Схема осциллятора: Самодельная сварка аргоном. Осциллятор своими руками

Содержание

виды и характеристики, принцип работы, схема сборки своими руками

Без сварочных работ трудно представить современный мир. Даже в быту время от времени приходится выполнять некоторые сварочные работы. Для облегчения сварочного процесса нержавейки или цветных металлов необходим осциллятор.

Этот аппарат может зажигать электрическую дугу без контакта с поверхностью детали и поддерживать горение, необходимое для сварки. Для бытовых нужд необязательно приобретать промышленное изделие, поскольку вполне можно собрать осциллятор своими руками в условиях дома или небольшой мастерской.

Принцип работы осциллятора

При сварках где участвуют цветные металлы обычно применяют аргонодуговые аппараты, в которых вольфрамовые электроды подплавливают края и создают своеобразную ванну. Алюминиевый материал и нержавеющую сталь сшивают, когда источником напряжения и тока является инвертор.

В любых случаях наблюдается одна и та же проблема — первоначальное разжигание дуги.

При работе с цветными металлами постукивают электродом по поверхности, в результате чего образуются трещины и следы, которые требуют дальнейшей обработки. Осциллятор — это то, что нужно для аргонной сварки.

Если лист металла тонкий, то при работе на небольших токах дуга постоянно тухнет. Неоднократное и постоянное её возбуждение забирает рабочее время. Для предотвращения подобных ситуаций тоже необходим осциллятор.

Сборка этих приборов может быть разная, но все они необходимы для возбуждения сварочной дуги между электродом и изделием на расстоянии около пяти миллиметров. Осциллятор размещают между источником тока и горелкой с электродом из вольфрама.

Принцип работы заключается в изменении входящего напряжения в высокочастотные короткие импульсы. Эти импульсы суммируются со сварочным током и принимают активное участие в розжиге. Можно собрать такой осциллятор для инвертора своими руками.

Эти устройства могут питаться от переменного или постоянного тока и повышают как значение напряжения, так и частоту электротока. Если на вход прибора подать напряжение 220В с частотой тока в 50 Герц, то на выходе получится напряжение от 2500 до 3000В при частоте от 150 000 до 300 000 Герц. Полученные импульсы имеют продолжительность десятков микросекунд.

Номинальная мощность таких устройств примерно 250–350 Ватт.

Функциональная схема

Технические характеристики каждого прибора зависят от его конструкции и свойств элементов на схеме. Принципиально агрегат состоит из таких элементов:

  • Колебательный контур. Он собран из индуктивной катушки и конденсатора. Катушка представляет собой вторичную обмотку трансформатора высокой частоты. Сам контур генерирует необходимые искры.
  • Разрядник.
  • Катушки дроссельные. Их количество — две единицы.
  • Высокочастотный повышающий трансформатор. Он преобразует входные параметры напряжения в высокочастотные колебания.

Прибор также содержит вспомогательные электрические детали, которые отвечают за безопасность использования агрегата. Это защитный конденсатор, предохраняющий работника от поражения электрическим током и предохранитель.

Предохранитель должен срабатывать при коротком замыкании и пробое конденсатора.

Входное напряжение, проходя через обмотки повышающего трансформатора, проходит через колебательный контур и начинает зарядку конденсатора. Затем, после зарядки последнего до необходимой ёмкости, происходит разряд и возникает пробой. Пробой вызывает короткое замыкание колебательного контура, вследствие которого возбуждаются резонансные колебания. Ток высокой частоты, создающий эти колебания, через защитный конденсатор и обмотки катушки доходит до сварочной дуги.

Защитный конденсатор свободно пропускает высокочастотный ток, который отличается также большой величиной напряжения. Но этот блокировочный конденсатор не способен пропускать ток низкой частоты, так как обладает большим сопротивлением. Это свойство мешает пройти низкочастотному току от сварочного прибора и является надежной защитой от короткого замыкания.

Последовательность процесса сварки

Невзирая на некоторые отличия в сборке, использование устройств этого класса проходит по одному сценарию. Можно так представить последовательность работы прибора:

  • Сварщик на горелке нажимает кнопку «Пуск».
  • Выпрямитель на входе получает напряжение из сети, выпрямляет и отправляет на накопитель.
  • Накопительный узел заряжается.
  • После срабатывания накопительного конденсатора, освобождается импульс.
  • Импульс поступает на высокочастотный трансформатор и преобразовывается в высоковольтный импульс.
  • Одновременно срабатывает клапан газа и выходит аргон из аргонно содержащей камеры.
  • После короткого разряда тока, дуга зажигается в газовом облаке и начинается процесс сварки.
  • Когда начинает работать сварочный ток с силой, превышающей пять ампер, то импульс затухает. Происходит процесс сварки с установленными на аппарате значениями. При потере контакта возникает следующий импульс для возрождения дуги.
  • Когда сварка заканчивается, прибор завершает процесс.

При изготовлении аргоновой горелки своими руками, конструкция может быть упрощена и прибор становится полуавтоматом. В этом случае при случайном завершении процесса сварки надо вручную включать бесконтактный поджиг, нажимая кнопку «Пуск».

Виды осцилляторов

Устройства этого типа в зависимости от вида работ, могут быть кратковременного или постоянного действия. Таким образом, осцилляторы делятся на:

  • Устройства непрерывной работы.
  • Аппараты с импульсным питанием.

При сварке тонких листовых материалов лучше подходит прибор постоянного действия, так как розжиг будет производиться сразу при поднесении к заготовке.

В процессе сварки горение будет ровное и все время поддерживаться. В результате получится чистый и аккуратный шов.

Для безопасности рекомендуется последовательное соединение устройства. Если предусмотрено параллельное подключение, то надо установить защиту от напряжения. При выполнении работ с алюминием, которые выполняются исключительно на переменном токе, применяют импульсные аппараты.

Сборка в бытовых условиях

Для сборки прибора аргонной сварки своими руками из инвертора чаще всего используют распространенную и несложную схему.

В этой схеме главным элементом является повышающий трансформатор. Именно он увеличивает величину стандартного напряжения до трёх тысяч вольт. Самым проблемным узлом при сборке этого устройства является разрядник, который вырабатывает сильную искру. Разрядник и катушка индуктивности обеспечивают главное — они генерируют затухающие высокочастотные импульсы, которые зажигают дугу и поддерживают равномерное горение.

Катушка и разрядник совместно с блокировочным конденсатором образуют узел колебательного контура.

Самодельные аппараты тоже могут быть выполнены по двум различным схемам. Они могут быть импульсного или непрерывного действия. Приборы, использующие принцип непрерывного действия менее эффективны и в их конструкцию надо обязательно включать блок защиты от напряжения. Импульсные устройства считаются лучше, удобнее и производительнее.

Основной деталью узла управления является кнопка. Она выполняет две функции: включение разрядника и контролирование подачи защитного газа в область сварки. Первичными данными при самостоятельной сборке являются детальные ответы на следующие вопросы:

  • Применение для алюминия или нержавейки.
  • Вид электрического тока — переменный или постоянный.
  • Какое напряжение предусматривается.
  • На какую мощность будет рассчитан прибор.
  • Какая величина вторичного напряжения.

Сборка деталей производится на прямоугольной плате.

Слева обычно располагается трансформатор высокой частоты, блок управления и предохранительный узел. В центральной части логично расположить разрядник с конденсатором колебательного контура и блокировочный конденсатор. Последний становится преградой для низкочастотного тока на пути к сварке. Место справа остается для дросселя.

Трансформатор выбирают исходя из потребностей по величине тока во вторичной обмотке. При этом катушку индуктивности лучше сделать сдвоенной. Тогда напряжение и величина тока оказываются более стабильными, а защита аппарата надежнее. Контуры подобны друг другу и состоят из:

  • Конденсатора, запас которого по напряжению в первой части должен быть не менее 500В и 5–6 кВ для второй. Емкость первого конденсатора должна составлять не менее 0.3 мФ, а второго до 1 мФ.
  • Варистора с напряжением во вторичной обмотке около 90–100 В (для первого каскада) и до 140–150 В во второй линии.
  • Катушки индуктивности. Обе катушки имеют ферритовый стержень с намотанной на него медной проволокой сечением около 20 миллиметров квадратных с зазором не менее 0. 8 миллиметров. В первом каскаде количество витков от семи, а во втором — меньше. Катушка второго каскада является фильтром и защитой от колебаний тока. Ток различной амплитуды может привести к нестабильному горению.

Для разрядника находят плату с ребрами теплоотвода. Эта плата охлаждает при срабатывании разряда. Электроды из вольфрама иногда заменяют на обычные. Главное, чтобы их диаметр составлял не менее двух миллиметров. Кончики электродов должны быть строго параллельны. При помощи специального винта делают возможной регулировку расстояния между электродами.

Чтобы получить максимальную стабильность, ко второй обмотке второго каскада подключают катушку от любого электрошокера. Для этого в схему устройства приходится подключать аккумулятор напряжением в шесть вольт. Он обеспечивает питание этой катушки.

Наличие аккумулятора не дает забыть, что время от времени всё устройство нужно осматривать и проводить регламентные работы. Первый каскад подключается к инвертору, а второй предназначен для сварочной горелки и заготовки, которую надо сварить. Корпус прибора должен иметь вентиляционные отверстия и быть влагозащищенным.

Правила эксплуатации

Применение осцилляторов несложно, но требует выполнения ряда правил. Тогда работа с прибором становится безопасной, удобной и продуктивной. Правила использования следующие:

  • Применение этих устройств разрешено как в помещениях, так и на воздухе.
  • В случае обильного снегопада или дождя лучше воздержаться от включения прибора при работе на улице.
  • Температурный режим окружающей среды должен быть от -10 до +40 градусов по Цельсию.
  • Влажность воздуха не должна быть больше 98%.
  • Крайне не рекомендуются работать со сварочным аппаратом в помещениях где сильно накопилась пыль или едкие газы способные повредить металл или изоляцию.
  • Обязательно перед включением нужно убедиться в наличии заземления.
  • Защитный кожух прибора можно снимать только в выключенном состоянии. Во время сварки кожух должен быть надет.
  • На рабочей поверхности разрядника не должно быть следов нагара или грязи. В случае загрязнения нужно вычистить кончики разрядника тонкой наждачной шкуркой.

При сборке осциллятора для инвертора своими руками необходимо также соблюдать правила поведения с электрическими устройствами. Необходимо строго соблюдать основные правила сборки электрических схем и использовать только те детали, которые обладают нужными характеристиками.

схема подключения и изготовление своими руками

На чтение 6 мин. Просмотров 5.1k. Опубликовано Обновлено

Цветные металлы и нержавейка – вот контрольные слова во время тяжелых раздумий типа «вот только осциллятора мне не хватало для полного счастья». С ответственностью заявляем: не будет вам полного счастья с дугой, если вы варите нержавейку, алюминий или цветные металлы. . Даже с правильными электродами и серьезным опытом в сварочном деле.

Дуга будет вас подводить: или трудный розжигом, или нестабильностью и способностью тухнуть в самое неподходящее время. А вольфрамовый электрод будет к тому же липнуть. Справится с этими бедами поможет только один аппарат – осциллятор. Так что никуда вам от него не деться. Придется купить или сделать своими руками.

Хороший осциллятор стоит немалых денег, поэтому, если вы занимаетесь сваркой время от времени, есть смысл разобраться в его устройстве, чтобы сделать его своими руками.

Принцип устройства и работы осциллятора

Схем таких аппаратов много. Но набор принципиальных блоков один и тот же.

Как происходит аргонная сварка с осциллятором?

Вот что он включает в себя:

  1. Трансформатор, повышающий напряжение: для преобразования входного сетевого напряжения 220 В и 60Гц в колебания более высокой частоты со значением до 250 кГц напряжения 5…6 кВ.
  2. Выходной трансформатор для передачи тока повышенных напряжения и частоты на выходные контакты сварочного аппарата.
  3. Генератор искрового типа с контактами в виде вольфрамовых электродов, который по своей сути является одноконтурным разрядником.
  4. Управляющий блок из газового клапана, стабилизатора, кнопки пуска и датчика тока.
  5. Специальный защитный блок для контроля превышения допустимой силы тока или напряжения.

Устройство и принципиальную схему устройства нужно выбирать в зависимости от интенсивности вашей работы с его помощью. Если в планах ваших сварочных работ преобладает алюминий, который нужно варить при постоянном токе обратной полярности, то выбираем схему последовательного подключения – это будет осциллятор для сварки алюминия.

Если вы работаете с нержавейкой, ваша схема должна быть с параллельным подключением.

[box type=”info”]Осцилляторы для сварки с последовательным и параллельным подключением принципиально различаются. В с последовательным подключением входит только один трансформатор с двумя обмотками: первичной с предохранителем и двумя конденсаторами и вторичной с разрядником и колебательным контуром из катушки индуктивности и конденсатора.[/box]

Система осциллятора для сварки с параллельным подключением намного сложнее и требует наличия двух трансформаторов. В первом из них первичная обмотка состоит из двойного колебательного контура, а вторичная включает в себя разрядник и является первичной обмоткой второго трансформатора высокочастотного типа.

Именно от него подается электрического питание дуги. Такую схему не только сложно собрать и регулировать, она должна быть защищена от напряжения, превышающего предельные нормы.

Осциллятор своими руками

Несмотря на то, что на рынке предлагаются сварочные осцилляторы самых разных моделей, может возникнуть необходимость соорудить самостоятельно. Реализация такой идеи вполне реальна, сделать это устройство своими руками – задача не из самых простых, но и не бином Ньютона.

Для начала убедитесь в том, что сварочный осциллятор своими руками вам действительно нужен и рентабелен.

Схема подключения осциллятора.

Вот какие факторы помогут вам в этом:

  • Вы собираетесь варить нержавейку, алюминий или цветные металлы.
  • Вы используете постоянный или переменный ток с напряжением.
  • Мощность тока не превышает 250 Вт.
  • Вторичное полученное напряжение должно быть равно или выше 2500 В.

Если у вас есть сварочный преобразователь, работа пойдет намного легче: ваш постоянно будет подключаться к сварочной сети последовательно, что значительно проще. Кроме того, дуга будет вести себя намного лучше.

Она будет устойчиво гореть, и ее можно будет поджигать без контакта со свариваемой поверхностью вне зависимости от силы тока.

[box type=”fact”]Осциллятор лучше собирать на прямоугольной плате. Высокочастотный трансформатор в компании с предохранителем и цепью управления размещаем слева, дроссель – справа. А в центре установим два конденсатора: колебательного контура и второй блокировочный для изоляции тока низкой частоты от всей сварочной цепи.[/box]

Подобрать оптимальный трансформатор помогут характеристики тока, которые требуются во второй обмотке. Катушка индуктивности должна быть сдвоенной – так надежнее. Если у вас последовательно соединены два колебательных контура, ток и напряжение будут стабильными.

Электрическая схема прибора.

Колебательные контуры должны быть одинаковыми и должны состоять из следующих компонентов:

  • конденсатора;
  • варистора напряжения;
  • катушки индуктивности из ферритового стержня.

Разрядник требует особой жесткой платы, так как при срабатывании температура должна понижаться. Вольфрамовые электроды должны быть не меньше 2-х мм в диаметре, их нужно разместить строго параллельно, для этого их торцуют. Ширина зазора между ними регулируется винтом.

Первый каскад подключаем к клеммам , а второй каскад – к сварочной горелке и свариваемой заготовке. Для высокой стабильности работы к вторичной обмотке второго каскада нужно подключить катушку с отдельным питанием от аккумулятора.

Обязательное требование – корпус должен быть устойчивым к влаге, и со специальными отверстиями для вентиляции.

Правила работы на самодельном осцилляторе

Понятно, что главные требования – это безопасность и надежность .

Принципиальная схема осциллятора.

Для их соблюдения нужно:

  1. Проверять на постоянной основе работу блокировочного конденсатора. Если он будет не в порядке, вы можете получить травму от низкочастотного сварочного тока.
  2. Взять себе за правило заниматься регулировкой и настройкой устройства только при его отключении от сети.
  3. Счищать нагар с электродов, делать это постоянно.
  4. Частота импульсов от осциллятора не должна превышать 40 мкс: следить за этим.

Осциллятор для сварки своими руками – очень грамотное технологическое дополнение к вашему сварочному оборудованию, если вы занимаетесь сваркой специфических металлов: нержавейки и алюминия. Осциллятор можно купить, а можно сделать своими руками. Для этого нужны ясная голова, хорошие руки и наши советы.

Желаем надежных конденсаторов, параллельных электродов и качественных обмоток в ваших трансформаторах. И хороших заказов!

Осциллятор своими руками — схема и порядок изготовления


Ощутимая стоимость электротехнического оборудования делает приобретение довольно затруднительным для небогатых людей. Необходимость выполнения сварочных работ принуждает изготавливать осциллятор своими руками для экономии материальных ресурсов.

Порой на производстве или в быту возникает необходимость соединения деталей, материалом изготовления которых является цветной металл или нержавеющая сталь. Существует возможность одновременно со сварочным аппаратом задействовать самодельный осциллятор. Применение несложного устройства позволит избежать временных потерь на зачистку изделий.

Принцип действия осциллятора

Оптимальным вариантом, значительно облегчающим задачу конечной зачистки соединяемых фрагментов и деталей, выступает использование для поставленной цели сварочного осциллятора. Основным предназначением такого приспособления служит образование и поддержание стабильного состояния сварочной дуги без физического контакта электрода с поверхностью изделий.

Принцип действия осциллятора заключается в преобразовании входящего переменного напряжения в короткие высокочастотные импульсы. Их наложение на сварочный ток способствует розжигу дуги.

Рабочий процесс устройства представляется следующими шагами:

Функциональная схема осциллятора

  • на обмотки повышающего трансформатора из сети подается ток стандартной частоты;
  • начинается зарядка конденсатора колебательного контура;
  • при достижении величины заряда, предусмотренной емкостью, происходит пробой разрядника;
  • короткое замыкание колебательного контура способствует образованию резонансных колебаний затухающего характера;
  • через блокировочный конденсатор, минуя обмотку катушки, ток высокой частоты подводится к сварочной дуге, поддерживая ее в стабильном состоянии.

Большое сопротивление препятствует прохождению через блокировочный конденсатор низкочастотных токов. Это оберегает осциллятор от короткого замыкания, вызванного током сварочного аппарата.

Особенности самодельных осцилляторов

Область применения рассматриваемого устройства распространяется не только на промышленное производство. Самодельный осциллятор подходит и для бытовых нужд. Используется такое оборудование исключительно в комплекте со сварочным аппаратом.

Облегчая процесс поджога дуги, данное электротехническое устройство поддерживает стабильную подачу пламени. Наибольшее распространение получил аппарат промышленного производства марки ОП-240.

Осциллятора ОП-240

Прежде чем начинать изготавливать сварочный осциллятор своими руками, следует определиться с разновидностью оборудования, подходящей конкретному случаю. Существует два типа таких устройств:

Электрическая схема осциллятора

  • импульсное, функционирующее на переменном токе;
  • непрерывное, использующее для питания стабильное напряжение.

Необходимо учитывать, что непрерывный осциллятор требует последовательного соединения с основным сварочным аппаратом. Импульсный агрегат нуждается в параллельном подключении. Практические наблюдения доказали большую эффективность последовательного соединения (по сравнению с параллельным включением устройства). Это объясняется отсутствием необходимости в монтаже добавочного источника защиты общей электрической цепи.

Простейшая схема самодельного осциллятора

Существует несколько вариантов конструкции рассматриваемого оборудования. Согласно простейшей схеме, изготовить сварочный осциллятор своими руками можно при наличии следующих компонентов:

Элементы осциллятора

  • выпрямителя;
  • источника питания;
  • зарядного блока, дополненного накопителями емкости;
  • датчика тока;
  • специального устройства, формирующего импульс;
  • блока управления;
  • высоковольтного трансформатора;
  • газового клапана.

Обязательным условием является присутствие в схеме защиты от короткого замыкания, выполненной в виде специального предохранителя. Необходимо обеспечить заземление оборудования за счет дополнительного отвода.

Собственноручное изготовление сварочного осциллятора

Элементарные знания основ электротехники при наличии всех требуемых компонентов конструкции позволяют выполнить необходимые манипуляции своими руками, в привычной домашней обстановке. Изготовление осциллятора рекомендуется начать с повышающего трансформатора, предназначенного для увеличения напряжения до показателя 3000–6000 B.

Осциллятор параллельного и последовательного включения

Сварочным кабелем на ферритовый сердечник наматывается катушка индуктивности, создающая колебательный контур. Один виток провода формирует первичную, а пять витков – вторичную обмотку трансформатора. Внутри контура закрепляется блокировочный конденсатор с разрядником.

Допускается вариант самостоятельного изготовления, при котором сборка осциллятора выполняется на основании катушки зажигания. В этом случае необходимым элементом схемы становится BB диод, следом за которым фиксируется конденсатор. Затем ставится разрядник, предварительно соединенный с первичкой трансформатора.

Правила безопасной эксплуатации

Неправильное подключение или неверный выбор деталей способны привести к необратимым последствиям. Соблюдение следующих мер безопасности позволит сохранить здоровье при работе со сварочным осциллятором:

Правила обслуживания осцилляторов

  • на открытой местности во время осадков пользоваться устройством запрещено;
  • необходимым условием является обязательный контроль соединения со сварочным аппаратом;
  • не допускается начало работы без проверки качества заземления;
  • использовать устройство позволительно только в кожухе, снимать который можно при полном отключении питания прибора;
  • запыленность помещений или присутствие едких газов с ядовитыми испарениями делает применение сварочного осциллятора недопустимым.

Самостоятельное изготовление устройства не исключает его тестирование после сборки. Перед эксплуатацией прибор требует регистрации и проверки службами электросвязи.

Видео по теме: Осциллятор своими руками


Создание осциллятора для инвертора и для сварки своими руками

Осциллятор для сварки является важным прибором для проведения подобных работ в различных промышленных производствах. Также может применяться и в домашнем хозяйстве. Однако не всегда стоит приобретать подобные устройства, хотя спрос на них велик. Ведь можно без проблем сделать осциллятор своими руками.

Принцип действия прибора

Вне зависимости от того, куплен ли осциллятор для инвертора или сделан самостоятельно, его основное предназначение состоит в создании стабильной работы сварочной дуги. Частота прибора — 50 герц при номинальном напряжении 220 вольт. Выходные же параметры могут изменяться до 300 тысяч герц и 2500 вольт. Такая работа осциллятора создает импульсы периодом до нескольких десятков микросекунд. Сходные параметры работы, когда ток высокой частоты проходит в сварочную цепь, обусловлены высокой мощностью от 250 до 350 ватт.

Из чего состоит осциллятор

Изготовленный своими руками сварочный прибор имеет возможности, которые соответствуют осуществлению сварочных работ на производстве или в домашних условиях. Применяя его, можно произвести сварку алюминия и других похожих по свойствам металлов.

Основные электрические составляющие данного аппарата:

  • Разрядник;
  • Катушки дросселей;
  • Стандартный и высокочастотный трансформатор;
  • Колебательный контур.

Контур, который создается с участием конденсатора и трансформатора высокой частоты, позволяет создавать затухающие искры. При этом конденсатор защищает само устройство и работника от воздействия электричества и возникающих в результате травм. При пробое электрическая цепь размыкается специальным предохранителем.

Порядок изготовления осциллятора

Если вам предстоит сваривать преимущественно алюминиевые детали, то можно изготовить сварочный агрегат своими силами. Монтаж осуществляется одной из наиболее известных схем:

  • Для начала подбирается надежный трансформатор, который способен обеспечить увеличенную подачу напряжения от стандартных 220 до 3000 вольт;
  • Затем необходимо произвести установку разрядника, который будет пропускать искру;
  • После чего следует присоединение еще одного важного элемента. Таковым является колебательный контур с блокировочным конденсатором, который способен генерировать высокочастотные импульсы, чтобы добиться необходимых показателей.

Осциллятор готов к работе, его основным элементом является колебательный контур. Обязательным должно быть наличие блокировочного конденсатора. Все это помогает создать необходимые импульсы. В результате сварочная дуга обладает стабильностью и процесс ее зажигания становится проще.

Процесс работы достаточно простой. После запуска начинает загораться разрядник, создающий частотные импульсы. За это ответственнен высоковольтный трансформатор. Высокомагнитное поле появляется через дугу, затем преобразовывается с помощью катушки, изготавливаемой путем наматывания сварочного кабеля. Плюс идет на горелку, а минус на деталь, в результате газ будет поступать через клапан в горелку. Начинается процесс сварки.

Перед созданием такого устройства следует внимательно ознакомиться с чертежами. Даже начальные познания в электротехнике вкупе с навыками конструирования помогут без серьезных проблем изготовить данный осциллятор. Еще важно соблюдать технику безопасности и помнить о вероятности поражения электрическим током.

Особенности изготовления

Если планируется использование аппарата исключительно в домашнем хозяйстве, то можно изготовить инверторный осциллятор самостоятельно, поскольку у производителя такие приборы весьма дорогие. Необходимо также обладать опытом сборки подобных устройств и знаниями электричества.

Немаловажным является грамотная эксплуатация устройства, ибо при несоблюдении техники безопасности можно получить серьезные травмы. Тщательно подойдите к сборке техники, выбирайте исключительно такие компоненты, которые подходят по своим характеристикам. Соблюдение всех рекомендаций значительно облегчает сборку осциллятора в домашних условиях. Достаточно наличия соответствующих инструментов и деталей.

Осциллятор для сварки является важным инструментом как на производстве, так и в домашнем быту. С его помощью обеспечивается стабильная и сильная дуга, помогающая сваривать различные алюминиевые конструкции. Знание соответствующих разделов физики и электротехники облегчает в соответствующей степени работу и создание подобных устройств. При этом нельзя забывать и о грамотной эксплуатации осциллятора, ведь есть вероятность получить травмы при поражении электрическим током. Удачного создания сварочных осцилляторов!

Схема осцилятора (плазмотрона) для сварки алюминия своими руками

В работе с электродуговой сваркой необходимо обладать определенным навыком. Он потребуется не только при формировании шва, но и уже на начальной стадии, когда происходит процесс розжига дуги.

В классическом представлении дуга возникает в результате соприкосновения электрода с поверхностью металла. Чтобы 1 см воздуха стал проводником, необходимо приложить разность потенциалов примерно в 30 тысяч вольт.

Естественно, такое напряжение слишком высоко даже для современных инверторов, поэтому единственной возможностью зажечь дугу является соприкосновение с постепенным удалением электрода.

Результат такой манипуляции напрямую зависит от мастерства сварщика, однако даже профессионалы не гарантируют того, что стабильная дуга образуется после первого соприкосновения.

Зачастую сварщик совершает колебательные движения держателем, выполняя при этом постукивания о поверхность детали с целью нарушения слоя окисла. Особенно явно такие сложности возникают при работе с цветными металлами. Если учесть то, что по регламенту сварка цветных металлов ведется малыми токами, то вероятность получить стабильную дугу резко снижается.

Избежать подобных проблем помогает устройство, более известное, как осциллятор для сварки. Он выступает в качестве дополнительного оборудования к источнику питания при ведении аргонодуговой сварки. Для его использования мастер обязан обладать достаточным объемом знаний, начиная от устройства и заканчивая способом подключения.

Принцип действия и назначение

Применение осциллятора позволяет обеспечить бесконтактный розжиг дуги, что существенно облегчает задачу сварщика, а также влияет на стабильность электрической дуги в процессе работы.

Хотя мы отметили, что устройство является обособленным элементом, иногда оно интегрировано в сварочный инвертор, то есть, источник питания и осциллятор находятся в одном корпусе. При достаточном объеме знаний в области электроники и электричества возможно изготовление самодельного осциллятора.

Именно на этом обычно концентрируют свое внимание читатели, так как экономия денежных средств всегда выглядит привлекательно.

Начнем с того, что сформулируем основную идею работы данного устройства. При работе сварочного инвертора на электроды подается напряжение 220 В. Если сварка ведется переменным током, то его частота составляет 50 Гц. «Поверх» этого напряжения в импульсном режиме подается высокая разность потенциалов и высокая частота.

Количество таких импульсов, как правило, невелико. Добавочный высокочастотный ток должен лишь разжечь дугу. На это уходят доли секунды. Для качественно оценки следует подчеркнуть, что амплитуда колебаний напряжения достигает 6 кВ, а частота при этом составляет 500 кГц.

Но за счет малой продолжительности импульса мощность электрического тока не превышает 300 Вт.

Среди пользователей возникает лаконичный вопрос: «Может ли осциллятор генерируемым током проводить сварку металлов?».

Действительно, это было бы логично, однако низкая мощность не позволяет расплавить металл и присадку, поэтому импульс используется исключительно для пробоя воздушного зазора. В задачи сварщика входит лишь приближение электрода на расстояние примерно 5 мм и нажатие кнопки.

В осцилляторах интегрированного типа кнопка локализуется прямо на держателе. Длительность импульса соответствует времени удержания кнопки. Далее сварка проводится в обычном режиме.

Высокочастотный ток протекает через диэлектрик (воздух) после активной ионизации. Практически моментально возникает дуговой разряд. Одновременно ионизированный воздух становится проводником, и основной ток сварочного аппарата течет, образуя электрическую дугу.

Если процесс сварки автоматизирован и инвертор обладает микропроцессором, то осциллятор в процессе формирования шва автоматически включается при необходимости, когда возникает тенденция гашения дуги. Примером может служить ситуация с перепадом напряжения или случайного движения руки сварщика в сторону.

В результате работы осциллятора можно получить качественный и равномерный шов.

Устройство и работа

Если с назначением осциллятора разобраться не так сложно, то для понимания его работы потребуются некоторые знания в области физики. Первым делом необходимо понимать, что с помощью этого прибора мы получаем дистанционный розжиг дуги и в процессе сварки стабильную дугу, которая статична по отношению к изменяющемуся зазору между электродом и поверхностью металла.

Осциллятор принципиально состоит из нескольких блоков:

  • Повышающий трансформатор служит для преобразования амплитуды напряжения.
  • Колебательный контур, имеющий классическое строение. Он состоит из конденсатора и катушки индуктивности. В этом контуре возникают высокочастотные колебания.
  • Разрядник. Его основной элемент – воздушный зазор, в котором возникает искра.

Естественно, нами не учтены различные датчики, обеспечивающие автономность работы и систему контроля. При реализации интегрированной схемы, когда осциллятор является составной частью аргонодугового инвертора, устройство оснащено клапаном подачи газа.

Последний управляется микропроцессором и подает аргон в нужный момент времени. Осциллятор оснащен системой безопасности, обеспечивающей бесперебойную работу электрической цепи, а также сохранность жизни и здоровья самого сварщика. От поражения электрическим током защищает конденсатор.

В случае его пробоя в работу вступает плавкий предохранитель, размыкающий цепь при превышении силы тока.

Алгоритм работы осциллятора можно представить в виде последовательности процессов. Рабочее напряжение бытовой сети поступает на первичную обмотку повышающего трансформатора. После преобразования тока на вторичной обмотке индуцируется ЭДС заданной величины (5-6 тысяч вольт). На данный момент частота тока равна промышленной частоте, то есть, 50 Гц.

К обмотке вторичной катушки подключен конденсатор колебательного контура. Он начинает заряжаться, но так как собственная частота колебательного контура превышает частоту тока на обмотке, то в контуре возникают колебания. Изначально контур разомкнут, но пробой в разряднике играет роль своеобразного ключа и замыкает цепь.

Колебания тока в контуре поступают на электрод.

Одним из примечательных свойств конденсатора является пропускание переменного электрического тока. Емкостное сопротивление с повышением частоты уменьшается. Блокировочный конденсатор является препятствием для низкочастотного тока, которым питается сам инвертор, однако пропускает высокочастотный ток. Таким образом, обеспечивается защита осциллятора от короткого замыкания.

Виды, подключение

По принципу работы устройства делятся на два типа:

  1. Осцилляторы непрерывного действия.
  2. Осцилляторы импульсного действия.

При работе осциллятора первого типа сварочный ток суммируется с высокочастотным током высокого напряжения. Зажигание дуги происходит без непосредственного контакта электрода с поверхностью металла. При малом значении силы тока дуга остается стабильной.

Исключается разбрызгивание металла и поражение сварщика электрическим разрядом. Такой осциллятор может быть включен в сеть последовательно или параллельно. При последовательном соединении устройство включается в разрыв кабеля электрода. Подобное подключение позволяет использовать осциллятор более эффективным образом.

Нет потери энергии на обеспечение защиты от высокого напряжения.

Импульсный осциллятор подключается параллельно и используется преимущественно в тех случаях, когда требуется вести сварочные работы переменным током. Вся сложность заключается в том, что устройство должно реагировать на смену полярности, причем за минимальное время.

Поддержать дугу, повысив ее стабильность, может только ток высокой частоты импульсного типа.

Если применить при такой сварке аппараты непрерывного действия, то дуга будет получена без особых проблем, однако повторное ее зажигание уже невозможно, то есть осциллятор будет выполнять только одну свою функцию.

Наличие в схеме конденсаторов позволяет сделать более функциональное устройство. Накопленный электрический заряд позволяет производить повторные импульсы и поджигать дугу в процессе формирования шва, если сварщик случайно отклонил электрод на большое расстояние. В схеме устройства без обратной связи не обойтись. Именно управляющая система обеспечивает синхронизированный разряд конденсатора.

Источник:

Осциллятор для инвертора

Источник: https://regionvtormet.ru/metally/sozdanie-ostsillyatora-dlya-invertora-i-dlya-svarki-svoimi-rukami.html

Устройство осциллятора для сварочных работ

При работе с аппаратами электродуговой сварки возбуждение электрической дуги осуществляется соприкосновением электрода и заготовки. Не всегда зажечь дугу удается с первого касания.

Иногда для возбуждения дуги касание приходится заменять неоднократным постукиванием, чтобы пробить непроводящий слой окисла на поверхности заготовки.

Выполнение тонких сварочных работ с цветными металлами производится на малых токах, усугубляющих нестабильность зажигания дуги. Для решения проблем подобного рода используется так называемый осциллятор. Его используют при сварке в среде аргона, которая как раз и применяется к цветным металлам и сплавам.

Принцип работы

Осциллятор предназначен для бесконтактного розжига сварочной электрической дуги и поддержания ее стабильности в процессе дальнейшей работы. Прибор является дополнением к используемому аппарату электродуговой сварки, и может располагаться в одном корпусе с ним. Можно сделать осциллятор для сварки своими руками, и подключить его отдельно, улучая условия работы.

Основная идея применения осциллятора заключается в следующем. На электрод обычного сварочного аппарата поверх номинального напряжения сварки накладываются импульсы повышенного напряжения и частоты.

Амплитуда импульсов достигает 3000 – 6000 Вольт, частота – от 150 до 500 кГц. Эти высокочастотные импульсы имеют очень малую длительность, мощность сигнала составляет 200 – 300 Ватт.

Такая мощность импульсов слишком мала, чтобы они могли служить генератором сварочного тока, их роль заключается в кратковременном электрическом пробое воздушного промежутка.

Работает осциллятор следующим образом. Сварщик приближает кончик электрода к свариваемой заготовке на расстояние около 5 мм.

Нажимает кнопку, которая обычно располагается в удобном месте держателя электрода (или горелки, как называют держатель электрода в аргонодуговых аппаратах), запуская осциллятор.

Электрические импульсы высокой частоты напряжением несколько киловольт мгновенно ионизируют воздушный промежуток, который при этом пробивается тонким разрядом. Поскольку ионизированный воздух становится электропроводящим, по нему начинает протекать сварочный ток основного аппарата, то есть, загорается полноценная сварочная дуга.

Далее в процессе работы импульсы, генерируемые осциллятором, поддерживают горение основной сварочной дуги в моменты, когда возникают предпосылки для ее гашения.

Например, ошибочное движение руки сварщика, случайно увеличившее воздушный промежуток, не приводит к немедленному гашению дуги, и процесс может продолжаться.

Устройство

Таким образом, применение осциллятора для сварки позволяет повысить стабильность работы сварочного аппарата и качество выполняемой работы за счет обеспечения следующих возможностей:

  • дистанционный розжиг электрической дуги;
  • сохранение устойчивости дуги при случайном изменении величины воздушного зазора.

Основными элементами осциллятора являются: трансформатор, обеспечивающий повышение сетевого напряжения 220 Вольт до 3 – 6 кВ, колебательный контур, генерирующий колебания высокой частоты, а также искровой промежуток.

Очень часто осцилляторы используются совместно с аппаратами аргонодуговой сварки, поскольку именно такими аппаратами производятся работы с цветными металлами. В этом случае, включение прибора синхронизируется с клапаном, открывающим каналы подачи аргона.

Подключение

Схема подключения осциллятора к основному сварочному аппарату зависит от конструкции прибора. Прежде всего, осциллятор должен быть подключен к питанию 220 Вольт.

Подключение к сварочному аппарату может быть двух типов: параллельное и последовательное. На рисунке ниже представлены варианты подключения осциллятора, а также пример компоновки прибора, выполненного в виде отдельного блока.

При параллельном подключении, выводы осциллятора присоединяются к сварочному электроду и заготовке. При последовательном варианте, осциллятор включается в разрез кабеля, питающего сварочный электрод.

Можно найти большое количество схем и описаний этого полезного прибора, пользуясь которыми, его несложно сделать своими руками. Устройство не содержит дорогих и дефицитных деталей и доступно для исполнения человеку с начальными познаниями в электротехнике.

Применение

Основное применение данного прибора, как уже было сказано выше, относится к сварке цветных металлов, хотя и не ограничивается этой сферой. Описываемое устройство с успехом может применяться в сочетании со сварочными аппаратами любого типа.

  • Использование осциллятора с трансформатором для сварки переменным током, позволяет устранить недостатки этого вида сварки, порождающие нестабильное горение дуги.
  • Более того, в этом варианте становится возможным кроме штатных электродов, использовать при сварке электроды, предназначенные для работы с постоянным током.
  • Это расширяет технические возможности сварочных трансформаторов переменного тока и позволяет с их помощью выполнять сварочные соединения, по качеству не уступающие тем, которые выполнены сваркой на постоянном токе.

Использование осциллятора для работы с инвертором дает возможность производить сварочные работы с меньшими значениями токов, следовательно, работать с более тонкими и деликатными заготовками.

Осциллятор, предназначенный для сварки алюминия, часто сочетается с аппаратом аргонодуговой сварки. Алюминий является одним из самых «капризных» цветных металлов, не прощающих сварщику малейшей ошибки.

Он склонен к разбрызгиванию и быстрому сквозному прогару благодаря низкой температуре плавления. По этой причине, именно для работы с этим металлом актуально применение технологий, позволяющих работать малыми токами с высокой стабильностью сварочной дуги.

Примеры схем

Если есть желание сделать осциллятор самостоятельно, то стоит обратить внимание на самые простые схемы.

На приведенной ниже схеме представлен аппарат непрерывного действия, поэтому подключение к сети осуществляется исключительно через трансформатор. Чтобы собрать данную схему, не придётся использовать дорогостоящие элементы.

Недостатком является выбор тиристоров. Их надо подбирать, что называется, методом «тыка», пробовать, при каких тиристорах сварочная дуга наиболее устойчива.

Вторая схема самодельного осциллятора для сварки так же достаточно проста и лишена недостатков предыдущей. Собрать по ней устройство можно с минимальными навыками в монтаже электросхем.

  1. На третьей схеме более подробно представлены элементы сборки.
  2. При сборке надо помнить о технике безопасности, поскольку устройство работает с большими токами.

Источник: https://svaring.com/welding/prinadlezhnosti/oscilljator-dlja-svarki

Осциллятор для плазмореза своими руками: схема, видео, самодельный для плазмы

Главная страница » Своими руками » Плазморез » Осциллятор

Осциллятор для плазмореза — это устройство для бесконтактного возбуждения дуги и стабилизации её горения. Эти опции он получает благодаря преобразованию параметров электроэнергии.

Самодельный осциллятор для плазмореза: немного теории

Внешний вид электронного блока осциллятора заводского изготовления представлен на рисунке.

Сварочный осциллятор марки ВСД-02, используемый для стабилизации горения дуги. Ист. http://met-all.org/oborudovanie/svarochnye/svarochnyj-oscillyator-svoimi-rukami.html.

Современные осцилляторы делятся на два класса действия:

  • непрерывного действия. Этот класс к сварочному току добавляется ток высокой частоты (150…250 КГц) и с большим значением напряжения (3000…6000 В). В таких условиях дуга будет зажигаться даже без прикосновения электрода к поверхности соединяемых заготовок. Более того, она будет гореть очень устойчиво даже при небольших значениях сварочного тока (благодаря высокой частоте тока, вырабатываемого осциллятором). И, что тоже не маловажно, электроэнергия с такими характеристиками не опасна для здоровья рабочего, работающего на этом устройстве;
  • импульсные. Электрическая схема этого класса может предусматривать его параллельное или последовательное подключение.

Примеры электрических схем указаны на рисунке.

Параллельное и последовательное подключение осциллятора. Ист. http://met-all.org/oborudovanie/svarochnye/svarochnyj-oscillyator-svoimi-rukami.html.

Большую эффективность имеет устройства, которые подключены к электрической цепи плазмореза последовательно. Объясняется это тем, что в их схеме не применяется, за ненадобностью, защита от высокого напряжения. Применение осциллятора, кроме того, позволяет расширить опции плазмореза и обрабатывать «проблемные» металлы или сплавы:

  • алюминий;
  • «нержавейка» и т. п.

Осциллятор для плазмореза своими руками

Осциллятор, который при желании нетрудно изготовить своими руками, чаще всего, относится к устройствам непрерывного действия. Рассмотрим конструкцию гаджета.

В общем случае осциллятор состоит из следующих основных узлов:

  • колебательный контур. Он играет роль искрового генератора затухающих колебаний. Колебательный контур состоит из следующих компонентов:
    • накопительный конденсатор;
    • катушка индуктивности. Её роль выполняет, как правило, обмотка высокочастотного трансформатора;
  • разрядник;
  • дроссельные катушки;
  • трансформатор высокой частоты.

Если у вас есть необходимый инструмент, навыки работы с электронной техникой и желание собрать осциллятор для плазмореза своими руками, то вам предстоит собрать и настроить указанные выше узлы.

Схема

Чтобы было понятно, что вы будете создавать, расскажем, в общих чертах, о принципе действия осциллятора. Сетевое напряжение после повышающего трансформатора поступает на конденсатор колебательного контура и заряжает его. Когда конденсатор зарядился до оптимального значения, предусмотренного параметрами электросхемы, происходит его разряд через разрядник (пробой воздушного зазора).

Внешний вид самодельного разрядника приведён на рисунке.

Самодельный одноискровый разрядник. Ист. http://met-all.org/oborudovanie/svarochnye/svarochnyj-oscillyator-svoimi-rukami.html.

Импульс, возникший в этот момент на разряднике, возбуждает колебания в колебательном контуре (колебания представляют собой обмен энергией между ёмкостью конденсатора и индуктивностью обмотки высокочастотного трансформатора). В колебательном контуре возникают затухающие высокочастотные электрические колебания, соответствующие его резонансной частоте.

В момент резонанса на обкладках конденсатора колебательного контура образуется высокое напряжение (величина зависит от добротности «Q» колебательного контура), которое через разделительный конденсатор и обмотку катушки поступает на резак и производит поджиг. Параметры разделительного конденсатора подбираются таким образом, чтобы его реактивное сопротивление препятствовало прохождению тока низкой (сетевой) частоты и не препятствовало высокой частоте.

Вот один из вариантов принципиальной электрической схемы самодельного осциллятора.

Принципиальная электрическая схема осциллятора, который можно собрать своими руками. Ист. http://ismith.ru/welding-equip/svarochnyj-oscillyator-svoimi-rukami/.

Пояснения к схеме:

1. Назначение индикатора «МТХ-90». В момент разряда накопительного конденсатора (при условии правильного подключения всего устройства) светится табло «Контроль фазировки».

2. S1- выключатель дугообразователя;

3. Дроссель Др1 представляет собой катушку из 15 витков провода сечением 2,5 кв. мм, намотанную на кольце R40 х 25 х 80 из феррита с магнитной проницаемостью M2000HM.

4. Т1 – импульсный трансформатор генератора строчной развёртки (на сленге — «строчник») типа «ТС180-2».

Большим «плюсом» этой электрической схемы служит тот факт, что для её реализации не требуются какие-либо дефицитные или дорогостоящие детали (материалы).

Следует учесть, что осциллятор в процессе работы, благодаря разряднику, создаёт большие электропомехи. Для их нейтрализации, необходимо осуществлять монтаж всех компонентов в «глухом» металлическом корпусе.

Пример конструкции приведён на рисунке.

Пример монтажа осциллятора в «глухом» корпусе. Ист. http://m.radiokot.ru/forum/viewtopic.php?f=11&t=115840.

Настройка осциллятора должна осуществляться с тем плазморезом, с которым он будет в дальнейшем работать. Заключается она в подборе опытным путём терристоров. Ориентироваться следует на устойчивость сварочной дуги.

Внимание! При настройке и последующей работе с осциллятором следует строго соблюдать правила техники безопасности при работе с электроприборами. Гаджет – устройство непрерывного действия с импульсным питанием, и на его выходных контактах остаётся напряжение после отключения питания от сети.

Посмотрите небольшой ролик с описанием одного из вариантов осциллятора своими руками:

Полезная информация по теме:

  • Теперь, когда вы знаете, как сделать осциллятор для плазмы, будет легче сделать плазморез своими руками.
  • Рекомендуем ознакомиться и с другими материалами раздела «Своими руками» на нашем сайте.
  • Также вам может понадобиться для приобретения деталей и расходников список адресов и телефонов в разных городах, где можно приобрести комплектующие для плазменной резки.
  • Может быть, вам будет полезен также раздел контактов сервисных центров по плазменному оборудованию в разных городах.

Источник: https://plazmen.ru/svoimi-rukami/plazmorez/oscillyator/

Осциллятор для сварки аргонной алюминия: схема подключения и изготовление своими руками

Цветные металлы и нержавейка – вот контрольные слова во время тяжелых раздумий типа «вот только осциллятора мне не хватало для полного счастья». С ответственностью заявляем: не будет вам полного счастья с дугой, если вы варите нержавейку, алюминий или цветные металлы. Даже с инвертором. Даже с правильными электродами и серьезным опытом в сварочном деле.

Дуга будет вас подводить: или трудный розжигом, или нестабильностью и способностью тухнуть в самое неподходящее время. А вольфрамовый электрод будет к тому же липнуть. Справится с этими бедами поможет только один аппарат – осциллятор. Так что никуда вам от него не деться. Придется купить или сделать своими руками.

Хороший осциллятор стоит немалых денег, поэтому, если вы занимаетесь сваркой время от времени, есть смысл разобраться в его устройстве, чтобы сделать его своими руками.

Принцип устройства и работы осциллятора

Схем таких аппаратов много. Но набор принципиальных блоков один и тот же.

Как происходит аргонная сварка с осциллятором?

Вот что он включает в себя:

  1. Трансформатор, повышающий напряжение: для преобразования входного сетевого напряжения 220 В и 60Гц в колебания более высокой частоты со значением до 250 кГц напряжения 5…6 кВ.
  2. Выходной трансформатор для передачи тока повышенных напряжения и частоты на выходные контакты сварочного аппарата.
  3. Генератор искрового типа с контактами в виде вольфрамовых электродов, который по своей сути является одноконтурным разрядником.
  4. Управляющий блок из газового клапана, стабилизатора, кнопки пуска и датчика тока.
  5. Специальный защитный блок для контроля превышения допустимой силы тока или напряжения.

Устройство и принципиальную схему устройства нужно выбирать в зависимости от интенсивности вашей работы с его помощью. Если в планах ваших сварочных работ преобладает алюминий, который нужно варить при постоянном токе обратной полярности, то выбираем схему последовательного подключения – это будет осциллятор для сварки алюминия.

Если вы работаете с нержавейкой, ваша схема должна быть с параллельным подключением.

Система осциллятора для сварки с параллельным подключением намного сложнее и требует наличия двух трансформаторов. В первом из них первичная обмотка состоит из двойного колебательного контура, а вторичная включает в себя разрядник и является первичной обмоткой второго трансформатора высокочастотного типа.

Именно от него подается электрического питание дуги. Такую схему не только сложно собрать и регулировать, она должна быть защищена от напряжения, превышающего предельные нормы.

Осциллятор своими руками

Несмотря на то, что на рынке предлагаются сварочные осцилляторы самых разных моделей, может возникнуть необходимость соорудить такой аппарат самостоятельно. Реализация такой идеи вполне реальна, сделать это устройство своими руками – задача не из самых простых, но и не бином Ньютона.

Для начала убедитесь в том, что сварочный осциллятор своими руками вам действительно нужен и рентабелен.

Схема подключения осциллятора.

Вот какие факторы помогут вам в этом:

  • Вы собираетесь варить нержавейку, алюминий или цветные металлы.
  • Вы используете постоянный или переменный ток с напряжением.
  • Мощность тока не превышает 250 Вт.
  • Вторичное полученное напряжение должно быть равно или выше 2500 В.

Если у вас есть сварочный преобразователь, работа пойдет намного легче: ваш постоянно действующий аппарат будет подключаться к сварочной сети последовательно, что значительно проще. Кроме того, дуга будет вести себя намного лучше.

Она будет устойчиво гореть, и ее можно будет поджигать без контакта со свариваемой поверхностью вне зависимости от силы тока.

Подобрать оптимальный трансформатор помогут характеристики тока, которые требуются во второй обмотке. Катушка индуктивности должна быть сдвоенной – так надежнее. Если у вас последовательно соединены два колебательных контура, ток и напряжение будут стабильными.

Электрическая схема прибора.

Колебательные контуры должны быть одинаковыми и должны состоять из следующих компонентов:

  • конденсатора;
  • варистора напряжения;
  • катушки индуктивности из ферритового стержня.

Разрядник требует особой жесткой платы, так как при срабатывании температура должна понижаться. Вольфрамовые электроды должны быть не меньше 2-х мм в диаметре, их нужно разместить строго параллельно, для этого их торцуют. Ширина зазора между ними регулируется винтом.

Первый каскад подключаем к клеммам инвертора, а второй каскад – к сварочной горелке и свариваемой заготовке. Для высокой стабильности работы к вторичной обмотке второго каскада нужно подключить катушку с отдельным питанием от аккумулятора.

Обязательное требование – корпус должен быть устойчивым к влаге, и со специальными отверстиями для вентиляции.

Правила работы на самодельном осцилляторе

Понятно, что главные требования – это безопасность и надежность работы аппарата.

Принципиальная схема осциллятора.

Для их соблюдения нужно:

  1. Проверять на постоянной основе работу блокировочного конденсатора. Если он будет не в порядке, вы можете получить травму от низкочастотного сварочного тока.
  2. Взять себе за правило заниматься регулировкой и настройкой устройства только при его отключении от сети.
  3. Счищать нагар с электродов, делать это постоянно.
  4. Частота импульсов от осциллятора не должна превышать 40 мкс: следить за этим.

Осциллятор для сварки своими руками – очень грамотное технологическое дополнение к вашему сварочному оборудованию, если вы занимаетесь сваркой специфических металлов: нержавейки и алюминия. Осциллятор можно купить, а можно сделать своими руками. Для этого нужны ясная голова, хорошие руки и наши советы.

Желаем надежных конденсаторов, параллельных электродов и качественных обмоток в ваших трансформаторах. И хороших заказов!

Источник: https://tutsvarka.ru/oborudovanie/ostsillyator

Осциллятор для сварки алюминия

Осциллятор, который используется при сварке, служит для стабилизации и возбуждения электрической дуги. Он может работать с заводскими источниками тока, которые работают на различных видах тока. Это могут быть осциллятор на переменном или на постоянном токе. Осциллятор для сварки алюминия является генератором затухающих колебаний.

В его составе имеется повышающий трансформатор, который работает на низких частотах. Его вторичное напряжение может достигать, примерно, 2-3 кВ. Также в составе имеется колебательный контур, составленный из обмотки связи, индуктивности, емкости и конденсатора блокировки.

Все обмотки осциллятора образуют трансформатор, который может действовать на высоких частотах.

Осциллятор для сварки алюминия своими руками

Таким образом, осциллятор сварочный для сварки алюминия помогает преобразовать стандартный ток, частота которого составляет 55 Гц, в высокочастотный, частота которого может быть 1-1,5 тысяч Гц.

Благодаря этому улучшается поджог электрода, а также другие важные факторы. Аппарат достаточно быстро реагирует на импульсы, так как они доходят до него за десятки микросекунд.

Данное устройство подключается параллельно или последовательно в цепь трансформатора, что создает свои условия для работы оборудования.

Роль осциллятора при сварке алюминия

Сварка алюминия является очень сложным процессом, так как свойства сваривания данного металла находятся далеко не на самом высоком уровне.

Благодаря воздействию этого устройства на сварочный аппарат, удается поддерживать параметры сварочной дуги в заданном положении, которое может отличаться от стандартного, в течении длительного периода времени.

При работе с данным видом металла стабильность параметров имеет большое значение, так как любое отклонение может привести к браку. Для таких условий может подойти даже самодельный осциллятор для сварки алюминия, если его правильно подготовить.

Стоит отметить, что сварка электродами с покрытием существенно уступает тем же результатам, которые получаются благодаря аргонно-дуговой сварке, поэтому осциллятор является вполне востребованным дополнительным устройством. Ток устройства не представляет опасности для мастера, если соблюдать технику безопасности. Но при ошибках можно получить большой разряд тока.

  Пайка алюминия газовой горелкой

Схема работы

Схема осциллятора для сварки алюминия, включенного параллельно

Схема осциллятора для сварки алюминия

Схема осциллятора, включенного последовательно

Схема осциллятора для сварки алюминия, включенного последовательно

Вторичное напряжение в повышающем трансформаторе во время полупериода конденсатор заряжался, до тех пор, пока не возникнет пробой разрядника.

После этого колебательный контур получается в состоянии короткого замыкания, что и помогает создавать затухающие колебания, у которых имеется резонансная чистота такие колебания, через конденсатор и обмотку прикладываются к дуговому промежутку.

Блокировочный конденсатор помогает предотвратить шунтирование другого  промежутка с источником напряжения при помощи своей обмотки. Дроссель, который включен в сварочную цепь, защищает от пробоя изоляцию обмотки. Мощность такого аппарата может составлять около 250-250 Вт. Длительность импульсов не превышает десятков микросекунд.

Осциллятор для сварки своими руками

Стоит отметить, что приборы последовательного включения на практике оказываются более действенными, так как для них не требуется установка специального источника защиты в общей цепи. Во время работы осциллятора разрядник слегка потрескивает. Искровой зазор устанавливается при помощи регулировочного винта, но данная процедура возможна только если устройство отключено от сети.

Виды

Существует два основных вида осциллятора, которые применяются в сварочном деле. Они серьезно отличаются, как по методу подключения, так и по типу работы, поэтому, нужно точно определиться с правильным выбором. Это может быть:

  • Импульсный – данная разновидность используется для аппаратов, которые работают на переменном токе. Импульсный осциллятор подключается параллельно к основному сварочному аппарату.
  • Непрерывный – данная разновидность используется для аппаратов, которые работают на постоянном токе. Непрерывный осциллятор подключается последователь к основному сварочному аппарату.

Также стоит выделить основные модели данного оборудования, которые производятся для сварки и являются часто используемыми в промышленности.

  Сварка алюминия

ПараметрОСП3-2МОСЦВ-2М-3ОСПП3-300М
Напряжение падания, В (все работают на переменном токе)22065200
Вторичное напряжение при холостом ходу, В6000230026006000
Ток дугиПостоянный, переменныйПеременныйПостоянный, переменный
Вид подключения к сетиПараллельноПоследовательно
Мощность потребления устройства, кВт0,0450,080,14
Вес, кг6,51620

Осциллятор для сварки алюминия своими руками

Схема осциллятора для сварки алюминия своими руками должна максимально соответствовать заводской модели. Разработка разрядника считается одним из самых сложных моментов, так как именно в нем и проходит электрическая искра. Также требуется подобрать блокировочный конденсатор вместе с колебательным контуром.

Существует множество схем создания и основа успеха состоит в том, чтобы правильно подобрать компоненты. Таким образом, в итоге можно получить все те же импульсные или непрерывные осцилляторы. При выборе второго варианта в схеме еще должна присутствовать защита от высокого напряжения.

Импульсный легче в изготовлении и более эффективный в работе, благодаря своей простоте.

Естественно, что техника безопасности в данном вопросу должна стоят на первом месте, так как при неправильном подключении схемы или некорректном выборе элементов все может испортиться и стать опасным для жизни и здоровья человека. Изготовлением данных вещей должен заниматься только специалист с большим опытом.

Условия эксплуатации и меры предосторожности

  • Перед тем как запустить устройство в эксплуатацию его необходимо зарегистрировать и пройти инспектирование электросвязи;
  • Разрешается применять осциллограф, как в открытых, так и в закрытых помещениях;
  • Нельзя использовать технику на открытой территории при осадках;
  • Рабочая температура техники лежит в пределах от -10 до +40 градусов Цельсия;
  • Влажность воздуха должна быт не более 98%;
  • Запрещается применение в запыленных помещениях, а также в комнатах с едкими газами или парами;
  • Также запрещается работа без заземления;
  • Перед использованием всегда нужно контролировать правильность присоединения к аппарату;
  • Работа должна проводиться только в специальном кожухе, который снимается только при отключенном от питания аппарате.

Источник: https://svarkaipayka.ru/tehnologia/svarka-alyuminiya/ostsillyator-dlya-svarki-alyuminiya.html

Сварочный осциллятор своими руками

При работе с цветными металлами часто используются аргоновые аппараты по сварке. Неплавящийся электрод из вольфрама хорошо расплавляет кромки и образует сварочную ванну. Выполняются швы на алюминии и нержавейке и плавящимися электродами, где источником тока служит инвертор.

Но у всех этих устройств имеется одна проблема — розжиг дуги. На цветных металлах постукивание электродом по поверхности создает следы, требующие последующей зачистки.

При работе с тонкими листами на малых токах дуга может гореть нестабильно и часто тухнуть, а ее повторное возбуждение тормозит весь рабочий процесс. Для решения этой ситуации в схему добавляют осциллятор, который позволяет зажигать электрическую дугу не прикасаясь к поверхности изделия.

Это устройство можно купить или попытаться изготовить самому. Как создать сварочный осциллятор своими руками? Каковы схемы аппарата и его принцип работы?

Как работает осциллятор

Подобные устройства могут иметь различные варианты сборки, но все они предназначены для одной цели — возбуждать сварочную дугу между концом электрода и поверхностью изделия на расстоянии 5 мм, без физического прикосновения материалов. Достигается это за счет размещения осциллятора между источником сварочного тока и горелкой с вольфрамовым электродом. Вместо последнего может находиться держатель для сварки покрытыми электродами.

Суть процесса заключается в модернизации входящего напряжения переменного характера с частотой 50 Гц в импульсы высокой частоты и короткой длительности. Они накладываются на сварочный ток, и активно участвуют в розжиге дуги. Осциллятор для сварки, в большинстве вариантов схем, работает в следующей последовательности:

  1. Сварщик нажимает кнопку управления на горелке.
  2. Входной выпрямитель получает напряжение из сети с параметрами 220 V и 50 Гц. Устройство выпрямляет ток и передает его на накопитель.
  3. Накопительная емкость собирает в себе разряд.
  4. Схема управления руководит этим процессом. Когда сетевое напряжение достигает 0В, высвобождается импульс, для последующего формирования.
  5. Он поступает на первичную обмотку трансформатора, где происходит его преобразование в высоковольтный импульс.
  6. Одновременно с этим, схема управления подает сигнал в клапан газа, и выпускается аргон.
  7. Происходит короткий разряд тока, связывающий в воздухе напряжение от горелки и изделие, к которому прикреплена масса от сварочного аппарата. Дуга зажигается в уже подготовленном газовом облаке, и можно сразу вести сварку.
  8. Когда в процесс включается сварочный ток, с силой более 5 А, то импульс прекращает свое действие. Сварка ведется на тех параметрах, которые были установлены на аппарате. Если происходит утеря контакта, то схема управления подает повторный импульс для возобновления дуги.
  9. После окончания сварки осциллятор регулирует время последующей продувки защитным газом и завершает весь процесс.

Это очень удобно для сварки алюминия или легированных сталей, где требуется точность начала шва, а механическая зачистка следов от касания электрода оставляет лишние следы. Изготовление осциллятора своими руками может быть упрощено до нескольких узлов. Тогда, при обрыве сварки, требуется запускать действие бесконтактного поджига вручную, повторно нажимая кнопку на горелке.

Создавая свой самодельный осциллятор важно добиться правильных выходных параметров устройства. Он должен повышать поступающее в него напряжение от стандартного до 3000-6000 В. Изменение частоты колебания должно быть на уровне от 150 до 500 кГц.

Схема осциллятора может включать различные компоненты. Вот один из вариантов состава устройства:

  • выходного выпрямитель;
  • стабилизированный источник питания;
  • блок зарядки с накопителями емкости;
  • блок управления;
  • блок для формирования импульса;
  • высоковольтный трансформатор;
  • датчик тока;
  • газовый клапан.

Осциллятор устанавливается в цепь всегда после инвертора или обычного трансформатора, и перед рукавом с кабелем, идущим на горелку или к держателю электрода. Отдельные блоки схемы формируются из деталей, покупаемых в магазине, или создаваемых самостоятельно.

Например, колебательный контур, работающий как искровой генератор с затухающими колебаниями, собирается из конденсаторов. А катушкой индуктивности служит обмотка высокочастотного трансформатора.

В схеме обязательно должен быть и предохранитель, защищающий сварщика от короткого замыкания, и специальный отвод для заземления устройства.

Разновидности самодельных осцилляторов

В зависимости от выполняемых сварочных работ, можно создать осциллятор своими руками, с постоянным или кратковременным действием. Если требуется работа с тонкими листами металла на малых токах, то лучше подойдет первый вариант. Устройство будет накладывать на ток, выдаваемый сварочным аппаратом, дополнительное напряжение 3000В с высокой частотой в 200 кГц.

Вследствие чего розжиг электрода станет осуществляться при малейшем поднесении к изделию, а в процессе ведения шва горение дуги будет стабилизироваться и поддерживаться. Несмотря на высокие показатели напряжения, этот ток будет безопасен для жизни сварщика. Рекомендуется последовательное подключение такого аппарата в схему.

При параллельном потребуется дополнительная установка защиты от напряжения.

Для работы с алюминием, который сваривается только на переменном токе, больше подойдет вторая самодельная модель осциллятора, где рабочий эффект заключается в кратковременном импульсе. Последний зажигает дугу при поднесении горелки к изделию на расстояние 5 мм.

Эту же функцию осциллятора используют и при плазменной резке, а также в работе с инверторами, или аргоновыми аппаратами для сварки нержавейки. Во время работы на переменном токе его полярность постоянно меняется. Это может затруднять стабильность горения и повторные розжиги.

Осциллятор содействует мгновенному зажиганию дуги в таких условиях.

Изготовление ключевых деталей

Имея некоторые зная электротехники и необходимые материалы можно приступать к созданию самодельного осциллятора. Начать стоит с повышающего трансформатора, который будет поднимать напряжение. Его можно купить в магазине или намотать самостоятельно. Число витков и площадь сечения выбираются по справочникам. Главный показатель — это способность повысить напряжение до 3000 — 6000 В.

Колебательный контур создается из катушки индуктивности, которая наматывается сварочным кабелем на ферритовый сердечник. Достаточно одного витка такого провода для первички, и пяти витков для вторичной обмотки. В контур устанавливается блокировочный конденсатор и разрядник. В последнем происходит процесс генерирования и высвобождения затухающего импульса.

Разрядник изготавливают из двух медных вертикальных стержней, на которые крепятся вольфрамовые прутки для передачи тока.

Рекомендуется залить медные стойки диэлектрическим затвердевающим составом, предварительно подведя к ним провода для контактов.

Возможна сборка осциллятора на основе катушки зажигания, только после нее в схему необходимо установить ВВ диод и идущий за ним конденсатор. Потом следует поставить разрядник, подсоединенный к первичной обмотке трансформатора.

Накопительный конденсатор можно купить или извлечь из старого телевизора. Некоторые мастера создают такие конденсаторы самостоятельно в банке. Газовый клапан, устанавливаемый на выходе, доступен в продаже.

Осцилляторы значительно облегчают работы по сварке алюминия и нержавейки, или разрезанию металла плазмотроном. Советы для начинающих в этой статье, различные схемы устройства, и видео по созданию самодельных аппаратов, помогут изготовить простой осциллятор для личных нужд.

  • Поделись с друзьями
  • 2
  • 0
  • 1
  • 1

Источник: https://svarkalegko.com/oborudovanie/samodelnyj-ostsillyator.html

Самодельная сварка аргоном. Осциллятор своими руками

Прикупил себе товарищ сварочный инвертор аргонно-дуговой сварки для разных металлов. В основном таких как нержавейка  и алюминий в среде газа аргон, но вот незадача такой тип сварки не подходит для сварки алюминия.

Задал я вопрос на форуме, рекомендовали менять местами массу и держак, но при таком подключении вольфрамовый электрод просто сгорает. Рекомендовали варить переменным сварочником, якобы алюминий лучше варить переменным током, при таком токе шов получается качественный.

  Было решено купить сварочник переменного тока, но для него нужен осциллятор. Вот и дал он мне такую задачку собрать для него осциллятор

Осциллятор это такой прибор, который нужен для бесконтактного розжига дуги. Дуга разжигается за счет высоковольтного напряжения между контактами, к примеру как в свече двигателя внутреннего сгорания искра пробивается на расстоянии. По такому же принципу работает осциллятор

Человек построил схему на базе принципиальной схемы обратнохода на UC3842-5 и трансформатора строчника телевизора. Мне эта идея очень понравилась, но к сожалению у меня нет этой микросхемы и я решил сделать схему на базе таймера NE555.

На базе NE555 можно собрать неплохой генератор прямоугольных импульсов, усилить его драйвером на транзисторах для управления полевым транзистором и гонять преобразующий трансформатор.
Разберу схему с начала.

Питать осциллятор решил от отдельного блока питания 30В, после диодного моста напряжение примерно 45В. На Q1R2R5D6C2C3 собран источник опорного напряжения для питания генератора и драйвера.

На R3R4R8D5C6C7 и таймере 555 собран генератор прямоугольных импульсов скважностью 60%, R6Q2Q5 драйвер для управления Q3. C1R1D3 RCD клампер для подавления выбросов с трансформатора.

После трансформатора высокое напряжение свыше 1000В поэтому установлен высоковольтный диод HVR-1×4, такой диод можно найти в микроволновке, он способен выдержать до 12кВ.

Между плюсом и минусом установлен разрядник из свечи с мопеда, после через конденсатор установлен развязывающий трансформатор, через который пропускается сам сварочный кабель.

Второй трансформатор уже подает высоковольтное напряжение на держак и массу

Источник: https://rustaste.ru/svarka-argonom-oscillyator-svoimi-rukami.html

Осциллятор для сварочного аппарата своими руками: схема и подробное описание

Сваривая аргоном (или любым иным способом сварки) нержавеющую сталь и цветные металлы начинающим сварщикам сложно поддерживать стабильное горение дуги. Такая проблема встречается даже у опытных мастеров, это обусловлено особенностями металла и типа сварки, используемого в работе. Чтобы облегчить задачу можно использовать осциллятор сварочный. Это крайне полезное приспособление, которое используют и домашние умельцы, и мастера на заводе.
Можно купить это устройство в магазине, но мы предлагаем вам сделать осциллятор своими руками.  Это не сложно, особенно, если вы обладаете минимальными знаниями электротехники. В этой статье мы подробно расскажем, как сделать осциллятор для сварки своими руками.

Содержание статьи

Конструкция сварочного осциллятора

Сварочные осцилляторы универсальны: они работают и с переменным, и с постоянным током. Суть работы осциллятора заключается в повышении напряжения и повышении частоты электрического тока, оба этих процесса происходят одновременно.

Приведем небольшой пример. Возьмем стандартный сварочный аппарат с напряжением в 220 В, а также электрической частотой тока в 50 Гц. Такие аппараты есть у многих домашних сварщиков. Если такой аппарат использовать в связке с осциллятором, то на выходе мы получим примерно 2500 В и 15000 Гц соответственно. При этом осциллятор создает импульсы, которые продолжаются несколько десятков микросекунд. Стандартная мощность осциллятора примерно 300 Вт, этого достаточно для сварочного аппарата, который мы привели в пример. Именно благодаря особой конструкции осциллятор обеспечивает такое существенное увеличение напряжения и частоты тока. Давайте подробнее остановимся на основных компонентах стандартного осциллятора.

Итак, электрическая схема осциллятора состоит из колебательного контура, который играет роль генератора искр в затухающих колебаниях. Контур состоит из конденсатора и катушки индуктивности (катушка имеет подвижную обмотку), разрядника, повышающего трансформатора и трансформатора высокой частоты. Так же есть дроссельные катушки зажигания, обычно их две штуки.
Дополнительно производители могут встроить компоненты, обеспечивающие повышенную безопасность. Так в современных приборах может быть использован специальный конденсатор, который дополнительно защитит вас от ударов током, а также предохранители, которые разрывают электрическую цепь при неправильной работе аппарата. Для сравнения, в бытовом электрощитке предохранители работают по такому же принципу.

Как видите, в осцилляторе не так много компонентов, отвечающих за его работу. Это значит, что их легко можно найти в магазине и собрать устройство своими руками. Далее мы подробно расскажем, как работает осциллятор. Эта информация понадобится вам для полного понимания сути осциллятора.

Принцип действия

Для лучшего понимания мы разделили этапы работы осциллятора на две стадии:

  • Стадия 1. Напряжение проходит по обмотке повышающего трансформатора и затем поступает на конденсатор, тем самым заряжая его. У каждого конденсатора есть своя величина емкости тока, поэтому он мгновенно выдает ток на разрядник, когда заряжен до необходимой величины.
  • Стадия 2. Происходит так называемый пробой — резкое возрастание силы тока. Колебательный контур становится закороченным, что приводит к появлению тех самых затухающих колебаний или импульсов. Эти колебания формируют ток высокой частоты, который затем из катушки и блокировочного конденсатора переходит на сварочную дугу.

Это интересно! Благодаря своему устройству блокировочный конденсатор свободно пропускает через себя высокочастотный ток с большим напряжением. При этом он не пропускает ток с низким значением из-за большого сопротивления. Это очень полезная особенность, она защищает осциллятор от короткого замыкания, которое может появиться из-за сварочного аппарата.

Вот и все. В осцилляторе не происходит никаких сложных процессов и нет никаких особенных компонентов. Вся его работа основана на принципах элементарной электротехники. Даже если вы далеки от работы с электрикой, мы рекомендуем изучить эту область. Так вы расширите свои профессиональные навыки и будете лучше понимать принципы электросварки.

Как самому сделать осциллятор

Ниже представлена детальная схема осциллятора для сварки алюминия или иных металлов. Основным элементом схемы является трансформатор, именно он способствует увеличению напряжения с 220 В до необходимого значения.
Также есть колебательный контур, он является одним из важнейших компонентов. В контуре обязательно должен быть блокировочный конденсатор. В колебательный контур также входит разрядник и катушки зажигания. Сам контур генерирует затухающие импульсы высокой частоты, что впоследствии упрощает зажигание сварочной дуги и поддерживает ее стабильное горение.

В нашем осцилляторе основным элементом управления будет специальная кнопка. Она отвечает за включение разрядника и одновременную подачу газа в сварочную зону. Плюсовой и минусовой контакт являются выходными. Плюсовой подается к горелке сварочного аппарата, а минусовой подается к свариваемой детали.
Осцилляторы, изготовленные на заводе или дома своими руками, могут работать по одному из двух принципов: принципу непрерывного или принципу импульсного действия. Первый принцип менее эффективен, поскольку такие осцилляторы нужно использовать с дополнительными устройствами, защищающими от перенапряжения. Импульсное действие предпочтительнее. Такие осцилляторы обеспечивают хорошее горение дуги на протяжении всей работы.
Если вы часто используете в своей работе самодельный осциллятор для сварки алюминия своими руками, то отнеситесь серьезно к технике безопасности. Порой «самоделки» начинающих сварщиков могут работать некорректно, что приводит к печальным последствиям. Не важно, для каких целей вы используете осциллятор: для аргонной сварки на производстве или мелкого домашнего ремонта. В любом случае, нужно соблюдать технику безопасности. При сборке осциллятора используйте только качественные комплектующие и проведите небольшой тест перед началом серьезных сварочных работ.

Вместо заключения

Такое нехитрое приспособление значительно упрощает сварку цветных металлов и нержавейки, ускоряет рабочий процесс и в целом позитивно влияет на качество получаемого сварного шва. Как видите, сделать осциллятор своими руками очень просто, особенно, когда есть наглядная схема. Покупка готового осциллятора в магазине может оказаться довольно дорогостоящей, а это критично для новичков, или мастеров, использующих осциллятор нечасто.

Обязательно попробуйте изготовить это устройство самостоятельно и делитесь этой статьей в социальных сетях. Опытные сварщики могут рассказать в комментариях о своем опыте, как сделать осциллятор для сварки своими руками. А также могут поделиться, какая схема осциллятора для сварки алюминия проще и понятнее. Желаем удачи!

[Всего: 1   Средний:  2/5]Схема генератора хартли

: схемы генератора :: Next.gr

  • Изучите традиционную схему генератора Хартли, и вы заметите ее фирменный знак: индуктор с отводом, который определяет частоту колебаний и обеспечивает обратную связь, поддерживающую колебания. Хотя вы можете легко вычислить общую индуктивность, необходимую для ….

  • I.Усилитель F. аналогичен тому, что использовался в проекте приемника 80М. Первоначальный дизайн был изменен путем включения пары светодиодов в цепь источника каждого Mosfet. Падение напряжения на светодиодах удерживает напряжение источника около двух ….

  • Это регулятор серии с Q900 в качестве управляющего элемента. мент, Q901 драйвер, а Q902 ошибка amp.Формы ZD900 источник опорного напряжения эмиттера. Поскольку сгенерированный высокое напряжение и другие напряжения связаны с помощью магнитное поле ….

  • Эта схема использовалась для остановки всего дрейфа BFO. Схема чрезвычайно стабильна. Выключите приемник, а затем включите его в любое время и при любой температуре, частота BFO точно такая же.Резонатор — Murata CSB 455E. Серийный номер Мураты — CSBLA_E ….

    .
  • Справа показан осциллятор Хартли. Он использует большинство тех же компонентов, что и осциллятор Клаппа. Конденсатор необходим для блокировки напряжения смещения затвора от настроенной схемы. Настроечный конденсатор представляет собой поликонденсатор емкостью 100 пФ.L1 — это катушка, намотанная ….

  • Движение рук и тела вблизи чувствительных антенн вызывает изменение частоты в генераторе Хартли, работающем на частоте примерно 750 кГц. Сигнал от генератора переменного этого смешивают с постоянной опорной частоты в кольцевой модулятор и ….

  • TR1 (BC547) — это инвертированный генератор Хартли, основанный на катушке индуктивности, изготовленной на печатной плате.Это делает его мега-стабильным и настраивается в любом месте в диапазоне VHF FM (от 76 МГц до 119 МГц), а варикап BB105 позволяет настраивать напряжение примерно на 8 МГц от этого ….

  • Генератор Хартли — это электронный генератор LC, который получает свою обратную связь от катушки с ответвлениями, параллельной конденсатору (контур резервуара).Хотя нет необходимости во взаимной связи между двумя сегментами катушки, схема составляет ….

  • ..

  • ..

  • Создайте генератор, удовлетворяющий нескольким требованиям. Главное требование — наличие ровно одного конденсатора. Другой — иметь высокий выход Q и синусоидальную волну. Я рассматриваю конструкцию генератора Хартли. Так как у него только одна крышка. Я не к чему ….

  • Цепь осциллятора Хартли может быть сделана из пары последовательно соединенных катушек.У меня была пара фиксированных катушек индуктивности 22 мГн, которые я подключил на макетной плате с другими необходимыми деталями. Когда я тестирую транзисторный усилитель самостоятельно, он кажется ….

  • Осциллятор Хартли характеризуется наличием в коллекторе LC-цепи. База транзистора удерживается неподвижно, и небольшой сигнал берется из ответвления на катушке индуктивности и подается на эмиттер, чтобы транзистор оставался в колебательном состоянии…

  • ..

  • ..

  • ..

  • ..

  • привет. Я пытаюсь построить осциллятор Хартли. Я использую обойденный общий эмиттер и пытаюсь получить колебание 2Vp-p 200 кГц.С BC547B ….

  • Привет! Я сделал генератор Хартли на операционном усилителе, используя определенный имитатор электроники, и хотя симуляция имеет место, я не могу получить никаких колебаний ….

  • Схема была разработана для работы передатчика речи с частотной модуляцией в диапазоне частот 2 FM диапазона VHF.Передатчик электронное устройство ….

  • Q — это транзистор, L1, L2, C сформирован резонансный контур, L2 в качестве цепи обратной связи, через конденсатор связи Cb будет отправлен на базу транзистора напряжения обратной связи. На рисунке 2 показан канал связи, резонансный контур с тремя конечными точками и ….

  • Учебное пособие по осциллятору Хартли и теория, лежащая в основе конструкции осциллятора Хартли, который использует контур резервуара LC-осциллятора для генерации синусоидальных волн….

  • ..

  • Генератор Хартли — это тип генератора, в котором используются две последовательно соединенные катушки индуктивности или индуктор с катушкой с отводом по центру, а также конденсатор.Цепь бака образована индуктором и параллельным конденсатором. Схема генератора требует ….

  • Осциллятор Хартли — это низкочастотный осциллятор, который получает свою обратную связь от магнитно связанной энергии в катушке с ответвлениями. Генераторы Хартли представляют собой генераторы переменной частоты с индуктивной связью…

  • ОСЦИЛЛЯТОР ХАРТЛИ является усовершенствованием генератора Армстронга. Хотя его частотная стабильность не является наилучшей среди всех генераторов, генератор Хартли может генерировать широкий диапазон частот и очень легко настраивается. Хартли ….

  • Генератор Хартли является особенно полезной схемой для создания синусоидальных сигналов хорошего качества в диапазоне РЧ (от 30 кГц до 30 МГц), хотя в более высоких пределах этого диапазона и выше обычно предпочтительнее использовать генератор Колпитца.Хотя оба эти ….

  • Генератор

    Хартли — это индуктивно связанные генераторы переменной частоты, в которых генератор может иметь последовательное или шунтирующее питание. Генераторы Хартли имеют то преимущество, что они имеют одну индуктивность с отводом по центру и один настраивающий конденсатор. Такое расположение упрощает ….

  • ..

  • Этот генератор Хартли был построен на остатках одиночной лампы Хартли с использованием одиночного 45. Первоначальная схема, которую я сконструировал, была той, которая была опубликована Джорджем Граммером в статье QST 1932 года. Как выяснилось, оба 45-х у меня были слабые, так что ….

  • ..

  • ..

Что такое осциллятор? Критерий Баркгаузена, преимущества осциллятора

Определение: Осциллятор — это схема, в которой используется усилитель положительной обратной связи для генерации синусоидальных сигналов фиксированной амплитуды и частоты.Это основной источник энергии в электрических и электронных приборах. Усилитель с положительной обратной связью может генерировать синусоидальный сигнал даже при отсутствии какого-либо входа. Эти сигналы называются колебаниями, и поэтому устройство известно как осциллятор.

Положительная обратная связь здесь подразумевает добавление некоторой части выходного сигнала к входному сигналу напряжения. Это разрешено проходить через схему усилителя. Усилитель передает его с входным сигналом, поступающим от источника.Усилитель не делает ничего, кроме добавления сигнала, поступающего из тракта обратной связи, и входного сигнала. Таким образом, генерируются непрерывные колебания, и в то время, когда достигается стадия, когда без какого-либо входного сигнала схема генератора генерирует формы волны.

Генератор не генерирует собственную энергию для генерации колебаний, но использует источник постоянного тока для преобразования энергии постоянного тока в переменный. Поэтому его также называют инвертором, который является противоположностью выпрямителя.

Генераторы доступны в широком диапазоне частот.В соответствии с частотой колебаний осцилляторы названы соответственно. Диапазон некоторых осцилляторов приведен в таблице ниже.

Тип осцилляторов Приблизительный диапазон
Генераторы звуковой частоты 20 Гц — 20 кГц
Радиочастотные генераторы 20 кГц — 30 МГц
Генераторы сверхнизкой частоты 15 — 100 кГц
Генераторы низкой частоты 100-500 кГц
Радиовещательные генераторы 500 кГц — 1.5 МГц
Видео — Генераторы частоты 0 — 5 МГц
Высокочастотные генераторы 1,5 — 30 МГц
Генераторы сверхвысокой частоты 30 — 300 МГц
Сверхвысокочастотные генераторы 300 — 3000 МГц
СВЧ-генераторы Более 3 ГГц (3000 МГц)

Колебательный контур

Цепь генератора называется баковой цепью . Состоит из конденсатора и катушки индуктивности. Конденсатор уже заряжен и подключен к катушке индуктивности с переключателем между ними. Когда переключатель разомкнут, ничего не произойдет.

Когда переключатель замкнут, заряд, накопленный в конденсаторе, начнет разряжаться, и электроны начнут течь по цепи. Обратите внимание, что направление потока тока в цепи будет противоположным направлению потока электронов.

Когда ток течет в цепи, ток проходит от индуктора, из-за которого создается магнитное поле.Магнитное поле создается, потому что ток, протекающий в цепи, создает магнитный поток, который в результате создает магнитное поле.

Благодаря магнитным полям вокруг индуктора, в индукторе накапливается энергия в виде магнитного поля. Когда конденсатор полностью разряжен, ток, протекающий по цепи, начнет исчезать. Теперь магнитное поле, которое было создано вокруг индуктора, будет генерировать ЭДС.

Это происходит из-за закона Ленца, который гласит, что созданное магнитное поле будет противодействовать причине, которая его создала.Возникающая таким образом ЭДС заставит ток снова течь в цепи LC. В результате индуцированной ЭДС заряд будет течь, и, как следствие этой индуцированной ЭДС, заряд будет накапливаться в конденсаторе. Конденсатор будет накапливать энергию в виде электростатического поля.

Этот процесс заряда и разряда конденсатора и катушки индуктивности будет продолжаться вечно, если процесс не будет завершен извне. Таким образом, конденсатор будет заряжаться за один раз, а затем индуктор будет заряжаться в другой момент времени.Следовательно, колебания будут генерироваться непрерывно.

Однако, если вы думаете об колебаниях амплитуды, в этом есть изюминка. Обычно колебания, создаваемые осциллятором, являются затухающими колебаниями. В идеале считается, что колебания, генерируемые генератором, не затухают и имеют непрерывную синусоидальную форму, но на практике это невозможно.

Это происходит из-за некоторых потерь в резисторе и индуктивности, из-за которых колебания теряют свою энергию, и поэтому амплитуда начинает уменьшаться.Потери в резисторе отличаются от потерь в катушке индуктивности. Резистор страдает от диэлектрических потерь, в то время как индуктор страдает от излучения и резистивных потерь.

Частота цепи генератора

Частота контура генератора называется резонансной частотой. Резонансная частота выражается через индуктивность и емкость. Резонансная частота обратно пропорциональна емкости, а также индуктивности.

Принцип осциллятора и критерий Баркгаузена

Принцип генератора состоит в том, что, когда коэффициент обратной связи или коэффициент усиления контура равен единице, общий коэффициент усиления контура генератора будет бесконечным.

Это означает, что даже при отсутствии входа генератор будет продолжать генерировать выход.

Это необходимое условие для работы усилителя в качестве обратной связи. Обобщая условия, можно сказать, что

Генераторы — Типы, Классификация, Цепи обратной связи

Генератор — это электронное устройство для генерации переменного напряжения сигнала. Осцилляторы генерируют синусоидальную или несинусоидальную форму волны от очень низких частот до очень высоких частот.Гетеродин в большинстве современных сапергетродинов AM диапазона вещания будет охватывать диапазон частот от 1000 до 2100 кГц (приблизительно).

Генератор — это схема для генерации переменного напряжения желаемой частоты и амплитуды. Он преобразует энергию постоянного тока в напряжение переменного тока. Имеет широкое применение, например, для тестирования стереоусилителя; Генератор аудиосигнала генерирует от 20 до 15 кГц на передатчике и от 47 до 230 МГц на стороне приемника. В радио несущая частота варьируется от 550 кГц до 20 МГц для телевещания в радио и требуются высокочастотные генераторы ТВ-приемника.

В основном схема генератора — это усилитель, который обеспечивает (через обратную связь) входным сигналом. Это невращающееся устройство для выработки переменного тока, выходная частота которого определяется характеристиками устройства. Первоначальная цель осциллятора — генерировать заданную форму волны с постоянной пиковой амплитудой и определенной частотой и поддерживать эту форму волны в определенных пределах амплитуды и частоты.

Генератор должен обеспечивать усиление, а часть выхода является обратной связью, чтобы поддерживать вход, как показано на рис.1. Во входную цепь должна поступать достаточная мощность, чтобы генератор мог управлять собой, как в случае с генератором сигналов. Генератор имеет автоматический привод, поскольку сигнал обратной связи является регенеративным, т.е. положительной обратной связью.

Рисунок 1: Блок-схема генератора

Давайте рассмотрим основные требования к схеме генератора.

Первый , усиление требуется для обеспечения необходимого усиления сигнала.

Во-вторых, требуется достаточная регенеративная обратная связь для поддержания колебаний.

В-третьих, необходимо устройство определения частоты для поддержания желаемой выходной частоты. В дополнение к приложению определите типы используемого генератора.

Обратная связь

Обратная связь — это процесс передачи энергии от точки высокого уровня в системе к точке низкого уровня. Это означает передачу энергии с выхода усилителя обратно на его вход. Если выходной сигнал обратной связи противостоит входному сигналу, это сигнал дегенеративной или отрицательной обратной связи. Однако, если обратная связь помогает входному сигналу, обратная связь является регенеративной или положительной.Регенеративная или положительная обратная связь — одно из требований для поддержания колебаний в генераторе. Эта обратная связь может применяться любым из нескольких способов для создания практической схемы осциллятора.

Рисунок 2. Цепь обратной связи генератора

Цепь, которая производит электрические колебания любой желаемой частоты, называется колебательной цепью. Эта схема состоит из двух реактивных компонентов, а именно катушки индуктивности L и конденсатора C, включенных параллельно друг другу. Такой контур также называется LC или баком.

Сигнал обратной связи передается из контура резервуара двумя способами. Первый метод — это отобрать часть энергии из индуктора. Это может быть достигнуто любым из трех способов, показанных на рис. 2 (a), (b) и (c). Когда в осцилляторе используется тиклерная катушка, как показано на рис. 2 (а), его называют осциллятором Армстронга. Когда генератор используется в качестве ответвленной катушки, как показано на рисунке 1 (b), или в качестве разделенной катушки, как показано на рисунке 2 (c), его называют генератором Хартли. Второй метод подключения сигнала обратной связи заключается в использовании двух конденсаторов в цепи резервуара и переходе сигнала обратной связи между ними.Это показано на рис. 2 (d), также осциллятор, использующий этот метод, называется осциллятором Колпитца.

Использование положительной обратной связи приводит к тому, что усилитель обратной связи имеет коэффициент усиления A v замкнутого контура больше, чем коэффициент усиления A v разомкнутого контура. Это приводит к нестабильности и работе в режиме колебательного контура. Схема генератора обеспечивает постоянно изменяющийся усиленный выходной сигнал на любой желаемой частоте.

Классификация генераторов

Электронные генераторы можно в целом разделить на следующие две категории.

Генераторы, обеспечивающие на выходе синусоидальную форму волны, называются синусоидальными или гармоническими генераторами. Такие генераторы могут обеспечивать выходной сигнал на частотах от 20 Гц до ГГц.

  1. Синусоидальные или гармонические генераторы

    1. Генераторы с настроенной схемой

      В этих генераторах используется настроенная цепь, состоящая из катушек индуктивности (L) и конденсаторов (C), и они используются для генерации высокочастотных сигналов. Таким образом, они также известны как генераторы радиочастоты (ЭЛТ).Такими осцилляторами являются осцилляторы Хартли, Колпитца и т. Д.

    2. RC-генераторы

      В этих генераторах используются резисторы и конденсаторы, и они используются для генерации сигналов низкой или звуковой частоты. Таким образом, они также известны как генераторы звуковой частоты (A.F). Такими генераторами являются фазовращающие и мостовые генераторы.

    3. Кристаллические генераторы

      Эти генераторы используют кристаллы кварца и используются для генерации высокостабилизированного выходного сигнала с частотами до 10 МГц.Генератор Пирса является примером кварцевого генератора.

    4. Осцилляторы отрицательного сопротивления

      В этих генераторах используется характеристика отрицательного сопротивления таких устройств, как туннельные диоды. Настроенный диодный генератор является примером генератора отрицательного сопротивления.

  2. Несинусоидальные или релаксационные генераторы

    Генераторы, которые обеспечивают выходной сигнал квадратной, прямоугольной или зубчатой ​​формы волны, называются несинусоидальными или релаксационными генераторами.Такие генераторы могут обеспечивать выходной сигнал на частотах от нуля до 20 МГц.

Факторы, влияющие на стабильность осциллятора

Стабильность частоты генератора — это мера его способности поддерживать постоянную частоту в течение длительного периода времени. Однако было обнаружено, что если генератор настроен на определенную частоту, он не поддерживает ее в течение длительного периода. Причина изменения частоты колебаний или факторы, влияющие на стабильность генератора, указаны ниже.

  1. Рабочая точка

    Рабочая точка активного устройства, то есть биполярного транзистора, выбирается таким образом, чтобы его работа была нелинейной, изменяла значения параметров устройства, что, в свою очередь, влияло на стабильность частоты генератора.

  2. Компоненты цепи

    Значения компонентов схемы (т.е. резистора, катушек индуктивности и конденсаторов) изменяются при изменении температуры. Поскольку такие изменения происходят медленно, они также вызывают дрейф частоты генератора.

  3. Напряжение питания

    Изменения напряжения питания постоянного тока, приложенного к активному устройству, смещают частоту генератора. Этой проблемы можно избежать, используя источник питания с высокой степенью стабилизации

    .
  4. Выходная нагрузка

    Изменение выходной нагрузки может вызвать изменение добротности контура резервуара, тем самым вызывая изменение выходной частоты генератора.

  5. Межэлементные емкости

    Любое изменение межэлементных емкостей транзистора (особенно емкости коллектор-эмиттер) вызывает изменения частоты генератора и, таким образом, влияет на стабильность частоты.

  6. Паразитная емкость

    Паразитные емкости также влияют на частую стабильность генератора. Влияние изменений межэлементных емкостей можно нейтрализовать, подключив к соответствующим элементам дополнительный конденсатор. Однако трудно избежать влияния паразитных емкостей.

Обзор схемы кварцевого генератора Работа с приложениями

Кварцевый генератор — это схема электронного генератора, которая используется для механического резонанса колеблющегося кристалла пьезоэлектрического материала.Он создаст электрический сигнал с заданной частотой. Эта частота обычно используется для отслеживания времени, например, наручные часы используются в цифровых интегральных схемах для обеспечения стабильного тактового сигнала, а также используются для стабилизации частот для радиопередатчиков и приемников. Кварцевый кристалл в основном используется в генераторах радиочастоты (RF). Кварцевый кристалл является наиболее распространенным типом пьезоэлектрических резонаторов, мы используем их в схемах генераторов, поэтому он стал известен как кварцевые генераторы.Кварцевые генераторы должны быть спроектированы так, чтобы обеспечивать нагрузочную емкость.

Существуют различные типы электронных схем генератора, которые используются, а именно: линейные генераторы — генератор Хартли, генератор фазового сдвига, генератор Армстронга, генератор Клаппа, генератор Колпитца. Осцилляторы релаксации — осциллятор Ройера, кольцевой осциллятор, мультивибратор и осциллятор, управляемый напряжением (ГУН). Вскоре мы собираемся подробно обсудить кварцевые генераторы, такие как работа и применение кварцевого генератора.


Что такое кристалл кварца?

Кристалл кварца проявляет очень важное свойство, известное как пьезоэлектрический эффект. Когда механическое давление прикладывается к граням кристалла, на кристалле появляется напряжение, пропорциональное механическому давлению. Это напряжение вызывает искажение кристалла. Величина искажения будет пропорциональна приложенному напряжению, а также переменному напряжению, приложенному к кристаллу, который он заставляет вибрировать с собственной частотой.

Схема на кристалле кварца

На рисунке ниже представлен электронный символ пьезоэлектрического кварцевого резонатора, а также кристалл кварца в электронном генераторе, который состоит из резистора, катушки индуктивности и конденсаторов.

Принципиальная схема кварцевого генератора

На приведенном выше рисунке показан новый кварцевый кварцевый генератор с частотой 20psc 16 МГц и один из видов кварцевых генераторов, который работает с частотой 16 МГц.

Кварцевый осциллятор

Обычно биполярные транзисторы или полевые транзисторы используются в схемах кварцевых генераторов.Это связано с тем, что операционные усилители могут использоваться в различных схемах низкочастотных генераторов, которые ниже 100 кГц, но операционные усилители не имеют полосы пропускания для работы. Это будет проблемой на более высоких частотах, которые соответствуют кристаллам с частотой выше 1 МГц.

Для решения этой проблемы разработан кварцевый генератор Колпитца. Он будет работать на более высоких частотах. В этом генераторе цепь LC-резервуара, обеспечивающая колебания обратной связи, заменена кристаллом кварца.Принципиальная схема кварцевого генератора

Работа кварцевого генератора

Схема кварцевого генератора обычно работает по принципу обратного пьезоэлектрического эффекта. Приложенное электрическое поле вызывает механическую деформацию некоторых материалов. Таким образом, он использует механический резонанс вибрирующего кристалла, который сделан из пьезоэлектрического материала для генерации электрического сигнала определенной частоты.

Обычно кварцевые генераторы очень стабильны, имеют хороший коэффициент качества (Q), они небольшие по размеру и экономичны.Следовательно, схемы кварцевых генераторов лучше по сравнению с другими резонаторами, такими как LC-схемы, камертоны. Обычно в микропроцессорах и микроконтроллерах мы используем кварцевый генератор 8 МГц.

Эквивалентная электрическая схема также описывает действие кристалла в кристалле. Просто посмотрите на эквивалентную электрическую схему, показанную выше. Основные компоненты, используемые в схеме, индуктивность L представляет собой массу кристалла, емкость C2 представляет собой податливость, а C1 используется для представления емкости, которая образуется из-за механической формовки кристалла, сопротивление R представляет собой трение внутренней структуры кристалла, Схема генератора кварцевого генератора Диаграмма состоит из двух резонансов, таких как последовательный и параллельный резонанс, т.е.е., две резонансные частоты.

Кристаллический осциллятор работает

Последовательный резонанс возникает, когда реактивное сопротивление, создаваемое емкостью C1, равно реактивному сопротивлению, создаваемому индуктивностью L., и противоположно ему. Значения fr и fp представляют собой последовательные и параллельные резонансные частоты соответственно, а значения «fr» и «fp» можно определить с помощью следующих уравнений, показанных на рисунке ниже.

Приведенная выше диаграмма описывает эквивалентную схему, график для резонансной частоты, формулы для резонансных частот.

Использование кварцевого генератора

В общем, мы знаем, что в конструкции микропроцессоров и микроконтроллеров кварцевые генераторы используются для обеспечения тактовых сигналов. Например, давайте рассмотрим микроконтроллер 8051, в этом конкретном контроллере схема внешнего кварцевого генератора будет работать с частотой 12 МГц, что является существенным, хотя этот микроконтроллер 8051 (в зависимости от модели) способен работать на частоте 40 МГц (макс.), Должен обеспечивать 12 МГц. в большинстве случаев, потому что для машинного цикла 8051 требуется 12 тактовых циклов, чтобы дать эффективную частоту тактов на 1 МГц (принимая тактовую частоту 12 МГц) до 3.33 МГц (при максимальной частоте 40 МГц). Этот конкретный кварцевый генератор, который имеет тактовую частоту от 1 МГц до 3,33 МГц, используется для генерации тактовых импульсов, необходимых для синхронизации всех внутренних операций.

Применение кварцевого генератора

Существуют различные применения кварцевого генератора в различных областях, и некоторые из приложений кварцевого генератора приведены ниже

Приложение кварцевого генератора Колпитца

Генератор Колпитса используется для генерации синусоидального выходного сигнала на очень высоких частотах .Этот осциллятор может использоваться в качестве датчиков различных типов, таких как датчики температуры. Благодаря устройству на ПАВ, которое мы используем в схеме Колпитса, он воспринимает сигналы непосредственно с его поверхности.

Кристаллический осциллятор Колпитца

Генераторы Колпитца применяются в основном там, где используется широкий диапазон частот. Также используется в условиях незатухающих и непрерывных колебаний. Используя некоторые устройства в схеме Колпитца, мы можем добиться большей температурной стабильности и высокой частоты.

Colpitts используется для развития мобильной связи и радиосвязи.

Применение кварцевого генератора Armstrong

Эта схема была популярна до 1940-х годов. Они широко используются в регенеративных радиоприемниках. На этом входе радиочастотный сигнал от антенны магнитно вводится в контур резервуара через дополнительную обмотку, и обратная связь уменьшается, чтобы регулировать усиление в контуре обратной связи. Наконец, он производит узкополосный радиочастотный фильтр и усилитель.В этом кварцевом генераторе резонансный контур LC заменен контурами обратной связи.

Кристаллический осциллятор Армстронга
В военной и авиакосмической промышленности

Кристаллические осцилляторы используются в военной и авиакосмической промышленности для создания эффективных систем связи. Система связи предназначена для использования в целях навигации и радиоэлектронной борьбы в системах наведения.

In Research and Measurement

Кварцевые генераторы используются в исследованиях и измерениях для астрономической навигации и слежения за космосом, в медицинских устройствах и в измерительные приборы.

Промышленное применение кварцевого генератора

Существует множество промышленных приложений кварцевого генератора. Они широко используются в компьютерах, контрольно-измерительных приборах, цифровых системах, в системах с фазовой автоподстройкой частоты, модемах, морских судах, телекоммуникациях, в датчиках, а также в дисководах.

Кристаллический осциллятор

также используется для управления двигателем, часами и бортовым компьютером, стереосистемой и в системах GPS. Это автомобильное приложение.

Кварцевые генераторы используются во многих потребительских товарах.Например, системы кабельного телевидения, видеокамеры, персональные компьютеры, игрушки и видеоигры, сотовые телефоны, радиосистемы. Это потребительское приложение Crystal Oscillator.

Это все о кристаллическом осцилляторе, его работе и приложениях. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию. Кроме того, с любыми вопросами относительно этой статьи или любой помощью в реализации проектов в области электротехники и электроники вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже.Вот вам вопрос, какова основная функция кварцевого генератора?

Фото:

Схема осциллятора Хартли: работа и ее применение

Генератор Хартли представляет собой схему электронного генератора, в которой частота колебаний определяется настроенной схемой, состоящей из конденсаторов и катушек индуктивности, то есть генератором LC. . Генератор Хартли был изобретен Хартли, когда он работал в исследовательской лаборатории Western Electric Company.Схема была изобретена в 1915 году американским инженером Ральфом Хартли. Отличительной особенностью генератора Хартли является то, что настроенная схема состоит из одного конденсатора, подключенного параллельно с двумя катушками индуктивности, включенными последовательно, или с одной ответвленной катушкой индуктивности, а сигнал обратной связи, необходимый для генерации, берется из центрального соединения двух катушек индуктивности.

Что такое осцилляторы Хартли?

Генератор Хартли представляет собой генераторы переменной частоты с индуктивной связью, в которых генератор может питаться последовательно или параллельно.Преимущество генераторов Хартли в том, что они имеют один настроечный конденсатор и одну катушку индуктивности с центральным отводом. Этот процессор упрощает построение схемы генератора Хартли.

Осциллятор
Хартли

Схема осциллятора Хартли и работа

Принципиальная схема генератора Хартли показана на рисунке ниже. NPN-транзистор, подключенный по схеме с общим эмиттером, работает как активное устройство в каскаде усилителя. R1 и R2 — резисторы смещения, а RFC — радиочастотный дроссель, который обеспечивает изоляцию между работой переменного и постоянного тока.

На высоких частотах значение реактивного сопротивления этого дросселя очень велико, поэтому его можно рассматривать как разомкнутую цепь. Реактивное сопротивление равно нулю для постоянного тока, поэтому не вызывает проблем для конденсаторов постоянного тока. CE — это конденсатор обхода эмиттера, а RE также является резистором смещения. CC1 и CC2 — это конденсаторы связи.

Схема осциллятора Хартли

Когда на схему подается постоянный ток (Vcc), ток коллектора начинает расти и начинается с зарядки конденсатора C.Когда конденсатор C полностью заряжен, он начинает разряжаться через L1 и L2 и снова начинает заряжаться.

Эта прямая и четвертая форма волны напряжения представляет собой синусоидальную волну, которая является небольшой и ведет с ее отрицательным изменением. В конечном итоге он вымрет, если его не усилить.

Теперь мы видим транзистор. Синусоидальная волна, генерируемая контуром резервуара, передается на базу транзистора через конденсатор CC1.

Так как транзистор сконфигурирован как общий эмиттер, он принимает входной сигнал от цепи резервуара и инвертирует его в стандартную синусоидальную волну с опережающим положительным изменением.

Таким образом, транзистор обеспечивает усиление наряду с инверсией для усиления и коррекции сигнала, генерируемого контуром резервуара. Взаимная индуктивность между L1 и L2 обеспечивает обратную связь энергии от схемы коллектор-эмиттер к схеме база-эмиттер.

Частота колебаний в этой цепи составляет

fo = 1 / (2π √ (Leq C))

Где Leq — полная индуктивность катушек в контуре резервуара, задается как

Leq = L1 + L2 + 2M

Для практической схемы, если L1 = L2 = L и взаимной индуктивностью пренебречь, то частота колебаний может быть упрощена как

fo = 1 / (2π √ (2 LC))

Схема осциллятора Хартли

с использованием операционного усилителя

Генератор Хартли может быть реализован с использованием операционного усилителя, и его типичная схема показана на рисунке ниже.Этот тип схемы упрощает регулировку усиления за счет использования сопротивления обратной связи и входного сопротивления.

В транзисторном генераторе Хартли усиление зависит от элементов схемы резервуара, таких как L1 и L2, тогда как в генераторе операционного усилителя коэффициент усиления меньше зависит от элементов цепи резервуара и, следовательно, обеспечивает большую стабильность частоты.

Генератор Хартли с использованием операционного усилителя

Работа этой схемы аналогична транзисторной версии генератора Хартли. Синусоидальная волна генерируется цепью обратной связи, соединенной с секцией операционного усилителя.Затем эта волна стабилизируется и инвертируется усилителем.

Частота генератора изменяется с помощью переменного конденсатора в контуре резервуара, сохраняя коэффициент обратной связи и амплитуду выходного сигнала постоянными во всем диапазоне частот. Частота колебаний для этого типа осциллятора такая же, как у обсуждаемого выше осциллятора, и задается как

fo = 1 / (2π √ (Leq C))

Где: Leq = L1 + L2 + 2M
Или
Leq = L1 + L2

Чтобы генерировать колебания в этой цепи, коэффициент усиления усилителя должен и должен быть выбран больше или, по крайней мере, равным отношению двух индуктивностей.

Av = L1 / L2

Если существует взаимная индуктивность между L1 и L2 из-за общего сердечника этих двух катушек, то коэффициент усиления становится равным

Av = (L1 + M) / (L2 + M)

Преимущества

  • Вместо двух отдельных катушек L1 и L2 можно использовать одну катушку с неизолированным проводом, а катушку заземлить в любой желаемой точке вместе с ней.
  • Используя переменный конденсатор или сделав сердечник подвижным (изменяя индуктивность), можно изменять частоту колебаний.
  • Требуется очень мало компонентов, включая либо две фиксированные катушки индуктивности, либо катушку с ответвлениями.
  • Амплитуда выходного сигнала остается постоянной во всем рабочем диапазоне частот.

Недостатки

  • Его нельзя использовать в качестве низкочастотного генератора, так как индуктивности становятся большими, а размер индукторов становится больше.
  • Содержание гармоник на выходе этого генератора очень велико и, следовательно, он не подходит для приложений, требующих чистой синусоидальной волны.

Приложения

  • Генератор Хартли должен генерировать синусоидальную волну с желаемой частотой
  • Генераторы Хартли в основном используются в качестве радиоприемников. Также обратите внимание, что благодаря широкому диапазону частот, это самый популярный генератор
  • Генератор Хартли подходит для колебаний в радиочастотном диапазоне, до 30 МГц

Таким образом, это все о генераторе Хартли теория схем работы и приложения.Мы надеемся, что вы лучше понимаете эту концепцию. Кроме того, любые сомнения относительно этой концепции или проектов в области электрики и электроники, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже. Вот вам вопрос, какова основная функция осциллятора Хартли?

Фото:

  • Расчет схемы осциллятора Хартли
  • Схема осциллятора Хартли
  • с использованием операционного усилителя nptel

Основы осциллятора

Введение

Эти модули генераторов в Learnabout Electronics описывают, сколько обычно используемых генераторов работает с использованием дискретных компонентов и в форме интегральных схем.Также узнайте, как самостоятельно создавать и тестировать схемы генераторов.

Что такое осциллятор

Генератор обеспечивает источник повторяющегося сигнала переменного тока на своих выходных клеммах без необходимости ввода какого-либо входа (кроме источника постоянного тока). Сигнал, генерируемый генератором, обычно имеет постоянную амплитуду.

Форма и амплитуда волны определяются конструкцией схемы генератора и выбором значений компонентов.

Частота выходной волны может быть постоянной или переменной, в зависимости от конструкции генератора.

Типы осцилляторов

Рис. 1.0.1 Генератор
(источник переменного тока)
Обозначение цепи

Осцилляторы можно классифицировать по типу генерируемого ими сигнала.

  • ОСЦИЛЛЯТОРЫ СИНУСОВОЙ ВОЛНЫ выдают синусоидальный сигнал на выходе.
  • РЕЛАКСАЦИОННЫЕ ОСЦИЛЛЯТОРЫ и НАСТОЛЬНЫЕ МУЛЬТИВИБРАТОРЫ производят прямоугольные волны и прямоугольные импульсы.
  • ПОВОРОТНЫЕ ОСЦИЛЛЯТОРЫ производят пилообразные волны.

Генераторы синусоидальной волны также можно классифицировать по частоте или типу управления частотой, которое они используют.Генераторы RF (радиочастоты), работающие на частотах выше примерно 30-50 кГц, используют LC (индукторы и конденсаторы) или кристаллы для управления своей частотой. Их также можно классифицировать как генераторы HF, VHF и UHF, в зависимости от их частоты.

Генераторы

LF (низкочастотные) обычно используются для генерации частот ниже 30 кГц и обычно представляют собой RC-генераторы, поскольку они используют резисторы и конденсаторы для управления их частотой.

Генераторы прямоугольной формы, такие как релаксационные и нестабильные генераторы, могут использоваться на любой частоте от менее 1 Гц до нескольких ГГц и очень часто реализуются в виде интегральных схем.

Синусоидальные генераторы.

Рис. 1.0.2 Сети управления частотой

Эти схемы идеально производят чистый синусоидальный сигнал на выходе с постоянной амплитудой и стабильной частотой. Тип используемой цепи зависит от ряда факторов, включая требуемую частоту. Конструкции, основанные на LC-резонансных контурах или кристаллических резонаторах, используются для ультразвуковых и радиочастотных приложений, но на звуковых и очень низких частотах физический размер резонирующих компонентов L и C был бы слишком большим, чтобы быть практичным.

По этой причине комбинация R и C используется для управления частотой. Условные обозначения схем, используемых для этих сетей управления частотой, показаны на рис. 1.0.2

.

Генераторы LC

Катушки индуктивности и конденсаторы объединены в резонансный контур, который создает очень хорошую форму синусоидальной волны и имеет довольно хорошую стабильность частоты. То есть частота не сильно меняется при изменении напряжения питания постоянного тока или температуры окружающей среды, но относительно просто, используя переменные индуктивности или конденсаторы, создать генератор с переменной частотой (настраиваемый).Генераторы LC широко используются для генерации и приема радиочастотных сигналов, когда требуется переменная частота.

Генераторы RC (или CR)

На низких частотах, таких как аудио, значения L и C, необходимые для создания резонирующего контура, были бы слишком большими и громоздкими, чтобы их можно было использовать на практике. Поэтому резисторы и конденсаторы используются в комбинациях типа RC-фильтров для генерации синусоидальных волн на этих частотах, однако сложнее получить чистую форму синусоидальной волны, используя R и C.Эти низкочастотные генераторы синусоидальной волны используются во многих звуковых приложениях, и используются различные конструкции с фиксированной или переменной частотой.

кварцевые генераторы

На радиочастотах и ​​выше, когда требуется фиксированная частота с очень высокой степенью стабильности частоты, компонент, определяющий частоту колебаний, обычно представляет собой кварцевый кристалл, который при воздействии переменного напряжения колеблется с очень точной частотой. Частота зависит от физических размеров кристалла, поэтому, когда кристалл изготовлен с определенными размерами, частота колебаний становится чрезвычайно точной.Конструкции кварцевых генераторов могут генерировать как синусоидальные, так и прямоугольные сигналы, и не только используются для генерации очень точных несущих частот в радиопередатчиках, они также составляют основу очень точных элементов синхронизации в часах, часах и компьютерных системах.

Осцилляторы релаксации

Эти генераторы работают по другому принципу, чем генераторы синусоидальной волны. Они генерируют прямоугольный или импульсный выходной сигнал и обычно используют два усилителя и схему управления частотой, которая просто создает временную задержку между двумя действиями.Два усилителя работают в режиме переключения, попеременно включаясь или полностью выключаясь, и поскольку время, в течение которого фактически переключаются транзисторы, длится лишь очень небольшую часть каждого цикла волны, остальную часть цикла они » расслабиться », в то время как временная сеть производит остаток волны. Альтернативное название этого типа осцилляторов — «нестабильный мультивибратор», это название происходит от того факта, что они содержат более одного колебательного элемента. В основном есть два осциллятора, т.е.е. «вибраторы», каждый из которых передает часть своего сигнала обратно на другой, и выходной сигнал постоянно меняется с высокого на низкий и обратно, то есть он не имеет стабильного состояния, следовательно, он нестабилен. Осцилляторы релаксации могут быть построены с использованием нескольких различных конструкций и могут работать на разных частотах. Astables обычно можно выбрать для таких задач, как создание высокочастотных цифровых сигналов. Они также используются для выработки относительно низкочастотных сигналов включения-выключения для мигающих огней.

Генераторы развертки

Форма волны развертки — это другое название пилообразной волны.Это имеет линейно изменяющееся (например, возрастающее) напряжение в течение почти всего одного цикла с последующим быстрым возвратом к исходному значению волны. Эта форма волны полезна для изменения (качания) частоты генератора, управляемого напряжением, который является генератором, частота которого может изменяться в заданном диапазоне за счет подачи на его управляющий вход переменного напряжения «развертки». Генераторы развертки часто состоят из пилообразного генератора, который в основном представляет собой конденсатор, заряжаемый постоянным значением тока.Поддержание постоянного зарядного тока при увеличении зарядного напряжения заставляет конденсатор заряжаться линейно, а не по нормальной экспоненциальной кривой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *