Нержавейка жаропрочная марка: марки, виды и состав жаростойких сталей и сплавов

Содержание

Аустенитные стали – жаропрочные и нержавеющие + Видео

Аустенитные стали, обладая рядом особых свойств, применяются в тех рабочих средах, которые отличаются высокой агрессивностью. Такие сплавы незаменимы в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

1 Аустенитные стали – общее описание

К аустенитным относят сплавы с высоким уровнем легирования, которые при кристаллизации обычно образуют однофазную систему, характеризуемую кристаллической гранецентрированной решеткой. Такой тип решетки в описываемых сталях остается неизменным даже в тех случаях, когда металл охлаждается до очень низких температур, называемых криогенными (в районе -200 градусов Цельсия). В некоторых случаях стали аустенитного класса имеют и еще одну фазу (ее объем в сплаве может достигать десяти процентов) – феррита с высокой степенью легирования. В этом случае решетка является объемноцентрированной.

Разделение аустенитных сталей на две группы производится по составу их основы, а также по содержанию в сплаве легирующих компонентов – никеля и хрома:

  1. Композиции на основе железа: содержание никеля – до 7 %, хрома – до 15 %, общее количество легирующих добавок – не более 55 %.
  2. Композиции на никелевой (55 % и более никеля) и железоникелевой основе (в них содержится 65 и больше процентов никеля и железа, причем отношение первого ко второму составляет 1 к 1,5).

В таких сплавах никель увеличивает пластичность, жаропрочность и технологичность стали, а хром отвечает за придание ей требуемой коррозионной и жаростойкости. А добавляя другие легирующие компоненты, можно добиться уникальных свойств аустенитных составов, набор коих и обуславливает служебное предназначение того или иного сплава.

Чаще всего аустенитные стали легируются следующими элементами:

  • Ферритизаторами, которые стабилизируют структура аустенита. К ним относят ванадий, вольфрам, ниобий, титан, кремний и молибден.
  • Аустенитизаторами, коими являются азот, углерод и марганец.

Все указанные компоненты располагаются как в избыточных фазах, так и непосредственно в твердом стальном растворе.

По принятой классификации, учитывающей систему легирования, любая аустенитная сталь может быть причислена к хромомарганцевой либо к хромоникелевой.

Кроме того, сплавы делят на хромоникельмарганцевые и хромоникельмолибденовые.

2 Коррозионно-, жаро- и хладостойкие аустенитные сплавы

Разнообразие добавок позволяет создавать особые аустенитные стали, которые используются для изготовления деталей для конструкций, работающих в высокотемпературных, коррозионных и криогенных условиях. Исходя из этого, аустенитные составы и подразделяют на разные группы:

Жаростойкие составы не разрушаются при воздействии на них химической среды. Их можно применять при температурах до +1150 градусов. Из таких сталей изготавливают разнообразные слабонагруженные изделия:

  • элементы газопроводных систем;
  • арматуру для печного оборудования;
  • нагревательные детали.

Жаропрочные марки сталей могут достаточно долго сопротивляться нагрузкам в высокотемпературных условиях, сохраняя при этом свои изначально высокие механические характеристики. Их обязательно легируют вольфрамом и молибденом (каждая из присадок может содержаться в стальной композиции в количестве до семи процентов). А для измельчения зерна в некоторые аустенитные сплавы вводят в небольших количествах бор.

Обозначим часто встречающиеся марки жаростойких и жаропрочных сталей описываемого в статье класса: Х15Н35ВТР, 10Х12Н20Т3Р, 40Х18Н25С2, 1Х15Н25М6А, 20X23h23, 10X15h28B4T, 10Х16Н14В2БР, 10X18h22T, 08Х16Н9М2, 10Х15Н35ВТ, 20Х25Н20С2, 1Х15Н25М6А, 20X23h23, 10X15h28B4T, 10Х16Н14В2БР, 10X18h22T.

Аустенитные нержавеющие стали (то есть коррозионностойкие) характеризуются малым содержанием углерода (не допускается наличия свыше 0,12 процентов этого химического элемента). Никеля в них может быть от 8 до 30 %, а хрома от 12 до 18%. Любая аустенитная нержавеющая сталь проходит термическую обработку (отпуск, закалку или отжиг стали). Термообработка необходима для того, чтобы изделия из нержавейки хорошо «чувствовали» себя в разных агрессивных средах – в щелочных, газовых, жидкометаллических, кислотных при температурах от +20 градусов и больше.

Наиболее известны следующие марки аустенитных коррозионностойких сталей:

  • хромоникельмолибденовые: 03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16h25M3, 10Х17Н13М3Т;
  • хромомарганцевые: 07Х21Г7AН5, 10X14AГ15, 10X14Г14h5T;
  • хромоникелевые: 08Х18Н12Б, 03Х18Н11, 08X18h20T, 06X18Н11, 12X18h20T, 08X18h20;
  • с большим содержанием кремния (от 3,8 до 6,7 %): 15Х18Н12C4Т10, 02Х8Н22С6.

Хладостойкие аустенитные композиции содержат 8–25 % никеля и 17–25 % хрома. Применяются они для криогенных аппаратов, имеют высокую стоимость производства, поэтому используются весьма ограниченно. Чаще всего встречаются криогенные стали 07Х13Н4АГ20 и 03Х20Н16АГ6, которые легируются азотом. Этот элемент вводят для того, чтобы сплав при температуре +20° имел более высокий предел текучести.

3 Особенности аустенитных сплавов разных систем легирования

Наиболее распространенными считаются аустенитные хромоникелевые стали, которые имеют добавки молибдена. Их применяют тогда, когда есть риск образования щелевой либо питтинговой коррозии. Они демонстрируют высокую стойкость в восстановительных атмосферах, и делятся на два вида:

  • нестабилизированные титаном с содержанием углерода не более 0,03 %;
  • стабилизированные титаном с углеродом от 0,08 до 0,1 %.

Такие марки хромоникелевых композиций, как Х17Н13М2 и Х17Н13М3, оптимальны для конструкций, функционирующих в сернокислых средах, в уксусной десятипроцентной кислоте, в фосфорной кислоте в кипящем состоянии.

Хромоникелевые стали с добавлением ниобия или титана отличаются минимальной опасностью к образованию коррозии межкристаллитного типа. Ниобия вводят по сравнению с углеродом в 9–10 раз больше, а титана – в 4–5,5 раз больше. К сплавам с подобной возможностью относят следующие составы: 0Х18Н12Б, 0Х18Н10Т, Х18Н9Т и некоторые другие.

Увеличить коррозионную стойкость описываемых сталей также можно посредством введения в них кремния. Яркими представителями таких специальных композиций являются такие сплавы:

  • 015Х14Н19С6Б;
  • 03Х8Н22С6.

Они без преувеличения идеальны для производства химических сварных агрегатов, в которых хранится и перерабатывается азотная концентрированная кислота.

Хромомарганцевые стали типа 2Х18Н4ГЛ характеризуются высокими литейными характеристиками, поэтому их эксплуатируют на производствах, где применяются коррозионностойкие литые конструкции. Другие хромомарганцевые сплавы (например, 10Х13Г12Н2СА и 08Х12Г14Н4ЮМ) в горючих средах более стойки к коррозии, нежели хромоникелевые.

4 Термообработка аустенитных сталей и ее особенности

Жаропрочные и жаростойкие сплавы аустенитной группы подвергаются при необходимости разным видам термической обработки с целью увеличения своих свойств, а также для модификации имеющейся структуры зерна: число и принцип распределения дисперсных фаз, величина блоков и самого зерна и так далее.

Отжиг таких сталей применяется для уменьшения твердости сплавов (когда это требуется по условиям их эксплуатации) и устранения явления хрупкости. При подобной термической обработке металл нагревают до 1200–1250 градусов в течение 30–150 минут, а затем максимально быстро подвергают охлаждению. Сложные высоколегированные стали чаще всего охлаждают в масле либо на воздухе, а вот сплавы с малым количествам легирующих компонентов обычно погружают в воду.

Для сплавов типа ХН35ВТЮ и ХН70ВМТЮ рекомендуется термообработка в виде двойной закалки. Сначала выполняется первая нормализация их состава (при температуре около 1200 градусов), благодаря которой металл повышает показатель сопротивления ползучести за счет формирования твердой гомогенной фазы. А после этого осуществляется вторая нормализация с температурой не более 1100 градусов. Результатом описанной обработки является значительное увеличение пластических и жаропрочных показателей аустенитных сталей.

Аустенитная сталь повышает свою жаропрочность (а заодно и механическую прочность) в тех случаях, когда проходит двойную термообработку, заключающуюся в закалке и следующим за ней старении. Кроме того, практически все аустенитные металлы, которые относят к группе жаропрочных, искусственно старят перед эксплуатацией (то есть выполняют операцию их дисперсионного твердения).

Марки нержавеющей стали и их характеристики

Автор perminoviv На чтение 7 мин. Опубликовано

Группа сталей не подверженных воздействию коррозии носят название нержавеющие. Они характеризуются минимальным содержанием хрома больше 10,5% и углерода меньше 1,2%. Допускается наличие других элементов, способных изменить физические, механические свойства, в зависимости от процентного содержания. К ним относятся Ti, Ni, Nb, Mo и другие составляющие Менделеевской таблицы. Химические составляющие сплава компонуют марку. Высокая стоимость производства такой стали требует взвешенный и рациональный выбор ее для конкретных целей.

Интересный факт: разработка нержавеющей стали была связана с проблемой оружейников, проявлявшейся, в виде коррозии в местах с высокой температурой. Для продвижения стали на рынке ее разработчик Гарри Бреарли в 1913 г. изготовил партию ножей и ножниц и разослал их на изучение. Сталь нашла своих потребителей, и в 1929 году из нее был изготовлен входной козырек в известный лондонский отель «Савой».

Разделение по типам

Разнообразие, представленных на рынке сталей с сопротивлением к ржавлению, определяется ГОСТ 5632-2014 «Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные». Основные виды нержавеющей стали, исходя из этого документа, это

  • жаростойкая
  • жаропрочная
  • устойчивая к коррозии

Структура металлической матрицы, преобладающей для данной марки стали, производит разделение ее по классам:

  • мартенситный (мартенсит единственная структура, определяющая свойства сплава)
  • мартенсито-ферритный (ферритная структура больше 10%, мартенсит оставшаяся фаза)
  • ферритный (сталь не претерпевшая аллотропических превращений)
  • аустенитно-мартенситный (каждая из фаз может варьироваться в широком поле значений)
  • аустенито-ферритный (феррита не меньше 10%, аустенит – оставшаяся доля)
  • аустенитные (фаза аустенита имеет устойчивый характер)

В современном производстве самые затребованные марки ферритные и аустенитные.

Классы деления определенные этим документом являются условными, нормативно предполагается исключительно единственный тип термической обработки. Нагрев свыше 900 градусов и нормальное охлаждение в воздушной среде. Если нет оговоренных ранее ограничений при поставке нержавеющей стали, то класс не является выбраковочным фактором.

Маркировка стали – значение цифровых и буквенных индексов

Зная обозначение буквенных индексов и смысловую нагрузку цифр, используемых в маркировке стали, можно сделать выводы о необходимости предложенной марки для определенной цели, даже не заглядывая в справочник. Переплачивать за титан, содержащийся в сплаве, если не нужны высокие огнеупорные свойства, приобретаемые при легировании этим дорогим металлом.

Некоторые буквенные индексы могут изменять обозначающий элемент, в зависимости от местонахождения его в маркировке. Рассмотрим соответствие буквенных индексов:

  • А (в начале маркировки) – S
  • А (в середине маркировки) – N
  • Б – Nb
  • В – W
  • Г – Mn
  • Д – Cu
  • Е – Se
  • К – Co
  • М – Mo
  • Н – Ni
  • П – P
  • Р – B
  • С – Si
  • Т – Ti
  • Ф – V
  • Х – Cr
  • Ц – Zr
  • Ю – Al
  • ч – РЗМ

Количество каждого из них в сплаве определен цифровым значением, следующим за литерой, обозначающей элемент. Выражается в процентах. В случаях малости отдельного элемента, менее 1%, то после буквенного индекса цифра не ставится. Углерод, как важный элемент разместился впереди маркировки, но выражается в сотых частях процента.

FeNi и Ni сплавы маркируются только литерными индексами. Исключение составляет число после никеля (массовая доля) и углерода (только для FeNi).

В случае если сталь была произведена особенными способами плавки или методами переплава, то это указывается через дефис после маркировки. К таким особым методам и способам относятся различные способы вакуумного переплава, электронно–лучевая плавка, обработка шлаками синтетического происхождения, другие. Полное количество специфических методов получения необходимой марки сплава, в стандарте прописано 24.

Рассмотрим примеры расшифровки маркировки нержавеющих сталей 05Х12Н2М и 04Х14Т3Р1Ф-ВД. В 05Х12Н2М углерода 0,05%, хрома -12%, никеля – 2%, содержание молибдена до 1%. 04Х14Т3Р1Ф-ВД расшифровывается так: углерода 0,04, 14% — хрома, 3% — титана, 1% — бора, ванадия менее 1% процента, получена методом вакуумно-дугового переплава.

Основные марки стали и их применение в промышленности

Различные марки нержавеющей стали и их характеристики призваны работать в различных средах и условиях рассмотрим самые ходовые и востребованные:

  • 12Х13, 08Х13, 20х13 для изготовления посуды и столовых приборов, элементов и конструкций с ударными нагрузками. Устойчивые к воздействию агрессивных сред при нормальных температурах. При термической обработке и (или) полировке антикоррозионные свойства и характеристики улучшаются.
  • 12Х17, 08Х18Т1 это маркировка пищевой нержавеющей стали, для бытовой кухонной утвари, а также для оборудования предприятий пищевой промышленности. Рационально использовать изделия после отжига.
  • 30Х13, 40Х13 марка медицинской нержавеющей стали, из которой изготавливают хирургический инструмент
  • 40Х9С2 марка жаростойкой нержавеющей стали предназначенной для изготовления клапанов выпускных коллекторов двигателей внутреннего сгорания, дизельных двигателей, теплообменники.
  • 15Х25Т нержавеющая жаростойкая сталь применяется в оборудовании высокотемпературных пиролизных установках.
  • 12Х18Н9Т для изготовления труб и арматуры печей, корпуса искровых зажигательных свечей
  • 40Х9С2 жаропрочная нержавеющая сталь, марка предназначена для клапанов двигателей
  • 14Х17Н2 оборудование, работающее в среде до 800 градусов Цельсия
  • 10Х23Н18 изделия, работающие в условиях пониженной загруженности и температур ниже 1000 градусов Цельсия

Маркировка нержавеющей стали AISI

Маркировка AISI все чаще появляется не только на стальных изделиях из-за океана, но и на китайской, российской, европейской и другой продукции. Данная система классификации взяла свое название от места своего рождения Американского(American) Чугуна(Iron) и Стали(Steel) Института(Institute). Классификатор пришелся по душе потребителям, производителям, трейдерам.

Классификация

Марка углеродистой и легированной стали представлена в виде четырехзначного выражения. Первой цифрой в нем обозначается основной легирующий компонент. Вторая цифра идентифицирует вторичный легирующий элемент. Третья с четвертой цифры показывают содержание углерода.

  • 1ZZZ – C
  • 2ZZZ –Ni
  • 3ZZZ –Cr+Ni
  • 4ZZZ –Mo
  • 5ZZZ –Cr
  • 6ZZZ — Cr+V
  • 7ZZZ –W
  • 8ZZZ –Ni+Cr+Mo
  • 9ZZZ –Si+Mn

Буква L в конце маркировки указывает на пониженное содержание углерода. Та же буква в середине маркировки указывает на легирование сплава свинцом, для улучшения механических свойств стали, обрабатываемой на станках. N в конце маркировки означает обработку азотом, для повышения предела прочности при прочих равных условиях. Буква B в середине маркировки – легирование бором.

Современная промышленность идентифицирует не меньше 150 марок по AISI. Рассмотрим ключевые, востребованные марки стали, где они применяются.

300 серия (семейство хромоникелевых сплавов)

  • 301 – подходит для изделий, с высокими показателями пластичности, характеризуется быстрым затвердением при механическом воздействии. Износостойкая, повышенная усталостная прочность
  • 304 – наиболее задействованная марка, нашедшая применение практически во всех отраслях промышленности
  • 310 – жаропрочная, с возможностью работать в агрессивных средах при высоких температурах (1000 градусов Цельсия в окислительной, до 10000 в восстановительной). 310S подойдет для элементов печей, контактирующих с высокотемпературными газами и конденсатом
  • 316 – сталь, удерживающая второе место после 304, по применению. Излюбленная марка для производства оборудования для пищевиков, для хирургических инструментов, агрегаты, модули, работающие в соленной воде. Устойчивость к питтинговой (точечной) коррозии
  • 321 – для нужд химиков, нефтяной промышленности, сварного оборудования, требующего использования при температуре до 800 градусов

400 серия (ферритные и мартенситные стали)

  • 405-ферритная матрица, сварные изделия
  • 408-термостойкие
  • 409- самая доступная марка нержавеющей стали, используют для выхлопных систем автомобиле
  • 416-легко обрабатывается на автоматических станках из-за дополнительной серы
  • 420-основное назначение изготовление столовых принадлежностей, отлично полируется
  • 430-матрица ферритного характера, поддается обработке давлением, устойчива к коррозии, используют в отделке автомобилей
  • 440-используется для высококачественных столовых приборов, большее количество углерода позволяет дольше сохранять заточку ножей из этой стали, при правильной термообработке

500 серия

  • 500 серия содержит хромитовые жаропрочные марки стали.

600 серия

600 серия — изначально была создана для запатентованных марок стали, не попадающих под классификацию. Сегодня подраздел имеет следующий вид:

  • 601-604 – мартенситные низколегированные
  • 610-613 – мартенситные вторичной закалки
  • 614-619 – мартенситные с хромом
  • 630-635 – половинчатая аустенитная с уплотненным мартенситом. Используется для труб, помп, задвижек. Коррозионная стойкость близка к 304
  • 650-653 – аустенитные стали, работающие при сильном перепаде температур
  • 660-665 – аустенитные жаропрочные.

Информация, представленная на данной странице, поможет подобрать необходимую марку нержавеющей стали в соответствии с ее характеристиками и возможностями. Марки стали разложены по двум основным классификаторам ГОСТ5632-2014, AISI. На примерах объясняется маркировка нержавеющих сталей и сплавов. Приводятся сферы применения ключевых и востребованных марок в производственных отраслях.

Жаропрочная сталь: марка, подробное описание

Жаропрочная сталь, марки и виды которой рассмотрим далее, предназначена для длительного использования с учетом воздействия высоких термических и электрических нагрузок. Способ изготовления данного материала предусматривает последующую его эксплуатацию в течение длительного периода без деформаций. Особенности этого вида стали: высокая прочность и ползучесть. Рассматриваемые металлы преимущественно используются для постройки конструкций ненагруженного типа, эксплуатируемых под воздействием газовой окислительной среды и температур в диапазоне от 500 до 2000 градусов по Цельсию.

Характерные особенности

Марки жаропрочных и жаростойких сталей отличаются длительной прочностью. Этот показатель подразумевает возможность противостояния материала отрицательным внешним факторам на протяжении длительного времени. Высокая ползучесть – это влияние на непрекращающуюся деформацию стали в условиях повышенной трудности в плане эксплуатации и обслуживания.

От указанных факторов зависит возможность использования материала в той или иной сфере. Ползучесть характеризует предельный процент деформации, который в рассматриваемом случае составляет от 5 процентов на 100 часов до 1 % на 100 тысяч часов. По ГОСТУ 5632-72 любая марка жаропрочной стали не должна включать в себя добавки сурьмы, свинца, олова, мышьяка и висмута. Это обусловлено тем, что указанные материалы имеют малую температуру плавления, а это негативно сказывается на характеристиках конечного продукта. Некоторые элементы при нагревании выделяют негативные для здоровья человека испарения, что также сказывается на их непригодности для включения в подобного рода стали. В результате оптимальным составом для изготовления материала является железная основа с примесью хрома, никеля и прочих металлов, устойчивых к высоким температурам и окислительным процессам различного рода.

Жаропрочная сталь: марки

Ниже приведены основные марки рассматриваемого материала:

  • Марка P-193 содержит не более одного процента углерода, 0,6 % марганца и кремния, а также порядка 30 % никеля и хрома, 2 % титана.
  • Тинидур: углерод – до 0,13 %, марганец и кремний – не выше 1 %, хром – 16 %, алюминий – до 0,2 %, никель – 30-31 %.
  • Жаропрочная сталь марки А-286 включает в себя в процентном соотношении 0,05 % углерода, 1,35 % марганца, 25 % никеля, 0,55 % кремния, 1,25 % молибдена, 2 % титана.
  • Тип DVL42: 0,1 % углерода, не более одного процента марганца, 33 % никеля, 23 % кобальта, до 1 % кремния, 5 % молибдена, 1,7 % титана.
  • DVL52 имеет похожий состав с указанной выше маркой, только вместо титана в состав входит до 4,5 процента тантала.
  • Хромадур: 0,11 % углерода, 0,6 % кремния, 1,18 % марганца, 0,65 % ванадия, 0,75 % молибдена.

Все указанные разновидности жаропрочной стали производятся по схожей технологии, отличается только состав. Оставшаяся часть приходится на железо. Оно является основой для любых типов рассматриваемого материала.

Производство

Марки жаропрочных сталей для печей, как и их аналоги, требуют соблюдения определенных условий при выплавке. В отличие от производства обычных сталей, в состав сплава должно интегрироваться минимальное включение углерода, что направлено на обеспечение требуемой степени прочности. В связи с этим кокс не подходит для топки печей. Вместо него используется кислород газообразного типа. Он дает возможность достигать быстрой температуры плавления металла за короткий срок.

Как правило, рассматриваемый материал производят преимущественно из вторичного сырья. Хром и сталь помещают одновременно в печь, а сжигаемый кислород разогревает металл до степени плавления. В процессе происходит окисление выделяемого углерода, который по технологии нужно убрать из состава сплава. Кремний в небольших количествах дает возможность защитить хром от окисления, также в начале плавления добавляется никель. Остальные присадки смешиваются с основным сырьем в конце процесса. Температура проведения процедуры составляет порядка 1800 градусов по Цельсию.

Обработка

Обработка любой марки нержавеющей жаропрочной стали осуществляется при помощи подготовленных твердых резцов. Они изготавливаются из металлов, вмещающих кобальтовые и вольфрамовые сплавы. Остальной технологический процесс практически идентичен обработке стандартных марок. Она проводится на штатных винторезных токарных станках с использованием стандартных смазочных и охлаждающих жидкостей. Техника безопасности также не отличается.

Сварочные работы по рассматриваемому материалу выполняются дуговым либо аргонным методом. До начала сваривания обе соединяемые детали должны пройти закаливание, заключающееся в нагревании элемента до 1000 градусов и последующем мгновенном охлаждении. Подобный способ дает возможность избежать появления трещин в процессе сварки. Важно при этом сохранить степень качества шва на уровне основного материала, иначе могут появиться серьезные неполадки во время эксплуатации.

Применение

Рассматриваемый материал используется в условиях, когда подразумевается постоянная тепловая нагрузка на деталь. Например, назначьте марку жаропрочной стали сильхром для клапанов либо похожих изделий, и убедитесь в ее эффективности. Также данный состав используется часто для специальных печей с высокой температурой нагрева. Особенности стали позволяют выдержать до нескольких десятков тысяч рабочих циклов, что существенно снижает себестоимость продукции.

Аустенитные марки применяются в производстве роторов, турбинных лопастей и клапанов двигателей. Они имеют отличную сопротивляемость высоким температурам и усиленную устойчивость к вибрационным и механическим воздействиям. Черная марка жаропрочной стали с повышенной сопротивляемостью коррозии используется преимущественно для производства конструкций, применение которых выполняется на открытом воздухе либо в условиях повышенной влажности. К особенностям этого вида можно отнести высокое включение в составе хрома, который дает возможность повысить эффективность противостояния окислению и прочим разрушительным процессам.

Литые жаропрочные стали: марки для звеньев цепи, трубопроводов и клапанов

Среди данной категории сталей мартенситного класса, наиболее известными являются следующие марки:

  • Х-5. Из этой стали производят трубопроводы, ориентированные на работу при температуре не выше 650 градусов.
  • 1Х8ВФ, Х5ВФ, Х5М – используются для выпуска труб и оборудования, рассчитанного на эксплуатацию при температуре 500-600 градусов. При этом период работы ограничен (от одной до ста тысяч часов).
  • 4Х9С2, 3Х13Н7С2 – выдерживают термическую нагрузку до 950 градусов по Цельсию, служат для изготовления клапанов моторов транспортных средств.
  • 1Х8ВФ – марка подходит для производства паровых турбин, выдерживает нагрузку в 500 градусов с ресурсом работы не менее 10 тысяч часов.

Структурные нюансы

Марки жаропрочной стали для котлов с мартенситной структурой в своей основе имеют перлит. Он меняет свое состояние, в зависимости от содержания хрома. Для получения изделий с внутренним показателем высокотвердого сорбита, материал сначала закаливают при температуре не менее 950 градусов, после чего подвергают отпуску. К таким маркам относятся: Х10С2М, Х6С, Х7СМ, Х9С2. Перлитные виды относятся к хромомолибденовым и хромокремнистым категориям.

Стальные сплавы, которые содержат в составе до 33 процентов хрома, относятся к жаростойким материалам с ферритной внутренней конфигурацией. Изделия из этого материала подвергаются отжигу, что позволяет сформировать мелкозернистую структуру. При нагреве таких сталей выше 850 градусов, зернистость становится выше, что приводит к увеличению хрупкости материала. Марки этой категории: Х17, 1Х12СЮ, Х25Т, Х28, 0Х17Т.

Тугоплавкие стали

Для эксплуатации изделий, выдерживающих до двух тысяч градусов, используются тугоплавкие металлы. Ниже приведены элементы, которые используются в таких составах, и их температура плавления в градусах по Цельсию:

  • Ванадий – 1900.
  • Тантал – 3000.
  • Вольфрам – 3400.
  • Ниобий – 2415.
  • Молибден – 2600.
  • Рений – 3180.
  • Цирконий – 1855.
  • Гафний – 2000.

Конфигурация этих металлов меняется при нагреве, поскольку высокая температура позволяет перевести их в хрупкое состояние. Волокнистая структура элементов достигается путем рекристаллизации тугоплавких сталей. Повышение жаропрочности материала выполняется посредством добавления специальных смесей. Подобным образом составы защищаются и от окисления.

В заключение

Другое название жаропрочной марки стали (нержавейки) – окалиноустойчивая. Подобные материалы наделяются таким качеством в процессе производства. В результате они способны функционировать длительный период в условиях высоких термических воздействий без деформаций, проявляя при этом противостояние газовой коррозии. Проще говоря, посредством сплавов различных элементов добиваются оптимальных качеств жаростойких материалов, в зависимости от предполагаемых условий эксплуатации.

Жаропрочные стали, представленные на современном рынке большим разнообразием марок, как и жаростойкие сплавы различных категорий, признаются большинством специалистов лучшим материалом для изготовления деталей и частей конструкций и оборудования, эксплуатация которого проводится в постоянном контакте с высокими температурами, агрессивной средой либо другими сложными воздействиями.

Справочник нержавеющего металлопроката- Stalprokats.ru

СТАЛЬ СОРТОВАЯ И КАЛИБРОВАННАЯ
КОРРОЗИОННОСТОЙКАЯ, ЖАРОСТОЙКАЯ И ЖАРОПРОЧНАЯ

ГОСТ 5949-75. Настоящий стандарт распространяется на горячекатаную и кованую сталь диаметром, стороной квадрата или толщиной до 200 мм; калиброванную сталь диаметром или стороной квадрата до 70 мм; со специальной отделкой поверхности коррозионностойкую, жаростойкую и жаропрочную. Сортамент, форма и размеры стали должны соответствовать требованиям: горячекатаной круглой ГОСТ 2590-88; горячекатаной квадратной, ГОСТ 2591-88; кованой круглой и квадратной ГОСТ 1133-71; горячекатаной и кованой полосовой ГОСТ 4405-75; горячекатаной полосовой ГОСТ 103-76; горячекатаной шестигранной ГОСТ 2879-88; калиброванной круглой ГОСТ 7417-75; калиброванной квадратной ГОСТ 8559-75; калиброванной шестигранной ГОСТ 8560-78; со специальной отделкой поверхности ГОСТ 14955-77.

СТАЛИ ВЫСОКОЛЕГИРОВАННЫЕ И СПЛАВЫ
КОРРОЗИОННОСТОЙКИЕ, ЖАРОСТОЙКИЕ И ЖАРОПРОЧНЫЕ

ГОСТ 5632-72. Настоящий стандарт распространяется на деформируемые стали и сплавы на железоникелевой и никелевых основах, предназначенные для работы в коррозионно-активных средах и при высоких температурах. К высоколегированным сталям условно отнесены сплавы, массовая доля железа в которых более 45 %, а суммарная массовая доля легирующих элементов не менее 10 %, считая по верхнему пределу, при массовой доле одного из элементов не менее 8 % по нижнему пределу. К сплавам на железоникелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе (сумма никеля и железа более 65 % при приблизительном отношении никеля к железу 1:1,5). К сплавам на никелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в никелевой основе (содержания никеля не менее 50 %).


ЛИСТ

СТАЛЬ ТОЛСТОЛИСТОВАЯ
КОРРОЗИОННОСТОЙКАЯ, ЖАРОСТОЙКАЯ И ЖАРОПРОЧНАЯ.

ГОСТ 7350. Толстолистовая, горячекатаная и холоднокатаная коррозионно-стойкая, жаростойкая и жаропрочная сталь, изготовляемая в листах. Горячекатаную толстолистовую сталь изготовляют толщиной от 4 до 50 мм, холоднокатаную от 4 до 5 мм. Толстолистовую сталь изготовляют следующих марок: 20Х13, 09Х16Н4Б, 12Х13, 14Х17Н2, 08Х13, 12Х17, 08Х17Т, 15Х25Т, 07Х16Н6, 09Х17Н7Ю, 08Х22Н6Т, 12Х21Н5Т, 08Х21Н6М2Т, 20Х23Н13, 08Х18Г8Н2Т, 15Х18Н12С4ТЮ, 10Х14Г14Н4Т, l2X17Г9АН4, 08Х17Н13М2Т, 10Х17Н13М2Т, 10X17h23М3Т, 08Х17Н15М3Т, 12Х18Н9, 17Х18Н9, 12Х18Н9Т, 04Х18Н10, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т, 08Х18Н12Т, 12Х18Н12Т, 08Х18Н12Б, 03Х21Н21М4ГБ, 03Х22Н6М2, 03Х23Н6, 20Х23Н18, 12Х25Н16Г7АР, 06ХН28МДТ, 03ХН28МДТ, 15Х5М.

СТАЛЬ ТОНКОЛИСТОВАЯ
КОРРОЗИОННОСТОЙКАЯ, ЖАРОСТОЙКАЯ И ЖАРОПРОЧНАЯ.

ГОСТ 5582. Тонколистовая, горячекатаная и холоднокатаная коррозионностойкая, жаростойкая и жаропрочная сталь, изготовляемая в листах. Горячекатаную тонколистовую сталь изготовляют толщиной от 1,5 до 3,9 мм, холоднокатаную от 0,7 до 3,9 мм. Тонколистовую сталь изготовляют следующих марок: 11Х11Н2В2МФ, 16Х11Н2В2МФ, 20Х13, 30Х13, 40Х13, 09Х16Н4Б, 12Х13, 14Х17Н2, 08Х13, 12Х17, 08Х17Т, 08Х18Тч, 08Х18Т1, 15Х25Т, 15Х28, 20Х13Н4Г9, 09Х15Н8Ю, 07Х16Н6, 08Х17Н5М3, 20Х20Н14С2, 08Х22Н6Т, 12Х21Н5Т, 08Х21Н6М2Т, 20Х23Н13, 15Х18Н12С4ТЮ, 10Х11Н20Т2Р, 10Х13Г18Д, 10Х14Г14Н4Т, 10Х14АГ15, 12Х17Г9АН4, 03Х17Н14М3, 10Х17Н13М2Т, 10Х17Н13М3Т, 08Х17Н15М3Т, 12Х18Н9, 17Х18Н9, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т, 12Х18Н10Е, 03Х18Н11, 03Х18Н12-ВИ, 08Х18Н12Т, 08Х18Н12Б, 03Х21Н21М4ГБ, 20Х23Н18, 20Х25Н20С2, 12Х25Н16Г7АР, 06ХН28МТ, 06ХН28МДТ

СТАЛЬ ЛИСТОВАЯ ГОРЯЧЕКАТАНАЯ
ДВУХСЛОЙНАЯ КОРРОЗИОННОСТОЙКАЯ.

ГОСТ 10885. Горячекатаные двухслойные коррозионностойкие листы с основным слоем из углеродистой или низколегированной стали и плакирующим слоем из коррозионно-стойких сталей и сплавов, никеля и монель-металла.


ТРУБЫ

ТРУБЫ БЕСШОВНЫЕ ХОЛОДНО И ТЕПЛОДЕФОРМИРОВАННЫЕ
ИЗ СПЛАВОВ НА ОСНОВЕ ТИТАНА

ГОСТ 9940-81. По длине трубы изготавливаются мерной и кратной от 1.5м до 8.5 м. Немерная длина: от 1.5 до 8 м для диаметров 76 — 114 мм от 1.5 до 9 м для диаметров 121 — 159 мм. Трубы могу быть изготовлены из стали марок: 15Х25Т, 08Х22Н6Т, 08Х17Н15М3Т, 08Х13, 12Х13, 12Х17, 04Х18Н10, 08Х18Н10, 17Х18Н9, 15Х28, 08Х20Н14С2, 08Х18Н12Б, 12Х18Н9.

ГОСТ 9941-81. Трубы изготавливаются из марок стали 08Х18Н10Т, 12Х18Н10Т, 10Х17Н13М2Т, по согласованию потребителя с поставщиком трубы могут изготовляться из других сталей, марок, оговоренных ГОСТ 9941-81. Трубы изготовляются термически обработанными. По требованию потребителя трубы поставляются без термической обработки и осветления поверхности. Трубы подвергаются механическим испытаниям: на растяжение, раздачу и сплющивание.

ГОСТ 24030. Трубы изготовляются по ГОСТ 24030 из стали марки 08Х18Н10Т холодно- и теплодеформированные. По требованию заказчика поверхность труб может быть: электрохимполированная наружная; электрохимполированная наружная и внутренняя; электрохимполированная внутренняя; шлифованная наружная; светлая после травления; светлая после термической обработки в безокисленной атмосфере.

ГОСТ 10498. Трубы бесшовные, особотонкостенные из коррозионностойкой стали 4 — 60 мм, толщиной стенки 0,12-1,0 мм, мерной длины от 0,5 до 4м (по требованию потребителя до 7 м),   кратной в пределах немерной, из стали марок 06Х18Н10Т 08Х18Н10Т,09Х18Н10Т. Поверхность труб должна быть травленой. По требованию потребителя поверхность труб должна быть: наружная — шлифованной или электрохимически полированной. Внутренняя — электрохимически полированной.

ГОСТ 14162-79. Трубки стальные малых размеров (капиллярные). Применяются для трубопроводов и деталей конструкций разного назначения. Размер трубок от диаметра 1,2 мм с толщиной стенки 0,12 мм до диаметра 5 мм, толщина стенки 1,6 мм. По длине трубки изготовляются немерные не менее 0,3 м, кратные и мерные не более 4 м, в буртах не более 160 м, по требованию потребителя кратные и мерные не более 7 м. Трубки изготовляются из стали марок 08Х18Н10Т, 12Х18Н10Т, 48НХ.

ГОСТ 19227-73. Трубы стальные бесшовные для маслопроводов и топливопроводов применяются в авиационной технике. Трубы изготовляются от диаметра 4 мм, толщиной стенки 0,5 мм до диаметра 70 мм толщиной стенки 3 мм из сталей 08Х18Н10Т, 12Х18Н10Т, 08Х18Н10Т-ВД, 12Х18Н10Т-ВД, немерные длиной 1,5-7 м мерной и кратной в пределах немерной. Трубы изготовляются из предварительно обточенной заготовки со шлифованной наружной и пассированной внутренней поверхностями. По требованию потребителя с электрополированной наружной и внутренней поверхностями.

ТУ 14-3-197-89. Трубы бесшовные из коррозионностойких марок стали с повышенным качеством поверхности. Трубы изготовляются размерами от диаметра 6 мм, толщиной стенки до 1 мм, до диаметра 57 мм, толщиной стенки 3,5 мм. Длиной: немерные 1,6-8 м; мерной от 1,5 — 7 м, кратной в пределах немерной; по соглашению сторон не длиннее 10 м, а с внутренней полировкой не длиннее 7 м из предварительно обточенной и расточенной заготовки. Трубы, применяемые, в энергомашиностроении могут быть поднадзорны Госатомэнергонадзору, по требованию потребителя соответствовать «Условиям поставки» 01-1874-72. Каждая трубка подвергается ультразвуковому контролю. В зависимости от требований потребителя трубы изготовляются: без специальной обработки наружной или внутренней поверхности; со шлифованной наружной поверхностью с электрохимически изолированной наружной и внутренней поверхностью. Марки стали 08Х18Н10Т, 08Х18Н12Т.

ТУ 14-4-489-76, ТУ 14-3-1318-85. Трубы многослойные особотонкостенные из нержавеющей стали 08Х1810Т, 09Х18Н10Т. Многослойные трубы заказываются по наружному диаметру, толщине стенки и количеству слоев. Трубы изготавливаются размерами диаметра от 16 мм, толщиной стенки от 0,39 мм минимум, 0,57 мм максимум — трехслойная до диаметра 28 мм, толщиной стенки 1,08 минимум, 1,44 максимум — шестислойная. Технология изготовления обеспечивает плотное прилегание слоев. Трубы удовлетворяют условиям поставки 01-1874-72.

ТУ 14-3-219-89. Трубы холодно-и теплодеформированные бесшовные особотонкостенные высокой и особовысокой точности из коррозионностойких сталей. Трубы изготавливаются из металла, выплавленного из особочистых шихтовых материалов. Трубы должны удовлетворять «Условиям поставки» 01-1784-72 и подлежат приемке заказчика. Трубы изготавливают размерами от диаметра 4 мм, толщиной 0,2 мм, до диаметра ; 60 мм, толщиной стенки 1 мм, немерной длины 1,5-8м, мерной 0,5-7,5м, кратной в пределах немерной. Трубы изготавливаются из сталей 06Х18Н10Т, 03Х18Н10Т, 09Х18Н10Т По согласованию сторон изготавливаются трубы из других специальных сталей. Каждая труба подвергается ультразвковому контролю. Трубы поставляются с электрополированной наружной и внутренней поверхностью. Допускается поставка труб с травленной, шлифованной или полированной наружной и с травленной внутренней поверхностью, а также поверхностью после термообработки в вакууме, что оговаривается в заказе.

ТУ 14-3-796-79. Трубы холоднодеформированные из коррозионной стали 12Х18Н10Т предназначенные для паровых котлов и трубопроводов, установок с высокими и сверхвысокими параметрами пара. Трубы изготовляются размерами диаметром от 10 мм, толщины стенки 2 мм, до диаметра 57 мм, толщины стенки 6 мм, немерной длины 3-10 м, мерной длины до 10 м. Все трубы подвергаются ультразвуковому контролю.

ТУ 14-3-411-75. Трубы холоднодеформированные из коррозионностойкой стали 08Х15НД2Т (ЭЛ41ОУ-Ш) изготавливаются из обточенной и расточенной заготовки. Трубы размерами диаметра от 5 мм, толщиной стенки 0,2 мм, до диаметра 57 мм, толщиной стенки 4 мм, длиной 1,5-7м, кратной в пределах мерной и немерной 1,5-10м. Трубы могут иметь матовую поверхность, обусловленную способом производства и марки стали.

ТУ 14-3-843-79. Трубы бесшовные особотонкостенные из сплавов ПТ-1М. Трубы изготавливаются из обточенной и расточенной заготовки. Трубы удовлетворяют «Условиям поставки» 01-18-74-72. Изготавливаются длиной 0,8 — 8м, кратной мерной и немерной длины, диаметром 18 — 56 мм, с толщиной стенки от 1 до 6 мм. Трубы поставляются травленными в термически обработанном состоянии. Содержание водорода не превышает 0,008% отсутствие альфированного слоя в трубах гарантируется изготовителем. Каждая труба подвергается ультразвуковому контролю.

ТУ 14-3-820-79. Трубы бесшовные хоподнодеформированные из сплавов ПТ-1 М и ПТ-7М. Трубы изготавливаются из обточенной и расточенной заготовки. Трубы удовлетворяют «Условиям поставки» 01-1874-72. Изготавливаются длиной 1 — 8 м, диаметром 18 — 56 мм, с толщиной стенки от 1 до 6 мм. Трубы поставляются травлеными в термически обработанном состоянии, допускается поставка труб со шлифованной поверхностью или термически обработанной в вакууме без травления. Все трубы подвергаются ультразвуковому контролю. Отсутствие альфирированного слоя в трубах гарантируется изготовителем. Обязательным является испытание на содержание водорода, которого не должно превышать 0,07%.

 

 

Согласно Европейскому стандарту EN 10020, сталь — железо-углеродистый сплав, содержащий в составе менее 2 % углерода, материалы с более высоким углеродистым содержанием — названы чугуном (Табл. ниже).

Чугун

Fe + C > 2%

Углеродистая сталь

Fe + C < 2%

Спецсталь

Fe + C < 2% + (Cr, Ni, Mo, и т.д.,)>5%

Нержавеющая сталь

Fe + C<1.2% + Cr>10.5%

Нержавеющие стали — эту группу коррозиестойких сталей объединяет общая черта — содержание минимум 10.5 % хрома. Также могут присутствовать другие легирующие элементы — Никель, Молибден, Титан, Ниобий и др., так же определяющие свойства стали. Механические свойства и поведение в обслуживании различных типов зависят в первую очередь от их состава. Правильный выбор марки — гарантирует длительный и успешный срок службы стали. Постоянное увеличение использования нержавеющей стали в многих отраслях промышленности связано с ее выдающимися качествами: превосходного сопротивления коррозии, высокой прочности, хорошей свариваемости и легкости при холодной формовке.

Типы нержавеющих сталей

Cотношения между Ni и Cr для различных типов нержавеющих сталей. [PH steels -дисперсионно-упрочненные (закаленные) стали]

Есть пять основных категорий нержавеющей стали, основанных на их микроструктурах — Аустенитные (Austenitic), Ферритные (Ferritic), Дуплексные, Мартенситные (Martensitic), Жаропрочные — (Рис1). Сорта Аустенические — не магнитные и в дополнение к хрому, обычно на уровне на 18 %, содержат никель, который увеличивает сопротивление коррозии. Аустенитные нержавеющие стали — наиболее широко используемая группа нержавеющих сталей. С повышенным содержанием хрома, 20 % — 25 % и никеля, 10 % — 20 %, аустенитные нержавеющие стали — лучше сопротивляются окислению при высоких температурах и могут использоваться в частях печей, топках, муфельных печах: они называются жаропрочными сталями. Ферритные сорта -магнитные, имеют низкое углеродистое содержание и Хром как главный элемент, обычно на и уровне 13 % — 17 %. Дуплексные нержавеющие стали имеют смешанную, ферритно/аустенитную структуру. Содержание хрома изменяется от 18 % до 28 % и никеля от 4.5 % до 8 %. Дуплексные сорта находят свое применение в средах, где высокое содержание хлорида. Мартенситные сорта магнитные, содержат обычно 12 % хрома и умеренный уровень углерода. Они — упрочняются, закалкой и отпуском подобно простым углеродистым сталям, и находят поэтому применение главным образом в изготовлении столовых приборов, режущих инструментов и общем машиностроении. Упрочненные стали (Рис. 2) имеют содержание хрома обычно в 17 % с дополнениями никеля, меди и ниобия. Поскольку эти стали могут быть укреплены и хорошо сопротивляются процессу старения, они идеальны для шахтных насосов, шпинделей клапанов и космических компонентов.

Аустенитные и ферритные сорта составляют приблизительно 95 % среди используемых нержавеющих сталей.

Определение Марок

400 Мартенситные марки — Типичный сорт: 410

Хром (12-18 %), магнитный и может быть укреплен обработкой высокой температурой. Типичное использование: крепеж, соединительные детали, промышленные насосы

400 Ферритные марки — Типичный сорт: 430

Хром (12-18 %), «низкий» углерод, магнитный, но не высокая температура обработки. Типичное использование: бытовые приборы, отделка, кухонная утварь

200/300 Ряд Austenitic — Типичный сорт: 304

Хром (17-25 %)/Никель (8-25 %), немагнитный, не укрепленный высокой температурой. Имеет высокую прочность при холодной работе. Дополнения молибдена (до 7 %) могут увеличивать сопротивление коррозии. Типичное использование: пищевое оборудование, химическое оборудование, архитектурные применения

Дисперсионно укрепленные (закаленные) марки — Типичный сорт: 17-4

Хром (12-28 %)/ Никель (3-9 %), с добавлением Меди (3-4%) и Ниобия или Кобальта. Имеют мартенситную или аустенитную структуру. Укрепляются дисперсионным твердением в течение термообработки. Типичное использование: Клапаны, приводы, нефтехимическое оборудование

Дуплексные марки — Типичный сорт: 2205

Хром (18-25 %)/ Никель (4-7 %) и до 4 % молибдена. Более стойкие коррозии под давлением (напряжением), чем аустенитные, и все же достаточно жесткие, чем полностью ферритные сплавы. Типичное использование: Трубопроводы, камеры давления, котлы, силовые передачи, валы

Выгоды от Нержавеющей стали

Срок службы

Когда рассматриваются полные затраты цикла жизни, нержавеющая сталь — часто наименее дорогой выбор

Низкие Затраты Обслуживания

Нержавеющая сталь обычно лишь требует периодической очистки, с использованием домашних моющих средств и воды. Поверхности должны быть вымыты повторно водой и протерты. Следует использовать мягкую губку, не применяя абразивных паст.

Простота Изготовления

Современные методы металлообработки подразумевают, что Нержавеющая сталь может быть порезана, сварена, сформована и обработана так же как традиционные стали и другие материалы.

Сопротивление Коррозии

Более низкие сорта сопротивляются коррозии в нормальных атмосферных и водных средах, в то время как более высокие сорта могут сопротивляться коррозии во многих кислотах и щелочах, и некоторых хлористых растворах, присущих окружающим средам, типичных для многих обрабатывающих заводов.

Прочность

Механические свойства Нержавеющих сталей позволяют снизить толщины используемых материалов, таким образом сокращая вес без риска снижения прочностных характеристик. Аустенитные и Дуплексные сорта не теряют прочности и при низких температурах, при учете меньших толщин по сравнению с традиционными сортами. Таким образом достигается существенная экономия по отношению к альтернативным материалам.

Гигиена

Нержавеющая сталь признанна как наиболее гигиеническая поверхность для подготовки пищевых продуктов. Уникальность поверхности Нержавеющей стали в том, что она не имеет пор или трещин для проникновения грязи или бактерий. Это свойство простой очищаемости по отношению к другим поверхностям, делает Нержавеющая сталь первым выбором в строгих гигиенических условиях, например, больницах, общественных кухонь, скотобойнях, пищевого оборудования, перерабатывающих предприятиях АПК.

Эстетический внешний вид

Яркая, легко обслуживаемая поверхность нержавеющей стали обеспечивает привлекательный и современный внешний вид изделий, является идеальной для широкого и растущего диапазона архитектурных и декоративных приложений

 

 

Сварка высоколегированных сталей и сплавов на железоникелевой и никелевой основах осуществляется двумя видами электродов: электродами для сварки коррозионно-стойких материалов и электродами для сварки жаростойких и жаропрочных сталей и сплавов.

Согласно действующей классификации к высоколегированным сталям относят сплавы, содержание железа в которых более 45%, а суммарное содержание легирующих элементов не менее 10%, считая по верхнему пределу при онцентрации одного из элементов не менее 8% по нижнему пределу. К сплавам на никелевой основе относят сплавы с содержанием не менее 55% никеля. Промежуточное положение занимают сплавы на железоникелевой основе.

В соответствии с ГОСТ 10052-75 электроды для сварки высоколегированных коррозионно-стойких, жаростойких и жаропрочных сталей и сплавов по химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла классифицированы на 49 типов (например, электроды типа Э-07Х20Н9, Э-10Х20Н70Г2М2Б2В, Э-28Х24Н16Г6). Наплавленный металл значительной части электродов, регламентируется техническими условиями предприятий — изготовителей.

Химический состав и структура наплавленного металла электродов для сварки высоколегированных сталей и сплавов отличаются — и иногда весьма существенно — от состава и структуры свариваемых материалов. Основными показателями, решающими вопрос выбора таких электродов, является обеспечение: основных эксплуатационных характеристик сварных соединений (механических свойств, коррозионной стойкости, жаростойкости, жаропрочности), стойкости металла шва против образования трещин, требуемого комплекса сварочно-технологических свойств.

Электроды для сварки высоколегированных сталей и сплавов имеют покрытия основного, рутилового и рутилово-основного видов. Из-за низкой теплопроводности и высокого электросопротивления скорость плавления, а следовательно и коэффициент наплавки электродов со стержнями из высоколегированных сталей и сплавов существенно выше, чем у электродов для сварки углеродистых, низколегированных и легированных сталей. Вместе с тем повышенное электросопротивление металла электродного стержня обуславливает необходимость применения при сварке пониженных значений тока и уменьшения длины самих стержней (электродов). В противном случае из-за чрезмерного нагрева стержня возможен перегрев покрытия и изменение характера его плавления, вплоть до отваливания отдельных кусков.

Сварка, как правило, производится постоянным током обратной полярности.

Электроды для сварки коррозионно-стойких сталей и сплавов

Электроды этой группы обеспечивают получение сварных соединений, обладающих требуемой стойкостью против коррозии в атмосферной, кислотной, щелочной и других агрессивных средах.

Некоторые марки электродов данной группы имеют более широкую область применения и их можно использовать не только для получения соединений с требуемыми коррозионной стойкостью, но и в качестве электродов, беспечивающих высокую жаростойкость и жаропрочность металла шва.

Марка электрода

Тип электрода по ГОСТ 10052-75 или тип наплавленного металла

Диаметр, мм

Основное назначение

Дополнительная или сопутствующая области применения

1

2

3

4

5

УОНИ-13/НЖ

12Х13

Э-12Х13

2,0; 2,5; 3,0; 4,0; 5,0

Сварка хромистых сталей типа 08Х13 и 12Х13

Наплавка уплотнительных поверхностей стальной арматуры

ОЗЛ-22

Э-02Х21Н10Г2

3,0; 4,0

Сварка оборудования из сталей типа 04Х18Н10, 03Х18Н12, 03Х18Н11, работающего в окислительных средах, подобных азотной кислоте

 

ОЗЛ-8

Э-07Х20Н9

2,0; 2,5; 3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК

 

ОЗЛ-8С

08Х20Н9КМВ

2,5; 3,0; 4,0

Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК

Сварка с повышенной производительностью

ОЗЛ-14

Э-07Х20Н9

3,0; 4,0

Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК

Возможна сварка переменным током

ОЗЛ-14А

Э-04Х20Н9

3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 08Х18Н10Т, 06Х18Н11 и 08Х18Н12Т, когда к металлу шва предъявляют требования стойкости к МКК

 

ОЗЛ-36

Э-04Х20Н9

3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 06Х18Н11, 08Х18Н12Т и 08Х18Н10Т, когда к металлу шва предъявляют требования стойкости к МКК

 

ЦЛ-11

Э-08Х20Н9Г2Б

2,0; 2,5; 3,0; 4,0; 5,0

Сварка сталей типа 12Х18Н10Т, 12Х18Н9Т, 08Х18Н12Т и 08Х18Н12Б, когда к металлу шва предъявляют жесткие требования стойкости к МКК

Сварка оборудования из сталей типа 12Х18Н10Т, 12Х18Н9Т, 08Х18Н12Т и 08Х18Н12Б для пищевой промышленности

ЦЛ-11С/Ч

Э-08Х20Н9Г2Б

2,5; 3,0; 4,0

Сварка сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т, когда к металлу шва предъявляют требования стойкости к МКК

Сварка с повышенной производительностью

ОЗЛ-7

Э-08Х20Н9Г2Б

2,0; 2,5; 3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т, когда к металлу шва предъявляют жесткие требования стойкости к МКК

Сварка оборудования из сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т для пищевой промышленности

ЦТ-15

Э-08Х19Н10Г2Б

2,0; 2,5; 3,0; 4,0; 5,0

См. группу электродов для сварки жаростойких и жаропрочных сталей и сплавов

Сварка сталей типа 12Х18Н9Т, 12Х18Н12Т, Х20Н12Т-Л и Х16Н13Б, когда к металлу шва предъявляют жесткие требования стойкости к МКК

ЦЛ-9

Э-10Х25Н13Г2Б

3,0; 4,0; 5,0

Сварка двухслойных сталей со стороны легированного слоя из сталей типа 12Х18Н10Т, 12Х18Н9Т и 08Х13, когда к металлу шва предъявляют требования стойкости к МКК

 

ОЗЛ-40

08Х22Н7Г2Б

3,0; 4,0

Сварка сталей марок 08Х22Н6Т и 12Х21Н5Т

 

ОЗЛ-41

08Х22Н7Г2М2Б

3,0; 4,0

Сварка стали марки 08Х21Н6М2Т

Возможна сварка стали марки 03Х24Н6АМ3

ОЗЛ-20

Э-02Х20Н14Г2М2

3,0; 4,0

Сварка оборудования из сталей типа 03Х16Н15М3 и 03Х17Н14М2, работающего в средах высокой агрессивности

Возможна сварка оборудования из стали марки 08Х17Н15М3Т, работающего в средах высокой агрессивности

ЭА-400/10У

ЭА-400/10Т

08Х18Н11М3Г2Ф

2,0; 2,5; 3,0; 4,0; 5,0

Сварка оборудования из сталей типа 08Х18Н10Т и 10Х17Н13М2Т, работающего в агрессивных средах при температуре до 350 С, когда к металлу шва предъявляют требования стойкости к МКК

 

НЖ-13

Э-09Х19Н10Г2М2Б

3,0; 4,0; 5,0

Сварка оборудования из сталей типа 10Х17Н13М3Т, 08Х21Н6М2Т и 10Х17Н13М2Т, работающего при температуре до 350 С, когда к металлу шва предъявляют требования к стойкости к МКК

 

НЖ-13С

Э-09Х19Н10Г2М2Б

3,0; 4,0

Сварка оборудования из сталей типа 10Х17Н13М2Т, 10Х17Н13М3Т и 08Х21Н6М2Т, работающего при температуре до 3500С, когда к металлу шва предъявляют требования стойкости к МКК

Сварка с высокой производительностью

НИАТ-1

Э-08Х17Н8М2

2,0; 2,5; 3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 12Х18Н10Т и 10Х17Н13М2Т, когда к металлу шва предъявляют требования стойкости к МКК

 

ОЗЛ-3

14Х17Н13С4Г

3,0; 4,0; 5,0

Сварка оборудования из стали 15Х18Н12С4ТЮ, работающего в средах повышенной агрессивности, когда к металлу шва не предъявляют требования стойкости к МКК

 

ОЗЛ-24

02Х17Н14С5

3,0; 4,0

Сварка оборудования из сталей типа 02Х8Н20С6, работающего в условиях производства 98%-ной азотной кислоты

 

ОЗЛ-17У

03Х23Н27М3Д3Г2Б

3,0; 4,0

Сварка оборудования из сплавов марок 06ХН28МДТ и 03ХН28МДТ и стали марки 03Х21Н21М4ГБ преимущественно толщиной до 12 мм, работающего в средах серной и фосфорной кислот с примесями фтористых соединений

 

ОЗЛ-37-2

03Х24Н26М3Д3Г2Б

3,0; 4,0

Сварка оборудования из сплавов марок 03Х23Н25М3Д3Б, 06ХН28МДТ и 03ХН28МДТ и стали марки 03Х21Н21М4ГБ преимущественно толщиной до 12 мм, работающего в средах серной и фосфорной кислот с примесями фтористых соединений

 

ОЗЛ-21

Э-02Х20Н60М15В3

3,0

Сварка оборудования из сплавов типа ХН65МВ и ХН60МБ, работающего в высокоагрессивных средах, когда к металлу шва предъявляют требования стойкости к МКК

 

ОЗЛ-25Б

Э-10Х20Н70Г2М2Б2В

3,0; 4,0

См. группу электродов для сварки жаростойких и жаропрочных сталей и сплавов

Сварка коррозионно-стойких конструкций и оборудования из сплава марки ХН78Т

Электроды для сварки жаростойких и жаропрочных сталей и сплавов

Общая краткая характеристика

Электроды этой группы обеспечивают получение сварных соединений с требуемой жаростойкостью и/или жаропрочностью. Жаростойкими сварными соединениями являются соединения, обладающие высокой стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550-6000С. Жаропрочными сварными соединениями являются соединения, работающие при этих температурах в нагруженном состоянии в течение определенного времени (жаропрочные соединения должны обладать при этом достаточной жаростойкостью).

Некоторые марки электродов, предназначенные для сварки жаростойких и/или жаропрочных материалов, используются для сварки коррозионно-стойких и разнородных сталей и сплавов

Марка электрода

Тип электрода по ГОСТ 10052-75 или тип наплавленного металла

Диаметр, мм

Основное назначение

Дополнительная или сопутствующая области применения

1

2

3

4

5

ОЗЛ-25Б

Э-10Х20Н70Г2М2Б2В

3,0; 4,0

Сварка жаростойкого и жаропрочного сплава марки ХН78Т

Сварка коррозионно-стойких конструкций и оборудования из сплава марки ХН78Т. Сварка разнородных сталей. Сварка чугуна.

ЦТ-15

Э-08Х19Н10Г2Б

2,0; 2,5; 3,0; 4,0; 5,0

Сварка жаропрочных конструкций и оборудования из сталей типа 12Х18Н9Т, 12Х18Н12Т, Х20Н12Т-Л и Х16Н13Б, работающих при температуре 570-6500С.

Сварка сталей типа 12Х18Н9Т, 12Х18Н12Т, Х20Н12Т-Л и Х16Н13Б, когда к металлу шва предъявляют жесткие требования стойкости к МКК.

ОЗЛ-6

Э-10Х25Н13Г2

3,0; 4,0; 5,0

Сварка жаростойких сталей типа 20Х23Н13 и 20Х23Н18, работающих в окислительных средах при температуре до 10000С

Сварка сталей типа 15Х25Т и стали марки 25Х25Н20С2. Сварка разнородных сталей.

КТИ-7А

Э-27Х15Н35В3Г2Б2Т

3,0; 4,0

Сварка реакционных труб из жаростойких сталей марок 45Х25Н20С2, 45Х20Н35С и 25Х20Н35, работающих при температуре до 9000С в печах конверсии метана

 

ОЗЛ-9А

Э-28Х24Н16Г6

2,5; 3,0; 4,0

Сварка жаростойких сталей типа 12Х25Н16Г7АР, 45Х25Н20С2 и Х18Н35С2, работающих в окислительных средах при температуре до 10500С и в науглероживающих средах при температуре до 10000С

Сварка сталей марок 20Х23Н13 и 20Х23Н18.

ОЗЛ-38

30Х24Н23ГБ

3,0; 4,0

Сварка жаростойких хромоникелевых сталей, преимущественно марки 30Х24Н24Б, работающих при температуре до 9500С

 

ВИ-ИМ-1

06Х20Н60М14В

2,0; 2,5; 3,0; 4,0

Сварка жаропрочных сталей и сплавов типа ХН67МВТЮЛ, ХН64МТЮР, ХН78Т, ХН77ТЮР и ХН56МТЮ

Сварка разнородных сталей и сплавов.

ЦТ-28

Э-08Х14Н65М15В4Г2

3,0; 4,0

Сварка жаростойких и жаропрочных сплавов на никелевой основе типа ХН78Т и ХН70ВМЮТ

Сварка перлитных и хромистых сталей со сплавами на никелевой основе.

ИМЕТ-10

Э-04Х10Н60М24

2,5; 3,0

Сварка жаростойких и жаропрочных сталей и сплавов на никелевой основе типа 37Х12Н8Г8МФБ, ХН67ВМТЮ, ХН75МБТЮ, ХН78Т и ХН77ТЮ

Сварка разнородных сталей и сплавов.

ОЗЛ-2

11Х21Н14М2Г2

3,0; 4,0; 5,0

Сварка жаростойких сталей типа 20Х23Н13, работающих при температуре до 9000С в газовых средах, содержащих сернистые соединения

 

ОЗЛ-39

06Х17Н14Г3С3Ф

3,0; 4,0

Сварка жаростойких сталей типа 20Х20Н14С2, 20Х23Н18, 20Х25Н20С2 и 45Х25Н20С2, работающих в науглероживающих средах при температуре до 10500С

 

ОЗЛ-46

06Х11Н2М2ГФ

3,0; 4,0

Сварка жаропрочных сталей мартенситного типа 1Х12Н2ВМФ и Х12НМБФ-Ш

 

ОЗЛ/ЦТ-31М

18Х18Н34В3Б2Г

3,0; 4,0

Сварка жаростойких сталей марок 20Х25Н20С2, 45Х25Н20С2 и Х18Н35С2, работающих в науглероживающих средах с температурой до 10500С, в том числе при повышенных статических нагрузках на швы

 

ГС-1

09Х23Н9Г6С2

3,0; 4,0

Сварка тонколистовых жаростойких сталей типа 20Х20Н14С2, 20Х25Н20С2 и 45Х25Н20С2, работающих в науглероживающих средах при температуре до 10000С

Сварка корневого и облицовочного слоев шва, обращенных в сторону рабочей науглероживающей среды, в конструкциях из сталей типа 20Х20Н14С2, 20Х25Н20С2 и 45Х25Н20С2 больших толщин

ОЗЛ-5

Э-12Х24Н14С2

3,0; 4,0; 5,0

Сварка жаростойких сталей типа 20Х25Н20С2 и 20Х20Н14С2, работающих в окислительных средах при температуре до 10500С

Заварка дефектов литья из сталей типа 20Х25Н20С2 и 20Х20Н14С2.

ОЗЛ-25

Э-10Х20Н70Г2М2В

3,0

Сварка тонколистовых (толщиной до 6 мм) конструкций и нагревательных элементов из жаростойких сплавов типа ХН78Т

Наплавка облицовочных слоев швов при сварке конструкций из сплавов типа ХН78Т большой толщины.

ОЗЛ-35

10Х27Н70Г2М

3,0; 4,0

Сварка жаростойких сплавов марок ХН70Ю и ХН45Юи других сплавов на никелевой основе, работающих при температуре до 12000С

Сварка облицовочных слоев швов, выполненных электродами других марок.

ОЗЛ-28

20Х27Н8Г2М

2,5; 3,0

См. группу электродов для сварки разнородных сталей и сплавов

Сварка корневых слоев швов жестких конструкций из жаростойкой стали марки 45Х25Н20С2.

 

 

Термообработкой называется тепловое воздействие на металл с целью направленного изменения его структуры и свойств.

Классификация видов термообработки:

Отжиг.

Отжигом называют термообработку, направленную на получение в металлах равновесной структуры. Любой отжиг включает в себя нагрев до определенной температуры, выдержку при этой температуре и последующее медленное охлаждение. Цель отжига — уменьшить внутренние напряжения в металле, уменьшить прочностные свойства и увеличить пластичность. Отжиг делят на отжиг 1 рода и 2 рода.

Отжиг 1 рода — это такой вид отжига, при котором не происходит структурных изменений, связанных с фазовыми превращениями.

Отжиг 1 рода в свою очередь разделяют на 4 группы:

1.  Гомогенизация— отжиг, направленный на уменьшение химической неоднородности металлов, образующейся в результате рекристаллизации. В отличие от чистых металлов, все сплавы после кристаллизации характеризуются неравновесной структурой, т.е. их химический состав является переменным как в пределах одного зерна, так и в пределах всего слитка.

Химическая неоднородность обусловлена различной температурой плавления исходных компонентов. Чем меньше это различие, тем более заметна химическая неоднородность, получающаяся в слитке. Избавится от нее невозможно, можно только уменьшить. Для этого применяют высокотемпературный отжиг с длительными выдержками (от 2 до 48 часов). При высокой температуре подвижность атомов в кристаллической решетке высокая и с течением времени за счет процессов диффузии происходит постепенное выравнивание химического состава. Однако усреднение химического состава происходит в пределах одного зерна, т.е. устраняется в основном дендритная ликвация. Чтобы устранить зональную ликвацию (химическую неоднородность в пределах части слитка), необходимо выдерживать слитки при данной температуре в течение нескольких лет. А это практически невозможно.

В процессе отжига на гомогенизацию происходит постепенное растворение неравновесных интерметаллидных фаз, которые могут образоваться в результате кристаллизации с большой скоростью. При последующем медленном охлаждении после отжига такие неравновесные фазы больше не выделяются. Поэтому после гомогенизации металл обладает повышенной пластичностью и легко поддается пластической деформации.

2. Рекристаллизационный отжиг. Холодная пластическая деформация вызывает изменение структуры металла и его свойств. Сдвиговая деформация вызывает увеличение плотности дефектов кристаллической решетки, таких как вакансии, дислокации. Образование  ячеистой структуры происходит с изменением формы зерен, они плющиваются, вытягиваются в направлении главной деформации. Все эти процессы ведут к тому, что прочность металла постепенно увеличивается, пластичность падает, т.е. возникает наклеп или нагартовка. Дальнейшая деформация такого металла невозможна, т.к. происходит его разрушение. Для снятия эффекта упрочнения применяют рекристаллизационный отжиг, т.е. нагрев металла до температур выше начала кристаллизации, выдержку с оследующим медленным охлаждением. Температура нагрева зависит от состава сплава. Для чистых металлов температура начала рекристаллизации tp=0,4Тпл, ºК, для обычных сплавов порядка 0,6Тпл, для сложных термопрочных сплавов 0,8Тпл. Продолжительность такого отжига зависит от размеров детали и в среднем составляет от 0,5 до 2 часов. В процессе рекристаллизационного отжига происходит образование зародышей новых зерен и последующий рост этих зародышей. Постепенно старые деформированные зерна исчезают. Количество дефектов в кристаллической решетке уменьшается, наклеп устраняется, и металл возвращается в исходное состояние.  

Степень деформации определяет размер зерна после отжига. Если она близка к критической (eкр=5-15%), то в результате после отжига в металле возникают крупные зерна, что обычно нежелательно. Поэтому перед рекристаллизационным отжигом деформацию металлов производят со степенью 30-60%. В результате получается мелкозернистая однофазная структура, обеспечивающая хорошее сочетание прочности и пластичности. Увеличение степени деформации до 80-90% вызывает появление в металле текстуры деформации. После рекристаллизационного отжига текстура деформации меняется на текстуру рекристаллизации. Как правило, это сопровождается резким направленным ростом зерна. Увеличение размеров зерна, т.е. снижение механических свойств, может вызвать также слишком большая температура отжига или большая выдержка. Поэтому при назначении режимов отжига необходимо использовать диаграмму рекристаллизации.

Рекристаллизационный отжиг может применяться как предварительная, промежуточная, так и как окончательная термообработка. Как предварительная термообработка он применяется перед холодной деформацией, если исходное состояние металла неравновесное и имеет какую-то степень упрочнения. Как промежуточная операция рекристаллизационный отжиг применяется между операциями холодной деформации, если суммарная степень деформации слишком велика и запасов пластичности металла не хватает. Как окончательный вид отжига его применяют в том случае, если потребитель требует поставки полуфабрикатов в максимально пластичном состоянии. В некоторых случаях потребителю требуется полуфабрикат, сочетающий определенный уровень прочности с необходимым запасом пластичности. В этом случае вместо рекристаллизационного отжига используют его разновидность — отжиг на полигонизацию. Отжиг на полигонизацию проводят при температуре, которая ниже температуры начала рекристаллизации. Соответственно при такой температуре происходит лишь частичное устранение наклепа за счет процессов возврата второго рода, т.е. происходит уменьшение плотности дефектов кристаллической решетки, образование ячеистой дислокационной структуры без изменения формы зерен. Степень уменьшения наклепа зависит, прежде всего, от температуры. Чем ближе температура к порогу рекристаллизации, тем меньше наклеп, тем больше пластичность и наоборот.  

3.  Отжиг для снятия внутренних напряжений. Внутренние напряжения в металле могут возникать в результате различных видов обработки. Это могут быть термические напряжения, образовавшиеся в результате неравномерного нагрева, различной скорости охлаждения отдельных частей детали после горячей деформации, литья, сварки, шлифовки и резания. Могут быть структурными, т.е. появившиеся в результате структурных превращений, происходящих внутри детали в различных местах с различной скоростью. Внутренние напряжения в металле могут достигать большой величины и, складываясь с рабочими, т.е. возникающими при работе, могут неожиданно превышать предел прочности и приводить к разрушению. Устранение внутренних напряжений производится с помощью специальных видов отжига. Этот отжиг проводится при температурах ниже температуры рекристаллизации: tотж=0,2-0,3Тпл º К. Повышенная температура облегчает скольжение дислокаций и, под действием внутренних напряжений, происходит их перераспределение, т.е. из мест с повышенным уровнем внутренних напряжений дислокации перемещаются в области с пониженным уровнем. Происходит как бы разрядка внутренних напряжений. При нормальной температуре этот процесс будет длиться в течение нескольких лет. Увеличение температуры резко увеличивает скорость разрядки, и продолжительность такого отжига составляет несколько часов.

4.  Патентирование. Смотреть термообработку стали.

Отжиг второго рода— термообработка, направленная на получение равновесной структуры в металлах и сплавах, испытывающих фазовые превращения.

При отжиге второго рода нагрев и последующее охлаждение может вызвать как частичную, так и полную замену исходной структуры. Полная замена (aRbRa) в результате двойной перекристаллизации позволяет кардинально изменить строение сплава, уменьшить размер зерна, снять наклеп, устранить внутренние напряжения, т.е. полностью изменить структуру и свойства детали. Отжиг второго рода может быть полным и неполным.  

Полный отжиг сопровождается полной перекристаллизацией. При неполном отжиге структурные превращения происходят не полностью, с частичным сохранением исходной фазы. Неполный отжиг применяется в тех случаях, когда можно изменить строение второй фазы, исчезающей и вновь появляющейся при этом виде отжига.

Закалка

Закалка — это термообработка, направленная на получение в сплаве максимально неравновесной структуры и соответственно аномального уровня свойств. Любая закалка включает в себя нагрев до заданной температуры, выдержку и последующее быстрое резкое охлаждение. В зависимости от вида фазовых превращений, происходящих в сплаве при закалке, различают закалку с полиморфным превращением и закалку без полиморфного превращения.

Закалка с полиморфным превращением. Этот вид закалки применяется для сплавов, в которых один из компонентов имеет полиморфные превращения.

При закалке с полиморфным превращением нагрев металла производится до температуры, при которой происходит смена типа кристаллической решетки в основном компоненте. Образование высокотемпературной полиморфной структуры сопровождается увеличением растворимости легирующих элементов. Последующее резкое охлаждение ведет к обратному изменению типа кристаллической решетки, однако из-за быстрого охлаждения в твердом растворе остается избыточное содержание атомов других компонентов, поэтому после такого охлаждения образуется неравновесная структура. В металле сохраняются внутренние напряжения. Они вызывают резкое изменение свойств, увеличивается прочность, уменьшается пластичность. При быстром охлаждении перестройка кристаллической решетки происходит за счет одновременного смещения целы групп атомов. В результате вместо обычных зерен в металле появляется игольчатая структура, которая называется мартенситом. Неравновесное состояние металла после такого типа закалки является термодинамически неустойчивым. Поэтому, чтобы перевести металл в более устойчивое состояние, получить необходимый уровень внутренних напряжений, а соответственно и необходимые механические свойства, применяют дополнительную термообработку, которую называют отжиг. 

Закалка  без  полиморфного превращения.

Применяется  для  сплавов, не  испытывающих  полиморфных  превращений, но имеющих  ограниченную растворимость одного компонента в другом.

Если сплав, содержащий вторичные фазы, нагреть до температуры выше линии солидус, то увеличение растворимости приведет к растворению вторичных фаз. Если теперь такой твердый раствор быстро охладить, то выделение вторичных фаз образоваться не успеет, т.к. для этого требуется время на прохождение процесса диффузии, образование другой кристаллической решетки, границ раздела между фазами. В результате, при нормальной температуре пересыщенный метастабильный твердый раствор содержит избыток второго компонента. Такое изменение структуры изменяет свойства сплава, прочность может, как увеличиться, так и уменьшиться, а пластичность, как правило, увеличивается. Состояние металла после такой закалки является термодинамически неустойчивым. Самопроизвольно или под влиянием предварительного нагрева метастабильный твердый раствор начинает распадаться с выделением вторичной фазы, т.е.  αмRα+βII. Этот процесс называется  старением.

Таким образом, старение — это термообработка, которая проводится после закалки без полиморфного превращения, направленная на получение в сплаве более равновесной структуры и заданного уровня свойств.

Отпуск.

Отпуск — термообработка, направленная на уменьшение внутренних напряжений в сплавах после закалки с полиморфным превращением. Образование вторичных фаз после закалки с полиморфным превращением всегда опровождается резким увеличением внутренних. Соответственно максимально увеличиваются прочность и твердость, до минимума падает пластичность. Чтобы получить необходимое соотношение прочности и пластичности, такой сплав после закалки подвергают дополнительной термообработке: отпуску. Нагрев вызывает уменьшение концентрации легирующих элементов в твердом растворе и выделение вторичных фаз.

После закалки без полиморфного превращения сплав имеет структуру пересыщенного твердого раствора. Такое состояние сплава — нестабильное и с  течением времени начинает меняться. Пересыщенный твердый раствор распадается с выделением из него мелких включений вторичной фазы. Этот процесс проходит в несколько стадий:

На первой стадии в кристаллической решетке твердого раствора появляются зоны, обогащенные атомами второго компонента. С течением времени эти зоны увеличиваются.

На второй стадии концентрация атомов второго компонента достигает величины, соответствующей по концентрации выделения вторичной фазы.

Наступает третья стадия, т.е. формирование в этих зонах промежуточной кристаллической решетки, которая отличается то решетки твердого раствора и от решетки вторичной фазы.

На четвертой стадии увеличение концентрации второго компонента приводит кобразованию окончательной кристаллической решетки вторичной фазы и образованию границы раздела между твердым раствором и вторичной фазой. Так как процесс распада твердого раствора основан, прежде всего, на  диффузионных процессах, то он в значительной степени зависти от температуры. Чем выше температура, тем быстрее идет процесс распада. Если температура нормальная, то процесс распада называется  естественным старением, а если температура повышенная, то — искусственным старением. В результате, после старения структура сплава представляет собой зерна твердого раствора равновесного химического состава, с равномерно распределенным по объему, огромным количеством мелких выделений вторичной фазы. Эти выделения, располагаясь на плоскостях скольжения, препятствуют перемещению дислокаций, требуют увеличение скалывающего напряжения. Соответственно, прочность и твердость сплава увеличиваются. 

Химико-термическая обработка (ХТО).

Это одновременное воздействие на металл химической среды, тепла с целью направленного изменения состава и свойств поверхности детали.  Различные виды ХТО направлены либо на повышение коррозионной стойкости, либо прочности и твердости, износостойких, антифрикционных свойств.  Изменяя состав химической среды, можно  в одних и тех же деталях получать различные свойства.

Термомеханическая обработка.

Это сочетание пластической деформации, упрочняющей термообработки, причем образующийся в результате деформации наклеп сохраняется и влияет на фазовые превращения, происходящие при термообработке.

Такое комплексное воздействие на металл позволяет получить уровень свойств в металле более высокий, чем можно получить после деформации или после термообработки в отдельности.

 

Коррозионностойкие стали

Коррозией называют разрушение металла под действием химического или электрохимического воздействия под действием окружаемой среды. Основные факторы воздействия коррозии и ее влияние на экономику:

  1. Экономический фактор — экономические потери промышленности в результате коррозии.
  2. Надежность эксплуатации объектов или машин.
  3. Экологический фактор.

Виды коррозии:

  1. Равномерная (поверхностная).
  2. Местная (точечная).
  3. Межкристаллитная (по границам зерен).
  4. Коррозия под напряжением (ножевая).
  5. Электрохимическая коррозия.

Межкристаллитная коррозия (МКК).

Железо не является коррозионностойким металлом. Чистое железо активно взаимодействует со всеми элементами. Повысить коррозионностойкость можно введением легирующих элементов, которые вызывают его пассивацию. Пассивация — эффект создания на поверхности стальной детали тонкой защитной пленки, подслоем которой является кислород. Результат — электронный потенциал становится положительным и поверхность становится менее склонной к коррозии. Усиливают пассивацию Cr, Ni, Cu, Mo, Pt, Pd. Особенно сильно влияет Cr.

Химический состав: Cr13-30%, Ni4-25%, Moдо 5%, Cuдо 1%. В зависимости от

содержания легирующих элементов структура и свойства сталей могут быть различными. Если сталь содержит в основном Cr, который стабилизирует феррит, то сталь будет ферритной (низкая твердость, низкая прочность, высокая пластичность). Если сталь содержит в себе кроме Cr C, то ее структура будет мартенситной. Зная структуру стали, можно прогнозировать ее свойства и назначать режимы термообработки. Для определения, к какому структурному классу относится сталь, разработана диаграмма Шеффлера. 

Экв. Ni=%Ni + 30(%C) + 0,5(%Mn).

Экв. Cr=%Cr + %Mo + 1,5(%Si) + 0,5(%Nb).

Cr повышает коррозионную стойкость только в том случае, когда его количество в растворе превышает 13%. Если количество Cr не слишком высоко и при этом сталь содержит много углерода, то происходит взаимодействие Cr и С с образованием карбидов. Особенно энергично образование карбидов наблюдается на границах зерен. При этом количество Cr в твердом растворе снижается. И если Cr менее 13%, то границы зерен становятся незащищенными. В результате коррозия легко может пересылаться по границам, не затрагивая центров зерен. Если скорость охлаждения велика, то карбиды по границам зерен образовываться не успевают. Количество Cr не снижается меньше 13%. Если скорость охлаждения очень мала, то при этом сначала образуются карбиды по границам зерен. При этом количество Cr снижается, но за счет диффузии из центра зерна происходит увеличение содержания Cr и стойкость восстанавливается. Если охлаждение идет таким образом, что содержание Cr на границах не успевает увеличиться и остается меньше 13%, то такая сталь склонна к межкристаллитной коррозии. Чтобы сделать сталь нечувствительной к межкристаллитной коррозии, нужно:

  1. Понизить содержание углерода и азота.
  2. Вводить в сталь другие карбидообразующие элементы более сильные, чем Cr (Ti, Nb).
  3. Увеличить скорость охлаждения при термообработке.
  4. Делать отжиг.

Хромистые нержавеющие стали.

Хромистые нержавеющие стали являются самыми дешевыми и поэтому самыми распространенными. Минимальное содержание Cr 13%. При содержании Cr больше 13% стабилизируется α — фаза (феррит) и никаких полиморфных превращений в таких сталях не происходит. Нагрев вызывает только увеличение зерна. Длительная выдержка при температуре около 600-650º С вызывает появление в сталях интерметаллидной фазы. Образование такой фазы сильно охрупчивает сталь, поэтому является нежелательной. Медленное охлаждение или длительная выдержка при 500º С вызывает образование упорядоченного твердого раствора, что также вызывает хрупкость стали. Такую хрупкость называют 475ºной хрупкостью. Увеличение температуры выше 1000º С вызывает бурный рост зерна и как следствие снижение вязкости, т.е. сталь тоже становится хрупкой. Поэтому при всех вариантах изготовления деталей из этих сталей и их термообработки необходимо избегать температурных интервалов, при которых возможно охрупчивание и потеря вязкости.

Термообработка хромистых сталей.

Термообработка сталей в зависимости от необходимости может быть смягчающей, т.е. отжиг или упрочняющей, т.е. закалка + отпуск. Отжиг проводится либо для устранения хрупкости, либо для снятия наклепа, либо для стабилизации химического состава и устранения склонности стали к межкристаллитной коррозии. Для устранения хрупкости, вызванной появлением упорядоченного твердого раствора, применяют отжиг с нагревом 500-550º С. Время выдержки должно быть меньше, чем τminпри появлении хрупкости 475º. Скорость охлаждения 10º С в минуту. Для устранения наклепа, а так же σ-фазы применяют второй вариант отжига с температурой 850-900º С. Скорость охлаждения 10º С в минуту. Третий вариант отжига применяется для массивных деталей, когда требуется стабилизировать содержание Cr по сечению детали, чтобы избежать склонности стали к межкристаллитной коррозии. Выдержка от 2 до 4 часов. Для хромистых сталей мартенситного класса применяют упрочняющую термообработку: закалка + отпуск. Возможно применение одной закалки без отпуска, если деталь небольших размеров или охлаждение идет на воздухе. Для хромистых сталей мартенситного класса охлаждение в любом случае дает мартенситную структуру. Поэтому применение охлаждающих сред (вода, масло) не требуется. Лишь охлаждение печью вызывает ферритно-карбидную структуру. Такой же структуры можно добиться после закалки и отпуска при температуре 650º С.

Наибольшая твердость достигается после закалки. В этом состоянии сталь обладает наивысшей коррозионной стойкостью, т.к. Cr находится в твердом растворе. Если требуется сохранить твердость и коррозионную стойкость, то отпуск стали проводят при температуре 250-350º С. А если требуется повышенная вязкость, то проводят высокий отпуск (650º С).

Состав, структура и свойства хромистых сталей.

Основные легирующие элементы:

  1. Cr- 13-28%.
  2. С — 0,05-1%.
  3. Ti, Nb< 1% — вводятся для стабилизации стали.
  4. Ni, Cu, Mo- вводятся для повышения коррозионной стойкости и вязкости.

Хромистые стали делят на:

  1. Cr 13%.
  2. Cr 17%.
  3. Cr 25-27%.

Увеличение содержания углерода вызывает в хромистых сталях мартенситное превращение, так же появление карбидов. Чем больше карбидов и С, тем 

По содержанию углерода стали делят на:

  1. Стали ферритного класса (08Х13, 08Х17, 05Х27).
  2. Стали ферритно-мартенситного класса (12Х13).
  3. Стали мартенситного класса (20Х13, 30Х13, 40Х13).
  4. Стали с мартенситом + карбиды (65Х16, 95Х18Ш).

В зависимости от структуры стали изменяются ее свойства и назначение. Стали ферритного класса из всех хромистых отличаются наилучшей пластичностью. Из них изготавливают листы и другие полуфабрикаты для изготовления деталей с применением сварки. Из всех хромистых стали ферритного класса хорошо поддаются сварке. При использовании стали следует помнить, что она может охрупчиваться при медленном охлаждении, а так же при увеличении зерна. Поэтому в эти стали добавляют Tiи Nb, которые образуют карбиды. Такие стали называют стабилизированными. Для сталей ферритного класса применяют отжиг в разных вариантах — 1, 2, иногда 3.

Стали мартенситного класса отличаются высокой твердостью и прочностью, поэтому их используют для изготовления деталей, которые должны сохранять высокую прочность и твердость при работе в агрессивных средах. Для таких сталей проводят закалку + низкий отпуск.

Стали со структурой мартенсит + карбиды имеют большое количество карбидов хрома. Они используются для изготовления деталей, которые работают в агрессивных средах при температуре от -150 до +250º С. Твердость 57 HRC. Термообработка: закалка (1000-1150º С — воздух) + отжиг (250-350º С).

Хромоникелевые стали.

Если сталь кроме Cr содержит еще Ni, Mn, Mo, то ее структура из ферритной может измениться на ферритно-аустенитную или даже на чистую аустенитную. Т.е. после охлаждения на воздухе сталь сохраняет аустенитную структуру, которая не меняется ни при каких вариантах термообработки. При содержании Ni>10% сталь становится аустенитной. Аустенит позволяет получить не только коррозионную стойкость, но так же и высокие технические свойства. Сталь хорошо поддается обработке давлением, сварке, сохраняет свойства до 600-700º С, не охрупчивается, не чувствительна к хладноломкости, но сталь склонна к межкристаллитной коррозии и ее невозможно упрочнять закалкой. Термообработка: закалка + отжиг.

И после закалки и после отжига структура одинаковая, одинаковые и свойства. Закалке подвергают тонкостенные изделия простой формы и небольшого размера. Температура и закалки, и отжига одинакова и зависит от состава стали. Если сталь содержит только Cr,  Ni, то температура не должна превышать 950-1000º С. Увеличение температуры вызывает резкий рост зерна и снижение характеристик. Охлаждение при закалке должно быть таким, чтобы не попасть в область выделения карбидов Cr. Уменьшения стоимости хромоникелевых сталей можно добиться, если вместо Niвводить Mn.

Для того, чтобы стабилизировать структуру, необходимо, чтобы Cr<15%, Mn>15%. Если условие не выполняется, то мы получаем сталь с неустойчивым структурным состоянием. Для получения стабильной аустенитной структуры Niзаменяют частично (10Х14Г14Н4Т, 20Х13Н4Г9). Термообработка принципиально не отличается от термообработки хромоникелевых сталей. Такой недостаток хромоникелевых сталей, как склонность к росту зерна, можно устранить, используя для сварных деталей стали ферритно-аустенитного класса (15Х22Н5М5Т) или аустенитно-мартенситного класса (08Х15Н5Д2Т). Стали аустенитно-мартенситного класса обладают повышенной твердостью. Чисто аустенитные стали склонны к коррозии под напряжением. Даже самые лучшие аустенитные стали оказываются недостаточно стойкими при контакте с кислотами. Поэтому разработаны коррозионно-стойкие сплавы:

Fe — Ni — Cr (04ХН40МДТЮ).

Ni- Cr  (ХН45В).

Ni- Mo  (Н70МФ).

Cr — Ni — Mo  (ХН65МВ).

 

 

Мы не ставим своей задачей просмотреть все виды (марки) нержавеющих сталей. В этом нет никакой необходимости. Когда «производственники» говорят о нержавейке, лишь с некоторыми исключениями, они ссылаются на марки стали одной из серий — 300 или 400-ю. Наиболее часто используемые марки этих серий приведены в следующей таблице. Там же указаны типичные приложения (области применения) для каждой из них.

300 серия Аустенитная

 

Аустенитная сталь

AISI 304

Много-целевая (напр. конструкции оборудования для пищевой промышленности, кухонная утварь, профильная сталь, детали интерьеров и т.п. )

AISI 304L

Оборудование, находящееся под воздействием органических кислот, атомная промышленность, трубы, котлы. Элементы конструкций для пищевой и химической промышленности

AISI 321

Pulp and Paper Processing Equipment

 

 

Аустенитная сталь с молибденом

AISI 316

Элементы конструкций для текстильной промышленности, химическая промышленность

AISI 316L

Конструкции и механизмы для химической и целлюлозной промышленности, трубы, котлы

AISI 316Ti

Элементы конструкций для пищевой и химической промышленности

 

 

Жаропрочная сталь

AISI 310s

Конструкции для производственных печей, паровых котлов и нефтеперерабатывающих заводов

400 серия Ферритная

 

Ферритная сталь

AISI 430

Арматура, фитинги, режущие инструменты, столовые приборы, пустотелая сталь, декор для интерьеров

AISI 430Ti

Сварные конструкции, стиральные машины, ванны

 

Нержавейка для бани [печь из нержавеющей стали]: выбор

В старой части индийской столицы стоит древняя металлическая колонна, олицетворяющая богатство и технологическую продвинутость древнего государства. Несмотря на открытое местоположение, за много веков, ее поверхность не подверглась какому либо существенному влиянию коррозии — бича любого черного металла. Естественно, тут же возникла масса версий о таком удивительном свойстве, начиная от того, что этот предмет ни что иное, как подарок благодарных гуманоидов, с далекой Альфа Центавра за починку звездолета и заканчивая предположением о том, что это новодел, созданный ушлыми индусами для привлечения легковерных туристов. Истина, оказывается намного проще. Сухой воздух Дели, препятствует естественному корродированию, а высокое содержание в железе фосфора обусловили образование на поверхности тонкой пленки высокопрочных оксидов, защищающих основной металл от атмосферного разрушения. Атмосфера бани, не отличается благоприятными условиями для большинства конструкционных сталей, которые, будучи помещенными во влажный и жаркий микроклимат будут быстро разрушены. Как быть? Выход есть. Нержавейка для бани может снять вопрос проявления ржавчины с повестки дня практически полностью. Главное знать, как выбирать и для чего.

Из курса металловедения

Все нержавеющие стали подразделяются на три основные группы: коррозионностойкие, жаростойкие и жаропрочные. Рассмотрим их подробнее:

  • Коррозионностойкие. К стали этого типа предъявляются самые простые требования по устойчивости к корродированию в обычных бытовых условиях и несложных условиях эксплуатации в промышленности. Из них изготавливаются поручни, лестничные пролеты, бытовая мебель и посуда, хирургические инструменты, прокат и лист для изготовления металлоконструкций не подверженных влиянию агрессивной среды;
  • Жаростойкие стали должны проявлять устойчивость к влиянию агрессивной окружающей среды при высоких температурах. В основном, они применяются в качестве конструкционной базы в химической и нефтехимической промышленности;
  • Жаропрочные стали — должны сохранять высокую механическую прочность в условиях высоких температур. Последнее качество может быть очень полезно в бане. Здесь очень распространены металлические печи, и прогар корпуса топки очень распространенное и крайне неприятное явление.

О лигатуре

Лигатура это совокупность присадок, то есть дополнительно вводимых в состав стали элементов, которые предопределяют получение у товарного сплава тех или иных заданных свойств и качеств. Среди основных легирующих материалов, для производства нержавеющих сталей стоит отметить:

  1. Хром — придают твердость и коррозионную устойчивость в неблагоприятных условиях эксплуатации, за счет образования очень прочной и инертной поверхностной пленки, состоящей из оксидов. Содержание этого материала в сплаве, в количестве, превышающем 17 %, обуславливает и высокую химическую стойкость в агрессивных средах.
  2. Никель — придает пластичность, повышает сопротивление ударным нагрузкам. Также вносит весомую, а порой, определяющую роль в формировании коррозионной стойкости. По субъективному мнению, бытующему среди рядовых потребителей, чем выше содержание никеля в составе стали, тем выше его зеркальные свойства. Именно поэтому, в банях, в качестве отражателей для оформления припечного пространства используют высоконикелистую пищевую полированную нержавейку.
  3. Вольфрам, за счет образования высокопрочных соединений — карбидов повышает механическую прочность, стойкость к абразивному износу, жаропрочность стали.
  4. Большую лепту в повышение жаропрочности вносит кобальт. Однако, и повышение механической прочности так же напрямую зависит от присутствия в лигатуре этого вещества.
  5. Кремний — повышает прочность, упругость и что очень важно для банных печей окалийность стального сплава. В этом случае, его содержание в стали колеблется в пределах 0,95 — 1,55 %.
  6. Похожи на действие кремния и свойства марганца. Он так же повышает упругость стали, без снижения качества молекулярной связи, выражаемой в общей механической прочности стального изделия. Согласитесь, что такое качество очень важно для такого изделия, как банная печь, подвергающаяся частым температурным перепадам и, как следствие, высоким линейным нагрузкам.
  7. Титан повышает механическую прочность и общую коррозионную стойкость стали. Будучи при этом металлом с малой удельной плотностью, он не повышает вес готового изделия.
  8. Медь — будучи цветным металлом, вносит значительный вклад в повышение коррозионной стойкости даже простых, низколегированных конструкционных сталей. Так, содержание меди в составе сплава на уровне 0,4 % повышает ее общую коррозионную стойкость на 17 %, а в определенных условиях и до 22 %.

Использование нержавеющей стали в банном обиходе

Основное использование нержавеющих сталей в современной бане можно представить следующим образом:

  • Поручни, лестницы и прочая фурнитура в бассейнах и купелях;
  • Вешалки, имеющие цельнометаллическую конструкцию или их отдельные элементы, находящиеся во влажной среде;
  • Стяжные обручи и прочие конструктивные элементы, деревянных бочек, кадок и прочего;
  • Теплоотражающие экраны припечных участков;
  • Печи-каменки в парильных отделениях бани.

С последним пунктом, ввиду его неоднозначности, стоит ознакомиться более подробно.

Варианты использования коррозионностойкой и жаропрочной стали в конструкции печи

Металлическая печь в бане, как таковая, имеет ряд преимуществ:

  1. Она в достаточной мере долговечна, и текущий ремонт не представляет особой сложности.
  2. Под печь такого типа нет необходимости сооружать полноценный фундамент, развязанный с фундаментом основного строения.
  3. Монтаж печи, в большинстве случаев, сводиться к ее установке по уровню и подключению к возможным коммуникациям и системе дымоотведения.
  4. Печь достаточно легка, мобильна и не занимает много места во внутреннем объеме, что позволяет расположить ее в маленьких парных, без ущерба для комфортного принятия процедур.
  5. Такие конструкции могут использоваться практически на любом виде топлива, начиная от дров и заканчивая электрическими системами нагрева.
  6. Металлическая печь достаточно экономна, в плане удельного потребления топлива.
  7. Ввиду особенностей теплотехнических свойств металла, такие печи очень быстро выходят на номинальный температурный режим, быстро прогревая внутренний объем парной.


Однако, стоит и указать на недостатки:

  • Металл имеет хорошую теплопроводность, однако его теплоемкость очень мала. После окончания топки такая конструкция быстро остывает;
  • Пожароопасность металлической печи очень высока, и требует принятия дополнительных мер по изоляции деревянных конструкций от ее сопрягающихся элементов;
  • Пар, генерируемый металлической печью- каменкой, по большинству параметров проигрывает пару, произведенному каменной печкой;
  • При использовании недорогих печей из низколегированной конструкционной стали топки печей склонны к прогоранию.

Последний пункт имеет решающее значение, поскольку, если тело топки в каком-то месте прогорело, то вполне стоит ожидать лавинообразного развития данного дефекта, в самом ближайшем будущем. Возможным вариантом недопущения таких ситуаций стоит признать использование печи для бани из нержавейки. Как мы уже упомянули выше, некоторые марки нержавеющей стали способны выдерживать длительное воздействие высоких температур, без деформации и потери механической прочности и целостности конструкции в целом. Естественно, что печь для бани из нержавейки не может быть дешевой. Применение специальных типов жаропрочных сталей в конструкции очевидным путем повышают ее стоимость. Альтернативой такому пути некоторые производители признали применение чугуна. Однако, при всех его положительных качествах, чугунная конструкция должна быть в большинстве случаев цельнолитой, с другой стороны иметь достаточную толщину ключевых элементов, что на порядок повышает ее вес и габариты, и, как следствие снижает мобильность и возможность применения в малогабаритных парных.

Критерии выбора печи из жаропрочной стали

Печи из нержавейки для бани вещи достаточно дорогостоящие, поэтому их выбор должен быть осознанным, а эксплуатация долгосрочной.

Каким образом этого достичь? Соблюдением следующих определяющих ключевых правил:

  1. По техническим условиям жаропрочная сталь должна содержать не менее 12,85 % хрома и не более 0,18 % углерода.
  2. Определяющим фактором качества жаропрочной стали стоит считать температуру начала окалинообразования. Для качественного сырья эта температура колеблется в пределах 760 — 910 градусов Цельсия.
  3. В процессе окалинообразования происходит окисление контактной поверхности металла, с участием атомов кислорода, что дает основание некоторым экспертам утверждать, что применение жаропрочных сталей делает атмосферу в парной более благоприятной по объемному содержанию кислорода. Утверждение весьма спорное, поскольку, при нормально работающей вентиляции недостаток кислорода должен постоянно восполняться за счет притока свежего воздуха.
  4. Не существует способов точного определения жаропрочной стали по визуальным или иным органолептическим признакам. Ответ может дать только технический сертификат или инструментальный экспресс — анализ сырья.

Словечко от Бывалого! «Легендарный» способ определения качества нержавеющей стали «на магнит» так популярный в среде металлоломных барыг не может дать ключевой ответ о качестве лигатуры и химического состава сплава. Стоит сказать, что большинство высокохромистых сталей на магнит реагирует положительно.

Так же стоит отметить факт, что температура горения качественных сухих березовых дров составляет порядка 760 градусов Цельсия.

Важно! Температура окалинообразования большинства конструкционных сталей лежит в пределах 380 — 440 градусов Цельсия.

Массовая доля хрома в составе сплава прямо пропорциональна показателю температуры окалинообразования.

Качественная печь из нержавейки для бани, в условиях промышленного производства должна отвечать следующим требованиям:

  • Жаропрочная сталь должна иметь стойкость к образованию окалины при температуре не менее 845 градусов Цельсия. Эти же образцы должны иметь низкий коэффициент термического расширения, что позволит печи работать в условиях знакопеременных термических нагрузок, весьма характерных для бани;

Внимание! В последние годы Китай стал серьезным игроком на рынке нержавеющих и специальных сталей. Что бы понять всю убогость китайской промышленности стоит сравнить их поделки хотя бы с итальянскими или немецкими образцами, по настоящему жаропрочных сталей. И не стоит верить заздравным сертификатам и бравурным речам менеджеров. Бумага все стерпит. Лучше хороший отечественный чугун, нежели никудышная китайская сталь. Кто варил китайскую нержавейку и итальянскую, любым способом и в любой среде всячески поддержат это высказывание. А качество свариваемости — самый объективный показатель качества выделки и состава лигатуры самой стали.

  • Ответственный производитель применяет плазменный, лазерный или гидроабразивный раскрой заготовок;
  • Применение сварки элементов исключительно в среде защитного газа, прежде всего аргона, поскольку углекислый газ раскисляет расплав в сварочной ванне, кардинально снижая качество сварочного шва;
  • Полученные сварочные швы подвергаются финишной обработке, которая заключается в термостабилизировании и снятии внутренних напряжений. Некоторые производители применяют проковывание шва, его нормализацию, травление, механическую зачистку абразивными материалами определенного класса. Особо ответственные производители применяют пассирование, в результате которого, целенаправленно образуются оксиды хрома, а готовый шов полируется для придания ему, помимо коррозионной стойкости еще и привлекательного внешнего вида.

Заключение

В завершении, подводя итоги, хочется отметить следующее. Банные печи из нержавеющей стали являются серьезной альтернативой чугунным печам, значительно превосходя их по мобильности и компактности, а при некоторых стечениях обстоятельств и по продолжительности безаварийной эксплуатации. Серьезный недостаток таких печей, связанных с недостаточной теплоемкостью, устраняется посредством оснащения ее каменной рубашкой, которая и будет выполнять роль теплоаккумулятора. Естественно, необходимо отдавать себе отчет в том, что возведение кирпичного футляра потребует сил, средств и серьезного укрепления фундамента, ввиду кардинального возрастания нагрузки на основание. Здесь же не стоит забывать и об увеличении габаритов. Очевидно, что при использовании печей в таких объектах, как баня-бочка, мобильность и небольшие размеры играют решающую роль, а печь из нержавеющей жаропрочной стали при максимально возможной компактности, обеспечит срок эксплуатации соизмеримый с полнотелой, тяжелой и габаритной печью из чугунного литья. Одно затаскивание которой в узкий, стесненный объем ,будет сопровождаться повышенным расходом курятины, для восстановления физических сил и ненормативной лексики — для восстановления сил моральных.

Уровни коррозионной стойкости нержавеющей стали

li> a { отступ: 0; преобразование текста: прописные буквы; } заголовок .yamm a.dropdown-toggle: focus, заголовок .yamm a.dropdown-toggle: посещено, header .yamm a.dropdown-toggle { размер шрифта: 18 пикселей; font-weight: 400; цвет: # 000; нижняя граница: 0px solid #fff; межбуквенный интервал: нормальный; цвет фона: #fff; преобразование текста: прописные буквы; дисплей: встроенный блок; } заголовок.yamm .navbar-nav> .open> a, header .yamm .navbar-nav> .open> a: hover, header .yamm .open a.dropdown-toggle, header .yamm .open a.dropdown-toggle: focus, header .yamm a.dropdown-toggle: hover { размер шрифта: 18 пикселей; font-weight: 400; цвет: # 000; нижняя граница: 0px solid #fff; межбуквенный интервал: нормальный; цвет фона: #fff; } @media (max-width: 1155px) { заголовок .yamm a.dropdown-toggle: focus, заголовок .yamm a.dropdown-toggle: посещено, header .yamm a.dropdown-toggle { размер шрифта: 14 пикселей; } header .yamm .navbar-nav> .open> a, header .yamm .navbar-nav> .open> a: hover, header .yamm .open a.dropdown-toggle, header .yamm .open a.dropdown-toggle: focus, header .yamm a.dropdown-toggle: hover { размер шрифта: 14 пикселей; } } @media (max-width: 1040 пикселей) { заголовок .yamm a.dropdown-toggle: focus, заголовок .yamm a.dropdown-toggle: посещено, заголовок.yamm a.dropdown-toggle { размер шрифта: 12 пикселей; } header .yamm .navbar-nav> .open> a, header .yamm .navbar-nav> .open> a: hover, header .yamm .open a.dropdown-toggle, header .yamm .open a.dropdown-toggle: focus, header .yamm a.dropdown-toggle: hover { размер шрифта: 12 пикселей; } } header .yamm ul.nav { ширина: не задано; маржа: 0; отступ: 0; дисплей: не установлен; float: нет; выравнивание текста: отключено; } заголовок.yamm .yamm-fw { поле справа: 20 пикселей; } header .yamm .dropdown.yamm-fw.open { цвет фона: # 00457C; } header .yamm .yamm-content { ширина: 100%; дисплей: блок; положение: фиксированное; слева: 0; z-индекс: 1031; цвет фона: # f1f2f2; маржа сверху: 15 пикселей; } header .yamm ul.dropdown-menu { цвет фона: #fff; граница: 0px solid #fff; } header .headerbody { маржа сверху: 13 пикселей; отступ справа: 15 пикселей; отступ слева: 15 пикселей; margin-right: не задано; маржа слева: не задано; } заголовок.dropdown-menu.support, заголовок .dropdown-menu.guest, заголовок .dropdown-menu.reg { цвет фона: # E6E6E6; цвет: # 000; } header .dropdown-menu.guest li { font-weight: 700; выравнивание текста: центр; отступ: 3px 7px; семейство шрифтов: «canada-type-gibson», sans-serif; размер шрифта: 14 пикселей; цвет: # 000; маржа: 0; } header .dropdown-menu.reg li { font-weight: 700; выравнивание текста: слева; отступ: 0px 7px; font-family: «canada-type -]]>

Типы и сорта пластин из нержавеющей стали // Stainless Plate Products, Inc.// Coatesville, Пенсильвания

Обзор

Нержавеющие стали в основном используются, когда возникает проблема коррозии или окисления. Функцию, которую они выполняют, нельзя дублировать другими материалами за их стоимость. Более 50 лет назад было обнаружено, что минимум 12% хрома придает стали стойкость к коррозии и окислению. Отсюда определение «нержавеющая сталь» — это те железные сплавы, которые содержат не менее 12% хрома для коррозионной стойкости.Это развитие стало началом семейства сплавов, которые позволили продвигать и развивать системы химической обработки и производства электроэнергии, на которых основано наше технологическое общество.

Впоследствии было разработано несколько важных подкатегорий нержавеющих сталей. Подкатегории: аустенитные, мартенситные, ферритные, дуплексные, дисперсионно-твердые и суперсплавы.

Аустенитные марки

Аустенитные сплавы — это сплавы, которые обычно используются для производства нержавеющей стали.Аустенитные марки немагнитны. Наиболее распространенными аустенитными сплавами являются железо-хромоникелевые стали, широко известные как серия 300. Аустенитные нержавеющие стали из-за высокого содержания хрома и никеля являются наиболее устойчивыми к коррозии из группы нержавеющих сталей, обеспечивая необычайно прекрасные механические свойства. Их нельзя упрочнить при термической обработке, но можно значительно упрочнить при холодной обработке.


Рисунок 1 — Аустенитные марки

Прямые сплавы
Прямые сорта аустенитной нержавеющей стали содержат максимум.08% углерода. Существует заблуждение, что прямые сорта содержат минимум 0,03% углерода, но этого не требует спецификация. До тех пор, пока материал соответствует физическим требованиям, предъявляемым к прямому классу, минимальных требований к содержанию углерода нет.

Низкоуглеродистые сплавы
Марки L используются для обеспечения дополнительной коррозионной стойкости после сварки. Буква «L» после типа нержавеющей стали указывает на низкоуглеродистую сталь (как в 304L).Углерод поддерживается на уровне 0,03% или ниже, чтобы избежать выделения карбида. Углерод в стали при нагревании до температур в так называемом критическом диапазоне (от 800 до 1600 градусов по Фаренгейту) выделяется, соединяется с хромом и собирается на границах зерен. Это лишает сталь содержания хрома в растворе и способствует коррозии вблизи границ зерен. Контролируя количество углерода, это сводится к минимуму. Для свариваемости используются марки «L».Вы можете спросить, почему все нержавеющие стали не производятся с маркой «L». На то есть несколько причин:

Часто комбинаты покупают сырье сорта «L», но с указанием физических свойств прямого сорта для сохранения прочности прямого сорта. Случай, когда есть пирог и его тоже разогревают. В результате материал получил двойную сертификацию 304 / 304L; 316 / 316L и др.

Высокоуглеродистые марки
Марки «H» содержат минимум.04% углерода и максимум 0,10% углерода и обозначаются буквой «H» после сплава. Люди просят марки «H» в первую очередь, когда материал будет использоваться при экстремальных температурах, поскольку более высокий углерод помогает материалу сохранять прочность при экстремальных температурах.

Вы можете услышать фразу «отжиг раствора». Это означает только то, что карбиды, которые могли выделиться (или переместиться) к границам зерен, возвращаются в раствор (диспергированы) в матрице металла в процессе отжига.Сплавы «L» используются там, где отжиг после сварки нецелесообразен, например, в области сварки труб и фитингов.

Тип 304

Наиболее распространенная из аустенитных марок, содержащая приблизительно 18% хрома и 8% никеля. Он используется в оборудовании для химической обработки, в пищевой, молочной промышленности и производстве напитков, для теплообменников и для более мягких химикатов.

Тип 316

Содержит от 16% до 18% хрома и от 11% до 14% никеля. Он также содержит молибден, добавленный к никелю и хрому 304. Молибден используется для контроля язвенной атаки. Тип 316 используется в химической, целлюлозно-бумажной промышленности, в производстве и розливе продуктов питания и напитков, а также в более агрессивных средах.Молибден должен составлять минимум 2%.

Тип 317

Содержит более высокий процент молибдена, чем 316 для высококоррозионных сред. Он должен содержать минимум 3% молибдена. Он часто используется в штабелях, содержащих скрубберы.

Тип 317L

Ограничивает максимальное содержание углерода до 0.030% макс. и кремний до 0,75% макс. для дополнительной устойчивости к коррозии.

Тип 317LM

Требуется содержание молибдена не менее 4,00%.

Тип 317LMN

Требуется содержание молибдена 4.00% мин. и азот 0,15% мин.

Тип 321
Тип 347

Эти типы были разработаны для обеспечения коррозионной стойкости для многократного периодического воздействия температуры выше 800 градусов F. Тип 321 изготавливается с добавлением титана, а тип 347 — с добавлением тантала / колумбия.Эти марки в основном используются в авиастроении.

Физико-химические свойства аустенитных марок
Подробнее о физико-химических свойствах аустенитных марок нержавеющей стали можно найти ЗДЕСЬ .


Мартенситные марки

Мартенситные марки были разработаны для того, чтобы предоставить группу нержавеющих сплавов, которые будут устойчивы к коррозии и упрочняются при термообработке.Мартенситные марки представляют собой прямолинейные хромистые стали, не содержащие никеля. Они магнитные и могут быть закалены термической обработкой. Мартенситные марки в основном используются там, где требуются твердость, прочность и износостойкость.


Рисунок 2 — Мартенситные марки

Тип 410

Базовый мартенситный сплав с самым низким содержанием легирующих элементов из трех основных нержавеющих сталей (304, 430 и 410).Недорогая универсальная термообрабатываемая нержавеющая сталь. Широко используется там, где коррозия не является серьезной (воздух, вода, некоторые химические вещества и пищевые кислоты. Типичные области применения включают детали, подверженные высоким нагрузкам, требующие сочетания прочности и устойчивости к коррозии, например, крепежные детали.

Тип 410S

Содержит меньше углерода, чем тип 410, обеспечивает улучшенную свариваемость, но более низкую закаливаемость.Тип 410S — это коррозионно-жаропрочная хромистая сталь общего назначения, рекомендованная для коррозионно-стойких применений.

Тип 414

С добавлением никеля (2%) для повышения коррозионной стойкости. Типичное применение — пружины и столовые приборы.

Тип 416

Содержит добавленный фосфор и серу для улучшения обрабатываемости.Типичные области применения включают детали винтовых машин.

Тип 420

Содержит повышенное содержание углерода для улучшения механических свойств. Типичное применение — хирургические инструменты.

Тип 431

Содержит повышенное содержание хрома для большей коррозионной стойкости и хороших механических свойств.Типичные области применения включают высокопрочные детали, такие как клапаны и насосы.

Тип 440

Еще больше увеличивает содержание хрома и углерода для повышения ударной вязкости и коррозионной стойкости. Типичные области применения включают инструменты.

Физико-химические свойства мартенситных марок
Подробнее о физико-химических свойствах Мартенситных марок нержавеющей стали можно найти здесь ЗДЕСЬ .


Ферритные марки
Ферритные марки

были разработаны для создания группы нержавеющих сталей, устойчивых к коррозии и окислению, но обладающих высокой устойчивостью к коррозионному растрескиванию под напряжением. Эти стали являются магнитными, но их нельзя упрочнить или упрочнить термической обработкой. Их можно подвергнуть холодной обработке и размягчить путем отжига. Как группа, они более устойчивы к коррозии, чем мартенситные марки, но в целом уступают аустенитным маркам.Как и мартенситные марки, это стали с прямым содержанием хрома без никеля. Они используются для декоративной отделки раковин и в автомобилях, особенно в выхлопных системах.


Рисунок 3 — Ферритные марки

Тип 430

Основной ферритный сорт с немного меньшей коррозионной стойкостью, чем тип 304. Этот тип сочетает в себе высокую стойкость к таким коррозионным веществам, как азотная кислота, серные газы и многие органические и пищевые кислоты.

Тип 405

С низким содержанием хрома и добавками алюминия для предотвращения затвердевания при охлаждении от высоких температур. Типичные области применения включают теплообменники.

Тип 409

Содержит самое низкое содержание хрома среди всех нержавеющих сталей, а также является наименее дорогим.Первоначально разработан для глушителя, а также используется для внешних деталей в некритических коррозионных средах.

Тип 434

С добавлением молибдена для повышения коррозионной стойкости. Типичное применение — автомобильная отделка и крепеж.

Тип 436

Тип 436 имеет добавку колумбия для коррозии и термостойкости.Типичные области применения включают детали глубокой вытяжки.

Тип 442

Имеет повышенное содержание хрома для повышения устойчивости к образованию накипи. Типичные области применения включают детали печи и нагревателя.

Тип 446

Содержит еще больше хрома, добавленного для дальнейшего повышения устойчивости к коррозии и образованию накипи при высоких температурах.Особенно хорош для стойкости к окислению в серной атмосфере.


Дуплексные марки

Duplex — новейшие нержавеющие стали. Этот материал представляет собой комбинацию аустенитного и ферритного материалов. Этот материал обладает повышенной прочностью и превосходной устойчивостью к коррозионному растрескиванию под напряжением. Примером этого материала является тип 2205. Его можно заказать на фабриках.


Марки дисперсионного твердения

Марки дисперсионного твердения, как класс, предлагают проектировщику уникальное сочетание технологичности, прочности, простоты термообработки и коррозионной стойкости, которое невозможно найти ни в одном другом классе материалов.Эти марки включают 17Cr-4Ni (17-4PH) и 15Cr-5Ni (15-5PH). Аустенитные дисперсионно-твердеющие сплавы в значительной степени были заменены более сложными и высокопрочными суперсплавами. Мартенситная дисперсионно-упрочняемая нержавеющая сталь — настоящая рабочая лошадка для всей семьи. Мартенситные дисперсионно-твердеющие сплавы, изначально предназначенные для изготовления прутков, прутков, проволоки, поковок и т. Д., Начинают находить все большее применение в плоской прокатной форме.В то время как полуаустенитные дисперсионно-твердеющие нержавеющие стали изначально разрабатывались в виде листов и полос, они нашли множество применений в других формах продукции. Многие из этих сталей, разработанные в первую очередь в качестве материалов для авиакосмической промышленности, получают коммерческое признание как действительно экономичные материалы во многих областях применения.


Супер сплавы марок

Суперсплавы используются, когда 316 или 317 недостаточно, чтобы противостоять атаке. Они содержат очень большое количество никеля и / или хрома и молибдена.Обычно они намного дороже, чем обычные сплавы серии 300, и их труднее найти. Эти сплавы включают сплав 20 и хастеллой.

Ферритные марки нержавеющей стали | Оутокумпу

Стандартные ферритные сорта легированы хромом (11,2–19%), но без добавления никеля или без добавления никеля, поэтому они имеют ферритную микроструктуру. Поскольку никель является одним из самых дорогих легирующих элементов и демонстрирует высокую волатильность цен, низкое содержание никеля в ферритных марках делает их более стабильными по цене по сравнению с марками с высоким содержанием никеля.Молибден добавляется к некоторым сортам для улучшения коррозионной стойкости, а легирование ниобием и / или титаном улучшает свариваемость.

Ферритные стали Outokumpu с низким содержанием хрома широко используются в таких областях применения, как выхлопные системы автомобилей, а наши марки со средним содержанием хрома популярны среди ведущих мировых производителей товаров для дома.

Наши ферриты, содержащие мало никеля или не содержащие никеля, очень привлекательны с точки зрения стабильности цен.

Нашей последней инновацией в производстве ферритных сталей является новая марка высокохромистой ферритной стали Core 4622 (EN 1.4622). Этот сорт особенно подходит для фасадов, лифтов, предприятий общественного питания и автомобильной промышленности.

Существуют также жаропрочные ферритные сорта с повышенной устойчивостью к высоким температурам. Они в основном используются в средах с сернистой атмосферой (поскольку сера может реагировать с никелем в аустенитных марках нержавеющей стали) и / или при низких растягивающих нагрузках. Эти марки обычно легируются большим количеством углерода по сравнению со стандартными ферритными марками для увеличения сопротивления ползучести, а также кремнием и алюминием для повышения стойкости к окислению.

Что такое ферритная нержавеющая сталь?

Ферритные марки нержавеющей стали

обладают хорошими механическими свойствами, занимая в целом промежуточное положение между другими семействами нержавеющей стали. Обычно они имеют более высокий предел текучести, чем аустенитные нержавеющие стали. Свойства удлинения и деформации ферритных сталей аналогичны свойствам высокопрочных углеродистых сталей.

Легкая свариваемость

Современные ферритные нержавеющие стали легко свариваются обычными методами сварки, в том числе:

  • Дуговая сварка в экранированном металле (SMAW, MMA)
  • Дуговая сварка вольфрамовым электродом (GTAW, TIG)
  • Газовая дуговая сварка металлическим электродом (GMAW, MIG / MAG)
  • Плазменно-дуговая сварка (PAW)
  • Лазерная сварка
  • Сварка сопротивлением
  • Высокочастотная сварка (HF)

Различные свойства коррозионной стойкости

Ферритные марки стали

обладают широким диапазоном свойств коррозионной стойкости — от умеренных внутри дома до суровых условий на открытом воздухе.В высокотехнологичном сегменте ферритные материалы превосходят даже некоторые аустенитные сорта по коррозионной стойкости.

Коррозионная стойкость нержавеющей стали в большей степени определяется химическим составом, чем аустенитной или ферритной микроструктурой. Следовательно, содержание хрома также является ключевым ингредиентом коррозионной стойкости ферритных нержавеющих сталей.

Искатель из нержавеющей стали

Проверьте нержавеющую сталь Finder, чтобы сравнить свойства наших различных продуктов из ферритной нержавеющей стали.

Ассортимент продукции Outokumpu, в которой представлены марки ферритной стали

Moda

Ассортимент Moda состоит из ферритных нержавеющих сталей, включая наш ключевой продукт Moda 430/4016, а также несколько альтернатив, включая варианты с низким содержанием хрома. Перейдите на сайт ассортимента Moda, чтобы узнать больше.

Ядро

В нашем ассортименте Core есть несколько марок ферритной нержавеющей стали Core 4622 с содержанием хрома 17%, а также высокохромистые. Все они обладают хорошей формуемостью и широко используются производителями бытовой техники.Зайдите на сайт Core range, чтобы узнать больше.

Supra

В ассортимент Supra входят изделия из нержавеющей стали, предназначенные для работы в высококоррозионных средах. Нержавеющие стали этой линейки обладают хорошей устойчивостью к равномерной коррозии многих органических и неорганических химикатов. Ассортимент Supra включает одну марку ферритной нержавеющей стали Supra 444/4521. Посетите сайт линейки Supra, чтобы узнать больше.

Forta

Ассортимент Forta включает изделия из дуплексной и другой высокопрочной нержавеющей стали, такие как дрессированные варианты многих ферритных нержавеющих сталей.Посетите сайт Forta, чтобы узнать больше.

Therma

Наши жаропрочные ферритные сорта можно найти в ассортименте Therma. Посетите сайт ассортимента Therma, чтобы узнать больше.

Deco

Наша самая популярная отделка поверхности с рисунком сочетает в себе привлекательный дизайн с функциональностью.

Добавить комментарий

Ваш адрес email не будет опубликован.