Сварной шов тавровый: ГОСТ, технология сварки, катет шва

Содержание

техника и правила сваривания труб, а также в вертикальном, нижнем, потолочном положениях; технология и особенности выполнения

Тавровое соединение – это соединение двух деталей, расположенных под углом друг к другу, т.е. торец одной детали прилегает к боковой поверхности другой под углом 90 градусов. Простыми словами – к горизонтально лежащей детали приваривается вертикальная, образуя букву “Т”. Такие соединения могут быть без разделки кромок, с односторонней и двусторонней разделкой. Тавровые соединения используются при дуговой сварке, свариваются очень удобно в горизонтальном и вертикальном положении, удобнее всего в наклонном (в лодочку).

Где применяется

Двустороннее с разделкой кромок

Применение таврового соединения весьма широкое: в автомобилестроении, в строительных конструкциях (фермы, опоры, колонны, стойки), металлическая мебель (лавки-скамейки, столы, этажерки), мосты и путепроводы, газопроводы, нефтепроводы, системы водоснабжения, теплоснабжения зданий и сооружений.

Преимущества и недостатки

Тавровое соединение самое распространенное, одно из самых прочных. Данное соединение позволяет получать изделия и конструкции сложной формы. Расположение деталей буквой «Т» обеспечивает дополнительную жесткость конструкции. Качественно выполненная работа гарантирует практичность и надежность.

Недостатком такого соединения могут являться дефекты:

Такие дефекты зависят от качества выполнения работы. Низкая квалификация рабочего непосредственно станет причиной дефектов, но не мало важно и оборудование, расходные материалы (сварочные аппараты, проволока, электроды, защитный газ). Сам процесс является опасным, вы должны соблюдать все правила техники безопасности без исключения.

Техника выполнения, особенности

Для всех сварных соединений техника выполнения будет стандартная, важно учесть способ сварки. Тавровое соединение удобное, легко формировать шов, контролировать размер катета и внешний вид шва.

Перед началом работы производится технологическая подготовка поверхности, иначе наличие загрязнений и ржавчины снизит производительность сварочного процесса и приведет к дефектам. При сварке таврового шва электрод располагают в плоскости под углом 30-40 градусов относительно нижней пластины, сделав сборку деталей и прихватив – так соединение не поведет.

Одностороннее с разделкой шва в нижнем положении

Нужно проконтролировать угол между деталями и правильность расположения, если все правильно выполнено, то можно приступать непосредственно к сварке. Возбуждаем электрическую дугу и наклонив электрод немного к себе ведем его в одном положении, двигаться следует аккуратно ванной назад, совершая колебательные движения вдоль оси шва для расплавления кромок. Это нужно для того, что бы избежать непровара угла и одной из сторон детали. Можно нанести метку над углом на верхней пластине за границы которой электрод не должен будет выходить, так получится более ровный шов.

Техники сварки таврового соединения в различных положениях несколько отличаются друг от друга.

К сведению! Рассматривая технику сварки, можно сразу отметить, что легче всего выполнять сварку в нижнем положении, или положении «в лодочку».

Поэтому если есть такая возможность, то рекомендуется повернуть сварную конструкцию так, что бы сварные швы выполнять в нижнем положении.

После выполнения сварки зачищается шлак и обрабатывается поверхность металлической щеткой или другими приспособлениями.

Рекомендации

Если сваривать тавровым соединением тонкую и толстую пластину, то угол наклона электрода относительно толстой пластины будет примерно 60 градусов. Чтобы больше металла “стягивать” с толстой части на тонкую.

Также желательно просушить свариваемые поверхности для лучшего качества сварного шва.
[ads-pc-2][ads-mob-2]

Сварка труб

Опираясь на ГОСТ16037-80, который распространяется на сварные соединения трубопроводов из сталей и устанавливает основные типы, конструктивные элементы и размеры сварных соединений труб с трубами и арматурой, правильно будет сказать, что в нем таврового соединение нет. Все швы, которые называют тавровыми, относятся к угловым. Однако, когда к торцу трубы приваривается заглушка из пластины или фланец, это будет являться тавровым соединением. По большому счету, что бы не спорить по этому поводу, необходимо понимать, что

тавровое соединение деталей труб или любого другого металлопроката выполняется угловым швом и техника сварки трубопроводов сводится к технике сварке угловых швов.

Прежде всего нужно остановиться на подготовке труб перед сваркой таврового соединения. Трубы должны соответствовать всем требованиям и не иметь дефектов, загрязнения и ржавчины, после чего можно выполнять сварку.

Следует выполнить прихватки, для труб диаметром до 300 мм хватит 4 равномерно расположенных прихваток. Для более широких труб прихватки выполняются с одинаковым интервалом по всему диаметру. Торец одной трубы необходимо выкроить определенным образом что бы он плотно прилегал к боковой поверхности другой трубы. Для труб с небольшим диаметром сделать это не очень сложно при помощи нескольких манипуляций болгаркой.

Другое дело, когда предстоит работа с трубами больших диаметров. В данном случае, как правило, при разметке применяются различные шаблоны и развертки.

Видео

Полезные ролик о том, как можно резать трубы для приваривания их торцом к боковине.

[ads-pc-3][ads-mob-3]
Далее выполняется сборка деталей на прихватки или в сборочно-сварочном приспособлении. Сварка соединения труб может выполняться как в поворотном положении (есть возможность вращения стыка вокруг своей оси) так и в неповоротном (нет возможности вращения стыка вокруг своей оси). Сваривая трубы, сварной шов приходиться выполнять по криволинейной поверхности, что несколько усложняет процесс. Необходимо стык разделить на участки и выполнять сварку за несколько приемов.

ВАЖНО! При этом нужно обеспечивать переплавление ранее наплавленного шва.

Сварной шов в зависимости от толщины стенки трубы выполняется за один или несколько проходов. Следует обратить внимание на состав труб и подобрать подходящие электроды. Сварной шов на трубах должен быть идеальный, в обязательном порядке проверяется наличие дефектов. Если дефекты имеются, то их исправляют.

Профильные трубы используются для ограждений, каркасов, различных металлических конструкций.

Совет! При соединении желательно убедиться в ровном срезе, иначе появится зазор, который придется сваривать отрывисто.

При тавровом соединении профильных труб так же выполняются прихватки. Электрод ведется под углом колебательными движениями снизу вверх. После сварки зачищается шлак.

Видео

В вертикальном положении

При тавровом соединении в вертикальном положении сварочный ток устанавливается более высоким для хорошего проплавления, сварку нужно выполнять снизу вверх с отрывом дуги.

К сведению! Вертикальные швы выполняются как с отрывом дуги, так и на проход. Это зависит от различных факторов: толщина металла, способ сварки, марка электрода.

Движение электрода выполняют петлями, уголками, дуговыми колебаниями и т.д., положение электрода должно быть 45 градусов, иногда сварку выполняют сверху вниз. Разжигая дугу, электрод держим перпендикулярно к свариваемой поверхности, такая техника сварки не удобна и нужно тщательно контролировать сварочную ванну. Для контроля ванны необходимо снизить сварочный ток, что бы не перегревать металл, электроду необходимо задать правильное положение, что бы давление дуги поддерживало жидкий металл, а не способствовало его стеканию в низ. Сварка производится на короткой дуге что бы расстояние между торцом электрода и деталью было минимальным.

https://youtu.be/U526FdTC1r4

В нижнем положении

Выполняя сварку в нижнем положении результата сварщик может достигнуть более высокого качества, ток должен быть выше, если полярность прямая и ниже, если полярность обратная.

Соединение вертикальное с разделкой кромки, шов в нижнем положении

Положение электрода направлено в корень сварного соединения, длина дуги меньше при сварке на обратной полярности, вести электрод нужно равномерно, не упуская сварочную ванну.

Прежде всего, необходимо правильно настроить параметры сварки, диаметр электрода, сила тока, что бы процесс сварки протекал стабильно. Электрод нужно расположить так, что бы он в одной плоскости располагался по биссектрисе между поверхностями деталей, а в другой плоскости наклонен в сторону его перемещения.

Сварочная дуга должна гореть по стыку деталей. Перемещать электрод необходимо с равномерной скоростью, так что бы кромки деталей успели расплавляться, а сварной шов сформироваться с нужным катетом. В случае необходимости получении шва с большим катетом необходимо дополнительно выполнять колебательные движения торцом электрода. Так же сварной шов может выполняться за несколько проходов, но при этом требуется тщательная зачистка от шлака после каждого прохода.

Видео

В потолочном положении

Для потолочного положения техника такая же, как и для нижнего положения только в зеркальной проекции. Основная сложность заключается в том, что расплавленный металл стремится вытекать из сварочной ванны.

Для предотвращения этого необходимо несколько снизить сварочный ток, что бы уменьшить тепловую мощность сварочной дуги.

Сварку следует выполнять на короткой длине дуги. Так же необходимо помнить, что в потолочном положении большое количество брызг раскаленного металла и шлака будет лететь на сварщика, что требует строгого соблюдения правил техники безопасности, правильной спецодежды и головного убора.

[ads-pc-4][ads-mob-4]

Правила сварки

При тавровом соединении нужно избегать непроваров, следует правильно перемещать электрод, предотвращая появление дефектов. В основном электрод располагается в плоскости ровно между привариваемыми деталями. Направлять электрод нужно снизу вверх (поднимать расплавленый метал и смешивать его с электродным расплавлением) по простой причине того, что расплавленный метал будет стекать на нижний.

Лучше всего наклонить поверхности под углом 45 градусов ( сварка в лодочку), тогда шов получится правильного сечения и работать под таким углом будет проще.

Не забудьте! Так же нужно учитывать зазор, для хорошего проплавления.

Прежде чем начать сварку, обязательно делаются прихватки. Предварительно измеряется конструкция, углы соединений должны быть 90 градусов. Перед работой нужно настроить ток, подобрать нужный электрод, обратить внимание на свариваемые поверхности, запастись нужными знаниями и практикой. Обязательно ознакомиться с техникой безопасности и приобрести нужную рабочую форму.

Оборудование

Для упрощения и процесса сборки и повышения производительности изготовления изделий при помощи сварки широко применяются различные сборочно-сварочные приспособления. По большей части сборка тавровых соединений деталей производиться на специальных столах – стапелях, оборудованных универсальными зажимами, фиксирующими и установочными устройствами. Они обеспечивают четкое и точное расположение деталей в нужном месте конструкции и под заданным углом. Также применяются различные шаблоны и кондукторы в зависимости от сложности сварной конструкции.

Основные виды сварных соединений и швов

Приветствую вас, уважаемые читатели. В сегодняшней статье мы расскажем вам об основных видах сварных соединений и швов. Многие специалисты сварочного производства называют данные соединения сварными, некоторые – сварочными, хотя от этого смысл не меняется.

В этой статье они так же будут упоминаться по разному, в зависимости от оборота речи, но помните: сварной и сварочный по отношению к соединениям и швам – это одно и то же.

Сварные соединения и швы классифицируются по нескольким признакам

Существует ряд типов сварных швов в зависимости от вида соединения:

  • — шов стыкового соединения
  • — шов таврового соединения
  • — шов нахлесточного соединения
  • — шов углового соединения

Стыковое соединение

Стыковое соединение представляет собой соединение двух листов или труб их торцевыми поверхностями. Данное соединение является самым распространенным, благодаря меньшему расходу металла и времени на сварку.

Стыковое соединение может быть, в зависимости от расположения шва:

  • — Односторонним
  • — Двусторонним

По подготовке соединения под сварку, в зависимости от толщины свариваемых изделий:

  • — Без скоса кромок
  • — Со скосом кромок

Одностороннее соединение без скоса кромок предполагает сварку листов толщиной до 4 мм (исключение — процесс Laser Hybrid Weld). Двусторонне соединение бес скоса кромок рекомендуется выполнять при сварке толщин до 8 мм. В обоих случаях для обеспечения качественного провара, необходимо делать небольшой зазор при соединении листов под сварку, оклоло 1- 2 мм.

Скос кромок при одностороннем сварном соединении рекомендуется делать при толщинах от 4 до 25 мм. Наиболее популярным является соединение со скосом кромок V-образного типа. Менее популярными, но также применяются односторонние скосы кромок и скосы U-образного типа. Для предотвращения возможностей прожогов во всех случаях делается небольшое притупление кромок.

При толщинах от 12 мм и более при двусторонней сварке рекомендуется делать X-образную разделку, которая имеет ряд преимуществ перед V-образной разделкой. Эти преимущества заключаются в уменьшении объема требуемого металла для заполнения разделки (почти в 2 раза), и соответственно увеличении скорости сварки и экономии сварочных материалов.

Тавровое соединение

Тавровое соединение представляет собой два листа, когда между ними образуется соединение в виде буквы «Т». Как и в случае со стыковыми соединениями, в зависимости от толщины металла выполняется сварка с одной или с обеих сторон, с разделкой или без. Основные типы таврового сварного соединения представлены на рисунке.

Некоторые советы по сварке таврового соединения:

  • 1. При сварке таврового соединения тонкого металла с более толстым, необходимо, чтобы угол наклона электрода или сварочной горелки был около 60° к более толстому металлу. Как это показано ниже:

  • 2. Сварку таврового соединения (и углового в такой же степени) можно значительно упростить, расположив его для сварки «в лодочку». Это позволяет проводить сварку преимущественно в нижнем положении, увеличивая скорость сварки и уменьшая вероятность появления подрезов, которые являются очень частым дефектом таврового сварного соединения, наряду с непроваром. В некоторых случаях одного прохода будет недостаточно, поэтому для заполняющих швов требуется осуществлять колебания горелки.

    Сварка «в лодочку» используется также при автоматической и роботизированной сварке, где изделие кантуется при помощи специального кантователя в нужное для сварки положение.

  • 3. В настоящее время существуют специальные сварочные процессы для увеличенного проплавления. Применяя их, можно добиться односторонней сварки достаточно толстого металла с гарантированным проваром и формированием обратного валика с другой стороны. Подробнее о сварочном процессе Rapid Weld можно ознакомиться здесь. О сварочном оборудовании для односторонней сварки таврового шва с обратным вормированием валика можно узнать в разделе «сварочный полуавтомат QINEO TRONIC PULSE»

Соединение внахлестку

Данный тип соединения рекомендуется применять при сварке листов толщиной до 10 мм, причем сваривать листы требуется с обеих сторон. Делается это из-за того, чтобы не было возможности попадания влаги между ними. Так как сварочных швов при этом соединении два, то соответственно увеличивается и время на сварку и расходуемые сварочные материалы.

Угловое соединение

Угловым сварочным соединением называют тип соединения двух металлических листов, расположенных друг к другу под прямым или другим углом. Данные соединения также могут быть со скосом кромок или без, в зависимости от толщин. Иногда угловое соединение проваривается и изнутри.

Классификация по другим признакам

Сварные соединения и швы также классифицируют по другим признакам.

Типы соединений по степени выпуклости:

  • — нормальные
  • — выпуклые
  • — вогнутые

Выпуклость шва зависит как от применяемых сварочных материалов, так и режимов сварки. Например, при длинной дуге шов получается пологим и широким, и, наоборот, при сварке на короткой дуге шов получается более узким и выпуклым. Так же на степень выпуклости влияет скорость сварки и ширина разделки кромок.

Типы соединений по положению в пространстве:

  • — нижнее
  • — горизонтальное
  • — вертикальное
  • — потолочное

Наиболее оптимальным для сварки является нижнее положение шва. Поэтому при проектировании изделия и составлении технологии сварочного процесса следует это учитывать. Сварка в нижнем положении способствует высокой производительности, является наиболее простым процессом с получением качественного сварного шва.

Горизонтальное и вертикальное положение сварного соединения требует от сварщика повышенной квалификации, а потолочное является наиболее трудоемким и не безопасным.

Типы сварных соединений по степени протяженности:

  • — сплошные (непрерывные)
  • — прерывистые

Прерывистые сварные швы применяются в соединениях, где не требуется герметичности.

Надеюсь, данная информация по типам сварных швов и соединений будет полезна вам и поможет увеличить качество и производительность ваших сварных конструкций при проектировании. А так же поможет сделать сам сварочный процесс безопасным и наиболее оптимальным. Спасибо за внимание, читайте также другие статьи.

© Смарт Техникс

Данная статья является авторским продуктом, любое её использование и копирование в Интернете разрешена с обязательным указанием гиперссылки на сайт www.smart2tech.ru

Обозначение сварных швов на чертежах — Справочная информация

Условные изображения и обозначения швов сварных соединений ГОСТ 2,312-72

СВАРКА МЕТАЛЛА.Термины и определения основных понятий ГОСТ 2601-84

http://docs.cntd.ru/… ment/1200004380

 Выдержка из ГОСТа —

 

   

57. Сварное соединение

Неразъемное соединение, выполненное сваркой

D. Schweissverbindung

Е . Welded joint

F. Joint soudé; Assemblage soudé; Soudure

58. Стыковое соединение

Сварное соединение двух элементов, примыкающих друг к другу торцовыми поверхностями

D. Stumpfstoss; Stumptschweissverbindung

Е . Butt joint

F. Assemblage en bout; Joint en bout

59. Угловое соединение

Сварное соединение двух элементов, расположенных под углом и сваренных в месте примыкания их краев

D. Eckstoss; Eckverbindung

Е . Corner joint; Fillet weld

F. Joint d’angle; Soudure en corniche

60. Нахлесточное соединение

Сварное соединение, в котором сваренные элементы расположены параллельно и частично перекрывают друг друга

D. Überlappstoss; Überlappverbindung

Е . Lap joint; Overlap joint

F. Assemblge à recouvrement; Joint a recouvrement

61. Тавровое соединение

Сварное соединение, в котором торец одного элемента примыкает под углом и приварен к боковой поверхности другого элемента

Ндп. Соединение впритык

D. T-Stoss; T-Verbindung

E. Tee joint; T-joint

F. Assemblage en T; Joint en T

62. Торцовое соединение

Сварное соединение, в котором боковые поверхности сваренных элементов примыкают друг к другу

Ндп. Боковое соединение

D. Stirnstoss

E. Edge joint; Flange joint

F. Joint des plaques juxtaposées; Joint à bords relevées

63. Сварная конструкция

Металлическая конструкция, изготовленная сваркой отдельных деталей

D. Schweisskonstruktion

Е . Welded structure

F. Construction soudée

64. Сварной узел

Часть конструкции, в которой сварены примыкающие друг к другу элементы

D. Schweissteil; Schweisseinheit

Е . Welded assembly

F. Ensemble soudé; Assemblage soude.

65. Сварной шов

Участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла или в результате пластической деформации при сварке давлением или сочетания кристаллизации и деформации

Шов

D. Schweissnaht

E. Weld

F. Soudure

66. Стыковой шов

Сварной шов стыкового соединения

D. Stumpfnaht; Slossnalit

Е . Butt weld

F. Soudure en bout; Soudure bout à bout

67. Угловой шов

Сварной шов углового, нахлесточного или таврового соединений

D. Kehlnaht

Е . Fillet weld

F. Soudure d’angle

68. Точечный шов

Сварной шов, в котором связь между сваренными частями осуществляется сварными точками

D. Punktschweissung

Е . Spot weld

F. Soudure par points

69. Сварная точка

Элемент точечного шва, представляющий собой в плане круг или эллипс

D. Schwelsspunkt

Е . Weld spot; Weld point

F. Point de soudure; Point soudé

70. Ядро точки

Зона сварной точки, металл которой подвергался расплавлению

D. Schweisslinse

Е . Weld nugget; Spot weld nugget

F. Noyau de soudure; Lentille de soudure

71. Непрерывный шов

Сварной шов без промежутков по длине

Ндп. Сплошной шов

D. Durchlauiende Naht

Е . Continuous weld; Uninterrupted weld

F. Soudure continue

72. Прерывистый шов

Сварной шов с промежутками по длине

D. Unterbrochene Naht

Е . Interrupted weld; Intermittent weld

F. Soudure discontinue; Soudure intermittente

73. Цепной прерывистый шов

Двухсторонний прерывистый шов, у которого промежутки расположены по обеим сторонам стенки один против другого

Цепной шов

D. Symmetrisch unterbrochene Naht

Е . Chain intermittent weld; Chain intermittent fillet weld

F. Soudure discontinue symmétrique

74. Шахматный прерывистый шов

Двухсторонний прерывистый шов, у которого промежутки на одной стороне стенки расположены против сваренных участков шва с другой ее стороны

Шахматный шов

D. Unterbrochene versetzte Naht

Е . Staggered intermittent weld

F. Soudure discontinue alternée

75. Многослойный шов

D. Mehrlagennaht

Е . Multi-run weld; Multi-pass weld

F. Soudure en plusieurs passes;

Soudure à couches multiples;

Soudure à plusieurs couches

76. Подварочный шов

Меньшая часть двухстороннего шва, выполняемая предварительно для предотвращения прожогов при последующей сварке или накладываемая в последнюю очередь в корень шва

D. Gegennaht

Е . Sealing bead

F. Cordon support; Cordon à l’envers

77. Прихватка

Короткий сварной шов для фиксации взаимного расположения подлежащих сварке деталей

D. Heftnaht

Е . Tack weld

F. Soudure de pointage

78. Монтажный шов

Сварной шов, выполняемый при монтаже конструкции

D. Baustellenschweissnaht; Montageschweissungs

Е . Site weld

F. Soudure de montage

79. Валик

Металл сварного шва, наплавленный или переплавленный за один проход

D. Schweissraupe

Е . Weld bead; Bead

F . Cordon

80. Слой сварного шва

Часть металла сварного шва, которая состоит из одного или нескольких валиков, располагающихся на одном уровне поперечного сечения шва

Слой

D. Lage

Е . Layer

F . Couche

81. Корень шва

Часть сварного шва, наиболее удаленная от его лицевой поверхности

D. Nahtwurzcl; Wurzel

Е . Weld root

F. Racine de la soudure

82. Выпуклость сварного шва

Выпуклость шва, определяемая расстоянием между плоскостью, проходящей через видимые линии границы сварного шва с основным металлом и поверхностью сварного шва, измеренным в месте наибольшей выпуклости

Выпуклость шва

Ндп. Усиление шва

D. Nahtüberhöhung

Е . Weld reiniorcemcnt; Weld convexity

F.Surépaisseur de la soudure

83. Вогнутость углового шва

Вогнутость, определяемая расстоянием между плоскостью, проходящей через видимые линии границы углового шва с основным металлом и поверхностью шва, измеренным в месте наибольшей вогнутости

Вогнутость шва

Ндп.  Ослабление шва

D. Konkavität der Kehlnaht

Е . Fillet weld concavity

F. Concavité de la soudure

84. Толщина углового шва

Наибольшее расстояние от поверхности углового шва до точки максимального проплавления основного металла

D. Nahthöhe; Kehlnahtdicke

Е . Fillet weld throat thickness

F. Epaisseur à clin; Epaisseur d’une soudure en angle

85. Расчетная высота углового шва

Длина перпендикуляра, опущенного из точки максимального проплавления в месте сопряжения свариваемых частей на гипотенузу наибольшего вписанного во внешнюю часть углового шва прямоугольного треугольника

Расчетная высота шва

D. Rechnerische Nahtdicke

Е . Desipn throat thickness

F. Epaisseur nominale de la soudure

86. Катет углового шва

Кратчайшее расстояние от поверхности одной из свариваемых частей до границы углового шва на поверхности второй свариваемой части

Катет шва

D . Schenkell ä ng у; Nahtschenkel

Е . Fillet weld leg

F. Côte de la soudure d’angle

87. Ширина сварного шва

Расстояние между видимыми линиями сплавления на лицевой стороне сварного шва при сварке плавлением

Ширина шва

D . Nahtbreite

Е . Weld width

F. Largeur de la soudure

88. Коэффициент формы сварного шва

Коэффициент, выражаемый отношением ширины стыкового или углового шва к его толщине

Коэффициент формы шва

D. Nahtiormfaktor

Е . Weld shape factor; Weld geometry factor

F. Facteur géométrique de la soudure

89. Механическая неоднородность сварного соединения

Различие механических свойств отдельных участков сварного соединения

Механическая неоднородность

D . Mechanische Inhoniogenit ä t

Е . Mechanical heterogeneity

F. Hétérogénéité mécanique

90. Мягкая прослойка сварного соединения

Участок сварного соединения, в котором металл имеет пониженные показатели твердости и (или) прочности по сравнению с металлом соседних участков

Мягкая прослойка

D. Weiche Zwischenlage

Е . Soft interlayer

F. Couche intermédière douce

91. Твердая прослойка сварного соединения

Участок сварного соединения, в котором металл имеет повышенные показатели твердости и (или) прочности по сравнению с металлом соседних участков

Твердая прослойка

D. Harte Zwischenlage

Е . Hard interlayer

F. Couche intermédière dure

92. Разупрочненный участок сварного соединения

Участок зоны термического влияния, в котором произошло снижение прочности основного металла

Разупрочненный участок

D. Infestigte Zone

E. Weakened zone

F. Zone affaibliu

93. Контактное упрочнение мягкой прослойки

Повышение сопротивления деформированию мягкой прослойки сварного соединения за счет сдерживания ее деформаций соседними более прочными его частями

Контактное упрочнение

D. Lokale Verfestigung

Е . Local strengthening

F. Raffermissement locale

ТЕХНОЛОГИЯ СВАРКИ

94. Направление сварки

Направление движения источника тепла вдоль продольной оси сварного соединения

D. Schweissrichtung

Е . Direction of welding

F. Sens de la soudure; Direction de la soudure

95. Обратноступенчатая сварка

Сварка, при которой сварной шов выполняется следующими один за другим участками в направлении, обратном общему приращению длины шва

D. Pilgerschrittschweissen

Е . Back-step sequence; Back-step welding; Step-back welding

F. Soudage à pas de pélerin

96. Сварка блоками

Обратноступенчатая сварка, при которой многослойный шов выполняют отдельными участками с полным заполнением каждого из них

D. Absatzweises Mehrlagenschweissen

Е . Block sequence

F. Soudage par blocs successifs

97. Сварка каскадом

Сварка, при которой каждый последующий участок многослойного шва перекрывает весь предыдущий участок или его часть

D. Kaskadenschweissung

Е . Cascade welding

F. Soudage en cascade

98. Проход при сварке

Однократное перемещение в одном направлении источника тепла при сварке и (или) наплавке

Проход

D. Schweissgang

Е . Pass; Run

F . Passe

99. Сварка напроход

Сварка, при которой направление сварки неизменно

D. Einrichtungschweissen

Е . One direction welding

F. Soudage dans un sens

100. Сварка вразброс

Сварка, при которой сварной шов выполняется участками, расположенными в разных местах по его длине

D. Absatzweises Schweissen

E. Skip welding

F. Soudage fractionné

101. Сварка сверху вниз

Сварка плавлением в вертикальном положении, при которой сварочная ванна перемещается сверху вниз

D. Fallnahlschweissen; Abwärtsschweissen

E. Downhill welding

F. Soudage descendant

102. Сварка снизу вверх

Сварка плавлением в вертикальном положении, при которой сварочная ванна перемещается снизу вверх

D. Aufwärtsschweissen

E. Uphill welding

F. Soudage montant; Soudage ascendant

103. Сварка на спуск

Сварка плавлением в наклонном положении, при которой сварочная ванна перемещается сверху вниз

D. Bergabschweissen

E. Downward welding (in the inclined position)

F. Soudage descendant (en position inclinée)

104. Сварка на подъем

Сварка плавлением в наклонном положении, при которой сварочная ванна перемещается снизу вверх

D. Schrägaufwärtsschweissen Bergautschweissen

E. Upward welding (in the inclined position)

F. Soudade montant (en position inclinée )

105. Сварка углом вперед

Дуговая сварка, при которой электрод наклонен под острым углом к направлению сварки

D. Schweissen mit stechendcr Brennerstellung

E. Welding with electrode inclined under acute angle

F. Soudage avec électrode inclinése en avant

106. Сварка углом назад

Дуговая сварка, при которой электрод наклонен под тупым углом к направлению сварки

D. Schweissen mit schleppen der Brennersteilung

E. Welding with electrode in dined under obtuse angle

F. Soudage avec électrode inclinése en arriére

107. Сварка па весу

Односторонняя спарка со сквозным проплавлением кромок без использования подкла

 

https://internet-law…gosts/gost/851/

Если вы скажете, что ГОСТ – ваше любимое слово, вам вряд ли кто-нибудь поверит. Но если вы занимаетесь сваркой и претендуете на статус профессионала высокого класса, вам придется это слово если не полюбить, то относиться со всем уважением.

Его нужно не просто уважать, а хорошо разбираться в положенных государственных стандартах, касающихся типологии сварочных способов. Почему? Потому что, если вы работаете с чем-то серьезнее, чем старый тазик на даче, вы обязательно столкнетесь с рабочими чертежами, где будут в огромных количествах значки, буквы и аббревиатуры.

Все верно, без технических спецификаций и стандартных обозначений – никуда. Современные сварочные технологии – это широкий набор самых разных методов со своими требованиями и техническими нюансами. Все они укладываются в несколько стандартов, по которым мы сейчас пройдемся и рассмотрим самым внимательным образом.

Обозначения сварки на чертежах по ГОСТу на первый взгляд выглядят устрашающе. Но если разобраться и запастись оригинальными версиями трех главных ГОСТов по видам и обозначениям сварочных технологий, обозначения станут понятными и информативными, а ваша работа точной и профессиональной.

Виды сварочных швов

Виды сварных соединений.

Сначала ЕСКД – это Единая Система Конструкторской Документации, если проще – комплекс всевозможных стандартов, согласно которым должны выполняться все современные технические чертежи, в том числе документация по сварочным работам.

В составе этой системы есть несколько стандартов, которые нас интересуют:

  1. ГОСТ 2.312-72 под названием «Условные изображения и обозначения швов сварных соединений».
  2. ГОСТ 5264-80 «Ручная дуговая сварка. Соединения сварные», в котором исчерпывающе описаны все возможные виды и обозначения сварных швов.
  3. ГОСТ 14771-76 “Швы сварных соединений, сварка в защитных газах”.

Чтобы разобраться с условными обозначениями сварочных способов в инженерных чертежах, нужно разобраться и с их видами. Предлагаем взглянуть на пример обозначения сварного шва на чертеже:

Выглядит громоздко и устрашающе. Но мы не будем нервничать и не спеша во всем разберемся. В это длинной аббревиатуре есть четкая логика, начнем двигаться по этапам. Разобьем этого монстра на девять составных частей:

Теперь эти же составные элементы по квадратам:

  • Квадрат 1 – вспомогательные знаки для обозначения: замкнутая линия или монтажное соединение.
  • Квадрат 2 – стандарт, по которому приведены условные обозначения.
  • Квадрат 3 – обозначение буквой и цифрой типа соединения с его конструктивными элементами.
  • Квадрат 4 – способ сварки согласно стандарту.
  • Квадрат 5 – тип и размеры конструктивных элементов по стандарту.
  • Квадрат 6 – характеристика в виде длины непрерывного участка.
  • Квадрат 7 – характеристика соединения, вспомогательный знак.
  • Квадрат 8 – вспомогательный знак для описания соединения или его элементов.

А теперь разберём в деталях каждый элемент нашей длинной аббревиатуры.

В квадрате №1 находится кружок – одна из дополнительных характеристик, символ кругового соединения. Альтернативным символом является флажок, обозначающий монтажный вариант вместо кругового.

Или под полкой, если это шов невидимый и расположен с обратной стороны, т.е. с изнанки. Что считать лицевой стороной, а что изнанкой? Лицевая сторона одностороннего соединения – всегда та, с которой производится работа, это просто. А вот в двустороннем варианте с несимметричными кромками лицевой стороной будет та, где идет сварка основного соединения. А если кромки симметричные лицевой и изнанкой могут любые стороны.

Специальная односторонняя стрелка показывает шовную линию. С этой стрелкой связана еще одна специфическая особенность сварочных чертежей. У этой стрелки с односторонним оперением есть симпатичная особенность под названием «полка». Полка играет роль настоящей полки – все условные обозначения могут располагаться на полке, если указано видимое соединение.

А вот самые популярные вспомогательные знаки, используемые в чертежах со сваркой:

Разбираем квадраты №2 и 3, виды швов по ГОСТам

Вариантами соединений вплотную занимаются два стандарта: уже знакомый нам ГОСТ 14771-76 и знаменитый ГОСТ 5264-80 о ручной дуговой сварке.

Чем знаменит второй стандарт: он был написан много лет назад – в 1981 году, и это было сделано так грамотно, что этот документ отлично работает до сих пор.

Пример чертежа сварных швов по ГОСТ.

Виды сварочных соединений следующие:

С – стыковой шов. Свариваемые металлические поверхности соединяются смежными торцами, находятся на одной поверхности или в одной плоскости. Это один из самых распространенных вариантов, так как механические параметры стыковых конструкций очень высокие. Вместе с тем этот способ достаточно сложный с технической точки зрения, он по силам опытным мастерам.

Т – тавровый шов. Поверхность одной металлической заготовки соединяется с торцом другой заготовки. Это самая жесткая конструкция из всех возможных, но за счет этого тавровый способ не любит и не предназначен для нагрузок с изгибаниями.

Н – нахлесточный шов. Свариваемые поверхности параллельно смещены и немного перекрывают друг друга. Способ довольно прочный. Но нагрузки переносит меньше, чем стыковые варианты.

У – угловой шов. Плавление идет по торцам заготовок, поверхности деталей держат под углом друг к другу.

О – особые типы. Если способа нет в ГОСТе, в чертеже обозначается особый тип сварки.

Оба стандарта в рамках ЕКСД хорошо перекликаются друг с другом и справедливо делят ответственность по видам:

Варианты изображения сварных швов на чертежах.

Соединения ручного дугового способа по ГОСТу 5264-80:

  • С1 – С40 стыковые
  • Т1 – Т9 тавровые
  • Н1 – Н2 нахлесточные
  • У1 – У10 угловые

Соединения сварки в защитных газах по ГОСТу 14771-76:

  • С1 – С27 стыковые
  • Т1 – Т10 тавровые
  • Н1 – Н4 нахлесточные
  • У1 – У10 угловые

В нашей аббревиатуре во втором квадрате указан ГОСТ 14771-76, а в третьем Т3 – тавровый способ без скоса кромок двусторонний, который как раз указан в этом стандарте.

 

Квадрат №4, способы сварки

Как обозначаются различные виды швов.

Также в стандартах присутствуют обозначения способов сварки, вот примеры самых распространенных из них:

  • A – автоматическая под флюсом без подушек и подкладок;
  • Aф – автоматическая под флюсом на подушке;
  • ИH – в инертном газе вольфрамовым электродом без присадки;
  • ИHп – способ в инертном газе с вольфрамовым электродом, но уже с присадкой;
  • ИП – способ в инертном газе с плавящимся электродом;
  • УП – то же самое, но в углекислом газе.

У нас в квадрате №4 указано обозначение сварки УП – это способ в углекислом газе с плавящимся электродом.

 

 

Квадрат №5, размеры шва

Это обязательные размеры шва. Удобнее всего обозначить длину катета, так как речь идет о тавровом варианте с перпендикулярным объединением под прямым углом. Катет определяют в зависимости от предела текучести.

Классификация сварных швов.

Надо заметить, что, если на чертеже указано соединение стандартных размеров, длина катета не указывается. В нашем чертежном обозначении катет равен 6-ти мм.

Дополнительно соединения бывают:

  • SS односторонними, для которых дуга или электрод передвигаются с одной стороны.
  • BS двусторонними, источник плавления передвигается с обеих сторон.

В дело вступает третий участник нашей чертежно-сварочной тусовки – ГОСТ 2.312-72, как раз посвященный изображениям и обозначениям.

Согласно этому стандарту швы подразделяются на:

  • Видимые, которые изображаются сплошной линией.
  • Невидимые, обозначаемые на чертежах пунктирной линией.

Теперь вернемся к нашему первоначальному шву. Нам по силам перевести это условное обозначение сварки в простой и понятный для человеческого уха текст:

Двусторонний тавровый шов методом ручной дуговой сварки в защитном углекислом газе с кромками без скосов, прерывистый с шахматным расположением, катет шва 6 мм, длина провариваемого участка 50 мм, шаг 100 мм, выпуклости шва снять после сварки.

 

 

 

Техника выполнения сварных швов покрытым электродом

Техника выполнения сварных швов

Под техникой выполнения сварных швов понимают выбор режимов сварки и приемы манипулирования электродом.

Возбуждение электрической дуги

  Зажигание дуги является одной из основных операций сварочного процесса. Зажигание производится каждый раз до начала процесса сварки, повторное возбуждение дуги — в процессе сварки при ее обрыве.

Возбуждение сварочной дуги производится путем касания торцом электрода поверхности свариваемого изделия с быстрым последующим отводом торца электрода от поверхности изделия. При этом если зазор не слишком велик, происходит мгновенное появление тока и установление столба дуги. Прикосновение электрода к изделию должно быть кратковременным, так как иначе он приварится к изделию («прилипнет»).

Отрывать «прилипший» электрод следует резким поворачиванием его вправо и влево. Возбуждение дуги может производиться либо серией возвратно-поступательных движений с легким прикосновением к поверхности свариваемого металла и последующим отводом от поверхности изделия на 2-4 мм, либо путем царапающих движений торцом электрода по поверхности изделия, которые напоминают чирканье спички. Используйте наиболее удобный для вас способ.

После возбуждения дуги электрод должен выдерживаться некоторое время Точке начала наплавки, пока не сформируется сварной шов и не произойдет расплавление основного металла. Одновременно с расплавлением электрода необходимо равномерно подавать его в сварочную ванну, поддерживая тем самым оптимальную длину дуги. Показателями оптимальной длины дуги является резкий потрескивающий звук, ровный перенос капель металла через дуговой промежуток, малое разбрызгивание.

Длина дуги значительно влияет на качество сварки. Короткая дуга горит устойчиво и спокойно. Она. обеспечивает получение высококачественного шва, так как расплавленный металл электрода быстро проходит дуговой промежуток и меньше подвергается окислению и азотированию. Но слишком короткая дуга может вызывать «прилипание» электрода, дуга прерывается, нарушается процесс сварки. Длинная дуга горит неустойчиво с характерным шипением. Глубина проплавления недостаточная, расплавленный металл электрода разбрызгивается и больше окисляется и азотируется. Шов получается бесформенным, а металл шва содержит большое количество оксидов.

Если во время сварки по какой-либо причине сварочная дуга погаснет, то применяется специальная техника повторного зажигания дуги, обеспечивающая начало сварки с хорошим сплавлением и внешним видом. При повторном зажигании дуга должна возбуждаться на передней кромке кратера, затем через весь кратер переводиться на противоположную кромку, на только что наплавленный металл, и после этого снова вперед, в направлении проводившейся сварки. Если электрод при повторном зажигании дуги не буде достаточно далеко отведен назад, между участками начала и конца сварки останется углубление. Если же при повторном зажигании электрод отвести слишком далеко назад, то на поверхности сварного валика образуется высокий наплыв.

Положение и перемещение электрода при сварке. В процессе сварки электроду сообщаются следующие движения:

  • поступательное по оси электрода в сторону сварочной ванны, при этом для сохранения постоянства длины дуги скорость движения должна соответствовать скорости плавления электрода;
  • перемещение вдоль линии свариваемого шва, которое называют скоростью сварки; скорость этого движения устанавливается в зависимости от тока, диаметра электрода, скорости его плавления, вида шва и других факторов;
  • перемещение электрода поперек шва для получения шва шире, чем ниточный валик, так называемого уширенного валика.

При слишком большой скорости сварки наплавленные валики получаются узкими, с малой выпуклостью, с крупными чешуйками. При слишком медленной скорости перемещения электрода сварной валик имеет слишком большую выпуклость, шов неровный по форме, с наплывами по краям.

Положение электрода при сварке должно соответствовать рис. 2. Сварка осуществляется в направлении как слева направо, так и справа налево, от себя и на себя.


Рис. 2. Угол наклона электрода: а — в горизонтальной плоскости; б- в вертикальной плоскости.

В конце шва нельзя резко обрывать сварочную дугу и оставлять на поверхности металла кратер, являющийся концентратором напряжений и зоной с повышенным содержанием вредных примесей. Во избежание образования кратера необходимо прекратить перемещение электрода, т. е. произвести задержку на 1-2c, затем сместиться назад на 5 мм и быстрым движением вверх и назад оборвать дугу.

При неправильном завершении сварки в месте окончания шва, где погасла дуга, всегда образуется глубокий кратер. Кратер может служить показателем глубины проплавления, однако в конце сварки и наплавки данные кратеры должны заполняться и завариваться. Это производится путем возбуждения дуги в кратере, установления короткой дуги и выдержки в таком положении электрода, вплоть до заполнения расплавленным металлом кратера. Не рекомендуется заваривать кратер, несколько раз обрывая и возбуждая дугу, ввиду образования оксидных и шлаковых загрязнений металла.

Сварной шов, образованный в результате двух движений торца электрода (поступательного и вдоль линии шва), называют «ниточным». Его ширина при оптимальной скорости сварки составляет (0,8-1,5)dэ. Ниточным швом заполняют корень шва, сваривают тонкие заготовки, выполняют наплавочные работы и производят подварку подрезов.

Для наплавки валика без поперечных колебаний электрода необходимо возбудить дугу, растянуть ее и некоторое время удержать на одном месте для прогрева основного металла. Затем постепенно уменьшать длину дугового промежутка, пока не образуется сварочная ванна соответствующего размера. Она должна хорошо сплавиться с основным металлом до того момента, когда начнется поступательное движение электрода в направлении сварки. При этом рекомендуется выполнять небольшие перемещения электродом вдоль оси шва. Однако большинство сварщиков предпочитают перемещать электрод вдоль оси шва без каких-либо продольных колебаний, определяя скорость сварки по формированию валика.

При наплавке валиков на обратной полярности некоторые электроды имеют склонность к образованию подрезов. Для предотвращения проявления этой тенденции не следует перемещать сварочную дугу, располагающуюся за кратером, пока не будет наплавлено достаточное количество металла, чтобы сварной шов получил требуемый размер и подрез был заполнен наплавленным металлом.

Поперечные колебания электрода по определенной траектории, совершаемые с постоянной частотой и амплитудой и совмещенные с перемещением вдоль шва, позволяют получить сварной шов требуемой ширины. Поперечные колебательные движения конца электрода определяются формой разделки, размерами и положением шва, свойствами свариваемого материала, навыком сварщика. Широкие швы (1,5-5)d3 получают с помощью поперечных колебаний, изображенных на рис. 3.


Рис. 3. Основные способы поперечных движений торца электрода

Для выполнения уширенного валика необходимо установить электрод в положение, показанное на рис. 4. При этом следует иметь в виду, что поперечные колебания совершаются электрододержателем, положение электрода в любой точке шва строго параллельно его первоначальному положению. Угол наклона электрода в вертикальной и горизонтальной плоскости не должен изменяться при колебательных движениях по поверхности шва.


Рис. 4. Положение электрода при наплавке валиков с поперечными колебаниями

Колебания электрода должны производиться с амплитудой, не превышающей три диаметра используемого электрода. Во время процесса формирования валика расплавленный слой должен поддерживаться в расплавленном состоянии. Если перемещать электрод слишком далеко и задерживать его возвращение, то возможны охлаждение и кристаллизация металла сварочной ванны. Это приводит к появлению в металле сварного шва шлаковых включений и ухудшает его внешний вид.

При сварке необходимо внимательно наблюдать за сварочной ванной, следить за ее шириной и глубиной проплавления, при этом не перемещать электрод слишком быстро. В конце каждого перемещения на мгновение останавливать электрод. Амплитуда поперечных колебаний должна быть немного меньше требуемой ширины наплавляемого валика.

При сварке на прямой полярности, как правило, не возникает проблем с подрезами. При сварке на обратной полярности могут возникнуть проблемы с появлением подрезов. Проблему подрезов можно преодолеть путем более длительной выдержки сварочной дуги в крайних точках поперечных перемещений, а также путем выполнения данных перемещений с амплитудой, не превышающей требуемую для получения нужной ширины наплавленного валика.

Выпуклость сварного шва будет меньше, чем при сварке на прямой полярности, проплавление будет более глубоким. Шлака будет несколько меньше, он будет менее текучим и будет закристаллизовываться немного быстрее, чем при сварке на прямой полярности.

На вертикальной поверхности узкие горизонтальные валики наплавляются, как правило, на обратной полярности, при этом сварочный ток не должен быть слишком большим.

Сварка должна производиться на короткой дуге. При сварке следует уделять внимание тому, чтобы металл сварочной ванны не вытекал вниз или не образовывал наплыв на нижней кромке. Для этого необходимо совершать возвратно-поступательные движения электродом в направлении оси сварного шва. Каждый новый валик должен перекрывать ранее наплавленный соседний с ним валик не менее чем на 45-55%. Для предотвращения образования подрезов необходимо производить колебания электрода в пределах выпуклости сварного валика.В большинстве случаев выполнение сварки в вертикальном положении производится снизу вверх, особенно для ответственных стыков. Данная техника сварки широко используется при строительстве трубопроводов высокого давления, в кораблестроении, при сооружении сосудов высокого давления и при строительных работах.

Наплавка узких валиков на поверхность, находящуюся в вертикальном положении, при сварке снизу вверх производится на обратной полярности сварочного тока, при этом сварочный ток не должен иметь слишком высокое значение. Положение электрода должно соответствовать изображенному на рис. 5. Необходимо использовать возвратно-поступательные перемещения электрода. Наплавка валиков должна производиться при короткой дуге, в верхней части траектории колебаний электрода, дугу следует растягивать, но нельзя допускать ее обрыва в данной области.


Рис. 5. Положение электрода при наплавке узких валиков без поперечных колебаний электрода в вертикальном положении снизу вверх

Подобный тип перемещений электрода позволяет наплавленному металлу кристаллизоваться, образуя ступеньку, на которую наплавляется следующая порция электродного металла. Некоторые сварщики предпочитают поддерживать постоянную сварочную ванну, которую они медленно выводят снизу вверх, применяя при этом небольшие колебательные движения электродом. Данный способ ведения процесса сварки приводит к наплавке валика с большой выпуклостью, а также к появлению вероятности трещин металла сварного шва.

Методика выполнения сварки с продольными колебаниями электрода позволяет получить более плоский с невысокой выпуклостью сварной шов, а также уменьшает опасность возникновения шлаковых включений.

Сварка в вертикальном положении сверху вниз достаточно редко встречается в промышленности, особенно при обычных работах. Область применения данного способа ведения сварочного процесса обычно ограничивается сварочными работами при строительстве магистральных трубопроводов и при сварке тонколистового проката. При наплавке на плоскую поверхность данный способ ведения сварки приводит к получению не очень глубокого проплавления, существует также опасность появления шлаковых включений.

Наплавка узких валиков в вертикальном положении сверху вниз производится на обратной полярности, при этом следует обратить особое внимание на установку сварочного тока. Положение электрода должно соответствовать изображенному на рис. 6.


Рис. 6. Положение электрода при наплавке узких валиков без поперечных колебаний электрода в вертикальном положении сверху вниз.

В процессе сварки необходимо поддерживать очень короткую дугу, с тем, чтобы шлак не затекал в головную часть сварочной ванны. Поперечные колебания электрода, как правило, не применяются, поэтому скорость перемещения достаточно велика. Этим и объясняется малая ширина наплавленных таким образом валиков, а также их малая выпуклость. Подрезы почти не встречаются.

Сварка с поперечными колебаниями электрода в вертикальном положении очень часто применяется при сооружении трубопроводов высокого давления, сосудов высокого давления, при сварке судовых конструкций, а также при изготовлении металлоконструкций. Данная техника сварки очень часто применяется для сварки многопроходных швов в разделку, а также угловых швов, находящихся вертикальном положении.

Наплавку валиков с поперечными колебаниями электрода в вертикальном положении, как правило, выполняют снизу вверх на обратной полярности сварочного тока. Сварка на прямой полярности в данном положении используется крайне редко. Еще реже производится сварка в положении сверху вниз.

При наплавке валиков с поперечными колебаниями электрода в вертикальном положении сварочный ток не должен быть слишком велик, однако он должен быть достаточным для хорошего проплавления. Положение электрода должно хотя бы приблизительно соответствовать изображенному на рис. 7.

В нижней части соединения наплавляется полка шириной не более 12 мм, при этом смешение электрода от оси сварного шва не должно превышать 3 мм. Перемещение электрода должно производиться по траектории (рис. 7б). Для предотвращения появления подрезов необходимо делать кратковременные остановки электрода во время выхода его на боковые кромки сварного шва.


Рис. 7. Положение электрода при наплавке валиков в вертикальном положении снизу вверх с поперечными колебаниями электрода (а) и траектория движения электрода (б).

Сварку можно также производит путем поддержания постоянного перемещения сварочной ванны, при этом нужно быть очень осторожным, чтобы не допустить вытекания расплавленного металла сварочной ванны. При соблюдении этого условия перемещение электрода вверх может производиться по любой из сторон сварного соединения, при этом необходимо производить <растяжение> сварочной дуги, но не допускать ее обрыва. Нельзя держать сварочную дугу слишком долго вне кратера — это может привести к охлаждению кратера и вызовет избыточное разбрызгивание металла перед швом.

При наплавке валиков на прямой полярности, сварочный ток должен быть несколько выше, чем при сварке на обратной полярности. Поскольку при сварке на прямой полярности выше производительность наплавки, а также больше количество шлака, скорость перемещения электрода должна быть выше. Подрезы не составляют сколь-нибудь значительной проблемы, поэтому отпадает необходимость задержки электрода на боковых поверхностях свариваемых кромок.

Наплавка валиков в вертикальном положении с поперечными колебаниями электрода в вертикальном положении сверху вниз производится на обратной полярности, при этом следует обратить особое внимание на установку сварочного тока. Положение электрода должно соответствовать изображенному на рис. 8. В процессе сварки необходимо поддерживать очень короткую дугу, с тем, чтобы шлак не затекал в головную часть сварочной ванны. Для предотвращения появления подрезов необходимо делать кратковременные остановки электрода во время выхода его на боковые кромки сварного шва.


Рис. 8. Положение электрода при наплавке валиков в вертикальном положении сверху вниз с поперечными колебаниями электрода (а) и траектория движения электрода (б)

Несмотря на то, что в настоящее время в промышленности взят курс на полное исключение сварки в потолочном положении за счет соответствующего позиционирования, на сегодняшний день каждый сварщик должен уметь вести сварочные работы в этом пространственном положении. Сварка в потолочном положении распространена при строительстве трубопроводов, в судостроении и при строительно-монтажных работах.


Рис. 9. Положение электрода при наплавке узких валиков в потолочном положении

Наплавка узких валиков в потолочном положении может производиться как на обратной, так и на прямой полярности. Величина сварочного тока при обратной полярности такая же, как при сварке в вертикальном положении. При сварке на прямой полярности эта величина несколько выше. Положение электрода должно соответствовать изображенному на рис. 9. Сварщик должен находиться в таком положении, чтобы иметь возможность наблюдать за наплавкой металла и за сварочной дугой. Особенно это важно при сварке труб, однако часто бывает так, что направление сварки должно быть направлено на сварщика.

Во время процесса сварки на обратной полярности необходимо поддерживать короткую дугу, сварочная ванна не должна быть слишком сильно перегрета. При сварке на прямой полярности длина дуги должна быть несколько длиннее. Небольшие колебания электрода вперед-назад относительно направления сварки служат для предварительного подогрева сварного шва, кроме того, они способствуют предотвращению подтекания расплавленного шлака в головную часть сварочной ванны. Некоторые сварщики при сварке на прямой полярности предпочитают перемещать электрод во время сварки очень маленькими участками, при этом необходимо обращать внимание на опасность получения сварного шва с большой выпуклостью, а также на образование толстой корки шлака. При сварке на прямой полярности опасность появления подрезов практически исключена.

Во многих случаях при выполнении сварных соединений в потолочном положении, возникает необходимость в наплавке валиков с поперечными колебаниями электрода. Это значительно сложнее, чем наплавка узких валиков.

Наплавка валиков с поперечными колебаниями электрода в потолочном положении, производится на обратной полярности. Величина сварочного тока не должна быть слишком большой. Положение электрода должно соответствовать изображенному на рис. 10а. Большое значение имеет поддержание короткой дуги, а также стабильности дугового промежутка по всей ширине наплавляемого валика.

Наплавку можно производит путем перемещения всей сварочной ванны, однако при этом необходимо быть очень осторожным, чтобы не допустить приобретения расплавленным металлом сварочной ванны слишком высокой текучести, что, в конечном счете, приведет к вытеканию сварочной ванны. Если данное препятствие будет устранено, то электрод можно перемещать вперед вдоль любой из свариваемых кромок (рис. 106). При этом допускается удлинение дуги, без ее обрыва.

Нельзя допускать, чтобы сварочная дуга находилась в кратере больше времени, чем необходимо для его полной заварки. Электрод должен быстро перемещаться поперек лицевой стороны сварного шва, с тем, чтобы не допустить избыточного перегрева металла, наплавленного в средней части сварного шва.

При сварке в потолочном положении могут возникнуть проблемы, связанные с подрезами. Они решаются с помощью задержек электрода на боковых кромках соединения. Рекомендуется не превышать ширины сварного шва свыше 20 мм.


Рис. 10. Положение электрода при наплавке валиков с поперечными колебаниями электрода в потолочном положении (а) и траектория перемещения электрода (б) 

Сварка торцевого соединения в нижнем положении

Торцевые соединения широко применяются в конструкциях сосудов, не подвергаемых воздействию высокого давления. Торцевые соединения — это очень экономичные соединения, но они не выдерживают значительных растягивающих или изгибающих нагрузок. Для выполнения данного соединения требуется мало электродов, поскольку доля наплавленного металла в металле сварного шва мала. Выполнение сварки торцевого соединения не представляет каких-либо затруднений и может производиться в широком диапазоне сварочных режимов, как на прямой полярности, так и на обратной.

Во время сварки для полного охвата всей поверхности соединения рекомендуется производить небольшие поперечные колебания электрода. Однако следует помнить об опасности увлечения такими колебаниями. При излишне широких колебаниях электрода металл начнет свешиваться с краев соединения. Следует быть внимательным при расплавлении обеих кромок и при обеспечении хорошего проплавления.

Сварка стыкового соединения без скоса кромок в нижнем положении

Данный тип сварного соединения широко используется в промышленности для конструкций обычного назначения. При двухсторонней сварке металла, толщина которого не превышает 6 мм, данное соединение будет весьма прочным. Однако, как правило, такие соединения свариваются только с одной стороны. В этом случае прочность будет определяться глубиной проплавления, которая, в свою очередь, зависит от диаметра применяемых электродов, величины сварочного тока, величины зазора между деталями, а также от толщины свариваемых деталей. При односторонней сварке получение полного проплавления без зазора между свариваемыми кромками для металла толщиной свыше 5 мм весьма проблематично.

Сварка стыкового соединения без скоса кромок для обеспечения повышенного тепловложения, производится на обратной полярности. При сварке необходимо обеспечивать возвратно-поступательные перемещения электрода вдоль оси шва. Это будет приводить к предварительному подогреву металла перед сварным швом, сведет к минимуму риск получения прожога и обеспечит вытеснение расплавленного шлака на поверхность сварочной ванны, что исключит вероятность образования неметаллических шлаковых включений в металле сварного шва.

В процессе сварки особенно важно поддержание постоянства скорости и равномерности перемещения электрода вдоль оси шва, а также величины зазора между электродом и изделием (длины дуги). При слишком высокой скорости перемещения электрода шов получается узкий, образуются подрезы. При слишком малой скорости сварки сварочная ванна разогревается до температуры, при которой возможен прожог.

Слишком длинная дуга приводит к ухудшению внешнего вида шва, к ухудшению проплавления, к избыточному разбрызгиванию и низким показателям механических свойств металла сварного шва.

Сварка в нижнем положении таврового соединения (сварка в «лодочку») однопроходным угловым швом

При образовании углового шва во избежание непровара свариваемые поверхности наклоняют к горизонтальной плоскости под углом 45° — сварка «в лодочку» (рис. 11а), а при наклоне под углом 30 или 60° — в несимметричную «одочку» (рис. 116). Сварка производится на повышенных значениях сварочного тока, как на прямой, так и на обратной полярности тока. Сварка на обратной полярности производится короткой дугой, при этом возможно появление подрезов. Положение электрода при сварке должно соответствовать изображенному на рис. 11в


Рис. 11. Положение электрода при сварке «в лодочку»: a — сварка в симметричную «лодочку»; б — сварка в несимметричную ; в — пространственное положение электрода

При начале процесса сварки электрод должен быть выведен на кромку свариваемой пластины. После подогрева кромки пластины растянутой дугой начинается наложение сварного шва требуемой ширины и глубины проплавления. При этом производятся небольшие возвратно-поступательные перемещения электродом в направлении оси сварного шва. Это обеспечивает предварительный подогрев корневой части сварного шва и предотвращает подтекание расплавленного шлака перед головной частью сварочной ванны.

Электрод должен направляться непосредственно в корень сварного шва, нельзя допускать, чтобы сварочная дуга вышла на поверхность пластины за пределами области формирования сварного шва. Не допускается наплавка слишком большого количества металла за один проход.

Сварка в нижнем положении таврового соединения (сварка в «лодочку») многопроходным угловым швом.

Очень часто при сварке таврового соединения в нижней) положении необходимо производить многопроходную сварку. Однопроходные угловые швы должны иметь катеты, которые превышают диаметр используемого электрода не более чем на 1,5-3,0 мм. При многопроходной сварке угловых швов число слоев определяют, исходя из диаметра электрода, при этом толщина каждого слоя не должна превышать (0,8-1,2)dэ.

Поскольку тавровое соединение в нижнем положении образует кромки, подобно стыковому соединению со скосом кромок, сварка может выполняться с использованием техники сварки с поперечными колебаниями электрода, при этом ширина шва не должна превышать (1,5-5)dэ. Если слой сварного шва превышает допустимую ширину шва, то наплавка каждого слоя производится необходимым количеством валиков.

При сварке данного соединения первый проход выполняется электродом толщиной 4-6 мм без поперечных колебаний. Последующие проходы выполняются электродами меньшего диаметра. При сварке этих проходов необходимо применять поперечные колебания электрода, при этом амплитуда колебаний электрода не должна превышать допустимой ширины шва.

При сварке на обратной полярности поддерживается несколько меньшая длина дуги, чем на прямой полярности. При этом необходимо тщательно контролировать процесс сварки, с тем, чтобы избежать появления возможных подрезов. Для этого можно применять задержки электрода в крайних точках амплитуды поперечных колебаний электрода при одновременном тщательном контроле ширины сварного шва и амплитуды поперечных колебаний электрода.

Перед наплавкой каждого слоя или валика необходимо тщательно очищать от шлака поверхность сварного шва, в противном случае неизбежно появление шлаковых включений. В начале и при возобновлении сварки необходимо тщательно заваривать кратеры сварных валиков.

Сварка углового соединения с наружным углом в нижнем положении

Угловые соединения с наружными угловыми швами встречаются намного реже, чем стыковые, нахлесточные и тавровые соединения. Это соединение является в высшей степени технологичным, поскольку его очень просто подготовить к сварке, а параметры режима сварки напоминают применяемые при сварке стыковых соединений со скосом кромок.

Для обеспечения максимальной прочности в сварном соединении необходимо получить проплавление с обратной стороны. Добавление внутреннего углового шва к наружному значительно повышает прочность всего углового соединения. Как уже отмечалось, стоимость подготовки подобного соединения весьма невелика, однако при сварке подобных соединений из металла большой толщины значительную величину затрат составит стоимость электродов.

Сварку углового соединения с наружным углом в нижнем положении выполняют на обратной полярности. При сварке данного соединения положение электрода должно соответствовать изображенному на рис. 12. При первом проходе используется техника сварки, применяемая при наложении узкого шва, без поперечных колебаний. Значение сварочного тока не должно быть слишком большим. Сварной шов при первом проходе должен обеспечить полное проплавление обратной стороны соединения и хорошее сплавление с обеими пластинами. Большое значение для достижения этой цели имеет поддержание короткой дуги.


Рис. 12. Положение электрода при сварке углового соединения с наружным углом в нижнем положении

При выполнении второго, третьего и последующих проходов сварочный ток следует установить на повышенный режим. При выполнении данных проходов используется техника поперечных колебаний электрода. Третий проход должен производиться с более широкой амплитудой колебаний, чем второй. Техника выполнения второго и последующих проходов аналогична выполнению данных проходов при сварке в «лодочку» многопроходным угловым швом.

Во время сварки необходимо следить за ограничением ширины поперечных колебаний электрода. Для устранения подрезов рекомендуется производить кратковременную остановку электрода в крайних точках траектории поперечных колебаний. Удостоверьтесь в том, что достигается хорошее сплавление с ранее наложенными слоями и с обеими поверхностями пластины. Последний проход не должен иметь слишком большую высоту. После каждого прохода необходимо тщательно очистить наплавленный металл от шлаковой корки.

Сварка стыкового соединения со скосом кромок на подкладке в нижнем положении

Данный тип сварного соединения достаточно часто применяется при сварке трубопроводов, сосудов высокого давления и корабельных конструкций.

Сварка данного соединения производится на обратной полярности. Для первого прохода устанавливается невысокое значение сварочного тока. Положение электрода должно соответствовать изображенному на рис. 13. Сварка производится узким валиком без поперечных колебаний электрода. Во время сварки необходимо следить за тем, чтобы обеспечить хорошее сплавление с подкладкой и поверхностями разделки в корневой части соединения. Поверхность шва должна быть максимально плоской.


Рис. 13. Положение электрода при сварке стыкового соединения со скосом кромок на подкладке в нижнем положении

Второй, третий и последующие проходы могут производиться при повышенных значениях сварочного тока. Перемещение вдоль оси шва не должно быть слишком быстрым, иначе поверхность шва будет неровной, с крупными чешуйками, могут появиться поры. Поперечные перемещения электрода должны ограничиваться требуемой шириной шва. Это обеспечит исключение появления подрезов. Во время сварки важно следить за длиной дуги, тщательно удалять шлак с наложенных слоев, следить за тем, чтобы наложенный сварной шов имел сплавление с предыдущими слоями и со свариваемыми кромками. При наложении последнего слоя используйте кромки разделки в качестве показателя при определении требуемой ширины шва.

Сварка стыкового соединения со скосом кромок в нижнем положении

Данный вид соединения часто встречается при сварке трубопроводов, а также при сварке ответственных соединений.

Сварка данного соединения производится на обратной полярности. Положение электрода должно соответствовать изображенному на рис. 14.


Рис. 14. Положение электрода при сварке стыкового соединения со скосом кромок в нижнем положении

На рис. 15а показан порядок наложения слоев/валиков при сварке стыкового соединения со скосом кромок в нижнем положении. Первый проход предназначен для сварки корня шва и выполняется обычно электродами диаметром 3 мм, при этом сварочный ток не должен быть слишком велик. Сварка производится на короткой дуге с возвратно-поступательными движениями относительно линии сварного шва, при этом необходимо следить, чтобы сам электрод все время оставался в зазоре корневой области сварного соединения. Во время сварки нельзя допускать прерывания дуги при перемещении электрода вперед и нужно следить за тем, чтобы капли металла не падали перед швом, это может помешать проведению процесса сварки, его продвижению вперед. На обратной стороне стыка должен образовываться небольшой валик. Лицевая поверхность первого прохода должна иметь минимальную выпуклость.


Рис. 15. Сварка стыкового соединения со скосом кромок в нижнем положении: a — порядок наложения слоев; б — траектория движения электрода при выполнении последнего прохода; в — сварное соединение

Второй и последующие проходы производятся при повышенных значениях сварочного тока и электродами большего диаметра. Наплавка производится с поперечными колебаниями электрода, при этом важно обеспечить постоянство и равномерность колебаний и перемещения электрода вдоль оси шва, в противном случае полученный сварной шов будет не однороден по качеству и внешнему виду. Во время сварки необходимо следить за тем, чтобы избежать появления подрезов (рис. 156). Необходимо получить сплавление с ранее наплавленными слоями, а также с боковыми кромками разделки свариваемого изделия. Лицевая сторона второго и последующих слоев должна иметь плоскую поверхность. Необходимо тщательно очищать каждый слой от шлака по всей его длине.

Заключительный проход выполняется тем же типом электрода, что и предыдущие. Техника выполнения такая же, и при выполнении второго и последующих проходов, за исключением того, что при заключительном проходе амплитуда поперечных колебаний электрода будет больше. Для контроля за шириной облицовочного шва необходимо использовать скошенные кромки стыкового соединения. Поверхность облицовочного шва должна быть слегка выпуклой.

Сварка нахлесточного соединения в нижнем положении

Данный тип соединения широко используется в промышленности, в частности в резервуарах, строительных и судовых конструкциях. Нахлесточное соединение очень экономично, оно не требует каких-либо значительных затрат на подготовку и сборку. Максимальная прочность нахлесточного соединения достигается при его двухсторонней сварке угловым швом.

Сварка данного соединения производится как на прямой, так и на обратной полярности, при этом сварочный ток не должен быть слишком большим. Положение электрода должно соответствовать изображенному на рис. 16.


Рис. 16. Сварка нахлесточного соединения в нижнем положении: a — подготовка соединения к сварке; б — положение электрода при сварке однопроходным швом равных толщин; в — положение электрода при втором и третьем проходе при выполнении многопроходного шва; г — положение электрода при сварке разных толщин

Для сварки нахлесточного соединения в нижнем положении на прямой полярности требуется поддержание очень короткой дуги, а на обратной полярности — еще более короткой. Дуга должна быть сориентирована в направлении корня соединения и горизонтальной поверхности пластины. Во время сварки необходимо совершать, относительно оси сварного, шва небольшие возвратно-поступательные колебания электрода. Это способствует предварительному подогреву соединения перед движущейся сварочной дугой, обеспечивает создание полноразмерной выпуклости и покрывает шлаковой коркой хвостовую часть сварочной ванны.

Абсолютно необходимым для получения качественного соединения является полное проплавление в корне шва и хорошее сплавление с обеими поверхностями двух пластин. При сварке на прямой полярности верхняя кромка верхней пластины имеет тенденцию к прожогу, поэтому при сварке следует постоянно опасаться как недозаполнения наплавленного валика, так и того, что сварочная дуга недостаточно коротка. Подрезы появляются очень редко.

При сварке на обратной полярности следует обратить внимание на поддержание более короткой дуги, а также на устранение возможного подреза, как на плоской поверхности пластины, так и вдоль верхней кромки верхней пластины. Для уменьшения вероятности появления подрезов, перемещение дуги должно быть ограничено размерами сварного шва.

Сварка нахлесточного соединения в горизонтальном положении

Сварка нахлесточного соединения в горизонтальном положении однопроходным угловым швом на прямой полярности часто применяется в конструкциях резервуаров и строительных конструкциях.

При сварке данного соединения сварочный ток не должен быть слишком большим. Электрод необходимо направлять в корень шва. Положение электрода во время сварки должно соответствовать изображенному на рис. 17. Сварку лучше всего производить с небольшими возвратно-поступательными перемещениями электрода в направлении оси сварного шва, можно также применять незначительные поперечные колебания электрода. Сварочная ванна не должна быть слишком перегрета, ибо это приводит к появлению трещин в металле сварного шва.


Рис. 17. Положение электрода при сварке нахлесточного соединения в горизонтальном положении

При сварке следует обращать особое внимание на перемещения электрода, с тем, чтобы не допустить появления прожогов кромки пластины, а также на то, чтобы сварочная дуга не контактировала с поверхностью вертикальной пластины вне пределов сварного шва, в противном случае неизбежно появление подрезов.

Сварка таврового соединения в нижнем положении

Большую долю швов, выполняемых на практике сварщиком, составляют угловые швы, выполняемые в нижнем положении. Технология сварки может включать как однопроходную, так и многопроходную сварку всеми типами электродов. Несмотря на то, что электроды, предназначенные для сварки на обратной полярности, не являются лучшим типом электродов для выполнения однопроходных угловых швов, использование этих электродов в подобных целях является достаточно распространенной практикой.

При сварке таврового соединения в нижнем положении на прямой полярности сварочный ток должен быть достаточным для получения обширной сварочной ванны. При сварке на обратной полярности сварочный ток должен быть несколько меньше. Положение электрода при сварке на прямой полярности должно соответствовать изображенному на рис. 18а, на обратной полярности — рис. 18б.


Рис. 18. Положение электрода при сварке таврового соединения в нижнем положении: a — на прямой полярности; б — на обратной полярности

Электрод должен быть направлен в корень сварного соединения. При сварке на обратной полярности длина дуги должна быть меньше. Перемещение электрода должно производиться равномерно на всем протяжении стыка, не теряя сварочной ванны.

Однако некоторые сварщики предпочитают использовать при этом небольшие возвратно-поступательные перемещения электрода в направлении оси шва. Это может оказать положительное влияние в виде предварительного подогрева свариваемых кромок и корневой части соединения, находящихся перед движущимся электродом, улучшит формирование наплавленного металла на вертикальной плоскости пластины, а также будет способствовать предотвращению подтекания расплавленного шлака в головную часть сварочной ванны. При сварке на прямой полярности подрезы никогда не являются проблемой. Сварка на обратной полярности требует обеспечения повышенных мер по исключению подрезов.

Сварка таврового соединения в нижнем положении многопроходным швом

Крупные угловые швы очень часто выполняются путем многократного наложения узких валиков без поперечных колебаний электрода. В большинстве случаев облицовочный слой или последний валик выполняются без поперечных колебаний электрода, в некоторых случаях требуется, чтобы последний проход выполнялся с поперечными колебаниями. В частности, таковы требования при сварке трубопроводов и сосудов высокого давления. Сварка может выполняться как на прямой, так и на обратной полярности сварочного тока.

При выполнении данного соединения сварочный ток устанавливается таким же, как и при сварке узким однопроходным швом. Положение электрода будет изменяться в зависимости от последовательности наложения слоев (рис. 19а). Перемещение электрода аналогично перемещению при сварке однопроходным швом. Расположение или раскладка валиков по сторонам должны производиться таким образом, чтобы облицовочный слой точно соответствовал заданному размеру катета углового шва. Порядок наложения слоев показан на рис. 19б.


Рис. 19. Положение электрода при сварке таврового соединения многопроходным швом в нижнем положении (а) и порядок наложения слоев (б)

Техника выполнения облицовочного слоя достаточно сложна. Сварочный ток не должен быть слишком мал. Положение электрода должно соответствовать изображенному на рис. 20а. Чешуйки укладываются в диагональной плоскости. Наложение капель металла производится только при движении электрода вниз. Перемещение электрода вверх должно производиться быстро, на максимально растянутой дуге, но без обрыва дуги.


Рис. 20. Положение электрода при выполнении облицовочного слоя (а) и траектория колебательных движений электрода (б)

Указателями ширины перемещения электрода при сварке облицовочного слоя могут служить две параллельные кромки ранее выполненных сварных валиков. Для предотвращения появления подрезов необходимо проводить задержки электрода на верхней и нижней кромках сварного шва. Необходимо помнить, что при многопроходной сварке требуется тщательная очистка от шлаковой корки каждого наложенного слоя.

При сварке на обратной полярности могут возникнуть значительные затруднения, связанные с появлением подрезов. Избавиться от этих проблем можно всеми ранее описанными способами.

Сварка таврового соединения в нижнем положении многопроходным швом с применением поперечных колебаний электрода

На практике довольно часто встречаются случаи, когда необходимо производить сварку угловых швов большого сечения в нижнем положении. Обычно для этого используют многопроходную сварку с применением техники поперечных колебаний электрода. Наиболее часто такие швы встречаются при судостроительных и монтажных работах.

Сварка данного типа соединения производится на обратной полярности. Сварочный ток устанавливается большим. Положение электрода должно соответствовать изображенному на рис. 21. Первый проход выполняется так же, как и в случае обычной однопроходной сварки угловых швов. Поверхность первого валика должна быть максимально плоской.


Рис. 21. Положение электрода при сварке таврового соединения многопроходным швом в нижнем положении с применением поперечных колебаний электрода

Второй шов накладывается с поперечными колебаниями электрода поверх первого. Электрод должен направляться на вертикальную пластину, с тем, чтобы обеспечить перенос металла с электрода на эту поверхность. Поперечные колебания электрода не должны выходить за пределы требуемой ширины выполняемого шва. В противном случае возможно появление подрезов. Необходимо обеспечить хорошее сплавление накладываемых швов с поверхностью ранее наплавленных слоев и с поверхностью свариваемой пластины.

Сварка стыкового соединения со скосом кромок на подкладке в горизонтальном положении

Данное соединение, а также пространственное положение, в котором оно находится, очень часто встречается при сварке труб, резервуаров, а также при судостроительных работах.

Сварка производится на обратной полярности как узкими валиками без поперечных колебаний, так и с поперечными колебаниями электрода. Первый проход выполняется на повышенных значениях сварочного тока без поперечных колебаний электрода. Положение электрода должно соответствовать изображенному на рис. 22. При сварке необходимо обеспечить гарантированное сплавление с подкладкой, а также с кромками корневой части соединения.


Рис. 22. Положение электрода при сварке стыкового соединения со скосом кромок на подкладке в горизонтальном положении

Второй и все последующие проходы могут выполняться с еще большими значениями сварочного тока. Положение электрода при сварке узкими валиками без поперечных колебаний электрода должно соответствовать изображенному на рис. 22. Очень важно, чтобы все швы имели хорошее сплавление с поверхностью ранее наложенных слоев, а также с поверхностью кромок разделки. Необходимо следить за предотвращением появления подрезов.

Сварка стыкового соединения со скосом кромок в горизонтальном положении

Данное соединение, а также пространственное положение, в котором оно находится, очень часто встречается при сварке труб, а также ответственных стыковых соединений. При выполнении некоторых работ иногда предъявляются требования к тому, чтобы данные швы выполнялись с поперечными колебаниями электрода, однако в большинстве случаев применяется сварка узкими валиками без поперечных колебаний электрода.

 

Сварка производится на обратной полярности. Сварочный ток при первом проходе не должен быть слишком велик. Положение электрода при сварке узкими валиками без поперечных колебаний должно соответствовать рис. 23, а при сварке с поперечными колебаниями — рис. 24а.


Рис. 23. Положение электрода при сварке стыкового соединения со скосом кромок в горизонтальном положении: узкими валиками без поперечных колебаний электрода.

При сварке необходимо поддерживать короткий дуговой промежуток, заставляя электродный металл наплавляться непосредственно в зазоре корневой части соединения. При сварке можно использовать возвратно-поступательные перемещения электрода. При перемещениях вперед нельзя допускать, чтобы сварочная дуга обрывалась.

Необходимо во время таких перемещений обеспечить предварительный подогрев металла перед наплавляемым швом. Одновременно следует следить за тем, чтобы расплавленный металл сварочной ванны достаточно быстро застывал и не стекал на нижнюю пластину. На обратной стороне соединения должно быть полное проплавление.

Для второго и последующих проходов сварочный ток может быть значительно увеличен. Можно использовать сварку узкими валиками, без поперечных колебаний. можно также использовать сварку с поперечными колебаниями электрода (рис. 24б). Важно обеспечить гарантированное сплавление всех проходов с поверхностью всех предшествующих проходов, а также с поверхностями свариваемых пластин. Во время сварки необходимо следить за появлением подрезов.


Рис. 24. Положение электрода при сварке стыкового соединения со скосом кромок в горизонтальном положении:  a — сварка с поперечными колебаниями электрода; б — пример поперечных движений торца электрода 

Сварка стыкового соединения со скосом одной кромки в горизонтальном положении

Наиболее часто, при выполнении стыковых соединений в горизонтальном положении скашивают кромку только у верхнего листа. Дугу возбуждают на горизонтальной кромке нижнего листа, перемещают затем на скошенную кромку верхнего листа. Техника сварки ничем не отличается от описанной выше, за исключением порядка наложения слоев.

Сварка нахлесточного соединения в вертикальном положении снизу вверх. При выполнении ответственных сварочных работ с использованием нахлесточных соединений, находящихся в вертикальном положении, как правило, сварку производят снизу вверх. Такая сварка имеет место при выполнении сварочных работ в судостроении, при изготовлении сосудов высокого давления, а также при изготовлении металлоконструкций.

При сварке небольших толщин, а также для выполнения первых проходов в многопроходных сварных швах, выполняемых при сварке нахлесточных соединений, применяются однопроходные угловые швы. При выполнении данных швов необходимо установить не очень большое значение сварочного тока. Положение электрода должно соответствовать изображенному на рис. 25.


Рис. 25. Положение электрода при сварке нахлесточного соединения в вертикальном положении снизу вверх

На нижней части соединения образуется полка из наплавленного металла, имеющая размеры, соответствующие размерам сварного шва. Следует применять возвратно-поступательные перемещения электрода. При переносе электродного металла следует поддерживать короткую дугу, при переходе вверх дугу следует растянуть, не допуская при этом ее обрыва. Когда электрод находится над сварочной ванной, можно производить небольшие поперечные перемещения электрода. Это способствует лучшему формированию сварного шва. Во время сварки необходимо следить за тем, чтобы перемещения электрода всегда сохранялись в пределах ширины шва таким образом, чтобы кромка верхней пластины не прожигалась, а на плоской поверхности пластины не появлялись подрезы.

Для выполнения сварных швов нахлесточных соединений большой толщины применяется многопроходная или однопроходная сварка с поперечными перемещениями электрода. При многопроходной сварке первый проход выполняется узким валиком без поперечных перемещений электрода. При выполнении второго прохода сварочный ток должен быть достаточным для обеспечения гарантированного проплавления в корневой части соединения и сплавления с кромками. Положение электрода и траектория движения электрода должны соответствовать изображенному на рис. 26а. При этом, сохраняя электрод над поверхностью сварочной ванны, нужно перемещать ее вверх, одновременно сдвигая сварочную ванну в стороны, поочередно то влево, то вправо.


Рис. 26. Положение электрода при сварке нахлесточного соединения в вертикальном положении снизу вверх многопроходным угловым швом (а) и однопроходным угловым швом с поперечным перемещением электрода (б)

Равномерные перемещения сварочной ванны, выполняемые в процессе сварки, позволяют получить ровную, с малой выпуклостью поверхность сварного шва. Кратковременные остановки в крайних точках поперечных колебаний предотвратят появление подрезов, но нужно быть крайне осторожным, чтобы при этом кромка верхней пластины не прожигалась.

Сварку нахлесточного соединения можно производить также однопроходным угловым швом с поперечными колебаниями электрода. Положение электрода и траектория движения электрода должны соответствовать изображенному на рис. 26б. Техника сварки аналогична выполнению второго прохода при многопроходной сварке. Отличие заключается в том, что электрод необходимо располагать под большим углом к нижней пластине и задержки перемещения выполнять только на нижней пластине.

Сварка таврового соединения в вертикальном положении однопроходным угловым швом

Сварка данного соединения часто встречается в производственной практике. Сварка вертикальных стыков чаще всего производится снизу вверх, хотя встречаются и случаи, когда необходимо выполнять сварку сверху вниз. Выбор количества проходов определяется назначением данного соединения, а также толщиной свариваемых пластин.

При выполнении сварки таврового соединения в вертикальном положении однопроходным угловым швом без поперечных перемещений электрода сварочный ток должен быть достаточно большим, с тем, чтобы обеспечить хорошее проплавление в корневой части соединения, а также с поверхностями пластин. Положение электрода должно приблизительно соответствовать изображенному на рис. 27.


Рис. 27. Положение электрода при сварке таврового соединения в вертикальном положении однопроходным угловым швом

Сварка производится на обратной полярности с колебаниями электрода вверх-вниз. В момент переноса электродного металла необходимо поддерживать короткую дугу, при перемещении электрода вверх дугу следует растянуть, однако при этом не допускать обрыва дуги. Необходимо периодически производить отвод электрода от сварочной ванны, с тем, чтобы избежать перегрева свариваемого металла и последующего его растрескивания или вытекания сварочной ванны. Вместе с тем необходимо удерживать сварочную ванну на одном месте, вплоть до момента, пока не будет получено требуемое проплавление, сплавление со свариваемыми кромками и образование сварного шва требуемого контура без подрезов.

Сварку таврового соединения в вертикальном положении можно производить также однопроходным угловым швом с поперечными колебаниями электрода. Положение электрода и траектория движения электрода должны соответствовать изображенному на рис. выполняется без поперечных перемещений электрода или в некоторых случаях с небольшими поперечными колебаниями (рис. 29б).Положение электрода при втором проходе должно соответствовать изображенному на рис. 30. Сварочный ток должен быть достаточным для обеспечения гарантированного проплавления в корневой части соединения и сплавления с кромками.


Рис. 30. Положение электрода при сварке таврового соединения в вертикальном положении многопроходным

Во время сварки необходимо сохранять электрод над поверхностью сварочной ванны, перемещать сварочную ванну вверх, одновременно сдвигая ее в стороны, поочередно то влево, то вправо. Равномерные перемещения сварочной ванны, выполняемые в процессе сварки, позволяют получить ровную, с малой выпуклостью поверхность сварного шва, а кратковременные остановки электрода в крайних точках поперечных перемещений предотвратят появление подрезов. Во время сварки необходимо поддерживать короткую дугу, но избегать касания электрода с расплавленным металлом сварочной ванны.

При использовании электрода большого диаметра необходимо увеличить сварочный ток. Положение электрода при сварке третьего прохода аналогично второму проходу. При применении электрода большого диаметра и при увеличении сварочного тока желательно ускорять перемещение электрода вверх при достижении сварочной ванной крайней точки траектории поперечных колебаний. При этом необходимо обращать внимание на продолжение горения дуги во время всех этих перемещений. При перемещении дуги вверх ее необходимо растягивать. После достаточного охлаждения сварочной ванны электрод возвращается к кратеру, и производится наплавка дополнительного металла.

Во время сварки необходимо поддерживать постоянство ширины траектории поперечных колебаний, следить за тем, чтобы она не превышала ширину законченного шва.

Сварка стыкового соединения со скосом кромок на подкладке в вертикальном положении

Данный тип соединения довольно часто встречается при строительстве трубопроводов, сосудов высокого давления, а также в судовых конструкциях. Сварка производится на обратной полярности снизу вверх.

Первый проход. Сварочный ток должен быть большим. Положение электрода должно соответствовать изображенному на рис. 31. При сварке используется техника наплавки узких валиков, без поперечных колебаний, в вертикальном положении. Шов должен иметь хорошее сплавление с подкладкой и с поверхностями обеих кромок в своей корневой части.

При сварке необходимо следить за тем, чтобы лицевая поверхность шва была максимально плоской. Если в сварном соединении зазор в корне очень широк, то необходимо сделать два или три прохода, чтобы выполнить подварочный шов. В процессе сварки необходимо обращать внимание на то, чтобы все наложенные слои имели хорошее сплавление друг с другом.


Рис. 31. Положение электрода при сварке стыкового соединения со скосом кромок на подкладке в вертикальном положении

Второй проход. Сварочный ток не должен быть слишком велик. При выполнении шва используется техника сварки с поперечными колебаниями электрода. В качестве направляющих, по которым можно определять ширину этих поперечных колебаний, используются кромки ранее наплавленных валиков. При выполнении сварки необходимо следить за тем, чтобы поверхность сварного шва была плоской, избегать появления подрезов. Сварной шов не должен образовывать острые кромки, поскольку в таких кромках могут образовываться зашлаковки.

Третий проход. Величина сварочного тока должна быть такой, чтобы обеспечивалось как хорошее проплавление и сплавление, так и малая выпуклость сварного шва. Поперечные колебания электрода не должны выходить за пределы скошенных кромок разделки. Во избежание появления подрезов необходима задержка электрода в крайних точках траектории поперечных колебаний. Для предотвращения появления излишней выпуклости сварного шва скорость сварки должна быть достаточно большой.

Сварка стыкового соединения без скоса кромок в вертикальном положении

Сварка данного соединения производится снизу вверх на обратной полярности многопроходным швом. Техника сварки корневого прохода с большим зазором в стыковом соединении без скоса кромок достаточно сложна.

Первый проход. Сварочный ток должен быть не слишком большим, но вместе с тем он должен быть достаточным для гарантированного проплавления корневой части соединения и образования на обратной стороне стыка достаточной выпуклости. Положение электрода должно соответствовать изображенному на рис. 32. При сварке первого прохода используется техника сварки узкими валиками без поперечных колебаний электрода; Необходимо добиваться получения на обратной стороне корня шва небольшой выпуклости.


Рис. 32. Положение электрода при сварке стыкового соединения без скоса кромок в вертикальном положении

Второй проход. Значение сварочного тока и положение электрода практически не отличаются от аналогичных показателей при сварке первого прохода. Нельзя производить поперечные колебания со слишком большой амплитудой. Скорость перемещения электрода должна быть такой, чтобы не возникала избыточная выпуклость шва и не образовывались подрезы.

Сварка соединения с наружным угловым швом

Данные сварные соединения часто встречаются на практике. Сварка производится на обратной полярности снизу вверх с использованием техники поперечных колебаний электрода, кроме того, благодаря тому, что свариваемые кромки не скошены, в данном случае достаточнонеглубокое проплавление.

Первый проход. Сварочный ток не должен быть слишком велик. Положение электрода должно соответствовать изображенному на рис. 33. Используется техника выполнения корневого прохода с возвратно-поступательными перемещениями электрода.


Рис. 33. Положение электрода при сварке соединения с наружным угловым швом в вертикальном положении

Второй и третий проходы. Сварочный ток необходимо увеличить по сравнению с первым проходом. Во время сварки необходимо следить за обеспечением хорошего сплавления с ранее наплавленными слоями, а также со свариваемыми кромками основного металла, обращать внимание на возможность появления подрезов. Лицевая поверхность швов должна быть плоской.

Четвертый проход. Значение сварочного тока и положение электрода аналогичны использовавшимся при сварке предыдущих проходов. При сварке использовать технику поперечных колебаний электрода. Лицевая поверхность шва должна иметь небольшую выпуклость. В качестве границы шва использовать кромки пластин.


Рис. 34. Сварка стыкового соединения со скосом кромок в вертикальном положении (а) и траектория движения электрода (б) 

Сварка стыкового соединения со скосом кромок

Данные сварные соединения очень часто встречаются при сварке труб и ответственных стыковых соединений. Сварка производится на обратной полярности снизу вверх многопроходным швом с поперечными колебаниями электрода.

Первый проход. Сварочный ток должен быть достаточно большим. Положение электрода должно соответствовать изображенному на рис. 34а. Используется техника сварки корневого шва, при которой применяются колебания электрода вверх-вниз. Допускается выполнять сварку с небольшими поперечными перемещениями электрода (рис. 34б).

Перемещения электрода вверх должны производиться на расстояние, не превышающее 50 мм. Необходимо следить, чтобы при этих перемещениях не происходил обрыв дуги. Необходимо обеспечить полное проплавление по всей обратной стороне соединения. Лицевая поверхность шва должна быть максимально плоской.

Второй и третий проходы. Сварочный ток может быть увеличен. Положение электрода аналогично использовавшемуся при сварке первого прохода. Используется техника сварки с поперечными колебаниями электрода. На рис. 34б показана траектория движения электрода. Для получения однородного по качеству и внешнему виду сварного шва следует поддерживать постоянство продольных и поперечных перемещений электрода.

Поперечные перемещения электрода должны производиться быстро, с тем, чтобы предотвратить появление избыточной выпуклости в центральной части сварного шва. На протяжении всего времени сварки необходимо поддерживать короткую дугу, следить за тем, чтобы перемещения электрода оставались в пределах ширины сварного шва. Для предотвращения появления подрезов применять остановки электрода в крайних точках траектории их перемещения.

В некоторых случаях сварку стыкового соединения со скосом кромок можно производить сверху вниз (рис. 35а) или однопроходным швом с поперечными колебаниями (рис. 356). Техника выполнения однопроходным швом аналогична выполнению второго и третьего прохода при многопроходной сварке.


Рис. 35. Сварка стыкового соединения со скосом кромок сверху вниз (а) и траектория перемещения электрода при однопроходной сварке с поперечными колебаниями (б) 

Сварка таврового соединения в потолочном положении однопроходным угловым швом

Данное сварное соединение и положение при сварке очень часто встречается в судостроении и при изготовлении металлоконструкций.

Сварка таврового соединения в потолочном положении однопроходным угловым швом производится на обратной полярности, при этом сварочный ток не должен быть слишком большим. Положение электрода должно соответствовать изображенному на рис. 36а. Во время сварки используются возвратно-поступательные перемещения электрода. При наплавке металла необходимо поддерживать короткую дугу. При перемещении вперед дуга не должна обрываться.


Рис. 36. Положение электрода при сварке таврового соединения в потолочном положении однопроходным угловым швом

Во время сварки нужно уделять особое внимание обеспечению хорошего сплавления и проплавления в корневой части соединения, а также с боковыми кромками. Нельзя допускать подтекания шлака в головную часть сварочной ванны, для предотвращения появления избыточной высоты и выпуклости сварного шва не допускать перегрева сварочной ванны.

Сварка таврового соединения в потолочном положении многопроходным угловым швом.

При необходимости выполнения сварки угловым швом в потолочном положении больше чем за один проход применяется техника сварки без поперечных колебаний электрода. Сварку выполняют на обратной полярности, при этом сварочный ток не должен быть слишком велик. Положение электрода должно соответствовать изображенному на рис. 37а.


Рис. 37. Положение электрода при сварке таврового соединения в потолочном положении многопроходным угловым швом (а) и порядок наложения слоев (б)

Последовательность наложения слоев приведена на рис. 37б. У сварщиков, имеющих малый опыт, могут возникнуть некоторые сложности с соблюдением правильных пропорций швов. Однако с опытом эти трудности будут преодолены. Каждый проход должен иметь хорошее сплавление со смежными валиками и с поверхностью свариваемых кромок. Лицевая поверхность каждого прохода должна быть максимально плоской.

Сварка нахлесточного соединения однопроходным угловым швом в потолочном положении

Данное сварное соединение и положение при сварке очень часто встречается при сооружении резервуара и в судостроении. Из-за габаритов и характерных особенностей этих объектов их кантовка для проведения сварки не целесообразна. Большинство подобных работ выполняется на обратной полярности, однако имеются также случаи, когда необходимо сваривать нахлесточное соединение в потолочном положении и на прямой полярности.

Величина сварочного тока при сварке на обратной полярности не должна быть слишком большой. При сварке на прямой полярности величина сварочного тока должна быть несколько выше, чем при сварке аналогичного соединения на обратной полярности. Положение электрода должно соответствовать изображенному на рис. 38.


Рис. 38. Положение электрода при сварке нахлесточного соединения однопроходным угловым

При сварке можно применять колебательные перемещения электрода в направлении сварки. При перемещении электрода вперед необходимо следить, чтобы не произошло обрыва сварочной дуги. Такие перемещения электрода служат для предварительного подогрева кромок перед наплавкой на них электродного металла и способствуют предотвращению перегрева сварочной ванны, тем самым препятствуют образованию наплывов и избыточной выпуклости. Кроме того, такие перемещения электрода и сварочной дуги вызывают оттеснение шлака в хвостовую часть сварочной ванны. При сварке нельзя допускать выхода сварочной дуги на поверхность верхней пластины, и следует следить, чтобы сварочная дуга при своих перемещениях не выходила за границы наружной поверхности сварного шва.

При сварке на прямой полярности несколько затруднен контроль за шлаком. Сварной шов имеет тенденцию к образованию избыточной выпуклости, а также к вытеканию сварочной ванны на вертикальную поверхность кромки пластины. Подрезы не встречаются.

Сварка таврового соединения многопроходным угловым швом с поперечными колебаниями в потолочном положении

Сварщику в своей практике не раз приходится встречаться с необходимостью выполнения в потолочном положении угловых швов большого сечения электродами большого диаметра.

Первый проход. Сварочный ток должен быть достаточно большим. Положение электрода должно соответствовать изображенному на рис. 39а. Длина сварочной дуги должна быть небольшой, при сварке необходимо использовать поперечные колебания электрода (рис. 39б). Перемещения электрода должны производиться быстрыми скользящими движениями, в то же время необходимо следить за тем, чтобы при этом не происходило значительное увеличение длины дуги.

Во время проведения сварки нужно обращать внимание на поддержание стабильного горения сварочной дуги, не допускать ее обрыва. После кристаллизации кратера возвратиться к нему и переварить кратер. Это способствует предотвращению перегрева сварочной ванны и появлению трещин в металле сварного шва. Происходит предварительный подогрев корневой части сварного шва до того, как на него будет наплавлен электродный металл. Кроме того, такая техника сварки приводит к оттеснению шлака в верхнюю часть наплавленного металла. Улучшается возможность для контроля за наплавленным металлом и сварочной дугой, предотвращается появление подрезов, наплывов и избыточной выпуклости сварного шва, улучшается внешний вид поверхности сварного шва, она становится более однородной.


Рис. 39. Положение электрода при сварке таврового соединения многопроходным угловым швом с поперечными колебаниями в потолочном положении (а) и траектория движения электрода (б)

Второй проход. Второй проход выполняется так же, как и первый, с тем только отличием, что за второй проход наплавляется большее количество электродного металла. Выполнение второго прохода, как правило, вызывает у сварщиков большие сложности, чем первого.

Сварка стыкового соединения со скосом кромок на подкладке многопроходным швом в потолочном положении.

Данный тип сварного соединения и условия проведения сварки часто встречаются при сварке труб и резервуаров, когда сварка выполняется на кольцевых подкладках.

Первый проход. Сварка производится на обратной полярности. Сварочный ток должен быть достаточно большим. Положение электрода должно соответствовать изображенному на рис. 40. Для обеспечения хорошего переноса металла необходимо поддержание короткой дуги. Перемещения электрода должны носить скользящий характер. Необходимо обращать внимание на обеспечение гарантированного сплавления в области подкладки и между кромками в корневой части соединения. Лицевая поверхность сварного шва по возможности должна иметь минимальную выпуклость.

Второй и последующие проходы. Сварочный ток остается по-прежнему большим. Сварка производится с использованием техники скользящих перемещений электрода, без поперечных его перемещений. Если металл начинает перегреваться, необходимо удлинить дугу и переместить электрод вперед, пока кратер с перегретой сварочной ванной не остынет.


Рис. 40. Положение электрода при сварке стыкового соединения со скосом кромок на подкладке многопроходным швом в потолочном положении и порядок наложения слоев

Необходимо обеспечить гарантированное сплавление как с поверхностями ранее наплавленных валиков, так и со стенками разделки. Следует обращать внимание на безусловную необходимость очистки от шлака поверхности шва после каждого прохода.

Сварка стыкового соединения без разделки кромок многопроходным швом в потолочном положении

Подобное соединение в таком пространственном положении встречается крайне редко. Выполнить качественно такой сварной шов весьма трудно, для этого необходима определенная тренировка. Сварка производится на обратной полярности.

Первый проход. Сварочный ток не должен быть слишком большим. Положение электрода должно соответствовать изображенному на рис. 41. Сварочная дуга должна быть короткой. Для обеспечения полного проплавления с обратной стороны электрод должен все время находиться в зазоре между свариваемыми кромками. Кроме того, такое положение электрода обеспечивает сплавление с корневыми кромками свариваемых пластин. При сварке используются возвратно-поступательные перемещения электрода.


Рис. 41. Положение электрода при сварке стыкового соединения без разделки кромок многопроходным швом в потолочном положении

Второй проход. Сварочный ток не должен быть слишком большим. При сварке необходимо поддерживать короткую дугу и производить небольшие колебательные перемещения электрода, выполняемые легкими скольжениями, следить за тем, чтобы поперечные колебания электрода не имели слишком большой ширины.

Сварка стыкового соединения со скосом кромок многопроходным швом в потолочном положении

Данный тип сварного соединения и условия, в которых она выполняется, часто встречается при сварке труб и металлоконструкций из листового проката.

Сварка стыкового соединения со скосом кромок многопроходным швом производится на обратной полярности с поперечными колебаниями электрода. Сварочный ток при первом проходе не должен быть слишком большим, но при этом должен обеспечивать гарантированное проплавление с обратной стороны. Положение электрода должно соответствовать изображенному на рис. 42. Выполнение первого, корневого, прохода аналогично сварке первого прохода в ранее рассмотренных соединениях. Лицевая поверхность сварного шва должна быть плоской. С обратной стороны должен образовываться небольшой валик.


Рис. 42. Положение электрода при сварке стыкового соединения со скосом кромок многопроходным швом в потолочном положении

Второй и последующие проходы. Сварочный ток должен быть несколько больше, чем при первом проходе. Применяется техника сварки с поперечными колебаниями электрода. Перемещения электрода в поперечном направлении должны производиться быстрыми движениями, с тем чтобы в центральной части сварного шва не получалась слишком большая выпуклость. Кроме того, траектория поперечных перемещений электрода не должна выходить за пределы ширины сварного шва.

Для предотвращения появления подрезов используется задержка электрода в крайних точках траектории поперечных колебаний. Необходимо помнить, что подрезы появляются в результате «вылизывания» дугой металла на поверхности пластины с последующим ненаплавлением электродного металла на это место.

Условное обозначение сварного шва на чертежах по гост

Сварка, как технологический процесс известна с давних времен, точнее с того момента, как наши предки научились работать с железом. На сегодня можно насчитать порядка 150 видов сварочных процессов. Но все они объединены одним – обозначением.

Инженер-конструктор, занимаясь разработкой изделия, использует в своей работе множество справочной и нормативной документации. Но при оформлении результатов своей работы он должен руководствоваться требованиями ЕСКД (единая система конструкторской документации). Это набор нормативов, регламентирующий оформление документов – чертежей, спецификаций, технических условий и пр. Если все рабочие документы выполнены в соответствии с требованиями нормативной документации, будут указаны все обозначения резьбы, сварки и пр., то допустить брак при изготовлении детали будет сложно.

Общие принципы

В состав ЕСКД входит ГОСТ 2.312-72, «Условные изображения и обозначения швов сварных соединений».

На его страницах инженер-конструктор найдет всю необходимую информацию и показать условное обозначение сварки в рабочей документации не составят труда.

Действительно, в обозначении швов на чертежах нет ничего сложного, особенно если следовать требованиям, которые описаны в указанном ГОСТ.

Для детального обозначения швов на чертеже применяют линию выноску с полкой, на которой указывают параметры шва, условия дополнительной обработки и пр.

Видимую часть сварочного стыка на чертеже условно изображают с использованием основной линии, невидимую показывают штриховой  линией.

Если стык выполняют за несколько проходов, то в сечении допустимо показывать каждый слой отдельным контуром. Более того, каждому из них необходимо присвоить буквенное обозначение. Таким образом , при чтении чертежа станет понятно, что слой А наносят первым, слой Б вторым и так далее.

Принцип выбора типа шва и способа сварки

В основе любой разработки лежит набор определённых расчетов, определенные в техническом задании на разработку. То есть при выборе типа стыка и способа его получения конструктор должен провести все необходимые прочностные и силовые расчеты, которые должны определить толщину свариваемого металла, геометрические параметры соединения.

В результате расчетов, будет определен и способ сварки, например, дуговая сварка под защитными газами или традиционная ручная сварка с использованием электродов. В зависимости от этого, конструктор должен обратиться к ГОСТ, в которых содержится вся необходимая информация.

Виды сварных соединений

Каждый конструктор знает, что отечественными ГОСТ определено пять типов швов:

стыковые – С;

нахлесточные – Н;

тавровые – Т;

угловые – У;

торцовые.

Каждый из указанных стыков  может быть применен в зависимости от требований к конструкции получаемого узла. Подробнее о типах и видах сварных швов и соединений читайте здесь.

Кроме, указанных в скобках буквенных обозначений, существуют дополнительные (вспомогательные) знаки, которые призваны обеспечить полноту информации о сварном шве.

Дополнительные( вспомогательные) знаки

В ГОСТ 5264-80 и ГОСТ 14771-76 показаны основные виды сварных соединений, их обозначение и допустимые размеры. К примеру, тавровый сварной шов, выполняемый из листовой стали толщиной от 8 – 100 мм имеет обозначение сварного шва на чертеже – Т8.

Форма подготовленных кромок

Форма поперечного сеченияТолщина свариваемых деталей, мм

Условное обозначение сварного соединения

Подготовленных кромок

Выполненного шва

С криволинейным скосом одной кромки

15 – 100Т2

С двумя симметричными скосами одной кромки

8 – 100

Т8

12 – 100

Т9

В этих же документах указаны обязательные к исполнению размеры, например катета шва. Его ра выбирают исходя их размера предела текучести. Так, если предел текучести недостиг 400 МПа, то при толщине свариваемых деталей от 22 до 32 мм, катет шва должен быть 8 мм. При использовании стандартных размеров сварных швов, на чертежах нет необходимости указывать его размеры.

В случае если конструктор принял решение об использовании нестандартного шва, то его размеры необходимо указать полностью

Полное обозначение шва на чертежах

Структура обозначения стандартного шва

В пронумерованных ячейках разработчик должен указать главные характеристики шва.

Так, в первой ячейке необходимо показать дополнительные знаки, изображенные на рисунке. Во второй конструктор прописывает ГОСТ на метод сварки. В третьей, должно быть, записано обозначение шва, например, Т4. Далее,  должен быть обозначен размер катета шва. В этом обозначении указываются параметры прерывистого шва и другие вспомогательные знаки.

Данными размещенные на чертежах служат основанием для контроля готовой продукции. То есть работник отдела технического контроля, руководствуясь требованиями рабочей документации и технических условий, должен выполнить соответствующие замеры. Допустим, размер катета он может проверить с использованием традиционного мерительного инструмента. Качество сварки можно проверить с использованием средств технического контроля, например, УЗИ.

Если в изделии используется множество однотипных стыков, то конструктор вправе составить таблицу соединений деталей с указанием параметров сварки и номера шва.

Использование САПР в работе конструктора

В наши дни, большая часть конструкторских работ выполняется с использованием программных комплексов. Эти программные продукты (AutoCad, SolidWorks, Kompas и пр.). Каждый из них обладает своими преимуществами и недостатками, но речь не об этом.

Их использование позволяет сократить сроки разработки деталей, сборочных единиц и готовых изделий в целом, например, первые автомобили ГАЗель, проектировались с применением САПР, и вместо расчетных 5 – 8 лет, которые ранее затрачивались на проектирование и подготовку производства, использование систем проектирования позволило его сократить до 2 – 3 лет.

Кроме того, некоторые из систем автоматизированного проектирования позволяют смоделировать поведение детали под воздействием определенных нагрузок. Это позволяет конструктору выбирать оптимальные инженерные решения и сразу вносить их в чертежи.

Практически все программы, применяемые при проектировании деталей, оснащаются библиотеками, в которых собраны различные данные. Например, в системе Компас (САПР отечественного производства) можно в течение считанных секунд выбрать тип сварочного соединения, его обозначение и показать его в рабочей документации.

Надо отметить, то что все САПР, используемые в отечественной промышленности, позволяют разрабатывать документацию в соответствии с требованиями ЕСКД.

 

Виды сварочных швов и техника их выполнения

Сварочный шов – неразъемное соединение, получаемое в результате сварки. Задача каждого сварщика – получение качественного сварного шва, которое гарантирует надежное соединение элементов. Для выполнения поставленной задачи нужно знать виды сварочных швов и техники их выполнения.

Основные виды сварочных швов

В первую очередь все швы делят по способу соединения деталей. По данному признаку выделяют следующие виды швов:

  • стыковые – получаемые между заготовками, примыкающими торцевыми поверхностями друг к другу,
  • нахлесточные – получаемые за счет наложения деталей друг на друга с частичным перекрытием,
  • тавровые – получаемые за счет приваривания торцевой поверхности одной заготовки к плоскости другой заготовки,
  • угловые – получаемые между заготовками, расположенными под углом друг к другу, шов получается в месте примыкания деталей,
  • торцевые – получаемые за счет сваривания торцов заготовок.

Стыковые швы

Стыковые швы являются самыми распространенным видом швов. Они используются при сварке металлических листов или труб различной толщины. Для сварки заготовки должны быть надежно зафиксированы. Между деталями остается небольшой зазор – около 1-2мм. В процессе сварки он заполняется расплавленным металлом заготовок или присадочным материалом.

Различают односторонние и двухсторонние швы. При односторонней сварке шов формируется только на одной стороне деталей. В случае двухстороннего шва сварка проводится на обеих сторонах заготовок.

В зависимости от толщины свариваемых деталей для стыковых швов по-разному готовят сварочные кромки. Соответственно этому различают формы:

  • с отбортовкой – для деталей толщиной до 4мм,
  • без скоса – для деталей толщиной до 8мм,
  • с V-образным скосом – для деталей толщиной от 3 до 60мм,
  • с X-образным скосом – для деталей толщиной от 8 до 120мм,
  • с K-образным скосом – для деталей толщиной от 8 до 100мм,
  • с криволинейным скосом – для деталей толщиной от 15 до 100мм.

Для тонких деталей возможна стыковая сварка без обработки кромок или с обработкой только на одной стороне.

Нахлесточные швы

При выполнении швов внахлест поверхности свариваемых деталей параллельны друг другу и частично друг друга перекрывают. Такие швы считаются самыми простыми и удобными для практики неопытных сварщиков.

Сварка швами внахлест всегда выполняется с двух сторон. Кромка каждой заготовки должна быть приварена к поверхности другой. Кромки подготавливаются без скоса. Угол наклона электрода при выполнении сварки должен быть в пределах 15o-45o. Если угол наклона будет выходить за эти пределы, то шов «заползет» на одну и сторон стыка.

Тавровые швы

Тавровые швы выполняются привариванием торца одной заготовки к боковой поверхности другой заготовки и в разрезе напоминают букву Т. Чаще всего сварка проводится под прямым углом, но возможно и другие варианты. В процессе сварки заполняется угол, образованный между деталями. Поэтому важно обеспечить глубокое проплавление деталей. Обычно это достигается за счет использования методов автоматической сварки.

Тавровые швы всегда двухсторонние. Форма подготовленных кромок возможна без скоса и с одним или двумя скосами одной кромки. Обрабатывается только привариваемый торец. Как правило, без скоса свариваются детали небольшой толщины – от 2 до 40мм. Для деталей толщиной от 8 до 100мм производится обработка кромки.

При сваривании тавровых швов важно знать их особенность: получаемые швы в итоге прочнее основного металла. Поэтому перед сварочными работами нужно проводить расчеты по получаемому сопротивлению материалов. Это необходимо, чтобы избежать неравномерной прочности деталей, разной стойкости к нагреву и охлаждению и другим скрытым дефектам.

Угловые швы

Угловые швы часто относят к подвиду тавровых швов. Но при этом угловые швы больше распространены, чем тавровые. По форме угловые швы напоминают букву Г. Угол между деталями может быть любой, но чаще всего – прямой. В работе необходимо выполнять правила геометрии шва: ширину, изогнутость, выпуклость шва и корень стыка.

При работе с угловыми швами главной проблемой является стекание металла по углу или с вертикальной поверхности на горизонтальную. Поэтому важно контролировать ровное ведение электрода, соблюдая углы наклона. Так для сварки листов разной толщины нужно держать электрод под углом 60o по отношению к более толстой заготовке. В результате основное тепло придется на более толстую деталь, а более тонкая не перегреется и не прогорит.

Угловые швы бывают односторонние и двухсторонние. Для двухстороннего шва сварка выполняется и на внутреннем, и на внешнем угле. Возможна сварка без обработки кромок или скосами. Скос может выполняться с одной или с двух сторон одной кромки. Вторая кромка при этом не обрабатывается.

Прочность угловых швов ниже прочности основного металла. Этот момент нужно учитывать при проектировании и проведении работ.

Торцевые швы

Торцевые швы используются для сваривания деталей разной формы, прилегающими друг к другу боковыми поверхностями. Угол прилегания может находиться в пределах от 0o до 30o. Такая сварка подходит для работы как с тонкими, так и с толстыми металлами, а также для сварки деталей разной толщины. Перед сваркой выполняется разделка кромок под односторонние скосы.

Торцевые швы отличаются высокой выносливостью к нагрузкам. Но при этом возможно попадание влаги или загрязнений между поверхностями деталей, что в будущем приведет к коррозии. Особенно это вероятно при наличии непроваров.

Другие критерии классификации сварных соединений

Кроме способа соединения деталей швы различаются по другим параметрам:

  • по форме шва различают выпуклые и плоские швы,
  • по протяженности бывают сплошные и прерывистые швы,
  • по положению свариваемых поверхностей в пространстве бывают горизонтальные, вертикальные, потолочные и нижние швы и другие классификации.

Перед началом работ важно определить вид сварочного шва по всем параметрам. Это поможет подобрать оптимальную технику выполнения сварки в каждом конкретном случае. Например, сварка углового соединения в вертикальном положении потребует более тщательной подготовки, чем сварка стыкового шва в нижнем положении.

Сварные швы и болты металлоконструкций

Согласно действующим нормам и стандартам, чертежи металлических конструкций выполняются с применением разнообразных графических обозначений. Они необходимы для того, чтобы отображать условные либо упрощенные изображения крепежа, различных конструктивных особенностей строений и пр. Графические обозначения наносятся на чертежи в соответствии с определенными правилами.

 

Когда проектировщики выполняют чертежи различных металлических конструкций, то для изображения на них сварных швов используют условные изображения, предусмотренные ГОСТ 2.312 – 72. Однако из этого правила есть свое исключение, и состоит оно в том, что в соответствии с теми стандартами, которые приняты на предприятиях, занимающихся изготовлением металлических конструкций, на чертежах марки КМ можно указывать изображения швов сварных соединений, которые приведены в следующей таблице.

Металлические конструкции

Сфера применения металлических конструкций чрезвычайно широка. Они используются практически во всех зданиях гражданского и промышленного назначения, для возведения инженерных сооружений. Без них не обойтись тогда, когда нужно соорудить большие пролеты на значительной высоте и испытывающие немалые нагрузки. Чаще всего металлические конструкции применяются в производственных зданиях, при строительстве эстакад, мостов, мачт и башен. Их также активно используют для создания каркасов многоэтажных зданий, а также в разнообразных листовых конструкциях.

У металлических конструкций есть множество достоинств, благодаря которым их можно столь широко и успешно применять в строительстве.

Ключевым фактором, который обеспечивает высокую степень надежности металлоконструкций, является то, что реальные значения такой их важнейшей характеристики, как распределение напряжений и деформаций, практически совпадают с расчетными. Сталь и алюминиевые сплавы различных марок, из которых изготавливают металлические конструкции, очень однородны по своей структуре. Кроме того, они также имеют очень близкие к расчетным показатели упругопластической и упругой работе этих материалов.

Изготовлением разнообразных металлических конструкций, используемых при строительстве, занимается немало промышленных предприятий. Те из них, которые оснащены современным высокопроизводительным оборудованием, изготавливают изделия с высокой степенью готовности. Что касается установки металлических конструкций, то эта процедура отличается высокой технологичностью и осуществляется персоналом специализированных организаций с использованием современной техники.

Проектирование металлических конструкций осуществляется с учетом предъявляемых к ним технологических требований и требований, касающихся монтажа. Кроме того, оно производится с использованием самых современных и эффективных методик, которые обеспечивают минимизацию трудоемкости этого процесса.

После того как металлические конструкции, предназначенные для использования в качестве элементов каких-либо строительных объектов, изготовлены на предприятии, их необходимо доставить непосредственно на место монтажа или же целиком, или же по частям (так называемыми отправочными элементами). Для этого используют специализированные транспортные средства.

Долговечность металлических конструкций определяется сроками их морального и физического износа. Длительность последнего связана, прежде всего, с процессами электрохимической коррозии. Для того чтобы обеспечить защиту металла от нее, сейчас используют самые передовые технологии обработки, а также новейшие лакокрасочные и полимерные покрытия.

Вне зависимости от того, для чего именно предназначена та или иная металлическая конструкция и в какой именно степени она загружена и функциональна, она должна обладать гармоничными (с точки зрения эстетики) формами. Это требование является наиболее существенным для тех металлоконструкций, которые используются при строительстве различных общественных зданий и сооружений.

 

 

 

Типы сварных швов и соединений

Любое обсуждение типов сварных швов начинается с идеи о том, что важно различать соединение и сварной шов.

Каждый должен быть описан, чтобы полностью описать сварное соединение.

Существует много различных типов сварных швов, которые лучше всего можно описать по их форме, если они показаны в поперечном сечении.

Самым популярным сварным швом является угловой шов, названный по форме поперечного сечения.

Другие типы сварных швов включают фланцевые, электрозаклепочные, щелевые, шовные, наплавочные и подкладочные.

Стыки совмещаются со сварными швами для получения сварных соединений.

Типы соединений

При сварке используются 5 основных соединений. Это:

  • Стык
  • Угловой шарнир
  • Кромочный стык
  • Соединение внахлестку
  • Тройник
Иллюстрации различных типов сварных соединений

Типы сварных швов

Угловые швы

Угловой сварной шов соединяет две поверхности примерно под прямым углом друг к другу. Угловой шов бывает нескольких видов:

  • Полный угловой сварной шов — это сварной шов, размер сварного шва которого равен толщине более тонкого объекта, соединенного вместе.
  • Ступенчатый прерывистый угловой сварной шов — это две линии прерывистой сварки на стыке. Примером может служить тройник (см. Ниже), в котором приращения скругления на одной линии смещены по сравнению с другой.
  • Цепь Прерывистый угловой сварной шов — относится к двум линиям прерывистых угловых швов внахлестку или Т-образному стыку, где сварные швы в одной линии приблизительно противоположны швам в другой линии.

Прочие термины, связанные с угловыми сварными швами, включают:

  • Бокс : относится к продолжению углового шва вокруг угла элемента.Это продолжение основного сварного шва.
  • Выпуклость : Относится к максимальному перпендикулярному расстоянию от поверхности выпуклого углового шва до линии, соединяющей пальцы.
Иллюстрации, изображающие типы угловых сварных швов

Желобчатые сварные швы

Второй по популярности вид сварного шва — это сварной шов с разделкой кромкой. Существует семь основных типов сварных швов с разделкой кромок, которые показаны на рис. 6-25.

Под сваркой с разделкой кромок понимаются валики, которые размещаются в канавке между двумя соединяемыми элементами.

Иллюстрации основных сварных швов с разделкой кромок

Дополнительные примеры показаны на рис. 6-26 выше.

Тип используемого сварного шва определяет способ подготовки шва, стыка или поверхности.

Стандартные типы сварных швов с разделкой кромок см. На рис. 6-27.

Иллюстрации типов сварных швов с разделкой кромок

Наплавочный шов

Это сварные швы, состоящие из одной или нескольких нитей или валиков плетения, нанесенных на непрерывную поверхность для получения желаемых свойств или размеров.

Этот тип сварного шва используется для наращивания поверхностей или замены металла на изношенных поверхностях.Также применяется при стыковых соединениях квадратного сечения.

Примеры см. На рис. 6-28 ниже.

Сварной шов

Электрозаклепка — это кольцевые сварные швы, выполненные через один элемент внахлестку или тройник, соединяющий этот элемент с другим.

Сварка может быть выполнена или не выполнена через отверстие в первом элементе; если используется отверстие, стенки могут быть или не быть параллельными, а отверстие может быть частично или полностью заполнено металлом сварного шва.

Такие сварные швы часто используются вместо заклепок.

ПРИМЕЧАНИЕ: Отверстие под угловую сварку или точечную сварку не соответствует этому определению.

Примеры см. На рис. 6-28 ниже.

Сварной шов

Это сварной шов, выполненный в удлиненном отверстии в одном элементе соединения внахлестку или тройник, соединяющий этот элемент с поверхностью другого элемента, который выходит через отверстие.

Это отверстие может быть открытым с одного конца и может быть частично или полностью заполнено металлом сварного шва.

ПРИМЕЧАНИЕ. Паз, сваренный угловым сварным швом, не соответствует этому определению.

Иллюстрации наплавки, вставки и пазовой сварки

оплавлением

Оплавление называется процессом контактной сварки, при котором плавление осуществляется по всей прилегающей поверхности.

Тепло создается за счет сопротивления току между двумя поверхностями и приложения давления после того, как нагрев в основном завершен.

Прошивка сопровождается вытеснением металла из стыка.

Пример сварки оплавлением см. На Рис. 6-29 ниже.

Подробнее : Условные обозначения оплавленных и фланцевых сварных швов

Сварной шов

Сварной шов, выполненный дуговой сваркой или контактным швом, для которого не указан способ сварки.

Этот термин означает сварку контактным швом.

Пример сварного шва см. На рис. 6-29 ниже.

Точечная сварка

Точечная сварка — это сварка, выполненная дуговой точечной сваркой или точечной сваркой сопротивлением, для которой не указан процесс сварки.

Этот термин означает точечную сварку сопротивлением.

Подробнее : Символы точечной и дуговой сварки

Высаженный шов

Сварка с осадкой — это процесс контактной сварки, при котором плавление происходит постепенно вдоль стыка по всей прилегающей поверхности.

Приложение давления перед нагревом является обязательным и происходит в период нагрева.

Тепло возникает из-за сопротивления прохождению электрического тока в области контакта между поверхностями.

Иллюстрации сварных швов оплавлением, швом, точечной сваркой и высаженной сваркой

Положения для сварки

Сварка конструкций часто выполняется в том месте, где они находятся.

Были разработаны методы, позволяющие выполнять сварку в любом положении.

Некоторые сварочные процессы могут использоваться во всех положениях, в то время как другие могут использоваться только в одном или двух положениях.

Все виды сварки можно классифицировать по положению заготовки или положению сварного соединения на свариваемых пластинах или секциях.

Существует четыре основных положения сварки, которые показаны на рисунках 6-30 и 6-31.

Иллюстрации положений сварки с разделкой кромок Сварные швы с разделкой кромок, кромок и поверхности могут выполняться во всех положениях, показанных на рис. 6-31 выше

. Подробнее о различных положениях сварки.

6 различных типов сварных соединений — в чем различия?

0

Последнее обновление: 20 мая 2021 г.

Изображение предоставлено: Hortlander, Flickr

Вы боретесь с терминологией сварных соединений или не знаете, как сварить конкретное соединение наилучшим образом для вашего проекта? Без подробного руководства или значительного опыта это может быть сложно. Читайте дальше, и вы узнаете о шести соединениях, их различиях и о том, на что обращать внимание при их сварке.

Есть два типа сварных швов, выполняемых в шести различных соединениях. Все они просты для понимания, и когда каждое имя объяснено, вы оцените полезные словесные перехваты, которые каждое имя должно запомнить.

Два типа сварных швов

Эти два шва можно выполнять одинаково. Их сила может отличаться в зависимости от того, как они подготовлены и выполнены в своих настройках, но в основном это пространство, в которое вы ввариваетесь, определяет его название.

1. Стыковая сварка

Стыковой шов — это когда две грани разных пластин плотно прилегают друг к другу и заподлицо вдоль их вершин. Иногда они расположены под небольшим углом, но обычно они выровнены прямо. Этот сварной шов получил свое название, потому что две пластины обычно стыкуются друг с другом встык.

Этот тип сварного шва может иметь участки, вырезанные из углов пластин различной формы и размеров. Они называются подготовкой к сварке и добавляются для обеспечения большей глубины сварного шва.Соединение также может иметь два квадратных конца без какой-либо подготовки к сварке. Чем больше добавляется подготовка к сварке, тем прочнее будет соединение, в результате чего на работу добавляется время. Поэтому, когда проект не требует этого, лучше сваривать их квадратные концы, а не вырезать подготовительные части под сварку.

2. Угловой шов

Этот тип сварного шва находится внутри внутреннего угла двух пластин. Чаще всего угол составляет 90 °, но он может быть любым углом меньше, если вы можете сваривать его, и любым углом больше примерно до 145 °.Он получил название «скругление», потому что «скругление» — это старое слово, используемое для описания куска материала треугольной формы, похожего на форму внутреннего угла, с которым вы привариваете угловой сварной шов. Я помню угловой шов под термином «заполнить его», потому что, когда есть угол, который нужно сварить, вы заполняете его сварным швом, в отличие от стыкового шва, где вы обычно покрываете его сварным швом.

Тройник

Тройник, как следует из названия, представляет собой соединение в форме буквы T. Один кусок металла ложится ровно, а другой участок приваривается, стоя на боку или концом вверх.Это простой на вид косяк. Хотя этот сварной шов имеет тенденцию быть более легким во многих отношениях, его выполнение может оказаться сложным из-за того, что сварной шов растягивается в любом направлении из-за отсутствия площади поверхности, удерживаемой между двумя сварными швами.

Он почти всегда имеет сварные швы на обеих длинах вертикальной пластины и часто имеет приваренные концы, завершая его четырьмя сторонами, приваренными к опорной пластине.

Что нужно знать при сварке тройников

Важно знать, как сварные швы деформируют металл.Элемент, который стоит вертикально, должен быть под определенным углом, и если вы закрепите его под прямым углом и приварите его там, он всегда будет тянуться к стороне, которую вы свариваете первой. Поэтому необходимо сварить его так, чтобы этого не произошло. Есть два хороших способа предотвратить это, описанные ниже. Используемый материал и требования к отделке поверхности определят наилучший способ обеспечить концы стыка в пределах допустимого угла.

Вариант первый

Закрепите пластину так, чтобы она располагалась под правильным углом и в правильном месте.Затем прикрепите скобы к обеим свариваемым секциям, по ходу проверяя, не сдвинулись ли они и не потянулись в процессе. Когда будет достаточно скоб, чтобы он не двигался, выполните четыре шага выполнения. Полностью сварите соединение, подождите, пока он остынет, отрежьте скобы (следя за тем, чтобы не врезаться в работу) и отшлифуйте сварной шов мягким шлифовальным кругом, например, откидным кругом, чтобы оставить чистую поверхность. Этот параметр можно использовать для небольших работ, но обычно он используется для больших участков, где правка после сварки затруднена.

Второй вариант

Прикрепите пластину под небольшим углом от той стороны, которую вы будете сначала сваривать, чтобы при сварке она встала в нужное положение. Это требует опыта и никогда не будет освоено сразу. Вам нужно будет узнать, на сколько пластина будет тянуть в различных обстоятельствах, потому что она будет меняться в зависимости от материала и размера ваших сварных швов. Со временем вы станете точнее с ним, но пока продолжайте практиковаться, постепенно корректируя ненужные кусочки тарелки, чтобы прочувствовать это.

После завершения сварки проверьте правильность угла. Убедитесь, что ваш измерительный инструмент очищает сварной шов для точного измерения. Например, если стык должен быть под углом 90 °, для используемого квадрата потребуется отрезать угол между двумя сторонами измерения, чтобы он очищал сварной шов при использовании.

Если угол неправильный, постучите по сварной пластине мягким молотком, чтобы убедить ее встать на место. Чем горячее сварной шов, тем легче он будет двигаться. Убедитесь, что он изгибается по сварному шву, а не изгибает пластину над швом.Не используйте стальной молоток; в противном случае вы можете вмять пластину при ударе.

Квадратное соединение

Квадратное соединение похоже на тройник, только это L, а не T. Пластина A лежит ровно, а пластина B стоит на своем конце заподлицо с концом пластины A для стыковой сварки. На другой стороне листа будет угловой сварной шов под углом 90 °. Пластины могут быть одинаковой или разной длины, ширины и толщины. Любой конец пластины A также может быть приварен к пластине B, в зависимости от требований проекта.Название «квадратный стык» относится к стыку под углом 90 °, то есть под тем же углом, что и квадрат.

Что нужно знать при сварке квадратного стыка

Квадратные соединения обычно не так прочны, как тройники. Квадратное соединение имеет стыковой сварной шов с одной стороны и угловой шов с другой, что придает ему неравномерную прочность, в отличие от тройника, в котором с обеих сторон имеется два угловых шва. Для повышения прочности стыкового шва целесообразно предусмотреть подготовку стыкового шва. Следуйте одному из двух вариантов, предусмотренных в разделе тройникового соединения, чтобы получить квадратное соединение, а не угловое соединение, полученное при вытягивании пластины А.

стыковое соединение

Это соединение для большинства стыковых швов, отсюда оно и получило свое название. Две пластины соединяются встык и примыкают друг к другу сверху и снизу. Это может быть труднее выполнить сварку из-за того, что у него меньше визуальной направляющей линии для выполнения прямого шва, в отличие от большинства других соединений. Также требуется подготовка сварного шва, чтобы придать ему достаточную прочность, если только он не является критическим сварным швом или имеет большую выпуклую поверхность с глубоким проплавлением.

Что нужно знать при сварке стыковых соединений

При сварке стыковых соединений, чем больше будет подготовленных сварных швов, тем прочнее он будет.Будьте осторожны, чтобы не продуть дно, если у вас есть обширная подготовка к сварке. Часто для этого необходим подкладочный шов. Поддерживающий сварной шов — это когда вы заполняете небольшой участок в нижней части подготовительного шва сварным швом перед тем, как сварить его полностью.

Хотя большее количество сварного шва даст более прочный сварной шов, если вы приложите к нему слишком много тепла, превышение температуры приведет к искривлению или искривлению вашего проекта. Сварка с обеих сторон помогает, но она все равно может деформировать пластины при воздействии слишком большого количества тепла.

Lap Joint

Соединение внахлест — это когда одна пластина перекрывает другую, оставляя две секции для угловых швов, одну сверху и одну снизу.Часто это самый надежный сварной шов из-за большой площади поверхности между сварными швами. Лично я считаю, что это самый простой в сварке шов. Термин «соединение внахлестку» происходит от слова «перекрытие». Две перекрывающиеся пластины описываются сокращенным термином «соединение внахлест».

Что нужно знать при сварке внахлестку

Эти соединения гладкие под сварку. Когда они будут размещены в нужном месте, больше не о чем беспокоиться, кроме как просто сварить их.Это отличный вариант для начала сварки. Если вы сможете включить эти соединения в свой проект, это добавит дополнительной прочности там, где в противном случае ее могло бы не хватить.

Как и в случае с другими соединениями, будьте осторожны, чтобы не подвергать сварные швы слишком сильному нагреву, так как они все равно могут деформироваться, даже если имеют приличное сечение перекрытия. Если есть деформация пластин, она будет на концах без изгиба внахлест, так как они являются самым слабым местом.

Кромочный стык

Краевое соединение — это соединение двух пластин лицом к лицу друг с другом, как соединение внахлест, но кромки, по крайней мере, на одной стороне соединенных деталей встречаются.На нем всегда есть один стыковой шов. Иногда это все, что у него есть, но у него могут быть также сварены другие три стороны с помощью угловых или стыковых швов.

Что нужно знать при сварке краевых швов

Если у вас только один стыковой сварной шов, имейте в виду, что при сварке пластина, скорее всего, разделится, как отверстие моллюска. Имеет смысл зажать или прихватить сварной шов перед сваркой соединения. Если на нем несколько сварных швов, краевой сварной шов может быть сплошным, как соединение внахлест, из-за большой площади поверхности, зажатой между сварными швами.

Может быть сложно добиться хорошего внешнего вида кромочного сварного шва, если он сваривается без предварительной подготовки. Если позволяет время, рекомендуется вырезать одну V-образную стыковку между пластинами. Это придаст больше прочности и улучшит внешний вид.

Угловой шарнир

Как следует из названия, это стыки, в которых соприкасаются только углы двух пластин. Угол между пластинами варьируется, но часто он составляет 90 °, и остается большая V, которую нужно заполнить. Любая сторона углового соединения обычно сваривается, но внутренний угол иногда остается без сварного шва.При правильной сварке получается гладкая вогнутая поверхность, которая выглядит фантастически.

Что нужно знать при сварке угловых соединений

Обязательно закрепите угловые соединения, чтобы они не выходили из-под угла. Не нагревайте его слишком сильно, так как это усилит тягу. Даже если он закреплен, сильная жара может деформировать сустав. Ему нужно будет снять тепловое напряжение, которое фиксирует скоба, чтобы вместо этого он мог исказить весь проект. Имейте в виду, что прочность пластин зависит только от угла, поскольку обычно это все, что сваривается, если не используются постоянные распорки.Поэтому убедитесь, что угол имеет безупречные сварные швы.

Заключение

Должно быть легко определить, какие соединения использовать для вашего проекта, в зависимости от позиций, в которых должны находиться ваши детали, наличия доступа для выполнения там сварного шва и прочности, необходимой для вашего проекта. Всегда проверяйте нагрузку, которую будет нести каждая деталь, чтобы убедиться, что вы используете для нее правильные соединения.

Запомните слова «крючки», которые есть в каждом имени, так что вы относите их к правильному суставу, так как их названия позволяют легко их распознать.Не стесняйтесь делиться любыми комментариями или задавать любые вопросы ниже.

Похожие сообщения:

Фитинги для стыковой сварки (стыковой сварки) — колено — переходник

Что такое фитинг для стыковой сварки (стыковой сварки)?

Фитинг под сварку встык — это свариваемый трубный фитинг, который позволяет изменять направление потока, отводить, уменьшать размер трубы или присоединять дополнительное оборудование. Фитинги из кованой стали под сварку встык производятся в соответствии с ANSI / ASME B16.9.

Фитинги для стыковой сварки доступны в виде колен, тройников, заглушек, переходников и выходов (olets).Эти фитинги являются наиболее распространенным типом сварных фитингов для труб и определяются номинальным размером трубы и спецификацией труб. Фитинги для стыковой сварки используют бесшовные или сварные трубы в качестве исходного материала и формируются (с помощью нескольких процессов), чтобы получить форму колен, тройников, переходников и т. Д. Так же, как труба продается из Приложений 10 к Приложению 160, фитинги для стыковых сварных труб продаются так же. Сварные фитинги под приварку встык чаще используются из нержавеющей стали из-за их стоимости. Фитинги Sch 10 также более распространены в фитингах из нержавеющей стали под сварку встык.

Обычными материалами для фитингов под сварку встык являются A234 WPB (также доступны A и C), углеродистая сталь с высоким пределом текучести, нержавеющая сталь 304 и 316, а также никелевые сплавы.

Размеры фитингов для стыковой сварки

Просмотрите нашу большую коллекцию фитингов для труб из углеродистой и нержавеющей стали, сваренных встык, по мгновенным ценам онлайн!

Видео ниже дает краткий обзор фитингов для стыковой сварки труб.

* см. Расшифровку видео в конце страницы

Фитинги под сварку встык состоят из колена с длинным радиусом, концентрического переходника, эксцентрикового переходника и тройника.Они являются важной частью промышленных трубопроводных систем для изменения направления, ответвления или механического присоединения оборудования к системе. Фитинги под приварку продаются с номинальными размерами труб с указанным графиком. Размеры и допуски фитингов BW определены в соответствии со стандартом ASME B16.9.

Фитинги для стыковой сварки также называются фитингами для сварных труб. Эти сварные фитинги из углеродистой и нержавеющей стали обладают многими преимуществами по сравнению с резьбовыми и приварными фитингами. Последние доступны только с номинальным размером до 4 дюймов, тогда как фитинги под сварку встык доступны в размерах от ½ до 72 дюймов.Некоторые из преимуществ фитингов под сварку встык:

Типы фитингов для стыковой сварки

Сварные фитинги для труб из углеродистой и нержавеющей стали представляют собой соединительные элементы, которые делают возможным монтаж клапанов, труб и оборудования на трубопроводной системе. Сварные фитинги дополняют фланцы труб в любой трубопроводной системе и позволяют;

  • Изменение направления потока в системе трубопроводов
  • Соединение или соединение труб и оборудования
  • Обеспечение ответвлений, подъездов и отводов для вспомогательного оборудования

Типичный пример использования сварных фитингов — труба, уменьшенная с помощью концентрического переходника, приваренная к фланцу приварной шейки и подсоединенная к оборудованию.На рисунке ниже представлена ​​полная коллекция фитингов, приваренных встык

.

Коллекция фитингов для стыковой сварки

LR 90 Колено: Фитинги, меняющие направление в системе трубопроводов, называются коленами. Изменение направления указывается в градусах, например, 45 или 90. Колено с длинным радиусом 90 градусов имеет центральную линию на расстоянии 1,5 x NPS от конца колена. Колено 3R имеет центральную линию на расстоянии 3 x NPS от конца колена.


Колено LR 45: Колено с длинным радиусом 45 градусов изменяет направление на 45 градусов.


Колено SR90: Колено с коротким радиусом действия 90 градусов такое же, как у LR90, за исключением того, что расстояние между концом колена и центральной линией составляет 1 x NPS.
LR Изгиб на 180 градусов: Длинный радиус изгиба на 180 градусов позволяет полностью изменить направление потока. Расстояние между концом колена и центральной линией составляет 3 x NPS.
SR Изгиб на 180 градусов: Короткий радиус изгиба на 180 градусов позволяет полностью изменить направление потока, но при более крутом повороте. Расстояние между концом колена и центральной линией составляет 1 x NPS.


Тройник: Труба под приварку Тройник обеспечивает ответвление на 90 градусов от напорной трубы. Это позволяет подключать к трубе вспомогательное оборудование. С двух сторон к трубе приваривают тройник, оставляя ответвление открытым для ответвления.


Переходной тройник: Переходной тройник под сварку встык имеет ответвление, которое меньше основного участка. Это позволяет выполнить ответвление на меньшую трубу оборудования от основного участка.
Концентрический переходник: Концентрический переходник также называется сварной концентрической муфтой.Он позволяет соединять большую трубу с меньшей трубой с помощью сварки. Концентрический переходник позволяет сварное соединение двух труб с одинаковой центральной линией.


Эксцентриковый переходник: Эксцентриковый переходник также называется сварной эксцентриковой муфтой. Это позволяет приваривать большую трубу к трубе меньшего размера со смещенной центральной линией. Смещение центральной линии эксцентрикового редуктора составляет; Смещение = 1/2 x (наибольший ID — наименьший ID)


Сварочная бобышка: Сварочная бобышка, также называемая сварочным патрубком, представляет собой способ соединения сварного соединения, которое имеет контур внизу, чтобы соответствовать контуру трубы.Таким образом, один конец сварочного патрубка приваривается к трубе, а другой конец открыт для приваривания к любой другой трубе или оборудованию. Сварочный патрубок требует указания размера выпускного отверстия и «размера участка» трубы, чтобы контур соответствовал контуру трубы. Размер сварочного патрубка всегда будет меньше размера участка, например, сварочный патрубок 1/2 «можно использовать на трубе (размер участка) 1/2» и больше.


Приварной конец заглушки: Концы заглушки используются с фланцем, соединенным внахлест, который приваривается к трубе.

    Фитинги для стыковой сварки со скосом

    Все сварные фитинги имеют скошенные концы для облегчения сварки. Этот скос в большинстве случаев позволяет выполнить сварной шов с полным проплавлением. Есть два типа фаски;

    Обычная фаска и составная фаска.

    Спецификации и стандарты на фитинги для стыковой сварки

    Сварные фитинги изготавливаются в соответствии со спецификацией ASME B16.9. ASME B16.9 распространяется на сварочные фитинги из кованой стали заводского изготовления размером от 1/2 до 48 дюймов.Однако этот стандарт не распространяется на фитинги для стыковой сварки под низким давлением, устойчивые к коррозии. См. MSS SP-43, Кованые фитинги из нержавеющей стали для стыковой сварки.

    Общие материалы для сварных фитингов

    Сварные фитинги из углеродистой стали:

    A234 WPB — это наиболее распространенный материал, используемый для изготовления фитингов из углеродистой стали, сваренных встык.

    ASTM A234 WPB — это стандартная спецификация для трубопроводных фитингов из кованой углеродистой и легированной стали для работы при умеренных и высоких температурах.

    Технические характеристики

    ASTM: A234 WPB

    ASME: B16.9, B.11

    NACE: MRO175

    MSS: SP-83, SP-95

    Химический состав%

    Марка

    К

    млн

    П

    Ю

    Si

    Кр

    Пн

    Ni

    Cu

    Прочие

    макс

    макс

    WPB

    0.3

    0,29–1,06

    0,05

    0,058

    0,1

    0,4

    0,15

    0,4

    0,4

    В 0,08

    (1,2,3,4,5)

    макс

    мин.

    макс

    макс

    макс

    макс

    макс

    1. Фитинги из прутка или пластины могут иметь 0.35 макс углерода.
    2. Фитинги, изготовленные из поковок, могут содержать не более 0,35 углерода и не более 0,35 кремния.
    3. Для каждого уменьшения на 0,01% ниже указанного максимума углерода допускается увеличение на 0,06% марганца сверх указанного максимума, но не более 1,35%.
    4. Сумма меди, никеля, ниобия и молибдена не должна превышать 1,00%.
    5. Сумма ниобия и молибдена не должна превышать 0,32%.

    Фитинги для стыковой сварки нержавеющей стали:

    Фитинги из нержавеющей стали под приварку доступны марок 316 и 304.

    304 / 304L (UNS S30400 / S30403)

    Химический состав%

    К

    Кр

    млн

    Ni

    П

    Ю

    Si

    МАКС

    МАКС

    МАКС

    МАКС

    МАКС

    0.035

    18,0–20,0

    2,00

    8,0-13,0

    0,045

    0,030

    1,00

    Требования к растяжению

    Предел прочности при растяжении: (KSI) = 60

    Предел текучести: (KSI) = 35

    (KSI преобразуется в MPA {мегапаскали} путем умножения на 6.895)

    316 / 316L (UNS S31600 / S31603)

    Химический состав%

    К

    Кр

    млн

    Пн

    Ni

    П

    Ю

    Si

    МАКС

    МАКС

    Макс

    МАКС

    МАКС

    0.035

    16,0–18,0

    2,00

    2,0–3,0

    10,0-14,0

    0,045

    0,030

    1,00

    Требования к растяжению

    Предел прочности при растяжении: (KSI) = 70

    Предел текучести: (KSI) = 25

    (KSI преобразуется в MPA {мегапаскали} путем умножения на 6.895)

    Как изготавливается фитинг под сварку встык?

    Фитинг для стыковой сварки труб изготавливается методом горячей штамповки, который включает гибку и придание формы. Исходным материалом для стыковых сварных фитингов является труба, которую нарезают на нужную длину, нагревают и формуют в определенные формы с помощью красителей. Также проводится термообработка для снятия остаточных напряжений и получения требуемых механических свойств. Прочтите ссылку здесь, чтобы получить более подробную информацию об изготовлении фитингов под сварку встык.

    Преимущества фитингов для стыковой сварки

    • Сварное соединение обеспечивает более надежное соединение
    • Сплошная металлическая конструкция увеличивает прочность трубопроводной системы
    • Фитинги под приварку встык с соответствующими схемами труб, обеспечивают непрерывный поток внутри трубы.Сварной шов с полным проплавлением и правильно подогнанный отвод LR 90, переходник, концентрический переходник и т. Д. Обеспечивает постепенный переход через сварные фитинги.
    • Возможность различного радиуса поворота с использованием короткого радиуса (SR), большого радиуса (LR) или колена 3R
    • Рентабельность по сравнению с их дорогими ответными частями с резьбой или сваркой враструб.
    • Сварные фитинги из нержавеющей стали
    • также доступны в SCH 10, что позволяет использовать более тонкие стенки.
    • Фитинги под сварку встык из нержавеющей стали
    • чаще встречаются в конфигурациях SCH 10 и SCH 40.

    Все фитинги под сварку встык имеют скошенные концы в соответствии со стандартом ASME B16.25. Это помогает создать сварной шов с полным проплавлением без какой-либо дополнительной подготовки, необходимой для стыковой сварки.

    Фитинги для стыковой сварки чаще всего изготавливаются из углеродистой стали, нержавеющей стали, никелевого сплава, алюминия и материалов с высоким пределом текучести. Высокопрочные фитинги из углеродистой стали под сварку встык доступны в вариантах A234-WPB, A234-WPC, A420-WPL6, Y-52, Y-60, Y-65, Y-70. Все фитинги WPL6 отожжены и совместимы с NACE MR0157 и NACE MR0103.

    Trupply — один из крупнейших дистрибьюторов трубных фланцев и фитингов. Мы обрабатываем сотни запросов каждый день. Некоторые из распространенных заблуждений рассматриваются в разделе вопросов и ответов ниже;

    Вопросы и ответы

    • Заказчик запросил фитинги под сварку встык из A105: Наиболее распространенным материалом для стыковых фитингов из углеродистой стали является A234WPB. Он эквивалентен фланцу A105, но не существует такого понятия, как фитинг для стыковой сварки A105 или A106
    • .
    • Клиент запрашивает «нормализованные» фитинги под сварку встык: Это тоже заблуждение, поскольку фланцы доступны в размерах A105 и A105 N, где N означает нормализованные.Однако такого понятия, как A234WPB N , не существует. Некоторые производители нормализуют свои фитинги для стыковой сварки в качестве стандартной процедуры, и такой запрос требует проверки индивидуальных сертификатов испытаний материалов, чтобы убедиться, что был проведен нормализованный процесс термообработки. Заказчик, нуждающийся в «нормализованных» фитингах для стыковой сварки, должен запросить фитинги WPL6, которые обладают высокой текучестью и нормализованы как стандартная процедура.
    • Заказчик забывает указать спецификацию труб: Фитинги под сварку встык продаются в соответствии с размером трубы, но спецификация трубы должна быть указана так, чтобы ID фитинга соответствовал внутреннему диаметру трубы.Если график не указан, мы будем считать, что требуется стандартная стена.
    • Различия между SCH 40 и True Schedule 40: Трубные фитинги диаметром 12 дюймов или больше требуют указания, является ли фитинг стандартным настенным (обычно обозначается Sch 40) или требуется настоящий график 40. Это необходимо, поскольку таблица 40 НЕ соответствует стандартной стене для труб диаметром 12 дюймов и больше. Настоящий sch 40 будет толще, чем стандартная стенка для фитингов 12 дюймов или больше.
    • Различия между SCH 80 и True Schedule 80 : Для труб размером 10 дюймов и более, sch 80 НЕ соответствует XH.Заказчик должен указать, хочет ли он перегородку SCH 80 или XH.
    • Фитинги для стыковой сварки из нержавеющей стали доступны в списке 10s. : Заказчик должен указать, нужны ли им фитинги для стыковой сварки со стандартной стенкой (sch 40s) или более тонкие стенки, из нержавеющей стали sch 10s. См. Схему трубопроводов , чтобы пояснить, как толщина стенки труб из нержавеющей стали соотносится с различными спецификациями труб.
    • Заказчик забывает указать сварные или бесшовные фитинги для стыковой сварки. : Фитинги для стыковых сварных соединений доступны как в сварной, так и в бесшовной конфигурации.Фитинги из углеродистой стали или нержавеющей стали, выполненные стыковой сваркой, изготавливаются из бесшовных труб и, как правило, дороже. Бесшовные фитинги НЕ распространены для размеров больше 12 дюймов. Сварные фитинги изготавливаются из сварных труб из углеродистой стали или нержавеющей стали. Они доступны в размерах от ½ «до 72» и более доступны по цене, чем бесшовные фитинги.

    Что означает короткий радиус (SR) или длинный радиус (LR)?

    Вы часто будете слышать локоть SR45 или локоть LR45. 45 или 90 обозначают угол изгиба фитинга под сварку для изменения направления потока.Колено с большим радиусом (Колено LR 90 или Колено LR 45) будет иметь изгиб трубы, который будет в 1,5 раза больше трубы. Итак, 6-дюймовый LR 90 имеет радиус изгиба, который в 1,5 раза больше номинального размера трубы. Колено с коротким радиусом (SR45 или SR90) имеет изгиб трубы, равный размеру фитинга, поэтому 6-дюймовый SR 45 имеет радиус изгиба, равный 6-дюймовому номинальному размеру трубы.

    Что такое угловой фитинг 3R или 3D?

    Во-первых, термин 3R или 3D используется как синоним. Отвод под сварку встык 3R имеет радиус изгиба в 3 раза превышающий номинальный размер трубы.Колено 3R более гладкое, чем фитинги SR или LR.

    Переходник для сварных труб

    Фитинги под сварку встык доступны с концентрическим переходником и эксцентрическим переходником для уменьшения потока от одного размера трубы к другому. Концентрический переходник под приварку встык симметричен: оба конца выровнены по центру.

    Эксцентричный переходник под приварку встык несимметричен: концы смещены относительно друг друга.

    Параметры производителя и происхождения

    Trupply является официальным дистрибьютором Weldbend , который является одним из крупнейших производителей отечественных фитингов и фланцев из углеродистой стали под приварку встык.Фитинги для стыковой сварки отечественной нержавеющей стали производятся компанией Taylor Forge Stainless . Trupply также предлагает одобренные и неодобренные импортные фитинги, такие как Erne Fittings , SKBend и TKBend, , для более экономных клиентов. На все фитинги под сварку встык предоставляются протоколы испытаний материалов (MTR).

    *

    Стенограмма видео

    Доброе утро. Сегодня мы говорим о фитингах под сварку встык. Вот коллекция фитингов для стыковой сварки из углеродистой стали.Это тройник, это концентрический переходник, это переходной тройник, это колено 45, это колено с коротким радиусом 90, это колено с длинным радиусом, 90, это заглушка трубы, и это эксцентриковый переходник . Это несколько примеров фитингов из нержавеющей стали, сваренных встык. В частности, это тройник из нержавеющей стали 304, а это колено под углом 90 градусов из нержавеющей стали, и это эксцентриковый переходник из нержавеющей стали.

    Фитинги для стыковой сварки выпускаются из углеродистой стали, нержавеющей стали, никелевого сплава, а наиболее распространенным материалом для стыковых фитингов из углеродистой стали является A234-WPB.Эти фитинги также доступны из углеродистой стали с высоким пределом текучести, вам просто нужно указать это. Все фитинги под приварку встык изготавливаются из трубы, в качестве исходного материала они используют трубу. Обычно фитинги для сварки встык меньшего размера изготавливаются из бесшовных труб, но при увеличении размера, обычно превышающем номинальный размер 18 дюймов, эти фитинги изготавливаются из сварной трубы, и их также называют сварными фитингами для стыковой сварки.

    Чтобы объяснить вам индивидуальный фитинг под приварку встык, опять же, это колено под 45 градусов.Если вы заметили, все фитинги под сварку встык имеют скосы на концах. Это образец трубы, образец 2-дюймовой трубы, который мы используем. Все эти фитинги представляют собой 2-дюймовые трубные фитинги, и то, как вы их свариваете, заключается в том, что вы берете трубу, у вас должен быть скос, вы его стыкуете, вот почему они называются фитингами для стыковой сварки, а затем вы можете сделать сварка прямо здесь. Вы можете выполнить сварной шов с полным проплавлением в зависимости от ваших требований к сварке. Другая труба идет отсюда под углом 45 градусов.

    Это 90 градусов, это короткий радиус 90 градусов.Разница между коротким радиусом 90 и длинным радиусом 90 заключается в том, что короткий радиус — гораздо более узкий поворот, это зависит от вашего чертежа трубопровода. Если это требует более крутого поворота, тогда вы запросите изгиб с углом 90 градусов с коротким радиусом, в противном случае вы запросите большой радиус. Они оба делают то же самое, и, как я показал вам раньше, вы просто стыкуете его, свариваете, другой кусок идет сюда, а затем он делает 90 градусов прямо здесь. То же самое с длинным радиусом, вот как вы его соединяете, а затем другая часть идет прямо сюда.

    Это стандартный тройник, основной ход и ответвление одинакового размера, это 2 дюйма. Вы делаете то же самое: соединяете трубу вот так, свариваете и делаете тройник. Тройник также доступен в виде переходной буквы Т, и вы можете видеть, что это 2 дюйма на три четверти дюйма, так что здесь 2 дюйма, а затем он уменьшается до трех четвертей дюйма. Если при установке вашего трубопровода требуется уменьшение ответвления, вы запросите переходной тройник.

    Одна вещь, которую я хотел бы упомянуть, это то, что все фитинги для стыковой сварки труб требуют, чтобы вы указали график, то есть, как вы определяете толщину стенки, номинальное давление.Если вы сравните его с фитингом под сварку муфтой или резьбовым фитингом, они будут весить 3000 фунтов, 6000 фунтов, тогда как фитинги под приварку встык входят в список 20, список 40, список 60, список 80, стандартный, сверхтяжелый, двойной X тяжелый. , необходимо указать график трубы. Этот конкретный является концентрическим редуктором, и он уменьшается с 2 дюймов до 1 дюйма, или вы можете указать, какое уменьшение вы хотите в концентрическом редукторе.

    Это эксцентриковый редуктор. То же самое, но не в линию, поэтому, если ваша основная ветвь находится прямо здесь, в зависимости от вашей установки, если вы хотите быть вне оси, вы помещаете еще одну трубу прямо здесь, и она образует эксцентричный редуктор.Так выглядит эксцентриковый редуктор.

    Это заглушка для трубы. Как следует из названия, вы используете его для закрытия трубы. Если у вас есть труба, сопло или что-то подобное, вы можете встать встык, сварить и закрыть трубу, например, заглушку.

    Таким образом, фитинги для стыковой сварки доступны из углеродистой стали, нержавеющей стали и никелевого сплава. Для фитингов под приварку встык вам необходимо указать график, именно так определяется это номинальное давление, вы должны указать график 40, 80 и т. Д. И т. Д.Наиболее распространенным материалом для стыковых фитингов из углеродистой стали является A234-WPB, они доступны с высоким пределом текучести, они доступны из нержавеющей стали, они доступны из никелевых сплавов. Это оно. Спасибо.

    Список литературы

    Следующие ссылки обеспечивают хороший ресурс сварных фитингов;

    Тройники под сварку встык из нержавеющей стали | Тройники под сварку встык из нержавеющей стали

    Информация о продукте

    Наши тройники для стыковой сварки труб из нержавеющей стали включают прямые тройники для стыковой сварки и переходные тройники для стыковой сварки.Изготовлен из высокопрочной нержавеющей стали серии 300. Ознакомьтесь с обзором наших предложений по продукции из нержавеющей стали.

    Размеры

    Ознакомьтесь с размерами наших тройников для прямых сварных швов и переходных тройников под сварку встык.

    Размеры и вес труб

    Выберите различные размеры, марки и спецификации тройников для стыковой сварки из нержавеющей стали.Наша таблица размеров и веса труб поможет вам в поиске индивидуальных характеристик продукта.

    Стандартные характеристики

    Тройники под сварку встык соответствуют ASTM A403 с допусками на размеры в соответствии с MSS SP-43 для графиков 5s и 10s и с ANSI B16.9 для графиков тяжелее 10s. См. Таблицу стандартных технических характеристик.

    Сорта нержавеющей стали

    Тройники под сварку встык из нержавеющей стали доступны от Shaw Stainless & Alloy Piping. Вот различные марки нержавеющей стали.

    Справочный каталог

    Мы разработали справочный каталог, чтобы помочь идентифицировать наше предложение тройников под сварку встык из нержавеющей стали и другой трубопроводной арматуры с помощью чертежей и дополнительной информации.

    Теоретическое разрывное давление

    Вот диаграмма для обзора теоретических значений давления разрыва для различных труб из нержавеющей стали.

    Дополнительная информация

    Наиболее распространенный трубопроводный фитинг — это тройник из нержавеющей стали или, в частности, прямой тройник.Тройники имеют два выхода под углом 90 градусов от основного потока и используются для объединения или разделения потока жидкости или газа. Тройники соединяют и объединяют системы труб, или они могут соединять трубы разных размеров вместе с переходными тройниками. Редукционный тройник может соединять трубы разных размеров в одну систему труб.

    Тройники из нержавеющей стали для стыковой сварки в соотв. согласно ASME — Sandvik Materials Technology

    ASTM A403 / A815 ASME B16.9

    Пример кода товара:

    ●: FBT-316L-4-10S
    ▲: FBT-W316L-4-10S
    ●: FBT-32750-2-10S

    ● = стандарт на складе, из бесшовной трубы
    ▲ = стандарт на складе, из сварной трубы или листа

    Номинал Размер трубы

    Sch *

    Размеры в мм

    Масса

    ASTM

    ASTM

    UNS

    UNS

    дюйм. D т К / М кг / шт 304 / 304L 316 / 316L S31803 S32750
    1/2

    10s
    40s
    80s
    160

    21,3
    21,3
    21,3
    21,3

    2,11
    2,77
    3,73
    4,78

    25,4
    25.4
    25,4
    25,4

    0,065
    0,085
    0,140
    0,150

    ● / ▲
    ● / ▲

    ● / ▲

    ● / ▲







    3/4

    10s
    40s
    80s
    160

    26,7
    26,7
    26,7
    26,7

    2.11
    2,87
    3,91
    5,56

    28,6
    28,6
    28,6
    28,6

    0,092
    0,115
    0,200
    0,300

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲







    1

    10s
    40s
    80s
    160

    33.4
    33,4
    33,4
    33,4

    2,77
    3,38
    4,55
    6,35

    38,1
    38,1
    38,1
    38,1

    0,200
    0,245
    0,390
    0,470

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲







    10s
    40s
    80s
    160

    42.2
    42,2
    42,2
    42,2

    2,77
    3,56
    4,85
    6,35

    47,6
    47,6
    47,6
    47,6

    0,330
    0,420
    0,548
    0,890

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲







    10s
    40s
    80s
    160

    48.3
    48,3
    48,3
    48,3

    2,77
    3,68
    5,08
    7,14

    57,2
    57,2
    57,2
    57,2

    0,460
    0,595
    1,020
    1,430

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲







    2

    10s
    40s
    80s
    160

    60.3
    60,3
    60,3
    60,3

    2,77
    3,91
    5,54
    8,74

    63,5
    63,5
    63,5
    63,5

    0,630
    0,872
    1,590
    3,180

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲







    10 с
    40 с
    160

    73.0
    73,0
    73,0

    3,05
    5,16
    9,52

    76,2
    76,2
    76,2

    1,100
    1,700
    3,630

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲





    3

    10s
    40s
    80s
    160

    88.9
    88,9
    88,9
    88,9

    3,05
    5,49
    7,62
    11,13

    85,7
    85,7
    85,7
    85,7

    1,370
    1,900
    4,450
    5,870

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲







    10 с
    40 с

    101.6
    101,6

    3,05
    5,74

    95,3
    95,3

    1,740
    3,190



    ● / ▲



    4

    10s
    40s
    80s
    160

    114,3
    114,3
    114,3
    114,3

    3,05
    6,02
    8,56
    13,49

    104.8
    104,8
    104,8
    104,8

    2,150
    4,130
    7,710
    9,760

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲







    5

    10 с
    40 с
    80 с

    141,3
    141,3
    141,3

    3.40
    6,55
    9,53

    123,8
    123,8
    123,8

    3,480
    6,550
    11,340

    ● / ▲
    ● / ▲

    ● / ▲





    6

    10 с
    40 с
    80 с

    168,3
    168,3
    168,3

    3.40
    7,11
    10,92

    142,9
    142,9
    142,9

    4,760
    9,730
    13,610

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲

    ● / ▲



    8

    10 с
    40 с

    219,1
    219,1

    3.76
    8,18

    177,8
    177,8

    8.460
    18.000

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲



    10

    10 с
    40 с

    273,1
    273,1

    4,19
    9,27

    215,9
    215,9

    14.200
    30,800

    ● / ▲
    ● / ▲

    ● / ▲
    ● / ▲



    12

    10 с
    40 с

    323,9
    323,9

    4,57
    9,53

    254,0
    254,0

    21,600
    44,300





    14

    10s
    STD

    355.6
    355,6

    4,78
    9,53

    279,4
    279,4

    48,530
    79,380





    16

    10s
    STD

    406,4
    406,4

    4,78
    9,53

    304,8
    304.8

    58.970
    99.790





    18

    10 с

    457,2

    4,78

    342,9

    76.660

    20

    10 с

    508.0

    5,54

    381,0

    103,420

    24

    10 с

    609,6

    6,35

    431,8

    155,580

    * График

    Тройник переходник под сварку встык |

    НАИМЕНОВАНИЕ ПРОЕКТА / ЗАКАЗЧИК DYNAMIC FORGE И ФИТИНГИ ПОСТАВЛЯЕМЫЕ МАРКИ МЕСТО ГОД
    INDORAMA ФИТИНГИ И ОТВОДЫ ДЛЯ СВАРКИ СТЫК BW — Переходной тройник для стыковой сварки A105 — A350 LF2 — A106B- A333 GR6 — A234 WPB — A420 WPL6 — A182 F304L НИДЕРЛАНДЫ 2015
    СИСТЕМА ЭКСПОРТА ГАЗА И КОНДЕНСАТА ФИТИНГИ И ОТВЕТЫ ДЛЯ СТЫКОВОЙ СВАРКИ BW — Переходной тройник для стыковой сварки A182 F316L — A182F44
    A182 F44, A312S31254, A182 F316L,
    A105.N, A105 HDG, A350 LF2, A106
    Gr.B, A106 Gr.B HDG, A333 Gr.6, A234 WPB
    КУВЕЙТ 2015
    ПРОЕКТ РАЗВИТИЯ ГАЗА ФИТИНГИ ДЛЯ СВАРКИ, ОТВОДЫ ИНКОЛОЙ 825 ИНДОНЕЗИЯ 2015
    КАЧЕСТВЕННАЯ ТОРГОВЛЯ МАРКА -SAUDI ARAMCO ФИТИНГИ ДЛЯ СВАРКИ, ОТВОДЫ SW, переходной тройник для стыковой сварки A105, A105 GALV, A350 LF2, A182F304L,
    A182F316L, A403 WP316L, A182F321,
    A182F44, A182F5, CU90 / 10 UNS C70610
    САУДОВСКАЯ АРАВИЯ 2014-2015
    ПРОЕКТ НЕФТЕПЕРЕРАБОТЧИКА ГАЗА ФИТИНГИ ДЛЯ СВАРКИ, ОТВОДЫ BW-THRD, ОТВОДЫ ДЛЯ ЗАЖИМА A105, A105 HDG A350 LF2, A182 F304 /
    304L, A182F316 / 316L, A182F11,
    A105N, A106B, A234WPB, A333
    БЕЛЬГИЯ 2014-2015
    МААДЕН ВААД АЛЬ-ШАМАЛЬ ФОСФАТ ФИТИНГИ И ОТВОДЫ ДЛЯ СВАРНОЙ ФИТИНГИ SW-BW A350LF2, F304L, F316L, F904L,
    A182F60, ALLOY20
    A105N, A106B, A234WPB,
    САУДОВСКАЯ АРАВИЯ 2014-2015
    СЕВЕРО-ЗАПАДНАЯ РЫЧНАЯ ВОДА ПРИВАРНЫЕ ФИТИНГИ SW & NPT A350LF2, A420WPL6,
    A182F304L-F316L, WP304L, HAST, C276
    КАНАДА 2014-2015
    ПРОЕКТ КАНАДЫ СЗР ФИТИНГИ ДЛЯ СВАРКИ, ОТВЕТЫ SW & NPT, Тройник для стыковой сварки F304L / 316L / 317L / 347H / 321H
    F11 / F22 / UNS08825
    КАНАДА 2014-2015
    ПРОЕКТ ДЕНИЗ 2 ПРИВАРНЫЕ ФИТИНГИ SW & NPT A 105, A105 GALVA, A350LF2, A333 Gr6,
    A234WPB-A420WPL6, F304L, WP304L
    АЗЕРБАЙДЖАН 2014
    ADMA OPCO АБУ-ДАБИ ФИТИНГИ ДЛЯ СВАРКИ, ОТВОДЫ BW-THRD, БОКОВЫЕ, ВЫХОДЫ A694 F52, A182F321, A182F316, A105.N,
    A312TP316L, A312 TP321, A182 F53
    СУПЕР ДУПЛЕКС
    ОАЭ 2014
    SAUDI ARAMCO HOLLAND ФИТИНГИ ДЛЯ ПРИВАРИВАНИЯ СОПКИ CuNi 9010 САУДОВСКАЯ АРАВИЯ 2014
    MISSAN OIL Comp.PETROCHINA IRAQ МУФТА API L80 ИРАК 2014
    SAUDI ARAMCO ФИТИНГИ ДЛЯ ПРИВАРИВАНИЯ, ОТВОДЫ BW-SW-THRD MONEL 400, A182 F5, A182F316L,
    A182F304L, A105
    САУДОВСКАЯ АРАВИЯ 2014
    НЕФТЬ И ГАЗ ФИТИНГИ И ОТВОДЫ ДЛЯ СТЫКОВОЙ СВАРКИ BW, Переходной тройник для стыковой сварки UNS NO 6625 БРАЗИЛИЯ 2014
    ПРОЕКТ ШИДДИРГАНГ ФИТИНГИ ДЛЯ ПРИВАРИВАНИЯ, ОТВОДЫ BW-SW-THRD БАНГЛАДЕШ 2014
    САУДОВСКАЯ АРАБСКАЯ ГОРНАЯ КОМПАНИЯ SW ФИТИНГИ И ОТВОДЫ ДЛЯ СВАРКИ — BW A105, A105 GALV, A350LF2A182F304L,
    A182F316L
    САУДОВСКАЯ АРАВИЯ 2014
    ПРОЕКТ ГАЗОТУРБИННОЙ ЭЛЕКТРОСТАНЦИИ ФИТИНГИ И ОТВОДЫ ДЛЯ СВАРКИ СТЫК SW, переходной тройник для стыковой сварки A105, A182F316L ИРАК 2014
    ГРУПО КУНАДО КОВАНЫЕ СТАЛЬНЫЕ ФИТИНГИ A105, A182F304L, A182F316L, F321, ТУРЦИЯ 2013-2014
    ALSTOM ФИТИНГИ И ОТВОДЫ ИЗ КОВАННОЙ СТАЛИ A105, A182F304L, A182F316L

    МАРОККО, ЮЖНАЯ АФРИКА

    2010

    Smith Cooper Нержавеющая сталь 304 6 дюймовФитинги под приварку тройников — Sch 40

    Smith Cooper 304 Нержавеющая сталь 6 дюймов Тройники под приварку — Sch 40

    Артикул:
    SMCS2044T060

    Размер:
    6 дюймов

    Тип:
    Тройники

    Вес:
    34,60 фунтов

    Артикул:
    SMCS2044T060

    Размер:
    6 дюймов

    Тип:
    Тройники

    Вес:
    34,60 фунтов

    Характеристики

    • Изготовлен из нержавеющей стали 304
    • Труба сортамент 40
    • Фитинги под приварку из нержавеющей стали соответствуют ASTM A403, ASTM A960, MSS SP-43
    • Размеры фитингов под приварку из нержавеющей стали соответствуют ASTM B16.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *