Схема зарядного устройства: Схемы зарядных устройств | 2 Схемы

Содержание

Схемы зарядных устройств | 2 Схемы

Сборник радиосхем зарядных устройств для свинцовых, никель-кадмиевых и литиевых аккумуляторов. Есть зарядки для авто на 12 В, есть для электровелосипедов и электромобилей. Все пойдут для сборки своими руками.

Потребители энергии получают определенный ток от батареи или аккумулятора. Как долго они могут работать, зависит от емкости элементов, составляющих батарею. Если нагрузка потребляет ток 1 …

Для свинцово-кислотного, гелевого или другого аккумулятора с жидким электролитом, как все знают требуется подходящее зарядное устройство. Автоматическая зарядка ограничивает зарядный ток и максимальное напряжение, которое …

Всем любителям самодельных девайсов привет. Хотел бы представить на ваш суд зарядное устройство, которое недавно сделал для своей старенькой BMW (точнее для её аккумулятора 60 …

В своей практике каждый автолюбитель часто сталкивался с необходимостью стабильного питания заряда АКБ авто. При использовании некоторых цифровых автомобильных зарядных модулей, в случае сбоя питания …

Хотим представить довольно удачный цифровой выпрямитель для зарядки автомобильных аккумуляторов, сделанный некоторое время назад сразу в двух экземплярах. Предыдущий простой выпрямитель, который сделан был на …

Знакомые с автобазы маршрутных микроавтобусов попросили сделать зарядное устройство для зарядки аккумуляторов 12 В и 24 В. Поскольку пользоваться им будут абсолютно неподготовленные люди, решено …

А это ещё один зарядный аппарат для авто аккумулятора по схеме автоматического выпрямителя на 12 В / 5 А. Зарядное устройство было сделано для периодической …

Здравствуйте уважаемые радио-авто-любители, представляем интересный проект зарядного устройства для автомобильных аккумуляторов на основе драйвера TL494. В эпоху доступности таких устройств и их привлекательных цен можно …

Здравствуйте все посетители сайта 2 Схемы. Представляем очередной девайс для самостоятельное сборки, которое работает как зарядное устройство гелевой батареи. Представленное ЗУ состоит из трансформатора ТС25/6 …

Данный зарядный выпрямитель к мощным аккумуляторам основан на схеме, которую за последние 30 лет повторили уже наверное тысячи раз. Сюда только добавлен простой контроллер вентилятора, …

Вот самодельный выпрямитель для небольших кислотных или гелевых необслуживаемых батарей. Устройство имеет возможность изменять выходное напряжение под АКБ 6 и 12 В. Многие из аккумуляторов, …

Это схема очень мощного самодельного пуско-зарядного устройства для авто АКБ 14,5 В на ток 500 А, представляет собой однотранзисторный прямоходовый преобразователь. Для ключа использован регенеративный …

Здесь вы сможете посмотреть схему и готовую конструкцию автоматического зарядного устройства для батареек Крона типоразмера 6F22 (на 9 В), выполненное на специализированном чипе MAX712. Зарядное …

Большой популярностью среди автолюбителей самодельщиков пользуются тиристорные автозарядки, в которых питание от мощного трансформатора поступает на АКБ через тиристор, управляемый открывающими его импульсами от генератора. …

Зима неумолимо приближается и скоро начнется сезон покупки (сборки) автомобильных зарядных устройств. Хотим представить зарядное устройство, которое изготовлено самостоятельно для собственных потребностей в зарядке двух …

Все кто имел дело с мощным зарядным устройством знает, что обратное подключение полярности аккумулятора может повредить или зарядное устройство, или сам аккумулятор. Но далеко не …

Как всегда неожиданно пришли холода и снова пришло понимание, что нужно купить для аккумулятора машины зарядный выпрямитель. Все знают, что мороз не нравится батареям, а …

Это зарядное устройство верой и правдой служит уже года 4, причём оно в отличии от многих других самодельных и промышленных автозарядок имеет несколько преимуществ, которые …

Это уже второй собранный зарядный выпрямитель, первый был очень успешным в действии и теперь понадобилось другое похожее зарядное устройство. Практически все детали были в наличии, …

После очень морозной зимы пришел к выводу, что в гараже нет приличного зарядного выпрямителя. Наличие какого-то ветхого промышленного зарядного устройства не в счёт — оно …

Зарядные устройства — полный список схем и документации на QRZ.RU

1Alinco EDC-64 Ni-Cd battery charger976621.03.2009
2MH-C9000 WizardOne360788426.10.2013
3UT12B Детектор напряжения342356826.10.2013
4Автоматическая подзарядка аккумуляторов.3098316.06.2003
5Автоматическая подзарядка аккумуляторов. 1743326.03.2006
6Автоматическая приставка к зарядному устройству для авто аккумулятора 144616.11.2016
7Автоматическое зарядно-пусковое устройство для автомобильного аккумулятора 161316.11.2016
8Автоматическое зарядное и восстанавливающее устройство (0-10А) 213116.11.2016
9Автоматическое зарядное устройство 111916.11.2016
10Автоматическое зарядное устройство + режим десульфатации для аккумулятора 165216.11.2016
11Автоматическое зарядное устройство для кислотных аккумуляторов 137816.11.2016
12Автоматическое зарядное устройство на микросхеме К561ЛЕ5 124016.11.2016
13Автоматическое зарядное устройство с бестрансформаторным питанием 120916.11.2016
14Автоматическое импульсное зарядное устройство для аккумуляторов 12В 145116.11.2016
15Автоматическое малогабаритное универсальное зарядное устройство для 6 и 12 вольтовых аккумуляторов5404817.09.2005
16Автоматическое устройство длязарядки аккумуляторов. 1831017.09.2002
17Бестрансформаторное зарядное устройство для аккумулятора 114516.11.2016
18Бестрансформаторный блок питания большой мощности для любительского передатчика 104016.11.2016
19Бестрансформаторный блок питания на полевом транзисторе (BUZ47A) 100716.11.2016
20Бестрансформаторный блок питания с регулируемым выходным напряжением 102116.11.2016
21Бестрансформаторный стабилизированный источник питания на КР142ЕН8 94516.11.2016
22Блок питания 0-12В/300мА 93016.11.2016
23Блок питания 1-29В/2А (КТ908) 108216.11.2016
24Блок питания 12В 6А (КТ827) 123316.11.2016
25Блок питания 60В 100мА 51016.11.2016
26Блок питания Senao-5681044130711.07.2016
27Блок питания Senao-8681116139811.07.2016
28Блок питания автомобильной радиостанции (13.8В, ЗА ) 28116.11.2016
29Блок питания для аналоговых и цифровых микросхем 21116.11.2016
30Блок питания для ионизатора (Люстра Чижевского) 28016.11.2016
31Блок питания для персонального компьютера «РАДИО 86 РК» 22516.11.2016
32Блок питания для телевизора 250В 42616.11.2016
33Блок питания на ТВК-110 ЛМ 5-25В/1А 24616.11.2016
34Блок питания с автоматическим зарядным устройством на компараторе 25316.11.2016
35Блок питания с гасящим конденсатором 24416.11.2016
36Блок питания СИ-БИ радиостанции (142ЕН8, КТ819) 28816.11.2016
37Блок питания Ступенька 5 — 9 — 12В на ток 1A 22116.11.2016
38Блок питания усилителя ЗЧ (18В, 12В) 18416.11.2016
39ВСА-5К, ВСА-111К2561895914.03.2010
40Выпрямители для получения двуполярного напряжения 3В, 5В, 12В, 15В и других 33316.11.2016
41Выпрямитель для питания конструкций на радиолампах (9В, 120В, 6,3В) 18816.11.2016
42Выпрямитель с малым уровнем пульсаций 26316.11.2016
43Высококачественный блок питания на транзисторах (0-12В) 43316.11.2016
44Высокоэффективное зарядное устройство для аккумуляторов 38416.11.2016
45Высокоэффективное зарядное устройство для батарей2156722.11.2004
46Два бестрансформаторных блока питания 24716.11.2016
47Двуполярный источник питания 12В/0,5А (К142ЕН1Г,КТ805) 21216.11.2016
48Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В) 26716.11.2016
49Зарядка аккумуляторов с помощью солнечных батарей4692503.02.2003
50Зарядно-пусковое уст-во «Импульс ЗП-02»6741870514.08.2009
51Зарядно-пусковое устройство Старт УПЗУ-У3180118411.03.2017
52Зарядно-пусковое устройство-автомат для автомобильного аккумулятора 12В 62616.11.2016
53Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач 43116.11.2016
54Зарядное устройство91861812.07.2007
55Зарядное устройство для Ni-Cd аккумуляторов 33316.11.2016
56Зарядное устройство «КЕДР-АВТО»72121605.10.2009
57Зарядное устройство HAMA TA03C397344207.10.2016
58Зарядное устройство \»Квант\»411302922.10.2008
59Зарядное устройство \»Рассвет-2\»11817923.12.2009
60Зарядное устройство для автомобильного аккумулятора3041721.04.2006
61Зарядное устройство для автомобильного аккумулятора 40216.11.2016
62Зарядное устройство для аккумулятором с током заряда 300 мА 23216.11.2016
63Зарядное устройство для никель-кадмиевых аккумуляторов (0,5 -1А/ч) 26216.11.2016
64Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов3964004.05.2009
65Зарядное устройство для фонарей ФОС-1451015803.12.2006
66Зарядное устройство до 5 А.311372510.02.2009
67Зарядное устройство на основе импульсного инвертора (К1114ЕУ4, КТ886) 27116.11.2016
68Зарядное устройство с таймером для Ni-Cd аккумуляторов 19316.11.2016
69Зарядное устройство с температурной компенсацией 25816.11.2016
70Зарядное устройство шуруповёрта P.I.T.466180314.07.2016
71Звуковой индикатор разряда 12V аккумулятора1403115.10.2002
72Измеритель заряда для автомобильного аккумулятора 30116.11.2016
73Импульсные источники питания на микросхемах и транзисторах 37116.11.2016
74Импульсные источники питания, теория и простые схемы 46516.11.2016
75Импульсный блок питания 5В 0,2А 32816.11.2016
76Импульсный блок питания на транзисторах и таймер на КР512ПС10 (12В-1,2А) 16616.11.2016
77Импульсный блок питания УМЗЧ мощностью 800Вт (ЛА7, ЛА8, ТМ2, КП707В2) 31116.11.2016
78Импульсный блок питания УНЧ 4х30В 200Вт 32116.11.2016
79Импульсный источник питания (5В 6А) 18616.11.2016
80Импульсный источник питания на 40 Вт 23416.11.2016
81Импульсный источник питания на микросхеме КР1033ЕУ10 (27В, 3А) 15716.11.2016
82Импульсный источник питания с полумостовым преобразователем (КР1156ЕУ2) 23616.11.2016
83Импульсный источник питания УМЗЧ (60В) 20816.11.2016
84Импульсный сетевой блок питания 9В 3А (КТ839) 23116.11.2016
85Импульсный сетевой блок питания УМЗЧ 2х25В, 20В, 10В 18716.11.2016
86Индикатор ёмкости батарей 26416.11.2016
87Интеллектуальное зарядное устройство1494948822.09.2008
88Источник питания 14В 12А (завод «Фотон», Ташкент)132180911.07.2016
89Источник питания для автомобильного трансивера 13В 20А 29616.11.2016
90Источник питания для гибридного (лампы, транзисторы) трансивера 19716.11.2016
91Источник питания для детских электрофицированных игрушек 12В 19016.11.2016
92Источник питания для измерительного прибора на микросхемах 18916.11.2016
93Источник питания для измерительных приборов 21316.11.2016
94Источник питания для компьютера 24616.11.2016
95Источник питания для логических микросхем (5В) 20616.11.2016
96Источник питания для трехвольтовых аудиоплейеров 19516.11.2016
97Источник питания для часов на БИС 19616.11.2016
98Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А) 32816.11.2016
99Источник питания повышенной мощности 12В 20А (142ЕН5+транзисторы) 33116.11.2016
100Источник питания повышенной мощности 14 В, 100 Ватт 26416.11.2016
101Источник питания с плавным изменением полярности +/- 12В 22016.11.2016
102Источник питания со стабилизацией на UL7523 (3В) 20416.11.2016
103Источники питания для варикапа 21716.11.2016
104Квазирезонансные преобразователи с высоким КПД 26916.11.2016
105Кедр-М781510418.11.2007
106Комбинированный блок питания 0-215В/0-12В/0,5А 25616.11.2016
107Комбинированный лабораторный блок питания 4-12V/1.5A (К140УД6,КП901) 29416.11.2016
108Конденсаторно-стабилитронный выпрямитель 25916.11.2016
109Лабораторный блок питания для рабочего места (3-18В 4А) 28016.11.2016
110Лабораторный блок питания с регулируемым напряжением от 5 до 100В (0,2А) 30016.11.2016
111Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А) 24716.11.2016
112Малогабаритное универсальное зарядное устройство для аккумуляторов 25616.11.2016
113Маломощный источник питания (9В, 70мА) 19116.11.2016
114Маломощный конденсаторный выпрямитель с ШИМ стабилизатором 24516.11.2016
115Маломощный регулируемый двуполярный источник питания (LM317, LM337) 16616.11.2016
116Маломощный сетевой блок питания (9В) 26416.11.2016
117Маломощный сетевой источник питания — выпрямитель на 9В 17316.11.2016
118Миниатюрный импульсный блок питания 5…12 В 26816.11.2016
119Миниатюрный импульсный сетевой блок питания 5В 0,5А 25216.11.2016
120Миниатюрный сетевой блок питания (5В, 200мА) 15616.11.2016
121Мощный блок питания для усилителя НЧ (27В/3А) 23716.11.2016
122Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741) 54716.11.2016
123Мощный импульсный блок питания для УНЧ (2х50В, 12В) 24516.11.2016
124Мощный источник питания на составных транзисторах 0-15В 20А (КТ947, КТ827) 38716.11.2016
125Мощный лабораторный источник питания 0-25В, 7А 37316.11.2016
126Мощный электронный сетевой трансформатор для магнитолы и радиостанции на 12В 28716.11.2016
127Обзор схем восстановления заряда у батареек 28016.11.2016
128Однополярный источник питания УНЧ (40В) 18816.11.2016
129Питание будильника 1,5В от сети 220В 25916.11.2016
130Питание микроконтролерных устройств от сети 220В 23016.11.2016
131Питание микроконтроллеров от сети 220В через трансформатор 17516.11.2016
132Питание микроконтроллеров от телефонной линии 21016.11.2016
133Питание низковольтной радиоаппаратуры от сети 19816.11.2016
134Поддержание аккумуляторов в рабочем состоянии804204.10.2002
135Подключение таймера к зарядному устройству аварийного аккумулятора 20016.11.2016
136Прецизионное зарядное устройство для аккумуляторов 25516.11.2016
137Прибор для измерения параметров аккумуляторов. 926110.06.2002
138Приставка-контроллер к зарядному устройству аккумулятора 12В 30516.11.2016
139Приставка-регулятор к зарядному устройству аккумулятора 32516.11.2016
140Простейшие пусковые устройства 12В для авто на основе ЛАТРа 42816.11.2016
141Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А) 35816.11.2016
142Простое зарядное устройство для аккумуляторов (до 55Ач) 30916.11.2016
143Простое зарядное устройство для аккумуляторов и батарей 27716.11.2016
144Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов3245527.06.2006
145Простой блок питания 5В/0,5А (КТ807) 29816.11.2016
146Простой двуполярный источник питания (14-20В, 2А) 19116.11.2016
147Простой импульсный блок питания мощностью 15Вт 23016.11.2016
148Простой импульсный блок питания на ИМС 27616.11.2016
149Простой импульсный источник питания 5В 4А 25216.11.2016
150Пятивольтовый блок питания с ШИ стабилизатором 21916.11.2016
151Регулируемый блок питания на ОУ LM324 (0-30В, 2А) 36116.11.2016
152Регулируемый двуполярный источник питания из однополярного 23616.11.2016
153Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А) 32916.11.2016
154Регулируемый источник питания на LM317T (1-37В 1,5А) 27716.11.2016
155Регулируемый источник питания на ток до 1 А (К142ЕН12А) 25316.11.2016
156Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202) 26016.11.2016
157Регуляторы заряда аккумуляторов от солнечных батарей 24016.11.2016
158Самодельное пусковое устройство130190525.06.2017
159Самодельный лабораторный источник питания с регулировкой 0-20В 27716.11.2016
160Сетевая «Крона» 9В/25мА 24416.11.2016
161Симметричный динистор в бестрансформаторном блоке питания 26016.11.2016
162Солнечное зарядное устройство13235136816.04.2014
163Стабилизатор напряжения сети СПН-400 \»Рубин\»246028.06.2012
164Стабилизатор тока для зарядки батареи 6В (142ЕН5А) 23216.11.2016
165Стабилизированный блок питания 3-12В/0,25А (142ЕН12А) 25016.11.2016
166Стабилизированный источник питания с автоматической защитой от коротких замыканий 21616.11.2016
167Стабилизированный лабораторный источник питания (0-27В, 500мА) 24116.11.2016
168Схема автоматического зарядного устройства (на LM555) 26916.11.2016
169Схема автоматического зарядного устройства для сотовых телефонов 53216.11.2016
170Схема блока питания и зарядного устройства для iPod4211522.03.2012
171Схема блока питания с напряжением 12В и током 6А 27716.11.2016
172Схема высоковольтного преобразователя (вход 12В, вых — 700В) 22616.11.2016
173Схема зарядно-разрядного устройства с током 5А (КУ208, КТ315) 33116.11.2016
174Схема зарядного устройства для Li-Ion и Ni-Cd аккумуляторов 41116.11.2016
175Схема зарядного устройства для аккумулятора от GSM-телефона (LM317) 17616.11.2016
176Схема зарядного устройства для батарей 26816.11.2016
177Схема зарядного устройства с повышающим преобразователем 22816.11.2016
178Схема измерителя выходного сопротивления батарей 22716.11.2016
179Схема импульсного стабилизатора для зарядки телефона 24416.11.2016
180Схема источника питания 12В, с током в нагрузке до 10 А 33316.11.2016
181Схема контроллера заряда батарей 20616.11.2016
182Схема непрерывного подзаряда батарей 23916.11.2016
183Схема простого зарядного устройства на диодах 23116.11.2016
184Схема стабилизированного источника питания 40В, 1.2А 24116.11.2016
185Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713) 38216.11.2016
186Схема универсального лабораторного источника питания 26616.11.2016
187Схема устройства для подзаряда батарей 12416.11.2016
188Схемы бестрансформаторного сетевого питания микроконтроллеров 25316.11.2016
189Схемы бестрансформаторных зарядных устройств 24816.11.2016
190Схемы нетрадиционных источников питания для микроконтроллеров 25916.11.2016
191Схемы питания микроконтроллеров от разъёмов COM, USB, PS/2 (5-9В) 30016.11.2016
192Схемы питания микроконтроллеров от солнечных элементов 27116.11.2016
193Схемы подзарядки маломощных аккумуляторных батарей для питания МК 26316.11.2016
194Схемы простых выпрямителей для зарядки аккумуляторов 33016.11.2016
195Таймер-индикатор разрядки батареи 21516.11.2016
196Тиристорное зарядное устройство на КУ202Е 37216.11.2016
197Универсальное зарядное устройство для маломощных аккумуляторов 25316.11.2016
198Универсальный блок питания с несколькими напряжениями 23616.11.2016
199Устройство автоматической подзарядки аккумулятора1072130.10.2005
200Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач 36116.11.2016
201Устройство для заряда и формирования аккумуляторных батарей 6-12В, 85Ач 35316.11.2016
202Устройство для поддержания заряда батареи 6СТ-9 24516.11.2016
203Устройство для хранения никель-кадмиевых аккумуляторов 22016.11.2016
204Устройство зарядное автоматическое УЗ-А-12-4,51341538719.04.2006
205Устройство контроля заряда и разряда аккумулятора 12В 33816.11.2016
206Экономичный импульсный блок питания 2×25В 3,5А 28316.11.2016
207Экономичный источник питания с малой разницей входного и выходного напряжения 5В 1А 23216.11.2016
208Эксплуатация никелево-кадмиевых аккумуляторов (НКА) при повышенных разрядных токах608806.10.2002
209Эксплуатация никелево-кадмиевых аккумуляторов при повышенных разрядных токах 292110.06.2002
210Электронный стабилизатор тока для зарядки аккумуляторных батарей 36916.11.2016

Схемы простых мощных зарядных устройств для аккумуляторов

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.
Зарядное устройство на лампе накаливания
Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В).
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.

Зарядное устройство на гасящих конденсаторах
Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.
Зарядное устройство на тиристоре
Зарядное устройство на тиристоре
Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI…VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1… VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24… 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.

Зарядное устройство на симисторе
Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.


Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).
Симистор
Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Зарядное устройство на полевом транзисторе

Рис.6

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16… 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Зарядное устройство на полевом транзисторе

Рис.7

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

 

Обзор схем зарядных устройств

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Простые схемы для зарядки самых разных аккумуляторов

Приветствую, Самоделкины!
Сегодня мы рассмотрим 3 простые схемы зарядных устройств, которые могут быть использованы для зарядки самых разных аккумуляторов.

Первые 2 схемы работают в линейном режиме, а линейный режим в первую очередь означает сильный нагрев. Но зарядное устройство вещь стационарная, а не портативная, чтобы КПД было решающим фактором, так что единственный минус представленных схем – это то, что они нуждаются в больших радиатор охлаждения, а в остальном все хорошо. Такие схемы всегда применялись и будут применяться, так как имеют неоспоримые плюсы: простота, низкая себестоимость, не «гадят» в сеть (как в случае импульсных схем) и высокая повторяемость.

Рассмотрим первую схему:


Данная схема состоит всего из пары резисторов (с помощью которых задается напряжение окончания заряда или выходное напряжение схемы в целом) и датчика тока, который задает максимальной выходной ток схемы.


Если нужно универсальное зарядное устройство, то схема будет выглядеть следующим образом:

Вращением подстроечного резистора можно задать любое напряжение на выходе от 3 до 30 В. По идее можно и до 37В, но в таком случае на вход нужно подавать 40В, чего автор (AKA KASYAN) делать не рекомендует. Максимальный выходной ток зависит от сопротивления датчика тока и не может быть выше 1,5А. Выходной ток схемы можно рассчитать по указанной формуле:

Где 1,25 — это напряжение опорного источника микросхемы lm317, Rs — сопротивление датчика тока. Для получения максимального тока 1,5А сопротивление этого резистора должно быть 0,8 Ом, но на схеме 0,2 Ома.

Дело в том, что даже без резистора максимальный ток на выходе микросхемы будет ограничен до указанного значения, резистор тут в большей степени для страховки, а его сопротивление снижено для минимизации потерь. Чем больше сопротивление, тем больше на нем будет падать напряжение, а это приведет к сильному нагреву резистора.

Микросхему обязательно устанавливают на массивный радиатор, на вход подается не стабилизированное напряжение до 30-35В, это чуть меньше максимально допустимого входного напряжения для микросхемы lm317. Нужно помнить, что микросхема lm317 может рассеять максимум 15-20Вт мощности, обязательно учитывайте это. Также нужно учитывать то, что максимальное выходное напряжение схемы будет на 2-3 вольта меньше входного.

Зарядка происходит стабильным напряжением, а ток не может быть больше выставленного порога. Данная схема может быть использована даже для зарядки литий-ионных аккумуляторов. При коротких замыканиях на выходе ничего страшного не произойдет, просто пойдет ограничение тока и, если охлаждение микросхемы хорошее, а разница входного и выходного напряжения небольшое, схема в таком режиме может проработать бесконечно долгое время.



Собрано все на небольшой печатной плате.


Ее, а также печатные платы для 2-ух последующих схем можете скачать вместе с общим архивом проекта.

Вторая схема из себя представляет мощный стабилизированный источник питания с максимальным выходным током до 10А, была построена на базе первого варианта.


Она отличается от первой схемы тем, что тут добавлен дополнительный силовой транзистор прямой проводимости.

Максимальный выходной ток схемы зависит от сопротивления датчиков тока и тока коллектора использованного транзистора. В данном случае ток ограничен на уровне 7А.

Выходное напряжение схемы регулируется в диапазоне от 3 до 30В, что у позволит заряжать практически любые аккумуляторы. Регулируют выходное напряжение с помощью того же подстроечного резистора.


Этот вариант отлично подходит для зарядки автомобильных аккумуляторов, максимальный ток заряда с указанными на схеме компонентами составляет 10А.

Теперь давайте рассмотрим принцип работы схемы. При малых значениях тока силовой транзистор закрыт. При увеличении выходного тока падение напряжения на указанном резисторе становится достаточным и транзистор начинает открываться, и весь ток будет протекать по открытому переходу транзистора.


Естественно из-за линейного режима работы схема будет нагреваться, особенно жестко будут греться силовой транзистор и датчики тока. Транзистор с микросхемой lm317 прикручивают на общий массивный алюминиевый радиатор. Изолировать подложки теплоотвода не нужно, так как они общие.

Очень желательно и даже обязательно использование дополнительного вентилятора, если схема будет эксплуатироваться на больших токах.
Для зарядки аккумуляторов, вращением подстроечного резистора нужно выставить напряжение окончания заряда и все. Максимальный ток заряда ограничен 10-амперами, по мере заряда батарей ток будет падать. Схема коротких замыканий не боится, при КЗ ток будет ограничен. Как и в случае первой схемы, если имеется хорошее охлаждение, то устройство сможет долговременно терпеть такой режим работы.
Ну а теперь несколько тестов:


Как видим стабилизация свое отрабатывает, так что все хорошо. Ну и наконец третья схема:

Она представляет из себя систему автоматического отключения аккумулятора при полном заряде, то есть это не совсем зарядное устройство. Начальная схема подвергалась некоторым изменением, а плата дорабатывалась в ходе испытаний.

Рассмотрим схему.


Как видим она до боли простая, содержит всего 1 транзистор, электромагнитное реле и мелочевку. У автора на плате также имеется диодный мост по входу и примитивная защита от переполюсовки, на схеме эти узлы не нарисованы.


На вход схемы подается постоянное напряжение с зарядного устройства или любого другого источника питания.

Тут важно заметить, что ток заряда не должен превышать допустимый ток через контакты реле и ток срабатывания предохранителя.


При подаче питания на вход схемы, заряжается аккумулятор. В схеме есть делитель напряжения, с помощью которого отслеживается напряжение непосредственно на аккумуляторе.

По мере заряда, напряжение на аккумуляторе будет расти. Как только оно становится равным напряжению срабатывания схемы, которое можно выставить путем вращения подстроечного резистора, сработает стабилитрон, подавая сигнал на базу маломощного транзистора и тот сработает.

Так как в коллекторную цепь транзистора подключена катушка электромагнитного реле, последняя также сработает и указанные контакты разомкнутся, а дальнейшая подача питания на аккумулятор прекратится, заодно и сработает второй светодиод, уведомив о том, что зарядка окончена.


Для настройки схемы на ее выход подключается конденсатор большой емкости, он у нас в роли быстро заряжаемого аккумулятора. Напряжение конденсатора 25-35В.

Сперва подключаем ионисторы или конденсатор к выходу схемы, соблюдая полярность. По окончании заряда сперва отключаем зарядное устройство от сети, затем аккумулятор, иначе реле будет ложно срабатывать. При этом ничего страшного не случится, но звук неприятный.
Далее берем любой регулируемый источник питания и выставим на нем то напряжение, до которого будет заряжаться аккумулятор и подключаем блок к входу схемы.

Затем медленно вращаем обычный резистор до тех пор, пока не сработает красный индикатор, после чего делаем один полный оборот подсроечника в обратном направлении, так как схема имеет некоторый гистерезис.

Как видим все работает. Благодарю за внимание. До новых встреч!


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Практические схемы универсальных зарядных устройств для аккумуляторов

Кто не сталкивался в своей практике с необходимостью зарядки батареи и, разочаровавшись в отсутствии зарядного устройства с необходимыми параметрами, вынужден был приобретать новое ЗУ в магазине, либо собирать вновь нужную схему?
Вот и мне неоднократно приходилось решать проблему зарядки различных аккумуляторных батарей, когда под рукой не оказывалось подходящего ЗУ. Приходилось на скорую руку собирать что-то простое, применительно к конкретному аккумулятору.

Ситуация была терпимой до того момента, пока не появилась необходимость в массовой подготовке и, соответственно, зарядке батарей. Понадобилось изготовить несколько универсальных ЗУ — недорогих, работающих в широком диапазоне входных и выходных напряжений и зарядных токов.

К этому моменту у меня уже была линейка отработанных схем, осталось лишь воплотить схему в готовое устройство, и попутно поделиться своими решениями. Вдруг камрадам пригодится!

Содержание / Contents

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее — АБ).

Все представленные схемы имеют следующие основные параметры:
• входное напряжение 15-24 В;
• ток заряда (регулируемый) до 4 А;
• выходное напряжение (регулируемое) 0,7 — 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.


ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН — вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее — ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 — соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона Vh2 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП — к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения — ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, — при недостаточной глубине гистерезиса, — вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале — в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 — следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму «-» АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.


Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства — использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же, как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.


В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).
Схема 3а — как вариант схемы 3.
ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.

Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе. Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей.
Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.


На схеме 5 вариант ШИ-регулятора с регулировкой тока и напряжения выполнена на микросхеме ШИМ/ЧИМ MC34063 с «довеском» на ОУ CA3130 (возможно использование прочих ОУ), с помощью которого осуществляется регулировка и стабилизация тока.
Такая модификация несколько расширила возможности MC34063 в отличии от классического включения микросхемы позволив реализовать функцию плавной регулировки тока.
На схеме 6 — вариант ШИ-регулятора выполнен на микросхеме UC3843 (U1), ОУ CA3130 (IC1), оптроне LTV817. Регулировка тока в этом варианте ЗУ осуществляется с помощью переменного резистора PR1 по входу токового усилителя микросхемы U1, выходное напряжение регулируется с помощью PR2 по инвертирующему входу IC1.
На «прямом» входе ОУ присутствует «обратное» опорное напряжение. Т.е., регулирование производится относительно «+» питания.

В схемах 5 и 6, при экспериментах использовались те же наборы компонентов (включая дроссели). По результатам испытаний все перечисленные схемы мало в чем уступают друг другу в заявленном диапазоне параметров (частота/ток/напряжение). Поэтому схема с меньшим количеством компонентов предпочтительнее для повторения.


ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4.
В схему введены дополнительно режимы.
1. «Калибровка — заряд» — для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора.
2. «Сброс» — для сброса ЗУ в режим заряда.
3. «Ток — буфер» — для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.

Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».

Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2. Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.

Применения калибровочного источника напряжения можно избежать, используя для калибровки собственно ЗУ. В этом случае следует отвязать выход ТШ от ШИ-регулятора, предотвратив его выключение при окончании заряда АБ, определяемым параметрами ТШ. АБ так или иначе будет отключена от ЗУ контактами реле К1. Изменения для этого случая показаны на схеме 8.

В режиме калибровки тумблер S1 отключает реле от плюса источника питания для предотвращения неуместных срабатываний. При этом работает индикация срабатывания ТШ.
Тумблер S2 осуществляет (при необходимости) принудительное включение реле К1 (только при отключенном режиме калибровки). Контакт К1.2 необходим для смены полярности амперметра при переключении батареи на нагрузку.
Таким образом однополярный амперметр будет контролировать и ток нагрузки. При наличии двухполярного прибора, этот контакт можно исключить. В конструкциях желательно в качестве переменных и подстроечных резисторов использование многооборотных потенциометров во избежании мучений при установке необходимых параметров.

Варианты конструктива приведены на фото. Схемы распаивались на перфорированных макетных платах экспромтом. Вся начинка смонтирована в корпусах от ноутбучных БП.
В конструкциях использовались китайские вольтметры (они же использовались и в качестве амперметров после небольшой доработки).
На корпусах смонтированы гнезда для внешнего подключения АБ, нагрузки, джек для подключения внешнего БП (от ноутбука).

В этом корпусе дополнительно смонтированы зажимы для подключения источника переменного тока (трансформатора). Соответственно, внутри дополнительно смонтирован диодный мост с конденсаторным сглаживающим фильтром.

Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

Константин (riswel)

Россия, г. Калининград

C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

 

Самодельное зарядное устройство для аккумулятора автомобиля

Внешний вид самодельного зарядного устройства для автомобиля

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля
зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Для зарядки автомобильного аккумулятора служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги.

Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки.

Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод ферритовое кольцо.

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.

Схема автоматического зарядного устройства на конденсаторах

Если схема для повторения Вам показалась сложной, то можно собрать более простую, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.

Схема регулятора тока на конденсаторах

Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты
от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема защиты от неправильного подключения полюсов аккумулятора - переполюсовки зарядного устройства

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение. При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме и

Схема зарядного устройства для сотового телефона

Мобильные телефоны обычно заряжаются от источника постоянного тока с регулируемым напряжением 5 В , поэтому в основном мы собираемся построить источник постоянного тока с регулируемым напряжением 5 В от 220 переменного тока. Этот источник постоянного тока может использоваться для зарядки мобильных устройств, а также в качестве источника питания для цифровых схем, макетных схем, микросхем, микроконтроллеров и т. Д.

Вы также можете построить 6 В постоянного тока, 9 В, 12 В, 15 В и т. Д., Используя соответствующий трансформатор, конденсатор и регулятор напряжения. Основная концепция остается прежней, вам просто нужно устроить радиатор для более высокого напряжения и тока.

Эта схема в основном состоит из понижающего трансформатора, двухполупериодного мостового выпрямителя и микросхемы стабилизатора напряжения 5 В (7805). Мы можем разделить эту схему на четыре части: (1) понижающее напряжение переменного тока (2) выпрямление (3) фильтрация (4) регулирование напряжения.

1. Понижающее напряжение переменного тока

Поскольку мы преобразуем 220 В переменного тока в 5 В постоянного тока, сначала нам понадобится понижающий трансформатор для снижения такого высокого напряжения. Здесь мы использовали понижающий трансформатор 9-0-9 1А, который преобразует 220В переменного тока в 9В переменного тока.В трансформаторе есть первичная и вторичная катушки, которые повышают или понижают напряжение в зависимости от количества витков в катушках.

Выбор подходящего трансформатора очень важен. Номинальный ток зависит от требований по току Цепь нагрузки (цепь, которая будет использовать генерацию постоянного тока). Номинальное напряжение должно быть больше требуемого напряжения. Значит, если нам нужно 5 В постоянного тока, трансформатор должен иметь номинальное значение не менее 7 В, потому что стабилизатору напряжения IC 7805 нужно как минимум на 2 В больше i.е. 7 В для обеспечения напряжения 5 В.

2. Исправление

Выпрямление — это процесс удаления отрицательной части переменного тока (AC) и, следовательно, создания частичного постоянного тока. Этого можно добиться, используя 4 диода. Диоды позволяют току течь только в одном направлении. В первом полупериоде переменного тока диоды D2 и D3 смещены в прямом направлении, а D1 и D4 смещены в обратном направлении, а во втором полупериоде (отрицательная половина) диоды D1 и D4 смещены в прямом направлении, а D2 и D3 смещены в обратном направлении.Эта комбинация преобразует отрицательный полупериод в положительный.

full wave rectifier

На рынке доступен двухполупериодный мостовой выпрямитель, который состоит из 4 внутренних диодов. Здесь мы использовали этот компонент.

Full Wave Bridge Rectifier

3. Фильтрация

Выходной сигнал после выпрямления не является надлежащим постоянным током, это колебательный выход с очень высоким коэффициентом пульсаций. Нам не нужен этот пульсирующий выход, для этого мы используем конденсатор.Конденсатор заряжается до тех пор, пока форма сигнала не достигнет своего пика, и разряжается в цепи нагрузки, когда форма сигнала становится низкой. Таким образом, когда выходной сигнал становится низким, конденсатор поддерживает правильное напряжение в цепи нагрузки, тем самым создавая постоянный ток. Теперь, как рассчитать значение этого конденсатора фильтра. Вот формулы:

C = I * т / В

C = рассчитываемая емкость

I = максимальный выходной ток (допустим, 500 мА)

t = 10 мс,

Мы получим волну частотой 100 Гц после преобразования переменного тока 50 Гц в постоянный через двухполупериодный мостовой выпрямитель.Поскольку отрицательная часть импульса преобразуется в положительную, один импульс будет считаться двумя. Таким образом, период времени будет 1/100 = 0,01 секунды = 10 мс

.

В = Пиковое напряжение — напряжение, подаваемое на микросхему регулятора напряжения (+2 больше номинального значения означает 5 + 2 = 7)

9-0-9 — это среднеквадратичное значение преобразований, поэтому пиковое напряжение составляет Vrms * 1,414 = 9 * 1,414 = 12,73 В

Теперь 1,4 В будет понижено на 2 диода (0,7 на диод), поскольку 2 будут смещены вперед для полуволны.

Итак, 12,73 — 1,4 = 11,33 В

Когда конденсатор разряжается в цепи нагрузки, он должен обеспечить работу микросхемы 7805 В напряжением 7 В, поэтому в итоге V будет:

В = 11.33-7 = 4,33в

Итак, теперь C = I * t / V

C = 500 мА * 10 мс / 4,33 = 0,5 * 0,01 / 4,33 = 1154 мкФ ~ 1000 мкФ

filteration

4. Регулирование напряжения

Стабилизатор напряжения IC 7805 используется для обеспечения регулируемого напряжения 5 В постоянного тока. Входное напряжение должно быть на 2 В больше, чем номинальное выходное напряжение для правильной работы ИС, это означает, что требуется не менее 7 В, хотя он может работать в диапазоне входного напряжения 7-20 В. Внутри регуляторов напряжения есть все схемы, обеспечивающие надлежащий регулируемый постоянный ток.К выходу 7805 следует подключить конденсатор емкостью 0,01 мкФ, чтобы устранить шум, возникающий при переходных изменениях напряжения.

regulation

Вот полная принципиальная схема зарядного устройства для сотового телефона :

Вы должны быть очень осторожны при построении этой схемы, так как здесь задействована сеть переменного тока 220 В.

,Схема зарядного устройства для беспроводного мобильного телефона

| Проекты самодельных схем

Зарядное устройство для беспроводного мобильного телефона — это устройство, которое заряжает совместимый мобильный телефон или мобильный телефон, расположенный рядом с ним, посредством высокочастотной беспроводной передачи тока без какого-либо физического контакта.

В этом посте мы узнаем, как создать схему зарядного устройства для беспроводного мобильного телефона, чтобы облегчить зарядку беспроводного мобильного телефона без использования обычного зарядного устройства.

The Objective

Здесь требуется, чтобы мобильный телефон был установлен с модулем схемы приемника внутри и подключен к контактам зарядного гнезда для реализации процесса беспроводной зарядки.Как только это будет сделано, сотовый телефон просто нужно держать над беспроводным зарядным устройством для инициирования предлагаемой беспроводной зарядки.

В одном из наших предыдущих постов мы изучили аналогичную концепцию, которая объясняла зарядку литий-ионной батареи в беспроводном режиме. Здесь мы также используем похожую технику, но пытаемся реализовать то же самое, не вынимая батарею из мобильного телефона.

Кроме того, в предыдущем посте мы всесторонне изучили основы беспроводной зарядки, воспользуемся приведенными там инструкциями и попробуем разработать предлагаемую схему зарядного устройства для беспроводного мобильного телефона.

Мы начнем со схемы передатчика энергии, которая является базовым блоком и должна быть подключена к источнику питания и для передачи энергии на модуль мобильного телефона.

Характеристики катушки передатчика (Tx):

Схема передатчика для этого зарядного устройства для беспроводного мобильного телефона является решающим этапом и должна быть построена точно, и она должна быть структурирована в соответствии с популярной схемой катушки-блинчика Tesla, как показано ниже:

ДИАМЕТР КАТУШКИ ВОКРУГ 18 CMS

Изготовление печатной платы вышеупомянутой катушки Блинчика.

Вдохновленный вышеупомянутой теорией, меньшая компоновка той же катушки может быть выгравирована на печатной плате, как показано на следующей схеме, и подключена, как показано:

Размеры: 10 дюймов на 10 дюймов, больший размер может обеспечить более быструю зарядку и улучшенный выходной ток

На рисунке выше показана конструкция эмиттера мощности или радиатора, также вспомните принципиальную схему из нашего предыдущего поста, в приведенной выше конструкции используется точно такая же компоновка схемы, хотя здесь мы делаем это через печатную плату путем травления обмотки макет над ним.

Тщательное наблюдение показывает, что в приведенной выше схеме есть пара параллельных спиральных медных дорожек, идущих по спирали и образующих две половины катушки передатчика, при этом центральный отвод достигается с помощью соединенной красной перемычки на концах катушки.

Компоновка позволяет сделать конструкцию компактной и эффективной для требуемых операций.

Расположение гусениц может иметь форму квадрата или овала с одной стороны и квадратного сечения с другой, чтобы сделать устройство еще более гладким.

Остальная часть довольно проста и соответствует нашей предыдущей схеме, где включен транзистор 2N2222 для создания требуемых высокочастотных колебаний и распространения.

Схема работает от источника 12 В / 1,5 А, а количество витков (катушек) может быть выбрано приблизительно в соответствии со значением напряжения питания, то есть примерно от 15 до 20 витков на каждую половину катушки передатчика. Более высокие витки приведут к меньшему току и повышенному напряжению излучения и наоборот.

При включении можно ожидать, что схема будет генерировать сильный магнитный поток вокруг спиральной дорожки, эквивалентный входной мощности.

Теперь излучаемая мощность должна быть поглощена с помощью идентичной схемы для выполнения беспроводной передачи энергии и предполагаемой зарядки сотового телефона.

Для этого нам понадобится коллектор или приемная цепь для сбора излучаемой мощности, это может быть разработано, как описано в следующем разделе:

Размер: 3 дюйма на 3 дюйма или в соответствии с местом для размещения внутри вашего мобильного телефона

Как можно увидеть в приведенной выше конструкции приемника, можно увидеть идентичную компоновку катушки, за исключением того, что здесь две концентрические спирали подключены параллельно для добавления тока, в отличие от компоновки передатчика, которая включала последовательное соединение из-за ограничения центрального отвода. для дизайна.

Конструкция должна быть достаточно маленькой, чтобы поместиться внутри стандартного мобильного телефона, чуть ниже задней крышки, а выход, который заканчивается через диод, может быть подключен либо к аккумулятору напрямую, либо через контакты зарядного гнезда (внутри).

После того, как вышеупомянутые схемы построены, схему передатчика можно соединить с указанным входом постоянного тока, а модуль приемника разместить прямо над платой передатчика в центре.

Светодиод с резистором 1 кОм может быть включен на выходе схемы приемника, чтобы получить мгновенную индикацию процесса беспроводной передачи энергии.

После подтверждения операции выход приемника можно подключить к разъему сотового телефона для проверки реакции эффекта беспроводной зарядки.

Однако перед этим вы можете захотеть подтвердить вывод на мобильный телефон от модуля беспроводного приемника … он должен быть от 5 до 6 В, если больше, черный провод можно просто сместить и припаять несколько катушек вверх пока не будет достигнуто нужное напряжение.

После завершения всех подтверждений модуль можно разместить внутри мобильного телефона, и соединения будут выполнены надлежащим образом.

Наконец, мы надеемся, что если все будет сделано правильно, сборка может позволить вам держать мобильный телефон прямо над настроенным передатчиком и обеспечить успешную зарядку беспроводного мобильного телефона.

Создание практического прототипа

Вышеупомянутая концепция беспроводной передачи энергии была успешно опробована и протестирована с некоторыми изменениями г-ном Нароттамом Гуптой, который является страстным последователем этого блога.

Модифицированная схема зарядного устройства для беспроводного мобильного телефона и изображения прототипа можно увидеть ниже:

Схема зарядного устройства для беспроводного сотового телефона
О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *