Паровой электрогенератор: Электростанция на дровах своими руками, паровой двигатель, принцип Пельтье

Содержание

разновидности и особенности данного оборудования

Все чаще уставшие жители больших и маленьких городов перебираются загород в маленькие и уютные домики.

Дабы обеспечить себе здесь комфортное существование необходимо электричество и довольно в больших количествах. Оно нужно для того чтобы в доме было светло и тепло, для работы бытовых приборов и телефонов.

Поэтому многие люди, еще в процессе планирования и строительства загородного дома предусматривают этот вопрос, посредством монтажа парового генератора электричества.

Что это за оборудование, его разновидности и особенности

Парогенератор для дома и баниПарогенератор для дома и бани

Парогенератор для дома и бани

Для каждого из нас важен вопрос установки такого оборудования (источника электрической энергии), который бы функционировал независимо от ветра, воды, ТЭЦ, разнообразных природных катаклизмов.

Ну, конечно, чтобы и обслуживание его было доступным, и стоимость невысокой.

Для этого идеально подойдет такой автономный источник конденсации и преобразования электрики, как паровой генератор электричества.

В чем же особенности данного оборудования

ПГЭ – это оборудование автономного типа, способное преобразовывать энергию любого вида (механическая, тепловая и др.) до электрической.

Отличительной особенностью такого оборудования является простота его конструкции и принцип работы. Такой генератор электричества, независимо от его видов состоит из мотора, установленного на раме конструкции, который сжигает топливо и генератора. Через механическую передачу вращающийся момент передается от двигателя к генератору.

Немаловажным фактором, влияющим на большую популярность подобных установок, является высокий уровень коэффициента полезного действия, близкого к 98%.

Существует несколько видов установок, классификация которых базируется нескольких основных факторах:

  • Вид топлива. Оборудование имеет возможность работать на нескольких видах топлива. Это может быть мазута, дрова, газ, дизельное топливо и др.
  • Область использования. Такие установки активно используются не только в быту, но и на производственной и перерабатывающей промышленности.
  • Особенности конструкции. Преобразование энергии может происходить через две разные системы: трубы с горячим газом и емкости с водой.

Для того чтобы оборудование выполняло все возложенные на него функции и его эксплуатация в результате была целесообразной, чрезвычайно важно правильно выбрать установку. При этом специалисты рекомендуют учитывать такие факторы:

  • Мощность
  • Скорость, с которой вращается генератор
  • Разновидность тока
  • Показатель давления образованного пара на турбину

С учетом всех показателей, паровая установка обеспечит помещение необходимым количеством недорогой электрической энергии.

Как сделать самому

Если требуется небольшое количество энергии, изготовить паровой генератор электричества своими руками можно из небольшого количества подручных материалов.

Для этого понадобится:

  • Банка из под консервов
  • Алюминиевая проволока
  • Небольшой лист жести
  • Крепежные элементы

Сам процесс изготовления довольно прост:

  • В консервной банке проделать два небольших отверстия
  • В одно из них впаять трубку
  • Взять лист жести и разрезать его на небольшие полоски таким образом, чтобы получилась крыльчатка турбины
  • Закрепить готовую крыльчатку на жестяной полоске, предварительно согнутой в виде буквы «П»
  • При помощи крепежных элементов прикрепить полоску с крыльчаткой на втором отверстии. Стоит обратить внимание на то, что крыльчатка должна быть расположена в сторону трубки
  • Все отверстия и швы, сделанные в процессе изготовления установки, запаять. Это необходимо для обеспечения герметичности конструкции
  • Из проволоки изготовить подставку, на которую устанавливается готовое оборудование
  • При помощи шприца система заполняется водой
  • Под подставкой в специальной коробке поджечь сухое горючее

Изготовленная по данной инструкции паровая машина не способна обеспечить дом необходимым количеством энергии. На ней можно доступно и просто ознакомиться с принципом работы парового генератора электричества.

Процесс создания такой установки, которая бы могла обеспечить дом необходимым количеством энергии немного сложнее, но нет ничего невозможного.

Для ее изготовления понадобиться взять основу – элемент Пелетье. Его можно приобрести отдельно в магазине, а можно снять с вышедшего из строя стационарного ПК.

Элемент ПелетьеЭлемент Пелетье

Элемент Пелетье

Кроме этого для работы потребуется:

  • Модуль, оснащенный выходом USB
  • Лист металла для изготовления корпуса установки. Его можно сделать самостоятельно, а можно взять уже готовый корпус ПК
  • Охладительный радиатор с кулером
  • Паста для герметизации швов
  • Ножницы для резки металла
  • Заклепочник
  • Дрель
  • Паяльник
  • Заклепки                            

В начале процесса изготовить небольшую емкость, в которую можно будет заложить мелкие дрова и разжечь костерок. Верхняя часть емкости сконструировать таким образом, чтобы на нее можно было поставить небольшую кастрюльку с водой и довести ее до кипения.

С одной стороны этой емкости прикрепить элемент Пелетье. С другой же при помощи песты прикрепить радиатор охлаждения с кулером.

Специалисты обращают внимание на то, что радиатор и кулер должны быть достаточно мощными. От того насколько большая разница температур, зависит скорость и количество выделения электрической энергии.

Если оборудование используется в холодное время, его можно постаять прямо в снег и проблема будет практически решена. Если же используется установка в теплое время, без мощного охладителя и кулера не обойтись.  Нельзя забывать о тщательной герметизации всех швов и креплений.

Стабилизатор напряжения спаять с элементом Пелетье. Этот прибор необходим для того чтобы можно было задать определенный показатель электрической энергии на выходе.

Стабилизатор можно купить уже готовым в магазине. Его преимущество заключается в том, что при достижении необходимого показателя на приборе загорается лампочка.

Немаловажное значение также имеет и то, что уже припаянный стабилизатор необходимо загерметизировать таким образом, дабы полностью исключить попадание на него воды. Эксплуатация данной модели парогенератора способна обеспечить нагрев двух куллеров.

Тэн для парогенератораТэн для парогенератора

Тэн для парогенератора

Можно также изготовить еще более мощную модель генератора на пару – тэновую.

Ее основой служит довольно большая емкость, в которой монтируются тэны (один или несколько).

Это зависит от предполагаемой мощности будущей установки.

В боковинах емкости просверлить отверстия, с помощью которых прикрепить тэн.

В качестве крепежных элементов отлично подойдут гайки с резиновыми прокладками.

Если планируется установка двух тэнов, важно разместить их таким образом, чтобы они не соприкасались друг с другом. Рядом с первой емкостью установить вторую.

В ней будет находиться вода, которая по мере необходимости перемещается в первую емкость. Необходимо обратить внимание на то, что в процессе работы оборудования нельзя будет открыть крышку и посмотреть уровень воды в первом сосуде.

Поэтому специалисты рекомендуют немного автоматизировать этот процесс, путем установки обычного поплавка, как у сливном бачке унитаза.

Обе емкости соединяются между собой прочной трубкой, которая вставляется в просверленные отверстия, расположенные нижу того уровня, на котором установлены тэны. Все швы тщательно загерметизировать.

Для того чтобы вода быстро прогревалась, лучше трубку, через которую будет подаваться свежая порция воды,  скрутить в виде спирали. Перед стационарной установкой и эксплуатацией данной установки, ее необходимо протестировать на течь.

Кроме этого, клапан должен выдерживать необходимое давление, в противном случае оборудование работать не сможет. Созданная по такому принципу установка отличается практически 100% КПД. Но ее необходимо поддерживать в рабочем состоянии.

Для этого необходимо периодически проверять тэны на наличие на их стенках накипи. Если таковой будет слишком много, они могут не работать с полной отдачей или согреть вообще.

Для того чтобы накипи образовывалось, как можно меньше периодически необходимо добавлять в воду первой емкости намного лимонной или уксусной кислоты. Некоторые заливают в бак только специальную мягкую воду.

Нередко случаются ситуации, когда паровой генератор электричества для дома выходит из строя по причине того, что он работал насухую. Дабы избежать такой неприятности, рекомендуется установить метки минимального и максимального количества воды в емкости.

Для того чтобы обезопасить готовую установку от скачкой напряжения в сети, можно установить специальный регулятор напряжения, который при падении напряжения автоматически отключает оборудование.

ПГЭ – это уникальное оборудование, которое является автономным источником электричества. Его эксплуатация в домашних условиях имеет ряд преимуществ:

  • Возможность работы на разных видах топлива, которое для каждого владельца установки является наиболее выгодным.
  • Высокий уровень мощности на выходе.
  • Мощность может регулироваться владельцем по его желанию в ручном режиме. Это повышает экономичность эксплуатации установки.
  • Если в качестве источника энергии выбрано твердое топливо, например, дрова, зола, которая остается поле их использования, служит отличным удобрением для садовых и огородных растений.

Промышленность выпускает подобного рода установки в широком разнообразии. Кроме этого, есть возможность изготовить парогенератор самостоятельно в домашних условиях. Для этого нет необходимости использовать дорогостоящие материалы и детали.

Существуют разные варианты и схемы изготовления подобных установок. Прежде, чем остановить выбор на каком-либо конкретном способе, необходимо учитывать в первую очередь мощность парогенератора, которая необходима на выходе. В процессе создания ПГЭ в домашних условиях, необходимо соблюдать правила безопасности и предварительно протестировать готовую установку.

О том, как самостоятельно собрать парогенератор для бани, можно посмотреть на видео:

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.


как горячий пар превращается в электричество / Блог компании Toshiba / Хабр

Учёные до сих пор бьются над поиском самых эффективных способов по выработке тока — прогресс устремился от гальванических элементов к первым динамо-машинам, паровым, атомным, а теперь солнечным, ветряным и водородным электростанциям. В наше время самым массовым и удобным способом получения электричества остаётся генератор, приводимый в действие паровой турбиной.

Паровые турбины были изобретены задолго до того, как человек понял природу электричества. В этом посте мы упрощённо расскажем об устройстве и работе паровой турбины, а заодно вспомним, как древнегреческий учёный опередил своё время на пятнадцать веков, как произошёл переворот в деле турбиностроения и почему Toshiba считает, что тридцатиметровую турбину надо изготавливать с точностью до 0,005 мм.

Как устроена паровая турбина


Принцип работы паровой турбины относительно прост, а её внутреннее устройство принципиально не менялось уже больше века. Чтобы понять принцип работы турбины, рассмотрим, как работает теплоэлектростанция — место, где ископаемое топливо (газ, уголь, мазут) превращается в электричество.

Сама по себе паровая турбина не работает, для функционирования ей нужен пар. Поэтому электростанция начинается с котла, в котором горит топливо, отдавая жар трубам с дистиллированной водой, пронизывающим котел. В этих тонких трубах вода превращается в пар.


Понятная схема работы ТЭЦ, вырабатывающей и электричество, и тепло для отопления домов. Источник: Мосэнерго

Турбина представляет собой вал (ротор) с радиально расположенными лопатками, словно у большого вентилятора. За каждым таким диском установлен статор — похожий диск с лопатками другой формы, который закреплён не на валу, а на корпусе самой турбины и потому остающийся неподвижным (отсюда и название — статор).

Пару из одного вращающегося диска с лопатками и статора называют ступенью. В одной паровой турбине десятки ступеней — пропустив пар всего через одну ступень тяжёлый вал турбины с массой от 3 до 150 тонн не раскрутить, поэтому ступени последовательно группируются, чтобы извлечь максимум потенциальной энергии пара.

На вход в турбину подаётся пар с очень высокой температурой и под большим давлением. По давлению пара различают турбины низкого (до 1,2 МПа), среднего (до 5 МПа), высокого (до 15 МПа), сверхвысокого (15—22,5 МПа) и сверхкритического (свыше 22,5 МПа) давления. Для сравнения, давление внутри бутылки шампанского составляет порядка 0,63 МПа, в автомобильной шине легковушки — 0,2 МПа.

Чем выше давление, тем выше температура кипения воды, а значит, температура пара. На вход турбины подается пар, перегретый до 550-560 °C! Зачем так много? По мере прохождения сквозь турбину пар расширяется, чтобы сохранять скорость потока, и теряет температуру, поэтому нужно иметь запас. Почему бы не перегреть пар выше? До недавних пор это считалось чрезвычайно сложным и бессмысленным —нагрузка на турбину и котел становилась критической.

Паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. Сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры на выходе (снижается давление и температура), после чего уходит в цилиндр среднего давления, а оттуда — низкого. Дело в том, что ступени для пара с разными параметрами имеют разные размеры и форму лопаток, чтобы эффективней извлекать энергию пара.

Но есть проблема — при падении температуры до точки насыщения пар начинает насыщаться, а это уменьшает КПД турбины. Для предотвращения этого на электростанциях после цилиндра высокого и перед попаданием в цилиндр низкого давления пар вновь подогревают в котле. Этот процесс называется промежуточным перегревом (промперегрев).

Цилиндров среднего и низкого давления в одной турбине может быть несколько. Пар на них может подаваться как с края цилиндра, проходя все лопатки последовательно, так и по центру, расходясь к краям, что выравнивает нагрузку на вал.

Вращающийся вал турбины соединён с электрогенератором. Чтобы электричество в сети имело необходимую частоту, валы генератора и турбины должны вращаться со строго определённой скоростью — в России ток в сети имеет частоту 50 Гц, а турбины работают на 1500 или 3000 об/мин.

Упрощённо говоря, чем выше потребление электроэнергии, производимой электростанцией, тем сильнее генератор сопротивляется вращению, поэтому на турбину приходится подавать бо́льший поток пара. Регуляторы частоты вращения турбин мгновенно реагируют на изменения нагрузки и управляют потоком пара, чтобы турбина сохраняла постоянные обороты. Если в сети произойдет падение нагрузки, а регулятор не уменьшит объём подаваемого пара, турбина стремительно нарастит обороты и разрушится — в случае такой аварии лопатки легко пробивают корпус турбины, крышу ТЭС и разлетаются на расстояние в несколько километров.

Как появились паровые турбины


Примерно в XVIII веке до нашей эры человечество уже укротило энергию стихии, превратив её в механическую энергию для совершения полезной работы — то были вавилонские ветряные мельницы. К II веку до н. э. в Римской империи появились водяные мельницы, чьи колёса приводились в движение нескончаемым потоком воды рек и ручьёв. И уже в I веке н. э. человек укротил потенциальную энергию водяного пара, с его помощью приведя в движение рукотворную систему.


Эолипил Герона Александрийского — первая и единственная на следующие 15 веков реактивная паровая турбина. Источник: American Mechanical Dictionary / Wikimedia

Греческий математик и механик Герон Александрийский описал причудливый механизм эолипил, представляющий собой закреплённый на оси шар с исходящими из него под углом трубками. Подававшийся в шар из кипящего котла водяной пар с силой выходил из трубок, заставляя шар вращаться. Придуманная Героном машина в те времена казалась бесполезной игрушкой, но на самом деле античный учёный сконструировал первую паровую реактивную турбину, оценить потенциал которой удалось только через пятнадцать веков. Современная реплика эолипила развивает скорость до 1500 оборотов в минуту.

В XVI веке забытое изобретение Герона частично повторил сирийский астроном Такиюддин аш-Шами, только вместо шара в движение приводилось колесо, на которое пар дул прямо из котла. В 1629 году схожую идею предложил итальянский архитектор Джованни Бранка: струя пара вращала лопастное колесо, которое можно было приспособить для механизации лесопилки.


Активная паровая турбина Бранка совершала хоть какую-то полезную работу — «автоматизировала» две ступки.

Несмотря на описание несколькими изобретателями машин, преобразующих энергию пара в работу, до полезной реализации было еще далеко — технологии того времени не позволяли создать паровую турбину с практически применимой мощностью.

Турбинная революция


Шведский изобретатель Густаф Лаваль много лет вынашивал идею создания некоего двигателя, который смог бы вращать ось с огромной скоростью — это требовалось для функционирования сепаратора молока Лаваля. Пока сепаратор работал от «ручного привода»: система с зубчатой передачей превращала 40 оборотов в минуту на рукоятке в 7000 оборотов в сепараторе. В 1883 году Лавалю удалось адаптировать эолипил Герона, снабдив-таки молочный сепаратор двигателем. Идея была хорошая, но вибрации, жуткая дороговизна и неэкономичность паровой турбины заставили изобретателя вернуться к расчетам.

Турбинное колесо Лаваля появилось в 1889 году, но его конструкция дошла до наших дней почти в неизменном виде.

Спустя годы мучительных испытаний Лаваль смог создать активную паровую турбину с одним диском. На диск с лопатками из четырех труб с соплами под давлением подавался пар. Расширяясь и ускоряясь в соплах, пар ударял в лопатки диска и тем самым приводил диск в движение. Впоследствии изобретатель выпустил первые коммерчески доступные турбины с мощностью 3,6 кВт, соединял турбины с динамо-машинами для выработки электричества, а также запатентовал множество новшеств в конструкции турбин, включая такую их неотъемлемую в наше время часть, как конденсатор пара. Несмотря на тяжёлый старт, позже дела у Густафа Лаваля пошли хорошо: оставив свою прошлую компанию по производству сепараторов, он основал акционерное общество и приступил к наращиванию мощности агрегатов.

Параллельно с Лавалем свои исследования в области паровых турбин вёл англичанин cэр Чарлз Парсонс, который смог переосмыслить и удачно дополнить идеи Лаваля. Если первый использовал в своей турбине один диск с лопатками, то Парсонс запатентовал многоступенчатую турбину с несколькими последовательно расположенными дисками, а чуть позже добавил в конструкцию статоры для выравнивания потока.

Турбина Парсонса имела три последовательных цилиндра для пара высокого, среднего и низкого давления с разной геометрией лопаток. Если Лаваль опирался на активные турбины, то Парсонс создал реактивные группы.

В 1889 году Парсонс продал несколько сотен своих турбин для электрификации городов, а еще пять лет спустя было построено опытное судно «Турбиния», развивавшее недостижимую для паровых машин прежде скорость 63 км/ч. К началу XX века паровые турбины стали одним из главных двигателей стремительной электрификации планеты.


Сейчас «Турбиния» выставляется в музее в Ньюкасле. Обратите внимание на количество винтов. Источник: TWAMWIR / Wikimedia

Турбины Toshiba — путь длиной в век


Стремительное развитие электрифицированных железных дорог и текстильной промышленности в Японии заставило государство ответить на возросшее электропотребление строительством новых электростанций. Вместе с тем начались работы по проектированию и производству японских паровых турбин, первые из которых были поставлены на нужды страны уже в 1920-х годах. К делу подключилась и Toshiba (в те годы: Tokyo Denki и Shibaura Seisaku-sho).

Первая турбина Toshiba была выпущена в 1927 году, она имела скромную мощность в 23 кВт. Уже через два года все производимые в Японии паровые турбины выходили из фабрик Toshiba, были запущены агрегаты с общей мощностью 7500 кВт. Кстати, и для первой японской геотермальной станции, открытой в 1966 году, паровые турбины также поставляла Toshiba. К 1997 году все турбины Toshiba имели суммарную мощность 100000 МВт, а к 2017 поставки настолько возросли, что эквивалентная мощность составила 200000 МВт.

Такой спрос обусловлен точностью изготовления. Ротор с массой до 150 тонн вращается со скоростью 3600 оборотов в минуту, любой дисбаланс приведёт к вибрациям и аварии. Ротор балансируется с точностью до 1 грамма, а геометрические отклонения не должны превышать 0,01 мм от целевых значений. Оборудование с ЧПУ помогает снизить отклонения при производстве турбины до 0,005 мм — именно такая разница с целевыми параметрами среди сотрудников Toshiba считается хорошим тоном, хотя допустимая безопасная погрешность на порядок больше. Также каждая турбина обязательно проходит стресс-тест при повышенных оборотах — для агрегатов на 3600 оборотов тест предусматривает разгон до 4320 оборотов.


Удачное фото для понимания размеров ступеней низкого давления паровой турбины. Перед вами коллектив лучших мастеров завода Toshiba Keihin Product Operations. Источник: Toshiba

Эффективность паровых турбин


Паровые турбины хороши тем, что при увеличении их размеров значительно растёт вырабатываемая мощность и КПД. Экономически гораздо выгодней установить один или несколько агрегатов на крупную ТЭС, от которой по магистральным сетям распределять электричество на большие расстояния, чем строить местные ТЭС с малыми турбинами, мощностью от сотен киловатт до нескольких мегаватт. Дело в том, что при уменьшении габаритов и мощности в разы растёт стоимость турбины в пересчёте на киловатт, а КПД падает вдвое-втрое.

Электрический КПД конденсационных турбин с промперегревом колеблется на уровне 35-40%. КПД современных ТЭС может достигать 45%.

Если сравнить эти показатели с результатами из таблицы, окажется, что паровая турбина — это один из лучших способов для покрытия больших потребностей в электричестве. Дизели — это «домашняя» история, ветряки — затратная и маломощная, ГЭС — очень затратная и привязанная к местности, а водородные топливные элементы, про которые мы уже писали — новый и, скорее, мобильный способ выработки электроэнергии.

Интересные факты


Самая мощная паровая турбина: такой титул могут по праву носить сразу два изделия — немецкая Siemens SST5-9000 и турбина производства ARABELLE, принадлежащей американской General Electric. Обе конденсационных турбины выдают до 1900 МВт мощности. Реализовать такой потенциал можно только на АЭС.


Рекордная турбина Siemens SST5-9000 с мощностью 1900 МВт. Рекорд, но спрос на такие мощности очень мал, поэтому Toshiba специализируется на агрегатах с вдвое меньшей мощностью. Источник: Siemens

Самая маленькая паровая турбина была создана в России всего пару лет назад инженерами Уральского федерального университета — ПТМ-30 всего полметра в диаметре, она имеет мощность 30 кВт. Малютку можно использовать для локальной выработки электроэнергии при помощи утилизации избыточного пара, остающегося от других процессов, чтобы извлекать из него экономическую выгоду, а не спускать в атмосферу.


Российская ПТМ-30 — самая маленькая в мире паровая турбина для выработки электричества. Источник: УрФУ

Самым неудачным применением паровой турбины стоит считать паротурбовозы — паровозы, в которых пар из котла поступает в турбину, а затем локомотив движется на электродвигателях или за счет механической передачи. Теоретически паровая турбина обеспечивала в разы больший КПД, чем обычный паровоз. На деле оказалось, что свои преимущества, как то высокая скорость и надежность, паротурбовоз проявляет только на скоростях выше 60 км/ч. При меньшей скорости движения турбина потребляет чересчур много пара и топлива. США и европейские страны экспериментировали с паровыми турбинами на локомотивах, но ужасная надежность и сомнительная эффективность сократили жизнь паротурбовозов как класса до 10-20 лет.


Угольный паротурбовоз C&O 500 ломался почти каждую поездку, из-за чего уже спустя год после выпуска был отправлен на металлолом. Источник: Wikimedia

Основные виды промышленных парогенераторов — принцип работы и устройство генераторов пара

27.05.2019

Парогенератор — это специализированное оборудование, предназначенное для преобразования жидкости, чаще всего, воды, в пар. Жидкость нагревается при сжигании какого-либо топлива: древесина, уголь, нефть или природный газ.

Переход жидкости к газообразному состоянию создает давление, а затем расширение, которое может быть направлено и использовано как источник энергии.

Поршни с паровым двигателем сыграли важную роль в развитии фабрик, железнодорожных локомотивов, пароходов и многих других образцов механического оборудования.

Одним из самых ранних применений промышленного парогенератора в технике был паровоз. Топливо, в виде дров или угля, подавалось в топку. Полученное тепло направлялось через систему трубок, которые нагревали воду, которая хранилась в специальном резервуаре.

После того, как температура достигала уровня кипения, энергия, созданная из пара, затем приводила в движение поршни, которые поворачивали колеса паровоза. Основной функцией паровой энергии было движение поезда, но она также активно применялась в тормозах и свистке.


Устройство парогенераторов для промышленности

В сравнении с паровыми бойлерами, паровые генераторы содержат меньше стали в конструкции и используют одиночный паровой змеевик вместо множества маленьких шлангов. Специализированный насос подачи воды используется для непрерывной качки воды по шлангу.

Парогенератор использует в своей конструкции единовременную принудительную подачу воды для того чтобы превращать поступающую воду в пар за один раз с помощью змеевика нагрева.

По мере того как вода проходит через змеевик, тепло передается от горящих газов и заставляет воду превращаться в пар. В конструкции генератора не используется паросборник, где между паром и водой свободное пространство внутри, поэтому для достижения 99,5% качества пара необходимо использовать влаго/паро — отделитель.

Из-за того что генераторы не используют большой напорный бак в своей конструкции, как в жаровых трубах, зачастую они очень малы и их легко запустить, что делает их идеальным выбором для ситуаций, когда нужно получить небольшое количество пара за короткое время.

Однако это связано с затратами на производство энергии, поскольку генераторы имеют маленький КПД и поэтому не всегда способны производить достаточное количество пара в различных ситуациях.


Преимущества

По своему устройству и принципу работы парогенераторы достаточно похожи на другие системы паровых котлов, одновременно оставаясь при этом принципиально отличными от них.

Эти, на первый взгляд, малозначительные отличия меняют всю работу системы, которая, как правило, является менее мощной, чем у бойлеров, но имеет ряд преимуществ.

Например, парогенераторы обладают более простой конструкцией, что позволяет им намного быстрее запускаться и легче работать, чем полномасштабный промышленный бойлер. Они также меньше в размерах, что делает их более универсальными, при работе в ограниченном пространстве их часто можно увидеть в качестве вспомогательных котлов.

Следующая причина, по которой они часто используются в качестве вспомогательных котлов, заключается в том, что они довольно легко и быстро запускаются.

Из-за их компактной конструкции, одиночного змеевика и относительно более низкой вместительности воды, эти машины могут быть запущены и работать на полной мощности в более короткие сроки, по сравнению  с полномасштабными бойлерами, что делает их полезным в аварийных ситуациях.

Это похоже на сравнение гоночного мотоцикла с военным танком — первый быстрее разгоняется и работает быстро, но не очень силен, в то время как второй долго заводится, но в конечном итоге является более мощной машиной. И притом, что они вообще стоят намного меньше, чем полномасштабные бойлеры, они могут быть более востребованы для работ, которые не требуют таких высоких уровней пара.


Где применяются

Когда вы думаете о паровой энергии, вы можете представить себе паровые двигатели или пыхтящие локомотивы. Однако промышленные парогенераторы имеют множество применений:

  • Дистилляция
  • Стерилизация
  • Подогрев теплового насоса
  • Косвенный нагрев
  • Отопление, вентиляция и кондиционирование воздуха

Электрический генератор может преобразовать приблизительно 97% электрической энергии из пара. Автоматическое управление безопасностью — регулятор уровня жидкости, например — поддерживает необходимый уровень воды и отключает генератор если уровень воды падает ниже нормы.

Парогенераторы с таким функционалом могут работать непрерывно без перегрева.

Генераторы пара из нержавеющей стали являются лучшим вариантов в случае необходимости достаточно чистого пара. Нержавейка уменьшает вероятность загрязнения пара.


Виды паровых генераторов

Дизельный парогенератор

Они следуют подобной концепции теплообмена как бойлеры со змеевиками, но могут производить даже более высокое давление в зависимости от мощности. Они используются в основном на электростанциях.

Их паровое давление может ровняться, а в некоторых паровых машинах и превышать максимальное водяное давление в 221 Бар. Температура пара на этих машинах высокого давления может достигать 500 градусов по Цельсию.

Теплоутилизационный парогенератор

Теплоутилизационный парогенератор, или теплообменный аппарат, собирает облака пара под высоким давлением и использует этот пар после отработки через цепь теплообменников для питания других менее мощных паровых машин.

Этот восстановленный пар можно даже использовать на этих генераторах с более низким давлением для отопления промышленных предприятий или домов.

Парогенераторы для атомной электростанции

Существует два основных типа ядерных парогенераторов: (BWR), реактор с горячей водой и (PWR), реактор с водой под давлением. Вода в BWR превращается в пар внутри самого ядерного реактора и идет к турбине вне резервуара.

PWR вода находится под давлением свыше 100 Бар и никаких процессов кипения воды внутри реактора не происходит.

Паровые генераторы на солнечной энергии

Солнечные парогенераторы являются самым чистым способом получения пара. Вода бежит по трубам внутри панели солнечных батарей.

Солнце нагревает воду, а затем вода проходит через паровую турбину, создавая электроэнергию. Такой вид парогенераторов не производит отходов и не загрязняет окружающую среду.


Принцип работы

Теплообмен

Парогенераторы используются для получения и использования энергии, выделяющейся в виде тепла, в самых различных процессах и преобразования ее в более полезную форму, такую как механическая и электрическая энергия.

Получаемое тепло используется для производства электроэнергии или обрабатывается в качестве побочного продукта какого-либо другого промышленного процесса.

Непосредственный источник тепла обычно загрязнен, например, радиоактивное топливо на атомной электростанции, поэтому первым шагом выработки паровой энергии является передача этого тепла в чистую воду с помощью теплообменника.

Это делается путем поднятия тепловым источником температуры топлива, типа бензина и т.п., которое циркулирует в замкнутой цепи. Топливо, в свою очередь, нагревает резервуар с водой, не загрязняя его.

Создание пара

Горячее топливо циркулирует по водяной бане для получения пара. Существует несколько различных геометрических схем, но принцип остается тот же.

Нагреваемая жидкость отводится по нескольким трубкам малых размеров для увеличения своего поверхностного контакта с водой и для того чтобы обеспечить ускорение теплообмена и получение пара.

Пар, производимый на современных атомных и угольных электростанциях, часто находится в сверхкритических условиях или выше критической точки на фазовой диаграмме воды (374 градуса Цельсия и 22 МПа).


Превращение тепла в электроэнергию

Пар сверхкритического давления перегружен энергией. Энергия пара преобразуется в механическую путем прогона ее через паровую турбину. Высокое давление пара давит на множество наклоненных лопастей турбины, и заставляет их вращаться.

Эта механическая энергия преобразуется в электрическую энергию путем использование энергии вращения паровой турбины для того чтобы привести в действие электрический генератор. Турбина, представленная на изображении, может генерировать до 65 мегаватт электроэнергии.

Заключение

Тепло — это источник энергии, который превращает воду в пар. Источник топлива для обеспечения необходимого тепла может использоваться в различных формах. Из древесины, угля, нефти, природного газа, бытовых отходов или биомассы, ядерных реакторов или энергии солнца можно получить достаточное тепло.

Каждый вид топлива является источником тепла для нагрева воды. Просто каждый из них делает это по-своему. Некоторые являются экологически чистыми, а другие оказывают достаточно сильное влияние на окружающую среду.


«Как сделать паровой генератор? » – Яндекс.Кью

Инверторный генератор (или мини-электростанция) нужен для генерации электроэнергии в тех случаях, когда ее нет, наблюдаются перебои с электроснабжением. 

На сегодня это лучший резервный источник питания. Компактный генератор выдает электроэнергию наивысшего качества, преобразуя ее в стабильное напряжение без перепадов. Такие генераторы еще называют цифровыми, так как они напичканы электроникой.

Инверторы работают на базе бензина, дизеля или природного газа. У них может быть разная мощность. Самые простые, компактные и почти бесшумные модели будут обеспечивать вас электричеством до 3-4 часов. Мощные, с объемными баками для топлива — 10-20 часов.

www.youtube.com/embed/NBgx8w0-59Q?wmode=opaque

www.youtube.com/embed/EK2z_wCRtQE?wmode=opaque

Steam Account Generator

Мы не гарантируем доступ к электронной почте для созданных учетных записей бесконечно.

Информация о счете

Отображаемое имя:
Настоящее имя:
Изображение профиля:
Страна: Никто Афганистан Аландские острова Албания Алжир американское Самоа Андорра Ангола Ангилья Антарктида Антигуа и Барбуда Аргентина Армения Аруба Австралия Австрия Азербайджан Багамы Бахрейн Бангладеш Барбадос Беларусь Бельгия Белиз Бенин Бермуды Бутан Боливия Бонэйр, Синт-Эстатиус и Саба Босния и Герцеговина Ботсвана Остров Буве Бразилия Британская территория Индийского океана Британские Виргинские острова Бруней-Даруссалам Болгария Буркина-Фасо Бурунди Камбоджа Камерун Канада Кабо-Верде Каймановы острова Центрально-Африканская Республика Чад Чили Китай Остров Рождества Кокосовые (Килинг) острова Колумбия Коморские острова Конго Конго, Демократическая Республика Острова Кука Коста-Рика Кот-д’Ивуар (Кот-д’Ивуар) Хорватия Куба Кюрасао Кипр Республика Чехия Дания Джибути Доминика Доминиканская Респблика Эквадор Египет Сальвадор Экваториальная Гвинея Эритрея Эстония Эфиопия Фолклендские (Мальвинские) острова Фарерские острова Фиджи Финляндия Франция Французская Гвиана Французская Полинезия Южные Французские Территории Габон Гамбия Грузия Германия Гана Гибралтар Греция Гренландия Гренада Гваделупа Гуам Гватемала Гернси Гвинея Гвинея-Бисау Гайана Гаити Острова Херд и Макдональд Гондурас Гонконг Венгрия Исландия Индия Индонезия Ирак Ирландия Исламская Республика Иран Остров Мэн Израиль Италия Ямайка Япония Джерси Иордания Казахстан Кения Кирибати Корея, Народно-Демократическая Республика Корея, Республика Косово Кувейт Кыргызстан Лаос Латвия Ливан Лесото Либерия Ливия Лихтенштейн Литва Люксембург Макао Македония, бывшая югославская Республика Мадагаскар Малави Малайзия Мальдивы Мали Мальта Маршалловы острова Мартиника Мавритания Маврикий Майотта Мексика Микронезия Молдова, Республика Монако Монголия Монсеррат Черногория Марокко Мозамбик Мьянма Намибия Науру Непал Нидерланды Новая Каледония Новая Зеландия Никарагуа Нигер Нигерия Ниуэ Остров Норфолк Северные Марианские острова Норвегия Оман Пакистан Палау Палестинская территория, оккупированная Панама Папуа — Новая Гвинея Парагвай Перу Филиппины Питкэрн Польша Португалия Пуэрто-Рико

.Генератор имен в Steam

— genr8rs

Другие наши интересные сайты:
GameBanana | INVfo
  • Викторина на мастерство Fortnite
  • Генератор имен League of Legends
  • Генератор имен PUBG
  • Генератор имен Fortnite
  • Выбор местоположения Fortnite
  • Генератор названия клана Fortnite
  • Калькулятор уровня 100 боевого пропуска Fortnite Season 8
  • Калькулятор уровней Fortnite Season 8
  • Кольцо Элизиума Генератор имен
  • Генератор имен Apex Legends
  • Генератор имен ракетной лиги
  • Генератор имен Nintendo Switch
  • Генератор имен Red Dead Redemption
  • Генератор названия игры
.

Добавить комментарий

Ваш адрес email не будет опубликован.