Схема простого зарядного устройства для акб: Зарядное устройство для автомобильного аккумулятора своими руками: схемы, варианты, порядок изготовления

Содержание

Схемы зарядных устройств для аккумуляторов и батарей (Страница 3)


Автоматическое импульсное зарядное устройство для аккумуляторов 12В

Предлагаемое устройство позволяет перед зарядкой разрядить аккумулятор до напряжения 10,5 В током равным 1/20 его ёмкости, а затем зарядно-разрядным циклом довести напряжение на батарее до 14,2 — 14,5 В. При соотношении зарядного и разрядного токов 10:1 и длительности импульсов заряд-разряд — 3:1…….

2 4816 0

Приставка-регулятор к зарядному устройству аккумулятора

Описываемая ниже приставка предназначена для работы совместно с зарядными устройствами, обеспечивающими необходимый зарядный ток и имеющими на выходе пульсирующее зарядное напряжение. Подойдут, например, выпускаемые промышленностью устройства УЗ-А-6/12, УЗР-П-12-6,3, а также любительские. …

0 4612 0

Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач

Как показывает практика, для профилактических работ с аккумуляторами ёмкостью до 55 Ач вполне достаточно иметь зарядное устройство, обеспечивающее выходной ток до 4 А.

Несколько меньший зарядный ток, в сравнении с номинальным током десятичасовой зарядки, нетрудно компенсировать увеличением времени…

0 5031 0

Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А)

Описываемое маломощное сетевое зарядное устройство служит для зарядки автомобильной аккумуляторной батареи небольшим током в 1,5 А. Конструктивно оно рассчитано на установку в транспортное средство с подключением к системе электрооборудования. Таким образом, не нужно каждый раз развертывать…

4 4754 0

Приставка-контроллер к зарядному устройству аккумулятора 12В

Приставка позволяет регулировать верхний пороговый уровень напряжения в пределах 14 — 16 В, а нижний — 10-13В. Потребляемая приставкой мощность не превышает 8 Вт. Режим работы — длительный. Погрешность установки выбранных порогов определяется, в основном, точностью градуировки шкал регуляторов…….

0 3327 0

Автоматическое зарядное устройство + режим десульфатации для аккумулятора

Устройство имеет узлы управления и контроля заряда и режим десульфатации батареи путем её зарядки током с разрядной составляющей.

Несмотря на все усложнения, зарядное устройство осталось довольно простым по схеме, лёгким в налаживании и удобным в эксплуатации. Узел контроля следит за напряжением…

8 6814 2

Устройство контроля заряда и разряда аккумулятора 12В

Для автоматического контроля за процессами зарядки и разрядки батареи предназначено устройство, описанное ниже. Рассмотрим его работу в режиме зарядки. К зажимам X1 и Х2 подключают любое зарядное устройство, а к зажимам Х3 и Х4 — аккумуляторную батарею. Переключатель SA1 устанавливают в…

0 4883 0

Автоматическое зарядное устройство для кислотных аккумуляторов

Описываемый ниже автомат предназначен для обслуживания двенадцативольтовых кислотных аккумуляторных батарей. Он может быть использован и как мощный источник переменного напряжения 12 В для питания вулканизаторов, переносных ламп и другого оборудования. Основные характеристики автомата Ток…

1 5424 0

Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач

Описываемый прибор предназначен для обслуживания кислотных аккумуляторных батарей с номинальным напряжением 12 В и ёмкостью от 40 до 100 Ач. Прибор питается от сети переменного тока напряжением 220 В и потребляет не более 25 Вт при отсутствии зарядки и не более 180 Вт при максимальном зарядном…

0 5371 0

Автоматическое зарядное и восстанавливающее устройство (0-10А)

Описываемое зарядное устройство позволяет восстановить сульфатированные батареи в автоматическом режиме, или проводить формирование и профилактическую обработку исправных. Зарядный ток отключается автоматически по достижении напряжения на зажимах аккумуляторной батареи 14,1 — 14,2 В. Сравнение…

3 5555 8

 1  2 3 4  5  6  7  … 8 

Радиодетали, электронные блоки и игрушки из китая:

Зардные устройства — Самоделкин — сделай сам своими руками

Главная » Зардные устройства



Раздел сайта «электроника схемы

» содержит большое количество схем приборов, собранных на возможных открытых источниках интернета. Приборы, которые непременно будут вам полезны, приборы на все случаи жизни и для каждого, их можно сделать своими руками. В инструкциях по сборке подробно описан монтаж, приведены схемы, фотографии. Прочитав инструкции, вам будет намного проще собирать те или иные приборы. В этом разделе вы найдете схемы раций, блоков питания, преобразователей напряжения 12в 220в, инверторы,
автомобильны
, радиотехнические, и другие полезные схемы. Все что вам потребуется для сбора устройств — это паяльник и немного терпения.



      

Предлагаю несложное автоматическое зарядное устройство для аккумуляторных батарей, в схеме которого использована идея, опубликованная в сборнике «В помощь радиолюбителю» (ВРЛ) N100, c.

91-94. Зарядка батарей прекращается при достижении на клеммах напряжения выше 12,5 В.

Преимуществом устройства является возможность автоматического … Читать дальше »



 Просмотров: [6957] | Рейтинг: 3.4/8

       Рассмотрим устройство для зарядки маломощных аккумуляторных батарей на 9 вольт, типа 15F8K. Схема позволяет заряжать батарею постоянным током около 12 мА, а по окончании — автоматически отключается.

   В ЗУ есть защита от короткого замыкания в нагрузке. Устройство представляет собой простейший источник тока, включает дополнительно индикатор опорного напряжения на светодиоде и автоматическую схе . .. Читать дальше »



 Просмотров: [8694] | Рейтинг: 5.0/1

      

 

мы рассмотрели схему простого автономного зарядного для мобильной техники, работающего по принципу простого стабилизатора с понижением напряжения батарей. На этот раз попробуем собрать чуть более сложное, но более удобное ЗУ. Встроенные в миниатюрные мобильные мультимедийные устройства аккумуляторы обычно имеют небольшую ёмкость, и, как правило, рассчитаны на воспроизведение аудиозаписей в течение не более нескольких десятков часов при выключенном дисплее или на … Читать дальше »



 Просмотров: [7829] | Рейтинг: 5. 0/3

      

 

Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулят … Читать дальше »



 Просмотров: [17810] | Рейтинг: 4.1/22

      

TOPы прекрасно подходят для простых гальванически развязанных преобразователей с питанием от 18 вольт и выше. Они при э … Читать дальше »



 Просмотров: [6620] | Рейтинг: 5.0/1

      

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на об … Читать дальше »



 Просмотров: [10078] | Рейтинг: 4.3/3

      

Доброе время суток. Сегодня речь пойдет об ЗУ для АКБ. ( автоматическом зарядном устройстве для свинцово-кислотных аккумуляторных батарей) После поездки по городу на своей машине, я поставил ее в гараж и забыл выключить подфарники, и только на третье сутки когда нужно было срочно  ехать по делам, я обратил внимание что ак … Читать дальше »



 Просмотров: [9453] | Рейтинг: 3.9/7

      

Обратите внимание, приставка включается между зарядным устройством и аккумулятором. При этом провода от приставки к аккумулятору должны быть не тоньше проводов от зарядного устройства к приставке и желательно короче. Иначе пульсации зарядного устройства будут вмешиваться в нормальную работу приставки.

… Читать дальше »



 Просмотров: [8767] | Рейтинг: 3.0/2

      

 

Простое зарядное устройство с регулятором зарядного тока можно собрать по схеме приведенной на рис.1. Резистором R3 регулируют ток зарядки аккумуляторной батареи. Светодиод индицирует включение п … Читать дальше »



 Просмотров: [9831] | Рейтинг: 3.2/4

       У каждого автолюбителя есть зарядное устройство для АКБ 12В. Все эти старые зарядки с различным успехом работают и выполняют свои функции, но есть у них общий недостаток — слишком большие габариты и вес. Это не удивительно, ведь один только силовой трансформатор на 200 ватт может весить до … Читать дальше »


 Просмотров: [15779] | Рейтинг: 3.6/20

Схемы зарядных устройств и выпрямителей для аккумуляторов

Наиболее выгодными и удобными источниками питания карманных приемников являются герметизированные никель-кадмиевые аккумуляторы, которые отличаются высокой удельной емкостью, большой механической прочностью, малым внутренним сопротивлением и, самое главное, возможностью многократного их применения после соответствующей зарядки. Они выдерживают большое число циклов заряд-разрядов, что обеспечивает большой срок службы.

Заряжать аккумуляторы можно от любого источника постоянного тока, обеспечивающего нормальный зарядный ток. Чтобы не испортить аккумуляторы при заряде, необходимо строго соблюдать полярность включения и не превышать зарядный ток, указанный в таблице, в противном случае отдельные аккумуляторные элементы разрушатся (могут взорваться). Не рекомендуется также разряжать аккумулятор до напряжения ниже 1 в (на элемент).

Таблица

Схема простого зарядного устройства

Простейшая схема выпрямительного устройства для зарядки аккумуляторной батареи от сети переменного тока приведена на рис. 1. Как видно из рисунка, в качестве вентиля использован диод Д1, который пропускает ток только в прямом направлении.

При подключении к выпрямителю переменного напряжения через диод, а следовательно, и через аккумулятор Ак будут протекать отдельные импульсы электрического тока одного направления. Такой ток называется пульсирующим.

Рис. 1. Схема бестрансформаторного зарядного устройства для аккумуляторов 7Д-0,1.

Резисторы R1, R2 служат для ограничения величины зарядного тока до требуемой величины. На рис. 1 приведены сопротивления резисторов для зарядки аккумуляторов типа 7Д-0,1.

Переключатель В1 позволяет включать выпрямитель для работы от сети переменного тока напряжением 127 или 220 в. Выпрямители, предназначенные для зарядки аккумуляторов, называют зарядными устройствами (ЗУ).

Недостатком приведенной схемы является наличие гасящих резисторов, на которых бесполезно рассеивается мощность. Нагрев резисторов приводит к повышению температуры корпуса, в котором обычно монтируется ЗУ, а это резко снижает величину допустимого обратного напряжения диода и может привести к выходу его из строя.

Зарядное устройство с конденсатором

Наибольшее распространение находят зарядные устройства, в которых в качестве ограничительного сопротивления используется безваттное сопротивление —  конденсатор постоянной емкости (рис 2).

Работает такое ЗУ следующим образом. Во время одного полупериода переменного напряжения, когда на гнезде 1 питающей сети получается положительная полярность, а на гнезде 2 отрицательная, через диод Д1 проходит ток, заряжающий конденсатор С1.

Рис. 2. Схема бестрансформаторного зарядного устройства с конденсатором для аккумуляторов.

При этом правая обкладка конденсатора С1 оказывается заряженной положительно. В следующий полупериод, когда полярность напряжения на гнездах 1— 2 изменится, происходит перезарядка конденсатора С1 и через диод Д2 и аккумулятор пройдет импульс тока, величина которого зависит (при данных напряжениях сети и аккумулятора) от емкости конденсатора С1.

Таким образом, изменяя емкость этого конденсатора, можно изменять величину зарядного тока. Рабочее напряжение конденсатора С1 должно быть не менее 350 и 600 в для сети 127 и 220 в соответственно.

Конденсатор С1 должен быть обязательно бумажным. Необходимую емкость обычно получают путем параллельного соединения нескольких конденсаторов с различными номиналами.

Зарядное устройство с диодным мостом

На рис. 3 представлен другой вариант ЗУ, которое используется для зарядки аккумулятора типа 7Д-0.1 в приемнике «Селга». В этом устройстве выпрямительная часть собрана по обычной мостовой схеме па диодах Д1— Д4.

Для получения необходимого зарядного тока используются конденсаторы С1, С2 типа МБМ, сравнительно небольшой емкости, что является преимуществом этой схемы по сравнению с предыдущей.

Рис. 3. Другой вариант ЗУ, которое используется для зарядки аккумулятора типа 7Д-0,1.

При напряжении сети 127 в, переключателем В1 оба конденсатора соединяют параллельно. Резистор R1 ограничивает максимальную величину импульса тока.

Резистор R2 служит для разрядки конденсаторов после отключения ЗУ от сети. (R2 — 470 ком).

Выпрямитель для зарядки аккумуляторов

Для зарядки аккумуляторов напряжением 2,5 или 3,75 а можно воспользоваться схемой ЗУ, приведенной на рис. 4. Подобным устройством снабжены приемники «Космос».

По этой же схеме смонтированы и ЗУ приемников «Рубин», «Сюрприз» и др. Сопротивление резисторов R3, R2 выбирают равными: 620 ом — для зарядки аккумуляторов типа 2Д— 0,1. 3 ком — для аккумуляторов типа 2Д— 0,06 и 1,6 ком — для аккумуляторов типа ЗД— 0,1.

Рис. 4. Схема для зарядки аккумуляторов напряжением 2,5 или 3,75.

Выпрямитель собран по двухполупериодной схеме на диодах Д1, Д2 Функции гасящих резисторов выполняют конденсаторы С1, С2, соединенные последовательно.

При работе ЗУ от сети напряжением 127 а, конденсатор С1 замыкается переключателем В1. Такая схема переключения позволяет использовать конденсаторы с меньшим рабочим напряжением.

Резисторы R2, R3 и R1 имеют то же назначение, что и соответствующие резисторы R1 и R2 в схеме рис. 3 .

Зарядно-питающий блок

На рис. 5 приведена схема зарядно-питающего блока, основной частью которого является выпрямитель со стабилизацией выходного напряжения. С помощью ручного регулятора выходное напряжение может быть установлено в пределах 1— 14 а при токе нагрузки до 300 ма.

Выпрямитель собран по двухполупериодной мостовой схеме на диодах Д1— Д4. Выпрямленное напряжение поступает на вход транзисторного стабилизатора, смонтированного на составном транзисторе Т1. Т2 и стабилитроне Д5, создающем опорное напряжение на базе транзистора Т1 Напряжение на выходе такого стабилизатора (гнездах Гн1, Гн2) близко к опорному, поэтому если его изменять с помощью потенциометра R1 будет изменяться и напряжение на нагрузке.

Подобная схема стабилизатора позволяет получить стабилизированное напряжение с малым внутренним сопротивлением источника питания и с малым коэффициентом пульсаций, что обеспечивает высокое качество звучания транзисторного приемника при питании его от сети.

При использовании блока для зарядки аккумуляторов переключатель В1 устанавливается в положение 1. Аккумулятор присоединяют к гнездам Гн3, Гн4. Сопротивление резистора R4 зависит от типа аккумулятора, используемого в приемнике, и подбирается опытным путем.

Чтобы ослабить помехи, проникающие из сети в цепи приемника, между обмотками / и // трансформатора Тр1 имеется электростатический экран, а каждая из секций Іа, 1б заблокирована конденсаторами С1, С2.

Трансформатор Тр1 выполнен на сердечнике УШ16, толщина набора 32 мм. Обмотка /а содержит 1270 витков провода ПЭВ-1 0,15; обмотка 1б — 930 витков провода ПЭВ-1, 0,12.

Электростатический экран имеет один слой провода ПЭВ-1 0,12. Обмотка П содержит 160—170 витков провода ПЭВ-1 0,47. В качестве изоляционных прокладок между обмотками и электростатическим экраном используют тонкую вощенную бумагу (1— 2 слоя).

Практически при изготовлении такого блока можно использовать любой трансформатор питания, у которого оставляют только сетевую обмотку, а число витков обмотки накала увеличивают в 2,5— 3 раза.

В блоке можно использовать транзисторы П13—П16, МП39—МП42, МП104— МП 106 (Т1), П201—П203, П213, П214 (Т2), диоды Д7, Д226, конденсаторы К50— 6, резисторы МЛТ, СП и др.

Рис. 5. Схема зарядно-питающего блока.

Конструктивное оформление устройства может быть самым различным. Если все детали исправны и при монтаже не допущено ошибок, оно сразу начинает работать. После включения в сеть, переключатель В1 устанавливают в положение 2 и измеряют напряжение на гнездах Гн1, Гн2.

При вращении ручки потенциометра R1 по часовой стрелке выходное напряжение должно плавно изменяться от нуля до значения, соответствующего напряжению стабилизации стабилитрона.

Затем включают миллиамперметр последовательно со стабилитроном (в точку «а») и подбирают сопротивление резистора R2 так, чтобы при отсутствии нагрузки ток через стабилитрон был равен .15— 20 ма. На этом налаживание заканчивается.

Для удобства работы шкалу потенциометра R1 желательно проградуировать в вольтах.

Подобный зарядно-питающий блок представляет интерес для радиолюбителей, занимающихся конструированием различной транзисторной аппаратуры В том случае, если от блока требуется получить фиксированное напряжение 6, 9, 12 а, нужно потенциометр R1 из схемы исключить и базу транзистора Т1 присоединить к верхнему (по схеме) концу резистора R2.

Для получения напряжения порядка 6 а надо использовать стабилитрон типа КС156А, 9 в — Д809, 12 а— Д813. После установки нужного стабилитрона, резистором R2 устанавливают необходимый ток стабилизации: порядка 20— 25 ма для стабилитрона Д809, 14— 16 ма для стабилитрона Д813 н 45— 50 ма для стабилитрона КС156А.

Источник: С. Л. Матлин — Радиосхемы (пособие для радиокружков), 1974г.

Зарядные устройства

Доброе время суток. Сегодня речь пойдет об ЗУ для АКБ. ( автоматическом зарядном устройстве для свинцово-кислотных аккумуляторных батарей) После поездки по городу на своей машине, я поставил ее в гараж и забыл выключить подфарники, и только на третье сутки когда нужно было срочно  ехать по делам, я обратил внимание что аккумулятор полностью мертв. И тогда задумался об ЗУ, и тут наткнулся на данную схему. Первоисточник и автор схемы указан в низу статьи. 


В этой статье речь пойдет о том, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.


Описание
Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A.
Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ — его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.

1. Режим зарядки — меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
— первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
— второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
— третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С — ёмкость батареи в Ач.
— четвёртый этап — «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это — четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.

2. Режим тренировки (десульфатации) — меню «Тренировка». Здесь осуществляется тренировочный цикл: 
10 секунд — разряд током 0,01С, 5 секунд — заряд током 0. 1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее — обычный заряд.

3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.

4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С — 0. 05С (ток 10-ти или 20-ти часового разряда).
Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.

Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля — П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.

Значения настроек:

1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию — 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.

Выбор и переделка блока питания.
В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это — практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка».

Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме — значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.

Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3. 

На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом — чуть позже.
Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

Схема и принцип работы.

Схема блока управления показана на рис.4.

Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине.
Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1,EP1 ,R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Детали и конструкция.

Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.
Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5%. Это очень важно! От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.
Транзисторы T1 и Т2 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В. 
Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2, Т1 иТ2 через изолирующие прокладки от радиатора размещаются на одном радиаторе площадью 40 квадратных сантиметров. Зумер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
Жидкокристаллический индикатор – Wh2602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр.

Программа
Управляющая программа содержится в папке «Программа» Конфигурационные биты (фузы) устанавливаются следующие:
Запрограммированы (установлены в 0 это значит там нужно поставить галочки):
CKSEL0
CKSEL1
CKSEL3
SPIEN
SUT0
BODEN
BODLEVEL
BOOTSZ0
BOOTSZ1

все остальные — незапрограммированы (установлены в 1).

Наладка.
Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично — калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.
Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком — либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Весь материал одним архивом можно скачать здесь1.87 MB


А вот Фото что получилось у меня.

Вместо лампочки которая стоит в качестве нагрузки можно пременить не сложную схему электроной нагрузки которая отлично работает!

Автор данной разработки: Sergey212

 

Печатная плата в lay 

Обсудить на форуме.

Источник: http://electronics-lab.ru 

⚡️Простое зарядное устройство для АКБ

Зарядные устройства

На чтение 2 мин. Опубликовано Обновлено

Простое автомобильное зарядное устройство для акб свинцово-кислотных аккумуляторов изготовлено всего на одной микросхеме LM317 и одном транзисторе BC140, плюс несколько резисторов и конденсаторов. На сайте представлена схема источника постоянного тока, роль по ограничению тока выполняют транзистор Q1 и резисторы R1 и R4.

При подключении разряженного аккумулятора к схеме, ток в цепи будет максимальный, что вызовет падения напряжения на резисторе R1, тем самым откроется транзистор Q1 и вывод 1 микросхемы LM317 (Российский аналог КР142ЕН12) «соединиться» с минусовым проводом. На выходе микросхемы вывод 2 выходное напряжение упадет до 1,25В.

Поморе зарядки аккумулятора напряжения на нём будет расти на резисторе R1 падения напряжения будет падать, транзистор Q1 начнёт закрываться и вывод 1 микросхемы «отключиться» от минусового провода. На выходе LM317 вывод 2 напряжение будет увеличиваться до полной зарядки аккумулятора.

Переменный резистор P1 корректирует работу микросхемы. Радиатор на LM317 подбирался экспериментально, чтобы микросхема не перегревалась, можно применить теплоотвод маленьких размеров и установить обдув с помощью кулера. В самой схеме есть защита от короткого замыкания, но рассчитывать на неё не стоит, лучше установить дополнительную схему защиты от КЗ.

Увеличение тока в зарядном устройстве до 10А

 

Для увеличения тока до 10A устанавливается дополнительный транзистор как показана на рис.2.

Показана простая схема стабилизатора постоянного тока. Зарядное устройство для акб состоит из резистора R4, которым регулируется выходное напряжение от 1,8 до 32В.

Схема зарядного устройства


Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В. Зарядное устройство с регулировкой тока зарядки. Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора. Схема зарядного устройства для аккумулятора с самоотключением после зарядки. Для заряда аккумуляторов емкостью 45 ампер.Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

  • Блок питания.
  • Стабилизатор тока.
  • Регулятор силы тока заряда. Может быть ручным или автоматическим.
  • Индикатор уровня тока и (или) напряжения заряда.
  • Опционально – контроль заряда с автоматическим отключением.

Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

Схема простого зарядного устройства для автомобильного аккумулятора

Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.

Классика – резисторный зарядник

Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.

Ток заряда регулируется реостатом.

Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно. Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

Зарядное устройство своими руками, подробности, схемы – видео

Гасящий конденсатор

Принцип работы изображен на схеме. Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

Популярное:  Преобразователь с 12 на 220: как собрать в домашних условиях

Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении. Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.

Схема самодельного зарядного устройства для аккумулятора на тринисторе

Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике. В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

Популярное:  Что измеряет вольтметр? Вопрос понятен всем. Или нет?

Схема импульсного зарядного устройства для автомобильного аккумулятора

Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля. Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.

При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса. В качестве донора может выступить блок питания от системника ПК.

Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

Вывод:

Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14. 4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

Схема автомобильного зарядного устройства

Качественно работающий автомобильный аккумулятор трудно переоценить. Однако, со временем он становится менее емким и способен быстрее разряжаться. На этот процесс оказывают влияние и другие факторы, связанные с условиями эксплуатации. Чтобы не попадать в затруднительную ситуацию, стоит иметь дома или в гараже простое зарядное устройство своими руками.

В большинстве случаев принципиальная схема зарядного устройства самодельной конструкции будет относительно несложной. Собрать такой аппарат удастся из подручных недорогих компонентов. При этом электрический агрегат поможет быстро запустить легковушку. Предпочтительней обзавестись пуско-зарядной аппаратурой, но она требует немного больших мощностей от используемых элементов.

Базовые полезные знания о зарядке батарей

Применять электрическую подпитку для АКБ нужно в тех ситуациях, когда замер на клеммах электроприбора демонстрирует уровень ниже 11,2 В для большинства легковых авто. Хотя двигатель способен запускаться при таком уровне вольтажа, но внутри начинаются нежелательные химические процессы. Происходит сульфатация и разрушение пластин. Емкость заметно снижается.

Важно знать, что во время длительной зимовки или стоянки авто в течение нескольких недель уровень заряда падает, поэтому рекомендуется контролировать данное значение мультиметром, а при необходимости в ход пускать сделанное своими руками ЗУ для автомобильных аккумуляторов либо купленное в автомагазине.

Для подпитки АКБ чаще всего применяются устройства двух типов:

  • выдающее на «крокодилах» напряжение постоянного типа;
  • системы с импульсным типом работы.

При зарядке от устройства постоянного тока подбирается значение тока заряда арифметически соответствующее 1/10 от установленного производителем значения емкости. Когда имеется в наличии батарея на 60 А*ч, то ампераж отдачи должен быть на уровне 6 А. Стоит учитывать исследования, согласно которым умеренное снижение количества ампер на отдачи способствует уменьшению процессов сульфатации.

Если же пластины частично стали покрываться нежелательным сульфатным налетом, то опытные автомобилисты задействуют операции по десульфатации. Применяемая методика заключается в следующем:

  • аккумулятор разряжаем до появления на мультиметре 3—5 В после замера, используя для операции большие токи и малую длительность их воздействия, например, прокручивание стартером;
  • на следующей стадии медленно полностью заряжаем блок от одноамперного источника;
  • повторяются предыдущие операции на протяжении 7—10 циклов.

Подобный принцип работы задействован в заводских зарядных десульфатирующих устройствах импульсного типа. За один цикл на клеммы АКБ поступает в течение нескольких миллисекунд непродолжительный во времени импульс обратной полярности, сменяющийся прямой полярностью.

Необходимо контролировать состояние устройства и не допускать перезаряда батареи. При достижении значений 12,8—13,2 В на контактах стоит отключать систему от подпитки. В противном случае возникнет явление кипения, повышение концентрации и плотности залитого внутрь электролита и последующее разрушение пластин. Для предотвращения негативных явлений заводская принципиальная электрическая схема зарядного устройства наделена платами электронного контроля и автоматического отключения.

Читайте также:  Как проверить аккумулятор без нагрузочной вилки

Какой бывает схема автомобильного зарядного устройства

В гаражных условиях можно воспользоваться несколькими типами зарядок для автомобиля. Они могут быть как максимально примитивными, состоящими из нескольких элементов, так и довольно громоздкими многофункциональными стационарными устройствами. Обычно автовладельцы идут по пути упрощения.

Простейшие схемы

Если в наличии нет заводского зарядного, а реанимировать АКБ необходимо без задержки, то подойдет наиболее простой вариант. В нем участвуют ограничительное сопротивление в виде нагрузки и источник питания, способный генерировать 12—25 В.

Собрать самодельное зарядное устройство получится даже «на коленках», если имеется в доме зарядка для ноутбука. Обычно они выдают около 19 В и 2 А. При сборке стоит учитывать полярность:

  • наружный контакт – минус;
  • внутренний контакт – плюс.

Важно! Обязательно должно быть установлено ограничительное сопротивление, в качестве которого нередко используют лампочку из салона.

Вывинчивать лампу из поворотник или даже «стопов» не стоит, так как они станут перегрузом для схемы. Цепь состоит из таких соединенных между собой элементов: отрицательная клемма блока ноутбука – лампа – отрицательная клемма заряжаемой батареи – положительная клемма заряжаемой батареи – плюс блока ноутбука. Достаточно полутора-двух часов для возвращения АКБ к жизни на столько, что от него можно будет запустить мотор.

При отсутствии ноутбуков или нетбуков рекомендуем отправиться заранее на радиорынок за мощным диодом, рассчитанным на обратное напряжение более 1000 В и ток выше 3 А. Небольшие габариты детали позволяют возить его с собой в бардачке или багажнике, чтобы не попасть в нежелательное положение.

Воспользоваться таким диодом можно в самодельной схеме. Предварительно откидываем и достаем аккумулятор. На следующем этапе монтируем цепочку из элементов: первый контакт бытовой розетки в квартире – отрицательный контакт на диоде – положительный контакт диода – лимитирующая нагрузка – отрицательная клемма аккумулятора – плюс аккумулятора – второй контакт бытовой розетки.

Лимитирующей нагрузкой в подобной сборке обычно служит мощная лампа накаливания. Их предпочтительней выбирать от 100 Вт. Получаемый ток можно определить из школьной формулы:

U * I = W, где

  • U – напряжение, В;
  • I – сила тока, А;
  • W – мощность, кВт.

Исходя из расчетов при нагрузке в 100-ваттной нагрузке и 220-вольтном напряжении выдача мощности ограничивается примерно половиной ампера. За ночь аккумулятор получит около 5 А, что обеспечит заводку движку. Утроить мощность и одновременно ускорить зарядку удастся с помощью добавления в цепь еще пары таких ламп. Не стоит переусердствовать и запускать к такой системе мощных потребителей типа электроплиты, так как можно вывести из строя диод и АКБ.

Важно знать, что собранная прямозарядная схема автомобильного зарядного устройства своими руками рекомендуется к применению в крайнем случае, если иного выхода нет.

Переделка компьютерного блока питания

Прежде чем приступать к экспериментам с электроприборами, нужно объективно оценить собственные силы по реализации задуманного варианта исполнения. После можно приступать к сборкам.

Читайте также:  Как поменять замок зажигания на Приоре

В первую очередь проводится подбор материальной базы. Нередко для такого дела используют старые компьютерные системники. Из них вынимают блок питания. Традиционно они снабжены выводами разного вольтажа. Кроме пятивольтовых контактов, имеются отводы на 12 В. Последние также наделены током в 2 А. Подобных параметров почти хватает для сборки схемы своими руками.

Рекомендуем поднять напряжение до уровня 15 В. Часто это осуществляется эмпирически. Для корректировки понадобится килоомное сопротивление. Такой резистор накидывают параллельно другим имеющимся резисторам в блоке возле восьминожной микросхемы во вторичной цепи БП.

Подобным методом меняют значение коэффициента передачи цепи обратной связи, что оказывает влияние на выходной вольтаж. Способ обеспечивает обычно поднятие до 13,5 В, чего хватает для простых задач с автомобильным аккумулятором.

На выходные контакты накидываются защипы-крокодилы. Дополнительных лимитирующих защит ставить не нужно, так как внутри имеется ограничивающая электроника.

Трансформаторная схема

Из-за своей доступности, надежности и простоты давно востребована у бывалых водителей. В ней используются трансформаторы со вторичной обмоткой, выдающей 12—18 В. Такие элементы встречаются в старых телевизорах, магнитофонах и прочей бытовой технике. Из более современных приборов можно посоветовать отработанные бесперебойники. Они доступны на вторичном рынке за небольшую плату.

В наиболее минималистичном варианте схемы присутствует такой набор:

  • диодный выпрямляющий мостик;
  • подобранный по параметрам трансформатор;
  • рассчитанная соответственно сети защитная нагрузка.

Так как по лимитирующей нагрузке течет большой ток, то от этого она перегревается. Чтобы сбалансировать ампераж, не допуская превышения тока зарядки, в цепь добавляют конденсатор. Его место – первичная цепь трансформатора.

В экстремальных ситуациях при грамотно просчитанном объеме конденсатора можно рискнуть и удалить трансформатор. Однако, подобная схема станет небезопасной в плане поражения электрическим током.

Оптимальными можно назвать цепи, в которых имеется регулировка параметров и лимитирование тока заряда. Представляем на странице один из примеров.

Получить диодный мостик удастся с минимальным усилием из вышедшего из строя автомобильного генератора. Достаточно выпаять его и перекоммутировать при необходимости.

Основы безопасности при сборке и эксплуатации схем

Во время работы по комплектации зарядного устройства для автомобильной АКБ стоит учитывать определенные факторы:

  • все должно быть смонтировано и установлено на пожаробезопасной площадке;
  • при работе с прямоточными примитивными зарядными устройствами нужно вооружиться средствами защиты от поражения током: резиновыми перчатками и ковриком;
  • в процессе зарядки АКБ первый раз самодельными аппаратами необходимо контролировать текущее состояние работающей системы;
  • контрольными точками являются сила тока с напряжением на выходе зарядки, допустимая степень нагрева батареи и зарядного устройства, недопущение закипания электролита;
  • если оставлять оборудование на ночь, то важно оснастить схему устройством защитного отключения.

Важно! Рядом должен всегда находиться порошковый огнетушитель, чтобы уберечь от возможного распространения огня.

Как зарядить аккумулятор рассвет 2. Зарядные устройства (для авто)


Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2020 и 2020 года, как собрать принципиальную схему за час.

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение:

Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле?
    – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств?
    — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки?
    — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи?
    — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее?
    – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Примерные нормы корректировки плотности электролита, г/см 3

Требуемая плотность электролита в АКБ г/см 3Реальная плотность электролита, г/см 3
1,151,161,171,181,191,201,211,221,231,241,251,261,271,281,291,301,311,321,331,34
1,242542202011811581331057440024476887105112138153167181
1,26290275159241222200176149119844502344638299115130145
1,28342330316301285266246223198169136975302141597793108
1,3039638537436234833331624227725322619415811563020385672

Слева от жирной черты: после удаления указанного объема электролита необходимо долить такое же количество электролита плотностью 1,40 г/см 3 .

Справа от жирной черты: после удаления указанного объема электролита необходимо долить такое же количество дистиллированной воды.

6.3.2. После окончания заряда батареи шнур питания 9 отсоединить от сети, а кабели нагрузки — от аккумуляторной батареи.

6.4. Заряд и подзаряд 12 В аккумулятроной батареи в автоматическом режиме:

6.4.1. Установить ручку 5 согласно указаниям предыдущего раздела. 6.4.2. В автоматическом режиме зарядный ток подается на аккумуляторную батарею циклически. Длительность цикла тока составляет 5..35 с. Во время протекания тока светится индикатор 7. Между циклами тока следует бестоковая пауза, при которой индикатор 7 не светится. По мере заряда аккумуляторной батареи пауза увеличивается от 0,5…1с, при разряженной до 50% батарее — до 0,5…2 мин, и 6олее в конце ее заряда (зараженность батареи 95…100%). 6.4.3. Если после заряда в течение 0.5…2 ч (в зависимости степени заряженности батареи) пауза не увеличивается, то это является признаком неисправности аккумуляторной батареи

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

Блок защиты – схема

И так, на входных клеммах устройства присутствует напряжение с зарядного устройства, аккумулятор к выходу не подключен. При таких условиях напряжение на выходе будет отсутствовать, так как транзистор оптрона будет закрыт, будет закрыт и мощный транзистор. Ни каких КЗ на выходе быть не может. При подключении аккумулятора через последовательную цепь VD3, VD2, U1 и VT2 начнет протекать ток примерно 4ма, стабилизированный транзистором VT2. И это при условии, что напряжение на разряженном аккумуляторе будет не менее 10,5 вольт. Величина этого напряжения обусловлена напряжением пробоя стабилитрона VD2, равного 9В, плюс падения напряжения на других элементах этой цепи. Если напряжение на аккумуляторе будет меньше 10,5 вольт, то для включения схемы придется нажать, а может и немного подержать кнопку SB1. Это сделано для того, что исключить возможные большие токи от зарядного при глубокой разрядке подключаемого аккумулятора или возможном КЗ в его пластинах. И так, ток через светодиод протекает, он светится, сопротивление фототранзистора очень маленькое и напряжение положительной полярности через резистор R2 подается на затвор ключевого транзистора. Транзистор включается и начинается процесс зарядки. Схема включена. Теперь, если аккумулятор отсоединить от схемы, то она останется во включенном состоянии.

При коротком замыкании в выходной цепи, ток в цепи VD3, VD2, U1 и VT2 прекращается, оптрон закрывается, закрывается и ключевой транзистор. То же самое произойдет, если в данных условиях попробовать переполюсовать аккумулятор, что в прицепе для схемы это тоже КЗ. Если неправильно подключить аккумулятор к еще не включенной схеме, то в данном случае вообще ничего не произойдет. Диод VD3 защищает светодиод оптрона от отрицательного напряжения. Таким образом, мы имеем защиту зарядного, как от КЗ, так и от переполюсовки аккумулятора. Если во время эксплуатации ключевой транзистор будет сильно греться, то проверьте падение напряжения на нем. Возможно, не полностью открыт транзистор оптрона из-за малого входного тока светодиода. Тогда придется заменить VT2 на другой, с бо’льшим током стабилизации. В любом случае, ключевой транзистор снабдите соответствующим радиатором. Из-за большого разброса электрических параметров радиоэлементов, возможно, придется заменить и стабилитрон VD2 на другой, с более низким напряжением стабилизации, для получения более низкого порога включения устройства.

Посмотрев на схему, не трудно заметить, что она представляет собой трехполюсник. Если применить детали в SMD исполнении, то можно изготовить данный блок защиты в виде трехвыводного модуля. Успехов. К.В.Ю.

Скачать статью:

Уважаемый К.В.Ю. ПОСМОТРЕЛ ВАШУ СХЕМУ ЗАЩИТЫ ЗАРЯДНОГО УСТРОЙСТВА И ПРИШЕЛ К ВЫВОДУ ЧТО ОНА СКАЖЕМ ТАК МЯГКО ГОВОРЯ НЕ КОРЕКТНАЯ–

1 -СТОК -ИСТОК -СТОИТ КНОПКА -ЧТО ЗА УБОГОСТЬ КОММУТИРОВАТЬ РАЗРЯЖЕННЫЙ АКБ У КОТОРОГО ТОК МОЖЕТ ДОСТИГАТЬ 5 -8 -И БОЛЬШЕ АМПЕР ПРИ ПЕРВИЧНОЙ ЗАРЯДКЕ СИЛЬНО РАЗРЯЖЕННОГО АКБ -ПОСТАВТЕ КНОПКУ МЕЖДУ ВЫВОДОМ ОПТОТРОНА 3-4 И ЭФЕКТ БУДЕТ ТАКОЙ ЖЕ

2-В ЗАРЯДНЫХ УСТРОЙСТВАХ ЕСТЬ УЖЕ КЛЮЧЕВОЙ ЭЛЕМЕНТ — НЕ ВАЖНО ТИРИСТОР ИЛИ МОЩНЫЙ ПОЛЕВОЙ ТРАНЗИСТОР — А ВЫ ПРЕДЛАГАЕТЕ ПОСТАВИТЬ ЕЩЕ ПОСЛЕДОВАТЕЛЬНО ДРУГОЙ КЛЮЧЕВОЙ ЭЛЕМЕНТ ДА ЕЩЕ С КУЧЕЙ ДЕТАЛЕЙ- ВОПРОС — ЗАЧЕМ –ВСЕ РЕШАЕТСЯ ГОРАЗДО ПРОЩЕ ЛУЧШЕ И КАЧЕСТВЕННЕЕ

ПРИ ПОМОЩИ ДВУХ ТРАНЗИСТОРНЫХ КЛЮЧЕЙ ПАРУ ТРОЙКИ СОПРОТИВЛЕНИЙ И ДИОДА И СТАБИЛИТРОНА — ПИШУ ТАК ПОТОМУ -ЧТО ЗАНИМАЮСЬ ЭЛЕКТРОНИКОЙ БОЛЕЕ 4О ЛЕТ — ПРОСМАТРИВАЮ ИНТЕРНЕТ И МНЕ ПОПАДАЮТСЯ СТАТЬИ С ВАШИМИ ИНИЦИАЛАМИ — КОЕ ЧТО ПОПРОБОВАЛ СДЕЛАТЬ ИЗ ВАШИХ РАЗРАБОТОК И БЫЛ СИЛЬНО РАЗОЧАРОВАН = СХЕМЫ — СЫРЫЕ ИЛИ ВООБЩЕ ИМЕЮЩИЕ ПЛОХУЮ ПОВТОРЯЕМОСТЬ-

ЕСЛИ ВЫСТАВЛЯТЬ СХЕМУ ТО ОНА ДОЛЖНА БЫТЬ ХОРОШО ПРОДУМАНА -ИМЕТЬ ХОРОШУЮ ПОВТОРЯЕМОСТЬ НЕ ЗАВИСИМО КТО ЕЕ БУДЕТ СОБИРАТЬ ОПЫТНЫЙ ИЛИ НОВИЧЕК- С УВАЖЕНИЕМ СТАНИСЛАВ-

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12. 3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Схема зарядного автомата для 12В АКБ

Принципиальная схема автоматического автомобильного ЗУ

Рисунок платы автоматического автомобильного ЗУ

Основа схемы — микроконтроллер AtMega16. Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню. Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля. Настроенные параметры сохраняются в энергонезависимой памяти.

Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM. Более подробно о настройке читайте на форуме.

Читать дальше: Отзывы о киа рио

Управление основными процессами возложено на микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4, C9, R7, C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10 R11.

Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5 R6 R10 R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине.

Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1, EP1, R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии.

В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14. 7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Переделка БП АТХ под зарядное устройство

Схема электрическая доработки стандартного ATX

В схеме управления лучше использовать прецизионные резисторы, как указано в описании. При использовании подстроечников параметры не стабильные. проверено на собственном опыте. При тестировании данного ЗУ проводил полный цикл разрядки и зарядки АКБ (разряд до 10,8В и заряд в режиме тренировки, потребовалось около суток). Нагревание ATX БП компьютера не более 60 градусов, а модуля МК еще меньще.

Проблем в настройке не было, запустилось сразу, только нужна подстройка под максимально точные показания. После демострации работы другу-автолюбителю этого зарядного автомата, сразу заявка поступила на изготовление еще одного экземпляра. Автор схемы — Slon, сборка и тестирование — sterc.

Обсудить статью АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ

Схема простого Диммера — многофункционального регулятора яркости лампы, с использованием микроконтроллера PIC12f629.

Автоматическая схема портативного зарядного устройства 12 В с использованием LM317

Вы когда-нибудь пытались разработать зарядное устройство, которое заряжает аккумулятор автоматически, когда напряжение аккумулятора ниже указанного? В этой статье объясняется, как разработать автоматическое зарядное устройство.

Зарядное устройство, расположенное ниже, автоматически прекращает процесс зарядки, когда аккумулятор полностью заряжен. Это предотвращает глубокую зарядку аккумулятора. Если напряжение аккумулятора ниже 12 В, то схема автоматически заряжает аккумулятор.

Схема автоматического зарядного устройства 12 В

Схема автоматического зарядного устройства

Схема автоматического зарядного устройства в основном состоит из двух частей — блока питания и блока сравнения нагрузок.

Основное напряжение питания 230 В, 50 Гц подключено к первичной обмотке центрального ответвительного трансформатора для понижения напряжения до 15–0–15 В.

Выход трансформатора подключен к диодам D1, D2.Здесь диоды D1, D2 используются для преобразования низкого переменного напряжения в пульсирующее постоянное напряжение. Этот процесс также называется исправлением. Пульсирующее напряжение постоянного тока подается на конденсатор емкостью 470 мкФ для устранения пульсаций переменного тока.

Таким образом на выходе конденсатора нерегулируется постоянное напряжение. Это нерегулируемое постоянное напряжение теперь подается на регулятор переменного напряжения LM317 для обеспечения регулируемого постоянного напряжения.

Выходное напряжение этого регулятора напряжения изменяется от 1,2 В до 37 В, а максимальный выходной ток этой ИС равен 1.5А. Выходное напряжение этого регулятора напряжения изменяется путем изменения потенциометра 10 кОм, который подключен к регулировочному выводу LM317.

[Также прочтите: Как сделать регулируемый таймер]

Выход регулятора напряжения Lm317 поступает на аккумуляторную батарею через диод D5 и резистор R5. Здесь диод D5 используется для предотвращения разрядки аккумулятора при отключении основного питания.

При полной зарядке аккумулятора стабилитрон D6, подключенный в обратном направлении, проводит ток. Теперь база транзистора BD139 NPN получает ток через стабилитрон, так что полный ток заземлен.

В этой схеме зеленый светодиод используется для индикации заряда аккумулятора. Резистор R3 используется для защиты зеленого светодиода от высокого напряжения.

Выходное видео:
Принцип электрической цепи

Если напряжение аккумулятора ниже 12 В, то ток от микросхемы LM317 протекает через резистор R5 и диод D5 к аккумулятору. В это время стабилитрон D6 не будет проводить, потому что аккумулятор забирает весь ток для зарядки.

Когда напряжение АКБ повышается до 13.5 В, ток к батарее прекращается, и стабилитрон получает достаточное напряжение пробоя и пропускает ток через него.

Теперь база транзистора получает достаточный ток для включения, так что выходной ток от регулятора напряжения LM317 заземляется через транзистор Q1. В результате красный светодиод показывает полный заряд.

Настройки зарядного устройства

Выходное напряжение зарядного устройства должно быть в 1,5 раза меньше, чем напряжение аккумулятора, а ток зарядного устройства должен составлять 10% от тока аккумулятора.Зарядное устройство должно иметь защиту от перенапряжения, короткого замыкания и обратной полярности.

ПРИМЕЧАНИЕ : Также получите представление о том, как построить схему индикатора уровня заряда аккумулятора?

2. автоматическое зарядное устройство

Принципиальная схема

В этом проекте упоминается схема автоматического зарядного устройства для герметичных свинцово-кислотных аккумуляторов. Это схема импульсного типа зарядного устройства, которая помогает продлить срок службы батарей.Работа этой схемы объясняется ниже.

LM317 действует как регулятор напряжения и устройство контроля тока. Стабилитрон 15 В используется для установки LM317 на подачу напряжения 16,2 В на выходе при отсутствии нагрузки. Когда 2N4401 включается выходом 555, вывод ADJ LM317 заземлен, и его выходное напряжение составляет 1,3 В.

LM358 действует как компаратор и повторитель напряжения. LM336 используется для подачи опорного напряжения 2.5В до неинвертирующим терминала (Pin 3) LM358. Сеть делителя напряжения используется для подачи части напряжения батареи на инвертирующий вывод (вывод 2) LM358.

Когда заряд аккумулятора достигает 14,5 В, входной сигнал инвертирующего терминала LM358 немного больше 2,5 В на контакте 3, установленном LM336. Это повысит выход 555.

В результате загорится красный светодиод и транзистор включится. Это заземлит контакт ADJ LM317, и его выход упадет до 1,3 В.

Когда заряд аккумулятора падает ниже 13,8 В, выход LM358 высокий, а выход 555 низкий. В результате напряжение течет от LM317 к батарее, и зеленый светодиод светится, указывая на зарядку.

[Связанное сообщение Зарядное устройство для свинцово-кислотных аккумуляторов с использованием LM317]

3. зарядное устройство с использованием SCR

В этом проекте реализована схема автоматического зарядного устройства с использованием SCR. Его можно использовать для зарядки аккумуляторов 12 В. Батареи с разными потенциалами, например, 6 В и 9 В, также можно заряжать, выбрав соответствующие компоненты. Схема работы следующая.

Источник переменного тока преобразуется в 15 В постоянного тока с помощью трансформатора и мостового выпрямителя, и загорается зеленый светодиод.Выход постоянного тока представляет собой пульсирующий постоянный ток, поскольку после выпрямителя нет фильтра.

Это важно, поскольку тиристор перестает проводить ток, только когда напряжение питания равно 0 или когда он отключен от источника питания, и это возможно только при пульсирующем постоянном токе.

Первоначально SCR1 начинает проводить, поскольку он получает напряжение затвора через R2 и D5. Когда SCR1 является проводящим, через аккумулятор проходит 15 В постоянного тока, и аккумулятор начинает заряжаться. Когда аккумулятор почти полностью заряжен, он препятствует прохождению тока, и ток начинает течь через R5.

Он фильтруется с помощью C1, и когда потенциал достигает 6,8 В, стабилитрон ZD1 начинает проводить и подает напряжение затвора на SCR2, достаточное для его включения.

В результате ток протекает через SCR2 через R2, и SCR1 отключается, так как напряжение затвора и напряжение питания отключены. Красный светодиод загорается, указывая на полную зарядку аккумулятора.

Знаю, как спроектировать схему автоматического отключения и автоматической зарядки аккумулятора с помощью SCR.

Создайте интеллектуальное зарядное устройство с использованием однотранзисторной схемы

Что вы узнаете:

  • Исследование схемы, фиксирующей тепловое движение графена и преобразующей его в ток.
  • Исследования по объединению графена с нитридом бора, при котором электроны в графене должны отклоняться в своем движении в одном направлении, что приводит к протеканию тока.

Оказывается, графен — одно из удивительно универсальных элементарных веществ — вроде кремния — которое проявляется во многих обличьях и потенциально решает множество уникальных проблем? Только время покажет, но сейчас признаки благоприятные.

Во-первых, небольшая справка по графену. Это слой атомов углерода толщиной в один атом, расположенный в двухмерной гексагональной решетке.Таким образом, графен является самым тонким из известных материалов, но при этом невероятно прочным (примерно в 200 раз прочнее стали). Он отлично проводит тепло и электричество и обладает интересными светопоглощающими способностями. Материал был изолирован и охарактеризован в 2004 году Андре Геймом и Константином Новоселовым из Манчестерского университета, которые в 2010 году были удостоены Нобелевской премии по физике за свои исследования этого материала.

Теперь два не связанных между собой исследования показывают, как это может быть полезно при сборе энергии.Во-первых, группа физиков из Университета Арканзаса успешно разработала схему, способную улавливать тепловое движение графена и преобразовывать его в электрический ток. Идея сбора энергии из графена является спорным, поскольку он противопоставляет утверждение легендарный физик Ричард Фейнман о том, что тепловое движение атомов его известных, как броуновское движение — не может сделать работу.

Однако, по словам Пола Тибадо, профессора физики и ведущего исследователя, тепловое движение графена на самом деле вызывает переменный ток (ac) в цепи при комнатной температуре, что казалось невозможным.Его группа построила свою схему с двумя диодами для преобразования переменного тока в постоянный, тем самым позволяя току течь в обе стороны и обеспечивая отдельные пути через схему, чтобы получить пульсирующий постоянный ток, который выполняет работу на нагрузочном резисторе (рис.1) .

1. Этот набросок модели схемы с диаграммой энергетического барьера является упрощенным представлением глубинной физики, лежащей в основе принципа сбора на основе графена. (Источник: Университет Арканзаса)

Численное моделирование показывает, что система достигает теплового равновесия, а средние показатели нагрева и работы, обеспечиваемые стохастической термодинамикой, стремятся быстро стремиться к нулю.Однако мощность рассеивается нагрузочным резистором, и его среднее время в точности равно мощности, подаваемой термостатом. Точная формула мощности аналогична формуле мощности шума Найквиста, за исключением того, что скорость изменения сопротивления диода значительно увеличивает выходную мощность, а движение графена сдвигает спектр мощности в сторону более низких частот.

По своему расположению графеновая пленка была установлена ​​на подставке так, чтобы наконечник сканирующего туннельного микроскопа (СТМ) мог приближаться к ней, при этом переход иглы СТМ с образцом был включен в схему, показанную (рис.2) . Образец изолирован от земли и подключен к двум диодам; переход зонд-образец действует как конденсатор переменной емкости. Туннельный ток, ток диода 1 (D1C) и ток диода 2 (D2C) контролируются одновременно.

2. Показаны наборы данных сканирующего туннельного микроскопа (СТМ), полученные, когда игла туннелирует электроны. (а) Принципиальная схема, показывающая наконечник СТМ, образец, напряжение смещения, амперметры и расположение диодов. (б) Эскиз листа графена в волнистом состоянии и иллюстрации изменений формы графена.(c) Колебания высоты графена. (г) Туннельный ток СТМ в зависимости от времени для автономного и жесткого графена. (e) Стандартное отклонение туннельного тока от заданного тока для автономного и жесткого графена. (Источник: Университет Арканзаса)

Эта диодная схема используется для сбора энергии, но здесь она используется для изоляции индуцированного графеном тока от батареи, питающей электрически изолированный STM. На расстоянии зонд-образец 2 нм или меньше туннельные электроны преобладают над током; для больших расстояний преобладает ток смещения.

Очевидно, что эта работа включает в себя интенсивную и глубокую физику и объясняется в их статье «Флуктуационно-индуцированный ток от автономного графена», опубликованной в APS Physical Review E . Он находится за платным доступом, но также размещен здесь (здесь также есть короткая упрощенная видео-анимация).

Откровенно говоря, здесь требуется некоторый скачок веры, несмотря на полный анализ в опубликованной статье, тем более, что профессор Тибадо также продвигает свои исследования с оптимистическими заявлениями, такими как «Схема сбора энергии на основе графена может быть встроена в чип, чтобы обеспечить чистое, безграничное низковольтное питание для небольших устройств или датчиков.Но вы никогда не знаете — и никогда не должны говорить никогда, когда речь идет о достижениях физики и технологий.

MIT’s Graphene Discovery

В ходе несвязанной разработки команда из лаборатории исследования материалов Массачусетского технологического института (MIT) придумала способ сбора высокочастотной энергии в диапазоне от микроволн до терагерцового диапазона. Анализ рассматривает физику и предполагаемые ограничения квантово-механического поведения графена, а также способы их преодоления.Они обнаружили, что, комбинируя графен с другим материалом — в данном случае нитридом бора — электроны в графене должны отклонять свое движение в одном направлении, таким образом, обеспечивая протекание тока.

Хотя предыдущие экспериментальные технологии могли преобразовывать терагерцовые волны в постоянный ток, они могли делать это только при ультрахолодных температурах, что, очевидно, ограничивает их практическое применение. Вместо этого ведущий исследователь Хироки Исобе начал исследование, чтобы выяснить, можно ли на квантовомеханическом уровне заставить собственные электроны материала течь в одном направлении, чтобы направить приходящие волны электромагнитной энергии в постоянный ток.Используемый материал должен быть свободен от примесей, чтобы электроны в нем текли, не рассеиваясь на неровностях материала, а графен был привлекательным материалом.

Но это было только отправной точкой. Чтобы направить электроны графена в одном направлении, необходимо «нарушить» симметрию, присущую материалу. Таким образом, электроны будут ощущать одинаковую силу во всех направлениях, а это означает, что любая поступающая энергия будет рассеиваться случайным образом. Другие экспериментировали с графеном, помещая его поверх слоя нитрида бора, так что силы между электронами графена были выбиты из равновесия: электроны, расположенные ближе к бору, ощущали одну силу, а электроны, находящиеся ближе к азоту, испытывали другое притяжение.

Это «перекосное рассеяние» может привести к протеканию полезного тока. Исследовательская группа представила терагерцевый выпрямитель, состоящий из небольшого квадрата графена, расположенного поверх слоя нитрида бора. Он будет помещен в антенну, которая собирает и концентрирует окружающее терагерцовое излучение, усиливая его сигнал, чтобы преобразовать его в постоянный ток (рис. 3) .

3. Схема выпрямителя на 2D материале. В этой установке выпрямленный постоянный ток обнаруживается поперек падающего электрического поля, что способствует снижению шума.Антенна прикреплена к обеим сторонам для сбора большей мощности излучения и повышения чувствительности. (Источник: Массачусетский технологический институт)

Команда подала патент на свою новую конструкцию «высокочастотного выпрямления», которая описана в их статье Science Advances «Высокочастотное выпрямление с помощью хиральных блоховских электронов». с дополнительными материалами. Чтобы понять, что это исключительно глубокий теоретический анализ (и я имею в виду углубленный, так как количество моделей, уравнений, частных производных и интегралов поразительно), нужно немного прочитать и то, и другое.На самом деле никакого устройства не было создано. Но не беспокойтесь — исследователи работают с физиками-экспериментаторами из Массачусетского технологического института, чтобы разработать физическое устройство, основанное на их понимании и анализе.

Простая батарея 1,2 В AA Схема солнечного зарядного устройства

Это простая батарея 1,2 В AA Схема солнечного зарядного устройства. Если вы хотите зарядить только одну батарею AA 1,5 В и использовать ее на улице, где нет электричества в доме. Мы также будем использовать его быстро, поэтому нам нужно использовать устройства рядом с нами.

Этот проект очень простой и дешевый, потому что мы используем солнечную батарею 3 В 160 мА, и я измеряю напряжение около 3.3V как Рисунок 1 , так что достаточно для зарядки.

И я буду использовать никель-металлогидридную аккумуляторную батарею AA 1,2 В 700 мАч.

Дополнительно нам нужен диод. Чтобы предотвратить обратное напряжение от батареи к солнечному элементу, когда нет солнечного света.

Мы используем диод номер 1N4007, потому что он дешевле, и его достаточно для высокого давления 1000В 1А.

AS Рисунок 2 мы соединили их последовательно по простой схеме.

Мы возьмем на себя зарядку около 8-10 часов, или около 8 часов.00 до 17.00 часов.
Он будет иметь полную мощность, может измерять напряжение примерно 1,3 В. как Рис. 3

Простое зарядное устройство для солнечных батарей для радиоприемников

Это схема для простого зарядного устройства для солнечных батарей для солнечных батарей . В радиоприемнике на солнечных батареях использовались никель-кадмиевые батареи 3 В (или две 1,2 В) или никель-металлогидридные батареи. Батарею снять нельзя.

Для зарядки используется гнездо mini-jack. Найти такое зарядное устройство напряжения довольно сложно.Вот схема для преобразования напряжения от общего источника питания или солнечной батареи. Эта цепь вызывает падение напряжения на батарее до 3 вольт.

Как это работает


Простая схема зарядного устройства солнечной батареи для радио

В схеме мы используем два транзистора для управления постоянным током в батарее.
Резистор R-22 Ом и 3,3К включены как цепь делителя напряжения для смещения NPN транзистора BC547.

Затем загорится светодиод 1, и напряжение станет стабильным, поэтому ток через PNP-транзистор BD140 является фиксированным (установившимся) током для зарядки батареи.

Мы можем использовать Vin как для 5 В, так и для 6 В, которые нам необходимо изменить:
R1 = 22 Ом для 5 В и R1 = 27 Ом для 6 В, а затем
R3 = 270 Ом для 5 В и R3 = 330 Ом для 6 В.

Детали, которые вам понадобятся
Q1_BC547_45V 100mA NPN транзистор; Количество = 1
Q2_BD140_80V 1.5A PNP транзистор; Количество = 1
R1_22 Ом (5 В), 27 Ом (6 В) __ 1 / 4Вт Допуск резисторов: 5%
R2_3.3K__1 / 4Вт Допуск резисторов: 5%
R3_270 Ом (5В), 330 Ом (6В) __ 1 / 4Вт Допуск резисторов: 5%
R4_47ohms__1 / 4W Допуск резисторов: 5%

Что еще? Не только это.Посмотрите:

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

% PDF-1.3 % 503 0 объект > endobj xref 503 113 0000000016 00000 н. 0000002630 00000 н. 0000002785 00000 н. 0000002925 00000 н. 0000002981 00000 н. 0000003012 00000 н. 0000003069 00000 н. 0000004335 00000 н. 0000004509 00000 н. 0000004576 00000 н. 0000004697 00000 н. 0000004789 00000 н. 0000004958 00000 н. 0000005030 00000 н. 0000005186 00000 п. 0000005342 00000 п. 0000005497 00000 н. 0000005646 00000 п. 0000005801 00000 п. 0000005959 00000 н. 0000006112 00000 н. 0000006252 00000 н. 0000006389 00000 п. 0000006542 00000 н. 0000006681 00000 п. 0000006821 00000 н. 0000006957 00000 н. 0000007093 00000 п. 0000007188 00000 н. 0000007283 00000 н. 0000007376 00000 н. 0000007470 00000 н. 0000007564 00000 н. 0000007658 00000 н. 0000007752 00000 н. 0000007846 00000 н. 0000007940 00000 п. 0000008034 00000 н. 0000008128 00000 н. 0000008222 00000 п. 0000008316 00000 н. 0000008410 00000 н. 0000008504 00000 н. 0000008598 00000 н. 0000008692 00000 п. 0000008786 00000 п. 0000008880 00000 н. 0000008974 00000 н. 0000009068 00000 н. 0000009162 00000 п. 0000009257 00000 н. 0000009352 00000 н. 0000009447 00000 н. 0000009542 00000 н. 0000009637 00000 н. 0000009732 00000 н. 0000009827 00000 н. 0000009922 00000 н. 0000010017 00000 п. 0000010112 00000 п. 0000010207 00000 п. 0000010302 00000 п. 0000010397 00000 п. 0000010492 00000 п. 0000010587 00000 п. 0000010682 00000 п. 0000010777 00000 п. 0000010872 00000 п. 0000010967 00000 п. 0000011062 00000 п. 0000011157 00000 п. 0000011252 00000 п. 0000011347 00000 п. 0000011442 00000 п. 0000011537 00000 п. 0000011632 00000 п. 0000011727 00000 п. 0000011822 00000 п. 0000011917 00000 п. 0000012012 00000 н. 0000012107 00000 п. 0000012202 00000 п. 0000012297 00000 п. 0000012392 00000 п. 0000012487 00000 п. 0000012582 00000 п. 0000012677 00000 п. 0000012772 00000 п. 0000012867 00000 п. 0000012962 00000 п. 0000013057 00000 п. 0000013152 00000 п. 0000013309 00000 п. 0000023941 00000 п. 0000024059 00000 п. 0000024709 00000 п. 0000024832 00000 п. 0000025409 00000 п. 0000025639 00000 п. 0000025840 00000 п. 0000026421 00000 п. 0000030083 00000 п. 0000031181 00000 п. 0000031422 00000 п. 0000031533 00000 п. 0000034433 00000 п. 0000034545 00000 п. 0000034748 00000 п. 0000034859 00000 п. 0000034977 00000 п. 0000035095 00000 п. 0000003110 00000 н. 0000004312 00000 н. трейлер ] >> startxref 0 %% EOF 504 0 объект > endobj 505 0 объект a_

12 вольт 1.Схема зарядного устройства 3AH

Принципиальная схема зарядного устройства 12 В, 1,3 Ач, Заряд аккумулятора для аккумулятора на 12 В, 1,3 А · ч разработан с использованием L200 и со схемой защиты от перенапряжения. В этой статье я расскажу вам об очень полезной схеме заряда аккумулятора. Стабилизатор напряжения L200 используется для управления напряжением. Оптопара используется для обратной связи для управления напряжением, появляющимся на батарее, при включении и выключении регулятора напряжения L200.

Зарядное устройство

находит широкое применение — от домашнего до промышленного.Заряд аккумулятора, как следует из названия, используется для зарядки аккумулятора. Зарядное устройство используется в зарядном устройстве для батарей ИБП, автомобильном зарядном устройстве, зарядном устройстве для солнечных батарей и во многих других огромных приложениях. В этой статье я обсуждаю зарядное устройство на 12 вольт 1,3 Ач.

Схема зарядного устройства на 12 В:

Принципиальная схема зарядного устройства приведена ниже. На этой принципиальной схеме светодиод используется как индикатор напряжения для индикации зарядки. Когда аккумулятор заряжается, светодиод светится. В противном случае он останется выключенным.

12 вольт 1,3 Ач Зарядное устройство

На приведенной выше принципиальной схеме понижающий трансформатор с 220 вольт на 24 вольт используется для понижения напряжения 24 вольт переменного тока. После этого выпрямитель на 4А используется для выпрямления напряжения переменного тока в пульсирующий постоянный ток. Вы можете использовать любой выпрямитель на 4А или диод на 4А, подключенный по схеме полного моста. После этого конденсатор емкостью 1000 мкФ используется для удаления пульсаций постоянного тока. Это постоянное постоянное напряжение подается на вход регулятора напряжения L200.

L200 — линейный регулятор напряжения, который может подавать ток 2А в диапазоне напряжений от 3 до 36 вольт.Стабилизатор напряжения L200 может обеспечивать переменное напряжение с возможностью изменения выходного напряжения в соответствии с опорным напряжением. Ознакомьтесь с техническими данными L200, чтобы узнать больше о нем и его использовании в различных конфигурациях.

TLP251-1 оптрон используется для обратной связи с изменением refrence напряжения в соответствии с напряжением battert. При повышении напряжения батареи TLP251-1 уменьшить напряжение на выходе L200 путем изменения значения опорного напряжения. Диод 1N4007 используется для ограничения выходного тока до 700 мА, поскольку ток 700 мА безопасен для зарядки 1.Аккумулятор 3Ач.

В следующих статьях я опубликую статью о принципиальной схеме зарядного устройства 12 вольт 7 Ач. Для получения дополнительной информации продолжайте посещать наш сайт. Пожалуйста, не забудьте поделиться им с друзьями и в социальных сетях. Вот что вы можете сделать для нас взамен. Спасибо

Цепь зарядного устройства для аккумулятора

4 В — DIY Electronics

В этом DIY мы делаем проект схемы зарядного устройства батареи 4V. Зарядное устройство для аккумуляторов — это устройство, используемое для передачи энергии вторичному элементу или перезаряжаемой батарее путем пропускания через него электрического тока.Простые зарядные устройства с питанием от переменного тока обычно имеют намного более высокий ток пульсации и пульсирующее напряжение, чем зарядные устройства для аккумуляторов различных типов, поскольку они недорого спроектированы и изготовлены. Это простое зарядное устройство стоит очень недорого, поскольку требует некоторых недорогих компонентов.

Компоненты оборудования

Необходимые аппаратные компоненты для создания цепи зарядного устройства 4 В:

Строительство цепи

Шаг № 01

Сначала соедините четыре диода вместе.

Шаг № 02

Затем соедините конденсатор 40В 100 мкФ с диодом.

Шаг № 03

Затем соедините конденсатор 105j 400В с резистором.

Шаг № 04

Затем припаиваем конденсатор 105j 400В с резистором и конденсатор 40В 100мкФ с диодом.

Шаг № 05

Затем соедините два провода 0,5 мм с остальной частью схемы.

Шаг № 06

Затем подключите вилку к цепи.

Шаг № 07

Затем проверьте схему, подключив ее к светодиоду.

Принципиальная схема

Работа контура

Теперь мы обсуждаем схему работы зарядного устройства. Для создания этой простой схемы зарядного устройства нам потребовались некоторые компоненты, такие как диоды, конденсаторы и резисторы.Простое зарядное устройство работает, обеспечивая постоянный или импульсный источник питания постоянного тока для заряжаемой батареи. Обычное зарядное устройство обычно не изменяет свою мощность в зависимости от времени зарядки или заряда аккумулятора. Тщательно разработанное зарядное устройство требует больше времени для зарядки аккумулятора, поскольку оно настроено на более низкую (т.е. более безопасную) скорость зарядки.

Приложения и способы использования

Области применения и применения схемы зарядного устройства:

  • Эта схема зарядного устройства используется для зарядки аккумуляторов малой емкости.
  • Его также можно использовать в небольших электронных схемах, где нам требуются зарядные устройства.

Схема зарядного устройства с индикатором, защитой от перегрузки по току и перезарядки

Зарядное устройство LM317 со схемой максимальной токовой защиты

Схема представляет собой схему зарядного устройства LM317 с регулировкой напряжения и тока 6 В, которая генерирует регулируемый выходной сигнал 6 В постоянного тока.

Трансформатор T1 понижает входное напряжение 230 В / 50 Гц переменного тока до 6 В переменного тока.Затем он был преобразован в постоянный ток 6 В с помощью схемы мостового выпрямителя. Конденсатор C1 фильтрует выпрямленный выход.

В схеме используется стабилизатор LM317, который представляет собой регулируемый линейный стабилизатор положительного напряжения, который может работать в диапазоне входного напряжения 3-40 В.

Значение резистора R1 и R2 определяет значение выходного напряжения LM317.

Уравнение для выходного напряжения LM317, Vout = 1,25 * (1+ R2 / R1)

В данной схеме комбинация резисторов (R1 и R2) будет иметь максимальное выходное напряжение 6.125 вольт.

LM317 имеет максимальный рабочий ток 1,5 А, с внутренним ограничением тока и защитой от тепловой перегрузки. Но схема уже разработана с дополнительной защитой от перегрузки по току. Устройство ограничения тока регулирует выходное напряжение LM317, чтобы ограничить ток, превышающий фиксированное значение. Входное напряжение аккумулятора будет регулироваться автоматически в соответствии с зарядным током. Выходное напряжение схемы варьируется от 1,25 В до 6.125 В. Когда ток, протекающий через чувствительный резистор R3, увеличивается, ток базы Q1 также увеличивается. Таким образом, это уменьшит сопротивление на R2 и, следовательно, значение V из .

Эта схема предназначена для зарядки свинцово-кислотных аккумуляторов 6V 4.5AH. Но выходное напряжение и ограничение тока схемы можно изменить для использования с другими батареями. Напряжение и ток зарядки зависят от значения сопротивления R2 и R3 соответственно. Таким образом, заменив резисторы R2 и R3 на потенциометр, мы всегда сможем отрегулировать выходное напряжение и ток цепи.

Но при использовании схемы с другими батареями следует учитывать скорость зарядки и другие параметры.

LM317 — регулятор напряжения IC

Резистор — R1, R4 — 1 кОм, R2 — 3,9 кОм, R3 — 2 Ом

Конденсатор — C1 — 2200 мкФ

Диод — D1-D5 -1N4007

Транзистор — Q1- BC547

Трансформатор — Т1- 230В / 6В, 1А

Автоматическое зарядное устройство со светодиодным индикатором и схемой защиты от перезарядки

Здесь схема для автоматической схемы зарядного устройства 6 В с защитой от перезарядки, светодиодным индикатором зарядки и функцией ограничения тока.

Схема управляет зарядкой батареи, принимая обратную связь по напряжению на клеммах батареи. Схема заряжает батарею до тех пор, пока ее напряжение ниже порогового значения. И если оно достигает значения, равного пороговому, схема автоматически отключает питание от батареи.

Светодиоды D1 и D2 показывают статус, заряжается аккумулятор или нет. Красный свет (светодиод D2) указывает на то, что аккумулятор заряжается, а зеленый свет (светодиод D1) указывает, что аккумулятор полностью заряжен.

Схема зарядного устройства батареи может работать с широким диапазоном входных напряжений питания постоянного тока. Схема может работать в диапазоне напряжений примерно от 6,2 В до 18 В (максимальное рабочее напряжение IC7555).

Работа цепи

Обычно микросхема 555 имеет пороговое и пусковое напряжение 2/3 и 1/3 напряжения питания соответственно.

Здесь стабилитрон 1N4735 на 6,2 В подключен к клемме управляющего напряжения (вывод 5), как показано на схеме.Триггерный вход (контакт 2) подключен через сеть делителя напряжения, а пороговый вход (контакт 6) подключен напрямую от батареи. Это регулирует пороговое напряжение и напряжение запуска до фиксированного значения 6,2 В и 3,1 В для любых значений входного напряжения выше 6,2 В.

Выход (контакт 3) 7555 подключен к базе транзистора Q1, который контролирует ток зарядки аккумулятора. Когда напряжение батареи опускается ниже 6,2 В, вход триггера на контакте 2 становится равным 3.1В. Затем выход переключается в состояние высокого уровня и включается транзистор Q1. Точно так же, когда напряжение достигает порогового значения 6,2 В, выход переходит в низкое состояние и отключает Q1.

Схема с транзисторами Q1 и Q2 работает как схема ограничения тока. Когда ток, протекающий к батарее, увеличивается, это пропорционально увеличивает падение напряжения на резисторе R6 считывания тока. Таким образом, базовый ток транзистора Q1 снижается транзистором Q2 и уменьшает ток коллектора через Q1.Таким образом, схема может ограничить любую возможность перегрузки по току.

Необходимые компоненты

Микросхема -IC1 — 7555

Резистор — R1, R2, R3, R7, R8 — 1K, R4, R5 — 100K

Диод — D1 — зеленый светодиод, D2 — красный светодиод, D3 — стабилитрон 1N4735

Транзистор — Q1 — 2N2222, Q2 — BC547

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *