Паяльник низковольтный своими руками: Паяльник своими руками с питанием от адаптера 12 В

Содержание

Паяльник своими руками с питанием от адаптера 12 В

Сейчас в магазинах можно приобрести паяльники на любой вкус и цвет. Однако иногда хочется создать что-то своими руками, особенно если свободного времени достаточно. Сегодняшний поэтапный обзор, который в редакцию Homius прислал Леонид Владимирович Оренбуркин из города Тверь, расскажет о том, как сделать паяльник на 12 В из того, что есть под рукой практически у каждого домашнего мастера, увлечённого самоделками.

Отработав долгое время электромонтёром в РЭС (районных электросетях) я вынужден был уволиться по состоянию здоровья, поэтому свободного времени появилось более, чем достаточно. Первое время не знал, чем себя занять. И вот однажды пришла в голову мысль оборудовать небольшую мастерскую. С этого и началось моё увлечение самоделками. Изготовление одной из таких я и хотел бы описать в своей статье в надежде, что это будет кому-то интересно.

Содержание статьи

Первые шаги: подготовка ручки-корпуса будущего паяльника

Для начала был взят деревянный черенок (лучше брать берёзу или клён), обточен «под руку» и зашлифован. Форму ему можно придать любую, но для первого раза я не стал делать лишнюю работу. Слишком длинным его также не следует делать, хотя, это дело вкуса.

Деревянный черенок, который будет использован в качестве ручки

Далее в работу вступила дрель с толстым сверлом, на котором при помощи изоленты я обозначил ограничитель отверстия. Глубины в 2-3 см для мини-паяльника на 12 В было вполне достаточно. Проделанное по центру ручки с торца отверстие будет служить для установки гнезда питания и протяжки проводов к нагревательному элементу.

С обратной стороны было просверлено идентичное отверстие, которое послужит для установки жала паяльника.

Высверливаем одинаковые отверстия с двух сторон ручки паяльника

Подготовка пазов для питающего провода

На расстоянии 2-3 см от того края, где планируется установить гнездо для питающего штекера, делаем разметку для двух отверстий (по противоположным сторонам). Для удобства замера расстояния можно использовать то же сверло с отмеченной изолентой глубиной. Определив места расположения отверстий при помощи маркера, снова берёмся за дрель, но с уже более тонким сверлом.

Отмечаем точки сверления отверстий под провода

Засверливание под провода следует производить под небольшим углом – так их впоследствии будет проще протянуть. В итоге должно получиться так, чтобы провод входил с торца и под небольшим изломом прокладывался далее, к обратному концу рукоятки, на которой будет расположено жало паяльника.

Высверливаем более тонкие отверстия под углом для упрощения протяжки проводов

Теперь необходимо сделать так, чтобы тянущиеся от гнезда питания вдоль ручки провода не мешали при работе с паяльником. Для этого, от отверстий до того края, где будет расположено жало, я прорезал пазы. Сделать это несложно при помощи обычного канцелярского ножа. Конечно, если бы рукоятка делалась из сосны, резать по волокнам было бы гораздо проще, однако такой материал был «отметён» сразу. Причиной тому стало то, что дополнительное покрытие ручки не планировалось, а значит, была вероятность того, что руки при работе могут испачкаться в смоле.

Прорезаем пазы, в которые впоследствии будет проложен провод

Когда пазы прорезаны, их желательно немного подработать обычным круглым надфилем. Ведь несмотря на кустарное производство паяльника на 12 В, им предполагается работать, а значит, аккуратность здесь будет совсем не лишней. В итоге, получилась рукоятка с отверстиями с двух сторон и пазами под провод, которая готова к дальнейшей работе – сборке начинки устройства для пайки проводов.

Рукоятка готова, можно приступать к сборке

Монтаж гнезда питания паяльника, протяжка проводов

К обычному гнезду, подходящему к адаптеру от старого телевизора, я припаял 2 провода – красный и чёрный, которые были протянуты сначала через центр, а после разведены по двум сторонам ручки сквозь более тонкие отверстия. Гнездо для подключения штекера от блока питания было погружено в рукоятку с торца, после чего зафиксировано при помощи термоклея. Остывает он быстро, после чего, соединение становится достаточно жёстким.

Конечно, можно было сразу протянуть провода от адаптера, отрезав штекер, однако я решил, что вариант с отсоединяемым блоком питания будет намного удобнее не только при хранении, но и в процессе эксплуатации. И, забегая немного вперёд, могу сказать, что не прогадал.

Фиксируем гнездо в рукоятке при помощи термоклея

Выбор медной жилы от кабеля для жала паяльника

Жало не должно быть слишком толстым, чтобы мощности адаптера хватило на его прогрев. Однако и слишком тонкое  будет здесь некстати – оно будет гнуться при малейшем давлении, что совершенно неприемлемо. Оптимальная толщина была подобрана методом проб и ошибок. В моём случае она составила 2,7 мм в диаметре.

Медная жила для жала паяльника подобрана

Отрезав кусок медной жилы подходящей длины, я установил его в приготовленное в рукоятке отверстие (с противоположной от гнезда питания стороны). Предварительно оно было заполнено строительным гипсом. Этот материал, помимо жёсткой фиксации жала, играет и другую немаловажную роль. Поглощая тепло, он не даст древесине прогореть под воздействием высоких температур в процессе работы паяльника.

После того, как жало оказалось на месте, следовало подравнять гипс с торца ручки

Выбор блока питания с выходом 12 В для паяльника

Все адаптеры имеют различия по выходной силе тока, поэтому и длину нагревательного элемента в каждом случае придётся вымерять опытным путём. В моём случае, выход составил 12 В/1 А. По сути, большей силы тока для миниатюрного паяльника и не требуется, поэтому таким блоком питания, я остался вполне доволен.

Данные по блоку питания, который я использовал для изготовления паяльника

Замеры длины нихрома, достаточной для работы паяльника

Тонкую нихромовую проволоку, которая была использована для изготовления нагревательного элемента, следовало подключить к блоку питания, чтобы понять, какой должна быть длина. Для этого в брусок я вкрутил 2 шурупа, между которыми она и была натянута. Далее, при помощи «крокодильчиков», которые постепенно сдвигались, я определил размер, при котором паяльник будет разогреваться до температуры плавления припоя. Иными словами, нихром должен раскалиться до красна.

Опытным путём вымеряем длину нагревательного элемента

Подготовка жала, монтаж нагревателя

Теперь было необходимо изолировать жало от нихрома. Для этого был использован кембрик из стеклоткани. Он был одет на медную жилу примерно до середины, после чего зафиксирован по краям тонкой медной проволокой. Стоит отметить, что концы её удалять не нужно – они должны торчать примерно на 4-5 см. В дальнейшей работе это нам пригодится.

«Чехол» из стеклоткани зафиксирован при помощи тонкой медной проволоки

Поверх стеклоткани была намотана тонкая нихромовая проволока, вымеренная по длине ранее, её концы скручены с медными жилками, расположенными вначале и в конце кембрика. Результатом стал полноценный нагревательный элемент, способный повысить температуру жала до необходимой.

Здесь стоит отметить, что чем больше будет длина жала от нагревателя до рабочего края, тем дольше будет происходить повышение температуры. При небольшой мощности блока питания и слишком длинном жале паяльника возможно, что устройство и вовсе не достигнет рабочей температуры. Но здесь можно поэкспериментировать и рассчитать всё так, чтобы в итоге получилось некое подобие паяльной станции, которая имеет меньшие рабочие температуры для работы с микросхемами и иными SMD-элементами.

Нагревательный элемент готов, можно приступать к завершающему этапу изготовления паяльника

Окончательная сборка паяльника с питанием от 12 В

Для финального этапа сборки понадобились ещё 2 куска тонкого термостойкого кембрика. Они были одеты на «усы» тонких медных жил, к которым присоединён нагревательный элемент. Свободные их концы были скручены с проводами, идущими от гнезда питания. Уже после я подумал, что неплохо было бы установить на ручке небольшой тумблер, который позволит отключать подачу напряжения на нагреватель, не вытаскивая блок питания из розетки или гнезда в рукоятке паяльника. Но это уже частности. Если кто-либо из читателей будет собирать такое устройство, стоит иметь в виду такую возможность.

Скручиваем провода максимально плотно – контакт должен быть хорошим

Финальные штрихи: облагораживаем внешний вид самодельного паяльника

Вообще здесь можно обойтись двумя отрезками изоленты, обёрнутыми вокруг ручки, которые зафиксируют питающие провода. Но тут уже дело вкуса. Кто-то захочет обмотать изолентой ручку полностью или использовать иные материалы, которые придадут изделию интересный внешний вид, на работоспособность паяльника это уже никак не повлияет. В любом случае, все электротехнические работы уже выполнены. Можно приступать к первому включению паяльника в сеть и его проверке.

Фиксации проводов в двух местах вполне достаточно

Что происходит при первичном включении: некоторые нюансы, которые нужно учесть

Когда готовый паяльник с питанием от 12 В впервые включается в сеть, и нихром раскаляется, стеклоткань под ним начинает сильно дымить. Этого не следует пугаться – изоляционный слой не сможет прогореть. Упомянул я об этом потому, что один из «мастеров» пытался мне высказать, что паяльник, собранный по моему методу, неработоспособен. А такой вывод он сделал только на основании возникновения дыма после первичной подачи питания на нагреватель.

Спустя буквально минуту, стеклоткань перестанет дымить. Немного подождав, можно попробовать расплавить припой. И вот тут есть ещё один нюанс. Если мощности паяльника недостаточно, чтобы расплавить толстый пруток олова, это не значит, что изготовленный паяльник неработоспособен. Для подобного материала требуются большие мощности и температуры. Стоит взять в качестве припоя тонкую оловянную проволоку. С ней работа пойдёт веселее.

Предлагаю посмотреть несколько фотопримеров работы с новым паяльником.

Тонкая оловянная проволока – вот, что нужноОблудить провода такой паяльник сможет без проблемГотовая спайка – не хуже, чем заводским устройством

Заключение

На сегодняшний день мне уже неинтересно пользоваться паяльником, приобретённым в магазине. Гораздо приятнее держать в руках прибор, который изготовил я сам. Да и работает он ничуть не хуже, чем заводской. В планах самостоятельно собрать полноценную паяльную станцию с датчиком температуры и регулировкой её величины, чтобы можно было перепаивать светодиоды и иные SMD-элементы. А для паяльника, изготовление которого описано в статье, уже почти готов портативный автономный блок питания, состоящий из компактных аккумуляторов на 12 В, приобретённых на одном из китайских ресурсов.

Для подобной работы лучше пользоваться паяльной станцией – велика опасность перегрева элементов

Очень надеюсь, что мой обзор поможет кому-либо из читателей. Вопросы по теме можно задать в комментариях ниже. Не обещаю очень быстрого ответа, но то, что он будет – это несомненно. Также хотелось бы узнать личное мнение читателей о подобной самоделке. Будет ли она полезна для ремонта бытовых приборов в квартире или частном доме? Я же на этом прощаюсь, спасибо за внимание.

Предыдущая

ИСТОРИИКомфорт на природе и в пути: изготовление раскладного стула своими руками

Следующая

ИСТОРИИПривычное покрытие новыми материалами: перестилаем деревянные полы

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Включаем низковольтовый паяльник в сеть 220 без трансформатора

Я уже очень давно пользуюсь низковольтными паяльниками. Так задалось, что мне их досталось некоторое количество. Питаются они от безопасных 42 вольт. Обычно их подключают к трансформатору, но в наличии у меня такого нет. Я использую для питания гасящий конденсатор. О расчете конденсатора — далее.

Изготовление приставки для паяльника на 42 В



Корпусом для блока питания паяльника, будет служить корпус от старого DVD — привода. Его думаю покрасить, наклейку видимо придется оставить, под ней направляйка для диска. Сняв которую образуется отверстие, чего мне не нужно.

Переднюю панель сделаю из пластика. Применю обрезок plexiglas оранжевого цвета, такой был в наличии.

Выключателем будет служить тумблер Т3. Можно применить любой на ток от двух ампер.

Гасящий конденсатор считаем по простой формуле. У меня паяльник имеет следующие параметры:
  • — мощность 65 ватт;
  • — рабочее напряжение 42 вольта;
  • — рабочий ток 1,54 ампера.

На листочке виден подробный подсчет емкости конденсатора. Получается. нам нужен конденсатор емкостью 22 mF.

Конденсаторы взял старенькие, стояли в старом корпусе БП паяльника. Я их зашкурил и покрасил. Синие конденсаторы по 4 mF, два конденсатора по 20 mF. Рабочее напряжение конденсаторов должно быть не менее 350 Вольт. Те что по 4 мкФ, у меня на 450 и 600 вольт. Те, которые по 20 mF, они на 200 вольт, поэтому включу их последовательно. На выходе получаем емкость 10 мкФ с рабочим напряжением 400 вольт. На одном из конденсаторов припаян разрядный резистор на 470 ком. При отключении от сети, он разряжает заряд конденсаторов.

Под корпус вырезаем заглушки. Оранжевая — передняя, она из plexiglas.
Белая заглушка — задняя, она из ПВХ пластика.

Корпус DVD — привода, покрашу из баллончика.

На панели из plexiglas делаю разметку под: розетку, тумблер и неоновую лампу. Неоновую лампу можно заменить светодиодом, включенный через резистор.

Конденсаторы по 4 mF закрепляю скобой. Черные конденсаторы, скрепил между собой при помощи уголка.

На дне прикрутил ножки. В роли ножек, крышки от медицинских пузырьков.

Задняя панель из ПВХ. Прикрутил винтами и просверлил отверстие под сетевой шнур. Конденсаторы спаял параллельно. Сетевой шнур припаиваю на тумблер.

Один из сетевых проводов, через тумблер, идет на розетку. Второй провод через конденсатор на розетку. Неоновая лампа подключена с тумблера.
При включении без нагрузки, напряжение составляет около 160 вольт.

С подключенным паяльником, напряжение составляет около 40 вольт.

Такой себе блок питания получился. Доступно и надежно. Пользуюсь подобным способом очень давно. Так же можно рассчитать конденсатор и для любой низковольтной нагрузки.

Смотрите видео


Как отремонтировать паяльник, устройство, схема, расчет обмотки

Электрический паяльник – это ручной инструмент, предназначенный для скрепления между собой деталей посредством мягких припоев, путем разогрева припоя до жидкого состояния и заполнения ним зазора между спаиваемыми деталями.

Электрическая схема паяльника

Как видите на чертеже электрическая схема паяльника очень простая, и состоит всего из трех элементов: вилки, гибкого электропровода и нихромовой спирали.

Как видно из схемы, в паяльнике отсутствует возможность регулировки температуры нагрева жала. И даже, если мощность паяльника выбрана правильно, то все равно не факт, что температура жала будет требуемой для пайки, так как длина жала со временем уменьшается за счет постоянной его заправки, припои тоже имеют разные температуры плавления. Поэтому для поддержания оптимальной температуры жала паяльника приходится подключать его через тиристорные регуляторы мощности с ручной регулировкой и автоматическим поддержанием заданной температуры жала паяльника.

Устройство паяльника

Паяльник представляет собой стержень из красной меди, который нагревается спиралью из нихрома до температуры плавления припоя. Стержень паяльника делается из меди благодаря высокой ее теплопроводности. Ведь при пайке нужно быстро передать жалу паяльника от нагревательного элемента тепло. Конец стержня имеет клиновидную форму, является рабочей частью паяльника и называется жалом. Стержень вставляется в стальную трубку, обернутую слюдой или стеклотканью. На слюду намотана нихромовая проволока, которая служит нагревательным элементом.

Поверх нихрома намотан слой слюды или асбеста, служащий для снижения потерь тепла и электрической изоляции спирали из нихрома от металлического корпуса паяльника.

Концы нихромовой спирали соединены с медными проводниками электрического шнура с вилкой на конце. Для обеспечения надежности этого соединения концы нихромовой спирали согнуты и сложены вдвое, что снижает нагрев в месте соединения с медным проводом. В дополнение соединение обжато металлической пластинкой, лучше всего обжим делать из алюминиевой пластины, которая имеет высокую теплопроводность и будет эффективнее отводить тепло от места соединения. Для электрической изоляции на место соединения надевают трубки из термостойкого изоляционного материала, стеклоткани или слюды.

Медный стержень и нихромовая спираль закрывается металлическим корпусом, состоящим из двух половинок или сплошной трубки, как на фотографии. Корпус паяльника на трубке фиксируется накидными колечками. На трубку, для защиты руки человека от ожога, насаживается ручка из плохо провидящего тепло материала, дерева или термостойкой пластмассы.

При вставлении вилки паяльника в розетку электрический ток поступает на нихромовый нагревательный элемент, который нагревается и передает тепло медному стержню. Паяльник готов к пайке.

Маломощные транзисторы, диоды, резисторы, конденсаторы, микросхемы и тонкие провода паяют паяльником мощностью 12 Вт. Паяльники 40 и 60 Вт служат для пайки мощных и крупногабаритных радиодеталей, толстых проводов и небольших деталей. Для пайки крупных деталей, например, теплообменников газовой колонки, потребуется уже паяльник мощностью сто и более Вт.

Напряжение питания паяльников

Электрические паяльники выпускаются рассчитанные на напряжение питающей сети

НИЗКОВОЛЬТНЫЙ ПАЯЛЬНИК СВОИМИ РУКАМИ


   Чтобы удобно и качественно паять различные миниатюрные детали и микросхемы, включая SMD компоненты, разработана конструкция миниатюрного низковольтного паяльника. Напряжение паяльника — 6 В, мощность около 15-ти Ватт. Диаметр нагревательного элемента пол сантиметра. 

   Малые размеры и масса, легкость в изготовлении, простота конструкции паяльника, сподвигли на опубликование данной статьи. Основа паяльника представляет собой тонкостенную металлическую трубку, внутри которой размещены втулка 2 со стопорным винтом для фиксации паяльного стержня 1, керамическая трубка 4 с навитым на нее проволочным нагревательным элементом 5. От кожуха нагревательный элемент отделен слюдяной трубкой 6. Выводы нагревательного элемента пропущены через изолирующие керамические трубки 7 малого диаметра и электрически соединены с проводами кабеля питания 12 винтами с шайбами, которые закреплены на торце передней пробки 11 ручки паяльника с помощью резьбовых втулок 10. Втулки вклеены в отверстия, просверленные в пробке 11. Кожух нагревательного узла также привинчен к передней пробке ручки. Для этого конец трубки кожуха надрезан бокорезами по образующим на длину 2…3 мм от края и лепестки пинцетом отогнуты под углом 90 град, так, что получился «цветок ромашки» с лепестками шириной около 1 мм. Лепестки кожуха 3 зажаты между фланцами 8, под пакет фланцев подложены две втулки-стойки 9, и двумя длинными винтами М2 весь узел прикреплен к торцу передней пробки ручки. К одному из винтов подведен провод заземления 14. Для крепления фланцев предусмотрена еще одна пара резьбовых втулок 10, вклеенных в торец пробки. Резьбовые втулки надо располагать таким образом, чтобы фланцы не закрывали винтов крепления проводников питания прибора. Кожух 3 изготовлен из металлического большеобъемного стержня шариковой ручки, у которого обрезана коническая часть с пишущим узлом. 

   Заготовкой для кожуха может послужить элемент от телескопической антенны радиоприемника. Втулку 2 можно изготовить из латуни. Внешний диаметр должен быть таким, чтобы втулка с усилием входила в кожух, а внутренний — 3 мм. Резьба под стопорный винт — М2. Осевая длина втулки — около 6 мм. Керамическими элементами нагревателя будут трубчатые постоянные конденсаторы. У них отпаивают проволочные выводы, растворителем удаляют краску и мелкой наждачной бумагой снимают внешнее металлическое напыление. Для нагревательного элемента потребуется кусок спирали бытовой электроплитки, имеющий сопротивление 3 Ома. Проволоку выравнивают и сгибают пополам. Затем получившуюся пару проводов навивают на хвостовик сверла диаметром немного меньшим диаметра используемой керамической трубки. Выводы спирали сгибают так, чтобы они находились диаметрально противоположно один другому. Керамическую трубку, вращая, вводят в спираль. 

   Тонкой отверткой или лезвием ножа выравнивают зазор между отдельными витками спирали. Фланцы 8 вырезают из листовой стали толщиной 0,7… 1 мм. Ручка паяльника — сборная. Переднюю и заднюю пробки изготавливают из деревянной катушки для ниток. Пустую катушку разрезают пополам. Во фланце передней пробки 11 сверлят отверстия, в которые на синтетическом клее устанавливают втулки 10 с внутренней резьбой М2 под винты крепления корпуса нагревателя и токопровода. Если пробку изготовить из плотной древесины, можно отказаться от резьбовых втулок и крепить выводы нагревателя и пакет фланцев шурупами. Трубчатый корпус 13 ручки длиной 90… 100 мм склеен из плотной бумаги на оправке подходящего диаметра.

   Если не нашлось готовых втулок-стоек 9 (наружный диаметр — 5…6 мм, внутренний — 2.1…3 мм, длина — 4,4…7 мм), их можно заменить удлиненными гайками с резьбой М2,5 или МЗ. В крайнем случае допустимо каждую втулку заменить столбиком из трех-четырех гаек МЗ. Сначала собирают нагреватель. Пластину слюды от пришедшего в негодность заводского электропаяльника ЭПСН-40/220 сворачивают в трубку длиной, на 2…3 мм большей длины керамической трубки нагревательного элемента. Слюда будет более гибкой, если ее осторожно прокалить в пламени. Эту слюдяную трубку 6 вставляют в кожух и втулкой 2 сдвигают ее глубже, в рабочее положение. Просвет в кожухе 3 в сборе со слюдяной трубкой 6 должен быть таким, чтобы нагревательный элемент не только без усилия входил внутрь, но и зазор не превышал нескольких десятых долей миллиметра. Кожух продевают в центральное отверстие одного из фланцев 8, с другого конца прижимают второй фланец 8 и предварительно сжимают их двумя винтами с гайками. На выводы нагревательного элемента надевают изоляционные керамические трубки 7 и отгибают выводы в противоположные стороны. Нагревательный элемент вставляют в кожух со стороны фланцев. С передней стороны в кожух вставляют втулку 2. 

   Между ней и слюдяной трубкой 6 надо предусмотреть слюдяную шайбу толщиной 0,2…0,3 мм, которая предотвратит случайное замыкание конца спирали на втулку. Втулку фиксируют стопорным винтом. Двумя длинными винтами М2 крепят пакет фланцев 8 к ручке, подложив втулки—стойки 9. Пропускают через осевое отверстие в ручке кабель питания 12 и привинчивают концы его проводников вместе с выводами нагревателя, при этом излишки длины выводов обрезают. Остается во втулку 2 вставить паяльный стержень 1, закрепить его винтом — и инструмент готов. Стержень изготовляют из жесткой медной проволоки диаметром 3 мм. Заготовку стержня молотком слегка расплющивают примерно посредине. Получившееся утолщение будет служить упором, предотвращающим глубокое погружение хвостовика стержня в канал нагревателя паяльника. Следует учесть, что малая толщина керамической трубки нагревательного элемента требуют точной подгонки формы и размеров хвостовика паяльного стержня. Хвостовик паяльника должен без заедания и с минимальным люфтом входить в нагреватель. По этой же причине паяльник следует оберегать от ударов и больших механических нагрузок на паяльный стержень. Формовку жала паяльного стержня лучше выполнить молотком (а не напильником) — это повысит его стойкость к растворению в припое. Длина рабочей части стержня не должна быть больше половины длины хвостовика, иначе жало будет быстро охлаждаться при пайке. 

   Представляется полезным снабдить данный низковольтный паяльник регулятором напряжения (мощности), чтоб можно было более точно выставлять температуру жала при пайке SMD компонентов. Учитывая довольно высокие цены на такие паяльники, гораздо дешевле сделать его своими руками.


Поделитесь полезными схемами


ДВОИЧНЫЙ СЧЁТЧИК

   Исследовательская работа на тему функционирование двоичного счетчика. Непременные узлы электронных часов, микрокалькуляторов, частотомеров и других устройств цифровой техники. Основой их служат триггеры со счетным выходом. Простейшим одноразрядным счетчиком импульсов может быть JK – триггер и D – триггер, работающий в счетном режиме.


САМОДЕЛЬНАЯ ПУШКА ГАУССА
   При указанных номиналах схема развивает совсем недурную мощность в 50 ватт! емкость 1000 микрофарад способна заряжать всего за одну секунду. Мощность преобразователя вполне позволяет питать маломощные паяльники, лампы накаливания и т.п


СХЕМА БЕСПРОВОДНОГО ЗАРЯДНОГО УСТРОЙСТВА

   Недавно был разработан способ для зарядки мобильного телефона без проводов! Представьте себе: вы держите сотовый телефон в руках и беседуйте с другом, и в этот момент ваш телефон заряжается, а что самое главное — от него не торчат провода зарядного устройства. Предлагаю два способа реализации этой идеи, вернее способ один — метод индукции тока без проводов, а вариантов конструкции такого беспроводного зарядного устройства целых два.  


Как сделать паяльник своими руками из ручки, резистора

Многие люди интересуются, как сделать паяльник своими руками из подручных материалов, поэтому мы решили более подробно вникнуть в эту тему и рассказать действительно работающий способ. Стоит заметить, что изготовить хороший паяльник сможет каждый человек, в этой статье вы найдете пошаговую инструкцию и несколько видео примеров.

Как сделать паяльник своими руками

Итак, чтобы сделать паяльник с тонким жалом нам необходимо собрать основные материалы. Как правило, их можно найти в гараже, если нет, то ближайший рынок вас точно выручит. Мы решили рассказать самый простой способ, для этого не нужно будет сильно тратиться. Особенное внимание мы остановили на тонкой жиле паяльника, ведь именно ее и не хватает многим электрикам, а затачивать старый не всегда удобно и целесообразно. В другой статье мы делали дрель из подручных материалов, ее также будет интересно прочесть.

Вот такие материалы нужно собрать:

  1. Шариковую ручку.
  2. Резистор МЛТ-0.5, его сопротивление должно составлять 5-10 Ом.
  3. Двухсторонний текстолит – 10х30 мм.
  4. Стальную проволоку диаметром в 0.8 мм.
  5. Небольшой кусок медной проволоки диаметром в 1 мм.

Пошаговая инструкция

Если вы будете выполнять только так, как написано – паяльник своими руками из резистора сделать получится. Способ не сложный даже ребенок сможет справиться с ним без особых усилий.

  1. В первую очередь нужно снять краску с поверхности резистора, можно использовать обычный нож. Если слишком плохо слазит, тогда подключите резистор к источнику питания и немного прогрейте его.
  2. Подготавливаем бочонку, из нее выходит две проволоки, одну нужно срезать. В этом месте сверлим отверстие под медную проволоку, ее диаметр составляет 1 мм. Помните, проволока не должна соприкасаться с чашечкой, для этого сделайте раззенковку более большим сверлом, вот так это выглядит на фото. В конечном результате делаем небольшой пропил для токовода на чашечке резистора.
  3. Берем стальную проволоку и выгибаем ее в форме обычного кольца. Диаметр должен соответствовать пропилу на резисторе.
  4. Их двух стороннего текстолита нужно выпилить плату, вот так это выглядит на фото. По размерам ориентируетесь сами, ведь может немного отличаться размер ручки и вашей проволоки.
  5. Собираем все между собой, самодельный паяльник на этом этапе не вызывает никаких сложностей.
  6. Устанавливаем тонкое жало паяльника в посадочное место. Здесь будьте аккуратны, всю конструкцию можно спалить. Чтобы проволока из меди не прожгла резистор делаем защитный слой, используя кусочек слюды или другого материала, которые есть у вас под рукой. Узнайте, как сделать ПК в авто. 
  7. В конечном результате нужно подключить самодельный паяльник к сети. Для этого можно использовать обычный блок питания на 1 А. Помните, напряжение не должно быть больше 15 Вольт, если 12 – это также подойдет. В этом деле больше совсем не означает лучше.

Вот мы с вами и разобрали, как сделать паяльник своими руками из ручки, резистора и проволоки, как видите, сложностей особых нет. Но, проявить определенные умения придется.

Но, даже не смотря на это все, купить паяльник такого типа гораздо проще, он не стоит огромных денег. Так что перед тем, как приступать к его сборке подумайте хорошо, стоит оно того или нет.

Паяльник своими руками видео


Вот еще один отличный способ.

Интересная статья по теме: Делаем металлоискатель своими руками.

Как сделать импульсный паяльник своими руками: схема, чертежи

Импульсный паяльник нагревается значительно быстрее, чем обычный, позволяет быстро монтировать или демонтировать самые различные компоненты электротехнических и электронных устройств. Он оснащается регулятором напряжения, благодаря чему можно удобно управлять температурой нагрева. В качестве жала в этом приборе применяется медная проволока.

Читайте также: Какое устройство у бензиновой паяльной лампы

Как пользоваться устройством? После включения в сеть необходимо выбрать подходящий для конкретных работ уровень напряжения. После этого остается просто нажать кнопку и приступить к пайке. Пока кнопка удерживается пользователем, устройство осуществляет разогрев жала.

Как работает импульсный паяльник? В конструкции этого устройства предусмотрено использование преобразователя сетевого напряжения в напряжение высокой частоты, а также ВЧ-трансформатора. Все это управляется с помощью микропроцессора, который поддерживает температуру нагрева жала на нужном уровне, отключает прибор при использовании более 20 секунд для защиты от перегрузки.

Импульсный паяльник работает по такому принципу: при нажатии кнопки вторичная обмотка трансформатора замыкается и осуществляется нагрев жала. Отпуская выключатель, вы размыкаете контакты, поэтому ток на обмотку не подается.

Можно ли сделать импульсный паяльник своими руками

Импульсный прибор обходится значительно дороже обычного, однако мы знаем отличный способ, позволяющий сэкономить деньги. Для этой цели можно сделать устройство своими руками. Но для начала потребуется подобрать подходящий источник тока.

Устройство можно сделать:

  1. Из блока питания с понижающим трансформатором. Преимущество этого метода – весьма простая схема, в которой выводы вторичной обмотки присоединяются непосредственно к токопроводящим шинам (к ним, в свою очередь, прикрепляется жало паяльника). Недостатки – быстрый выход из строя первичной обмотки трансформатора, большие размеры и вес готового прибора, возникновение вибрации в процессе пайки, которая недопустима при работе с мелкими деталями.
  2. Из электронного трансформатора. Он значительно выигрывает у предыдущего БП по размерам и весу, а также полностью лишен упомянутых выше минусов.

В данной статье мы рассмотрим процесс изготовления прибора из трансформатора, обеспечивающего подачу питания на галогенные лампы на 12 вольт. Это устройство поставляется в весьма удобном корпусе, который легко переоборудовать под импульсный паяльник.

Этапы изготовления импульсного паяльника своими руками

Чтобы превратить электронный трансформатор в современный экономичный прибор для пайки, потребуется выполнить несколько действий:

  1. Демонтируем трансформатор. Основная цель этого этапа – отделить друг от друга части сердечника и снять вторичную обмотку блока питания.
  2. Подбираем подходящую шину для повторной намотки. Для этого подойдет двухжильная медная проволока с сечением примерно 6-7 миллиметров.
  3. Делаем всего одну обмотку, после чего отделяем ее от сердечника картоном или другим материалом, не пропускающим ток.
  4. Выполняем лужение концов обмотки.
  5. Подключаем переделанный блок питания к сети и замыкаем концы новой вторичной обмотки многожильной медной проволокой. Она должна нагреваться или расплавляться всего за пару секунд. Именно этот признак указывает на то, что мы движемся в правильном направлении.
  6. Изготавливаем жало нашего будущего паяльника. Для этой цели подойдет медная проволока с диаметром 1-2 миллиметра.
  7. Присоединяем жало к концам вторичной обмотки. Лучше всего использовать болты, чтобы в дальнейшем удобно заменять изношенную или сильно загрязненную проволоку.
  8. Размещаем блок питания в корпусе. На данном этапе важно следить, чтобы не было контакта между ним и шиной. Лучше всего устанавливать изолирующие материалы, выдерживающие длительную температурную нагрузку – фторопласт или стекловолокно, керамические детали.
  9. При необходимости делаем рукоятку, закрываем корпус и начинаем работу с устройством.

Дополнительно можно установить на устройство следующие детали:

  • Светодиоды, которые будут обеспечивать индикацию напряжения. Определить его можно по уровню яркости LED-элементов.
  • Кнопка для включения и отключения прибора. Данный компонент обязательно должен использоваться в конструкции, так как только при его нажатии будет подаваться напряжение на жало. Монтируется кнопка непосредственно на входе питания.
  • Переменный резистор для регулировки напряжения. Эта деталь позволит удобно управлять прибором.

Кроме того, импульсный паяльник можно оснастить микроконтроллером для повышения эффективности управления. Правильно подберите прошивку, чтобы обеспечить надежную защиту от перегрева и перегрузки самодельного устройства.

Советы и советы по покупке »Электроника

На рынке есть много паяльников — выбор подходящего не всегда бывает легким — прочтите наше руководство по покупке, чтобы узнать, что искать.


Учебное пособие по пайке Включает:
Основы пайки Ручная пайка: как паять Паяльники Инструменты для пайки Припой — что это такое и как пользоваться Распайка — секреты, как правильно сделать Паяные соединения Припой для печатных плат

См. Также: Методы пайки SMT для сборки печатных плат


Чтобы правильно паять, необходимо иметь подходящие инструменты для работы.Перед запуском необходимо купить паяльник. Поскольку существует очень широкий спектр доступных утюгов, выбор правильного необходим, если нужно сделать лучшую работу по построению любых схем и проектов.

Виды паяльников

Существует много различных типов паяльников. В широком смысле их можно разделить на три основные категории:

  • Основные утюги с воздушным охлаждением: Самый простой тип паяльника не имеет контроля температуры, за исключением охлаждающего эффекта воздуха и любой работы, с которой может использоваться утюг.Эти паяльники можно купить довольно дешево, и они подходят для многих приложений, хотя они не имеют контроля температуры некоторых из более совершенных типов. Паяльник базовый
  • Паяльник с регулируемой температурой: Внутри паяльника можно разместить термостат для контроля температуры бита. Это позволяет постоянно поддерживать нужную температуру. Элемент с более высокой мощностью может использоваться в случаях, когда от бита отводится тепло, при этом температура не поднимается слишком высоко для хорошей пайки.Паяльник с регулируемой температурой и индикацией температуры

    Утюги с регулируемой температурой обычно имеют регулировку, позволяющую установить требуемую температуру, а на некоторых утюжках может быть указание температуры. Паяльники с регулируемой температурой позволяют достичь более качественной пайки, хотя они, очевидно, дороже, чем самые простые типы.

  • Рабочее место паяльника: Рабочее место паяльника — оптимальное решение для паяльника.Типовая рабочая станция паяльника

Характеристики паяльника

На рынке представлен широкий выбор паяльников, от самых маленьких до больших, от недорогих до очень дорогих. Не всегда легко выбрать тот, который подходит именно вам.

Паяльники обладают рядом особенностей, которые необходимо изучить перед выбором конкретного паяльника. К ним относятся: размер, мощность или потребляемая мощность, напряжение, метод контроля температуры, антистатическая защита, тип доступной подставки и общие вопросы обслуживания и ухода.

  • Размер: Доступны паяльники самых разных размеров. Очевидно, что те, что меньше, больше подходят для тонкой работы, а те, что больше, больше подходят для пайки менее деликатных предметов. Физический размер также будет зависеть от мощности или потребляемой мощности утюга.
  • Мощность или потребляемая мощность: Часто указывается потребляемая мощность или мощность паяльника. Мощность может варьироваться.Для обычных утюгов без температурного контроля мощность 40 Вт может быть хорошей для обычных работ и выше, если предусмотрена тяжелая пайка. Для небольшой работы с печатной платой достаточно 15 или 25 Вт. Для утюгов с регулируемой температурой обычно немного более высокая мощность, поскольку регулирование температуры действует быстрее, если большее количество тепла может быть направлено на сверло быстрее, чтобы компенсировать отвод тепла через рабочий элемент.
  • Напряжение: В то время как большинство паяльников, продаваемых в конкретной стране, будут иметь правильное сетевое напряжение, 230 В переменного тока в Великобритании, например, 115 В переменного тока для США, есть также паяльники, которые могут работать от 12 В. .Некоторые утюги могут быть изготовлены для специальных применений, где они должны работать от низкого напряжения.
  • Контроль температуры: Паяльники используют две основные разновидности контроля температуры. Менее дорогие утюги регулируются тем фактом, что, когда они нагреваются до температуры, потеря тепла такая же, как и выделяемое тепло. Другими словами, они не применяют никаких форм электронного регулирования. Другие, более дорогие типы имеют термостатическое регулирование. Это, естественно, намного лучше регулирует температуру.Обычно температуру можно отрегулировать до необходимого значения. Эти утюги пригодятся сами по себе, потому что, когда тепло отводится большим паяемым предметом, они будут намного лучше поддерживать свою температуру. Те, у кого нет регулирования, могут быть не в состоянии поддерживать свою температуру в достаточной степени при пайке большого объекта, в результате чего расплавить припой в этих условиях труднее.
  • Антистатическая защита: В связи с повышением чувствительности многих электронных компонентов, особенно очень современных микросхем интегральных схем, статическая защита становится все более актуальной.Хотя большинство компонентов, используемых домашними конструкторами, часто не повреждаются статическим электричеством, некоторые из них. Поэтому разумной мерой предосторожности будет хотя бы подумать о том, имеет ли купленный паяльник защиту от статического электричества.
  • Стенд: Подставка для паяльника может быть очень важной. Когда температура воздуха достигает около 300 ° C, необходимо обеспечить его надежную защиту. Поэтому важна хорошая стойка.
  • Техническое обслуживание: При использовании любого паяльника необходимо иметь запасные части.«Биты» паяльника, используемые для фактической пайки, имеют ограниченный срок службы, и хотя остальная часть паяльника может работать в течение многих лет, необходимо будет регулярно менять биты. Кроме того, для более дорогих паяльников, таких как паяльники с контролем температуры, стоит обеспечить наличие запасных частей на случай, если они потребуют ремонта.

Стоит потратить немного времени на изучение преимуществ и недостатков различных паяльников, представленных на рынке.Некоторые менее дорогие утюги могут быть вполне подходящими для большинства работ, но любой, кто задумывается о большом объеме конструкции, получит преимущества более дорогого паяльника с регулируемой температурой. Это вопрос правильного выбора паяльника для предполагаемой работы.

Другие строительные идеи и концепции:
Пайка Пайка компонентов SMT ESD — Электростатический разряд Производство печатных плат Сборка печатной платы
Вернуться в меню «Строительные методы».. .

Руководство по бутановым паяльникам — Руководство по паяльникам

Бутановые паяльники считаются одними из самых универсальных инструментов , которые вы можете иметь в своем ящике для инструментов. Они не только карманные и легкие, но и обладают мощным перфоратором, который позволяет резать провода, связывать материалы и создавать уникальные произведения искусства.

В связи с тем, что сегодня на рынке доступно так много бутановых паяльников из-за их популярности, трудно понять, с чего начать.

В процессе создания нашего Руководства мы сравнили множество моделей, чтобы узнать все, что вам нужно знать о бутановых паяльниках, а также найти лучшие бутановые паяльники, доступные сегодня на рынке.

При таком большом количестве бутановых паяльников на рынке может быть сложно понять, где начать покупать бутановый паяльник, соответствующий вашим потребностям. После бесчисленных часов исследований мы бы порекомендовали паяльник Power Probe PPSK с бутаном . Подходит как новичкам, так и более продвинутым пользователям.Power Probe PPSK легкий, мощный и безупречно загорается каждый раз.

Наш выбор

Датчик мощности PPSK

(527) Посмотреть все отзывы
  • Быстро нагревается
  • Нагревается до 2500 ° F
  • Переменный контроль температуры
  • Легко заправлять
  • В комплект входят дополнительные насадки
  • Электронное зажигание
  • В комплект входит прочный футляр для переноски

Получить сейчас : Купить на Amazon

Лучшие бутановые паяльники 2019

Ниже представлен более полный список лучших бутановых паяльников 2019 года, основанный на их характеристиках, дизайне и отзывах / обзорах пользователей.

  • Чтобы получить более подробный обзор интересующей вас модели, щелкните ссылку «Марка / Модель» в таблице ниже.

Step by Step PCB Жала для паяльников для новичков

Традиционный, старый тип припоя представляет собой смесь свинца (Pb) и олова (Sn). Этот тип припоя (60/40 — Pb / Sn) плавится при 200 ° C и обычно состоит из 60 процентов олова и 40 процентов свинца. Однако сегодня желательно использовать бессвинцовый припой, чтобы избежать токсичной среды.Бессвинцовый припой — это более современный сплав, который по-прежнему содержит олово, но заменяет свинец нетоксичными металлами, такими как медь и серебро. Типичный бессвинцовый припой плавится при 220 ° C. Свинец ядовит при проглатывании, вдыхании или всасывании через кожу. Свинец может в конечном итоге вызвать повреждение мозга или смерть, поэтому используйте вентилятор для вентиляции рабочего места и мойте руки после работы с припоем на основе свинца.

Рисунок 1: Пайка компонентов со сквозным отверстием на печатной плате. (Изображение: Эрик Арчер, CC BY-SA 2.0 через Wikimedia Commons.)

Нужен приличный паяльник с терморегулятором . Убедитесь, что у выбранного вами утюга есть легко заменяемые наконечники. Если вы новичок в пайке, рекомендуется использовать термостойкий силиконовый кабель, чтобы он не расплавился при прикосновении к горячему утюгу. Кроме того, вам понадобится подставка для пайки, влажная губка для очистки паяльного жала и припой. Паяльная оплетка отводит излишки припоя в случае ошибки, а для «больших разливов припоя» есть ручной инструмент, называемый вакуумным насосом для удаления припоя или «присосой для припоя», который отсасывает излишки припоя.

Новички в пайке могут также захотеть использовать радиатор, поскольку тепло, вызванное процессом пайки, может повредить некоторые компоненты. Радиаторы устраняют некоторые проблемы, вызванные чрезмерным нагревом, предотвращая чрезмерное повышение температуры таких компонентов, как герконы, транзисторы и интегрированные микросхемы (ИС). Даже простой зажим из кожи аллигатора предпочтительнее, чем ничего, так как он легко ложится на кошелек и рассеивает тепло, поэтому вы можете дольше прикладывать тепло во время пайки и не повредить компоненты.Чтобы использовать зажим, прикрепите его к проводу, который находится между корпусом компонента и предполагаемым паяным соединением.

Внутри припоя для электроники вы можете найти небольшую сердцевину из флюса, которая улучшает текучесть припоя, но также вызывает коррозию. Флюс также является химическим очищающим средством. [1] При плавлении припой очищает металлические поверхности. Припой может правильно стекать по чистой металлической поверхности (т. Е. Не окисляться). Если окисление является проблемой, перед пайкой вы можете взять мелкозернистую наждачную бумагу и аккуратно стереть окисленный материал, чтобы соединения с припоем были надежными.Окисленные покрытия возникают естественным образом и могут создавать барьер между припоем и выводами или проводами, который может мешать потоку электронов, действуя как изолятор. Однако припой доступен не только для электроники. Сантехники используют его, чтобы «пропотеть» трубы и арматуру, а в витражах используется свинец, который проникает между кусками стекла, стыки которых необходимо спаять, чтобы скрепить стекла вместе. Припой для сантехники или витражей нельзя использовать для электроники.

Рисунок 3: Припой для электроники имеет канифольный флюсовый сердечник, который улучшает текучесть.Изображение: Кевин Хэдли (собственная работа) [CC-BY-SA-3.0], через Wikimedia Commons Обратите внимание, что для электроники припой подходящего размера имеет диаметр около 1 мм и канифольный стержень. Водопроводный припой имеет кислотный припой, а припой для витража имеет твердый сердечник диаметром 1/8 дюйма (~ 3 мм). Однако не используйте ни один из них для электроники.

Независимо от того, что вы паяете (сантехнику, витражи или электронику), не ставьте паяльник ни на что, кроме подставки для паяльника.Можно сделать самодельную подставку, которая отталкивает наконечник от поверхностей, но паяльники могут вызвать серьезные ожоги, возгорание и появление токсичных паров горючих материалов.

Препарат

Для чистки кончика утюга можно использовать губку. Намочите губку на подставке для пайки и отожмите лишнюю воду, так как она должна быть влажной, а не насквозь мокрой. Если на вашей подставке нет губки, подойдет обычная губка из продуктового магазина. Не покупайте губку, пропитанную моющими средствами.Не покупайте губку типа «волшебный ластик» с мелкопористой поверхностью. Вам нужно немного трения, чтобы стереть мусор, образующийся при пайке. Натуральные губки приемлемы, но излишне дороги и не подходят для протирки жала паяльника. Некуда положить губку? Вы можете намочить дешевую губку, сложить ее пополам и положить в банку с кормом для тунца или кошки краями вверх. Наконечник припоя хорошо очистит эти края.

Поместите паяльник на подставку и подождите от 30 секунд до нескольких минут (в зависимости от вашего паяльника), чтобы он нагрелся до 400 ° C.Ваш паяльник достаточно горячий, когда немного припоя быстро плавится на жало, что вы должны сделать перед запуском. Как только припой начнет плавиться, легкое лужение наконечника припоем способствует хорошей теплоотдаче при начале пайки.

Паяльные компоненты под заказ

Начните с какой-нибудь организации, разложив все свои компоненты и пометив их. Организация может сделать процесс менее напряженным. Многие компоненты имеют сквозное отверстие, что означает, что вы будете вставлять ножки компонентов через отверстие на печатной плате.

Перед тем, как приступить к пайке микросхем или других компонентов, которые также чувствительны к разряду статического электричества, обязательно заземлите себя и наденьте заземленный браслет, предназначенный для предотвращения накопления статического разряда. Это похоже на ремень безопасности; никто не хочет этого делать, но это должно быть привычкой ради безопасности. Большинство микросхем никогда не демонстрируют повреждения, вызванные статическим разрядом сразу после этого. Тем не менее, характеристики микросхем, безусловно, могут ухудшиться намного быстрее, если они будут заблокированы изношенным, скользящим по ковру наполнителем для печатных плат.Если вы должны припаять ИС без браслета, по крайней мере, заземлите себя перед тем, как брать ИС. (По своим масштабам статический разряд может сделать с чипсами во многом то же самое, что микробы могут сделать с людьми. Вы этого не видите, но он может нанести серьезный ущерб.)

Когда вы припаиваете компоненты к печатной плате, лучше начать с пайки компонентов, которые меньше всего подвержены нагреву. Начните с пайки разъемов IC (еще не добавляя чип в разъем). Далее припаиваем резисторы.Следующими будут конденсаторы, начиная с любых конденсаторов ниже 1 мкФ. Затем припаяйте любые колпачки на 1 мкФ или выше, которые, скорее всего, будут электролитическими (которые очень похожи на крошечные жестяные банки).

Затем припаиваем диоды, светодиоды, затем транзисторы. Транзисторы более склонны к повреждению из-за чрезмерного нагрева, поэтому, чтобы быть осторожными, закрепите радиатор (зажим из крокодила) на ножке транзистора рядом, но не касаясь банки, если это возможно. Затем добавьте провода, перемычки и любые другие компоненты. Плата уже может быть захламлена, но вам стоит разместить свои ИС в последнюю очередь.Установите ИС на место, затем плотно и равномерно надавите на нее. Обратите внимание, что некоторые микросхемы будут находиться в антистатической упаковке из-за статической чувствительности, и вы должны оставить их в упаковке до тех пор, пока они не понадобятся.

В процессе пайки

Держите паяльник за основание ручки, как карандаш, чтобы не обжечься наконечником. Паяльник должен контактировать с ножкой или выводом компонента и дорожкой на печатной плате. Затем подержите металлический наконечник на желаемом стыке / стыке на пару секунд и нанесите немного припоя на наконечник припоя, где он касается стыка.Припой должен плавно расплавиться. Используйте только столько припоя, чтобы образовалось крошечное соединение в форме вулкана. Затем удалите припой и утюг, оставив только что соединенные компоненты на несколько секунд, пока соединение не затвердеет. Стык должен быть конусообразным и блестящим. Если нет, повторно нагрейте, введите больше припоя или отпайки и попробуйте снова.

Удаление припоя

Если вы не являетесь хорошо испытанным роботом, вам нужно будет в какой-то момент удалить припой с соединения.Будь то перемещение, удаление или добавление компонента, есть два способа выполнить работу.

Первый способ — использовать демонтажный насос с соплом электростатического разряда (ESD). Электростатический разряд защищает ИС, которые могут быть повреждены статическим электричеством. Для начала вы нажимаете подпружиненный поршень вниз до фиксации, настраивая насос. Затем приложите железный наконечник и сопло к стыку и подождите несколько секунд, чтобы припой расплавился. Чтобы освободить плунжер и всосать расплавленный припой, просто нажмите кнопку на насосе для удаления припоя.Удалите как можно больше припоя и повторите при необходимости. Наконец, не забывайте время от времени опорожнять насос, откручивая форсунку и выбрасывая маленькие деформированные шарики припоя в мусор. (Никогда, никогда не позволяйте детям или домашним животным есть красивые блестящие шарики припоя.)

Другой способ распайки стыка — это наложить припойную оплетку или фитиль. Устройство для снятия паяльной оплетки действует как фитиль для расплавленного припоя; она стекает из стыка на тесьму.

Сначала приложите к стыку железный наконечник и конец медной оплетки.Затем, когда припой начнет плавиться, он потечет из стыка на оплетку. Затем просто снимаем оплетку и потом пайку. (Если оплетка будет последней, припой может быстро затвердеть и прилепить всю оплетку к стыку, который вы пытаетесь очистить.) Отрежьте и выбросьте покрытую припоем часть оплетки.

В большинстве случаев вы сможете легко удалить провод или компонент после того, как он остынет. Если нет, снова примените паяльник, чтобы расплавить оставшийся припой, осторожно потянув за компонент, чтобы освободить его.(Постарайтесь не обжечься.)

Чипы больше не большие, поэтому их легко паять

К сожалению, большие чипы PDIP, которые были распространены десять или два года назад, сейчас очень трудно найти. Многие производители сейчас вообще не делают свои микросхемы в упаковке PDIP, поскольку большая часть пайки выполняется машинами для заполнения печатных плат в больших объемах. Любая компания, которая до сих пор производит микросхемы в корпусе, достаточно большом, чтобы его можно было легко припаять вручную, является святой. Никто не зарабатывает деньги на больших упаковках, так как большая часть электроники должна быть как можно меньше, чтобы сэкономить деньги, особенно при больших тиражах.Тем не менее, не только любители должны создавать прототипы; Каждый продукт начинается с дюжины или около того прототипов, которые используются для тестирования и настройки в реальной жизни перед запуском в серийное производство.

Примечание. В этой статье вкратце описаны наиболее важные аспекты сквозной пайки. Однако на YouTube и на многих других сайтах есть сотни учебных пособий, демонстрирующих искусство пайки в видеороликах, которые невозможно описать в одной статье. Одна из наиболее сложных задач пайки — это пайка очень маленьких устройств с крошечными ножками / выводами / контактами, которые расположены очень близко друг к другу и находятся на поверхности печатной платы, а не через отверстия в печатной плате, такие как устройства для поверхностного монтажа (SMD).

[1] https://en.wikipedia.org/wiki/Flux_ (металлургия)

HAKKO | Поддержка | Техническое обслуживание / Устранение неисправностей / Примеры применения


Почему наконечники легко окисляются, если они используются с бессвинцовым припоем?


Пункт 1. Почему жала паяльника легко окисляются при использовании бессвинцового припоя?
Бессвинцовый припой окисляет жало паяльника в четыре-пять раз быстрее, чем эвтектический припой.Свинец, один из компонентов эвтектического припоя, предотвращает окисление наконечников. Таким образом, бессвинцовый припой ускоряет окисление. Неизбежно сокращение срока службы наконечника. Кроме того, температура плавления бессвинцового припоя примерно на 30ºC выше, чем у эвтектического припоя. Определение заданной температуры без учета характеристик бессвинцового припоя и оставление наконечника при высокой температуре плавления бессвинцового припоя ускоряют окисление наконечников.Понимание характеристик бессвинцового припоя и поддержание паяльников в чистоте — это кратчайший путь к предотвращению окисления жала паяльника.

Пункт 2. Порядок обслуживания
Поддерживайте заданную температуру как можно ниже. (Никогда не повышайте температуру выше того, что вам нужно.)
Выключите питание, если не используете его в течение длительного времени.
Возьмите за привычку по окончании пайки покрывать жало новым припоем.
Возьмите за привычку покрывать жало новым припоем перед тем, как вставлять паяльник в держатель паяльника во время паяльных работ.
Используйте очиститель проволочного типа, например HAKKO 599B.Использование очистителя проволочного типа оставляет некоторое количество припоя на наконечнике при очистке наконечника. Некоторое количество припоя, оставшегося на наконечнике, помогает предотвратить окисление.
Удалите оксид с помощью химической пасты (HAKKO FS-100).
Если химическая паста (HAKKO FS-100) не может удалить оксиды, сначала используйте полировальную машинку (HAKKO FT-700), а затем химическую пасту (HAKKO FS-100), чтобы припой на наконечнике восстановил смачиваемость.

Точка 3.Используйте паяльники с эффективным термическим восстановлением, чтобы увеличить срок службы жала.
Установите как можно более низкую заданную температуру, чтобы замедлить окисление наконечников. (Никогда не увеличивайте температуру выше, чем требуется.) Температура плавления бессвинцового припоя выше, чем у эвтектического припоя. Установка заданной температуры без учета характеристик бессвинцового припоя может повысить температуру наконечника и ускорить окисление.Здесь мы предполагаем, что вам интересно, как можно безопасно паять бессвинцовым припоем с высокой температурой плавления, не повышая температуру паяльника. На ваш вопрос отвечает коэффициент термического восстановления.
(1) Температура плавления припоя + 50ºC = оптимальная температура для жала (в последнее время говорят, что температура плавления припоя + 10ºC или более = допустимый предел температуры паяльника.)
(2) Также сказано, что оптимальная температура для жала + 100ºC = оптимальная температура для паяльника.
Давайте найдем оптимальную температуру для паяльника, используя приведенные выше формулы, когда температура плавления припоя составляет 180ºC.
180ºC + 50ºC = 230ºC
230ºC + 100ºC = 330ºC
Оптимальная температура для паяльника 330ºC.
Температура плавления бессвинцового припоя примерно на 30ºC выше, чем у эвтектического припоя. Температура плавления бессвинцового припоя при использовании приведенных выше формул составляет около 360ºC. Использовать разные типы паяльников рискованно, так как при пайке одних и тех же элементов тип припоя меняется.

Если оптимальная температура изменяется в диапазоне 30ºC так же часто, как и тип паяльника, это отрицательно сказывается на термочувствительных деталях.Следовательно, и паяльники с эффективным рекуперацией тепла, и паяльники с термоуправляемым припоем необходимы для поддержания оптимальной температуры паяльника для бессвинцового припоя на уровне температуры паяльника для эвтектического припоя.

При использовании паяльников с эффективным термическим восстановлением формула (2) будет иметь вид:
Оптимальная температура для жала + примерно от 60 до 70 ° C = оптимальная температура для паяльника. Приведенная выше формула отменяет повышенную температуру плавления бессвинцового припоя.Таким образом, оптимальная температура при использовании бессвинцового припоя может быть снижена до температуры, почти такой же низкой, как температура, необходимая для эвтектического припоя.

Один из рекомендуемых нами паяльников для бессвинцового припоя, отвечающих указанным выше требованиям, — это HAKKO FX-951, серия FM. В частности, мы хотели бы рекомендовать HAKKO FX-951 и HAKKO FX-952, которые подходят для серии T12, которая имеет 84 варианта стандартных наконечников. Для получения подробной информации щелкните по URL-адресам ниже.

Паяльник-карандаш, 20 Вт, 1/8 дюйма

Обзор продукта

Маленький парень, который действительно умеет! Разработанные в том же стиле, что и наши сверхмощные паяльники, эти утюги в виде карандаша определенно не подходят для обычного хобби. Эти утюги, которые называются готовыми к производству, постоянно используются для пайки твердым припоем, изо дня в день.Сочетание высокой температуры и непревзойденной прочности дает утюг с карандашом, который можно с гордостью назвать American Beauty, и который является универсальным инструментом для любых операций по техническому обслуживанию и ремонту. ( Подставка в комплекте )

Характеристики и преимущества

Ni-Chrome нагревательные элементы с компрессионной обмоткой зарекомендовали себя как самый надежный нагревательный элемент для поддержания температуры пайки в производственных условиях.

Paragon Iron-Clad бессвинцовые паяльные жала во много раз превосходят и превосходят обычные паяльные жала.

Конструкция наконечника в виде пробки обеспечивает превосходную теплопередачу и легкую очистку.

Модульная конструкция позволяет легко заменять расходные детали, что позволяет использовать инструменты на протяжении нескольких поколений.

Запасные части

Следующие продукты могут быть использованы в качестве замены модели 3108-20, представленной на этой странице:

Аксессуары

Следующие продукты могут быть использованы в качестве аксессуаров для модели 3108-20, представленной на этой странице:

Похожие продукты

Следующие продукты связаны (аналогичная модель, но разные спецификации и т. Д.) к модели 3108-20 представленной на этой странице:

Приложения

Пользователи этого продукта заявили, что они используют его для нескольких работ, которые включают, но не ограничиваются:
  1. Плавление цинкового наполнителя для косметического ремонта скульптур из мягкого металла
  2. Пайка ежедневных и больших объемов сборок

Технические характеристики

9024 9024 9024 9024 , Edition 5.1, 2013-12 902
Стандартный тип наконечника Зубило
Мощность 20 Вт
Максимальная температура 800 ° F / 427 ° C
Подставка в комплекте? Да
Имеется ли в сети 220-240 В переменного тока? В настоящее время отсутствует в версии для высокого напряжения
Диаметр наконечника.125 дюймов
Длина наконечника 2,25 дюйма / 5,72 см
Длина продукта 7,5 дюйма / 19,05 см
Ширина продукта 1,125 дюйма / 2,86 см
Высота продукта 2,86 см
дюйм / 2,86 см
Вес продукта .55 фунта / 0,25 кг
Размеры упаковки (дюймы) 12 на 2-1 / 4 на 2-1 / 4
Вес в упаковке 1 фунт / 0.45 кг
Страна происхождения США
Код согласования: 8515.11.0000
Код клетки 02105
Соответствует требованиям RoHS2
Да
IEC 60335-2-45, Edition 3.2, 2012-01 Да
Соответствие WEEE Да
Сертификат CE Да
Общие сведения об измерениях наконечников Объяснение
Гарантийная политика Подробности
Руководство пользователя Руководство пользователя
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *