Полная мощность трансформатора: что это, из каких частей состоит, методика расчета

Содержание

что это, из каких частей состоит, методика расчета

Понятие полной мощности используется в электротехники для определения фактической нагрузки на элементы сети. Величина полной мощности силового трансформатора является основой для проектирования его конструкции.

Полная мощность превосходит по абсолютной величине активную и зависит от характеристик нагрузки.

Понятие мощности трансформатора

Трансформатор переменного тока не производит электрическую энергию, а лишь преобразовывает ее по величине. Поэтому его мощность полностью зависит от ее величины  нагрузки (тока потребления) вторичной цепи.  При наличии нескольких потребителей должна учитываться суммарная нагрузка, которая может быть подключена одновременно. Для цепей переменного тока учитывается активный и реактивный характер потребления.

трансформатор переменного тока

Активная

Данная составляющая часть характеристики определяется как среднее значение мгновенной за определенный период времени. Для цепей синусоидального переменного тока в качестве отрезка времени используется значение периода колебания:

T=1/f,

где f – частота.

Активная часть  зависит от характера нагрузки, то есть от сдвига фаз между током и напряжением и определяется по формуле:

P=i∙U∙cosϕ,

где ϕ – угол сдвига фаз.

Активная составляющая  устройств переменного тока выражается в Ваттах, как и для цепей постоянного тока.

Реактивная

Реактивная нагрузка отличается от активной тем, что в течение одного периода колебаний напряжения электрическая энергия реально не потребляется, но возвращается назад. В результате того, что к питающему устройству подключены устройства с большой емкостью или индуктивностью (электродвигатели), между током и напряжением возникает сдвиг фаз.

Реактивная составляющая потребления определяется выражением:

Q= i∙U∙sinϕ

Единица измерения – вар (вольт-ампер реактивный).

Полная

Полная мощность трансформатора учитывает всю потребленную и  возвращенную энергию и находится из выражения:

S= i∙U

Все составляющие связаны соотношением:

S2=P2+Q2.

Единица измерения – ВА (вольт-ампер).

Полная мощность равняется активной только в случае полностью активной нагрузки.

Мощность трансформатора

Номинальная

Номинальная мощность трансформатора учитывает возможность работы конструкции с учетом подключения потребителей разного характера, то есть аналогична полной. При этом гарантируется исправная работа устройства весь заявленный срок службы при  оговоренных условиях эксплуатации.

Номинальная мощность, как и полная, учитывает активный и реактивный характер потребления, которое может изменяться во время эксплуатации.

Выражается в вольт-амперах.

Методика расчета мощностей трансформатора

При расчете силового  трансформатора питающей подстанции учитывается среднесуточная нагрузка и длительность периода максимальной потребления. При этом должно учитываться соотношение:

Sном≥∑Pмакс

Режим пикового потребления также должен учитывать время воздействия, поскольку при кратковременных всплесках (до 1 часа), устройство будет работать в недогруженном режиме, что экономически не выгодно.

В таких случаях нужно брать в расчет перегрузочную способность конструкции, которая зависит от конструктивных особенностей, температуры окружающего воздуха  и условий охлаждения. Это диктуется условиями допустимого нагрева составляющих элементов (обмоток, коммутирующих цепей).

Понятие коэффициента загрузки определяет отношение среднесуточного и максимального потребления электрической энергии. Коэффициент загрузки всегда меньше единицы. Его величина связана с требованиями к надежности электроснабжения. Чем меньше требуемая надежность, тем больше коэффициент может приближаться к единице.

Примеры реальных расчетов

В качестве примера можно выбрать питающую подстанцию жилого района. Нагрузка подстанции является III  категории, поэтому коэффициент загрузки допустимо выбирать из большего значения – 0.9-0.95.

Характер потребления тока бытового сектора зависит от времени суток и сезона, но с учетом высокого коэффициента загрузки допустимо учитывать среднее значение потребляемой мощности. Для повышения надежности работы в период максимального потребления рекомендуется использование маслонаполненных трансформаторов, которые отличаются большой перегрузочной способностью в течение длительного периода времени (30% перегрузки в течение 2-х часов).

Эскиз конструкции трансформатора

Конструкция мощного силового трансформатора состоит из нескольких частей:

  1. Остов.
  2. Выемная часть.

В состав выемной части входит, собственно сердечник и обмотки с активной частью, которая включает переключатели с приводами, вводы высокого и низкого напряжений, предохранительные устройства.

Остов  – основная составляющая конструкции активной части. В состав остова входит магнитная система (сердечник) со всеми обмотками, а также конструктивные элементы для крепления и соединения обмоток и частей магнитной системы.

конструкция силового трансформатора

понятие, в чем указывается и измеряется, шкала

Для установки трансформатора необходимо рассчитывать его номинальную мощность. Выбор агрегата по данному показателю зависит от планируемых режимов работы, уровня нагрузки, условий и типа охлаждения прибора. При расчетах учитываются особенности измерения мощности трансформатора распределение нагрузки на составные части цепи при аварийной и стандартной работе прибора.

Понятие номинальной мощности трансформатора

Номинальная мощность трансформатора – это полная мощность, на которую рассчитан прибор его изготовителем. То есть, напряжение, которое в течение всего срока эксплуатации трансформатор выдерживает без перерыва.

Заводы дают гарантию службы от 20 до 25 лет.

Данный показатель всегда связан с температурным режимом работы: насколько допускается нагрев обмоток и при каких условиях охлаждается агрегат. При разных мощностях обмоток трансформатора номинальной считают наибольшую. В основном, в трансформаторах установлено масляное охлаждение, которое напрямую зависит от температуры окружающей среды.

Понятие номинальной мощности трансформатора

Поскольку погодные условия постоянно изменяются, наибольший нагрев обмоток при максимальной теплоте воздуха считается верхним пределом среднего показателя сопротивления температуры, возможной для соблюдения безопасности.

У приборов с другим типом охлаждения в паспорте от производителя прописываются номинальные температурные условия.

Помимо номинальной, есть типовая мощность трансформатора, которая считается, как сумма величин нагрузки на все обмотки, поделенная на два. А максимальная нагрузка на обмотки рассчитывается, как произведение наибольшей величины тока на максимально разрешенное напряжение данной части цепи.

Понятие номинальной мощности трансформатора

В чем измеряется и указывается

Номинальную мощность трансформаторов измеряют в кВА (киловольт-амперах), а не в кВТ (киловаттах). Эти два показателя отличаются друг от друга и не тождественны. Первый – это полная (номинальная) мощность, второй – активная. Номинальная потребляется в работу не в полном объеме, поскольку часть ее распространяется на электромагнитные поля цепи, и только оставшаяся часть – это активная мощность – действует по назначению.

Нагрузка на трансформатор обуславливается потребляемым током, а не энергией, которая используется фактически. То есть, полная мощность представляет собой все напряжение, налагаемое во время работы прибора на все составляющие электрической цепочки. Поэтому данную номинальную величину указывают в единицах вольт-ампер.

В работе электроприборов также учитывают коэффициент, который выражается в отношении активной к номинальной (cos фи). Данный коэффициент отражает величину сдвижения переменного тока по фазе относительно нагрузки, приложенной к ней.

Шкала стандартных мощностей силовых трансформаторов

На территории России используется единая шкала стандартных мощностей. Она разделяется на два шага: 1,35 и 1,6, каждый включает ряд величин, представленных в таблице ниже.

Шаг 1,35. В кВАШаг 1,6. В кВА
100100
135160
180250
240400
320630
4201000
5601600

В настоящее время заводы выпускают трансформаторные подстанции (ТП), применяя мощности шага 1,6. Шкала шага 1,35 уже не используется на производствах, но старые установки, выпущенные в советское время, проектировались именно по этой шкале. При этом, исследования определили старые приборы как более выгодные, поскольку они могут работать в полную силу, в отличие от современных агрегатов.

При выборе разных видов приборов, учитывается, что они должны быть максимально близкими по наибольшему показателю нагрузки в обычном режиме и предельному напряжению в аварийном.

При выборе трансформаторов для промышленных производств важно учитывать их количество для рационального распределения электроэнергии и их типовые мощности при определенной номинальной нагрузке.

силовой трансформатор

Пример выбора трансформатора

Выбрать трансформатор можно исходя из их конструктивного исполнения, ориентируясь на необходимые характеристики, или по номинальной нагрузке.

Выбор по конструктивному исполнению

Силовые трансформаторы бывают нескольких видов:

  • масляные – устанавливаются внутри или снаружи зданий, где нет опасности возгорания или взрыва веществ;
  • сухие – находятся в пожароопасных помещениях;
  • с негорючим жидким диэлектриком – устанавливаются внутри строений, отличающихся высокой взрыво- и пожароопасностью.

общий вид трансформатора

Масляные лучше остальных отводят тепло от сердечника и обмоток, составные части хорошо защищены от внешних воздействий. Также, данные трансформаторы меньше других по стоимости. К недостаткам относится необходимость установки в специальных помещениях или снаружи строений, из-за высокой вероятности возгорания или взрыва при поврежденной защите активных частей.

Сухие трансформаторы устанавливают в тех помещениях, где высокая вероятность возгорания и большое электрическое напряжение. Такие установки обладают повышенными огнеупорными свойствами благодаря жаропрочным изоляционным материалам. Но условия охлаждения уступают масляным, из-за чего плотность тока в обмотках меньше.

Агрегаты с негорючим диэлектриком обладают схожими огнеупорными свойствами с сухими, не наносят вред окружающей среде, за счет характеристик охлаждающей жидкостей и считаются более долговечными.

Сухой трансформатор

Выбор по мощности

Агрегаты для главных понизительных подстанций (ГПП) и цеховых трансформаторных подстанций выбирают по среднему напряжению за максимально загруженный период работы с контролем удельного расхода электроэнергии.

Фактор, которым характеризуется необходимая полная мощность трансформатора – это допустимое значение относительной аварийной нагрузки. Этот показатель регламентируется ГОСТом и определяется, как возможный тепловой износ изоляции агрегата за аварийный период с учетом температуры охлаждения, типа прибора и графика режима аварийной работы.

Трансформатор напряжения ОС-10,0

При определении необходимой номинальной нагрузки трансформатора используют два подхода, зависящие от наличия исходных данных:

  1. По заранее определенному суточному плану нагрузки производства за типичные сутки года в режиме аварийной и стандартной работы.
  2. По расчетной нагрузке в этих же режимах. По Государственному стандарту, цеховые ТП имеют мощности, указанные в таблице выше.

Почему мощность трансформатора измеряют в ква, а не в квт ?

Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.

Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА — киловольт-амперах.

Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.

Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.

В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы — нагрева, освещения, звучания, вращения и т.д.

Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:

Резистивная

 

Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

ТЭН-это резистивная нагрузка

ТЭН — это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах.


Индуктивная


Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной.

Электродвигатель – индуктивная нагрузка


Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные. 


Ёмкостная

 

Конденсатор - ёмкостная нагрузка

Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.

Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.


Смешанная

 

Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.

Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА — киловольт-амперах. Именно она чаще всего указана в характеристиках трансформатора.

Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.

Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.

Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:


S(полная мощность)=P(активная мощность)/k(коэффициент мощности)


Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.

Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт — это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.

Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.

Если же у вас еще остались какие-то вопросы – обязательно оставляйте их в комментариях к статье, кроме того, если есть что добавить, нашли неточности или есть, что возразить – также пишите!

активная, реактивная, полная (P, Q, S), коэффициент мощности (PF)

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

 

 

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

 

b_278_0_16777215_0___images_stories_reference_tech-articles_pqs-again_001.jpg b_251_326_16777215_0___images_stories_reference_tech-articles_pqs-again_001-1.jpg

 

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок — см. приложения ниже.

 

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P, единица измерения: Ватт
  2. Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина

Эти параметры связаны соотношениями:  S*S=P*P+Q*Q,   cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power FactorPF)

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

 

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

 


Приложение

 

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)
b_668_0_16777215_0___images_stories_reference_tech-articles_pqs-again_002.png

Трансформаторы питания номинальной выходной мощностью 25-60 ВА
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП)

 

b_671_0_16777215_0___images_stories_reference_tech-articles_pqs-again_003.png

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

 

Однофазные автотрансформаторы

b_230_0_16777215_0___images_stories_reference_tech-articles_pqs-again_008.jpg

TDGC2-0.5 kVa, 2A
АОСН-2-220-82
TDGC2-1.0 kVa, 4A Латр 1.25 АОСН-4-220-82
TDGC2-2.0 kVa, 8A Латр 2.5 АОСН-8-220-82
TDGC2-3.0 kVa, 12A

TDGC2-4.0 kVa, 16A

TDGC2-5.0 kVa, 20A
АОСН-20-220
TDGC2-7.0 kVa, 28A

TDGC2-10 kVa, 40A
АОМН-40-220
TDGC2-15 kVa, 60A

TDGC2-20 kVa, 80A

http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

 

 

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)
b_659_0_16777215_0___images_stories_reference_tech-articles_pqs-again_004.png

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)

 

b_717_0_16777215_0___images_stories_reference_tech-articles_pqs-again_005.png

http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

 

 

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).

b_627_0_16777215_0___images_stories_reference_tech-articles_pqs-again_006.png

http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)

 

b_525_205_16777215_0___images_stories_reference_tech-articles_pqs-again_010.png

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

 

b_672_0_16777215_0___images_stories_reference_tech-articles_pqs-again_007.png

Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ)

 

b_474_246_16777215_0___images_stories_reference_tech-articles_pqs-again_011.png

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

 

 

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Если нагрузка имеет низкий коэффициент мощности (менее 0.8 … 1.0), то в линии питания циркулируют большие реактивные токи (и мощности). Это паразитное явление приводит к повышению потерь в проводах линии (нагрев и др.), нарушению режима работы источников (генераторов) и трансформаторов сети, а также др. проблемам.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

 

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.

 

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

 

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.

 

Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

 

Дополнение 6

В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.

 

 

Дополнительные вопросы

 

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e’+ie»
  4. Магнитная проницаемость m=m’+im»
  5. и др.

 

 

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

 

b_252_159_16777215_0___images_stories_reference_tech-articles_pqs-again_012.png

 

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

 

b_519_0_16777215_0___images_stories_reference_tech-articles_pqs-again_013.png

 

 

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

 

b_262_275_16777215_0___images_stories_reference_tech-articles_pqs-again_014.jpg

 

 


См. дополнительную литературу, например:

 

[1]. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

[2]. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

[3]. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

[4]. AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

[5]. Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

[6]. Международная система единиц, СИ, см напр. ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН

Как узнать мощность трансформатора. Определение мощности трансформатора. Способы определения мощности трансформатора

Меня неоднократно спрашивали о том, как определить мощность 50Гц трансформатора не имеющего маркировки, попробую рассказать и показать на паре примеров.

Вообще способов определения мощности 50Гц трансформатора есть довольно много, я перечислю лишь некоторые из них.

1. Маркировка.
Иногда на трансформаторе можно найти явное указание мощности, но при этом данное указание может быть незаметно с первого взгляда.
Вариант конечно ну очень банальный, но следует сначала поискать.

2. Габаритная мощность сердечника.
Есть таблицы, по которым можно найти габаритную мощность определенных сердечников, но так как сердечники выпускались весьма разнообразных конфигураций размеров, а кроме того отличались по качеству изготовления, то таблица не всегда может быть корректна.
Да и найти их не всегда можно быстро. Впрочем косвенно можно использовать таблицы из описаний унифицированных трансформаторов.

3. Унифицированные трансформаторы.
Еще при союзе, да и впрочем после него, было произведено огромное количество унифицированных трансформаторов, их вы можете распознать по маркировке начинающейся на ТПП, ТН, ТА.
Если ТА распространены меньше, то ТПП и ТН встречаются весьма часто.

Например берем трансформатор ТПП270.

Находим описание маркировки данной серии и в описании находим наш трансформатор, там будет и напряжения, и токи и мощность.
В раздел документация я выложил это описание в виде PDF файла. Кстати там же можно посмотреть размеры сердечников трансформаторов и определить мощность по его габаритам, сравнив со своим. Если ваш трансформатор имеет немного больший размер, то вполне можно пересчитать, так как мощность трансформатора прямо пропорциональна его размеру.

На трансформаторе ТН61 маркировка почти не видна, но она есть 🙂

Для него есть отдельное описание, я его также выложил у себя в блоге.

Иногда трансформатор имеет маркировку, но найти по ней что либо вразумительное невозможно, увы, таблицы для таких трансформаторов большая редкость.

4. Расчет мощности по диаметру провода.
Если никаких данных нет, то можно определить мощность исходя из диаметра проводов обмоток.
Можно измерить первичную обмотку, но иногда она бывает недоступна.

В таком случае измеряем диаметр провода вторичной обмотки.
В примере диаметр составляет 1.5мм.
Дальше все просто, сначала узнаем сечение провода.
1.5 делим на 2, получаем 0.75, это радиус.
0.75 умножаем на 0.75, а получившийся результат умножаем на 3.14 (число пи), получаем сечение провода = 1.76мм.кв

Значение плотности тока принято принимать равным 2.5 Ампера на 1мм.кв. В нашем случае 1.76 умножаем на 2.5 и получаем 4.4 Ампера.
Так как трансформатор рассчитан на выходное напряжение 12 Вольт, это мы знаем, а если не знаем, то можем измерить тестером, то 4.4 умножаем на 12, получаем 52.8 Ватта.
На бумажке указана мощность 60 Ватт, но сейчас часто мотают трансформаторы с заниженным сечением обмоток, потому по ольшому счету все сходится.

Иногда на трансформаторе бывает написано не только количество витков обмоток, а и диаметр провода. но к этому стоит относиться скептически, так как наклейки могут ошибаться.

В этом примере я сначала нашел доступный для измерения участок провода, немного поднял его так, чтобы можно было подлезть штангенциркулем.

А когда измерил, то выяснил что диаметр провода не 0.355, а 0.25мм.
Попробуем применить вариант расчета, который я приводил выше.
0.25/2=0.125
0.125х0.125х3.14=0.05мм.кв
0.05=2.5=0.122 Ампера
0.122х220 (напряжение обмотки) = 26.84 Ватта.

Кроме того вышеописанный способ отлично подходит в случаях, когда вторичных обмоток несколько и измерять каждую просто неудобно.

5. Метод обратного расчета.
В некоторых ситуациях можно использовать программу для расчета трансформаторов. В этих программах есть довольно большая база сердечников, а кроме того они могут считать произвольные конфигурации размеров исходя из того, что мы можем измерить.
Я использую программу Trans50Hz.

Сначала выбираем тип сердечника. в основном это варианты кольцевой, Ш-образный ленточный и Ш-образный из пластин.

Слева направо — Кольцевой, ШЛ, Ш.
В моем примере я буду измерять вариант ШЛ, но таким же способом можно выяснить мощность и других типов трансформаторов.

Шаг 1, измеряем ширину боковой части магнитопровода.

Заносим измеренное значение в программу.

Шаг 2, ширина магнитопровода.

Также заносим в программу.

Шаг 3, ширина окна.
Здесь есть два варианта. Если есть доступ к окну, то просто измеряем его.

Если доступа нет, то измеряем общий размер, затем вычитаем четырехкратное значение, полученное в шаге 1, а остаток делим на 2.
Пример — общая ширина 80мм, в шаге 1 было 10мм, значит из 80 вычитаем 40. Осталось еще 40, делим на 2 и получаем 20, это и есть ширина окна.

Вводим значение.

Шаг 4, длина окна.
По сути это длина каркаса под провод, часто его можно измерить без проблем.

Также вводим это значение.

После этого нажимаем на кнопку — Расчет.

И получаем сообщение об ошибке.

Дело в том, что в программе изначально были заданы значения для расчета мощного трансформатора.
Находим выделенный пункт и меняем его значение на такое, чтобы мощность (напряжение умноженное на ток) не превысило нашу ориентировочную габаритную мощность.
Можно туда вбить хоть 1 Вольт и 1 Ампер, это неважно, я выставил 5 Вольт.

Заново нажимаем на кнопку Расчет и получаем искомое, в данном случае программа посчитала, что мощность нашего магнитопровода составляет 27.88 Ватта..
Полученные данные примерно сходятся с расчетом по диаметру провода, тогда я получил 26.84 Ватта, значит метод вполне работает.

5. Измерение максимальной температуры.
Обычные (железные) трансформаторы в работе не должны нагреваться выше 60 градусов, это можно использовать и в расчете мощности.
Но здесь есть исключения, например трансформатор блока бесперебойного питания может иметь большую мощность при скромных габаритах, это обусловлено тем, что работает он кратковременно и он раньше отключится, чем перегреется. Например в таком варианте его мощность может быть 600 Ватт, а при длительной работе всего 400.
Еще есть китайские производители, которые бывает используют в дешевых адаптерах трансформаторы "маломерки", которые греются как печки, это ненормально, часто реальная мощность трансформатора может быть в 1.2-1.5 раза меньше заявленной.

Чтобы измерить мощность вышеуказанным способом, берем любую нагрузку, лампочки, резисторы и т.п. Как вариант, можно использовать электронную нагрузку, но в этом случае подключаем ее через диодный мост с фильтрующим конденсатором.
Ждем примерно с час, если температура не превысила 60, то увеличиваем нагрузку. Дальше думаю процедура понятна.
Есть правда небольшая оговорка, температура трансформатора может заметно отличаться в зависимости от того, есть ли корпус и насколько он большой, но зато дает весьма точный результат. Единственный минус, тест очень долгий.

Подобные трансформаторы я использую в последние 10-15 лет крайне редко, потому они лежат где нибудь на дальних полках балкона и когда искал, наткнулся на весьма любопытные индикаторы, ИН-13. Покупал для индикатора уровня в усилитель, но так и забросил в итоге. Теперь вот нашел и думаю, что из них можно сделать, возможно у вас есть идеи и предложения. В случае интересной идеи, попробую сделать и показать процесс в виде обзора.

На этом все, а в качестве дополнения видео по определению габаритной мощности трансформатора.

единица измерения, как определить, формула

Полная мощность электроцепи состоит из двух составляющих — активная и реактивная. Как правило, данная величина равна произведению действующих значений, вычисляется по следующей формуле: P=UхI. Подробнее о полной мощности в статье.

Что это такое

Полная мощность (ВА, кВА) характеризуется потребляемой нагрузкой (например, ИБП) двух составляющих, а также отклонением формы электрического тока и напряжения от гармонической. С мощностью электротока человеку приходится сталкиваться и в быту и на производстве, где применяются электрические приборы. Каждый из них потребляет электроток, поэтому при их использовании всегда необходимо учитывать возможности этих приборов, в том числе заложенные в них технические характеристики.

Значение полной мощности — вычисление формулы

Чтобы определить работу мощности за одну секунду, на практике применяется формула для производительности постоянного тока. Следует отметить, что данная физическая величина меняется во времени и для выполнения практического расчета совершенно бесполезна. Для вычисления среднего значения производительности требуется интегрирование по времени.

Обратите внимание! С целью определения данного показателя в электрической цепи, где периодически происходит смена напряжения и тока, средняя ёмкость вычисляется по передаче мгновенной мощности в течение определённого времени.

Как вычисляется ёмкость по другой формуле

Есть определенная категория людей, которая интересуется вопросом, какая бывает мощность. Активная производительность делится на следующие категории: фактическую, настоящую, полезную, реальную.

Ёмкость, преобладающая в электрических цепях постоянного тока, которая при этом получает нагрузку постоянного тока, определяется простым произведением напряжения по показателям нагрузки и потребляемого тока. Данная величина вычисляется по формуле: P = U х I. Данный результат показывает, что фазовый угол между током и напряжением отсутствует в электрических цепях постоянного тока. То есть отсутствует коэффициент производительности.

Синусоидальный сигнал намного усложняет процесс. Так как фазовый угол между током и напряжением может значительно отличаться друг от друга. Поэтому среднее значение определяется по следующей формуле:

P = U I Cosθ

Важно! Если в соединениях переменного тока фиксируется активная (резистивная) производительность, тогда для вычисления данного показателя применяется формула следующего характера: P = U х I.

Мощность трёхфазной цепи

Чему равна полная мощность

Теория комплексных чисел позволит тщательно разобраться в понятии полных, активных, реактивных мощностей. Соответственно, можно легко определить коэффициент. Данная теория представляет собой целый треугольник мощностей активная, реактивная и полная.

Вычисление активной производительности трёхфазной цепи

Активная производительность

Единица измерения активной мощности электрической трёхфазной цепи — ватт (русское обозначение: Вт, киловатт — кВт; международное: ватт -W, киловатт — kW).

Важно! Средняя мгновенная производительность, которая обозначается буквой Т — это активная мощность.

Там, где преобладает несинусоидальный ток, равенство электрической ёмкости соответствует средним мощностям отдельных элементов. Активная величина — это прежде всего скорость необратимого преобразования электрической энергии в другие виды энергии. К ним относится тепловая и электромагнитная. Как правило, активная производительность выражается через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g.

Определяя любую электрическую цепь (синусоидальный или несинусоидальный ток) активная отдача всей цепи будет равна сумме активных мощностей отдельных элементов. Важно отметить, что для трёхфазных цепей электрическая производительность определяется как сумма производительности отдельных фаз. С полной ёмкостью S, активная связана соотношением полной и активной отдачи.

К сожалению, потребителю электроэнергии приходится платить не за активную (полезную) мощность, а за полную мощность. Разница в мощности на входе и на выходе системы бесперебойного питания составила 58 кВА! Необходимо учесть, что тариф за потребление электроэнергии с низким cosj (Pf) существенно выше. Таким образом, применение системы бесперебойного питания позволило не только защитить оборудование от исчезновения и провалов напряжения, но и получить существенную экономию электроэнергии.

Рассматривая длинные линии (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая производительность, которая определяется как разность между падающей и отраженной пропускной способностью.

Определение реактивной величины на примере

Реактивная емкость

Часто возникает вопрос о том, что такое реактивная мощность — величина, характеризующая нагрузку, которая создаётся в электросистемах колебаниями энергии электромагнитного поля в цепи, где преобладает синусоидальный переменный ток.

Реактивная ёмкость представляет собой энергию, которая переносится от источника на реактивные элементы прибора. К ним можно отнести: индуктивность, конденсатор, обмотки двигателей. После чего данная емкость вместе с элементами перемещается в источник в течение одного периода колебаний.

Важно подчеркнуть, что показатель sin φ для значения φ от 0 до плюс 90° представляет собой положительную величину. Данное значение, которое обозначается как sin φ для φ от 0 до минус 90° является — это отрицательная величина. Учитывая формулу, по которой происходит определение реактивной производительности, можно получить как положительную величину (при нагрузке с активно-индуктивным характером), так и отрицательную (при нагрузке с активно-ёмкостным характером). Всё это характеризуется тем, что реактивная отдача не происходит когда поступает электрический ток.

Некоторые электросистемы обладают положительной реактивной емкостью. Здесь уже говорится о том, что происходит нагрузка активно-индуктивного характера. Когда определяется отрицательная производительность то здесь производится нагрузка с активно-ёмкостным характером. Этот фактор характеризуется тем, что многие электропотребляющие устройства, подключение которых происходит при помощи трансформатора, являются активно-индуктивными.

Электрические станции оснащены синхронными генераторами. Они могут потреблять и производить реактивную ёмкость. Кроме того происходит определение величины электрического тока возбуждения, который поступает в обмотки ротора генератора. Благодаря отличительным особенностям синхронной электрической машины можно свободно регулировать заданный уровень напряжения сети. Чтобы снизить нагрузки, а также повысить коэффициент производительности электросистем, специалисты производят компенсацию реактивной ёмкости.

Обратите внимание! Если использовать современные электрические измерительные преобразователи на микропроцессорной технике, тогда производится точная оценка показателя энергии от индуктивной и нагрузки ёмкости в источник переменного напряжения.

Определение полной производительности

Полная емкость

Для того чтобы определить какие системы обладают полной производительностью, необходимо изучить особенности данной величины. Полная мощность — это физическая величина, равная произведению действующих элементов периодического электрического тока I в цепи и напряжения U на её зажимах. Для определения соотношения полной отдачи с активной и реактивной емкостями нужно расшифровать значения, которые вычисляются по формуле. Например, соотношение производительности, где P — активная, Q — представляет собой реактивную пропускную способность (если нагрузка индуктивного характера Q»0, а при ёмкостной обозначается — Q»0).

Важно! Полная производительность описывает нагрузку, налагается на элементы подводящей электросети (проводам, распределительным щитам, трансформаторам, линиям электропередач). Ведь вся эта нагрузка зависит от потребляемой энергии, а не от расходующей пользователем энергии. Исходя из этих результатов полная мощность трансформатора или распределительного щита измеряют в вольт-амперах, а не в ваттах.

По какой единице измеряется ёмкость

Единица измерения мощностей

Единица измерения производительности — это Джоули, деленные на секунду (Вольты, умноженные на Амперы), или Ватты. Последнее название дали в честь инженера Джеймса Уатта, создавшего паровую машину. Именно Ватт является единицей ёмкости в системе СИ.

Для электроприборов, а также на промышленных предприятиях зачастую используют более крупные единицы — киловатты, мегаватты и др. Они получаются добавлением стандартных десятичных приставок. Соответственно, 1 кВт = 1000 Вт, 1 МВт = 1 000 000 Вт.

Расчёт полной мощности

Как правильно рассчитать

Активная мощность, как сделать правильный расчет?

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.

Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.

Реактивная мощность (Reactive Power)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.

Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).

Обозначение реактивной величины

Как обозначается мощность

Р — мощность электрического тока обозначается (Вт).

В завершение следует отметить, что полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому данная величина трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Расчет активной реактивной и полной мощности

Для правильного выбора трансформатора любого вида по мощности подключаемых электроприборов к нему надо знать несколько важных правил. Это относится и к изучению теоретического материала, и к учету местных условий, параметров и «узких мест» местной электросети.

Из теоретических основ электротехники известно, что номинальная мощность любой обмотки простого двухобмоточного трансформатора одинакова и вычисляется по формуле SHOM = U*I (ВА) , как произведение напряжения обмотки на величину тока в ней. Однако, сам по себе такой трансформатор представляет собой две катушки индуктивности и его полная номинальная мощность складывается из двух составляющих — активной и реактивной мощности. Формула расчета полной мощности S2=P2+Q2 , её квадрат равен сумме квадратов составляющих, их принято изображать векторами под углом 900, гипотенузой этого прямоугольного треугольника является вектор полной мощности. Для удобства расчетов был введен нагрузочный коэффициент cosφ , где φ — угол между векторами активной и полной мощности.

Вы спросите — зачем нам это? А всё предельно просто — трансформатор выбирается с учетом максимально допустимого нагрева обмоток (иначе быстро стареет изоляция и выходит из строя весь трансформатор), а нагрев создается только активной составляющей мощности, которую можно рассчитать по формуле Р = UIcosφ , что такое cosφ нам уже известно, для трансформатора его расчетное значение принимается cosφ=0,8 . Значение Р в ваттах (Вт) является суммарной мощностью всех электроприборов, которые предполагается подключить к трансформатору, поскольку они, в подавляющем большинстве, потребители активной нагрузки. Но полная мощность трансформатора (которая пишется в его паспорте ) определена в единицах вольт-ампер (ВА, кВА) и соотношение её с активной мощностью потребителей на выходе можно определить по формуле S=P/0,8 , то есть выбирать мощность трансформатора надо примерно на 20% больше, чем та, которую вы предполагаете к нему подключить. Это строго по теории, но это не всё.

Для трансформаторов небольшой мощности важно учесть еще и собственное и внешнее рассеивание от магнитного поля. Нагрев от него в ограниченном пространстве и при отсутствии принудительного охлаждения тоже существенен. Лучшие показатели в этом отношении дает тороидальный трансформатор, где обмотки равномерно намотаны вдоль сердечника. Неплохо смотрятся стержневые трансформаторы и автотрансформаторы. И еще один важный момент — качество электроэнергии в сети!

Если трансформатор покупается для мест, где часто бывает понижение напряжения, то запас мощности следует увеличить, поскольку при сниженном напряжении увеличивается токовая составляющая мощности, а ведь именно она дает энергию нагрева обмоток. Итак, исходя из теоретического расчета и учета реального состояния электросети в районе установки трансформатора, можно однозначно рекомендовать приобретать трансформатор с 30% запасом по мощности от расчетного потребления. Это позволит работать ему долго и надежно.

При проектировании трансформаторов основным параметром является его мощность. Именно она определяет габариты трансформатора. При этом основным определяющим фактором будет полная мощность, отдаваемая в нагрузку:

Для трансформатора с большим количеством вторичных обмоток полную мощность можно определить, просуммировав мощности, потребляемые нагрузками, подключенными ко всем его обмоткам:

(2)

При полностью резистивной нагрузке (отсутствие индуктивной и емкостной составляющей в токе) потребляемая мощность активна и равна отдаваемой мощности S 2 . При расчете трансформатора важным параметром является типовая или габаритная мощность трансформатора. В этом параметре кроме полной мощности учитывается мощность, потребляемая трансформатором от сети по первичной обмотке. Типовая мощность трансформатора вычисляется следующим образом:

(3)

Определим типовую мощность для трансформатора с двумя обмотками. Полная мощность первичной обмотки S 1 = U 1 I 1 , где U 1 , I 1 — действующие значения напряжения и тока Именно этой мощностью определяются габариты первичной обмотки. При этом число витков первичной обмотки трансформатора зависит от входного напряжения, сечение провода от протекающего по ней максимального тока (действующее значение). Габаритная мощность трансформатора определяет необходимое сечение сердечника s с. Ее можно рассчитать следующим образом:

(4)

Напряжение на первичной обмотке трансформатора можно определить из выражения U 1 = 4k ф W 1 fs B m , где s – площадь сечения сердечника магнитопровода, определяемая как произведение ширины сердечника на его толщину. Эквивалентная площадь сечения сердечника трансформатора обычно меньше и зависит от толщины пластин или ленты и расстояния между ними, поэтому при расчете трансформатора вводится коэффициент заполнения сердечника, который определяется как отношение эквивалентной площади сечения сердечника магнитопровода к его геометрической площади . Его значение обычно равно k c = 1 … 0,5 и зависит от толщины ленты. Для прессованных сердечников (изготовленных из феррита, альсифера или карбонильного железа) k c = 1. Таким образом, s = k c s c и выражение для напряжения первичной обмотки трансформатора принимает следующий вид:

U 1 = 4k ф k c W 1 fs c B m (5)

Аналогичное выражение можно записать и для вторичной обмотки. В трансформаторе с двумя обмотками мощность первичной обмотки и типовая мощность трансформатора равны. Мощность первичной обмотки можно определить по следующему выражению:

U 1 = U 1 I 1 = 4k ф k c fs c B m W 1 I 1 (6)

При этом типовая мощность трансформатора будет рассчитываться по следующей формуле:

(7)

Отношение тока в проводе обмотки к его сечению называется плотностью тока. В правильно рассчитанном трансформаторе плотность тока во всех обмотках одинакова:

(8) где s обм1 , s обм2 — площади сечения проводников обмоток.

Заменим токи I 1 = js обм1 и I 2 = js обм2 , тогда сумма в скобках выражения (7) может быть записана следующим образом: W 1 I 1 + W 2 I 2 = , j (s обм1 W 1 + s обм2 W 2) = js м, где s м — сечение всех проводников (меди) в окне сердечника трансформатора. На рисунке 1 приведена упрощенная конструкция трансформатора, где отчетливо видны площадь сердечника s с, площадь окна магнитопровода s ок и площадь, занимаемая проводниками первичной и вторичной обмоток s м.


Рисунок 1 Упрощенная конструкция трансформатора

Введём коэффициент заполнения окна медью . Его величина находится в пределах k м = 0,15 … 0,5 и зависит от толщины изоляции проводов, конструкции каркаса обмоток, межслойной изоляции, способа намотки провода. Тогда js м = jk м s ок и выражение для типовой мощности трансформатора можно записать следующим образом:

(9)

Из выражения (9) следует, что типовая мощность определяется произведением s с s ок. При увеличении линейного размера трансформатора в m раз, его объём (масса) увеличится в m³ раз, а мощность возрастёт в m 4 раз. Поэтому, удельные массо-габаритные пок

Что такое активная, реактивная и полная мощность — определение и объяснение

Активная мощность

Определение: Мощность, которая фактически потребляется или используется в цепи переменного тока, называется Истинная мощность или Активная мощность или Реальная мощность . Он измеряется в киловаттах (кВт) или МВт. Это фактические результаты работы электрической системы, которая управляет электрическими цепями или нагрузкой.

Реактивная мощность

Определение: Мощность, которая течет вперед и назад, что означает, что она движется в обоих направлениях в цепи или реагирует на себя, называется Реактивная мощность .Реактивная мощность измеряется в киловольт-амперах, реактивная (кВАр) или мвар.

Полная мощность

Определение: Произведение среднеквадратичного значения напряжения и тока известно как Полная мощность . Эта мощность измеряется в кВА или МВА.

Было замечено, что мощность потребляется только в сопротивлении. Чистая катушка индуктивности и чистый конденсатор не потребляют никакой энергии, поскольку в течение полупериода, какая бы мощность ни принималась от источника этими компонентами, та же самая мощность возвращается к источнику.Эта мощность, которая возвращается и течет в обоих направлениях цепи, называется реактивной мощностью. Эта реактивная мощность не выполняет никакой полезной работы в цепи.

В чисто резистивной цепи ток находится в фазе с приложенным напряжением, тогда как в чисто индуктивной и емкостной цепи ток сдвинут по фазе на 90 градусов, т. Е. Если индуктивная нагрузка подключена к цепи, ток отстает от напряжения на 90 градусов, и если подключена емкостная нагрузка, ток опережает напряжение на 90 градусов.

Следовательно, из всего вышеизложенного можно сделать вывод, что ток , синфазный с напряжением, дает истинную или активную мощность , тогда как ток , сдвинутый по фазе на 90 градусов с напряжением, способствует реактивной мощности в цепи.

Следовательно,

  • Истинная мощность = напряжение x ток в фазе с напряжением
  • Реактивная мощность = напряжение x ток не в фазе с напряжением

Векторная диаграмма индуктивной цепи показана ниже:

active-reactive-phasor-diagram Если взять за эталон напряжение V, то ток I отстает от напряжения V на угол ϕ.Ток I делится на две составляющие:

  • I Cos ϕ в фазе с напряжением В
  • I Sin ϕ, который сдвинут по фазе на 90 градусов с напряжением V

Следовательно, следующее выражение, показанное ниже, дает активную, реактивную и полную мощность соответственно.

  • Активная мощность P = V x I cosϕ = V I cosϕ
  • Реактивная мощность P r или Q = V x I sinϕ = V I sinϕ
  • Полная мощность P a или S = ​​V x I = VI

Активная составляющая текущей

Составляющая тока, которая находится в фазе с напряжением схемы и вносит вклад в активную или истинную мощность схемы, называется активной составляющей или составляющей полной ватт или синфазной составляющей тока.

Реактивная составляющая тока

Составляющая тока, которая находится в квадратуре или на 90 градусов по фазе относительно напряжения цепи и вносит вклад в реактивную мощность схемы, называется реактивной составляющей тока.

.

Активная, реактивная и полная мощность

Требуемый источник питания для электрической цепи зависит от

  • активной мощности — фактическая потребляемая мощность электрического сопротивления в цепи
  • реактивная мощность — мнимая потребляемая индуктивная и емкостная мощность в цепи

Требуемый источник питания называется полной мощностью и представляет собой комплексное значение, которое может быть выражено в виде треугольника Пифагора, как показано на рисунке ниже.

reactive apparent active power

Полная мощность — S

Полная мощность — это мощность, подаваемая в электрическую цепь (обычно от поставщика энергии в сеть) для покрытия реальной и реактивной мощности, потребляемой нагрузкой.

Полная мощность может быть рассчитана как

S = (Q 2 + P 2 ) 1/2 (1)

, где

S = полная мощность, подаваемая в цепь ( вольт-ампер, ВА)

Q = потребляемая реактивная мощность в нагрузке (вольт-ампер, реактивная, ВАр)

P = активная потребляемая мощность в нагрузке (ватты, Вт)

Полная мощность измеряется в вольт-амперах (ВА) — напряжение системы переменного тока, умноженное на текущий ток.Полная мощность — это комплексное значение и векторная сумма активной и реактивной мощности, как показано на рисунке выше.

Однофазный ток

S = UI (2a)

где

U = электрический потенциал (В)

I = ток (A)

Трехфазный ток

S = 3 1/2 UI

= 1.732 U I (2b)

Активная мощность — P

Активная — или действительная, или истинная — мощность выполняет фактическую работу в нагрузке. Активная мощность измеряется в Вт (Вт) и — это мощность, потребляемая электрическим сопротивлением.

Однофазный ток

P = UI cos φ

= UI PF (3a)

где

φ = фазовый угол между электрическим потенциалом (напряжением) и током

PF = cos φ

= Коэффициент мощности

Трехфазный ток

P = 3 1/2 UI cos φ

= 1.732 U I PF (3b)

Постоянный ток

P = U I (3c)

Реактивная мощность — Q

Реактивная мощность — это мнимая или комплексная мощность в емкостной или индуктивной нагрузке. Реактивная мощность представляет собой обмен энергией между источником питания и реактивными нагрузками, при котором полезная мощность не увеличивается и не теряется. Чистая средняя реактивная мощность равна нулю. Реактивная мощность накапливается и разряжается асинхронными двигателями, трансформаторами, соленоидами и конденсаторами.

Реактивная мощность должна быть минимизирована, поскольку она увеличивает общий ток, протекающий в электрической цепи, не создавая никакой работы для нагрузки. Повышенные реактивные токи приводят только к невосстановимым потерям мощности из-за сопротивления линии питания.

Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .

Реактивная индуктивная мощность измеряется в реактивных вольт-амперах (ВАР).

Однофазный ток

Q = UI sin φ

= UI PF (4a)

где

φ = фазовый угол

Трехфазный ток

Q = 3 1/2 UI sin φ

= 1.732 УИ ПФ (4б)

.

Что такое треугольник силы? — Активная, реактивная и полная мощность

Треугольник мощности представляет собой прямоугольный треугольник, показывающий соотношение между активной мощностью, реактивной мощностью и полной мощностью.

Когда каждая составляющая тока, которая является активной составляющей (Icosϕ) или реактивной составляющей (Isinϕ), умножается на напряжение V, получается треугольник мощности, показанный на рисунке ниже:

power-triangle Мощность, которая фактически потребляется или используется в цепи переменного тока, называется истинной мощностью или активной мощностью или реальной мощностью.Он измеряется в киловаттах (кВт) или МВт.

Мощность, которая течет вперед и назад, что означает, что она движется в обоих направлениях в цепи или реагирует на нее, называется Реактивная мощность . Реактивная мощность измеряется в киловольт-амперах, реактивная (кВАр) или МВАр.

Произведение среднеквадратичного значения напряжения и тока известно как кажущаяся мощность . Эта мощность измеряется в кВА или МВА.

Следующий пункт показывает взаимосвязь между следующими величинами и объясняется графическим представлением, называемым треугольником мощности, показанным выше.

  • Когда активная составляющая тока умножается на напряжение цепи V, получается активная мощность. Именно эта мощность создает крутящий момент в двигателе, нагревает нагреватель и т. Д. Эта мощность измеряется ваттметром.
  • Когда реактивная составляющая тока умножается на напряжение цепи, получается реактивная мощность. Эта мощность определяет коэффициент мощности, и она течет вперед и назад по цепи.
  • Когда ток цепи умножается на напряжение цепи, получается полная мощность.
  • Из треугольника мощности, показанного над мощностью, коэффициент может быть определен путем взятия отношения истинной мощности к полной мощности.
    power-triangle-eq1
    Как мы знаем, просто мощность означает произведение напряжения и тока, но в цепи переменного тока, за исключением чисто резистивной цепи, обычно существует разность фаз между напряжением и током, и поэтому VI не дает реальной или истинной мощности в цепи.
.

частей силового трансформатора

Что такое трансформатор?

Трансформатор — это электрическое устройство, которое передает электрическую энергию из одной цепи в другую посредством электромагнитной индукции (также называемой действием трансформатора). Он используется для повышения или понижения напряжения переменного тока.

Основные части трансформатора

Это основные компоненты трансформатора.

  1. Ламинированная сердцевина
  2. Обмотки
  3. Изоляционные материалы
  4. Масло трансформаторное
  5. Устройство РПН
  6. Масляный расширитель
  7. Сапун
  8. Охлаждающие трубки
  9. Реле Бухгольца
  10. Взрывоотводчик

Из вышеперечисленного, ламинированный сердечник из мягкого железа, обмотки и изоляционный материал являются первичными частями и присутствуют во всех трансформаторах, тогда как остальное можно увидеть только в трансформаторах мощностью более 100 кВА.

Сердечник

Сердечник служит опорой для обмотки трансформатора. Он также обеспечивает путь с низким сопротивлением для потока магнитного потока. Он изготовлен из ламинированного сердечника из мягкого железа, чтобы уменьшить потери на вихревые токи и потери на гистерезис. Состав сердечника трансформатора зависит от таких факторов, как напряжение, ток и частота. Диаметр сердечника трансформатора прямо пропорционален потерям в меди и обратно пропорционален потерям в стали. Если диаметр сердечника уменьшается, вес стали в сердечнике уменьшается, что приводит к меньшим потерям в сердечнике трансформатора и увеличению потерь в меди.Когда диаметр сердечника увеличивается, происходит наоборот.

Обмотка

Два набора обмоток выполнены поверх сердечника трансформатора и изолированы друг от друга. Обмотка состоит из нескольких витков медных проводников, связанных вместе и соединенных последовательно.

Обмотки можно классифицировать двумя способами:

  1. На основе входного и выходного питания
  2. На основе диапазона напряжений

В классификации источника питания ввода / вывода обмотки делятся на следующие категории:

  1. Первичная обмотка — это обмотка, на которую подается входное напряжение.
  2. Вторичная обмотка — это обмотка, на которую подается выходное напряжение.

В рамках классификации диапазона напряжений обмотки делятся на следующие категории:

  1. Обмотка высокого напряжения — изготовлена ​​из медного проводника. Число сделанных витков должно быть кратно числу витков в обмотке низкого напряжения. Используемый проводник будет тоньше, чем провод обмотки низкого напряжения.
  2. Обмотка низкого напряжения — она ​​состоит из меньшего числа витков, чем обмотка высокого напряжения.Он изготовлен из толстых медных жил. Это связано с тем, что ток в обмотке низкого напряжения выше, чем в обмотке высокого напряжения.

Входное питание трансформаторов может подаваться от обмотки низкого (LV) или высокого (HV) напряжения в зависимости от требований.

Изоляционные материалы

Изоляционная бумага и картон используются в трансформаторах для изоляции первичной и вторичной обмоток друг от друга и от сердечника трансформатора.

Трансформаторное масло — еще один изоляционный материал.Трансформаторное масло выполняет две важные функции: помимо изолирующей функции, оно также может охлаждать сердечник и катушку в сборе. Сердечник и обмотка трансформатора должны быть полностью погружены в масло. Обычно в качестве трансформаторного масла используются углеводородные минеральные масла. Загрязнение масла является серьезной проблемой, потому что загрязнение лишает масло его диэлектрических свойств и делает его бесполезным в качестве изоляционной среды.

Консерватор

Консерватор сохраняет трансформаторное масло.Это герметичный металлический цилиндрический барабан, установленный над трансформатором. Бак расширителя вентилируется в атмосферу сверху, и нормальный уровень масла находится примерно в середине расширителя, что позволяет маслу расширяться и сжиматься при изменении температуры. Маслорасширитель соединен с основным баком внутри трансформатора, который полностью заполнен трансформаторным маслом по трубопроводу.

Сапун

Сапун контролирует уровень влажности в трансформаторе.Влага может возникать, когда колебания температуры вызывают расширение и сжатие изоляционного масла, что затем вызывает изменение давления внутри расширителя. Изменения давления уравновешиваются потоком атмосферного воздуха, поступающего в расширитель и выходящего из него, благодаря чему влага может попасть в систему.

Попадание на изоляционное масло влаги может повлиять на бумажную изоляцию или даже вызвать внутренние неисправности. Поэтому необходимо, чтобы воздух, поступающий в бак, не содержал влаги.

Сапун трансформатора представляет собой цилиндрический контейнер, заполненный силикагелем. Когда атмосферный воздух проходит через силикагель сапуна, влага воздуха поглощается кристаллами кремнезема. Сапун действует как воздушный фильтр для трансформатора и контролирует уровень влажности внутри трансформатора. Он подсоединяется к концу сапуна.

РПН

Выходное напряжение трансформаторов изменяется в зависимости от входного напряжения и нагрузки.В условиях нагрузки напряжение на выходной клемме уменьшается, тогда как в условиях без нагрузки выходное напряжение увеличивается. Для компенсации колебаний напряжения используются переключатели ответвлений. Устройства РПН могут быть либо переключателями ответвлений под нагрузкой, либо переключателями ответвлений без нагрузки. В устройстве РПН отвод можно изменить без отключения трансформатора от источника питания. В устройстве РПН это делается после отключения трансформатора. Также доступны автоматические переключатели ответвлений.

Охлаждающие трубки

Охлаждающие трубки используются для охлаждения трансформаторного масла. Трансформаторное масло циркулирует по охлаждающим трубкам. Циркуляция масла может быть естественной или принудительной. При естественной циркуляции, когда температура масла повышается, горячее масло естественным образом поднимается вверх, а холодное опускается вниз. Таким образом, масло естественным образом циркулирует по трубкам. При принудительной циркуляции для циркуляции масла используется внешний насос.

Реле Бухгольца

Реле Бухгольца представляет собой контейнер защитного устройства, размещенный над соединительной трубой от основного резервуара к резервуару расширителя.Он используется для определения неисправностей, возникающих внутри трансформатора. Это простое реле, которое приводится в действие газами, выделяемыми при разложении трансформаторного масла при внутренних неисправностях. Это помогает в обнаружении и защите трансформатора от внутренних неисправностей.

Взрывоотводчик

Взрывоотводчик используется для удаления кипящего масла из трансформатора во время тяжелых внутренних повреждений, чтобы избежать взрыва трансформатора. При серьезных неисправностях масло вылетает из вентиляционного отверстия.Уровень взрывного устройства обычно поддерживается выше уровня резервуара зимнего сада.

Подробнее о трансформаторах

Я написал серию статей, чтобы помочь читателю понять силовые трансформаторы. Я перечислил два здесь, и если вы хотите узнать больше, вы можете найти их, щелкнув профиль моего автора в верхней части этой статьи.

Как работает трансформатор — Основные принципы работы трансформатора.

.

Добавить комментарий

Ваш адрес email не будет опубликован.