Основы сварочного дела: Основы сварочного дела (В.Г. Геворкян )

Содержание

Основы сварочного дела (В.Г. Геворкян )

Основы сварочного дела (В.Г. Геворкян )

Подробности
Категория: Сварка

Год выпуска: 1985
Автор: В.Г. Геворкян
Жанр: Технические науки
Издательство:  Высшая школа
Язык: Русский
Формат: DJVU
Количество страниц:168

В учебнике даны основы технологии дуговой, электрошлаковой, контактной и газовой сварки, кислородной и электродуговой резки; особенности технологии сварки легированных сталей, цветных металлов и их сплавов, чугуна, пластмасс, а также способы и режимы сварки трубопроводов.
В 4-е издание внесены изменения, касающиеся оборудования и материалов, расширено описание машин контактной сварки; введена глава «Наплавочные работы».

 

Скачать

 

 Явление электрического дугового разряда впервые было открыто в 1802 г. русским ученым, профессором Петербургской медико-хирургической академии В.  В. Петровым. В своих трудах он не только описал явление электрической дуги, но и предсказал возможность использования теплоты, выделяемой дугой, для плавления металлов. Однако в то время это открытие не нашло практического применения из-за низкого уровня развития техники. Только спустя 80 лет, в 1882 г. талантливый русский изобретатель Н. Н. Бенардос разработал и предложил практический способ использования электрической дуги для сварки металлов. По этому способу сварка производилась электрической дугой, возбуждаемой между угольным электродом и изделием. Несколько позже, в 1888 г. русский инженер-изобретатель Н. Г. Славянов разработал способ сварки с помощью металлического электрода. Н. Н. Бенардос и Н. Г. Славянов разработали также основные положения и других методов сварки: с несколькими электродами, в защитных газах, контактной сварки. В царской России эти изобретения получили ограниченное практическое применение, а затем были почти забыты.

Великая Октябрьская социалистическая революция создала условия для мощного развития науки и техники. Возродилась и стала развиваться сварочная техника. В 1929 г. советский  инженер — изобретатель

Д. А. Дульчевский разработал способ автоматической дуговой сварки под флюсом. С 1940 г. этот способ стал внедряться в промышленность и строительство. В этом большая заслуга Института электросварки им. Е. О. Патона Академии наук УССР*, в котором ‘были разработаны теория автоматической сварки, флюсы и автоматы «для сварочных работ. Работа по широкому внедрению автоматической сварки в народное хозяйство продолжается и в настоящее время; институт имеет тесную связь с отраслями, в которых применяются сварочные работы.

Большое участие в дальнейшем развитии теории и технологии сварки принимают Центральный научно-исследовательский институт технологии машиностроения (ЦНИИТмаш), Московское высшее техническое училище им. Н. Э. Баумана, Всесоюзный научно-исследовательский проектноконструкторский и технологический институт электросварочного оборудования (ВНИИЭСО), Всесоюзный научно-исследовательский и конструкторский институт автогенного машиностроения (ВНИИавтогенмаш), Ленинградский политехнический институт им. Калинина, завод «Электрик», Уралмашзавод и ряд других организаций.

За годы первых пятилеток были проведены широкие мероприятия по созданию специализированных производственных организаций, научно-исследовательских институтов и лабораторий по сварке. В период Великой Отечественной войны сварка получила большое применение в военной технике, а в послевоенные годы — при восстановительных работах.

Важным преимуществом сварки является возможность при производстве изделия выбирать его наиболее рациональную конструкцию и форму. Сварка позволяет экономно использовать металлы и значительно уменьшить отходы производства. Например, при замене клепаных конструкций сварными экономия материалов в среднем составляет 15…20%, а при замене литых — около 50%. Трудоемкость сварочных работ меньше, чем при клепке и литье. Исключаются такие работы, как разметка, Сверловка отверстий, сложная формовка и др. Особенно ощутимо снижение трудоемкости при изготовлении крупногабаритных изделий: при замене литых корпусов и станин сварно-литыми, а штампованных изделий сложной формы — штампо-сварными, что, в свою очередь, снижает их себестоимость.

Сварные соединения по прочности, как правило, не уступают прочности того металла, из которого сделаны изделия. Сварные конструкции хорошо работают при знакопеременных и динамических нагрузках, при высоких температурах и давлениях.

Особо следует подчеркнуть, что условия труда при сварке с точки зрения как гигиены, так и безопасности значительно лучше, чем при клепке и особенно при литье.

Сваркой называется процесс получения неразъемного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, пластическом деформировании или при совместном действии того и другого.

 

Основы сварочного дела. Геворкян В.Г. 1985 | Библиотека: книги по архитектуре и строительству

В учебнике даны основы технологии дуговой, электрошлаковой, контактной и газовой сварки, кислородной и электродуговой резки; особенности технологии сварки легированных сталей, цветных металлов и их сплавов, чугуна, пластмасс, а также способы и режимы сварки трубопроводов. В 4-е издание внесены изменения, касающиеся оборудования и материалов, расширено описание машин контактной сварки; введена глава «Наплавочные работы».

Введение

Раздел 1. Электрическая сварка плавлением и дуговая резка

Глава 1. Классификация и сущность дуговой сварки

Глава 2. Электрическая сварочная дуга
§ 1. Основные понятия
§ 2. Тепловые свойства сварочной дуги
§ 3. Плавление и перенос металла в дуге

Глава 3. Источники питания сварочной дуги
§ 4. Основные требования
§ 5. Сварочные преобразователи
§ 6. Сварочные аппараты переменного тока
§ 7. Сварочные выпрямители
§ 8. Монтаж и обслуживание сварочного оборудования

Глава 4. Металлургические процессы при сварке


§ 9. Понятие о свариваемости
§ 10. Основные реакции в зоне сварки
§ 11. Кристаллизация металла сварочной ванны

Глава 5. Сварочная проволока и электроды
§ 12. Сварочная проволока
§ 13. Металлические электроды

Глава 6. Технология ручной дуговой сварки
§ 14. Сварные соединения и швы
§ 15. Выбор режима сварки и техника выполнения швов
§ 16. Высокопроизводительные способы сварки
§ 17. Деформации и напряжения при сварке

Глава 7. Автоматическая и полуавтоматическая сварка под флюсом
§ 18. Сущность и преимущества
§ 19. Сварочные флюсы

§ 20. Оборудование для сварки под флюсом
§ 21. Технология сварки
§ 22. Электрошлаковая сварка

Глава 8. Сварка в защитном газе
§ 23. Сущность и преимущества
§ 24. Защитные газы
§ 25. Оборудование для сварки в защитном газе
§ 26. Технология аргонодуговой сварки
§ 27. Технология дуговой сварки в углекислом газе

Глава 9. Дуговая резка
§ 28. Способы резки плавящимся электродом
§ 29. Способы резки неплавящимся электродом

Раздел II. Газовая сварка и кислородная резка

Глава 10. Газовая сварка
§ 30. Оборудование газосварочных постов
§ 31. Сварочные горелки

Глава 11. Сварочное пламя
§ 32. Газы для сварки и резки металлов
§ 33. Сварочное пламя

Глава 12. Технология газовой сварки
§ 34. Техника выполнения газовой сварки
§ 35. Технология газовой сварки

Глава 13. Кислородная резка
§ 36. Сущность процесса кислородной резки
§ 37. Оборудование для кислородной резки
§ 38. Технология кислородной резки

Раздел III. Контактная сварка

Глава 14. Технология контактной сварки
§ 39. Сущность контактной сварки
§ 40. Стыковая контактная сварка
§ 41. Точечная контактная сварка
§ 42. Шовная контактная сварка

Глава 15. Оборудование для контактной сварки


§ 43. Машины для стыковой контактной сварки
§ 44. Машины для точечной контактной сварки
§ 45. Машины для шовной контактной сварки

Раздел IV. Особенности технологии сварки различных материалов. Наплавочные работы. Сварка трубопроводов

Глава 16. Сварка легированных сталей
§ 46. Свариваемость легированных сталей
§ 47. Сварка низколегированных сталей
§ 48. Сварка средне- и высоколегированных сталей

Глава 17. Сварка цветных металлов и их сплавов
§ 49. Особенности сварки цветных металлов и их сплавов
§ 50. Сварка меди и ее сплавов
§ 51. Сварка алюминия и его сплавов

Глава 18. Сварка чугуна


§ 52. Особенности сварки чугуна
§ 53. Горячая сварка чугуна
§ 54. Холодная сварка чугуна

Глава 19. Наплавочные работы
§ 55. Виды наплавочных работ
§ 56. Технология наплавки

Глава 20. Сварка полимеров и пластмасс
§ 57. Основные виды полимеров и пластмасс
§ 58. Способы сварки.

Глава 21. Сварка трубопроводов
§ 59. Номенклатура и сортамент труб и фасонных частей
§ 60. Подготовка труб к сварке
§ 61. Способы и режимы сварки

Раздел V. Контроль качества сварки. Техника безопасности

Глава 22. Контроль качества сварки
§ 62. Основные дефекты сварных швов

§ 63. Виды контроля сварных соединений

Глава 23. Техника безопасности
§ 64. Основные положения техники безопасности при электрической сварке
§ 65. Техника безопасности при газовой сварке и кислородной резке
§ 66. Техника безопасности при контрольных испытаниях сварных швов
§ 67. Техника безопасности на строительно-монтажной площадке

Список литературы

Основы сварочного дела :: Книги по металлургии

 

Дуговой сваркой называется сварка плавлением, при которой нагрев свари­ваемых кромок осуществляется тепло­той электрической дуги. Дуговая сварка классифицируется по следующим основным признакам: по виду электрода (плавящимся или неплавящимся электродом), по виду дуги (свободной или сжатой дугой), по характеру воздействия дуги на основной металл (дугой прямого или косвенного действия, трехфазной ду­гой). Плавящиеся электроды подраз­деляются на штучные, проволочные и ленточные. Они применяются как сплошного сечения, так и порошко­вые. Неплавящиеся электроды приме­няются: вольфрамовые, угольные и графитовые.

Дуговую сварку производят по­стоянным током прямой и обратной полярности, переменным током как промышленной, так и повышенной час­тот и пульсирующим током. При этом сварка может быть выполнена как одно-, двух- и многодуговая (с раз­дельным питанием каждой дуги), так и одно-, двух- и многоэлектродная (с общим подводом сварочного тока).

В промышленности и строительст­ве получили наибольшее применение следующие основные разновидности дуговой сварки. Рунная дуговая сварка произво­дится двумя способами: неплавящим­ся и плавящимся электродом. По пер­вому способу (рис. 3, а) сваривае­мые кромки изделия 5 приводят в соприкосновение, между неплавящим­ся (угольным или графитовым) электродом 3 и изделием возбуждают элект­рическую дугу 4. Кромки изделия и вводимый в зону дуги присадочный материал 2 нагреваются до плавления и образуют ванну расплавленного ме­талла, который после затвердевания превращается в сварной шов /. Этот способ используется иногда при свар­ке цветных металлов и их сплавов, а также при наплавке твердых спла­вов. Второй способ сварки (рис. 3, б), выполняемой плавящимся электродом, является основным при ручной дуго­вой сварке. Электрическая дуга 2 возбуждается между металлическим (плавящимся) электродом / и свари­ваемыми кромками изделия 4. Теплота дуги расплавляет электрод и кромки изделия. Получается общая ванна расплавленного металла, которая, ох­лаждаясь, образует сварной шов 3. Автоматическая сварка под флю­сом (рис. 4) — это дуговая сварка, в которой механизированы основные движения (на рис. показаны стрел­ками), выполняемые сварщиком при ручной сварке — подача электрода / в зону дуги 2 и перемещение его вдоль свариваемых кромок изделия 7. При полуавтоматической сварке механизи­рована подача электрода в зону дуги, а перемещение электрода вдоль сва­риваемых кромок производится свар­щиком вручную. Жидкий- металл сва­рочной ванны 5 защищают от воздей­ствия кислорода и азота воздуха рас­плавленным шлаком 4, образованным от плавления флюса 3, подаваемого в зону дуги.

§ 7. Сварочные выпрямители

Сварочные выпрямители получили большое, распространение. Основные их преимущества следующие: высокий к.п.д. и относительно небольшие по­тери холостого хода; высокие дина­мические свойства при меньшей элект­ромагнитной индукции; отсутствие вращающихся частей и бесшумность в работе; равномерность нагрузки фаз; небольшая масса; возможность заме­ны медных проводов алюминиевыми. Однако следует иметь в виду, что для выпрямителей продолжительные ко­роткие замыкания представляют боль­шую опасность, так как могут выйти из строя диоды. Кроме того, сварочные выпрямители чувствительны к колеба­ниям напряжения в сети. Все же по основным технико-экономическим по­казателям сварочные выпрямители яв­ляются более прогрессивными, чем, например, сварочные преобразователи.

§ 9. Понятие о свариваемости

Процесс сварки представляет со­бой сочетание нескольких одновремен­но протекающих процессов, которые определяют качество получаемого сварного соединения. К этим процес­сам относятся: нагрев металла около­шовных участков, плавление, кристал­лизация основного металла или взаим­ная кристаллизация основного и при­садочного (или электродного) метал­лов. Протекание этих процессов опре­деляется в основном свойствами сва­риваемых металлов. Однако такие факторы, как слишком высокая тем­пература, очень большие скорости охлаждения, необоснованный выбор присадочного металла и режима свар­ки, могут значительно снизить качест­во сварного соединения. При разно­родных металлах процесс взаимной кристаллизации может не произойти, вследствие чего сварка таких металлов не может быть осуществлена.

Свариваемостью называется свойство или сочетание свойств металлов обра­зовывать при установленной техноло­гии сварки соединение, отвечающее требованиям, обусловленным конструк­цией и эксплуатацией изделия.

Большое влияние на свариваемость металлов и сплавов оказывает их хи­мический состав. Это особенно нагляд­но видно на примере железоуглеродис­тых сплавов. Свариваемость углеро­дистой стали изменяется в зависи­мости от содержания основных при­месей. Углерод является наиболее важным элементом в составе стали, определяющим почти все основные свойства стали в процессе обработки, в том числе и свариваемость. Низкоуг­леродистые стали (С<0,25%) свари­ваются хорошо. Среднеуглеродистые стали (G<0,35%) также сваривают­ся хорошо. Стали с содержанием С > 0,35% свариваются хуже. С уве­личением содержания углерода в ста­ли свариваемость ухудшается. В око­лошовных зонах появляются закалоч­ные структуры и трещины, а шов по­лучается пористым. Поэтому для получения качественного сварного со­единения возникает необходимость применять различные технологиче­ские приемы. Марганец не затрудняет сварку стали при содержании его 0,3…0,8%. Однако при повышенном содержании марганца (1,8…2,5%) прочность, твердость и закаливае­мость стали возрастают, и это способствует образованию трещин. При сварке высоко марганцовистых сталей (11 … 16% Мп) происходит выгорание марганца, поэтому его восполняют, используя электродные покрытия и флюсы с повышенным содержанием марганца. Кремний содержится в обычной углеродистой стали в преде­лах 0,02… 0,3% и существенного влияния на свариваемость не оказы­вает. При повышенном содержании (0,8… 1,5%) кремний затрудняет сварку, так как придает стали жидкотекучесть и образует тугоплавкие ок­сиды и шлаки. Сера является самой вредной примесью стали. Содержание серы в стали допускается не более 0,05%. Сера образует в металле сульфид железа, который имеет более низкую температуру плавления, чем сталь, и плохо растворяется в рас­плавленной стали. При кристаллиза­ции частицы сульфида железа распо­лагаются между кристаллами металла шва и способствуют образованию го­рячих трещин. Фосфор является также вредной примесью. Фосфор ухудшает свариваемость стали, так как образу­ет хрупкий фосфид железа, придаю­щий стали хладноломкость. Содержа­ние фосфора в стали не превышает 0,05%.

Свариваемость стали принято оце­нивать по. следующим показателям: склонность металла шва к образо­ванию горячих и холодых трещин; склонность к изменению структуры в околошовной зоне и к обра­зованию закалочных структур; фи­зико-механические свойства сварного соединения; .соответствие специаль­ных свойств (жаропрочность, изно­состойкость и др.) сварного сое­динения техническим условиям.

Свариваемость определяют двумя основными методами, разработанными МВТУ им. Баумана (валиковая про­ба) и Кировским (г. Ленинград) заводом.

Кристаллизация металла сварочной ванны

В процессе сварки по мере пере­мещения дуги вслед ей перемещается сварочная ванна. При этом в задней части ванны расплавленный металл охлаждается и, затвердевая, образует сварной шов.

Кристаллизация металла свароч­ной ванны начинается у границы с не-расплавившимся основным металлом в зоне сплавления. Различают крис­таллизацию первичную и вторичную. Первичной кристаллизацией назы­вают процесс перехода металлов и сплавов из расплавленного (жидкого) состояния в твердое. Структура метал­лов, не имеющих аллотропических превращений, определяется только первичной кристаллизацией. Металлы и сплавы, имеющие аллотропические формы или модификации, после пер­вичной кристаллизации при дальней­шем охлаждении претерпевают вто­ричную кристаллизацию в твердом состоянии — переход из одной алло­тропической формы в другую (фазо­вые превращения). Первичная кристаллизация метал­ла сварочной ванны протекает перио­дически, так как периодически ухуд­шается теплообмен, периодически выделяется скрытая теплота крис­таллизации. Это приводит к слоистому строению металла шва, к появ­лению ликвации, как зональной, так и дендритной.

§ 12. Сварочная проволока

Для заполнения шва в зону дуги вводят присадочный металл в виде прутка или проволоки. При ручной дуговой сварке применяют плавя­щиеся электроды в виде прутков или стержней с покрытием. При ме­ханизированной сварке используют электрод в виде проволоки, намотан­ной на кассету.

Стальная холоднотянутая про­волока, идущая на изготовление электродов или применяемая как сва­рочная проволока, изготовляется по ГОСТ 2246 — 70 следующих диамет­ров: 0,3; 0,5; 0,8; 1,0; 1,2; 1,4; ‘1,6; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0 и 12,0 мм. Проволока поставляется в мотках (бухтах) из одного отреза. Проволока первых семи диаметров

предназначена в основном для полу­автоматической и автоматической сварки в защитном газе. Для автома­тической и полуавтоматической сварки под флюсом применяют проволоку диа­метром 2…6 мм. Проволока диа­метром 1,6… 12,0 мм идет на изготов­ление стержней электродов. Поверх­ность проволоки должна быть глад­кой, чистой, без окалины, ржавчины, грязи и масла.

По химическому составу ГОСТ 2246—70 устанавливает три основные группы марок сварочной проволоки: низкоуглеродистые (6 марок) с содер­жанием углерода не более 0,12%, предназначенные для сварки низкоуг­леродистых, среднеуглеродистых и не­которых низколегированных сталей;

установка для сварки кольцевых швов (рис. 62,в). Сварочная голов­ка закреплена неподвижно, а изготов­ляемое изделие вращается на роли­ковом стенде;

установка для сварки как прямо­линейных, так и кольцевых швов (рис. 62, г). Автоматическая головка может перемещаться вдоль сваривае­мого изделия. Кроме того, в фиксиро­ванном положении она может выпол­нять кольцевые швы. Для этого из­делие вращают с помощью механи­ческого привода или электропривода. Такая установка позволяет сваривать продольные и кольцевые швы только с наружной стороны.

Успешно применяется сварка про­дольных и кольцевых швов снаружи и изнутри сварочным трактором. При сварке продольных швов сварочный трактор двигается по самому изделию вдоль шва. При сварке кольцевых швов трактор перемещается по обе­чайке со скоростью, равной скорости ее вращения, но в противоположную сторону. Таким образом, сварочный трактор остается на месте, а свари­ваемый шов подается под трактор.

§ 21. Технология сварки

Конструктивные элементы основ­ных типов швов сварных соединений из углеродистых или низколегирован­ных сталей, свариваемых автоматичес­кой и полуавтоматической сваркой под флюсом, установлены ГОСТ 8713—79. В зависимости от толщины сваривае­мого металла и способа сварки ГОСТ устанавливает формы разделки кро­мок для каждого вида соединения. Требования к подготовке кромок и сборке изделия под сварку более высо­кие, чем при ручной сварке. Эти требования вытекают из условий авто­матической сварки. Настроенный под определенный режим автомат точно выполняет установленный процесс сварки и не может учесть и выпра­вить отклонения в разделке кромок и сборке изделия. Разделку кромок про­изводят машинной кислородной или плазменно-дуговой резкой, а также на металлорежущих станках.

Свариваемые кромки перед сбор­кой должны быть тщательно очище­ны от ржавчины, грязи, масла, влаги и шлаков. Это особенно важно при больших скоростях сварки, когда раз­личные загрязнения, попадая в зону дуги, приводят к образованию пор, раковин и неметаллических включе­ний. Очистку кромок производят пес­коструйной обработкой или протрав­ливанием и пассивированием. Очист­ке подвергается поверхность кромок шириной 50 … 60 мм по обе стороны от шва. Перед сваркой детали за­крепляют на стендах или иных устрой­ствах с помощью различных приспо-собленний или прихватывают ручной сваркой электродами с качественным покрытием. Прихватки длиной 50… 70 мм располагают на расстоянии не более 400 мм друг от друга, а крайние прихватки — на расстоянии не менее 200 мм от края шва. Прихватки должны быть тщательно очищены от шлака, брызг металла.

При сварке продольных швов для ввода электрода в шов и вывода его из шва за пределы изделия по окончании сварки к кромкам привари­вают вводные и выводные планки. Форма разделки планок должна соответствовать разделке кромок ос­новного шва.

Режим автоматической сварки: сварочный ток, напряжение дуги, диа­метр, угол наклона и скорость подачи электродной проволоки, скорость свар­ки и основные размеры разделки кро­мок — выбирают в зависимости от толщины свариваемых кромок, формы разделки   и свариваемого металла.

Стыковые швы выполняют с раз­делкой и без разделки кромок. При этом шов может быть одно- и двусто­ронним, одно- и многослойным.

Односторонняя стыковая сварка применяется в малоответственных сварных соединениях или в случаях, когда конструкция изделия не позво­ляет производить двустороннюю свар­ку шва. Значительный объем расплав­ленного металла, большая глубина проплавления и некоторый перегрев ванны могут привести к вытеканию металла в зазоры и нарушению

Основы сварочного дела


Основы сварочных работ – самоучитель начинающего сварщика

Сварка изделий из нержавеющей стали – это задача, с которой часто сталкивается каждый мастер, привыкший выполнять все работы по дому самостоятельно. Такая работа имеет ряд особенностей, в том числе и касающихся выбора присадочного материала – для сварки нержавейки применяют особые электроды, способные придавать сварному шву характеристики, аналогичные свойствам основного материала изделий. 

Электрическая контактная сварка в настоящее время является одним из экономичных и прочных способов соединения. Основное применение – машиностроение и металлургия. Разделяется на несколько видов, которые имеют свои особенности. Из данной статьи вы узнаете все виды электрической сварки, их преимущества и способы применения. 

Чугун – это материал, довольно широко применяемый для изготовления самых разных изделий. Для соединения деталей изделия в единое целое часто применяется сварка. Но для того чтобы сварное чугунное изделие получилось действительно качественным и долговечным, при ведении сварки необходимо учитывать некоторые химические и физические особенности этого материала.  

stalevarim.ru

Основы сварочного дела

Дуговой сваркой называется сварка плавлением, при которой нагрев свари­ваемых кромок осуществляется тепло­той электрической дуги.

Дуговая сварка классифицируется по следующим основным признакам: по виду электрода (плавящимся или неплавящимся электродом), по виду дуги (свободной или сжатой дугой), по характеру воздействия дуги на основной металл (дугой прямого или косвенного действия, трехфазной ду­гой). Плавящиеся электроды подраз­деляются на штучные, проволочные и ленточные. Они применяются как сплошного сечения, так и порошко­вые. Неплавящиеся электроды приме­няются: вольфрамовые, угольные и графитовые.

Дуговую сварку производят по­стоянным током прямой и обратной полярности, переменным током как промышленной, так и повышенной час­тот и пульсирующим током. При этом сварка может быть выполнена как одно-, двух- и многодуговая (с раз­дельным питанием каждой дуги), так и одно-, двух- и многоэлектродная (с общим подводом сварочного тока).

В промышленности и строительст­ве получили наибольшее применение следующие основные разновидности дуговой сварки.

Рунная дуговая сварка произво­дится двумя способами: неплавящим­ся и плавящимся электродом. По пер­вому способу (рис. 3, а) сваривае­мые кромки изделия 5 приводят в соприкосновение, между неплавящим­ся (угольным или графитовым) электродом 3 и изделием возбуждают элект­рическую дугу 4. Кромки изделия и вводимый в зону дуги присадочный материал 2 нагреваются до плавления и образуют ванну расплавленного ме­талла, который после затвердевания превращается в сварной шов /. Этот способ используется иногда при свар­ке цветных металлов и их сплавов, а также при наплавке твердых спла­вов. Второй способ сварки (рис. 3, б), выполняемой плавящимся электродом, является основным при ручной дуго­вой сварке. Электрическая дуга 2 возбуждается между металлическим (плавящимся) электродом / и свари­ваемыми кромками изделия 4. Теплота дуги расплавляет электрод и кромки изделия. Получается общая ванна расплавленного металла, которая, ох­лаждаясь, образует сварной шов 3. Автоматическая сварка под флю­сом (рис. 4) — это дуговая сварка, в которой механизированы основные движения (на рис. показаны стрел­ками), выполняемые сварщиком при ручной сварке — подача электрода / в зону дуги 2 и перемещение его вдоль свариваемых кромок изделия 7. При полуавтоматической сварке механизи­рована подача электрода в зону дуги, а перемещение электрода вдоль сва­риваемых кромок производится свар­щиком вручную. Жидкий- металл сва­рочной ванны 5 защищают от воздей­ствия кислорода и азота воздуха рас­плавленным шлаком 4, образованным от плавления флюса 3, подаваемого в зону дуги.

§ 7. Сварочные выпрямители

Сварочные выпрямители получили большое, распространение. Основные их преимущества следующие: высокий к.п.д. и относительно небольшие по­тери холостого хода; высокие дина­мические свойства при меньшей элект­ромагнитной индукции; отсутствие вращающихся частей и бесшумность в работе; равномерность нагрузки фаз; небольшая масса; возможность заме­ны медных проводов алюминиевыми. Однако следует иметь в виду, что для выпрямителей продолжительные ко­роткие замыкания представляют боль­шую опасность, так как могут выйти из строя диоды. Кроме того, сварочные выпрямители чувствительны к колеба­ниям напряжения в сети. Все же по основным технико-экономическим по­казателям сварочные выпрямители яв­ляются более прогрессивными, чем, например, сварочные преобразователи.

§ 9. Понятие о свариваемости

Процесс сварки представляет со­бой сочетание нескольких одновремен­но протекающих процессов, которые определяют качество получаемого сварного соединения. К этим процес­сам относятся: нагрев металла около­шовных участков, плавление, кристал­лизация основного металла или взаим­ная кристаллизация основного и при­садочного (или электродного) метал­лов. Протекание этих процессов опре­деляется в основном свойствами сва­риваемых металлов. Однако такие факторы, как слишком высокая тем­пература, очень большие скорости охлаждения, необоснованный выбор присадочного металла и режима свар­ки, могут значительно снизить качест­во сварного соединения. При разно­родных металлах процесс взаимной кристаллизации может не произойти, вследствие чего сварка таких металлов не может быть осуществлена.

Свариваемостью называется свойство или сочетание свойств металлов обра­зовывать при установленной техноло­гии сварки соединение, отвечающее требованиям, обусловленным конструк­цией и эксплуатацией изделия.

Большое влияние на свариваемость металлов и сплавов оказывает их хи­мический состав. Это особенно нагляд­но видно на примере железоуглеродис­тых сплавов. Свариваемость углеро­дистой стали изменяется в зависи­мости от содержания основных при­месей. Углерод является наиболее важным элементом в составе стали, определяющим почти все основные свойства стали в процессе обработки, в том числе и свариваемость. Низкоуг­леродистые стали (С

markmet.ru

Основы сварочного дела. Геворкян В.Г. 1985 | Библиотека: книги по архитектуре и строительству

В учебнике даны основы технологии дуговой, электрошлаковой, контактной и газовой сварки, кислородной и электродуговой резки; особенности технологии сварки легированных сталей, цветных металлов и их сплавов, чугуна, пластмасс, а также способы и режимы сварки трубопроводов. В 4-е издание внесены изменения, касающиеся оборудования и материалов, расширено описание машин контактной сварки; введена глава «Наплавочные работы».

Введение

Раздел 1. Электрическая сварка плавлением и дуговая резка

Глава 1. Классификация и сущность дуговой сварки

Глава 2. Электрическая сварочная дуга § 1. Основные понятия § 2. Тепловые свойства сварочной дуги

§ 3. Плавление и перенос металла в дуге

Глава 3. Источники питания сварочной дуги § 4. Основные требования § 5. Сварочные преобразователи § 6. Сварочные аппараты переменного тока § 7. Сварочные выпрямители

§ 8. Монтаж и обслуживание сварочного оборудования

Глава 4. Металлургические процессы при сварке § 9. Понятие о свариваемости § 10. Основные реакции в зоне сварки

§ 11. Кристаллизация металла сварочной ванны

Глава 5. Сварочная проволока и электроды § 12. Сварочная проволока

§ 13. Металлические электроды

Глава 6. Технология ручной дуговой сварки § 14. Сварные соединения и швы § 15. Выбор режима сварки и техника выполнения швов § 16. Высокопроизводительные способы сварки

§ 17. Деформации и напряжения при сварке

Глава 7. Автоматическая и полуавтоматическая сварка под флюсом § 18. Сущность и преимущества § 19. Сварочные флюсы § 20. Оборудование для сварки под флюсом § 21. Технология сварки

§ 22. Электрошлаковая сварка

Глава 8. Сварка в защитном газе § 23. Сущность и преимущества § 24. Защитные газы § 25. Оборудование для сварки в защитном газе § 26. Технология аргонодуговой сварки

§ 27. Технология дуговой сварки в углекислом газе

Глава 9. Дуговая резка § 28. Способы резки плавящимся электродом

§ 29. Способы резки неплавящимся электродом

Раздел II. Газовая сварка и кислородная резка

Глава 10. Газовая сварка § 30. Оборудование газосварочных постов

§ 31. Сварочные горелки

Глава 11. Сварочное пламя § 32. Газы для сварки и резки металлов

§ 33. Сварочное пламя

Глава 12. Технология газовой сварки § 34. Техника выполнения газовой сварки

§ 35. Технология газовой сварки

Глава 13. Кислородная резка § 36. Сущность процесса кислородной резки § 37. Оборудование для кислородной резки

§ 38. Технология кислородной резки

Раздел III. Контактная сварка

Глава 14. Технология контактной сварки § 39. Сущность контактной сварки § 40. Стыковая контактная сварка § 41. Точечная контактная сварка

§ 42. Шовная контактная сварка

Глава 15. Оборудование для контактной сварки § 43. Машины для стыковой контактной сварки § 44. Машины для точечной контактной сварки

§ 45. Машины для шовной контактной сварки

Раздел IV. Особенности технологии сварки различных материалов. Наплавочные работы. Сварка трубопроводов

Глава 16. Сварка легированных сталей § 46. Свариваемость легированных сталей § 47. Сварка низколегированных сталей

§ 48. Сварка средне- и высоколегированных сталей

Глава 17. Сварка цветных металлов и их сплавов § 49. Особенности сварки цветных металлов и их сплавов § 50. Сварка меди и ее сплавов

§ 51. Сварка алюминия и его сплавов

Глава 18. Сварка чугуна § 52. Особенности сварки чугуна § 53. Горячая сварка чугуна

§ 54. Холодная сварка чугуна

Глава 19. Наплавочные работы § 55. Виды наплавочных работ

§ 56. Технология наплавки

Глава 20. Сварка полимеров и пластмасс § 57. Основные виды полимеров и пластмасс

§ 58. Способы сварки.

Глава 21. Сварка трубопроводов § 59. Номенклатура и сортамент труб и фасонных частей § 60. Подготовка труб к сварке

§ 61. Способы и режимы сварки

Раздел V. Контроль качества сварки. Техника безопасности

Глава 22. Контроль качества сварки § 62. Основные дефекты сварных швов

§ 63. Виды контроля сварных соединений

Глава 23. Техника безопасности § 64. Основные положения техники безопасности при электрической сварке § 65. Техника безопасности при газовой сварке и кислородной резке § 66. Техника безопасности при контрольных испытаниях сварных швов

§ 67. Техника безопасности на строительно-монтажной площадке

Список литературы

books.totalarch.com

Основы сварочного дела

Краткое содержание

Введение

Раздел 1. Электрическая сварка плавлением и дуговая резка

Глава 1. Классификация и сущность дуговой сварки

Дуговая сварка классифицируется по следующим основным признакам: по виду электрода (плавящимся или неплавящимся электродом), по виду дуги (свободной или сжатой дугой), по характеру воздействия дуги на основной металл (дугой прямого или косвенного действия, трехфазной ду­гой). Плавящиеся электроды подраз­деляются на штучные, проволочные и ленточные. Они применяются как сплошного сечения, так и порошко­вые. Неплавящиеся электроды приме­няются: вольфрамовые, угольные и графитовые.

Дуговую сварку производят по­стоянным током прямой и обратной полярности, переменным током как промышленной, так и повышенной час­тот и пульсирующим током. При этом сварка может быть выполнена как одно-, двух- и многодуговая (с раз­дельным питанием каждой дуги), так и одно-, двух- и многоэлектродная (с общим подводом сварочного тока).

В промышленности и строительст­ве получили наибольшее применение следующие основные разновидности дуговой сварки.

Глава 2. Электрическая сварочная дуга

Электрическая сварочная дуга представляет собой устойчивый дли­тельный электрический разряд в газо­вой среде между твердыми или жид­кими электродами при высокой плот­ности тока, сопровождающийся выде­лением большого количества теплоты. Электрический разряд в газе есть электрический ток, проходящий через газовую среду благодаря наличию в ней свободных электронов, а также отрицательных и положительных ио­нов, способных перемещаться между электродами под действием приложенного электрического поля (разности потенциалов между электродами).

При высоких температурах значи­тельная часть молекул газа обладает достаточной энергией для того, чтобы при столкновениях могло произойти разбиение нейтральных молекул на ионы; кроме того, с повышением температуры увеличивается общее число столкновений между молекула­ми газа. При очень высоких темпера­турах на процесс ионизации начинает влиять также и излучение газа и рас­каленных электронов. При обычных температурах ионизацию можно вы­звать, если уже имеющимся в газе электронам и ионам сообщить с помощью электрического поля боль­шие скорости.

При термоэлектронной эмиссии благодаря высокой температуре сво­бодные электроны «испаряются» с по­верхности металла. Чем выше тем­пература, тем большее число свобод­ных электронов приобретает энергию, достаточную для преодоления потен­циального барьера в поверхностном слое и выхода из металла. При авто­электронной (холодной) эмиссии со­здается внешнее электрическое поле, которое изменяет потенциональный барьер у поверхности металла и облег­чает выход тех электронов, которые имеют достаточную энергию для пре­одоления этого барьера.

Глава 3. Источники питания сварочной дуги

При каждом  коротком замыкании напряжение падает до ну­левого значения. Для последующего восстановления дуги необходимо на­пряжение порядка 25…30 В. Такое напряжение должно обеспечиваться за время не более 0,05 с, чтобы под­держивать горение дуги в период между короткими замыканиями. Сле­дует учесть, что при коротких замы­каниях сварочной цепи развиваются большие токи (токи короткого замы­кания), которые могут вызвать пе­регрев в проводке и обмотках источ­ника тока.

Эти условия процесса сварки в основном и определяют требования, предъявляемые к источникам питания свврочной дуги. Для обеспечения ус­тойчивого процесса сварки источники питания дуги должны удовлетворять следующим требованиям:

напряжение холостого хода долж­но быть достаточным для легкого воз­буждения дуги и в то же время не должно превышать нормы безопас­ности. Максимально допустимое на­пряжение холостого хода установ­лено для источников постоянного то­ка — 90 В, а для источников пере­менного тока — 80 В;

ток короткого замыкания не должен превышать сварочный ток бо­лее чем на 40…50%. При этом источ­ник тока должен выдерживать продол­жительные короткие замыкания сва­рочной цепи. Это условие необходимо для предохранения обмоток источни­ка тока от перегрева и повреждения;

мощность источника тока должна быть достаточной для выполнения сва­рочных работ.

напряжение устойчивого горения дуги (рабочее напряжение) должно быстро устанавливаться и изменяться в зависимости от длины дуги. С уве­личением длины дуги напряжение должно быстро возрастать, а с умень­шением — быстро падать. Время вос­становления рабочего напряжения от 0 до 30 В после каждого короткого замыкания (при капельном переносе металла от электрода к свариваемой детали) должно быть менее 0,05 с;

ток короткого замыкания не должен превышать сварочный ток бо­лее чем на 40…50%. При этом источ­ник тока должен выдерживать продол­жительные короткие замыкания сва­рочной цепи. Это условие необходимо для предохранения обмоток источни­ка тока от перегрева и повреждения;

мощность источника тока должна быть достаточной для выполнения сва­рочных работ.

Кроме того, необходимы устройст­ва, позволяющие регулировать сва­рочный ток в требуемых пределах.

Промышленностью выпускаются следующие типы источников питания сварочной дуги: сварочные преобра­зователи, сварочные аппараты пере­менного тока, сварочные выпрямители.

Сварочные преобразователи под­разделяют на следующие группы: по числу питаемых постов — одно­постовые, предназначенные для пита­ния одной сварочной дуги; много­постовые, питающие одновременно несколько сварочных дуг; по спо­собу установки — стационар­ные, устанавливаемые неподвижно на фундаментах; передвижные, монти­руемые на тележках; по р о д у дви­гателей, приводящих генератор во вращение,— машины с электрическим приводом; машины с двигателем внут­реннего сгорания (бензиновым или ди­зельным) ; по способу выполне­ния — однокорпусные, в которых ге­нератор и двигатель вмонтированы в единый корпус; раздельные, в которых генератор и двигатель установлены на одной раме, а привод осуществляется через соединительную муфту.

Глава 4. Металлургические процессы при сварке

Процесс сварки представляет со­бой сочетание нескольких одновремен­но протекающих процессов, которые определяют качество получаемого сварного соединения. К этим процес­сам относятся: нагрев металла около шовных участков, плавление, кристал­лизация основного металла или взаим­ная кристаллизация основного и при­садочного (или электродного) метал­лов. Протекание этих процессов опре­деляется в основном свойствами сва­риваемых металлов. Однако такие факторы, как слишком высокая тем­пература, очень большие скорости охлаждения, необоснованный выбор присадочного металла и режима свар­ки, могут значительно снизить качест­во сварного соединения. При разно­родных металлах процесс взаимной кристаллизации может не произойти, вследствие чего сварка таких металлов не может быть осуществлена.

Основные особенности металлурги­ческих процессов, протекающих при сварке, определяются следующими ус­ловиями: высокой температурой про­цесса, небольшим объемом ванны рас­плавленного металла, большими ско­ростями нагрева и охлаждения, отво­дом теплоты в окружающий ванну ос­новной металл и, наконец, интенсивным взаимодействием расплавляемого металла с газами и шлаками в зоне дуги.

Высокая температура сварочной дуги значительно ускоряет физико-хи­мические процессы, происходящие при плавлении металла. Она вызывает также в объеме дуги диссоциацию (распад) молекул кислорода, азота и паров воды. В атомарном состоянии газы, обладая большой химической активностью, интенсивно взаимодейст­вуют с расплавленным металлом шва. Высокая температура способствует выгоранию примесей и тем самым из- меняет химический состав свариваемо­го металла.

Глава 5. Сварочная проволока и электроды

Содержание углерода в сварочной проволоке не превышает 0,12—0,15% (за редким исключением), что сни­жает склонность металла шва к га­зовой пористости и образованию твердых закалочных структур. Содер­жание кремния в углеродистой прово­локе составляет менее 0,03%, так как наличие кремния способствует образо­ванию при сварке пор в металле шва. Допустимое содержание серы и фосфора также ограничено (0,04% каждого элемента), так как они даже при малой концентрации способствуют образованию трещин в сварном шве.

Медь и ее сплавы сваривают проволокой и прутками из меди и сплавов на медной основе (ГОСТ 16130—72). Алюминий и алюминиевые сплавы сваривают сварочной проволо­кой из алюминия и его сплавов (ГОСТ 7871—75). Для сварки других металлов и сплавов применяют сва­рочную проволоку или стержни, изго­товленные либо по ГОСТу на свари­ваемый металл, либо по техниче­ским условиям.

Вместо дорогостоящей легирован­ной сварочной проволоки успешно применяют порошковую электродную проволоку. Ее изготовляют из сталь­ной ленты, свернутой в трубочку, внутрь которой помещают шихту (порошок), состоящую из смеси фер­росплавов, железного порошка и гра­фита. Диаметр порошковой проволоки 2,5…5 мм. Состав шихты подбирают так, чтобы образовавшийся от рас­плавленных оболочки и шихты жидкий сплав имел после охлаждения хими­ческий состав и свойства, установлен­ные для металла шва. Сварку порош­ковой проволокой производят от­крытой дугой, под флюсом или в защитных газах.

В настоящее время получил при­менение разработанный Институтом электросварки им. Е. О. Патона способ сварки самозащитной проволокой, т. е. сплошной легированной проволокой без защитной среды (открытой дугой). Этот способ основан на использова­нии специальных электродных прово­лок, содержащих раскисляющие и стабилизирующие элементы. Обычно при сварке открытой дугой проис­ходит выгорание марганца и кремния, а металл шва обогащается кислоро­дом и азотом. При сварке специаль­ной для данного способа легированной проволокой происходит компенсация выгорания марганца и кремния за счет повышенного их содержания в металле проволоки. Металл про­волоки содержит также алюминий, титан, цирконий и церий. Эти элементы обеспечивают хорошее рас­кисление металла сварочной ван­ны, образуя соединения, переходящие в шлак.

Глава 6. Технология ручной дуговой сварки

Глава 7. Автоматическая и полуавтоматическая сварка под флюсом

Глава 8. Сварка в защитном газе

Глава 9. Дуговая резка

Раздел 2. Газовая сварка и кислородная резка

Глава 10. Газовая сварка

Глава 11. Сварочное пламя

Глава 12. Технология газовой сварки

Глава 13. Кислородная резка

Раздел 3. Контактная сварка

Глава 14. Технология контактной сварки

Глава 15. Оборудование для контактной сварки

Раздел 4. Особенности технологии сварки различных материалов. Наплавочные работы. Сварка трубопроводов

Глава 16. Сварка легированных сталей

Глава 17. Сварка цветных металлов и их сплавов

Глава 18. Сварка чугуна

Глава 19. Наплавочные работы

Глава 20. Сварка полимеров и пластмасс

Глава 21. Сварка трубопроводов

Раздел 5. Контроль качества сварки. Техника безопасности

Глава 22. Контроль качества сварки

Глава 23. Техника безопасности

Список литературы

engineering.ua

Основы сварочного дела. DjVu

      ФPAГMEHT УЧЕБНИКА (…) § 7. Сварочные выпрямители Сварочные выпрямители получили большое распространение. Основные их преимущества следующие: высокий к.п.д. и относительно небольшие потери холостого хода; высокие динамические свойства при меньшей электромагнитной индукции; отсутствие вращающихся частей и бесшумность в работе; равномерность нагрузки фаз; небольшая масса; возможность замены медных проводов алюминиевыми. Однако следует иметь в виду, что для выпрямителей продолжительные короткие замыкания представляют большую опасность, так как могут выйти из строя диоды. Кроме того, сварочные выпрямители чувствительны к колебаниям напряжения в сети. Все же по основным технико-экономическим показателям сварочные выпрямители являются более прогрессивными, чем, напри-мер, сварочные преобразователи.
      Сварочные выпрямители состоят из двух основных блоков: понижающего трехфазного трансформатора с устройствами для регулирования напряжения или тока и выпрямительного блока. Кроме того, выпрямитель имеет пускорегулирующее и защитное устройства, обеспечивающие нормальную его эксплуатацию. Для выпрямления тока используется свойство полупроводникового вентиля проводить ток только в одном направлении. Наибольшее применение получили селеновые и кремниевые вентили. Селеновые вентили дешевы и выдерживают перегрузки. Кремниевые вентили обладают высокими энергетическими показателями и высоким к.п.д., но очень чувствительны к перегрузкам по току и поэтому требуют защитных устройств и интенсивного охлаждения.
      Выпрямление тока осуществляется по трехфазной мостовой схеме Ларионова. Мост состоит из шести плёч, в каждом из которых установлены вентили, обеспечивающие выпрямление обоих полупериодов переменного тока в трех фазах (рис. 35).
      Применяются различные типы сварочных выпрямителей (табл.6).
      Сварочные выпрямители с жесткой внешней характеристикой типа ВС и ВДГ предназначены для сварки в защитном газе плавящимся электродом, автоматической и полуавтоматической сварки под флюсом, порошковой проволокой и др. Они просты в устройстве и надежны в работе. Имея общую принципиальную схему, выпрямители этого типа отличаются в основном мощностью и числом ступеней регулирования. Выпрямители состоят из понижающего трехфазного трансформатора, выпрямительного блока, двух универсальных переключателей для переключения витков первичной обмотки трансформатора(для грубой и точной регулировки), дросселя(для обеспечения нарастания тока короткого замыкания и сглаживания пульсаций) и вентилятора.
      Сварочные выпрямители с падающей внешней характеристикой выпускаются типа ВСС, ВКС и ВД. Сварочные выпрямители типа ВСС состоят из понижающего трехфазного трансформатора с подвижными обмотками, выпрямительного селенового блока с вентилятором, пускорегулирующей и защитной аппаратурой. Понижающий трансформатор выполнен с повышенным магнитным рассеянием, которое регулируется изменением расстояния между первичной и вторичной обмотками. Два диапазона регулирования сварочного тока получают, соединяя первичную и вторичную обмотки звездой (малые токи) и треугольником (большие токи). В пределах каждого диапазона ток плавно регулируют, изменяя расстояние между катушками первичной (нижней подвижной) и вторичной (верхней неподвижной) обмоток с помощью рукоятки. При вращении рукоятки по часовой стрелке катушки обмоток сближаются, индуктивность рассеяния уменьшается, сварочный ток увеличивается. Обмотки трансформатора выполнены из алюминия. Выпрямительный блок собран из селеновых пластин 100X400 мм, охлаждается вентилятором.
      Сварочные выпрямители типа ВКС имеют следующие основные отличия от типа ВСС: выпрямительный блок составлен из кремниевых вентилей ВК-200; сварочный ток регулируют, перемещая катушки обмоток с помощью асинхронного двигателя с дистанционным управлением.
      Широкое применение получили
      сварочные выпрямители ВД-101 и ВД-301 с кремниевыми вентилями и ВД-102 и ВД-302 с селеновыми вентилями. Они несложны по устройству, обладают достаточно высоким коффици-ентом полезного действия и имеют небольшую массу.
      Сварочные выпрямители типа ВСУ и ВДУ являются универсальными источниками питания дуги. Они предназначены для питания дуги при автоматической и полуавтоматической сварке под флюсом, в защитных газах, порошковой проволокой, а также при ручной сварке. Выпрямители ВСУ, кроме обычных—блока трехфазного понижающего трансформатора и выпрямительного блока, имеют дроссель насыщения с четырьмя обмотками. Переключением этих обмоток можно получать жесткую, пологопадающую и крутопадающую внешние характеристики. Выпрямители ВДУ основаны на использовании в выпрямляющих силовых обмотках управляемых вентилей—тиристоров. Схема управления тиристорами позволяет получать необходимый для сварки вид внешней характеристики, обеспечивает широкий диапазон регулирования сварочного тока и стабилизацию режима сварки при колебаниях напряжения питающей сети.
      Для сантехнических монтажных сварочных работ Институт электросварки им. Е. О. Патона разработал переносный сварочный выпрямитель ВЖ-2М, предназначенный для питания полуавтоматов и автоматов при сварке открытой дугой и в защитном газе стыков труб диаметром 20… 100 мм. Внешняя характеристика — пологопадающая; число ступеней регулирования — 9; масса — 50 кг.
     
      Сварочные многопостовые преобразователи ПСМ-1000 устанавливают на фундаменте. Допускается установка на временном фундаменте в виде жестко связанной деревянной рамы из брусьев (или бревен), к которой болтами крепят корпус сварочного преобразователя.
      При наличии на строительно-монтажной площадке электросиловой сети применяют передвижные сварочные преобразователи, аппараты переменного тока или сварочные выпрямители в зависимости от вида работ. Например, некоторые сорта легированных сталей лучше сваривать постоянным током. Ответственные сварочные работы, выполняемые особыми электродами, также требуют постоянного тока. В этих случаях применяют сварочные преобразователи. Однако они требуют более трудоемкого ухода и обслуживания, чем аппараты переменного тока. Сварочные трансформаторы получили более широкое применение благодаря простоте конструкции, меньшему расходу электроэнергии, высокому к.п.д. и другим экономическим показателям.
      Приведенные в табл. 7 сравнительные данные позволяют оценить преимущество сварочных аппаратов переменного тока.
      При отсутствии электросиловой сети (при монтаже мачт высоковольтных кабинах площадью не менее 2X2,5 м2 каждая. Кабину отгораживают перегородками, а вход закрывают занавесками, пропитанными огнестойким составом. В кабине устанавливают металлический стол с массивной чугунной или стальной крышкой площадью в 1 м2 и винтовой стул с откидной спинкой. Кабина должна иметь местную вытяжную вентиляцию и заземляющий провод. При отсутствии общей заземляющей шины применяют индивидуальное заземление.
      При сварке громоздких деталей и крупногабаритных сварных конструкций сварочные посты развертывают открыто в цехе, на строительно-монтажной площадке, на магистральной трассе. При-этом рабочее место по возможности ограждают защитными щитами или ширмами.
      Основное оборудование сварочного поста состоит из источника питания дуги, сварочных проводов, принадлежностей и инструментов сварщика.
      Источники питания дуги размещают непосредственно на рабочем месте или группируют в машинном отделении сварочного цеха. В последнем случае в цехе на определенном расстоянии друг от друга располагают постоянные щитки с клеммами для подключения сварочных проводов. К щиткам ток подводится о г источника питания постоянной проводкой.

Стенд основы сварочного дела (TM-11-POPULAR)

Стенд основы сварочного дела – дидактический материал, который позволит сотрудникам выполнять сварочные работы, не причиняя вреда своему здоровью.

Стенд основы сварочного дела направлен на аудиторию строителей с узкой специализацией в сфере сварочных работ.

Стенд состоит из двух информационных блоков и двух изображений, которые позволят напомнить важную информацию при работе со сварочным оборудованием.

Фон стенда выполнен в темно-зеленых тонах, на нем белыми буками напечатан заголовок, на этом фоне контрастно выделены белые информационные блоки.

Материал стенда основы сварочного дела (TM-11-POPULAR)

Стенд основы сварочного дела выполнен из качественных материалов. Основа – 4 мм пластик. Стенд в белой пластиковой рамке. Прикрепить стенд возможно посредством шурупов и люверсов. Изображение заламинировано. Габариты стенда — 1200х1000 мм.

В магазине находятся в наличии стенды, информационно насыщенные в целях повышения уровня профессиональной грамотности.

Дополнительную информацию о товаре и фотографии к Стенд основы сварочного дела (TM-11-POPULAR) Вы можете запросить у специалистов учебного центра, используя для этого удобный Вам способ связи:

+7 (499) 995-22-37

Единица измерения Штука
Категория
Поставщик АНО ДПО «Учебный центр «Развитие»
Код УКЦ-1-49646
Размер 1200х1000 мм
Крепеж 4 люверса по углам, шурупы
Ламинация есть
Основа пластик 4 мм
Рамка белая пластиковая рамка
Серия POPULAR
Материал
Издательство
Количество листов
Формат
Ориентация
Цвет
Кол-во страниц
Тип
Форма
Исполнение
Высота
Ширина (мм)
Крепление
Вкладыш
Обложка
Класс опасности
Изображение
Длина (м)
Специализация
Футляр
Дата издания
Автор
Год выпуска
Продолжительность
Класс кабинета
Площадь кабинета
Класс
Диаметр, высота
Объем
Тип щита
Инвентарь
Вид