Самодельный горизонтальный ветрогенератор: Самодельный ветрогенератор: в библиотеку домашнего мастера

Содержание

Самодельный горизонтальный ветрогенератор


Ветрогенератор для дома своими руками: мой отзыв

Интернет начинает «трещать по швам» от хвалебных статей авторов, предлагающих всем желающим использовать природную энергию ветра для получения бесплатного электричества.

Я предлагаю рассмотреть этот вопрос с практической точки зрения, оценить экономический эффект до того, как начнете создавать ветрогенератор для частного дома своими руками или даже приобретать заводскую модель.

Поговорим о трудностях, с которыми вам придется столкнуться: их необходимо предусмотреть и преодолеть. Тема сложная. Надо оценить аэродинамические и механические характеристики, сделать электротехнический расчет.

Содержание статьи

Промышленные ветрогенераторы: образец для подражания

Не секрет, что альтернативная энергетика действительно позволяет получать электричество буквально из ветра. В странах Европы промышленные ветрогенераторы занимают огромные площади и работают автономно на благо человека.

Они имеют огромные размеры, расположены на открытых всем ветрам участках, возвышаются над деревьями и местными предметами.

А еще ветряки установлены на удалении друг от друга. Поэтому случайные поломки и повреждения одного не могут причинить вреда соседним конструкциям.

Эти принципы создания ветровых генераторов будем брать за основу разработки самодельных устройств. Они созданы по научным разработкам,
опробованы уже длительной эксплуатацией, эффективно работают.

Начнем с анализа характеристик местности, на которой планируем создавать ветряную электростанцию.

Как определить скорость ветра: хватит ли его напора для бытового ветряка

Вопрос обсудим на основе научных фактов и уже допущенных ошибок многими владельцами частных домов

Теоретическая часть проекта: на что обратить внимание при выборе конструкции

Среднегодовое значение ветра для любой местности России или другой страны можно узнать на карте ветров. Эти данные имеются в широком доступе.

Если рассмотреть всю территорию, то мест для благоприятного пользования ветряной энергией со скоростью от 5 м/сек и выше у нас не так уж много, как в Европе.

Я объясняю эту ситуацию тем, что теплый воздух Гольфстрима, поднимаясь от нагретой воды, сразу устремляется в холодные районы. Чем выше перепад температур, тем больше его скорость.

Пройдя несколько тысяч километров над Европой, его сила слабеет. Наибольший перепад температур весной и осенью вызывает бури и ураганы.
Нам важно понимать, как определить скорость ветра правильно в своей местности.

Возьмем величину 5 м/сек за основу, и рассчитаем мощность ветрового потока для наиболее распространенного горизонтально расположенного осевого генератора.

Учтем, что его лопасти охватывают площадь круга S (м кв.) с диаметром D (м). Через нее проходит ветер со скоростью V (м/сек).

Ветровая энергия Рв рассчитывается по формуле:

Рв=V3∙ρ∙S

ρ — это плотность воздушной массы (кг/м куб. )

Если взять усредненные значения, например, площадь 3 м кв и плотность
воздуха 1,25 кг/м3, то ветер, дующий со скоростью 5 м/сек, способен создать мощность чуть меньше, чем 2 киловатта.

Теперь наша задача — определить, какая ее часть сможет преобразоваться в полезную электрическую энергию. Грубо ее можно оценить по процентному соотношению в 30÷40%. Конструкция и технологические характеристики ветряного колеса просто не позволят эффективно взять больше.

Более точное определение находят формулой, учитывающей:

  • коэффициент ε, определяющий долю использования ветряной энергии конструкцией ветряка. Максимальная величина, создаваемая быстроходными конструкциями, составляет 40-50%;
  • КПД редуктора —∙максимум порядка 90%;
  • КПД генератора ≈85%.

Величины всех этих коэффициентов у разных моделей генераторов ветряков сильно отличаются между собой. Я привел значения для промышленных изделий. У самодельщиков они будут значительно ниже.

Если подставить все эти цифры, то даже для заводской конструкции ветрогенератора, сделанной по точным чертежам и на промышленных станках, мы сможем при скорости 5 м/сек и описываемой площадью лопастями винта 3 метра квадратных получить меньше 700 ватт электрической энергии.

Какую ее часть сможет взять самодельный ветряк, остается только догадываться.

Мировые производители ветрогенераторов указывают, что для того, чтобы вырабатывать 3 кВт электроэнергии, а это оптимальная величина для частного дома, необходимо:

  • снимать с ветряного колеса порядка 5,1 кВТ;
  • иметь диаметр ротора 4,5 метра;
  • располагать ветряк на высоте от 12 метров;
  • использовать ветер со скоростью 10 м/сек.

Колесо должно начинать вращать генератор уже на 2 м/сек. Только в этом случае можно говорить об окупаемости всей конструкции и эффективном использовании мощности ветра.

Если же скорость снизится, хотя бы до 7 м/сек, то энергия ветрогенератора упадет на 50%. А теперь еще раз внимательно посмотрите на карту ветров России…

Однако не все так плохо. Теоретические расчеты можно проверить на практике. Для нашего случая продажа предлагает многочисленные конструкции измерительных приборов — анемометры.

Стоят они не дорого, имеют дополнительные функции измерения температуры, указания текущего времени. Их можно заказать в Китае.

Такой анемометр позволяет реально оценить силу ветра на вашей местности, чтобы проанализировать варианты эксплуатации будущей ветроэлектростанции (ВЭС). А их минимум 2:

  1. частичное удовлетворение потребностей в электроэнергии;
  2. полный переход на альтернативную энергетику.
Скрытая ошибка — слабый ветер: что умалчивают продавцы
Первая трудность

Обратите внимание на высоту размещения ветряного колеса относительно земли. Подумайте, почему все промышленные ветряки располагают от 25 метров и более.

Ведь это значительно усложняет их установку, эксплуатацию, обслуживание, ремонт. Приходится применять дорогую высотную технику, создавать прочные площадки для ее размещения.

А ответ прост: на высоте от 25 метров скорость ветра намного выше, чем у земли. Все таблицы и справочники с картами ветров создаются в первую очередь для промышленных установок, поднятых в зону 50-70м.

Если вы смонтируете свой самодельный ветрогенератор на 10 метрах, то ветер будет дуть слабее, чем указано в справочнике. А на большую высоту без специальных технических средств поместить ветряк весьма проблематично.

Работу ветряного колеса вызывает не столько скорость передвижения воздушной массы, сколько ее давление на лопасти колеса. А оно зависит еще от веса и плотности атмосферы.

Альтернативные энергетики давно учитывают соотношение, определяющее, что удвоение давления ветра увеличивает в восемь раз вырабатываемую ветрогенератором мощность.

Как влияет зона турбулентности

Работу ветряка, расположенного на небольшой высоте, может значительно осложнять зона турбулентности, которая зависит не только от рельефа местности и формы возвышенности, но и от скорости перемещения воздушных масс.

Молниезащита ветрогенератора

Работающая крыльчатка постоянно трется о воздух, накапливая статическое электричество, как и фюзеляж любого самолета во время полета. Авиаконструкторы успешно решают этот вопрос различными способами.

Промышленные ветрогенераторы тоже снабжены действенной защитой от молнии, разряды которой могут возникнуть в любой момент грозоопасного периода.

Большинство же владельцев частных домов даже не задумывается об этой проблеме, а зря. В лучшем случае у отдельных хозяев можно встретить УЗИП в вводном электрощите, чего явно не достаточно.

Подняв над крышей своего жилища железную конструкцию, которая к тому же вырабатывает электрическое напряжение, они уже создали отличный молниеприемник. Он будет надежно притягивать на себя огромные токи атмосферных разрядов.

Если не обеспечить действенный путь их отвода мимо здания на потенциал земли, то придется постоянно испытывать судьбу, подвергать себя неожиданной опасности.

Как лукавят производители ветряков

Окончательные испытания заводские модели проходят в аэродинамической трубе при идеальной ламинарности потока с равномерной структурой его направленности и высокой плотности.

В реальных условиях частного дома таких условий просто нет. Они больше подходят для движения воздушных масс у промышленных установок, расположенных на большой высоте.

Для самодельных ветрогенератов, смонтированных даже на 10 метрах, условия турбулентности и слабый ветер могут сильно ограничивать раскрутку ротора.

Рельеф местности влияет на удельную мощность. Например, непосредственно под холмом она резко снижается, а на его вершине создаются идеальные условия за счет сжатия аэродинамических характеристик и повышения давления.

Также будут сказываться хозяйственные застройки, деревья сада, заборы, соседние здания.

Ветряки для дома своими руками: обзор конструкций

Как вы уже поняли, самая первая часть, которая воспринимает энергию ветра — это ветряное колесо. Без него не обходится ни одна схема ветряка для дома.

Его можно выполнить:

  • с вертикальной осью вращения;
  • или горизонтальной.

Вертикальный ветрогенератор

Покажу фотографией одну из легких для изготовления конструкций, сделанную из обычной стальной бочки.

Вот такой вертикальный ветрогенератор, изготовленный своими руками, да еще расположенный над самой землей в окружении застроек и растений, не сможет развить нормальных оборотов для выработки достаточного количества электроэнергии, чтобы питать частный дом.

Он сможет выполнять только какие-то единичные задачи для маломощного оборудования. Причем небольшая скорость вращения его ротора потребует обязательного использования повышающего редуктора, а это дополнительные потери энергии.

Такие конструкции были популярны в начале прошлого века на пароходах. Водяное колесо, расположенное своими лопастями вдоль направления движения судна, обеспечивало его движение.

Сейчас это раритет, утративший свою актуальность. В авиации такая конструкция не то что не прижилась, а даже не рассматривалась.

Ротор Онипко

Из тихоходных конструкций ветряных колес сейчас через интернет массово распространяют ротор Онипко. Рекламщики показывают его вращение даже при очень слабом ветре.

Однако к этой разработке у меня почему-то тоже критическое отношение, хотя повторить ее своими руками не так уж и сложно. Восторженных отзывов среди покупателей не нашел, как и научных расчетов экономической целесообразности ее использования.

Если кто-то из читателей сможет меня разубедить в этом мнении, то буду признателен.

Горизонтальный ветрогенератор

С самого начала двигатели самолетов стали применять винт, прогоняющий поток воздуха вдоль корпуса самолета. Его форму и конструкцию выбирают так, чтобы использовать дополнительно к активной силе давления реактивную составляющую.

По этому принципу работает любой горизонтальный ветрогенератор, который делают промышленным способом или своими руками. Пример самодельной конструкции показываю фотографией.

По принципу использования энергии ветра это более эффективная конструкция, а по исполнению для обеспечения бытовых вопросов снабжения электроэнергией — маломощная.

Небольшой электродвигатель, ротор которого раскручивает ветряк, может даже при оптимальном давлении и силе ветра, выработать в качестве генератора только малую мощность. На нее можно подключить слабенькую светодиодную лампочку.

Подумайте сами, нужно ли собирать такой флюгер с подсветкой или не стоит. С другими задачи подобная конструкция не справится. Хотя ее еще можно использовать для отпугивания кротов на участке. Они очень не любят шумы, сопровождаемые вращением металлических частей.

Для того, чтобы полноценно пользоваться электроэнергией, получаемой от ветра, рабочее колесо ветрогенератора должно иметь соответствующие потребляемой мощности размеры. Рассчитывайте примерно на пятиметровый диаметр.

При его создании вы столкнетесь с технической трудностью: вам придется точно выдержать балансировку больших деталей. Центр масс должен постоянно находиться в средней точке оси вращения.

Это сведет к минимуму биения подшипников и раскачивание конструкции, расположенной на большой высоте. Однако выполнить подобную балансировку не так уж просто.

Как установить ветрогенератор: надежная схема мачты для крепления на высоте

Вес рабочего колеса для нормального получения электрической энергии получается довольно приличным. На простой стойке его не установить.

Потребуется создавать прочный бетонный фундамент под металлическую мачту и анкерные болты оттяжек. Иначе вся собранная с большим трудом конструкция может рухнуть в любой неподходящий момент времени.

Стойка для ветрогенератора, поднятого на высоту, может быть выполнена:

  1. в виде сборной мачты, собранной из секций с раскосами;
  2. или конусной трубчатой опорой.

Обе схемы потребуют усиления от опрокидывания за счет создания нескольких ярусов оттяжек из тросов, которые необходимы для удержания мачты при шквальных порывах ветра. Их придется надежно крепить к стопорам и анкерам.

Из личного неудачного опыта: во время пользования аналоговым телевидением у меня работала антенна «Паутинка» с диаметром обруча 2м. Она располагалась на высоте 8 метров, была закреплена на деревянном шесте с двумя уровнями оттяжек. Шквальные порывы ветра ее раскачали так, что стойка развалилась.

Современное цифровое телевидение, к счастью, требует использования антенн значительно меньших размеров. Их не только просто делать своими руками, но и крепить не так уж сложно.

Как сделать мачту для ветряка

Сразу обратите внимание на создание прочной, безаварийной конструкции. Иначе просто повторите печальный опыт работников «ЯнтарьЭнерго», у которых во время шторма произошла авария: многотонная мачта рухнула, а осколки от лопастей разлетелись по всей округе.

Устройство мачты потребует расчета количества материалов, необходимых для создания сооружения из стального уголка различного сечения. Форма и габариты выбираются по местным условиям.

Ее делают из трех или четырех вертикальных стоек. Каждая из них снизу монтируется на упор. Вверху мачты создается площадка для установки ветряка.

Поскольку длина уголков ограничена, то мачту собирают из нескольких секций. Жесткость общему креплению придают боковые ребра, крепящиеся через раскосы.

Обязательным элементом фундамента являются закладные металлические элементы. Они будут использоваться для крепежа деталей. Придется позаботиться о сварке и соединительных болтах.

Не стоит пренебрегать дополнительными оттяжками.

Как сделать опору из труб

Телескопическую конструкцию из стальных труб соответствующего профиля собрать проще, но ее следует более тщательно рассчитать на прочность. Изгибающий момент, создаваемый тяжелой верхушкой при штормовом ветре не должен превысить критического значения.

При этом возникнут сложности с профилактическим обслуживанием, осмотром и ремонтом собранной воздушной электростанции. Если по мачте можно подняться на высоту как по лестнице, то по трубе это сделать проблематично. Да и работать наверху очень опасно.

Поэтому сразу необходимо продумать вариант безопасного опускания оборудования на землю и доступного способа его подъема. Это позволяет выполнить одна из двух схем с:

  1. Поворотной осью на основной опоре.
  2. Упорным рычагом на нижней части опорной стойки.

В первом случае создается прочный фундамент для установки основной опоры. На ее оси вращения крепится сваренная трубная конструкция с ветряком и полиспастной системой на стальных тросах.

Снизу трубы расположен противовес, облегчающий работу по подъему и опусканию с помощью ручной лебедки.

На картинке не показаны страховочные тросы поясов оттяжек. Они просто свисают со своих креплений вниз на землю при подъеме и опускании мачты, а к стационарным забетонированным кольям крепятся для постоянной работы.

Схема установки и опускания ветряка по второму варианту приведена ниже.

Мачту и расположенный под прямым углом к ней упорный рычаг с противовесом, усиленный ребром жесткости, поворачивают в вертикальном направлении лебедкой с полиспастной системой.

Ось вращения созданной конструкции находится в вершине прямого угла и закреплена в направляющих, вмонтированных в фундамент. Троса оттяжек при подъеме или опускании мачты снимают со стационарных креплений на земле. Они могут использоваться в качестве страховочных фал.

Ветрогенератор: устройство и принцип работы электрической схемы простыми словами

Промышленные ветряные электростанции спроектированы так, что способны сразу выдавать электрическую энергию в сеть потребителям. Своими руками так сделать не получится.

При выборе генератора, который будет раскручивать ветряное колесо, используют принцип обратимости электрических машин. К электродвигателю прикладывают крутящий момент и обеспечивают возбуждение обмоток статора.

Однако, идея раскручивать ротор трехфазного асинхронного электродвигателя в качестве генератора для получения электрического тока напряжением 220/380 вольт реализуется от двигателей внутреннего сгорания, напора воды, но не ветра.

Общая конструкция генератора с ротором станет иметь большой вес, а иначе обеспечить высокие обороты вала не получится.

Для небольших мощностей можно:

  • использовать автомобильный генератор, который выдает 12/24 вольта;
  • применить мотор колесо от электробайка;
  • собрать
    конструкцию из неодимовых магнитов с катушками из медной проволоки.

Также за основу можно взять ветряк, продаваемый в Китае. Но ему необходимо сразу провести ревизию: обратить внимание на качество монтажа обмоток, состояние подшипников, прочность лопастей, общую балансировку ротора.

Придется настроиться на то, что величина выходного напряжения генератора будет сильно меняться в зависимости от скорости ветра. Поэтому в качестве промежуточного звена используют аккумуляторы.

Их зарядку необходимо возложить на контроллер.

Бытовые приборы сети 220 вольт должны питаться переменным током от специального преобразователя — инвертора. Простейшая схема домашней ветряной электростанции имеет следующий вид.

Ее можно значительно упростить потому, что бытовая цифровая электроника: компьютеры, телевизоры, телефоны работают от постоянного тока блоков питания 12 вольт.

Если их исключить из работы и запитать цифровое оборудование непосредственно от аккумуляторов, то потери электрической энергии сократятся за счет отмены двойного преобразования в инверторе и блоках.

Поэтому рекомендую сделать отдельные розетки на 12 вольт, запитать их сразу от аккумуляторов.

Внутри электрической схемы придется соблюдать такой же баланс мощностей, как и в механической конструкции. Каждая подключенная нагрузка должна соответствовать энергетическим характеристикам вышестоящего источника.

Бытовые приборы 220 вольт не должны перегружать инвертор. Иначе он будет отключаться от встроенной защиты, а при ее неисправности просто сгорит. По этому же принципу работают аккумуляторные батареи, силовые контакты контроллера, да и сам генератор.

Защита автоматическим выключателем домашней ветряной установки должна быть выполнена в обязательном порядке.

Для этого его необходимо правильно выбрать строго по
научным рекомендациям, проверить и наладить.

Случайную перегрузку, а тем более появление тока короткого замыкания предусмотреть невозможно. Поэтому этот модуль обязательно устанавливают в качестве основной защиты.

Схема подключения аккумуляторов, инвертора и контроллера для ветрогенератора практически ничем не отличается от той, что используется на гелиостанциях со световыми панелями.

Поэтому сразу напрашивается разумный вывод: собирать комбинированную домашнюю электростанцию, работающую от энергии ветра и солнца одновременно. Эти два источника вместе хорошо дополняют друг друга, а затраты на сборку одиночных станций значительно снижаются.

На Ютубе очень много каналов посвящено ветрогенераторам для дома. Мне понравилась работа владельца «Солнечные батареи». Считаю, что он довольно объективен при изложении этой темы. Поэтому рекомендую внимательно посмотреть.

Аккумуляторы для ветрогенератора: еще одна проблема для владельца дома

Одна из затратных задач ветряной или солнечной электростанции — вопрос хранения электрической энергии, которую решают только аккумуляторы. Их придется покупать и обновлять, а стоимость — довольно высокая.

Для их выбора необходимо знать рабочие характеристики: напряжение и емкость. Обычно применяются составные батареи из АКБ на 12 V, а количество ампер-часов в каждом конкретном случае стоит определить опытным путем, исходя из мощности потребителей, времени их работы.

Выбирать аккумуляторы для ветрогенератора придется из довольно широкого ассортимента. Ограничусь не полным обзором, а только четырьмя
популярными типами кислотных АКБ:

  1. обычные стартерный автомобильные;
  2. AGM типа;
  3. гелевые;
  4. панцирные.

Продавцы не рекомендуют приобретать для ветростанций стартерные аккумуляторы потому, что они созданы для работы в критических условиях эксплуатации автомобиля:

  • при хранении на морозе должны выдерживать огромные токи стартера, которые создаются при раскрутке холодного двигателя;
  • во время езды подвергаются вибрациям и тряске;
  • подзарядка происходит в буферном режиме от генератора
    при движении авто с различными оборотами двигателя.

При этом:

  • обслуживаемые АКБ, требующие периодического уровня электролита и доливки дистиллированной воды, созданы для выдерживания 100 циклов разряд/заряд;
  • не обслуживаемые — имеют более сложную конструкцию и количество циклов 200.

Однако АКБ ветрогенератора при эксплуатации внутри дома:

  • обычно помещаются в подвальном помещении, где температура, круглогодично поддерживаемая на уровне +5÷+10 градусов, является оптимальной;
  • не подвергаются тряскам и вибрациям, стационарно
    установлены в неподвижном состоянии;
  • не получают экстремальные нагрузки при стартерном запуске, а при включении бытовых приборов через инвертор работают в щадящем режиме;
  • заряжаются от генератора небольшими токами, которые благоприятно действуют на режим десульфатации пластин.

Все это является самыми выгодными условиями для их эксплуатации. Поэтому этот вариант предлагаю взять на заметку тем, кому не лень периодически контролировать напряжение на банках и следить за уровнем
электролита в них.

AGM аккумуляторы более сложные по устройству. У них такие же пластины, но кислотой пропитаны стеклянные маты, работающие одновременно диэлектрическим слоем. Их цикл разряда/заряда — 250÷400. Перезаряд опасен.

Голевые АКБ тоже создаются необслуживаемой конструкцией с герметичным корпусом и загущенным до состояния геля электролитом. Они очень не любят перезаряд, но более стойки к глубокому разряду. Число расчетных циклов —350.

Панцирные аккумуляторы относятся к самым современным разработкам. Их электродные пластины защищены полимерами от воздействия кислоты. Диапазон циклов эксплуатации: 900÷1500.

Все эти четыре типа АКБ значительно отличаются по цене и условиям эксплуатации. Если взять во внимание рекомендации продавцов, то придется выложить довольно приличную сумму денег.

Однако я вам рекомендую предварительно послушать полезные советы, которые дает в своем видеоролике «Как выбрать аккумуляторы для ВЭС и солнечной станции» все тот же владелец «Солнечные батареи».

У него на этот счет свое, противоположное мнение. Как вы отнесетесь к нему — ваше личное дело. Однако, знать информацию из противоположных источников и выбрать из нее наиболее подходящий вариант: оптимальное решение для думающего человека.

Как рассчитать экономический эффект: цена ветрогенератора

Одним из маркетинговых ходов продавцов являются прайс листы,
показывающие расчеты экономии покупателей, создаваемой за счет приобретения их продукции. Стоит ли им верить?

Я предлагаю вам самостоятельно оценить экономическую выгоду от установки ветряной электростанции на вашем участке. Для этого потребуется учесть минимум расход денег на:

  1. возведение фундамента под мачту, на который пойдет немало бетона и металлический арматуры;
  2. создание высотной опоры для установки
    ветроколеса в зоне благоприятного давления ветра. Сюда войдут не только
    металлические уголки, трубы и крепежные детали со сваркой, но и затраты на весь монтаж;
  3. цену приобретения готового ветрогенератора или
    его изготовление в домашних условиях;
  4. покупку инвертора, контроллера, аккумуляторов, защитных модулей, кабелей и проводов. Учтите, что лет за 10-12 комплект АКБ придется сменить несколько раз;
  5. эксплуатационные расходы на профилактическое обслуживание и ремонт;
  6. решение ряда организационных вопросов.

Практика использования ветряных станций показала, что тихо они не работают, а постоянные вибрации и шумы ветрогенератора раздражают ближайших соседей. Иногда придется решать вопросы через суд.

К тому же в область вращающегося колеса иногда попадают птицы: пластиковые лопасти ломаются, металлические гнутся. Требуется надежная защита и резервный комплект запасных частей.

Можно даже допустить, что лет 10 все будет работать надежно и эффективно, хотя про скорость ветра я объяснил довольно подробно в самом
начале статьи.

Когда рассчитаете все эти затраты (сделайте поправку на часть непредвиденных расходов), то прикиньте цену 1 киловатта электроэнергии, которую вы платите по счетчику сейчас.

Умножьте ее на то количество киловатт, на которое создаете ветряную станцию, например на 3. Дальше останется определить период времени для сравнения.

Возьмем за основу время, за которое предварительно планируете окупить свои затраты, например, 15 лет эксплуатации. Оплату 3 кВТ в час надо умножить на этот срок, выраженный в часах, и сравнить со стоимостью затрат на создание и эксплуатацию ВЭС за этот же период.

Оценка очень приблизительная, цены плавают, но расчет для моего случая показал, что проще оплачивать электроэнергию государству. Затраты будут ниже в 4 раза.

Считаю, что ветрогенератор для частного дома своим руками создать можно. Примеров его работы много. Однако, надо хорошо продумать целесообразность его использования, обосновать экономическую пользу.

Без точного предварительного расчета деньги на его создание в прямом смысле могут быть пущены на ветер и не принесут никакой выгоды владельцу. Если я ошибся в прогнозах, то поправьте в комментариях.

Учтите, что ваш опыт интересует не только меня, но и большое количество других людей. Он принесет пользу и им.

Самодельная фабрика по производству ветряных турбин, изготовленная на заказ OEM / ODM производственная компания

Всего найдено 12 заводов и компаний по производству ветряных турбин по 36 продуктам. Выбирайте высококачественные ветряные турбины собственного производства из нашего огромного выбора надежных заводов-производителей ветряных турбин. Бриллиантовый член
Тип бизнеса: Торговая компания
Основные продукты: Горизонтальная и вертикальная ось Ветер Турбина , Генератор постоянного магнита, Ветер Лопасти турбины , Солнечная энергия Ветер Гибридная система, Контроллер и инвертор
Mgmt.Сертификация:

HSE, QHSE

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM
Расположение: Циндао, Шаньдун
Тип бизнеса: Производитель / Factory
Основные продукты: Wind Turbine , Small Wind Turbine , Wind Generator, Wind Power Turbine , Micro Wind Turbine
Расположение: Вэньчжоу, Чжэцзян
Тип бизнеса: Производитель / Factory , Торговая компания
Основные продукты: Солнечный контроллер, солнечный генератор, солнечный генератор постоянного тока, фотоэлектрический инвертор, солнечная энергетическая система
Mgmt. Сертификация:

ISO 9000, ISO 9001

Расположение: Вэньчжоу, Чжэцзян
Бриллиантовый член
Тип бизнеса: Производитель / Factory
Основные продукты: Солнечный уличный фонарь, Уличное освещение, Солнечный парковый свет, Ветер Солнечный гибридный уличный фонарь, Солнечный садовый свет
Mgmt.Сертификация:

ISO 9001, ISO 14001, OHSAS / OHSMS 18001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM
Расположение: Янчжоу, Цзянсу
Тип бизнеса: Производитель / Factory , Торговая компания
Основные продукты: Ветер Генератор , Солнечная фотоэлектрическая панель, Светодиодный уличный фонарь, Ветер Турбина , Ветер Контроллер
Mgmt. Сертификация:

ISO 9001, ISO 14001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM
Расположение: Шанхай, Шанхай
Бриллиантовый член
Тип бизнеса: Производитель / Factory
Основные продукты: Солнечная энергетическая система, Wind Power System, Солнечная система уличного освещения, Солнечная инверторная система постоянного тока, Солнечный инвертор
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM
Расположение: Фошань, провинция Гуандун
Золотой член
Тип бизнеса: Производитель / Factory , Торговая компания
Основные продукты: Низкоскоростной двигатель переменного тока с постоянным магнитом, генератор с низким напором воды Hydro Turbine Generator, Wind Powered Windmill Turbine Generator, High Speed ​​Perpetual Permanent Magnet Motor, Pico Micro Hydroelectricity Generation
Mgmt. Сертификация:

ISO 9001, ISO 29001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM
Расположение: Нанкин, Цзянсу
Тип бизнеса: Производитель / Factory , Торговая компания
Основные продукты: Wind Турбина , Wind Генератор, лопасть, контроллер, инвертор
Mgmt.Сертификация:

ISO 9001

Расположение: Чжухай, Гуандун
Бриллиантовый член
Тип бизнеса: Торговая компания
Основные продукты: AVR
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: Собственный бренд
Расположение: Фучжоу, провинция Фуцзянь
Тип бизнеса: Производитель / Factory
Основные продукты: Verticla Wind Турбина , Wind Генератор
Расположение: Чанчунь, Цзилинь
.

домодельное оборудование ветроэнергетики горизонтальной оси 3квт

FAQ

1. Вы фабрика или торговая компания?

Мы фабрика, и добро пожаловать к нам в гости!

2. Почему выбирают завод?

Наши ветрогенераторы первого качества в нашей стране — Китае.

3. Когда я могу получить коммерческое предложение?

Обычно мы предлагаем в течение 24 часов после получения вашего запроса.Вы можете позвонить нам или написать нам напрямую, если возникнет срочная необходимость.

4. Какой срок доставки?

Обычно срок доставки составляет 20 дней, для увеличения мощности и количества требуется больше дней.

5. Какие условия оплаты?

Наши условия оплаты — T / T, L / C.

6. Как послепродажное обслуживание?

Мы предлагаем инженеров для своевременного обслуживания за границей.

.

1000w Китай Дешевая домашняя ветряная турбина, самодельная горизонтальная ветряная турбина для продажи

1. Ветрогенератор серии FD использует подшипники NSK, импортированные из Японии, значительно снижают крутящий момент и скорость ветра при запуске,

эффективно уменьшают трение и истирание в процессе эксплуатации, значительно увеличивают создаваемую мощность и увеличивают срок службы. Пруток Tail-

изготовлен из оловянной бронзы, обладает высокими механическими свойствами, износостойкостью и коррозионной стойкостью.

2. Лопасти ветряных генераторов серии FD изготовлены из высокопрочных композитных материалов, обладают хорошей прочностью и ударной вязкостью, деформируются без технического обслуживания. Конструкция лопастей ротора, эффективность использования энергии ветра высокая, шум при работе небольшой, Срок службы может составлять от 5 до 10 лет. Генератор ветра использует высокоэффективный постоянный магнит

и оптимизацию конструкции магнитной цепи, выбор материала с высокой проницаемостью и высокой термостойкостью, компонент статора

и обработку методом вакуумного покрытия погружением, изоляционные характеристики и значительно увеличивают срок службы.

3. Корпус изготовлен из высокопрочного алюминиевого сплава, отлитого под давлением, с использованием передовых технологий производства, легкий вес, высокая прочность, отсутствие ржавчины, коррозии,

значительно увеличено тепловыделение.

4. Генератор использует структуру угольной щетки и щеточного кольца, электричество от угольной щетки к щеточному кольцу, щеточное кольцо будет электрическими выводами, ветер

вращения турбин положит конец кабелю путем скручивания.

5. Генератор FD принимает автоматическое устройство по ветру, генератор автоматически регулирует направление ветра, чтобы уделять внимание двум или более вещам, чувствительности

и стабильности в условиях большой ветроэнергетической машины, которая ограничивает наклонную скорость хвоста. защитить генератор ветровой турбины от повреждений.

901 Композитный

Техническое описание ветрогенератора мощностью 1000-3000 Вт

Номинальная мощность (Вт)

3000

2000

1000

Ротор Напряжение (В)

120/48

48

48

Диаметр ротора (м)

3. 8

3,2

2,7

Начальная скорость ветра (м / с)

2,5

2,5

2,5

Номинальный ветер скорость (м / с)

10

10

10

Материал корпуса

Литой под давлением алюминий

Материал лезвия14


,Горизонтальный ветрогенератор

— Купить ветряную турбину 400 Вт, горизонтальную ветряную турбину 400 Вт, самодельный ветрогенератор 400 Вт Продукт на Alibaba.com

Представление продукта

Гарантия и возврат
1. Запрос на возврат или замену доступен только в течение 1 недели после получения посылки и возврата товара в том же состоянии, в котором он был получен.
2. Пожалуйста, свяжитесь с нами, чтобы запросить разрешение на возврат. Ваше имя, номер аукциона и причина возврата должны быть указаны в электронном письме.Все возвращенные детали должны содержать все оригинальные упаковочные материалы.
3. Тщательно упакуйте товар. Возвращенные товары будут проверены, и новая замена будет отправлена ​​покупателю сразу после обнаружения дефекта. Если подходящая замена недоступна, будет произведен возврат. Доставка, обработка и страховые взносы не подлежат возврату.
4. Если товар найден исправным, товар будет отправлен обратно покупателю за его счет.
5. Отличная гарантия 2 года.

Наши услуги:
1. Обеспечить профессиональную техническую поддержку ветряных турбин
2. Предоставить проектирование систем включения / выключения, услуги проектирования гибридных ветро-солнечных систем
3. Поставщик и проектировщик комплексной системы
4. Тип, модель ветряной турбины, выбор мощности профессиональная поддержка
5. Предоставление услуг OEM, индивидуальное обслуживание

Параметры продукта

Модель LS-400M3
Номинальная мощность 400 Вт
Максимальная мощность 410 Вт
Номинальное напряжение 12/24 В
Стартовая скорость ветра 2.0 м / с
Номинальная скорость ветра 11,0 м / с
Выжившая скорость ветра 50 м / с
Максимальный вес нетто 11,2 кг
Диаметр колеса 1,75 м
Номер лезвия 3
Материал лезвия Нейлоновое волокно
Генератор Трехфазный генератор переменного тока с постоянным магнитом
Магнитная сталь NdFeB
Корпус генератора Die- литье алюминия
Система управления Электромагнит
Регулировка скорости Автоматическая регулировка наветренной стороны
Рабочая температура от -40 до 80 ° C
Расчетный срок службы 20 лет
Сертификаты CE, ISO 14001 , ISO 9001

Почему выбирают нас

О нас

1, профессиональная компания, занимающаяся углеродным и твердым топливом.

Оборудование и технологии

2, качество твердого топлива и производства — поставщик

Сервис

3, стабильное качество продукции, поставка, добросовестное управление

Вертикальная ветряная турбина LS-SV
Ветрогенератор LS-M3
LS-Q4 Ветрогенератор Maglev
Ветряк 100 Вт-20 кВт Тип H
.

Как сделать горизонтальный ветрогенератор своими руками: советы экспертов

За последние годы ветроэнергетика укрепила позиции среди других сфер отрасли. Доля этой сферы в общем объеме вырабатываемой энергии стабильно растет, есть сегодня целые страны, применяющие ветрогенераторы в качестве основных устройств для генерации электричества. Так, например, в Дании на 2015 год с помощью ветрогенераторов производилось 42% всего электричества в стране. Чуть отстают от этого государства Португалия (27%), Испания (20%), Ирландия (19%) и Германия (18,8%). Несомненным лидером по развитию ветроэнергетики в стране сегодня является Китай. По данным WindPower Intelligence, мощность установленных ветроэлектростанций в этой стране составляет 171,8 Гвт. За 2017 год страна ввела порядка 19,5 Гвт мощностей в эксплуатацию — это 37% от общего объема мировых мощностей.

Что касается России, то в отношении вопросов, связанных с энергией ветров, наша страна занимает срединное положение. С одной стороны — невероятно большая территория и равнины формируют достаточно ровные ветры. Но есть и другая сторона — ветры в России преимущественно медленные, низкопотенциальные. В некоторых районах, особенно малообжитых, наблюдаются буйные ветры, поэтому возможность построить на участке горизонтальный ветрогенератор своими руками для россиян кажется очень привлекательной.

Кроме того, можно сочетать ветровые установки с другими источниками альтернативной энергии, например, с солнечными электростанциями.

Горизонтальные ветрогенераторы: особенности конструкции

Превосходство горизонтальных ветряков над вертикальными в плане КПД особенно сильно проявляется, если речь идет о промышленных масштабах.

Однако количество лопастей у горизонтальных ветряков ограничено, чтобы не увеличивать нагрузку на длинную мачту ветрогенератора. В случае, если речь идет о строительстве конструкции больших размеров, велика вероятность, что в какой-то момент давление на крыльчатку с множеством лопастей станет выше допустимых пределов, и в таком случае мачта просто не выдержит нагрузки, сломается. Именно поэтому промышленные турбины имеют обычно не более трех лопастей.

С конструкциями меньшего размера можно экспериментировать: например, в райцентре Михайловское были созданы горизонтальные ветряки, способные давать заряд при ветре три или даже два метра в секунду.

Еще одна особенность горизонтальных ветрогенераторов — возможность их наведения на ветер. Так как направление ветров над земной поверхностью нестабильно, ось вращения ветрогенератора должна быстро корректироваться при необходимости. Крупные конструкции устанавливаются чаще там, где преобладает единственное направление воздушных потоков, поэтому возможность корректирования оси вращения ограничена. В случае с небольшими ветряками используются специальные механизмы — хвостовики, которые корректируют положение ветрогенератора в автоматическом режиме.

Как построить горизонтальный ветряк своими руками

Чтобы обеспечить частный загородный дом энергией, будет достаточно устройства, мощность которого не превышает 1 кВт. При таких параметрах, согласно законодательству РФ, ветрогенератор можно приравнять к бытовому изделию, соответственно, можно смело строить горизонтальный ветряк своими руками, не заботясь о согласованиях в различных инстанциях — для монтажа подобных конструкций не требуются какие-либо сертификаты.

Пример плана строительства горизонтального ветряка

Если решили создать горизонтальный ветрогенератор своими руками, чертежи — первое, с чего следует начать. После того как на бумаге отдельные элементы сольются в одну понятную, логичную схему, можно приступать к строительству. Горизонтальные ветрогенераторы чаще имеют один и тот же состав элементов: высокая мачта (чтобы доставить ветряк на нужную высоту, где ветру не будут мешать ни строения, ни деревья), крыльчатки с парой-тройкой продолговатых пластиковых лопастей.

Также конструкция предполагает использование сопутствующей аппаратуры, хвоста (стабилизатор, который в автоматическом режиме будет поворачивать крыльчатку в соответствии с воздушными потоками).

  1. Источник тока. Это могут быть автомобильные , но наиболее простой вариант — установка электродвигателей. Для домашнего ветрогенератора подойдут моторы постоянного тока с 30-100 Вольтами напряжения. Хорошие модели, подходящие для наших целей, выпускает компания Ametek, но можно посмотреть двигатели с подходящими параметрами и у других производителей. Эксплуатируясь в режиме генератора, такие моторы позволяют получить до 50% от заявленного напряжения. Проверить КПД мотора просто — подключите автомобильную лампу на 12 вольт к электрическим выходам и крутаните вал мотора: если технические показатели подходят, лампа загорится.
  2. Лопасти. Для изготовления лопастей можно использовать трубу из пластика. Диаметра в 15-20 см вполне хватит для наших целей. Из куска трубы длиной в 60 см можно изготовить четыре лопасти, но для самодельного ветрогенератора будет достаточно трех.
    Возьмите пластиковую трубу (например, сантехническую), отрежьте нужную длину плюс несколько сантиметров для обработки в дальнейшем. Получившийся обрезок нужно разделить на четыре одинаковые части — по линии оси. Каждый элемент следует вырезать по заранее подготовленному шаблону (шаблоны, чертежи в большом ассортименте представлены на просторах интернета, так что с поиском особых проблем не возникнет). Для того чтобы улучшить аэродинамические показатели лопастей, кромки необходимо аккуратно зашкурить. Лопасти готовы? Теперь их нужно прикрутить к шкиву из пары дисков, а тот, соответственно, — к валу мотора. После того, как лопасти закреплены, нужно торец ступицы закрыть обтекателем из пластика — это делается для того, чтобы улучшить аэродинамику. 
  3. Основа для флюгера. Делается из деревянного бруса длиной до 600 мм. Если есть выбор, стоит предпочесть брусок из твердых пород древесины. С одной стороны бруска монтируется электродвигатель, с другой — «хвост» из металлического листа. На нижней поверхности бруска нужно закрепить трубчатый отвод для соединения с мачтой, и чуть подальше высверлить отверстие, через которое в будущем сможете вывести кабель ветряка и подключить его к накопителю электроэнергии.
  4. Основание. Для самодельной установки вполне нормальной будет высота в пять-семь метров. Для мачты отличным выбором станет металлическая труба диаметром 50-60 мм. Опору под нижнюю часть можно сделать из толстой фанеры, усилив конструкцию стальным листом. По краям тарелки нужно просверлить 4 отверстия диаметром 12 мм, через них будет осуществляться штыревое крепление к земле. На поверхность опорного основания прикрепляется конструкция из металлических фланцев, патрубков, тройника. Чтобы получить эффект шарнира, резьбовое сочленение между муфтой-тройником и уголками нужно выполнить не до конца — это даст возможность в любой момент спустить или поднять ветрогенератор.  На трубчатый кусок надевается мачтовая труба большего диаметра до упора в ограничитель. Примерно таким же образом нужно соединить верхнюю часть мачты и флюгерную систему ветрогенератора, но в качестве ограничителя в этом случае будут выступать подшипники.
  5. Наконец, последний этап — ветрогенераторная установка поднимается на обозначенную высоту (благодаря шарнирному устройству сделать это будет нетрудно), и мачта фиксируется растяжками. Часто в качестве дополнительного оборудования при установке горизонтальных ветряков используются устройства защиты от шквальных ветров. И это оправдано: сильные порывы ветра способны приводить к скачкам напряжения, что может вывести крыльчатку из строя. Для экстренного торможения применяются устройства, которые отводят ось крыльчатки при шквальных порывах от направления ветра.

Еще один момент: горизонтальные ветрогенераторы нуждаются в регулярном обслуживании, так что, если вы решили сделать горизонтальный ветряк своими руками, уделите внимание выбору места расположения. С одной стороны, в этом месте ветер должен быть наиболее сильным и равномерным (такие условия соблюдаются при установке на высоте), с другой стороны, вы должны иметь доступ к конструкции для обслуживания. Не забудьте про необходимость обустройства молниеотвода и заземляющего контура — ваша предусмотрительность поможет защитить конструкцию от поражения молнией.

Как сделать вертикальный ветрогенератор | Сам Себе Строитель

Вертикальный ветрогенератор своими руками, чертежи, фото, видео ветряка с вертикальной осью.

Ветрогенераторы подразделяются по типу размещения вращающейся оси (ротора) на вертикальные и горизонтальные. Конструкцию ветрогенератора с горизонтальным ротором мы рассматривали в прошлой статье, теперь поговорим о ветрогенераторе с вертикальным ротором.

Прежде всего, рассмотрим преимущества и недостатки вертикального ветряка.

Преимущества:

  • Низкий уровень шума – ветровое, колесо практически не издаёт шум и не мешает, нет характерного свиста винта.
  • Простота конструкции – сделать такой ветрогенератор и установить не составит особой сложности.
  • Надёжная конструкция – все узлы компактны, удобны в обслуживании.

Недостатки:

  • Основным недостатком конструкции ветрогенератора с вертикальным ротором являются его низкие обороты, такой ветряк нужно устанавливать в местности с преобладающей скоростью ветра более 4 м/с.
  • Практически нет защиты от ураганного ветра – если в горизонтальном ветряке при урагане автоматически срабатывает складывающийся хвостовик который поворачивает ветроколесо, то в такой конструкции нужно вручную заклинивать ротор, как вариант замыкать контакты на выходе из катушек.

Изготовление вертикального ветрогенератора.

Прежде всего, ели вы решили изготовить ветряк с вертикальной осью нужно определиться с генератором. Поскольку вертикальный ветрогенератор низкооборотный, то соответственно понадобится генератор способный выдавать зарядку на аккумулятор при достаточно низких оборотах.

Автомобильный генератор для этой конструкции не совсем подходит, так как он выдаёт зарядный ток при оборотах более 1000 об/мин. Для автомобильного генератора нужно использовать шкив с передаточным числом 4 – 5 и доработать сам генератор.

В качестве генератора практичней использовать аксиальный генератор, его можно изготовить самостоятельно, процесс изготовления описан в этой статье.

Схема аксиального генератора для ветрогенератора.

Аксиальный генератор.

Изготовление ветроколеса.

Ветроколесо (турбина) вертикального ветрогенератора состоит из двух опор верхней и нижней, а также из лопастей.

Ветроколесо изготовляется из листов алюминия или нержавейки, также ветроколесо можно вырезать из тонкостенной бочки. Высота ветроколеса должна быть не менее 1 метра.

В этом ветроколесе угол изгиба лопастей задаёт скорость вращения ротора, чем больше изгиб, тем больше скорость вращения.

Ветроколесо крепится болтами сразу к шкиву генератора.

Для установки вертикального ветрогенератора можно использовать любую мачту, изготовление мачты подробно описано в этой статье.

Схема подключения ветогенератора.

Генератор подключается к контроллеру, тот в свою очередь к аккумулятору. В качестве накопителя энергии практичней использовать автомобильный аккумулятор. Поскольку бытовые приборы работают от переменного тока, нам понадобится инвертор для преобразования постоянного тока 12 V в переменный 220V.

Для подключения используется медный провод сечением до 2,5 квадрата. Схема подключения подробно описана тут.

Видео где показан ветрогенератор в работе.

Самодельный ветрогенератор: особенностью конструирования, монтажа и эксплуатации

Вопросы изготовления ветрогенераторов в домашних условиях поднимаются практически на каждом энергетическом форуме в сети. Пользователей больше всего интересуют конструкции ветрогенераторов, которые можно было бы собрать самостоятельно, и электрические параметры уже собранного ветряка, проанализировав которые можно сделать вывод о пригодности той или иной модели самодельного ветрогенератора для своих нужд. В статье рассмотрим основные этапы проектирования и сборки ветрогенератора в домашних условиях.

Исходные данные для проектирования ветрогенератора это мощность установки, тип и конструкция ветрогенератора. Мощность ветряка зависит от энергопотребления (количества одновременно подключенных электроприборов к сети) и количества аккумуляторных батарей для запаса энергии. Если ветрогенератор необходим для обеспечения бесперебойного отопления или подогрева воды, то его мощность необходимо существенно завышать, что непременно скажется и на конструкции лопастей, мачты и самого электрического генератора.

Горизонтальный ветрогенератор: типы, основные особенности
Ветрогенераторы парусного типа: устройство, основные характеристики

В качестве оценки параметров будущего ветрогенератора приведем пример ветряка компании AVIC W-HR2: мощность 2кВт; диаметр лопастей 3м; высота мачты 8м. Для установки такого ветрогенератора потребуется достаточно мощный фундамент и грузоподъемный кран для монтажа всей конструкции. Приняв за постоянные величины КПД редуктора (0,9) и электрического генератора (0,8), а также с учетом коэффициента использования ветра 0,35 и скорости ветра в 4м/с, при самостоятельном проектировании ветряка можно воспользоваться следующей таблицей:

В приведенной таблице отображена зависимость мощности ветрогенератора от диаметра крыльчатки генератора и количества лопастей на ней. При увеличении скорости ветра с сохранением параметров количества и размеров лопастей, мощность ветрогенератора будет увеличиваться пропорционально скорости потока ветра в кубе: при скорости ветра 8м/с (увеличение в 2 раза) мощность увеличиться в 8 раз.

Изготовление лопастей для ветрогенератора из ПВХ труб, аллюмния, стекловолокна

Количество и размеры лопастей ветрогенератора определяют конструктивные особенности ветряка. Двухлопастные ветряки существенно увеличивают нагрузку на центральную ось генератора, мачту и элементы ее крепления к фундаменту, в то время как центробежная сила постоянно стремится разорвать лопасти на куски. С увеличением количества лопастей нагрузка на ось генератора снижается, поэтому оптимальным количеством лопастей для самодельного ветряка считается от 4 до 8 лопастей. Помимо этого лопасти ветрогенератора должны отвечать определенным аэродинамическим характеристикам, от которых зависит коэффициент использования ветрового потока и уровень шума, который возникает при работе (двухлопастные ветряки более шумные, т.к. их лопасти очень сложно сбалансировать).

Элементы защиты ветрогенератора

Асинхронный электродвигатель в качестве генератора для ветряка
Мачта для ветрогенератора: конструкция, установка и эксплуатация

В домашних условиях достаточно трудно изготовить идеальные лопасти, провести балансировку колеса и рассчитать требуемый запас прочности для мачты ветрогенератора. Мощные ветрогенераторы с диаметром лопастей от 2м обладают высокими показателями аэродинамического сопротивления. При этом на всю конструкцию ветряка воздействует огромная ветровая нагрузка. При превышении скорости ветра 10 м/с или при сильном переменчивом ветре необходимо принудительно ограничивать работу ветрогенератора. В качестве одного из устройств, которое ограничивало бы работу ветрогенератора при больших ветровых нагрузках, можно использовать так называемую боковую лопату: при сильном ветровом потоке, давление на ветроколесо превышает силу давления пружины защиты, в результате чего срабатывает защита. Когда генератор начинает складываться, ветровой поток попадает на ветрогенератор под углом, что серьезно сокращает его мощность. При очень сильном ветре защита полностью складывает генератор параллельно направлению ветрового потока, полностью прекращая работу ветряка.

Правила ухода за ветрогенератором

При эксплуатации самодельных ветрогенераторов стоит соблюдать следующие правила:
1. Периодически проводить ревизию всех болтовых соединений в элементах крепления мачты к фундаменту и генератора к мачте.
2. Проводить смазку подшипников генератора и поворотного устройства ветрогенератора.
3. Следить за балансировкой колеса ветрогенератора.
4. Проверять состояние изоляции электрооборудования не реже 1 раза в 6 месяцев.

Если же процесс создания и эксплуатации ветрогенератора, сделанного своими руками, для Вас кажется очень сложным, тогда можно заказать готовый ветрогенератор для дома и оградить себя от различных неприятностей. Однако в таком случае необходимо позаботится о наличии достаточного количества финансовых средств для оплаты работы проектировщиков, монтажников и обслуживающего персонала.

Ветрогенератор своими руками | Как сделать самому?

Сергей Васильевич, вложив в дело всего 300 долларов, качает электричество из ветра.

Мы познакомились с Сергеем Васильевичем, когда его ветроэлектростанция была только в проекте.

Ветрогенератор своими руками

«Линия электропередач рядом, – говорит Сергей Васильевич, – но «свободной мощности» нет. Предложили ставить свой трансформатор по цене легкового автомобиля».

«Незачем тратить такие деньги», – резонно решил хозяин. Задачу для себя Сергей Васильевич поставил так: получать достаточное количество энергии в доме площадью 80 квадратных метров зимой и летом.

Вначале хозяин приобрел солнечную батарею общей мощностью 120Вт. Через импульсную схему она заряжает кислотную аккумуляторную батарею на 200 Ампер-часов.  Летом этого хватает, однако зимой одной лишь солнечной энергии недостаточно.

На хозяйстве есть бензиновый генератор мощностью 2 киловатта. Но он предназначен для особых случаев: работы болгаркой, дрелью или аварийной подзарядки аккумуляторной батареи. Зимой использовать бензин невыгодно.

Решению сделать ветрогенератор самому альтернативы не было.

Участок Сергея Васильевича расположен в Киево-Святошинском районе. Здесь, по данным Укргидрометцентра среднегодовая скорость ветра меньше 4,5 метров в секунду. Достаточно ли такого слабого ветра для того, чтобы покрыть нужды хозяйства изобретателя?

Инженер по образованию и профессии, Сергей Васильевич подошел к процессу постройки ветряка с особой тщательностью. Вначале сделал уменьшенный макет, на котором тестировал силу ветра, действующую на лопасти. Остановился на вертикальной схеме ветрогенератора. Ее основное преимущество –ветрогенератор будет давать ток уже при скорости ветра от 1-2 метров в секунду. Кроме того, вертикальный ветрогенератор значительно менее малошумный, чем ветряк, построенный по горизонтальной схеме.

«Фундамент построил со значительным запасом, – говорит Сергей Васильевич, – для обустройства опор вполне достаточно 2-4 мешков цемента, 10 ведер песка и 30 ведер щебня. Каждый «куб» фундамента, в который помещается опора, получится размером почти с кухонную плиту. Этого более чем достаточно».

Крутящий момент лопастей ветряка передает на редуктор шестерня от болгарки:

Конечно, копать фундамент нужно на глубину, большую, чем глубина промерзания для вашего региона (в Украине это 80 сантиметров – округленно метр).

В цементный раствор замурованы уголки-сороковка. Изобретатель советует вначале собрать основу конструкции – прямоугольник на болтах – а затем уже заливать опоры бетоном. Так удастся избежать перекосов.

Итак, основание ветрогенератора – металлическая конструкция из уголка-сороковки, скрепленная болтами, высотой 5 метров. Лопасти ветрогенератора занимают в ней 2 метра высоты.

Через месяц на этом надежном основании изобретатель установил самодельные лопасти ветряка и подключенный к ним через планетарный редуктор от старой болгарки генератор мощностью 370 Ватт.

Редуктор с генератором в сборе:

Верхнее крепление лопастей:

Датчик ветра из донышек пивных жестянок (впоследствии Сергей Васильевич усовершенствовал его, добавив еще пару лопастей):

На данном этапе стоимость всех материалов конструкции ветрогенератора составила:

  1. Цемент – 4 мешка по 50 грн – 200 грн ($25 ).
  2. Песок, щебень – бесплатно.
  3. Редуктор – бесплатно, запчасть от старой болгарки.
  4. Генератор – около 250 грн ($30), это обычный б/у электродвигатель во всепогодном исполнении мощностью 370 ватт.
  5. Металлический уголок – 50 м. х 20 грн/м – около 1000 грн ($125).
  6. Болты с шайбами и гайками – 200 грн ($25).
  7. Доски (50-ка), 0,5 м. куб (идут на настил и на создание козырька) – 200 грн ($25).
  8. Бляха (4 листа) – 400 грн ($50).
  9. Электрокабель – 50 грн ($6).
  10. Краска – 30 грн ($4).

Итого: 2300 грн  (приблизительно $290).

Продолжительность работ для одного человека: 

  1. выкапывание ям фундамента — 1 день;
  2. создание конструкции опоры (порезка уголков, сверление отверстий под болты) – 2 дня;
  3. покраска – 0,5 дня;
  4. заливка четырех блоков фундамента – 0,5 дня;
  5. создание лопастей ветрогенератора (каркас, порезка оцинкованной бляхи, укрепление дисков и редуктора) – 4 дня;
  6. создание деревянного настила на высоте 3 метра – 0,5 дня;
  7. монтаж конструкции ветряка (заносится на высоту в разобранном состоянии) – 1 день;

Однако, ветряк и генератор – далеко не полный комплект устройства для превращения в электричество энергии ветра. Как эффективно снимать с ветрогенератора мощность? Ответ на этот вопрос читайте в продолжении НАМТЕПЛО.

Про интересную конструкцию самодельного ветрогенератора, созданного британскими энтузиастами, можно узнать в следующем материале НАМТЕПЛО.

Как сделать ветрогенератор | Строительный портал

Установка ветрогенератора — отличная альтернатива традиционным источникам питания. Но стоимость ветрогенераторов довольно высокая, гораздо проще сделать ветряк своими руками. Перед началом данного процесса следует ознакомиться с принципом работы и разновидностями ветроустановок, а затем перейти к инструкции о том, как сделать ветряк.

Оглавление:

  1. Принцип работы и конструкция ветрогенератора
  2. Преимущества установки ветрогенератора
  3. Расчет мощности ветряка
  4. Разновидности ветроустановок
  5. Изготовление самодельного ветрогенератора
  6. Установка ветрогенератора

Принцип работы и конструкция ветрогенератора

Принцип работы ветряка напрямую зависит от главной функции данного устройства — преобразования механической энергии ветра в постоянную, которая используется для обеспечения электричеством одного частного дома или целого поселка, в зависимости от мощности и количества установок.

Ветрогенератор состоит из основных и дополнительных компонентов. Основными составляющими каждой ветроустановки выступают:

1. Мачты — устройства для поддержания ветроустановки на необходимой высоте, в некоторых моделях мощнейших ветрогенераторов длина мачты достигает 200 м. Высота мачты определяет скорость работы и устойчивость ветряка.

2. Лопасти ветроустановки — приборы, которые улавливают ветер и приводят в действие генератор.

3. Генераторы — устройства для преобразования механической энергии ветра в электрическую.

Кроме основных комплектующих, ветрогенераторные установки оснащают дополнительными компонентами, которые помогают усовершенствовать ветрогенератор для обеспечения полной независимости от традиционных источников получения электричества.

Дополнительные компоненты ветроустановки:

  • контроллеры — приборы, которые отвечают за направление лопастей, обеспечивают качественную защиту ветряка и контролируют заряд аккумуляторов;
  • аккумуляторные батареи — используют для накапливания энергии при сильных порывах ветра. Батареи выполняют дополнительную функцию выравнивания и стабилизации энергии;
  • измеритель ветра или анемоскоп — устройства сбора и накопления данных о качественных характеристиках ветра. Анемоскопы отвечают за определение скорости, направления и порывов ветра;
  • автоматизаторы совместных источников питания — при наличии нескольких источников питания, например, ветрогенератора и дизельного или бензинового генератора, данные устройства переключают один источник питания на другой;
  • инвертор — преобразователь постоянного электричества в переменное, которое обеспечивает бесперебойную работу большинства электрооборудования.

Ветер, попадая на лопасти ветряка приводит в действие весь механизм устройства. Во время движения ветрового механизма происходит выработка переменного тока, который первым делом, поступает в контроллер для ветрогенератора и перерабатывается в постоянный. Постоянный ток в инверторе преобразовывается в однофазный переменный и обеспечивает дом или другое сооружение электричеством. Остатки тока накапливаются в аккумуляторных батареях, которые отвечают за энергоснабжения, в то время, когда нет ветра и ветрогенератор не способен вырабатывать электричество.

Ветрогенератор используют параллельно с такими источниками электропитания:

  • ветрогенератор, работающий на аккумуляторных батареях;
  • работа ветроустановки параллельно с аккумуляторными и солнечными батареями;
  • применение дизельного, газового или бензинового генератора в совокупности с ветряком;
  • параллельное энергоснабжение при помощи ветрогенератора и традиционной электросети.

Преимущества установки ветрогенератора

Установка ветрогенератора позволяет получить экологически чистое, безопасное и надежное электроснабжение, как для дома, так и для большого предприятия или целого поселка. Также ветрогенераторы устанавливают в отдаленных местах, где невозможно использовать традиционное электроснабжение, например, на кораблях или яхтах.

Установка ветрогенератора существенно снижает затраты на электричество. Один раз потратившись на качественный ветрогенератор больше не придется тратить деньги на оплату ежемесячных счетов за электричество, тем более возможно сконструировать самодельный ветряк, который обойдется в несколько раз дешевле, чем покупной.

Ветрогенератор максимально работает в осенне-зимний период, когда преобладание ветра имеет наивысшую степень. В это же время потребность в электричестве возрастает, так как приходится использовать электроэнергию для отопления.

Ветрогенератор работает параллельно с другими источниками питания. Так, например зимой и осенью возможно использование ветрогенератора, а летом и весной — солнечных батарей.

Расчет мощности ветряка

Мощность ветроустановки зависит от типа местности и количества потребляемой электроэнергии, поэтому выбор ветрогенератора целиком соответствует индивидуальным особенностям потребителя.

Чтобы определить мощность ветряка, нужно выяснить номинальную выходную мощность ветроустановки, которая зависит от мощности инвертора. Выходная мощность определяется количеством потребляемой электроэнергии. Самый простой способ определения номинальной выходной мощности — вычисление среднего показателя потребления электроэнергии, для этого соберите счета за электричество за последний год, определите общую сумму количества электроэнергии и разделите полученную сумму на 12.

Далее следует определить среднюю скорость ветра в регионе будущей установки ветряка. Эта информация находится в ближайшем метеорологическом центре.

Формула расчета мощности ветроустановки:

Р = 0,5 * rho*S*Ср*V3*ng*nb. Р — показатель мощности ветрогенератора, rho — обозначение плотности воздуха, S — показатель участка метания ротора, Ср — величина аэродинамического влияния, V — показатель быстроты ветра, ng — радиаторный КПД, nb — редукторный КПД.

Разновидности ветроустановок

По размещению турбин к поверхности земли ветрогенераторы разделяют на:

  • вертикальные,
  • горизонтальные.

Турбина вертикального ветрогенератора размещается перпендикулярно к поверхности площадки, на которой установлен ветряк, а горизонтальный ветрогенератор имеет турбину, размещенную параллельно к поверхности земли.

Вертикальные ветрогенераторы имеют несколько разновидностей:

1. Стандартный вертикальный ветряк — характеризуется наличием вертикальной оси вращения и двух цилиндров. Вертикальный ветряк совершает постоянные вращательные движения. Недостаток такого ветряка — низкое потребление энергии ветра.

2. Роторная вертикальная ветроустановка характеризуется наличием ротора, который уменьшает общую нагрузку на подшипники ветряка, тем самым продлевая эксплуатационный строк устройства. Недостатками роторного ветряка является сложный монтаж и большая стоимость.

3. Ветряк вертикальной оси вращения с геликоидным ротором характеризуется наличием закрученных лопастей, которые отвечают за равномерность вращения ветра.

4. Ортогональный тип вертикального ветрогенератора не требует наличия сильного ветра и работает даже при малейшей скорости ветра от 0,7 м/с. Достоинства ортогонального ветряка — бесшумная работа, высокий уровень безопасности, хорошие технические особенности. К недостаткам ортогональных ветрогенераторов относят массивные лопасти и затрудненный монтаж.

Горизонтальные ветряки характеризуются наивысшим коэффициентом полезного действия и наличием флигеля, который отвечает за поиск ветра. Горизонтальные ветрогенераторы работают только при скорости ветра, которая составляет минимум 2-2,5 м/с.

Среди горизонтальных ветрогенераторов выделяют:

  • однолопастные ветряки, которые характеризуются небольшим весом и простотой монтажа;
  • двухлопастные ветряки имеют две лопасти и довольно высокие обороты;
  • трехлопастные ветряки имеют оптимальное количество лопастей и применяются в электроснабжении частных домов;
  • многолопастные ветроустановки используют для работы насосных или очистных водных станций.

В зависимости от материала, из которого изготовлены лопасти выделяют ветряки:

  • с жесткими лопастями: металлическими или стекловолокнистыми;
  • с парусными лопастями.

В соотношении с шаговым признаком винта выделяют:

  • ветрогенераторы с закрепленным шагом;
  • ветряки измеряемого шага.

В зависимости от сферы использования ветрогенераторы разделяют на:

  • промышленные;
  • домашние.

Промышленные ветряки занимают целые площадки и вырабатывают огромное количество электроэнергии. Такие устройства изготавливают на специальных заводах.

Домашние ветрогенераторы возможно изготовить самостоятельно. Такие устройства менее мощные и отличаются простотой и легкостью конструкции.

Изготовление самодельного ветрогенератора

Инструменты для работы:

  • сварочный аппарат;
  • электрическая дрель;
  • шуруповерт;
  • паяльный аппарат.

Рассмотрим инструкцию по изготовлению вертикального генератора своими руками:

1. Первым делом, необходимо рассчитать мощность устройства и определиться с выбором генератора для ветряка. В качестве генератора разрешено использовать автомобильный генератор. Но, использование генератора от автомобиля имеет несколько недостатков: скорость вращения лопастей должна быть достаточно высокой для обеспечения бесперебойной работы ветряка, для запуска такого устройства необходимо наличие дополнительного аккумулятора, автомобильный генератор имеет большой вес и отяжеляет общую конструкцию ветроустановки. Наилучшим генератором для ветряка, будет двигатель постоянного тока или электродвигатели, которые использовали в электронновычислительных машинах прошлого века. Приобретают такие устройства на радиорынке.

2. Чтобы оптимизировать работу ветрогенератора, следует использовать редуктор цепного или ременного типа. Редуктор ременного типа легче изготовить, а цепной редуктор обеспечивает высокую надежность устройства.

3. В изготавливаемом устройстве используем цепной редуктор. Для изготовления такого редуктора необходимо соединить ротор и генератор старой велосипедной цепью.

4. Чтобы прикрепить генератор, используйте болты или пластиковую трубу с хомутами. Участки, где расположены места крепления залейте силиконом или клеем.

5. Советы по изготовлению ротора:

  • от уровня сбалансированности ротора зависит коэффициент полезного действия ветрогенератора;
  • для изготовления лопасти для ветряка используйте двухмиллиметровый алюминий или пластиковые трубы с диаметром 6-8 см;
  • размер лопастей зависит от скорости ветра: лопасти большого размера лучше работают при слабом ветре, но имеют низкую скорость вращения, а узкие лопасти быстрее вращаются, но для работы требуют сильного ветра;
  • лучше соорудить съемные лопасти среднего размера, чтобы при слабом ветре снимать их, а при сильном устанавливать.

6. Для сооружения мачты используйте отрезки стальной трубы. Мачта должна состоять из нескольких секций, для облегчения монтажа и транспортировки ветряка. В качестве мачты используют антенные вышки или телескопические мачты.

7. Установка дополнительного шарнира на мачте позволит защитить ветроустановку от перегрузки во время сильных порывов ветра.

8. Чтобы сделать хвост ветрогенератора, возьмите отрезок трубы или уголок и прикрепите вертикальную лопасть на конец отрезка.

9. Главными элементами пульта управления является наличие вольтметра, амперметра, балластного проволочного резистора и диодного моста. При перемещении движка резистора в крайнее положение цепь размыкается и резистор начинает работать. Резистор обеспечивает аварийную остановку генератора. Максимальный ток, который выдерживает резистор 20-35 А за половину минуты.

10. В качестве инвертора используйте преобразователь покупного типа или старые источники бесперебойного питания для компьютеров.

Схема ветрогенератора:

Установка ветрогенератора

1. Определите место для установки мачты ветряка — крыша или площадка. Если мачта устанавливается на площадке, нужно залить фундамент и установить анкерное кольцо для фиксации мачты.

2. Следующий этап — сборка и соединение секций мачты.

3. После сборки мачты прикрепите генератор с помощью болтов или хомутов.

4. Закрепите лопасти на роторе. Соедините ротор с мачтой.

5. Установите датчики направления ветра.

6. Установите и закрепите ветрогенератор.

7. Подключите и запустите устройство.

Ветрогенератор с вертикальным ротором | Синтезгаз

Самодельный ветрогенератор в сборе

Группой умельцев была разработана конструкция ветрогенераторной установки с вертикально расположенной осью вращения. Ниже, представлено подробное руководство по изготовлению этой установки. Внимательно прочитав это руководство, вы сможете сделать подобный вертикальный ветрогенератор своими руками.

Конструкция ветрогенератора получилась достаточно надежной, с низкой стоимостью обслуживания, простой в изготовлении и не дорогой по комплектующим. Представленный ниже список деталей носит ознакомительный и ориентировочный характер. Соблюдать его не обязательно, можно внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Для изготовления этого ветрогенератора использовались недорогие и качественные детали.

Схема вертикального ветрогенератора

НаименованиеКол-воПримечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла1Вырезан из стали толщиной 1/4″ при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб)1Должна содержать 4 отверстия, диаметр около 4 дюймов
2″ x 1″ x 1/2″ неодимовый магнит26Очень хрупкие, лучше заказать дополнительно
1/2″-13tpi x 3“ шпилька1TPI – кол-во витков резьбы на дюйм
1/2″ гайка16 
1/2″ шайба16 
1/2″ гровер16 
1/2″. -13tpi колпачковая гайка16 
1″ шайба4Для того, чтобы выдержать зазор между роторами
   
Список используемых деталей и материалов для турбины:
3″ x 60″ Оцинкованная труба6 
ABS пластик 3/8″ (1.2×1.2м)1 
Магниты для балансировкиЕсли нужныЕсли лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4″ винт48 
1/4″ шайба48 
1/4″ гровер48 
1/4″ гайка48 
2″ x 5/8″ уголки24 
1″ уголки12 (опционально)В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1″ уголка12 (опционально) 
   
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем2 л 
1/4″ винт нерж.3 
1/4″ шайба нерж.3 
1/4″ гайка нерж.3 
1/4″ кольцевой наконечник3Для эл. соединения
1/2″-13tpi x 3“ шпилька нерж.1Нерж. сталь не является ферромагнетиком, поэтому не будет «тормозить» ротор
1/2″ гайка6 
СтеклотканьЕсли нужна 
0.51мм эмал. провод 24AWG
   
Список используемых деталей и материалов для монтажа:
1/4″ x 3/4″ болт6 
1-1/4″ фланец трубы1 
1-1/4″ оцинк. труба L-18″1 
   
Инструменты и оборудование:
1/2″-13tpi x 36“ шпилька2Используется для поддомкрачивания
1/2″ болт8 
АнемометрЕсли нужен 
1″ лист алюминия1Для изготовления проставок, если понадобятся
Зеленая краска1Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал.1Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр1 
Паяльник и припой1 
Дрель1 
Ножовка1 
Керн1 
Маска1 
Защитные очки1 
Перчатки1 

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Описание изготовления турбины ветрогенератора

Турбина ветрогенератора

  1. Соединяющий элемент – предназначен для соединения ротора к лопастям ветрогенератора.
  2. Схема расположения лопастей – два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Крепление лопастей уголками

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Общий вид расположения уголков, крепящих лопасти

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Описание изготовления ротора ветрогенератора

Разметка роторов с помощью бумажных шаблонов

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве “тестера полярности” можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Крепление магнитов на основании ротора

  5. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  6. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  7. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  8. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  9. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Описание изготовления статора ветрогенератора

Изготовление статора – это очень трудоемкая часть процесса изготовления ветрогенератора. Можно, конечно попробовать купить готовый статор (его еще надо найти у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Катушка статора

Статор ветрогенератора – электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:

  • 320 витков, 0. 51 мм (24AWG) = 100В * 120 об/мин.
  • 160 витков, 0.0508 мм (16AWG) = 48В * 140 об/мин.
  • 60 витков, 0.0571 мм (15AWG) = 24В * 120 об/мин.

Вручную наматывать катушки – это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки рекомендуется изготовить простое приспособление – намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособление для намотки катушек

Приспособление сделано из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Приспособление для намотки катушек, сделанное из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Крупный вид приспособления для намотки катушек

Вы можете придумать свою конструкцию намоточного станка, или возможно у вас уже имеется готовый.

После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Подробный вид приспособления для намотки катушек

Схема соединения катушек статора

Внимание!

Категорически запрещается подключать домашние бытовые потребители напрямую к ветрогенератору во избежании выхода их из строя! Также соблюдайте меры безопасности при обращении с электричеством!

Схема соединения катушек статора

Последовательность действий соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
  • А. Конфигурация «звезда». Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
  • B. Конфигурация «треугольник». Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
  • C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  1. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  2. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  3. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Изготовление статора

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше – места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Вокруг катушек помещается стеклоткань

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор, залитый эпоксидкой с кронштейном

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Изготовление кронштейна статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

Крепление оси

Эскиз (чертеж) кронштейна

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

Шпилька с гайками и втулкой

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Окончательная сборка генератора

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

Сборочный чертеж генератора

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).

На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Ротор и статор

Процесс сборки:

  1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место.
  2. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
  3. Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
  4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
  5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
  6. Установите хаб (ступицу) и прикрутите его.

Этапы сборки генератора

Генератор готов!

Генератор будущего ветрогенератора в сборе

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так, ка на рисунке выше.

Установка и крепление клемм

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Установка клемм

Колпачковые гайки и шайбы служат для крепления соединительной платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

Мостовой выпрямитель

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Рекомендации по выбору места установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора – достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.

Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Скачать схему расположения магнитов

Комментарии:

Свойства Газа БраунаХолодный термоядерный синтез в обыкновенной кружке

DIY VAWT — Ветряк с вертикальной осью

В рамках этого проекта мы построим небольшую ветряную турбину с вертикальной осью ветра (DIY VAWT). Мы не ожидаем получить более 50 Вт мощности, хотя было бы довольно просто увеличить вдвое площадь лезвия для увеличения мощности.

Этот DIY VAWT основан на использовании 4-дюймовых труб из ПВХ, разрезанных пополам, для лезвий. Лезвия устанавливаются на обода велосипеда. Затем эта конструкция монтируется с использованием 2х4, и двигатель беговой дорожки постоянного тока подключается снизу через ремень. Ременное соединение позволяет увеличить число оборотов двигателя беговой дорожки.

Мы только начали этот проект и нас беспокоит следующее:

  • Требуется начальная скорость ветра — зубчатая передача, необходимая для увеличения оборотов двигателя беговой дорожки, может препятствовать запуску ветряной турбины, пока не будет достигнута очень высокая скорость ветра.
  • Передаточное число
  • — даст ли система ременной передачи число оборотов в минуту (об / мин), необходимое для выработки полезной мощности?
  • Общая мощность
  • — выходная мощность 50 Вт является предположением, основанным на аналогичных конструкциях VAWT.

ОБНОВЛЕНИЕ: наша забота о зубчатой ​​передаче и скорости пускового ветра осталась верной. Зверь мог бегать только при сильном ветре. Нам нужен шкив побольше для двигателя беговой дорожки, и нам нужно будет провести повторные испытания.

Материалы:

  • 2 велосипедных обода — 22 дюйма
  • 3 трубы ПВХ — 4 дюйма на 10 футов
  • 1 мотор беговой дорожки — ebay — $ 20
  • 18 шурупов для крепления лопастей к ободам
  • 2×4, необходимые для сборки каркаса (длина 4-8 футов)
  • 2×6 — для крепления мотора беговой дорожки
  • 6-дюймовый опорный кронштейн — обод велосипедный
  • Клиновой ремень — длина зависит от настройки (79 дюймов)
  • крышка двигателя (пластиковое ведро 2 галлона)

Сборка:

Лезвия

  1. Снимите все остальные спицы велосипедных дисков.Затем затяните оставшиеся спицы.
  2. осмотреть и смазать подшипники обода — при необходимости заменить
  3. разрезать ПВХ трубу пополам так, чтобы получилась форма полумесяца, 10 футов длиной
  4. измерить 10-футовые трубы и разрезать точно пополам — у меня были 10 футов 1 дюйм. ПРИМЕЧАНИЕ: Вы можете попробовать VAWT с полными 10-футовыми длинами, так как эти укороченные 5-футовые отрезки не будут производить достаточно мощности для запуска наша беговая дорожка с высоким передаточным числом.
  5. вставьте один конец лезвия в пространство между спицами и просверлите отверстие 1/8 дюйма.Используйте винт по металлу, чтобы прикрепить лезвие из ПВХ к ободу.
  6. Сделайте то же самое с противоположным концом этого лезвия — удерживайте на месте и просверлите отверстие. Затем прикрепите винтом.
  7. Таким же образом прикрепите второе лезвие на противоположной стороне.
  8. 3-я и 4-я лопасти равномерно расположены на ободе, чтобы придать ему структуру.
  9. ПРИМЕЧАНИЕ: Я оставил все остальные отверстия (места на спицах) пустыми. Я обнаружил, что использование каждого доступного слота, похоже, блокирует ветер — это будет проверено позже, чтобы определить эффект от добавления большего количества лезвий, так как обода вмещают 18 лезвий, а у меня сейчас только 9 лезвий.
  10. установите остальные лезвия. С 22-дюймовым велосипедным ободом я использовал всего 9 лезвий.

Рамка

Я прикрепил лезвия к ободам велосипеда, чтобы «лучшие» подшипники выдерживали большую часть веса. Идея рамы заключается в том, чтобы «подвесить» VAWT на верхнем ободе, чтобы вес распределялся между верхним и нижним подшипниками обода. Точная длина вашей рамы может отличаться, если ваши 10-футовые лезвия из ПВХ были немного длиннее или короче моих.

Мы сделаем раму вокруг VAWT, оставив пару дюймов по бокам и точные размеры сверху и снизу. Для дополнительной поддержки мы также построим раму под углом 90 градусов, в которой будет размещаться двигатель беговой дорожки.

  1. Отрежьте 3 куска 2×4, 32 дюйма в длину. С 22-дюймовыми ободами остается много места по обе стороны от рамы. Одна часть войдет в нижнюю часть рамки, а две — в верхней части рамки.
  2. Отрежьте 2 куска 2×4, примерно 72 дюйма длиной, для боковых перил. Длина может варьироваться, так как мы разместим верхние горизонтальные балки в соответствии с высотой лопастей.
  3. Прикрутите нижнюю балку (32 дюйма 2×4) к обеим боковым направляющим. Держите 32-дюймовую доску ПОД боковыми направляющими и прикрутите к направляющим. Вам необходимо это перекрытие, так как верхние балки также будут размещены «вдоль» направляющих. ВНУТРЕННИЙ размер между рельсами будет около 29 дюймов.
  4. Просверлите отверстие глубиной примерно 1/2 дюйма в центре нижней балки. Нижний обод колеса войдет в это отверстие.
  5. Измерьте расстояние от низа обода колеса до верха противоположного обода колеса. Вкрутите верхние балки в направляющие на высоте, превышающей эту длину на 1 дюйм. Это позволит нам отрегулировать болт на ободе велосипеда, чтобы снять большую часть веса с нижнего ступичного подшипника.
  6. Отрежьте кусок 2×6, длиной 24 дюйма. Эта доска поможет стабилизировать ветряк, а также будет использоваться для крепления двигателя беговой дорожки.
  7. Используя кусок фанеры Т-образной формы, прикрепите 2×6 к нижней балке (2×4).2×6 должен быть в центре нижней балки. Я поместил фанеру «под» рамой и прикрутил ее к 2×6 и балке. Мы прикрепим мотор беговой дорожки позже.
  8. Вставьте обода и лезвия в отверстие в нижней балке. Поместите 6-дюймовый опорный кронштейн на верхний обод. Установите верхнюю часть узла обода / лезвия на место (в центре). Вкрутите 6-дюймовый опорный кронштейн в две верхние балки. Убедитесь, что кронштейн отцентрован над нижней балкой. Также убедитесь, что 6-дюймовый опорный кронштейн находится на такой высоте, чтобы можно было затянуть верхнюю гайку на ободе колеса, снимая вес с подшипника нижнего обода.
  9. Отрегулируйте гайку верхнего обода, чтобы снять большую часть веса с нижнего ступичного подшипника, но все же оставьте колесо сидящим в отверстии, которое мы просверлили в нижней балке.

Беговая дорожка в сборе

Я использую довольно большой двигатель беговой дорожки, которому требуется больше оборотов в минуту для получения полезной мощности, чем может дать простой VAWT, такой как этот. Таким образом, мы попробуем использовать нижний обод велосипеда и клиновой ремень, чтобы разогнать двигатель.

  1. Отрежьте кусок 2×6, длиной 20 дюймов. И другой кусок 2х6, длиной 4 дюйма.
  2. Присоедините более короткий кусок 2×6 к 20-дюймовому элементу, как показано на рисунке. Эта деталь будет использоваться, чтобы прикрутить опору двигателя беговой дорожки к нижней части 2×6, которую мы прикрепили к нижней части рамы в сборе.
  3. Установите двигатель беговой дорожки на 20-дюймовую доску шкивом вниз.
  4. Совместите шкив с нижним ободом велосипеда и отметьте 20-дюймовую доску.Присоедините беговую дорожку к этой доске.
  5. Проденьте клиновой ремень под узел лезвия и вставьте его в обод велосипеда. Проденьте клиновой ремень через шкив беговой дорожки. Установите двигатель беговой дорожки так, чтобы было некоторое натяжение клинового ремня. Я оставил это немного «свободным». Прикрутите узел двигателя беговой дорожки к нижней доске 2×6.
  6. Я также прикрепил стальную ленту к верхней и нижней части опоры двигателя беговой дорожки, чтобы удерживать эту доску на месте.
  7. КРЫШКА: следуя принципу «повторного использования», я поставил на двигатель ведро «для кошачьего туалета» на 2 галлона.Пластиковое ведро полностью закрывает мотор, но не касается движущихся частей.
  8. ПРИМЕЧАНИЕ: наши первые тесты с использованием 2-дюймового шкива на двигателе беговой дорожки не были обнадеживающими. Сейчас мы ищем шкив большего размера для беговой дорожки, чтобы он не был так высоко настроен.

Создание ветряной турбины с вертикальной осью (VAWT): 11 шагов (с изображениями)

Введение: создание ветряной турбины с вертикальной осью (VAWT)

При создании этой турбины мы будем использовать некоторые электроинструменты.
Если вы не привыкли работать с PowerTools, спросите кого-нибудь, кто знает, как ими пользоваться.
После сборки этой турбины пальцы вам еще понадобятся.
ПОЖАЛУЙСТА, ВНИМАТЕЛЬНО !!!

Добавить TipAsk QuestionDownload

Шаг 1: Инструменты и детали

ИНСТРУМЕНТЫ
— Лобзик или ленточная пила
— Ручная пила
— Токарный станок
— Сверлильный станок или ручное сверло
— Сверла
— Отвертка
— Инструмент для выступов
— Линейка
— Карандаш
— Компас
— Шлифовальная бумага
— Тиски (облегчает работу)
— Ключи
— 2 зажима

ДЕТАЛИ
— Труба ПВХ
— Водостойкая деревянная фанера для бетона лучше всего «(если у вас его нет, вам придется защитить его покрытием)
— 2 подшипника (нижний должен выдерживать нагрузку)
— Смазочный ниппель
— Катанка (2 размера) (1 большой один и 4 маленьких) (Нержавеющая сталь, если возможно)
— Болты и шайбы (2 размера) (Нержавеющая сталь, если возможно)
— Кусок круглого алюминия диаметром 40 мм (Сплав) (удерживает нижний подшипник)
— 2 Угольника
— 3 винта с проушиной

Добавить TipAsk QuestionDown load

Шаг 2.

Приступаем к работе

Первое, что вам нужно сделать, это измерить вашу трубу из ПВХ и разрезать ее на 4 равных части.(у меня была длина 2 метра, то есть по 50 см на кусок)
Когда вы это сделаете, вы отрежете его по длине отверстия.
Теперь у вас должно быть 8 штук (они должны быть одинакового размера!)

Добавить TipAsk QuestionDownload

Шаг 3: Изготовление 2 дисков турбины

Возьмите 2 куска водостойкой фанеры (12 мм)
Измерьте в 2 направления, чтобы получить середину пластины и отметить эту точку.
Возьмите циркуль и начертите круг диаметром 40 см.
Возьмите лобзик и вырежьте их.

Добавить TipAsk QuestionDownload

Шаг 4: Разделите свой круг на 8 частей

Вот ссылка, которую я нашел, чтобы выполнить эту работу быстро и точно.
http://www.weborix.com/8.htm
Это нужно делать только на одной доске.
На следующем шаге я объясню почему.

Добавить TipAsk QuestionDownload

Шаг 5: Вырезание пазов для лопастей турбины

Я сделал это так, чтобы нарисовать линии на двух досках, а затем отметить все луки, которые мне пришлось разрезать.
Это я бы сделал , а не ! Думаю, лучше отметить только одну.
Луки вы рисуете следующим образом: возьмите одну полутрубу и прижмите ее к одной из 8 линий, которые вы нарисовали ранее. Проведите линию внутри и снаружи трубы. Тот, на котором вы отметили бантики, надеваете сверху, а затем зажимаете их вместе. Когда вы их разрежете, они будут точно такими же. Я использовал пилу, которая обычно предназначена для резки металла. Это пильное полотно чуть тоньше, чем полотно.
На стороне двух дисков сделайте маркировку, которая проходит по обоим дискам.Таким образом, при сборке турбины диски будут идеально совмещены.
Что вы также должны сделать, когда он все еще зажат, так это просверлить центральное отверстие до размера вашей большой катанки и 4 отверстия для маленьких стержней. Разделите 4 стержня поровну над турбиной, как показано на рисунке ниже. Держитесь на расстоянии около 2 см от луков. Таким образом, вы все еще можете установить шайбы на свои стержни, не касаясь лезвий. Возьмите зажимы и установите лопатки турбины и 4 стержня меньшего размера, как показано на последнем рисунке.Он должен быть плотно прилегающим!

Добавить TipAsk QuestionDownload

Шаг 6: Изготовление центрального проволочного стержня по размеру

Сначала вы устанавливаете верхнюю часть турбины так же, как вы делали нижнюю часть на предыдущем этапе.
Обратите внимание на отметки, которые вы сделали на сторонах дисков, когда они все еще были зажаты.
Таким образом, одинаковые надрезы будут хорошо ложиться друг на друга, и турбина будет меньше раскачиваться после завершения. Вы можете использовать молоток и небольшой кусок дерева, чтобы не повредить лезвия или диск при ударе.Убедитесь, что лезвия плотно прилегают друг к другу и 4 маленьких стержня находятся в нужном месте. Это была нелегкая работа. Удачи . hehe

Теперь мы установим на большую катанку необходимые болты и шайбы.
Что собирались сделать сейчас, так это отметить, где мы будем отрезать катанку.
Первое изображение — это вид с нижнего диска.
Я вставил туда 2 болта и они будут опираться на нижний подшипник.
Я оставил там провод длиннее, чтобы я мог подключить туда какой-нибудь генератор.
Верхний диск — вторая картинка, и стержень будет короче.
С этой стороны у нас будет только подшипник для балансировки турбины, когда он будет установлен на ее раме.

Добавить TipAsk QuestionDownload

Шаг 7: Поворот катанки до нужного размера

Если у вас есть токарный станок, это довольно простая работа.
Сделал стержень толщиной 10 мм с обеих сторон.
На изображениях показана нижняя сторона катанки.
Убедитесь, что он подходит правильно, потому что это определит, насколько плавно будет работать ваша турбина.

Добавить TipAsk QuestionDownload

Шаг 8: Изготовление держателя для нижнего подшипника

Подшипник, который я использовал, состоит из 3 частей, как показано на первом рисунке.
Этот подшипник выдерживает вертикальный вес.
Если вы посмотрите внимательно, то увидите, что у двух дисков разные отверстия внутреннего размера.
Диск с самым большим отверстием (тот, что справа) — это верхняя часть подшипника, на которую будет опираться турбина.
Я вырезал на токарном станке отверстие под подшипник. Сделайте это в соответствии с размером подшипника, который вы будете использовать .
Не проделывайте дыру слишком глубоко!
Убедитесь, что верхняя часть подшипника просто выступает из держателя.
Причина этого в том, что верхнее кольцо будет вращаться вместе с турбиной и в противном случае будет тереться о внутреннюю часть держателя, замедляя работу турбины и быстро изнашивая ее.
Вам также необходимо просверлить отверстие в нижней части держателя, чтобы катанка могла пройти через него.
Сделайте его немного больше, чем размер стержня, чтобы в установленном состоянии он не давил на стороны.
Вы видели, что в этом подшипнике нет смазки, поэтому нам нужно установить смазочный ниппель.
Используйте для этого резьбонарезной инструмент.
Сначала просверлите отверстие в соответствии с протектором и размером ниппеля, который вы будете использовать. У меня был М6.
Используйте немного смазочно-охлаждающей жидкости, потому что вы режете алюминий, иначе он станет грубым изнутри. Проверните режущий инструмент примерно на 1 оборот, а затем снова на пол-оборота. Таким образом, металл прорезается внутри, и вы не сломаете инструмент. Используйте 3 этапа резки, пока не дойдете до нужного протектора.

Добавить TipAsk QuestionDownload

Шаг 9: Изготовление рамы вокруг турбины

Сначала вы получаете два деревянных куска одинаковой длины.
Убедитесь, что они достаточно широкие, чтобы из них получилась прочная конструкция.
Найдите центр обоих и проделайте отверстие размером с держатель подшипника для нижнего и размер верхнего подшипника для верхнего.
Мне повезло, у меня для этого была большая тренировка. Если нет, возьмите самое большое сверло и просверлите его, а затем вырежьте остальное круглым топором.
Для нижнего вы должны просверлить центр отверстия сверлом на размер больше, чем размер большой катанки, которая войдет в подшипник.Для нижнего вам нужно будет вырезать небольшую прорезь, чтобы ниппель мог поместиться внутрь и чтобы у вас было достаточно места для установки насоса для смазки. Вы можете увидеть, как это должно выглядеть на картинках.
Возьмите еще два прямых куска дерева в качестве боковин. (У меня была фанера, поэтому я использовал ее)
Возьмите нижнюю часть с держателем подшипника внутри и положите ее на ровную поверхность.
Используйте одну из боковых частей и прикрутите ее туда. Сначала просверлите несколько отверстий сбоку, чтобы шурупы лучше вошли.Убедитесь, что он идеально квадратный. (Угол 90 градусов)
Проделайте то же самое с другой стороной.
Теперь возьмите турбину в полностью собранном виде и опустите ее в нижний подшипник.
Теперь возьмите верхнюю часть и наденьте подшипник на большой стержень. Измерьте обе стороны турбины и убедитесь, что вы измеряете одинаковое расстояние, так ваша рама будет идеально квадратной.
Ролик показывает, насколько хорошо он крутится. (вручную, конечно)

Добавить TipAsk QuestionDownload

Шаг 10: Создание опоры для турбины

Этот материал, который я на самом деле не измерял.
Я удостоверился, что все идеально соответствует оси турбины.
Просто собери его, как видно на картинках.
Просто убедитесь, что это веская причина, чтобы на него было много энергии.
Генератор еще не подключал.
Понятия не имел, что к нему подключено.
Я думал о другом генераторе энергии. (катушки и нео магниты)
Идеи приветствуются
Надеюсь, вам понравилось строить эту турбину.
Сообщите мне о вашем здании

Добавьте TipAsk QuestionDownload

Шаг 11:

youtube.com/v/LzxPR6rrCWk»/> Как вы можете видеть в маленьких фильмах, я подключил несколько тросов к турбине это стабильно.
Я использовал несколько старых штифтов из палатки, чтобы соединить веревки с землей, а сбоку турбины я использовал 3 винта с проушиной. Хорошо работает.
Когда вы устанавливаете турбину, убедитесь, что кто-то может удерживать турбину, пока вы подключаете провода к земле.

Добавить Подсказка Задать вопросСкачать

Будьте первым, кто поделится

Вы сделали этот проект? Поделитесь с нами!

Я сделал это!

Рекомендации

Home Energy Magazine — Блог :: Самодельная ветряная турбина за 5 простых шагов

Узнайте, как построить ветряк на заднем дворе за 5 простых шагов.

Итак, вы хотите построить ветряк на заднем дворе и ежегодно экономить сотни? Что ж, вы пришли в нужное место. В этом посте вы узнаете, как построить ветряк на заднем дворе с нуля. Промышленные ветряные турбины аналогичного размера обойдутся вам в пару сотен долларов, но, приложив немного усилий, вы можете сэкономить такие деньги, и, поскольку вы построили их самостоятельно, вы поймете внутреннюю работу ветряной турбины в процессе. Посетите нашу страницу Методы использования возобновляемых источников энергии для загрузки электронной версии этого сообщения.Плюс загружает больше бесплатных ресурсов на сайт!

Этот пост сократит проект до пяти систем. Если атаковать по одному, проект не покажется слишком сложным. В этом руководстве описано, как вы можете собрать и собрать лопасти, генератор, концентратор и башню, контроллер заряда и системы аккумуляторных батарей. Объясняется техническая подготовка каждой системы, а затем объясняется, как вы можете создать свою собственную.

1. Лезвия

Что вы в первую очередь замечаете, когда смотрите на ветряную турбину? Лезвия, правда? Что ж, именно с этого мы и начнем.Мы должны рассмотреть ряд различных ориентаций ветряных турбин, поэтому давайте обсудим их, прежде чем сузить круг вопросов до того, какой дизайн лучше всего подходит для того, что вам нужно.

Сначала поговорим об оси. Существует два типа конструкций ветровых турбин: ветряная турбина с горизонтальной осью (HAWT) и ветряная турбина с вертикальной осью (VAWT). Ветряная турбина с горизонтальной осью означает, что главная ось турбины удерживается в воздухе параллельно земле, а лопасти вращаются перпендикулярно земле, как показано на рисунке ниже.Этот 3-лопастной вентиляторный дизайн, который мы все знаем и любим, доминирует в отрасли ветряных турбин и его можно увидеть во всем мире на ветряных электростанциях. Многие эксперты считают, что это лучший выбор конструкции, так как он может производить больше электроэнергии при заданном количестве ветра.

Это очень много значит для крупномасштабных операций, где постоянное производство энергии имеет решающее значение, поэтому легко понять, почему они доминируют в отрасли ветроэнергетики. Однако в небольших приложениях, таких как ветряные турбины на заднем дворе, ветряк с вертикальной осью может оказаться более эффективным.

Дизайн VAWT может быть хорошим вариантом для небольшого проекта. У него есть несколько преимуществ по сравнению с более распространенной конструкцией: это более прочный вариант в условиях турбулентного ветра, он может генерировать энергию от ветра с радиусом охвата 360 градусов, а не в любом направлении, в котором смотрит турбина, это заставляет многих экспертов считают, что VAWT в целом является более эффективной конструкцией, поскольку он может генерировать больше электроэнергии в условиях переменного ветра, когда ветер дует не постоянно.

Эту конструкцию крыла можно легко создать из листа твердой древесины или легкой стали, если у вас есть доступ к мастерской и подходящие режущие инструменты. Однако для тех из нас, кто не знает простого трюка, является использование трубы из ПВХ. Это труба, которая обычно используется для подземных водопроводов и канализации. Вы можете легко пойти в местный хозяйственный магазин и купить несколько метровых отрезков труб этого типа, и если вам повезет, они не будут платить вам за это время, так что это будет бесплатно! Теперь все, что вам нужно сделать, это разрезать трубу пополам, а затем на четыре части с помощью ручной пилы, и у вас есть идеальные легкие, прочные и долговечные лезвия с аэродинамическим покрытием.

2. Генератор

Генератор — одна из самых важных частей ветряной турбины. Это компонент, который преобразует ветер в полезное электричество. Итак, как это работает? Разберем его на несколько простых компонентов. Итак, для запуска генератор состоит из нескольких витков медной проволоки, вращающихся вокруг сильного магнита. Магнитное поле, создаваемое магнитами, заставляет электроны в медной проволоке двигаться, а затем начинает течь. Следовательно, у нас есть электрический ток в проводах, и в основном это электричество, поток электронов через проводник (здесь это медный провод).Как вращать медные катушки? Ну вот тут и приходит ветер.

Теперь вы можете создать свой собственный простой генератор или купить его на одном из многочисленных интернет-сайтов, продающих их по дешевке (eBay, Amazon, Alibaba). Чтобы построить свой собственный, вам понадобится пара отрезков медного провода, который можно купить в местном хозяйственном магазине, и несколько сильных магнитов. Установите магниты на цилиндрическую трубку. Это может быть простая пластиковая бутылка, но из соображений прочности и долговечности лучше подумать о стальной или деревянной посуде.Медная проволока должна быть намотана на стержень или диск с валом на конце, на котором может быть установлена ​​ступица лопатки турбины. Убедитесь, что ваша конструкция включает способ крепления ступицы лопастей турбин к валу катушек проводов, чтобы ее можно было вращать ветром.

И это довольно много, если вы только что создали электрогенератор. Как только катушки с проволокой и магниты будут установлены в выбранной вами ориентации, простой поворот смонтированных проводов будет генерировать для вас чистую возобновляемую электроэнергию.Выходное напряжение вашей конструкции можно измерить с помощью мультиметра, чтобы убедиться, что она работает правильно.

Если вы решите купить его в Интернете, вам следует знать несколько вещей. Двигатели постоянного тока с постоянными магнитами работают как генераторы, однако они не были предназначены для работы в качестве генераторов, поэтому они не очень хороши в качестве генераторов. При использовании двигателя в качестве генератора, двигатель должен работать намного быстрее, чем их номинальная скорость, чтобы обеспечить напряжение, близкое к их номинальному. Это максимальное напряжение, которое может выдавать генератор.Вы хотите, чтобы ваша турбина работала в пределах этого значения или около него, чтобы она работала эффективно. Вам нужен двигатель, который рассчитан на высокое постоянное напряжение, низкие обороты в минуту (об / мин) и большой ток. Старайтесь держаться подальше от двигателей низкого напряжения и высоких оборотов. Вам нужен двигатель, который будет выдавать более 12 Вольт на низких оборотах и ​​полезный уровень тока, чтобы он мог легко питать батарею 24 Вольт. Можно ожидать, что двигатель, рассчитанный на 300 об / мин при 30 В при использовании в качестве генератора, будет вырабатывать 12 В или выше при некоторых достаточно низких оборотах.С другой стороны, двигатель, рассчитанный на пару тысяч оборотов в минуту и ​​выходящий на 24 В, не будет производить 12 В в качестве генератора, пока он не будет вращать многие тысячи оборотов в минуту, что слишком быстро для ветряной турбины и может вызвать повреждение это, его окружение или даже вы. Итак, попробуйте купить моторы, используя информацию выше.

3. Узел и башня

Ступица требуется только для ветряной турбины с вертикальной осью. Если вы выберете ветряную турбину с горизонтальной осью, то достаточно просто установить лопасти на ступицу генератора.Ступица (или основная подставка) вашей ветряной турбины будет самой простой частью сборки. Хотя это не значит, что это не важный компонент. Вы захотите сделать это правильно ради структурной целостности вашей ветряной турбины. Он может быть таким же простым, как деревянная доска, но вы должны убедиться, что это древесина твердых пород, обработанная надлежащим образом, чтобы она могла выжить на открытом воздухе при ветре и дожде в течение нескольких лет. Ваш концентратор должен содержать 3 основных компонента; генератор (к которому на этом этапе должны быть прикреплены лопасти), хвостовой стабилизатор и противовес.Удерживать генератор очевидно, но что делают хвостовой стабилизатор и противовес? Ребро, установленное на конце ступицы, противоположном генератору, гарантирует, что турбина всегда направляет лопасти в сторону ветра. Противовес не даст вашим лопастям опрокинуть турбину и гарантирует, что ступица турбины останется в вертикальном положении. В идеале рассчитанный вес должен быть установлен под ребром, но его также можно установить с любой стороны от ребра, что может быть проще.

Корпус ступицы представляет собой простой деревянный блок с тонким листом фанеры, прикрепленный к ступице в качестве ребра.Противовес представляет собой пластиковую бутылку, наполненную песком и прикрепленную стяжками к основному блоку ступицы. Это не идеальная конструкция, но она проста, экономична и удобна в установке, поэтому ее стоит рассмотреть. Вы можете легко улучшить эту конструкцию, купив несколько свинцовых противовесов и прикрепив их к пузырю. Или создайте ступицу из стали и, если у вас есть доступ к одному, приварите тяжелую сталь к задней части. Опять же, окончательный дизайн вашей ветряной турбины зависит от вас, и то, что показано здесь, является лишь схемой.

Теперь вашу турбину нужно поднять в воздух над деревьями или зданиями, которые могут блокировать ее от прямого ветра. Для этого вам понадобится башня, чтобы поднять турбину в воздух и эффективно использовать энергию ветра. Ваш горожанин должен находиться на высоте около 9 футов или около 3 метров, чтобы очистить большинство небольших зданий и окружающих деревьев. Еще один совет — выставить турбину на открытом воздухе подальше от деревьев и зданий, чтобы полностью избежать этой проблемы. Башня должна быть сделана из стали, потому что, если этот компонент выйдет из строя, это может привести к повреждению турбины или окружающей среды, поэтому вы должны избегать этого.Вы можете построить таунер из стального прута или трубы, которые легко найти в вашем местном хозяйственном магазине, и вам следует снова попробовать бесплатный обрезанный наконечник, чтобы снизить стоимость вашей турбины. В противном случае вы можете дешево купить в магазине пару отрезков с несколькими сварными соединениями, так что вы сможете сделать стержни достаточно длинными для башни. Опять же, если у вас нет доступа к сварщику, нескольких просверленных отверстий и нескольких болтов будет достаточно, чтобы соединить стержни друг с другом на нужную длину. Еще один совет, как поднять башню на желаемую высоту без сварки или болтов, — это подобрать стальной стержень некоторой длины с кнопочными вставками.Вы знаете те, в которых стержень узкий на одном конце и более широкий на другом, поэтому их можно легко вставить друг в друга и задействовать с помощью кнопки. Их можно легко собрать и создать отличную башню для башни ветряной турбины.

Наконец, ваш хаб должен быть прикреплен к башне, и башня должна быть установлена. Ступица должна поворачиваться, чтобы плавник мог направлять лопасти в направлении ветра, как описано выше. Для достижения этой конструкции вы можете просто прикрепить болт, диаметр которого меньше диаметра стержня, чтобы он мог скользить прямо, как показано на рисунке 7.Убедитесь, что длина болта составляет около фута или 0,3 метра для прочной конструкции. Втулка теперь должна свободно поворачиваться на вершине башни. Чтобы ступица могла свободно вращаться при изменении направления ветра, необходимо добавить немного масла в болт, чтобы энергия ветра не терялась на трение. Чтобы вышка держалась в вертикальном положении, к нижней штанге прикрепили широкое основание. Вы можете снова использовать болтовой метод или приварить его к металлической пластине. Затем просто прикрепите башню к земле с помощью проволоки или веревки и привяжите их к земле, и ваша ступица и башня должны быть в хорошем состоянии и достаточно прочными, чтобы выдержать самые сильные штормы.

4. Контроллер заряда

Независимо от того, построите ли вы его сами или купите, вам понадобится какой-то контроллер для вашей ветряной турбины. Общий принцип, лежащий в основе контроллера, заключается в том, что он контролирует напряжение вашей аккумуляторной системы и либо отправляет мощность от турбины в батареи для их подзарядки, либо сбрасывает мощность от турбины на вторичную нагрузку, если батареи полностью заряжены. Это предотвращает чрезмерную зарядку и разрушение батарей.

Теперь, когда у вас построено большинство механических деталей, вы можете взглянуть на электрические компоненты своей ветряной турбины. Система ветроэнергетики обычно состоит из следующих подсистем; ветряная турбина, батареи для хранения энергии, вырабатываемой турбиной, блокирующий диод для предотвращения потери энергии от батарей или непреднамеренного вращения генератора, фиктивная нагрузка для сброса мощности от турбины, когда батареи полностью заряжены, и контроллер заряда чтобы запустить все.

На Amazon и eBay доступно множество контроллеров заряда для систем солнечной и ветровой энергии, которые вы можете купить, если хотите избежать хлопот по созданию довольно сложной электрической системы.Но если вам нравится решать сложные задачи, вы считаете себя бережливым и хотите сэкономить несколько долларов, ниже мы кратко рассмотрим, что нужно для создания вашего собственного. Опять же, это общий план, и быстрый поиск в Google найдет сотни схем, которым вы можете следовать, чтобы ваш дизайн всегда мог действовать по-другому. Вы также можете посетить ряд веб-сайтов, на которых подробно рассказывается о разработке собственного контроллера заряда.

Контроллер заряда состоит из нескольких компонентов, которые могут быть установлены на кусок фанеры, и вы можете использовать схему на Рисунке 8 в качестве справочной.Вам понадобится радиатор с блокирующими диодами. Это позволяет току течь только в одном направлении, поэтому энергия от батарей не запускает питание генератора. Диоды подключаются к фиктивным нагрузкам, которые рассеивают любое избыточное электричество, чтобы избежать повреждения аккумуляторов из-за перезарядки после их полной зарядки. Эквивалентные нагрузки могут состоять из резисторов высокого напряжения. Вы также можете перенаправить избыточную мощность от турбины на что-нибудь более полезное, например, водонагреватель или второй аккумулятор.Главный предохранитель ветряной турбины, состоящий из автомобильного реле на 40 А, соединяет все вместе, а также передает мощность, вырабатываемую вашей турбиной, либо на батареи, либо на фиктивную нагрузку.

Ваша ветряная турбина подключена к контроллеру линиями, идущими от генератора, а затем идущими от контроллера к аккумуляторной системе, что мы обсудим позже. Эти линии должны быть изолированы медным проводом, и вы можете использовать старый удлинительный кабель для прокладки провода от положительной и отрицательной клемм генератора к клеммам контроллера заряда.

Из соображений безопасности сначала подключите аккумулятор, а затем ветряную турбину. Если вы сначала подключите ветряную турбину, резкие колебания напряжения, исходящие от турбины, не будут сглажены нагрузкой на аккумулятор и могут повредить систему. Поэтому всегда сначала подключайтесь к батарее, а затем подключайте ветряную турбину. Кроме того, при разборке системы не забудьте сначала отключить ветряную турбину. Отсоединяйте батареи в последнюю очередь.

5. Аккумулятор

Последняя система, которую мы рассмотрим, — это система батарей.Это система, которая будет хранить всю вашу чистую энергию, произведенную ветряной турбиной, и преобразовывать ее в полезную электроэнергию, которую вы можете использовать. Создать систему довольно просто: все, что вам нужно сделать, это установить нужные батареи и подключить их друг к другу, подключить один конец к контроллеру заряда, а на другом — к инвертору мощности, чтобы преобразовать накопленную энергию в полезную электроэнергию. у тебя есть это. Этот раздел поможет вам с более сложной частью, например, какой тип батареи использовать, какое напряжение и емкость использовать и в какой ориентации их расположить.

Давайте начнем с того, какой тип батареи вам следует использовать. Вы можете рассмотреть различные типы хранения химической энергии: свинцово-кислотные, литий-ионные, водородные и проточные. Вот краткий обзор каждой из различных технологий /

Литий-ионный

Литий-ионные батареи

сегодня являются одними из самых популярных вариантов накопления энергии, и они все чаще используются в мобильных электронных устройствах и электромобилях. Они имеют высокий КПД в оба конца около 99%, плотность энергии в диапазоне 250 Втч / кг и способны выдерживать чуть менее 2000 циклов до замирания.Однако популярность литий-ионных аккумуляторов привела к технологическим достижениям, благодаря которым теперь они превосходят другие типы аккумуляторов по плотности энергии, мощности и эффективности приема-передачи.

Однако литий-ионные аккумуляторы

являются одними из самых дорогих типов аккумуляторов, которые почти в шесть раз дороже свинцовых, поэтому, если вы выберете этот вариант, ваши инвестиционные затраты будут большими. Более высокие затраты связаны с используемыми материалами, производственным процессом и вспомогательными системами, необходимыми для их работы.Есть также опасения по поводу утилизации использованных литиевых батарей, которые могут привести к выделению токсичных материалов, поэтому, если вы пытаетесь быть экологически сознательными в своем проекте, это следует учитывать.

Свинцово-кислотный

Свинцово-кислотная батарея — самый старый, дешевый и наиболее зрелый вид химического накопителя энергии. Свинцово-кислотные батареи глубокого цикла идеально подходят для приложений по интеграции возобновляемых источников энергии малого цикла; эти батареи могут многократно разряжаться до 80% своей емкости и, следовательно, подходят для подключенных к сети систем, где пользователи продают электроэнергию обратно в сеть через чистые измерения. В сочетании с низкими инвестиционными затратами и относительно низкими затратами на обслуживание батареи они могут стать одними из наиболее подходящих батарей для небольших проектов по ветроэнергетике.

Ограниченный срок службы и низкая производительность при низких и высоких температурах окружающей среды — это подводные камни этой технологии. Но это самый дешевый и широко доступный аккумулятор, который можно купить в местном магазине моторных факторов. Как и в случае с литий-ионными батареями, опасения по поводу свинцовых кислот, вредных для окружающей среды и токсичных материалов, делают их опасным продуктом для утилизации при использовании.

Накопитель водородной энергии

Водородный топливный элемент использует процесс электролиза воды для производства водорода и кислорода. Избыточное электричество от источника энергии поступает в электролизер (обратный топливный элемент), разделяя воду на h3 и O2. Затем h3 можно хранить в сжатом газе или в жидкой форме. Когда требуется электричество, h3 подается в топливный элемент, который преобразует водород и кислород обратно в электричество и воду, или непосредственно в генератор или газовую турбину в качестве горючего топлива.

Системы хранения энергии на основе водорода привлекают все большее внимание сегодня, особенно в связи с их интеграцией с возобновляемыми источниками энергии. Водородные топливные элементы имеют несколько преимуществ, включая высокую плотность энергии, большую емкость хранения, тот факт, что излишки отходящего газа водорода можно использовать для удовлетворения потребностей транспорта в энергии, и их экологическая безопасность. Это по-прежнему дорогостоящий метод накопления энергии, он имеет один из самых низких диапазонов эффективности в оба конца, составляющий 20-50%, и его трудно найти для маломасштабной системы накопления энергии, но его можно рассмотреть и использовать. если вы можете их найти.

Проточные батареи

Батареи

Flow можно охарактеризовать как «нечто среднее между батареей и топливным элементом». Эта технология накопления энергии может иметь КПД в оба конца до 80% и срок службы до 25 лет. Их способность выполнять полный цикл и оставаться на уровне 0% заряда (SOC) делает их подходящими для приложений хранения энергии ветра, где аккумулятор должен каждый день запускаться пустым и наполняться в зависимости от нагрузки и погоды. Этот тип батареи состоит из двух резервуаров с электролитом, из которых электролиты циркулируют (с помощью насосов) через электрохимический элемент, состоящий из катода, анода и мембранного сепаратора.При протекании двух электролитов в электрохимической ячейке химическая энергия преобразуется в электричество. Оба электролита хранятся отдельно в больших резервуарах для хранения вне электрохимической ячейки.

Батареи

Flow отличаются высокой мощностью, длительным сроком службы, номинальной мощностью и разделением по энергопотреблению, электролиты могут быть легко заменены, быстро реагируют и могут переходить из режима заряда в режим разряда менее чем за 1 секунду. Тем не менее, низкая эффективность и высокая стоимость делают эту технологию более подходящей для крупномасштабных проектов, и достижения в этой области широко направлены на замену традиционных свинцово-кислотных аккумуляторов.Если вы можете найти дешевый аккумулятор, это определенно стоит изучить.

После того, как вы определились с технологией аккумуляторов, вам нужно сразу обратить внимание на то, какое напряжение и силу тока получить. Наиболее распространенные размеры батарей — 12 В и 24 В, которые идеально подходят для вашего проекта ветряной турбины на заднем дворе. Теперь давайте посмотрим на силу тока. Батареи могут быть разной емкости, которая измеряется в ампер-часах. Скажем, если у вас есть аккумулятор на 12 вольт и емкостью 10 ампер-часов, вы, вероятно, захотите подключить 10 вместе параллельно, чтобы увеличить емкость хранения до 100 ампер-часов, что идеально подходит для вашего небольшого размера. проект.Очевидно, что чем выше емкость вашей системы, тем больше энергии вы будете иметь под рукой, поэтому на самом деле не должно быть никаких ограничений на емкость хранения вашей системы.

Батареи должны быть соединены положительным полюсом и отрицательным полюсом с отрицательным с помощью соединительных кабелей, которые можно приобрести в Интернете или в хозяйственных магазинах. Последний положительный и отрицательный выход в серии необходимо подключить к инвертору, чтобы преобразовать напряжение постоянного тока в полезную мощность переменного тока. Убедитесь, что у вас есть инвертор с выходом адаптера, чтобы можно было проложить удлинительный кабель с адаптером с несколькими разъемами от системы туда, где вы хотите его использовать.Инверторы могут быть довольно дорогими и, скорее всего, будут самым дорогим элементом для этого проекта. Но вам нужен инвертор хорошего качества для безопасности себя и продуктов, в которых вы используете чистую энергию.

Стоимость

Итак, давайте примерно разберем стоимость самодельной ветряной турбины. Очевидно, что это приблизительные оценки, и быстрый поиск в Google может предложить более дешевые товары, чем перечисленные здесь. Вы можете легко найти некоторые из этих предметов в своем доме, что поможет вам сэкономить несколько долларов здесь и там, например, использование старого автомобильного аккумулятора может сэкономить вам немного денег, если он не полностью разрядился.Металлолом и дерево также можно использовать для создания более экономичной самодельной ветряной турбины. В таблице ниже представлены приблизительные данные о затратах и ​​источниках их получения.

Таблица 1: Таблица затрат на самодельную ветряную турбину

Часть

Источник

Стоимость

Генератор

Amazon

20 долларов.00

Фитинги ступицы лезвия

Домашний магазин

15,00

Трубка для ножей

Домашний магазин

$ 10.00

Разное. Оборудование

Домашний магазин

5 долларов США.00

Дерево и алюминий

Домашний магазин

50,00

Удлинитель и соединительный кабель

Старый удлинитель плюс новые кабели

30,00

Веревка и колышки

Домашний магазин

20 долларов. 00

Контроллер заряда

Amazon

$ 20,00

Свинцово-кислотная батарея

Факторы двигателя

40,00

Инвертор

Amazon

70 долларов.00

Итого

280,00 $

Стоимость небольшого проекта действительно немного возрастает, но это неплохо, если сравнить его с коммерчески сделанной небольшой ветряной турбиной на заднем дворе с аналогичной выходной мощностью. Добавьте сюда коммерческий контроллер заряда и промышленную вышку, необходимую для завершения работы, и это в сумме составит менее 750-1000 долларов.

Таким образом, вы можете сэкономить более 750 долларов, построив свое собственное здание, не говоря уже об экономии за счет сокращения счета за электроэнергию, который даже в течение одного года начнет накапливаться.

Заключение

Итак, теперь у вас есть все инструменты и знания, чтобы построить свою собственную самодельную ветряную турбину на заднем дворе и использовать всю бесплатную и чистую энергию, которую вы хотите. А теперь идите туда, спасите планету, сэкономьте немного денег и добро пожаловать в революцию чистой энергии! Не забудьте заглянуть в Renewable Energy Methods для загрузки электронной книги и других бесплатных ресурсов.

Вертикальная ось ветряных турбин DIY Guide

Сегодня я узнал, как построить ветряную турбину с вертикальной осью (VAWT) , и она работает по тому же принципу, что и огромные мощные ветряные турбины, но их гораздо проще и дешевле построить.

Вот краткое описание работы VAWT и инструкции по производству. Это основная информация, вы можете получить больше на веб-сайте производителя (обязательно вернитесь после того, как посетите их).

Ветряная турбина с вертикальной осью переменного тока Генератор имеет два ротора диаметром 12 дюймов, каждый из которых имеет 12 неодимовых дисковых магнитов диаметром 1,47 дюйма и толщиной 0,6 дюйма. Между роторами находится статор, состоящий из 9 витков провода AWG №20 по 200 витков в каждой. Катушки устроены так, чтобы производить 3-фазный переменный ток.

Каждая фаза имеет 3 последовательно соединенных катушки. Имеется 3 двухполупериодных мостовых выпрямителя, по одному на каждую фазу. Каждый изолирован от другого. Все три выхода выпрямленного постоянного тока соединены вместе параллельно, и постоянный ток передается по кабелю в аккумуляторную батарею.

Статор изготавливается путем размещения катушек между двумя кусками стекловолоконной плиты из эпоксидной смолы, используемой при производстве печатных плат. Верхний и нижний листы толщиной 1/16 дюйма каждый скрепляются болтами. К ним добавлены ребра жесткости для жесткости. Мощность выводится с помощью крепежных винтов из нержавеющей стали.

Если вы хотите построить его самостоятельно, вы должны знать, что теоретически он может производить 316 Вт по формуле:

«Вт = постоянная преобразования * предел Бетца * эффективность * площадь в кв. 3 = 316 Вт »

Конечно, дела далеки от совершенства, ребята, которые это сделали, сказали, что получили от этого 70 Вт. Это очень хорошо! Сделайте несколько подобных ветряков с вертикальной осью , поставьте их на свой квартал, и вы больше никогда не будете платить за электричество! (более или менее — в зависимости от ваших привычек потребления). В любом случае, если вы живете в районе с сильным ветром, эти устройства могут заряжать автомобильные аккумуляторы на 12 В, чтобы питать ваш дом утром и вечером, когда вы вернетесь с работы.Ночью и днем ​​они аккумулируют энергию от ветряной турбины. Единственным серьезным «постоянным» потребителем будет ваш холодильник.

(Посещений 7251 раз, сегодня 1 посещений)

Простой ветроэнергетический генератор VAWT

Преимущества VAWT

Эти турбины имеют меньше деталей, чем те, которые ориентируют роторный механизм и лопасти по горизонтали. Это означает, что меньше компонентов изнашиваются и ломаются. Кроме того, опорная сила башни не должна быть такой большой, потому что редуктор и генератор находятся у земли.Детали для управления тангажом и рысканием также не нужны.

Турбина также не должна быть направлена ​​против ветра. В вертикальной системе воздух, текущий с любого направления или скорости, может вращать лопасти. Таким образом, систему можно использовать для выработки энергии при порывистых ветрах и когда они дуют постоянно.

VAWT:

  • Производить дешевле, чем турбины с горизонтальной осью.
  • Более простой монтаж по сравнению с другими типами ветряных турбин.
  • Можно переносить из одного места в другое.
  • Оснащен ножами с малой скоростью вращения, снижающими риск для людей и птиц.
  • Функционирует в экстремальных погодных условиях, при переменном ветре и даже в горных условиях.
  • Допускается там, где запрещены более высокие конструкции.
  • Работают тише, поэтому не беспокоят людей в жилых районах.

Недостатки ВАВТ

Не все лопасти создают крутящий момент одновременно, что ограничивает эффективность вертикальных систем по выработке энергии.Остальные лезвия просто проталкиваются. Кроме того, при вращении лезвия испытывают большее сопротивление. Хотя турбина может работать при порывах ветра, это не всегда так; низкий пусковой момент и проблемы с динамической стабильностью могут ограничивать функциональность в условиях, для которых турбина не была специально разработана.

Поскольку ветровые турбины расположены ниже земли, они не используют более высокие скорости ветра, которые часто встречаются на более высоких уровнях. Если установщики предпочитают возводить конструкцию на башне, их сложнее установить таким способом.Однако более практично установить вертикальную систему на ровном основании, например на земле или на крыше здания.

Вибрация может быть проблемой и даже увеличивать шум, производимый турбиной. Воздушный поток на уровне земли может увеличить турбулентность, тем самым увеличивая вибрацию. Это может привести к износу подшипника. Иногда это может привести к дополнительному обслуживанию и, следовательно, к большим затратам, связанным с ним. В более ранних моделях лопасти были склонны изгибаться и растрескиваться, что приводило к выходу из строя турбины.Небольшие блоки на зданиях или других конструкциях могут подвергаться толкающим силам, которые добавляют поперечное напряжение, что требует постоянного обслуживания и использования более прочных и прочных материалов.

Как построить свою собственную ветрогенераторную систему

Ветрогенераторную систему можно построить дома, в основном с использованием общедоступных предметов домашнего обихода, для производства электроэнергии. Ветряные генераторы работают, используя силу ветра для вращения лопастей; это круговое движение используется для вращения двигателя, который, в свою очередь, заставляет его вырабатывать электричество.

Для этого ветрогенератора необходимо будет купить двигатель и аккумулятор, так как их очень сложно сделать.

    Изготовить лопасти ветрогенератора. Они будут улавливать ветер, заставляя лопасти вращаться, таким образом вращая двигатель и генерируя электричество.

    Лезвия можно просто изготовить из отрезка трубы из ПВХ, например, из трубок, используемых для водостока. Согласно «вашей зеленой мечте», ПВХ-трубка должна быть на 20% шире, чем длинна, чтобы обеспечить достаточную прочность на ветру.Длина лопастей зависит от габаритных размеров ветрогенератора. Для базовой домашней ветрогенераторной системы хорошим размером будет примерно 18-20 дюймов в длину.

    Разрежьте эту трубку на четыре равных части по длине, а затем сформируйте каждую из этих четвертей в лезвие, разрезав их пополам по диагонали, чтобы сформировать длинные треугольники.

    Присоедините эти лезвия к ступице, которая может быть сделана из зубца или небольшого круглого куска металла. Убедитесь, что отверстие в середине этой ступицы подходит для двигателя.

    Лопасти можно привинтить или прикрутить к ступице на равных расстояниях по ее окружности. Отверстие в середине ступицы должно быть проделано на двигателе, чтобы, когда ветер перемещает лопасти, крепление на двигателе вращается и генерируется электричество.

    Прикрепите двигатель к одному концу 2×4, примерно 1 ярд длиной. Накройте двигатель пластиковой пленкой, чтобы защитить его от непогоды.

    Прикрепите прямоугольный кусок металла или жесткого пластика к другому концу 2×4; это будет действовать как хвост.Хвост будет захвачен ветром и, таким образом, маневрируйте лопастями ветрогенератора в наиболее эффективном направлении для получения максимальной мощности.

    Просверлите отверстие сразу за двигателем для пропуска проводов. Под этим отверстием прикрепите кронштейн для трубы. В этот кронштейн трубы, а также под отверстие вставьте трубу немного меньшего размера. Эта труба должна иметь возможность свободно перемещаться внутри кронштейна, чтобы лопасти, двигатель и хвостовая часть ветрогенератора могли поворачиваться навстречу ветру.Пропустите провода от двигателя вниз по этой трубе.

    Закрепите ветрогенератор на прочном основании, например на большом куске дерева. Ветрогенератору нужно будет оставаться в вертикальном положении при сильном ветре и другой погоде, поэтому его можно прикрепить к земле или другому объекту для дополнительной поддержки.

    Пропустите провода от двигателя в верхней части ветрогенератора в сухое место, например, в сарай. Убедитесь, что провода во всех местах защищены от погодных условий и животных, которые могут их пережевать.

    Подсоедините провода, идущие от двигателя к аккумулятору. Это позволит хранить произведенную электроэнергию для дальнейшего использования. С этой системой ветрогенератора можно использовать более одной батареи; просто замените батареи, когда одна из них полностью заряжена или используется для питания других устройств.

Создайте свою ветряную турбину с вертикальной осью

Ветряная турбина Савониуса

Эти планы касаются строительства ветряной турбины с вертикальной осью , созданной по проекту финского инженера С. Я. Савониус в 1922 году. Его идея заключалась в установке двух полуцилиндров на вертикальном валу.

Создайте свою ветряную турбину

Ее было просто построить, и она могла принимать ветер с любого направления. . Однако он был на менее эффективным , чем более распространенная турбина с горизонтальной осью.

Причина разницы связана с аэродинамикой. У турбин с горизонтальной осью есть лопасти, которые создают подъемную силу для вращения ротора, тогда как конструкция с вертикальной осью, которую мы используем здесь, работает на основе сопротивления — одна сторона создает большее сопротивление движущемуся воздуху, чем другая, вызывая вращение вала.


Генератор с постоянным магнитом

Небольшая домашняя ветряная турбина с вертикальной осью

Эта модель ветряной турбины вырабатывает электричество с помощью простого генератора , который вырабатывает импульсы тока или переменного тока. Это достигается за счет пропускания сильных магнитов через катушки из тонкой проволоки. Каждый раз, когда магнит проходит над катушкой, на катушку подается электричество.

С 4 катушками, соединенными последовательно , в результате получается -кратное увеличение напряжения .

Это самый простой и, возможно, наиболее эффективный способ выработки электроэнергии, и тот же основной принцип используется почти во всех ветряных турбинах, даже в крупных коммерческих.

Электроэнергия от ветряной турбины изменяется в зависимости от скорости ветра , поэтому для практического использования вы должны иметь возможность хранить ее в батареях или преобразовывать ее в форму, обеспечивающую стабильное постоянное напряжение. Обычно электричество от ветряных турбин преобразуется из переменного тока в постоянный, который можно использовать для зарядки аккумуляторов.

В Интернете можно найти планы простых электронных устройств, называемых мостовыми выпрямителями. Мостовые выпрямители состоят всего из 4 диодов и могут быть изготовлены всего за несколько долларов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *