOH) и гидроксидом калия (КОН).

ii) Металлический магний не реагирует с кислородом при комнатной температуре. При нагревании он дает интенсивное тепло и свет с образованием основного оксида (MgO — белый порошок). Требуется тепло, поэтому Mg менее реактивен, чем Na или K.

iii) Металлический алюминий — горит на воздухе с образованием Al 2 O 3

Это амфотерный оксид (который проявляет основное, а также кислотное поведение и реагирует как с кислотами, так и с основаниями с образованием солей и воды).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.