Термогенераторы электричества: Термогенераторы. Устройство и работа. Виды и применение

Содержание

Походный термоэлектрический генератор на дровах и щепках


Есть в мире такая интересная вещь, как Элемент Пельтье — термоэлектрический преобразователь с обратимым эффектом. Его устройство очень просто — это пластинка с множеством соединенных пар разнородных полупроводников, закрытых в теплопроводящем корпусе. Если пустить по элементу ток — одна из сторон пластинки начнет греться, а другая — охлаждаться. Работает это и в обратную сторону — если охлаждать одну сторону, и нагревать другую — элемент начнет вырабатывать электричество, тем большее, чем больше разница температур между сторонами.

За свою универсальность, простоту и малые размеры, «пельтьешки» горячо полюбились любителями самодела, выживальщиками и оверлокерами, которые не перестают придумывать им применение как в качестве охладителя (например, для CPU), так и термоэлектрогенератора. Например — представленный Маркусом Райтом из Уфы — простой походный термогенератор на дровах и щепках, дающий на выходе напряжение 5V/500mA через преобразователь с USB-выходом — этого должно быть достаточно для зарядки телефона или фонарика на природе.

А главное — собрать этот агрегат можно из компьютерного хлама и подручных средств, и ниже мы расскажем как!

Для сборки устройства понадобится:
1. Элемент Пельтье — хорошим выбором будет TEC1-12710 12V 40x40mm
2. Повышающий преобразователь напряжения с USB-выходом (входной ток 1-5V, выходной — 5V).
3. Радиатор для процессора с площадью соприкосновения не меньше 40x40mm (больше — лучше).
4. Блок питания компьютера, желательно нерабочий — из него понадобится только корпус. Вместо БП можно использовать щепочницу, и вообще модифицировать конструкцию по желанию.

5. Термопаста и инструменты.

Приобрести Элемент Пельтье можно на радиорынках или в магазинах электротехники, или на ebay и aliexpress (ключевое слово — «peltier»). У нас — дороже, на Aliexpress партия из 5шт. TEC1-12710 обойдется в $25, хотя можно найти дешевле. Также, можно заказать TEC1-12706 — его характеристики похуже, но партия в те же 5шт. обошлась в $10. Ниже приведены характеристики используемого в генераторе элемента:


В TEC1-12710 — 127 пар полупроводников, он рассчитан на 10A и оптимальное подаваемое напряжение — 12V (допустимо, но нежелательно превышение до 14-15V.
При извлечении напряжения нагревом и охлаждением — элемент выдаст напряжение значительно ниже среднего — около 1V с пассивным охлаждением одной стороны. Поэтому нужно использовать повышающий преобразователь — когда на вход подается минимальное допустимое напряжение в 1V, он повышает и стабилизирует его, давая на выходе стабильные 5V. Большинство подобных устройств оснащены светодиодным индикатором — когда он загорится — значит на выходе есть 5V и можно работать.

Стабилизатор несложно собрать самому — хотя, стоит он около $2-3 и продается интернет-магазинах. В описываемом устройстве используется стабилизатор, заказанный из Китая вместе с ЭП.

Важно: Элементы Пелетье чувствительны к высоким температурам — нежелателен длительный нагрев элемента выше 160°C, иначе поплывут места спая полупроводников и он выйдет из строя. Также опасны короткие замыкания на поверхности элемента и между контактами.

Сборка:
1. Сперва нужно подготовить корпус БП. А именно — выпотрошить всю начинку и снять порты питания. Снизу на задней стенке, где будет крепиться радиатор, выпилите или пробейте 4 маленьких отверстия — они нужны для крепления радиатора на металлической проволоке. Также, при необходимости, пробейте отверстия для доступа кислорода снизу. Во всём остальном — корпус компьютерного БП идеально подходит для термогенератора.

2. Соблюдая полярность, припаяйте контакты ЭП к преобразователю, а сам преобразователь желательно заизолировать, для защиты от повреждений.

3. Теперь нужно реализовать охлаждение холодной стороны ЭП — активное, или пассивное. Пассивное — это просто радиатор, рассеивающий тепло. Активное — это когда тепло, переданное радиатору, рассеивается кулером, либо когда радиатор охлаждается холодной водой/снегом (зима — лучшее время для фанатов ЭП) — вариантов много. В любом случае, пассивное охлаждение допустимо в ветреной местности, но КПД устройства будет ниже.

«Холодная» сторона ЭП — это та, на которой набито название (протестировать можно, пустив на контакты ЭП ток).

Для лучшего теплоотвода обильно смажьте холодную сторону ЭП термопастой — подойдет и легендарная КПТ-8, купленная на радиорынке, но лучше использоваться современные аналоги (спрашивайте в магазинах компьютерной техники). После — установите радиатор на холодную сторону ЭП, и готовое изделие плотно (используя металлическую проволоку) закрепите на стенке корпуса.


Термогенератор на Элементах Пелетье готов!

Работает сей агрегат очень просто: щепки или дрова, горящие внутри корпуса, нагреют одну из сторон ЭП, пока другую будет охлаждать радиатор. Разница температур начнет расти — а вместе с ней вырастет и вырабатываемое элементом напряжение. Когда на преобразователе загорится лампочка — к устройству можно подключать ваши девайсы, и те медленно, но верно будут заряжаться. А если иногда охлаждать водой радиатор — то заряжаться они будут ещё быстрее!

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст.
Подробнее здесь.

Термоэлектрический генератор: история, развитие, конструкция

Термоэлектрический генератор – это прибор, получающий электрическую энергию из тепла. Превосходный источник энергии, к несчастью, характеризуется низким КПД. Вдобавок постоянный ток не преобразуется трансформаторами.

История открытия

Зеебек обнаружил в 1822 году (по иным данным – от 1820 до 1821), что при нагревании спая из разных материалов в замкнутой электрической цепи течёт ток. КПД преобразования составил 3%. Несмотря на столь мизерную цифру, результат первого термоэлектрического генератора соперничал с паровыми машинами того времени. Экспериментируя с пластинками сурьмы и висмута, Зеебек вёл измерения гальванометром Швейггера (катушкой индуктивности и магнитной стрелкой). Следовательно, не начинал эксперименты ранее 16 сентября 1820 года. Кажущаяся необъяснимость и незначительность события заставили учёного повременить. Не торопясь, изучив собственное открытие, Зеебек сделал доклад о нем лишь в 1823 году.

Путём логических рассуждений исследователь предположил, что земной магнетизм объясняется разницей температур между экватором и полюсами. Принцип действия термоэлектрического генератора объяснялся магнитной поляризацией. Зеебек исследовал массу образцов, включая полупроводники, и выстроил материалы в ряд по способности отклонять магнитную стрелку. Эти данные используются (в уточнённом виде) и поныне для конструирования термоэлектрических генераторов. Коэффициент Зеебека измеряется в мкВ/К.

Как учёные с радиоактивными металлами, так Зеебек обращался с образцами. После Второй мировой войны, когда стало известным, что США обладают потрясающим новым оружием, раздался приказ всеми силами ускорить создание ядерного оружия. Заключённые и просто экспериментаторы практически руками соударяли куски радиоактивной породы, чтобы достичь цепной реакции. Большинство в скором времени погибло.

Зеебек остался жив. Он брал руками висмут и сурьму, замыкал цепь и, как некогда Гальвани, наблюдал «животное электричество». Зеебек почти поверил в собственные замечательные трансцендентные способности, но домработница заставила его думать, что причина в нагреве образцов. Когда карьера мага окончательно ушла из рук великого учёного, он вернулся, наконец, к физике. Оказалось, если металлы состыковать плотно и нагревать лампой, стрелка отклоняется ещё дальше.

Первоначально объяснение наблюдаемому эффекту давали необычное и называли магнитной поляризацией. С точки зрения современной науки сложно объяснить подобную позицию, но если взглянуть глазами современников… В сентябре 1820 года Ганс Эрстед доложил научным кругам Франции и Великобритании об открытии, свершившем революцию в следующие 100 лет. Учёный не спешил: заметив странное поведение стрелки морского компаса, долго изучал, оценивал, потом написал нескольким прогрессивно мыслившим современникам… Дальнейшие открытия посыпались чередой:

  1. Закон Ома.
  2. Электромагнит.
  3. Электрокомпас.
  4. Гальванометр.
  5. Индуктивность.
  6. Электродвигатель.

Долго перечислять все изобретения следующих 15 лет, но открытое Зеебеком термоэлектричество оказалось удивительным. Известно, что Георг Ом пользовался парой висмута и сурьмы для вывода известного закона для участка цепи. Во времена Зеебека существовали понятия заряд, магнетизм, электричество, ёмкость конденсатора – и все! Неизвестны были понятия разницы потенциалов, токов, электромагнитный полей и их напряжённости. Это повлияло на название открытия Зеебека.

Накануне Малюс, Френель, Юнг и Брюстер опубликовали работы по поляризации света. Это явление исследовали на основе кристаллов исландского шпата, тогда ввели термин ось (с греч. – полюс, ось). Магнитные полюса обнаруживал Земной шар. Неудивительно, что Зеебек приписал собственной установке подобное странное название. Катушка ориентировала стрелку компаса как планета Земля.

В течение года удалось найти правильное объяснение. Георг Ом использует термопару как источник стабилизированного напряжения для открытия известного закона: задаёт фиксированную разницу температур через точки кипения воды и таяния льда. Пришла пора открывать эру термоэлектричества.

Развитие концепции термоэлектричества

Когда стало понятно, что тепло не способно непосредственно превращаться в магнетизм, наконец, отвергли идею образования полей Земного шара жаром извергающихся вулканов и кипящей внутри магмой. Сопоставив опыты Эрстеда и Зеебека, научное сообщество нашло правильный путь. За Георгом Омом термопару в качестве термоэлектрического генератора стали использовать в электролизе (1831 год). Но термин пребывал неустойчивым. Считается, что первые термоэлектрические генераторы появились во второй половине XIX века. Считались просто лабораторными установками для исследований различных процессов, именовались по-иному.

В Почтово-Телеграфном журнале ближе к 1899 году опубликована заметка о создании батареи для питания лампочек мощность 16 кандел. В топку печи помещались термопары, с достаточными напряжением и током. Объединяя питающие элементы последовательно, поднимали вольтаж. А при параллельном включении увеличивался ток. Каждая термопара сконструирована по образу использованной Зеебеком (сурьма – антимонид цинка). Тогда уже узнали батарею Гюльхера (предположительно, 1898 год).

Термин батарея ввёл для лейденских банок (конденсаторов) Бенджамин Франклин.

Так в научных кругах последовательно соединённые термопары окрестили термобатареей. Считается, что первыми прибор создали Эрстед и Фурье в 1823 году. Они объединили термопары Зеебека для получения мощного источника питания. Дальнейшее развитие концепция получила с подачи Леопольдо Нобили и Македонио Меллони: для серии опытов по исследованию инфракрасного спектра они создали тепловой мультипликатор. Идея пришла обоим после внесения прогрессивных изменений в конструкцию Швейггера (1825 год).

Задумка первого гальванометра: эффект витков проволоки перемножается по их количеству. Аналогичным образом собирался «усилитель тепла» из термопар. Прибор предназначался целиком для исследования инфракрасного спектра за счёт измерения производимого нагрева, но впоследствии концепция послужила основой для создания новых источников питания. Индикатором термоумножителя стала стрелка компаса.

Временная линейка развития изобретений

Вслед первым ласточкам эффект Зеебека применялся и дальше. Патент на применение термоэлектрических генераторов взамен обычных взят в 1843 году Мозесом Пулом.

Пергелиометр для измерения солнечной активности

Пергелиометр предназначен для измерения интенсивности солнечного излучения по степени нагрева термопары. Изобретённый Клодом Пулье между 1837 и 1838 годами прибор позволил учёному вычислить с высокой степенью точности солнечную константу, равную 1228 Вт/кв. м. Изначально пергелиометр не предполагалось использовать как термоэлектрический генератор. Отдельные наработки конструкции служили опорой для дальнейшего прогресса отрасли.

Приведём данные по изобретению, взятые из научного доклада доктора Стоуна, прочитанного 18 ноября 1875 года. «Сплавы проявляют свойства мощнее в сочетании металлов, нежели каждый из простых материалов по отдельности. В составе одной части цинка и двух – сурьмы образец давал разницу потенциалов 22,7. Потенциалы компонентов, взятых по отдельности:

  • Сурьма – 7 – 10.
  • Цинк – 0,2.

Единственным исключением стал сплав висмута с оловом. При составе его 12 к 1 потенциал падает с 35,8 до 13,67. Мне посчастливилось начать исследования с пары из нейзильбера (богатого никелем) и железа. Наблюдаемая ЭДС не оказалась велика. Тогда я испробовал сплав Маркуса, состоящий из 12 частей сурьмы, 5 цинка и 1 висмута. Результат получился хрупким и с ярко выраженной кристаллической структурой.

Чтобы сгладить указанные недостатки, добавлял мышьяк. В результате обнаружено, что сплав сурьмы, мышьяка и цинка с небольшой примесью олова проявляет гораздо большую пластичность при аналогичных термоэлектрических свойствах, которые наблюдаются у сплава Маркуса. Второй частью пары оставлен нейзильбер.»

Термобатарея

Термобатарея Маркуса приравнивалась к одной двадцатой от ячейки Даниэля, предоставляя 55 мВ постоянного напряжения. Негативной «обкладкой» служил сплав из меди, цинка и никеля в соотношении 10:6:6, похожий по внешнему виду на нейзильбер; положительной – соединение сурьмы, цинка и висмута в соотношении 12:5:1. По данным “Electricity in The Service of Man”, 3-ей редакции, 1896, в мае 1864 года Маркус получил премию от Венского научного общества за термоэлектрический генератор. Составленные шалашом термопары в верхней части объединялись нагреваемой металлической полосой. Нижние части охлаждались водой. К сожалению, сплавы на воздухе быстро окислялись с грандиозным повышением омического сопротивления контактов.

Вклад Беккереля

Доподлинно неизвестно, когда появился на свет термоэлектрический генератор Эдмонда Беккереля, но историки относят открытие на период 1867-1868 года. В его конструкции переход образован сульфидом меди и нейзильбером. На изображении: в ближний резервуар закачивалась холодная вода, в дальний – раскалённый газ. Напряжение термоэлектрического генератора снималось со спиралевидных выводов.

Термогенераторы Клэмонда

По поводу термоэлектрических генераторов доктор Стоун высказал: «Применение железа даёт неплохой эффект, который нивелируется быстрым ржавлением изделия. »

  • Термоэлектрический генератор (предположительно 1874 года выпуска) Клэмонда и Мура сконструирован из антимонида цинка и чистого железа специально для целей электролиза. Подогреваемый прибор позволял за час получить примерно унцию меди, потребляя 6 кубических футов газа. Использовался для плакирования металлических изделий. Газовый регулятор термоэлектрического генератора изменял величину получаемого электрического тока. На представленном виде сверху видны секторы из антимонида цинка, треугольные листовые лопасти – железные.
  • В 1789 году термоэлектрический генератор Клэмонда оказался сильно усовершенствован. При внутреннем сопротивлении 15,5 Ом выдавал напряжение 109 В при токе 1,75 А, потребляя за час 22 фунта угля. Коммутацией соединений вольтаж уменьшался до 54 В. Ток термоэлектрического генератора возрастал до 3,5 А. Подогреваемая угольной печью конструкция высотой под 2,5 метра и диаметром в пределах метра, напоминающая кулер современных процессоров, снаружи содержала многочисленные железные крылья. Газы проходили внутри, раскаляя антимонид цинка. По отдельным сообщениям, 20 термопар генератора выдавали 1 В напряжения.
  • Термоэлектрический генератор Ноэ (вероятно, 1874 год) больше напоминает современную турбину ТЭС по форме. Центральная часть термпопар подогревается горелкой, а периферия охлаждается за счёт излучения и конвекции. Это сравнительно маленькое подобие генератора Клэмонда с внутренним сопротивлением 0,2 Ом, рассчитанное на напряжение 2 В и состоящее из 128 термопар. Эффективность термоэлектрического генератора сильно снижали нейзильберовые промежуточные контакты, рассеивающие тепло. В современных термоэлектрических генераторах и

Простая тепловая электростанция своими руками

Как с помощью свечки зарядить сотовый телефон? Очень просто — для этого можно собрать простейшую тепловую электростанцию всего из нескольких очень доступных элементов.
Вещица эта довольно крутая, её можно взять с собой в поход или на рыбалку и в любой ситуации иметь возможность зарядить мобильное устройство, будь-то телефон или планшет.
В отличии от Power Bank этот генератор не имеет ограничения и может работать постоянно. В качестве источника тепла можно использовать не только свечу, но и щепки дров или бумагу.



Детали тепловой электростанции



Изготовление теплогенератора своими руками


Первое что нужно сделать это найти консервную банку. Отрезать у неё дно и по всей боковой поверхности просверлить множественные мелкие отверстия. Большие отверстия делать не стоит, иначе в ветреную погоду огонь будет тухнуть от сильного ветра.

Затем, ножницами по металлу вырезаем окно для свечки внизу банки.


Обязательно после отрезки зачищаем острые края напильником или надфилем.

Вот само сердце теплового генератора — элемент Пельтье. Он будет вырабатывать ток при разности температуры его поверхностей. То есть, одну сторону мы будем нагревать свечкой, а вторую будем охлаждать радиатором от компьютера.

Чтобы обеспечить надежную передачу тепла элементу Пельтье, нанесем на его стороны теплопроводящую мазь.

Мажем тонким слоем одну сторону.

Прикладываем к банке.

Мажем вторую сторону

Чтобы в периоде эксплуатации провода не поплавились о раскаленную банку, необходимо одеть стекловолоконные отрезки трубки — кембрики.

И уже сверху устанавливаем радиатор от процессора компьютера. Кулера с верху не будет, все будет охлаждаться естественно. Тем более на природе небольшой ветерок сделает свое дело.

Элемент Пельтье вырабатывает не большое напряжение, около вольта, но зато сила тока у него имеет достаточное значение для наших целей. Поэтому для того, чтобы обменять значения на нужные нам мы будем использовать повышающий преобразователь, который повысит и стабилизирует выходное напряжение до 5 В.

Припаиваем вывода элемента ко входу преобразователя.

На выходе преобразователя уже стоит USB розетка для подключения, поэтому больше ничего паять не нужно.

Проверка теплового генератора


Зажигаем свечку.

Вставляем в наш реактор)).

Пробуем зарядить мобильный телефон. Через несколько секунд напряжение достигло уровня.


И зарядка телефона началась.

Тепловая электростанция отлично справляется со своим делом — выработка электричества.

При желании можно добавить и вентилятор, подключив его к выходу преобразователя. Пяти вольт хватит, чтобы раскрутить и двенадцати вольтовый кулер.
Для надежности банку с радиатором можно скрепить между собой тонкой проволокой или же тонкими длинными болтами, предварительно просверлив отверстия и там и там.

Заключение


Вот у нас часто отключают свет дома. И когда это происходит, я достаю тепловой генератор. Он дает электричество и свет от свечи, убивая сразу двух зайцев. Ну а если света недостаточно к USB можно подключить и мини LED лампу. Радует ещё то, что данное устройство всегда готово к работе, а по сему, неожиданных неприятностей быть не может.

Смотрите видео


Как сделать термоэлектрический генератор своими руками

Каждого человека интересует вопрос: как сделать электричество бесплатным и автономным. Мы хотим вам заверить, все это сделать можно, но не таки просто. В этой статье вы узнаете, как сделать термоэлектрический генератор своими руками, такой прибор вы сможете использовать во время выездов на природу, когда катастрофически не хватает электричества для зарядки телефонов или включения небольших светильников. С помощью такого устройства вы сможете генерировать электрический ток с напряжением в 5 Вольт, этого напряжения хватит, чтобы зарядить мобильный или включить светодиодную лампу.

Как работает термоэлектрический генератор Пельтье

Данное устройство имеет сложный механизм работы, но его собирали уже несколько сотен раз, так что можете быть уверены, у вас все получится. Мы поговорим о том, какие запчасти нужны для сборки самодельного термоэлектрического генератора, так вы поймете, почему он работает. Устройство Пельтье состоит из последовательно соединенных термопар, находятся они между керамических пластин. Примерно вот так это все выглядит на картинке. Узнайте, как сделать маленький вентилятор от USB.

 

Когда через цепь проходит электрический ток образуется эффект Пельтье, одна сторона модуля нагревается, другая просто охлаждается. Соответственно, если одну сторону сильней нагреть может получить большую силу тока и напряжение.

Как сделать термоэлектрический генератор своими руками

Сейчас элементы Пальтье широко используются практически во всех системах охлаждения, чаще всего их можно встретить в холодильниках. Поэтому особой сложности с подбором материалов у вас возникнуть не должно. Чтобы сделать самодельный термоэлектрический генератор необходимо подготовить следующие материалы:

  1. Элемент Пельтье, у него должны быть следующие параметры: размер – 40*40*3,4, максимальный ток – 10 А, напряжение – 15 Вольт, маркировка – TEC 1-12710.
  2. Компьютерный блок питания (только его корпус).
  3. Стабилизатор напряжение, с входным напряжением 1.5 Вольт, и на выходе он должен выдавать 5 Вольт. Чтобы сразу упросить работу с ним, мы будет подключать USB, современные гаджеты с помощью него можно взять без проблем.
  4. Радиатор, можно использовать и компьютерный куллер.
  5. Термопаста.

Пошаговая инструкция:

Чтобы сделать термоэлектрический модуль пельтье своими руками нужно проделать следующие шаги, на этом этапе проявите осторожность, уж слишком много проблем может возникнуть. Отличная статья по теме: делаем проектор для мобильного телефона.

  1. Разбираем старый блок питания, его мы будет использовать только в качестве корпуса для разжигания огня.
  2. К поверхности радиатора клеем пластину Пельтье, для этого берем термопасту. Клеем паркировкой к самому радиатору, так как это холодная сторона. Если перепутаете полярность, тогда нужно будет менять провода в дальнейшем.
  3. К обратной стороне клеем блок питания, вот так это выглядит на фото.
  4. Крепим пластины и к стабилизатору припаиваем USBвыход для зарядки телефонов.
  5. Помещаем 5-ти вольтный преобразователь в радиаторе и переходим к испытаниям.

Вот еще один интересный способ:

Получаем термоэлектричество своими руками

Вот мы с вами и разобрали, как сделать термоэлектрический генератор своими руками, теперь давайте разберем основные способы получения электричества с такого устройства.

Рекомендуем посмотреть вот такое видео, здесь все докладной рассказывается.

Теперь расскажем еще несколько слов о принципе работы такого устройства, чтобы он давал хорошее напряжения разница в температуре должна составлять 100 градусов. Если заметили, что охлаждающая сторона слишком нагрелась делайте все, чтобы ее остудить. Можно использовать воду или другие средства, которые вы видите о себе под рукой.

Похожая статья: Делаем самодельный двигатель из батарейки, проволоки и магнита.

Сборка термогенератора своими руками для получения электричества: особенности процесса

Делаем бесплатное электричество — простой самодельный генератор

Многих электриков интересует один очень популярный вопрос – как автономно и бесплатно получить небольшое количество электроэнергии. Очень часто, к примеру, при выезде на природу или походе катастрофически не хватает розетки для подзарядки телефона либо включения светильника. В этом случае Вам поможет самодельный термоэлектрический модуль, собранный на базе элемента Пельтье. С помощью такого устройства можно генерировать ток, напряжением до 5 Вольт, чего вполне хватит для зарядки девайса и подключения лампы в экстренной ситуации. Далее мы расскажем, как сделать термоэлектрический генератор своими руками, предоставив простой мастер-класс в картинках и с видео примерами!

Кратко о принципе действия

Чтобы в дальнейшем Вы понимали, для чего нужны те или иные запчасти при сборке самодельного термоэлектрического генератора, сначала поговорим об устройстве элемента Пельтье и о том, как он работает. Данный модуль состоит из последовательно соединенных полупроводников – pn переходов, находящихся между керамическими пластинами, как показано на картинке ниже.

Когда через такую цепь проходит электрический ток, происходит так называемый эффект Пельтье — одна сторона модуля нагревается, а вторая – охлаждается. Для чего это нам нужно? Все очень просто, данный эффект работает и в обратном направлении: если одну сторону пластины нагреть, а второю охладить, то можно получить электроэнергию небольшого напряжения и силы тока. Огромное преимущество данного метода в том, что можно использовать любой источник тепла, будь то костер, или горячая кружка с кипятком, остывающая плита и так далее. Для охлаждения можно применять воздух или для более мощных вариантов – обыкновенную воду, которая обязательно найдется даже в условиях похода. Далее переходим к мастер-классам, которые наглядно покажут из чего и как сделать термоэлектрический генератор своими руками.

Мастер-класс по сборке

У нас есть очень подробная и в то же время простая инструкция по сборке самодельного генератора электроэнергии на базе мини-печи и элемента Пельтье. Она пригодится каждому путешественнику в походе. Для начала Вам необходимо подготовить следующие материалы:

  • Непосредственно сам элемент Пельтье с параметрами: максимальный ток 10 А, напряжение 15 Вольт, размеры 40*40*3,4 мм. Маркировка – TEC 1-12710.
  • Старый нерабочий блок питания от компьютера (с него нужен только металлический корпус).
  • Стабилизатор напряжения, со следующими техническими характеристиками: входное напряжение 1-5 Вольт, на выходе – 5 Вольт. В данной инструкции по сборке термоэлектрического генератора используется модуль с USB выходом, что упростит и сделает безопасным процесс подзарядки современного телефона либо планшета. Эту деталь можно приобрести в магазине радиокомпонентов или в интернете.
  • Радиатор. Можно взять от процессора сразу с кулером (вентилятором), как показано на фото.
  • Термопаста, продается в компьютерном магазине.

Подготовив все материалы, можно переходить к изготовлению устройства своими руками. Итак, чтобы Вам было понятнее, как самому сделать генератор, предоставляем пошаговый мастер-класс с картинками и подробным объяснением:

  1. Разберите старый блок питания и оставьте только корпус. Он будет использоваться, как место розжига огня (так называемая печь). Будьте внимательны, даже на старых блоках питания в высоковольтной части на конденсаторах может остаться опасное для жизни напряжение. Поэтому перед работой оденьте диэлектрические перчатки, убедитесь в отсутствии потенциала на конденсаторе, для уверенности замкните его контакты, и будьте предельно осторожны во время разборки!
  2. На радиатор нанесите термопасту тонким, однородным слоем и прислоните элемент Пельтье. Устанавливать нужно маркировкой к радиатору, это будет холодная сторона. Если Вы перепутаете стороны местами, в дальнейшем нужно будет поменять полярность проводов, чтобы термоэлектрический генератор работал правильно и не испортил преобразователь. Вместо термопасты вы можете использовать специальный теплопроводный клей, это будет даже лучше: не придется дополнительно крепить радиатор к корпусу.
  3. К обратной стороне модуля прислоните корпус блока питания, как показано на фото ниже.
  4. Прикрепите радиатор к корпусу с помощью металлической проволоки.
  5. К выводам элемента припаяйте стабилизатор напряжения с выходом USB. Кстати, для этого можно сделать паяльник сделать своими руками.
  6. Аккуратно поместите 5-вольтовый преобразователь в радиаторе и переходите к испытаниям самодельного термоэлектрического генератора. Не забудьте заизолировать преобразователь с помощью изоленты.

Работает термоэлектрический генератор следующим образом: внутрь печи Вы засыпаете дрова, мелкие щепки, поджигаете их и ждете несколько минут, пока одна из сторон термоэлемента не нагреется. Параллельно можно вскипятить воду на решетке. Для подзарядки телефона нужно, чтобы разница между температурами разных сторон была около 100 о С. Если охлаждающая часть (радиатор) будет нагреваться, его нужно будет остужать – аккуратно поливать водой, поставить на него кружку с жидкостью, льдом и т.д. Лучше крепить радиатор так, чтобы его ребра были расположены вертикально, это улучшает отдачу тепла воздуху.

А вот и видео, на котором наглядно показывается, как работает самодельный электрогенератор на дровах:

Также можно установить на холодную сторону устройства вентилятор от компьютера, что несколько изменит его конструкцию. Давайте рассмотрим этот вариант по подробнее:

В этом случае кулер будет затрачивать небольшую долю мощности генераторной установки, но в итоге система будет работать с более высоким КПД. Помимо телефонной зарядки модуль Пельтье можно использовать в качестве источника электроэнергии для фонарика, что не менее полезный вариант применения генератора. Еще одна особенность данной конструкции — это способность регулировать высоту над огнем. Для этого автор использует деталь от CD-ROMа (на одном из фото хорошо видно, как самому можно изготовить конструкцию).

Если сделать термоэлектрический генератор своими руками по такой методике, на выходе у Вас может быть до 8 Вольт напряжения, поэтому для подзарядки телефона, нужно подключить понижающий преобразователь, который сделает на выходе стабильные 5 В.

Ну и последний вариант самодельного источника электроэнергии для дома может быть представлен такой схемой: элемент между двух алюминиевых «кирпичиков», медная трубка (водяное охлаждение) и конфорка. Как результат – эффективный генератор, позволяющий получить бесплатное электричество в домашних условиях! Например, при остывании конфорки, когда ей никто не пользуется. Или очень часто люди используют печь для обогрева, так вот часть этой энергии может пойти на зарядку вашего гаджета.

Вот мы и предоставили три простых варианта самодельного аппарата, который можно собрать из подручных средств. Теперь Вы знаете как сделать термоэлектрический генератор своими руками, на чем основан принцип работы элемента Пельтье и для чего его можно использовать!

Будет интересным к прочтению:

Термоэлектрический генератор

Современное пользовательское электрооборудование нуждается в постоянной подкачке электричества, источники которого не всегда имеются «под рукой» (в длительном пешем путешествии, например). С этой точки зрения, традиционные автомобильные аккумуляторы (АКБ) очень тяжелы для переноски и не годятся для классических походных условий. Их может заменить такое удобное в эксплуатации и транспортировке устройство, как термоэлектрический генератор своими руками изготовленный из подсобных элементов (общий вид ТЭГ приведён на фото ниже).

Несмотря на свои внушительные размеры, этот агрегат имеет малый вес и может быть разборным, то есть вполне подходит для транспортировки во время похода. Ознакомимся с принципом работы термоэлектрического генератора более детально.

Эффект Пельтье, его обратимость

Изготовление автономных термических генераторов электричества стало возможным благодаря открытию известного из курса физики эффекта Пельтье, состоящего в следующем. Оказывается, что разнородные по структуре проводники при протекании через зону их спайки электрического тока обнаруживают интересное свойство, состоящее в появлении разницы температур между их пограничными точками.

На основании этого открытия был разработан специальный элемент «Пельтье», состоящий их двух разнесённых на некоторое расстояние пластин из керамики с помещённой между ними биметаллической прокладкой. При пропускании через такие системы электрических зарядов одна из этих обкладок нагревается, а другая, напротив, – охлаждается, что в принципе позволяет делать на их основе холодильные установки.

Важно! При изменении направления тока через стык проводников (при прямом эффекте) меняется вектор градации температуры на стыках.

На размещённом ниже рисунке изображены модули различного типа и размера, чаще всего применяемые в технических изделиях этого класса.

Как и многие другие электродинамические явления, этот эффект является полностью обратимым. Последнее означает, что при нагревании одной стороны пластин Пельтье и охлаждении другой на стыке между ними появится ЭДС, а через контактную зону и подключённую нагрузку потечёт небольшой ток (эффект Зеебека).

По этому принципу и функционирует рассматриваемый в этом обзоре генератор на элементах Пельтье, который вполне может работать на открытом воздухе (на рыбалке или в походе, например).

При проявлении эффекта Зеебека наблюдается та же зависимость от полярности происходящих изменений, а именно: если менять охлаждаемый и нагреваемый стыки местами, будет меняться и направление тока во всей системе. Таким образом, обратный элемент Пельтье как генератор электроэнергии представляет собой достаточно универсальное устройство, имеющее возможность регулировки величины и направления получаемой ЭДС.

Физическое объяснение

Причина возникновения разницы температур (в случае эффекта Пельтье) заключается в энергетике контактных зон, образующихся в местах стыка двух разнородных веществ (висмута и сурьмы, например). Особенности этих образований могут быть представлены следующим образом:

  • Из-за различной концентрации положительных и отрицательных зарядов в границах полярных зон (в центре размещается одно вещество, по краям – другое) между ними образуются собственные разнонаправленные электрические поля;
  • При протекании тока через контакт, в котором направление внешней и внутренней ЭДС совпадают, на поддержание перемещения электронов (на совершение работы в поле той же полярности) будет расходоваться внутренняя энергия вещества. Из основ физики известно, что такое явление соответствует остыванию материала в этом месте;
  • Соответственно этому, во второй контактной зоне, где направление приложенной ЭДС противоположно внутреннему полю, электроны будут тормозиться, и внешнему источнику придётся затрачивать дополнительную энергию по их перемещению. Согласно тем же физическим законам, указанный эффект соответствует забору энергии или нагреву материала в точке стыковки (смотрите фото ниже).

Обратите внимание! Напряжённости таких полевых образований максимальны на пограничных участках двух неоднородных сред (полупроводников разной проводимости, например), вследствие чего здесь этот эффект проявляется с особой силой.

Среди работающих по этому принципу устройств наиболее известны термические модули (ТЭМ), состоящие из разных типов полупроводников с размещённой между ними медной токопроводящей прокладкой.

Особенности функционирования ТЭМ

Принцип действия и конструкция

При рассмотрении особенностей функционирования ТЭМ, работающих по тому же принципу, что генератор Пельтье, необходимо обратить внимание на следующие моменты:

  • В одном таком элементе имеется четыре перехода, которые образуются в пограничных зонах между краями металлической прокладки и двумя разнородными полупроводниковыми пластинами;
  • При образовании замкнутой цепочки поток электронов перемещается по направлению от минуса источника питания к его плюсу, проходя через каждый переход;
  • На границе первого по порядку барьера (полупроводник p-типа – медь) разогнанные во внешнем поле электроны переходят в состояние с меньшими энергиями разгона, вследствие чего происходит тепловыделение;
  • На следующем переходе наблюдается поглощение энергии (то есть охлаждение материала), что объясняется её расходом на работу по перемещению из зоны проводимости типа «p»;
  • На третьем пограничном переходе они попадают в зону полупроводника «n» со значительно большей, чем в прокладке из металла энергией, из-за чего здесь наблюдается её поглощение. Это приводит к охлаждению материала полупроводника на границе данного стыкового образования;
  • В последнем переходе вследствие попадания электронов в зону с меньшими энергиями наблюдается обратный процесс, связанный с тепловыделением.

Поскольку каждый из рассмотренных барьеров в границах ТЭМ располагается в разных плоскостях, такая конструкция с одной из сторон будет иметь более низкую температуру, а с другой – более высокую. На их основе создаются недорогие и лёгкие термогенераторы.

Дополнительная информация. В большинстве промышленных образцов ТЭМ функцию полупроводников выполняют соединения кремния и висмута.

В готовом к практическому использованию элементе содержится большое количество рассмотренных ранее переходов, что позволяет получать вполне ощутимые по величине температурные перепады. Используя обратный эффект (охлаждая одну из его сторон и нагревая другую) удаётся получить электрогенератор, энергии от которого будет хватать для зарядки мобильного телефона, например.

Достоинства и недостатки

К преимуществам модулей типа ТЭМ, используемых в режимах охлаждения и нагрева, можно отнести их универсальность, небольшие габариты и лёгкость, что особо важно в походных условиях.

Их существенным недостатком является высокая стоимость, сравнительно низкий КПД (всего 2-3%), а также необходимость в стороннем источнике, позволяющем получить требуемый перепад температур.

Обратите внимание! Все перечисленные достоинства и недостатки относятся и к элементам ТЭМ, используемым как термоэлектрогенератор (смотрите рисунок ниже).

Несмотря на присущие им недостатки, все эти изделия довольно часто применяются в различных сферах, где уровень энергозатрат не имеет решающего значения.

Самостоятельное изготовление

Комплект необходимых деталей

Перед тем, как собрать ТЭГ Пельтье своими руками, обязательно нужно учесть следующие важные моменты:

  • Для получения электричества за счёт разницы температур подходят далеко не все представленные ранее модули ТЭМ, а лишь те из них, что рассчитаны на нагрев до 300-4000 градусов;
  • Определенный запас по температуре гарантирует, что преобразовательные пластины не выйдут из строя при случайном перегреве рабочих контактов;
  • Из всего многообразия представленных изделий предпочтение следует отдать элементам типа ТЕС1-12712, изготавливаемых в виде квадратов с разными размерами сторон: от 40 до 60 мм (смотрите рисунок ниже).

Дополнительная информация. Для сборки устройства, рассчитанного на минимум потребляемой мощности, вполне может хватить одного элемента с максимальным размером.

Помимо этого, для изготовления генератора потребуется электронный преобразователь, позволяющий поддерживать выходное напряжение на уровне 5 Вольт. Необходимость в этой схеме объясняется тем, что генерируемая системой ЭДС непостоянна, так как разность температур всё время меняет своё значение при нагреве и охлаждении отдельных зон.

Стабилизатор напряжения придётся использовать фирменный (самостоятельно изготовить его могут только профессионалы). Для заявленных целей подойдёт устройство от зарубежного производителя марки «MAX 756» или отечественные изделия (3.3В/5В ЕК-1674), оснащённые USB разъёмом.

В качестве нагревателя могут использоваться как костёр (мини-печка), так и свеча, сухой спирт или самодельная лампа. Роль охладителя на природе чаще всего играет холодная вода, а в зимнее время – снег.

Сборка

Для формирования сред с разной температурой потребуются небольшие металлические ёмкости типа кружек или кастрюль из дюралюминия с отпиленными ручками. По своему размеру посуда подбирается так, чтобы одну ёмкость можно было вставить в другую, и чтобы между стенками оставался зазор, достаточный для размещения элементов TEC (они крепятся с двух сторон на термическую пасту).

Затем к каждой из сторон надёжно закреплённого модуля припаиваются хорошо изолированные провода, ведущие к преобразователю (стабилизатору). Для повышения отдачи системы (её КПД) днища металлических ёмкостей, непосредственно контактирующих с элементами ТЭГ, предварительно полируются, а на их донные части наносится тонкий слой термостойкого герметика (фото ниже).

Последняя операция обеспечит концентрацию тепла в зоне расположения модуля и не позволит ему рассеиваться на близко расположенных охлаждаемых деталях. Для проверки работоспособности получившейся конструкции во внутреннюю (меньшую по объёму) ёмкость наливается вода, или закладывается снег, после чего она ставится на огонь. По истечении некоторого времени можно будет проверить наличие выходного напряжения 5 Вольт посредством мультиметра.

В заключение отметим, что из-за не очень высокого КПД этого устройства применять его в походе целесообразно только с целью зарядки телефона или для энергоснабжения не очень мощного фонарика с подсевшей батарейкой. Благо, что на природе имеются все условия, необходимые для создания нужной разности температур (холодная вода из реки и тепло от костра).

Видео

Термогенератор, получаем электричество из тепла.

Для того, чтобы получить электричество непосредственно от газовой горелки или другого источника тепла, применяется термогенератор. Так же, как и у термопары, его принцип действия основан на эффекте Зеебека, открытом в 1821 году. Упомянутый эффект состоит в том, что в замкнутой цепи из двух разнородных проводников появляется ЭДС, если места спаев проводников находятся при разных температурах. Например, один спай находится в сосуде с кипящей водой, а другой в чашке с тающим льдом.

Эффект возникает от того, что энергия свободных электронов зависит от температуры. При этом электроны начинают перемещаться от проводника, где они имеют более высокую энергию в проводник, где энергия зарядов меньше. Если один из спаев нагрет больше другого, то разность энергий зарядов на нем, больше, чем на холодном. Поэтому, если цепь замкнута, в ней возникает ток, именно та самая термоэдс.

Приблизительно величину термоэдс можно определить по простой формуле:

E = α * (T1 – T2). Здесь α — коэффициент термоэдс, который зависит только от металлов, из которых составлена термопара или термоэлемент. Его значение обычно выражается в микровольтах на градус. Разность температур спаев в этой формуле (T1 – T2): T1 – температура горячего спая, а T2, соответственно, холодного.

Приведенную формулу достаточно наглядно иллюстрирует рис. 1.

Рис. 1. Принцип работы термопары

Рисунок этот классический, его можно найти в любом учебнике физики. На рисунке показано кольцо, составленное из двух проводников А и Б. Места соединения проводников называются спаями. Как показано на рисунке, в горячем спае T1 термоэдс имеет направление из металла Б в металл А. А в холодном спае Т2 из металла А в металл Б. Указанное на рисунке направление термоэдс справедливо для случая, когда термоэдс металла А положительна по отношению к металлу Б.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.

Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

После платины идут металлы с отрицательным значением термоэдс:

Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.

Как создавались термогенераторы

Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рис. 2.

Рис. 2. Термобатарея, схематическое устройство

Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом. В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.

Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.

Полупроводниковые термоэлементы

Подлинную революцию в создании термоэлементов произвели труды академика А.И. Иоффе. В начале 30 – х годов XX столетия он выдвинул идею, что с помощью полупроводников возможно превращение тепловой энергии, в том числе и солнечной, в электрическую. Благодаря проведенным исследованиям уже в 1940 году был создан полупроводниковый фотоэлемент для преобразования световой солнечной энергии в электрическую. Первым практическим применением полупроводниковых термоэлементов следует считать, по-видимому, «партизанский котелок», позволявший обеспечить питанием некоторые портативные партизанские радиостанции.

Основой термогенератора служили элементы из константана и SbZn. Температура холодных спаев стабилизировалась кипящей водой, в то время как горячие спаи нагревались пламенем костра, при этом обеспечивалась разница температур не менее 250…300 градусов. КПД такого устройства был не более 1,5…2,0 %, но мощности для питания радиостанций вполне хватало. Конечно, в те военные времена конструкция «котелка» была государственным секретом, и даже сейчас на многих форумах в интернете обсуждается его устройство.

Бытовой термогенератор

Уже в послевоенные пятидесятые годы советская промышленность начала выпускать термогенератор ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в не электрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.

Внешний вид термогенератора ТГК-3 показан на рис. 3.

Рис. 3. Термогенератор ТГК-3

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества. При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рис. 4.

Рис. 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи. Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

Видео


Термоэлектрический генератор своими руками: схемы, проекты, принцип работы и сборка самодельного устройства (155 фото и видео)

Большинство начинающих электриков интересуется о возможности создания не затратного и автономного источника электроэнергии. Зачастую, например, выехав на пикник, рыбалку либо просто отдохнуть на свежем воздухе, критически не хватает электричества для зарядки какого-либо прибора или освещения в темное время суток.

В таких случаях может помочь самостоятельно сделанный термоэлектрический генератор, для дома такой прибор не подойдет, если только в крайних случаях.

При помощи его можно вырабатывать электрического напряжение до пяти вольт, этого будет достаточно для зарядки гаджетов и подключения лампочки.

Для визуального ознакомления с ТЭГ нужно лишь посмотреть в любых источниках фото термоэлектрического генератора.

Краткое содержимое статьи:

Что такое ТЭГ

Данное устройство, дает возможность выработать электроэнергию из энергии тепла.

Нужно пояснить, что выражение «Тепловая энергия» не совсем правильное, так как тепло, это метод отдачи, не являющийся отдельным типом энергии. Этим определением обозначают общую кинетику структурных элементов:

  • молекул;
  • атомов;
  • иных частиц, которые входят в состав вещества.

Отличие ТЭГ от ТЭС

На ТЭС применяют топливо для выделения из жидкости пара, вращающий турбину электрогенератора.

С помощью теплоэлектрического генератора электроэнергия генерируется без посреднических преобразований.

Принцип работы

В девятнадцатом веке одним ученым обнаружилось возникновение электродвижущей силы в замкнутой цепи, при изменениях температуры в среде контактировании сурьмы с проводником.

Нагревая один из контактов, возникает магнитное поле, что вызывает ЭДС. При нагревании второго контакта, поток ЭДС противоположно изменяется.

Разорвав цепь, фиксируется противоположность потенциалов на ее краях. Это и является основным принципом работы термоэлектрических генераторов.

Спустя двенадцать 12 лет другой физик выявил противоположный эффект. Пропустив ток по цепи термопары, в контактах создается перепады температур.

В принципе эти оба эффекта разные стороны одного и того же явления, дающего возможность непосредственно получить электричество из тепла.

Перспективы

В данное время продолжают ставить опыты, подбирая оптимальные термопары, позволяющие повысить коэффициент полезного действия.

Большая вероятность того, что скоро разработки усовершенствования доброкачественности термических элементов, обретут высший статус производства материала для повышения взаимодействия термопар, с применением высоких технологий:

  • нанотехнологий;
  • ям квантования и т.п.

Вполне возможен вариант изобретения совсем другого принципа, с применением нестандартных материалов.

Были попытки соединения микроскопических проводников из золота искусственно синтезированной молекулой. Этот опыт в дальнейшем вполне может добиться успеха.

Сфера применения и виды

Учитывая низкий коэффициент полезного действия для теплоэлектрического генератора существуют два обстоятельства его использования:

  • там, где отсутствуют иные источники электрической энергии;
  • в местах, обладающими избытком тепла.

Как сделать собственноручно

Далее вкратце повествуем, как сделать генератор своими руками, который можно использовать в природных условиях или обесточенных местах.

Конечно, мощность этих приборов не сравнится с радиоизотопным экземпляром, но из-за трудной доступности плутония и его вредным качествам для человеческого организма, приходится радоваться и этому.

Потребуется элемент термоэлектричества. Лучше их использовать не в единственном экземпляре, подключив параллельно, это увеличит мощность.

Однако есть большая проблема, необходимо подбирать элементы с похожими параметрами, что достаточно затруднительно либо дорого обходится, легче приобрести готовый прибор.

Используя один элемент, мощности может не хватить даже зарядить самый простой гаджет.

Еще нужен будет корпус из металла, к примеру, бывшего в употреблении и уже ненужного блока питания от персонального компьютера и элемент охлаждения процессора.

Главные нюансы сборки

Изначально нужно нанести на основание термопасту там, где предназначена фиксация основного элемента, прислонить его и прижать охлаждающей деталью. В итоге получается конструктивное изделие.

Сухой спирт, пожалуй, станет лучшим топливом для этого приспособления. Далее нужно подсоединить к сделанному прибору устройство стабилизирующие напряжение.

Схему возможно посмотреть на сайтах в интернете либо в иных источниках предлагающих эту тему.

Изделие готово, теперь осталось только произвести испытание.

Заключение

В заключении можно сказать, что изготовление данного устройства лучше доверить специалистам либо приобрести его. Попытка создать его самостоятельно может привести к неудаче.

Фото термоэлектрического генератора своими руками

На одном из электрических форумов был задан такой вопрос: «Каким образом можно получить электроэнергию, использую обычный бытовой газ?» Мотивировалось это тем, что газ у этого товарища, да собственно, как и у многих, оплачивается просто по нормативам без счетчика.

Сколько ни пользуйся, платить все равно фиксированную сумму, и почему же не превратить уже оплаченный, но не использованный газ в халявную электроэнергию? Так на форуме появилась новая тема, которая была подхвачена остальными участниками: задушевная беседа помогает не только сократить рабочий день, но еще и убить свободное время.

Было предложено множество вариантов. Просто купить бензиновый генератор, а заправлять его бензином, полученным перегонкой бытового газа, либо переделать генератор для работы сразу на газу, как автомобиль.

Вместо двигателя внутреннего сгорания предлагался двигатель Стирлинга, известный также как двигатель внешнего сгорания. Вот только топикстартер (тот, который создал новую тему) претендовал на мощность генератора не менее 1 киловатта, но его урезонили, мол, такой стирлинг не поместится даже в кухне небольшой столовой. Кроме того немаловажно, чтобы генератор был бесшумным, иначе, ну, сами знаете что.

После множества предложений кто-то вспомнил, как видел в какой-то книжке рисунок, где показана керосиновая лампа с приспособлением в виде многолучевой звезды для питания транзисторного приемника. Но об этом будет сказано чуть дальше, а пока…

Термогенераторы. История и теория

Для того, чтобы получить электричество непосредственно от газовой горелки или другого источника тепла, применяются термогенераторы. Так же, как и у термопары, их принцип действия основан на эффекте Зеебека, открытом в 1821 году.

Упомянутый эффект состоит в том, что в замкнутой цепи из двух разнородных проводников появляется э.д.с., если места спаев проводников находятся при разных температурах. Например, горячий спай находится в сосуде с кипящей водой, а другой в чашке с тающим льдом.

Эффект возникает от того, что энергия свободных электронов зависит от температуры. При этом электроны начинают перемещаться от проводника, где они имеют более высокую энергию в проводник, где энергия зарядов меньше. Если один из спаев нагрет больше другого, то разность энергий зарядов на нем, больше, чем на холодном. Поэтому, если цепь замкнута, в ней возникает ток, именно та самая термоэдс.

Приблизительно величину термоэдс можно определить по простой формуле:

E = α * (T1 – T2). Здесь α – коэффициент термоэдс, который зависит только от металлов, из которых составлена термопара или термоэлемент. Его значение обычно выражается в микровольтах на градус.

Разность температур спаев в этой формуле (T1 – T2): T1 – температура горячего спая, а T2, соответственно, холодного. Приведенную формулу достаточно наглядно иллюстрирует рисунок 1.

Рисунок 1. Принцип работы термопары

Рисунок этот классический, его можно найти в любом учебнике физики. На рисунке показано кольцо, составленное из двух проводников А и Б. Места соединения проводников называются спаями. Как показано на рисунке, в горячем спае T1 термоэдс имеет направление из металла Б в металл А. А в холодном спае Т2 из металла А в металл Б. Указанное на рисунке направление термоэдс справедливо для случая, когда термоэдс металла А положительна по отношению к металлу Б.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.

Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

Сурьма +4,7, железо +1,6, кадмий +0,9, цинк +0,75, медь +0,74, золото +0,73, серебро +0,71, олово +0,41, алюминий +0,38, ртуть 0, платина 0.

После платины идут металлы с отрицательным значением термоэдс:

Кобальт -1,54, никель -1,64, константан (сплав меди и никеля) -3,4, висмут -6,5.

Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды.

Например, для пары сурьма – висмут это значение будет +4,7 – ( – 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.

Как создавались термогенераторы

Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рисунке 2.

Рисунок 2. Термобатарея, схематическое устройство

Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом.

В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.

Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.

Полупроводниковые термоэлементы

Подлинную революцию в создании термоэлементов произвели труды академика А.И. Иоффе. В начале 30 – х годов XX столетия он выдвинул идею, что с помощью полупроводников возможно превращение тепловой энергии, в том числе и солнечной, в электрическую. Благодаря проведенным исследованиям уже в 1940 году был создан полупроводниковый фотоэлемент для преобразования световой солнечной энергии в электрическую.

Первым практическим применением полупроводниковых термоэлементов следует считать, по-видимому, «партизанский котелок», позволявший обеспечить питанием некоторые портативные партизанские радиостанции.

Основой термогенератора служили элементы из константана и SbZn. Температура холодных спаев стабилизировалась кипящей водой, в то время как горячие спаи нагревались пламенем костра, при этом обеспечивалась разница температур не менее 250…300 градусов. КПД такого устройства был не более 1,5…2,0 %, но мощности для питания радиостанций вполне хватало. Конечно, в те военные времена конструкция «котелка» была государственным секретом, и даже сейчас на многих форумах в интернете обсуждается его устройство.

Бытовые термогенераторы

Уже в послевоенные пятидесятые годы советская промышленность начала выпуск термогенераторов ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в неэлектрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.

Внешний вид термогенератора ТГК-3 показан на рисунке 3.

Рисунок 3. Термогенератор ТГК-3

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества.

При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рисунке 4.

Рисунок 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи.

Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что мощность данного термогенератора не превышала 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

В 1834 году француз Жан Шарль Атаназ Пельтье открыл эффект, противоположный эффекту Зеебика. Смысл открытия в том, что при прохождении тока через спай из разнородных материалов (металлов, сплавов, полупроводников) выделяется или поглощается тепло, что зависит от направления тока и типов материалов. Об этом подробно рассказано здесь: Эффект Пельтье: магическое действие электрического тока

Что такое термоэлектрический генератор?

Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но низкая стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии. Выход из сложившейся ситуации – альтернативные источники энергии, к таковым относятся термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.

Что такое термоэлектрический генератор?

Так принято называть устройство, позволяющее преобразовать тепловую энергию в электрическую. Следует уточнить, что термин «Тепловая» не совсем точен, поскольку тепло, это способ передачи, а не отдельный вид энергии. Под данным определением подразумевается общая кинетическая энергия молекул, атомов и других структурных элементов, из которых состоит вещество.

Несмотря на то, что на ТЭС сжигается топливо для получения электричества, ее нельзя отнести к ТЭГ. На таких станциях тепловая энергия вначале преобразуется в кинетическую, а она уже в электрическую. То есть, топливо сжигается для получения из воды пара, который вращает турбину электрического генератора.

Схема работы ТЭС

Исходя из выше изложенного, следует уточнить, что ТЕГ должен генерировать электроэнергию без промежуточных преобразований.

Принцип работы

В основе ТЭГ лежит термоэлектрическое явление, описанное в начале 20-х годов XIX века немецким ученым-физиком Томасом Иоганном Зеебеком. Он обнаружил появление ЭДС в цепи замкнутого типа, состоящей из проводника и сурьмы, при условии создания разности температур в местах, где эти материалы контактируют. Изображение устройства, при помощи которого был зафиксирован данный эффект, представлено ниже.

Обозначения:

  • 1 – медный проводник.
  • 2 – проводник из сурьмы.
  • 3 – стрелка компаса.
  • А и В – места контакта двух проводников.

При нагревании одного из контактов стрелка отклонялась, что свидетельствовало о наличии магнитного поля, вызванного ЭДС. При нагреве другого контакта, направление ЭДС менялось на противоположное. Соответственно, при разрыве цепи, можно зафиксировать разность потенциалов на ее концах.

Через 12 лет, после публикации Зеебеком результатов своих опытов, французским физиком Жаном Пельтье был обнаружен обратный эффект. Если через цепь термопары пропускать ток, то в местах контакта этих веществ возникает разность температур. Мы не будем приводить описание опыта Пельтье, а также данные по современным одноименным элементам, эту информацию можно найти на нашем сайте.

По сути, оба эти эффекта обратные стороны одного термоэлектрического явления, позволяющего напрямую получать электричество из тепловой энергии. Но, до открытия полупроводников, термоэлектрический эффект не находил практического применения, ввиду неприемлемо низкого КПД. Поднять его до 5% удалось только в середине пошлого века. К сожалению, даже у современных полупроводниковых элементов, этот показатель остается на уровне 8%-12%, что не позволяет рассматривать генераторы данного типа в качестве серьезных конкурентов ТЭС.

Современный элемент Пельтье с указанием размеров

Перспективы

В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД. Проблема заключается в том, что под данные исследования затруднительно подвести теоретическую базу, поэтому приходится полагаться только на результаты экспериментов. Учитывая, что на эффект влияет процентное соотношение и состав сплавов материала для термопар, говорить о ближайших перспективах неблагодарное занятие.

Велика вероятность, что в ближайшее время для повышения добротности термоэлементов, разработчики перейдут на другой уровень изготовления сплава для термопар, с использованием нано-технологий, ям квантования и т.д.

Вполне возможно, что будет разработан совершенно иной принцип с использованием нетрадиционных материалов. В качестве примера можно привести эксперименты, проводимые в Калифорнийском университете, где для замены термопары использовалась искусственная синтезированная молекула, которая соединяла два золотых микро проводника.

Молекула вместо термопары

Первые опыты показали возможность реализации идеи, насколько она перспективна, покажет время.

Сфера применения и виды термоэлектрических генераторов

В виду низкого КПД для ТЭГ остается два варианта применения:

  1. В местах, где недоступны другие источники электроэнергии.
  2. В процессах, где имеется избыток тепла.

Приведем несколько примеров таких устройств.

Энергопечи

Данные, устройства, совмещающие в себе следующие функции:

  • Варочной поверхности.
  • Обогревателя.
  • Источника электроэнергии.

Это прекрасный образец, объединяющий все оба варианта применения.

Индигирка – три в одном

У представленной на рисунке энергопечи следующие параметры:

  • Вес – чуть больше 50 килограмм (без учета топлива).
  • Размеры: 65х43х54 см (с разобранным дымоходом).
  • Оптимальная загрузка оргтоплива – 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) угля.
  • Средняя тепловая мощность устройства около 4,5 кВт.
  • Мощность электронагрузки от 45-50 Вт.
  • Стабилизированное постоянное напряжение на выходе – 12 В.

Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.

Радиоизотопные ТЭГ

В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов. Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.

Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:

  • Высокий коэффициент объемной активности, то есть небольшое количество вещества должно обеспечивать нужный уровень выделения энергии.
  • Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет период полураспада, например у стронция-90 он 29 лет, следовательно, источник через это время потеряет половину своей мощности.
  • Ионизирующее излучение должно быть удобным для утилизации, то есть в нем должны преобладать α-частицы.
  • Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вред экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.

Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.

Сфера применения РИТЕГ

Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.

Радиоизотопное «сердце» Кассини

Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.

На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.

К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.

РИТЕГ поднятый с 14-митровой глубины возле Сахалина

Как сделать термоэлектрический генератор своими руками?

В завершении расскажем, как сделать ТЕГ, которым можно пользоваться в турпоходе, на охоте или рыбалке. Естественно, мощность таких устройств будет уступать радиоизотопным генераторам энергии, но ввиду труднодоступности плутония, и его неприятным свойством наносить вред человеческому организму придется довольствоваться малым.

Нам понадобится термоэлектрический элемент, например, ТЕС1 12710. Желательно использовать несколько элементов, подключенных параллельно, для увеличения мощности. К сожалению, тут есть очень серьезный нюанс, потребуется подобрать элементы со сходными параметрами, что у китайской продукции практически не реально, а использовать брендовую дорого, проще купить готовый генератор. Если использовать один модуль Пельте, то его мощности едва хватит для зарядки телефона или другого гаджета. Нам также понадобится металлический корпус, например, отслужившего блока питания ПК и радиатор от процессора.

Основные моменты сборки:

Наносим на корпус термопасту в месте, где будет крепиться термоэлектрический элемент, прислоняем его и фиксируем радиатором. В результате у нас получается конструкция, как на нижнем рисунке.

Туристический ТЭГ

В качестве топлива лучше всего использовать «сухой спирт».

Теперь необходимо подключить к нашему источнику стабилизатор напряжения (схему можно найти на нашем сайте или в других тематических источниках).

Конструкция готова, можно приступать к проверке.

Термоэлектрические модули, элементы Пельтье

 

ГТЭГ является автономным источником электоэнергии, работающим на природном газе, пропане или пропано-бутановой смеси. Он применяется для комплектации автономных источников электроэнергии мощностью от 150 до 5000 Вт.

ГТЭГ используется для питания катодной защиты газопроводов от коррозии, питания изолированных от стационарного электроснабжения узлов учета, питания средств радиорелейной связи, средств автоматики и телемеханики, входит в состав автономного источника питания.

Увеличение эффективности термоэлектрического преобразования позволило достичь выходной мощности с обного генератора 500 Вт при использовании с жидкостной системой охлаждения в ГТЭГ-500. На сегодняшний день производится четыре версии генератора: ГТЭГ-500, ГТЭГ-300, ГТЭГ-220 и ГТЭГ-150, мощностью 500 Вт, 300 Вт, 220 Вт и 150 Вт соответственно. 

Термоэлектрические генераторы ГТЭГ соответствуют следующим техрегламентам Таможенного союза: ТР ТС 020/2011 Электромагнитная совместимость технических средств, а так же ТР ТС 004/2011 О безопасности низковольтного оборудования.

Для Вашего удобства мы собрали все генераторы серии ГТЭГ в одном месте. Предлагаем вам скачать «Альбом типовых проектных решений автономного электропитания на основе термоэлектрических генераторов на газовом топливе серии ГТЭГ» по этой ссылке: скачать альбом. 

 

Технические параметры ГТЭГ

Модель генератора ГТЭГ-1000 ГТЭГ-500 ГТЭГ-450 ГТЭГ-300 ГТЭГ-200 ГТЭГ-150
Электрическая мощность при напряжении (28 ± 1 В), Вт  1000 500 450 300 200 150
Срок службы, лет не менее 10 10 25 25 25 10
Габаритные размеры, мм Глубина 750, ширина 550, высота 2100 Глубина 750, ширина 550, высота 2100 Диаметр 620, 
Высота 1860
Глубина 760, ширина 620, высота 1810

Глубина 765,
ширина 610,
высота 3250

Диаметр 600, 
Высота 1030
Масса, кг 230 230 320 320 136 155

Электрогенератор — Инфогалактика: ядро ​​планетарного знания

Эта статья о генерации электромагнитной энергии. Для электростатических генераторов, таких как машина Ван де Граафа, см. Электростатический генератор. Изображение современного паротурбинного генератора (ПТГ) NRC США.

В производстве электроэнергии генератор — это устройство, которое преобразует механическую энергию в электрическую для использования во внешней цепи. Источник механической энергии может широко варьироваться от ручного кривошипа до двигателя внутреннего сгорания.Генераторы обеспечивают почти всю мощность электрических сетей.

Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электроэнергии и часто являются приемлемыми генераторами.

Терминология

Электромагнитные генераторы делятся на две большие категории: динамо-машины и генераторы переменного тока.

Механический:

Электрооборудование:

  • Якорь: компонент электрической машины, производящий энергию.В генераторе, генераторе или динамо-машине обмотки якоря генерируют электрический ток. Якорь может быть как на роторе, так и на статоре.
  • Поле: Компонент магнитного поля электрической машины. Магнитное поле динамо-машины или генератора переменного тока может создаваться либо электромагнитами, либо постоянными магнитами, установленными на роторе или статоре.

История

До того, как была обнаружена связь между магнетизмом и электричеством, использовались электростатические генераторы.Они работали на электростатических принципах. Такие генераторы генерировали очень высокое напряжение и слабый ток. Они работали с помощью движущихся электрически заряженных лент, пластин и дисков, которые переносили заряд на электрод с высоким потенциалом. Заряд генерировался с помощью одного из двух механизмов: электростатической индукции и трибоэлектрического эффекта. Из-за своей неэффективности и сложности изолирования машин, вырабатывающих очень высокое напряжение, электростатические генераторы имели низкие номинальные мощности и никогда не использовались для выработки коммерчески значимых количеств электроэнергии.

Теоретическая разработка

Диск Фарадея был первым электрическим генератором. Подковообразный магнит (A), создавал магнитное поле через диск (D) . Когда диск поворачивался, это индуцировало электрический ток радиально наружу от центра к ободу. Ток выходил через скользящий пружинный контакт м , через внешнюю цепь и обратно в центр диска через ось. Основная статья: Электромагнетизм

Принцип действия электромагнитных генераторов был открыт в 1831–1832 годах Майклом Фарадеем.Принцип, позже названный законом Фарадея, заключается в том, что электродвижущая сила создается в электрическом проводнике, который окружает переменный магнитный поток.

Он также построил первый электромагнитный генератор, названный диском Фарадея, тип униполярного генератора, использующий медный диск, вращающийся между полюсами подковообразного магнита. Он производил небольшое постоянное напряжение.

Эта конструкция была неэффективной из-за самоподавляющегося противотока в областях, которые не находились под влиянием магнитного поля.В то время как ток индуцировался непосредственно под магнитом, ток будет циркулировать в обратном направлении в областях, которые находятся вне влияния магнитного поля. Этот противоток ограничивал мощность, подаваемую на провода датчика, и вызывал избыточный нагрев медного диска. Более поздние униполярные генераторы решат эту проблему за счет использования массива магнитов, расположенных по периметру диска, чтобы поддерживать эффект постоянного поля в одном направлении тока.

Еще одним недостатком было то, что выходное напряжение было очень низким из-за единственного пути тока через магнитный поток.Экспериментаторы обнаружили, что использование нескольких витков провода в катушке может производить более высокие и полезные напряжения. Поскольку выходное напряжение пропорционально количеству витков, генераторы можно легко спроектировать для получения любого желаемого напряжения путем изменения числа витков. Проволочные обмотки стали основой всех последующих конструкций генераторов.

Независимо от Фарадея, венгр Аньос Йедлик в 1827 году начал экспериментировать с электромагнитными вращающимися устройствами, которые он назвал электромагнитными самовращающимися роторами.В прототипе однополюсного электростартера (законченного между 1852 и 1854 годами) как стационарная, так и вращающаяся части были электромагнитными. Он также, возможно, сформулировал концепцию динамо-машины в 1861 году (до Сименса и Уитстона), но не запатентовал ее, так как думал, что не был первым, кто это понял. [1]

Генераторы постоянного тока

Эта большая сильноточная динамо-машина с ременным приводом вырабатывала 310 ампер при напряжении 7 вольт. Динамо-машины больше не используются из-за размера и сложности коммутатора, необходимого для приложений большой мощности.

Динамо-машина была первым электрическим генератором, обеспечивающим электроэнергию для промышленности. В динамо-машине используется электромагнитная индукция для преобразования механического вращения в постоянный ток с помощью коммутатора. Первую динамо-машину построил Ипполит Пиксий в 1832 году.

Электрический генератор Вулрича 1844 года, который сейчас находится в Thinktank, Бирмингемском научном музее, является первым электрическим генератором, использовавшимся в промышленном процессе. [2] Он использовался фирмой Elkingtons для промышленного нанесения гальванических покрытий. [3] [4] [5]

Современная динамо-машина, пригодная для использования в промышленности, была независимо изобретена сэром Чарльзом Уитстоном, Вернером фон Сименсом и Самуэлем Альфредом Варли. Варли получил патент 24 декабря 1866 года, в то время как Сименс и Уитстон объявили о своих открытиях 17 января 1867 года, последний представил доклад о своем открытии Королевскому обществу.

В «динамо-электрической машине» для создания поля статора использовались автономные катушки электромагнитного поля, а не постоянные магниты. [6] Конструкция Уитстона была аналогична конструкции Сименса, с той разницей, что в конструкции Сименса электромагниты статора были включены последовательно с ротором, но в конструкции Уитстона они были параллельны. [7] Использование электромагнитов вместо постоянных магнитов значительно увеличило выходную мощность динамо-машины и впервые позволило выработать высокую мощность. Это изобретение привело к первому значительному промышленному использованию электричества. Например, в 1870-х годах Сименс использовал электромагнитные динамо-машины для питания электродуговых печей для производства металлов и других материалов.

Разработанная динамо-машина состояла из стационарной конструкции, обеспечивающей магнитное поле, и набора вращающихся обмоток, которые вращаются в этом поле. На более крупных машинах постоянное магнитное поле создается одним или несколькими электромагнитами, которые обычно называют катушками возбуждения.

Динамо-машины большой мощности сейчас редко можно встретить из-за почти повсеместного использования переменного тока для распределения энергии. До внедрения переменного тока единственными средствами производства и распределения электроэнергии были очень большие динамо-машины постоянного тока.Переменный ток стал доминирующим из-за способности переменного тока легко преобразовываться в и из очень высоких напряжений, чтобы обеспечить низкие потери на больших расстояниях.

Генераторы переменного тока

Благодаря серии открытий, динамо-машина сменила многие более поздние изобретения, особенно генератор переменного тока, который был способен генерировать переменный ток.

Системы генерации переменного тока были известны в простых формах благодаря первоначальному открытию Майклом Фарадеем магнитной индукции электрического тока.Сам Фарадей построил первый генератор переменного тока. Его машина представляла собой «вращающийся прямоугольник», работа которого была гетерополярных — каждый активный проводник последовательно проходил через области, где магнитное поле было в противоположных направлениях. [8]

Большие двухфазные генераторы переменного тока были построены британским электриком J.E.H. Гордон, в 1882 году. Первая публичная демонстрация «системы генератора переменного тока» была проведена Уильямом Стэнли-младшим, сотрудником Westinghouse Electric в 1886 году. [9]

Себастьян Зиани де Ферранти основал Ferranti, Thompson and Ince в 1882 году для продажи своего генератора Ферранти-Томпсона , изобретенного с помощью известного физика лорда Кельвина. [10] Его ранние генераторы переменного тока производили частоты от 100 до 300 Гц. В 1887 году Ферранти спроектировал Дептфордскую электростанцию ​​для Лондонской корпорации электроснабжения с использованием системы переменного тока. После завершения строительства в 1891 году это была первая по-настоящему современная электростанция, вырабатывающая высоковольтное питание переменного тока, которое затем было «понижено» для использования потребителями на каждой улице.Эта базовая система по-прежнему используется во всем мире.

Небольшой генератор переменного тока для электростанции начала 1900-х годов мощностью 75 кВА с прямым приводом и отдельным генератором возбудителя с ременным приводом.

После 1891 года были введены многофазные генераторы переменного тока для подачи токов нескольких различных фаз. [11] Более поздние генераторы переменного тока были разработаны для изменения частот переменного тока от шестнадцати до примерно ста герц, для использования с дуговым зажиганием, лампами накаливания и электродвигателями. [12]

Самовозбуждение

Основная статья: Возбуждение (магнитное)

По мере роста требований к более крупномасштабной выработке электроэнергии возникло новое ограничение: магнитные поля, создаваемые постоянными магнитами. Отвод небольшого количества энергии, вырабатываемой генератором, на катушку электромагнитного поля, позволял генератору производить значительно большую мощность. Эта концепция получила название самовозбуждения.

Катушки возбуждения включены последовательно или параллельно обмотке якоря.Когда генератор впервые начинает вращаться, небольшое количество остаточного магнетизма, присутствующее в железном сердечнике, создает магнитное поле для его запуска, генерируя небольшой ток в якоре. Он протекает через катушки возбуждения, создавая большее магнитное поле, которое генерирует больший ток якоря. Этот процесс «начальной загрузки» продолжается до тех пор, пока магнитное поле в сердечнике не выровняется из-за насыщения, и генератор не достигнет установившейся выходной мощности.

В генераторах очень больших электростанций часто используется отдельный генератор меньшего размера для возбуждения полевых катушек большего генератора.В случае серьезного повсеместного отключения электроэнергии, когда произошло изолирование электростанций, станциям может потребоваться выполнить черный пуск, чтобы возбудить поля своих крупнейших генераторов, чтобы восстановить энергоснабжение потребителей. [13]

Генераторы специализированные

Постоянный ток

Генератор униполярный
Основная статья: униполярный генератор

Униполярный генератор — это электрический генератор постоянного тока, содержащий электропроводящий диск или цилиндр, вращающийся в плоскости, перпендикулярной однородному статическому магнитному полю.Между центром диска и ободом (или концами цилиндра) создается разность потенциалов, электрическая полярность которой зависит от направления вращения и ориентации поля.

Он также известен как униполярный генератор , ациклический генератор , дисковая динамо-машина или диск Фарадея . Напряжение обычно низкое, порядка нескольких вольт в случае небольших демонстрационных моделей, но большие исследовательские генераторы могут производить сотни вольт, а в некоторых системах есть несколько генераторов, подключенных последовательно, для создания еще большего напряжения. [14] Они необычны тем, что могут производить огромный электрический ток, иногда более миллиона ампер, потому что можно сделать униполярный генератор с очень низким внутренним сопротивлением.

Генератор МГД
Основная статья: МГД-генератор

Магнитогидродинамический генератор напрямую извлекает электроэнергию из движущихся горячих газов через магнитное поле без использования вращающегося электромагнитного оборудования. Первоначально МГД-генераторы были разработаны, потому что выходной сигнал плазменного МГД-генератора представляет собой пламя, способное нагревать котлы паровой электростанции.Первой практичной конструкцией был AVCO Mk. 25, разработанный в 1965 году. Правительство США профинансировало значительные разработки, кульминацией которых стала демонстрационная установка мощностью 25 МВт в 1987 году. В Советском Союзе с 1972 года до конца 1980-х годов МГД-установка U 25 находилась в регулярной коммерческой эксплуатации в Московской энергосистеме с рейтинг 25 МВт, самый большой рейтинг МГД в мире на то время. [15] МГД-генераторы, работающие в режиме доливки, в настоящее время (2007 г.) менее эффективны, чем газовые турбины комбинированного цикла.

Переменный ток

Генератор индукционный
Основная статья: индукционный генератор

Некоторые двигатели переменного тока могут использоваться как генераторы, преобразующие механическую энергию в электрический ток. Индукционные генераторы работают за счет механического вращения ротора со скоростью, превышающей синхронную, что приводит к отрицательному скольжению. Обычный асинхронный двигатель переменного тока обычно можно использовать в качестве генератора без каких-либо внутренних изменений. Индукционные генераторы полезны в таких приложениях, как мини-гидроэлектростанции, ветряные турбины или для снижения газовых потоков высокого давления до более низкого давления, поскольку они могут восстанавливать энергию с помощью относительно простых средств управления.

Для работы индукционный генератор должен быть возбужден опережающим напряжением; Обычно это делается путем подключения к электрической сети, или иногда они самовозбуждаются с помощью фазокорректирующих конденсаторов.

Электрогенератор линейный
Основная статья: линейный генератор

В простейшем варианте линейного электрического генератора скользящий магнит движется вперед и назад через соленоид — катушку с медной проволокой. Переменный ток индуцируется в проволочных петлях согласно закону индукции Фарадея каждый раз, когда магнит скользит через них.Этот тип генератора используется в фонарике Фарадея. В волновых схемах питания используются более крупные линейные генераторы электроэнергии.

Генераторы постоянной частоты с регулируемой скоростью

Многие попытки использования возобновляемых источников энергии пытаются использовать естественные источники механической энергии (ветер, приливы и т. Д.) Для производства электроэнергии. Поскольку мощность этих источников колеблется, стандартные генераторы, использующие постоянные магниты и фиксированные обмотки, будут выдавать нерегулируемые напряжение и частоту. Накладные расходы на регулирование (перед генератором через редуктор или после генерации электрическими средствами) высоки по сравнению с доступной естественной энергией.

Новые конструкции генераторов, такие как асинхронный или индукционный генератор с одинарным питанием, генератор с двойным питанием или генератор с бесщеточным ротором и двойным питанием, находят успех в применениях с регулируемой скоростью и постоянной частотой, таких как ветряные турбины или другие технологии возобновляемой энергии. Таким образом, в определенных случаях использования эти системы предлагают преимущества по стоимости, надежности и эффективности.

Общие варианты использования

Автомобильные генераторы

Дорожная техника
Основная статья: Генератор (автомобильный)

Автотранспортным средствам требуется электрическая энергия для питания своих приборов, поддержания работы двигателя и подзарядки батарей.Примерно до 1960-х годов в автомобилях, как правило, использовались генераторы постоянного тока с электромеханическими регуляторами. Следуя описанной выше исторической тенденции и по многим из тех же причин, они были заменены генераторами переменного тока со встроенными выпрямительными цепями.

Велосипеды

Велосипедам требуется энергия для питания ходовых огней и другого оборудования. На велосипедах используются два распространенных типа генераторов: бутылочные динамо-машины, которые задействуют шину велосипеда по мере необходимости, и динамо-втулки, которые непосредственно прикрепляются к приводной передаче велосипеда.На самом деле, ни то, ни другое не является динамо-машиной, собственно говоря, это небольшие генераторы с постоянными магнитами.

Парусные лодки

Парусные лодки могут использовать водяной или ветровой генератор для непрерывной зарядки аккумуляторов. Небольшой пропеллер, ветряная турбина или крыльчатка подключены к маломощному генератору для подачи токов с типичной скоростью ветра или крейсерской скоростью.

Генератор

Основная статья: Двигатель-генератор

Двигатель-генератор представляет собой комбинацию электрического генератора и двигателя (первичного двигателя), смонтированных вместе, чтобы сформировать единое автономное оборудование.Обычно используются поршневые двигатели, но также можно использовать газовые турбины. И есть даже гибридные дизель-газовые агрегаты, называемые двухтопливными. Доступно множество различных версий двигателей-генераторов — от очень маленьких переносных бензиновых агрегатов до больших турбинных установок. Основным преимуществом двигателей-генераторов является возможность независимого электроснабжения, что позволяет использовать их в качестве резервного источника питания. [16]

Электрогенераторы с приводом от человека

Основная статья: Автономное оборудование

Генератор также может приводиться в движение мышцами человека (например, в оборудовании полевой радиостанции).

Протестующие на «Захвати Уолл-стрит» используют велосипеды, подключенные к двигателю и одностороннему диоду для зарядки аккумуляторов своей электроники [17]

Генераторы постоянного тока с питанием от человека имеются в продаже и были разработкой некоторых энтузиастов DIY. Обычно такие генераторы работают от педали, переделанного велотренажера или ножного насоса, и их можно практически использовать для зарядки аккумуляторов, а в некоторых случаях они разработаны со встроенным инвертором. Средний «здоровый человек» может стабильно производить 75 Вт (0.1 л.с.) в течение полных восьми часов, в то время как «атлет первого класса» может производить примерно 298 Вт (0,4 л.с.) за аналогичный период. По окончании которого потребуется неопределенный период отдыха и восстановления. При мощности 298 Вт средний «здоровый человек» истощается в течение 10 минут. [18] Важно отметить, что приведенные выше значения мощности относятся к непосредственной работе человека, а не к электрической мощности, которая может быть с ее помощью. Переносные радиоприемники с рукояткой сделаны, чтобы снизить потребность в приобретении батарей, см. Заводное радио.В середине 20-го века радиоприемники с педальным приводом использовались повсюду в австралийской глубинке для обеспечения школьного образования (Воздушная школа), медицинских и других нужд на удаленных станциях и в городах.

Механическое измерение

Тахогенератор, предназначенный для измерения скорости вала, представляет собой устройство, вырабатывающее выходное напряжение, пропорциональное этой скорости. Тахогенераторы часто используются для питания тахометров для измерения скорости электродвигателей, двигателей и оборудования, которое они питают.скорость. Благодаря точной конструкции и конструкции генераторы могут быть сконструированы так, чтобы производить очень точные напряжения для определенных диапазонов скоростей вала. [ необходима ссылка ]

Эквивалентная схема

Эквивалентная схема генератора и нагрузки.
G = генератор
В G = напряжение холостого хода генератора
R G = внутреннее сопротивление генератора
В L = напряжение под нагрузкой генератора
R L = сопротивление нагрузке

Эквивалентная схема генератора и нагрузки показана на схеме справа.Генератор представляет собой абстрактный генератор, состоящий из идеального источника напряжения и внутреннего сопротивления. Параметры генератора и его параметры могут быть определены путем измерения сопротивления обмотки (с поправкой на рабочую температуру) и измерения напряжения холостого хода и напряжения нагрузки для определенной токовой нагрузки.

Это простейшая модель генератора, для точного представления могут потребоваться дополнительные элементы. В частности, можно добавить индуктивность, чтобы учесть обмотки машины и магнитный поток рассеяния, [19] , но полное представление может стать намного более сложным, чем это. [20]

См. Также

Список литературы

  1. Август Хеллер (2 апреля 1896 г.), «Аниан Джедлик», Nature , Норман Локьер, 53 (1379): 516, Bibcode: 1896Natur..53..516H, doi: 10.1038 / 053516a0 < templatestyles src = "Модуль: Citation / CS1 / styles.css">
  2. ↑ Каталог музеев Бирмингема, инвентарный номер: 1889S00044
  3. Томас, Джон Мериг (1991). Майкл Фарадей и Королевский институт: гений человека и места .Бристоль: Хильгер. п. 51. ISBN 0750301457 .
  4. Beauchamp, KG (1997). Выставка электроэнергии . ИЭПП. п. 90. ISBN 9780852968956 .
  5. Хант, Л. Б. (март 1973). «Ранняя история позолоты». Золотой бюллетень . 6 (1): 16–27.DOI: 10.1007 / BF03215178.
  6. Berliner Berichte . Январь 1867 г.
  7. Труды Королевского общества . 14 февраля 1867 г.
  8. ↑ Томпсон, Сильванус П., Dynamo-Electric Machinery .стр.7
  9. ↑ Блэлок, Томас Дж., « Электрификация переменного тока, 1886, ». Центр истории IEEE, IEEE Milestone. ( ed . Первая практическая демонстрация системы генератор постоянного тока — трансформатор переменного тока.)
  10. ↑ Ferranti Timeline — Музей науки и промышленности (доступ 22 февраля 2012 г.)
  11. ↑ Томпсон, Сильванус П., Dynamo-Electric Machinery . стр.17
  12. ↑ Томпсон, Сильванус П., Dynamo-Electric Machinery .стр.16
  13. ↑ SpecSizer: Размер генераторной установки
  14. ↑ Losty, H.H.W & Lewis, D.L. (1973) Униполярные машины. Философские труды для Лондонского королевского общества. Серия А, Математические и физические науки. 275 (1248), 69-75
  15. ↑ Лэнгдон Крейн, Магнитогидродинамический (МГД) генератор энергии: больше энергии за счет меньшего количества топлива, краткий номер выпуска IB74057 , Исследовательская служба Библиотеки Конгресса США, 1981 г., извлечено из Digital.library.unt.edu 18 июля 2008 г.
  16. «Готовность к урагану: защита, обеспечиваемая электрогенераторами | Включение с помощью Марка Лам».Wpowerproducts.com. 10 мая 2011. Проверено 24 августа 2012.
  17. ↑ С исчезновением генераторов, протестующие с Уолл-стрит пробуют силу на велосипеде, Колин Мойнихан, New York Times , 30 октября 2011 г .; по состоянию на 2 ноября 2011 г.
  18. «Программа: hpv (обновлено 22.06.11)». Ohio.edu. Проверено 24 августа 2012.
  19. ↑ Джефф Клемпнер, Исидор Керсенбаум, «1.7.4 Эквивалентная схема », Справочник по эксплуатации и техническому обслуживанию больших турбогенераторов , John Wiley & Sons, 2011 (издание Kindle) ISBN 1118210409.
  20. ↑ Йошихидэ Хасе, «10: Теория генераторов», Справочник по проектированию энергосистем , John Wiley & Sons, 2007 ISBN 0470033665.

Внешние ссылки

Основные типы
Двигатели постоянного тока

AC SC механический
коммутатор

Коммутатор AC SC электронный

AC синхронный (SM)

Специальные магнитные
станки

Немагнитный

Тип корпуса

Компоненты и
аксессуары

Контроллеры двигателей

История, образование,
рекреационное использование

Экспериментальный, футуристический
Связанные темы
Люди
См. Также
  • C — Емкость (F)
  • Q — Заряд (C)
  • G , B , Y — Проводимость, восприимчивость, допуск (S)
  • κ , γ , σ — Электропроводность (См / м)
  • I — Ток (А)
  • D — Поле электрического смещения (C / m 2 )
  • E — Электрическое поле (В / м)
  • Φ E — Электрический поток (В · м)
  • χ e — Электрическая восприимчивость
  • У , Δ В , Δ φ ; E — ЭДС (В)
  • L , M — Индуктивность (H)
  • H — Напряженность магнитного поля (А / м)
  • Φ — Магнитный поток (Вт)
  • B — Плотность магнитного потока (Тл)
  • χ — Магнитная восприимчивость
  • μ — Проницаемость (Г / м)
  • ε — Диэлектрическая проницаемость (Ф / м)
  • P — Мощность (Вт)
  • R , X , Z — Сопротивление, реактивное сопротивление, импеданс (Ом)
  • ρ — Удельное сопротивление (Ом · м)

методов производства электроэнергии — наука поражена

Без электричества наша жизнь остановилась бы.Его использование стало настолько неизбежным, что люди редко задумываются о том, как он возникает. Чтобы узнать больше о различных методах выработки электроэнергии, прочтите эту статью.

Fast Fact

Одна молния может нести ошеломляющие 5 миллиардов джоулей электричества и настолько мощна, что с ее помощью можно зажечь около 150 миллионов лампочек. Этой электроэнергии хватит на то, чтобы весь город мог работать в течение одного дня без зависимости от других источников!

Электроэнергия вырабатывается из таких источников, как вода, ветер и солнечные лучи.Однако это косвенные источники. Непосредственными источниками преобразования энергии в электричество являются статическая энергия, электромагнитная индукция и химическая энергия. Он также включает фотоэлектрический процесс (преобразование света в электрическую энергию), прямое преобразование разницы температур, ядерную энергию и т. Д.

Хотите написать для нас? Что ж, мы ищем хороших писателей, которые хотят распространять информацию. Свяжитесь с нами, и мы поговорим …

Давайте работать вместе!

Большая часть электроэнергии производится за счет тепловых двигателей.Тепло в основном поступает от сжигания ископаемого топлива, ядерного деления и других возобновляемых источников энергии. Ниже приведены основные методы, которые используются для выработки электроэнергии.

Методы производства электроэнергии

Турбины

Эти устройства в основном приводятся в движение жидкостью или газом, которые действуют как носители энергии. Турбины могут приводиться в движение ветром или текущей водой. Пар является одним из источников, которые могут приводить в действие турбины, и для этой среды вода кипятится с помощью тепла от методов ядерного деления, сжигания угля, природного газа или нефти.Основные методы производства электроэнергии обсуждаются ниже.

Уголь

Первый шаг состоит в равномерном измельчении угольных блоков на мелкие фрагменты и помещении их в печь, прикрепленную к водогрейному котлу. После нагрева и сгорания вода закипает, и образующийся пар используется для приведения в действие турбин для выработки электроэнергии. Альтернативный метод — использование водоугольной суспензии (CWS) топлива, что помогает повысить эффективность производства электроэнергии.Из общего количества электроэнергии, производимой на нашей планете, около 40% приходится на нагрев угля.

Геотермальная энергия

Внутри Земли хранятся огромные запасы тепла, которое в основном передается от расплавленной мантии к коровым частям нашей планеты. Такие источники, как горячие источники, гейзеры и водоносные горизонты с горячей водой, эксплуатируются геотермальными электростанциями. С помощью таких сред, как нагнетание холодной воды и других жидкостей, пар, произведенный из таких источников, улавливается и в дальнейшем используется для питания турбин для выработки электроэнергии.Более 15% всей электроэнергии в Исландии производится за счет геотермальной энергии.

Биомасса

Навоз, древесная щепа, части растений, такие как ветви и листья, органические отходы, разлагающаяся масса животных и т. Д., Являются основными примерами биомассы. Эти материалы могут быть сожжены или подвергнуты сгоранию для выработки тепла, которое в дальнейшем используется для производства электроэнергии. Некоторые из источников также ферментируются для производства биогаза, который можно легко сжигать и преобразовывать в электричество с помощью биогазовых электростанций.Биомасса является очень многообещающим и важным источником возобновляемой энергии, и ее использование для выработки электроэнергии неуклонно растет.

Хотите написать для нас? Что ж, мы ищем хороших писателей, которые хотят распространять информацию. Свяжитесь с нами, и мы поговорим …

Давайте работать вместе!

Ветряные турбины

Использование энергии ветра — еще один способ производства электроэнергии. Ветряные мельницы — это устройства, использующие энергию ветра и действующие как турбины для производства электроэнергии.Вращающиеся лопасти соединены с генераторами кабелями, которые передают кинетическую энергию генераторам. Самая большая мощность по выработке электроэнергии — ветряная турбина Vesta V-164. Его мощность оценивается в 8 МВт.

Гидроэлектростанции

Вода, текущая с большой силой, также может приводить в движение турбину для выработки электроэнергии. Между течением реки строятся плотины не только для хранения воды, но и для выработки электроэнергии с помощью турбин.Эти турбины устанавливаются на гидроаккумулирующей электростанции, и вода, падающая с большой высоты, используется для их вращения, что, в свою очередь, запускает генераторы, в конечном итоге производя электрическую энергию. В США имеется более 2000 гидроэлектростанций, которые производят около 7% всей электроэнергии, производимой в регионе.

Приливная энергия

Быстрый прогресс наблюдается также в производстве электроэнергии с использованием приливной энергии. Один из важнейших неиссякаемых источников энергии — приливные растения — используют энергию, переносимую волнами, которые с огромной силой обрушиваются на прибрежные районы.Турбины построены под зоной прерывателя внутри цилиндрических агрегатов, на которые волны ударяются с максимальной силой. Высокий импульс приливных волн способствует вращению турбин и, следовательно, генерирует электрическую энергию. Приливные заграждения и генераторы приливных потоков — два основных метода производства электроэнергии с использованием силы волн.

Фотоэлектрические панели

Они преобразуют солнечный свет непосредственно в электричество, в отличие от солнечных концентраторов тепла. Первоначально считалось, что они лучше всего подходят для сельской местности, где нет электросети или надлежащей инфраструктуры.Но с ростом осведомленности об их экологических преимуществах эти панели широко используются по всему миру. Многие эксперименты проводятся по использованию солнечной энергии. Германия — крупнейший производитель фотоэлектрических панелей, а странами, использующими самые передовые технологии, являются Китай и Япония. В качестве материалов для изготовления солнечных чипов используются монокристаллический и поликристаллический кремний, теллурид кадмия, сульфид меди и т. Д. Панели заключены в модули, которые затем соединяются с соответствующими устройствами с помощью медных кабелей.Фотоэлектрические элементы используются для выработки электроэнергии в зданиях, транспорте (автомобили, грузовики, велосипеды и т. Д.), Космических кораблях и космических станциях, зарядных устройствах для сотовых телефонов и т. Д.

Ядерное деление

Когда ядро ​​атома расщепляется, происходит химическая реакция, которая называется делением ядра. Этот процесс происходит в ядерном реакторе. Наиболее часто используемый минерал в процессе производства ядерной энергии — уран. Он помещается в активную зону реактора, и случайные нейтроны выделяются в активной зоне.Эти нейтроны сталкиваются с ядром атома урана, в результате чего происходит деление, вызывая цепную реакцию. Следствием этой реакции является выделение большого количества тепла в активной зоне. Но есть хладагенты, которые поглощают тепло, которое далее по трубопроводу передается в паровой котел. После этого тепло от теплоносителя проходит через стенки трубок, в которых закипает вода, полученная из ближайшего природного источника. Нагретый H 2 O превращается в пар, который приводит в движение турбину, что приводит к выработке электроэнергии.Основной проблемой этого метода является образование ядерных отходов, которые чрезвычайно вредны для окружающей среды.

Топливные элементы

Устройства, вырабатывающие электричество с помощью химической энергии, получаемой из определенных видов топлива, известны как топливные элементы. В этих устройствах происходит химическая реакция с участием топлива, окислителя и кислорода. Они требуют постоянной подачи топлива и необходимых химикатов, в отличие от устройств, называемых аккумуляторами (используемых в сотовых телефонах, радиоприемниках, портативных компьютерах и т. Д.).), которые требуют ограниченного количества химикатов и могут заряжаться несколько раз. Различные углеводороды, водород и метанол являются некоторыми примерами топлива, используемого в этом методе, и из этих вариантов водород является наиболее предпочтительным элементом для использования в качестве топлива. Надежность этих устройств выше, чем у других методов, таких как угольные электростанции, ветряные турбины и электричество, вырабатываемое фотоэлектрическими панелями. Будучи эффективными на 99%, они широко используются во многих коммерческих приложениях.Эту технологию можно назвать одной из самых многообещающих и развивающихся, которая в ближайшем будущем может превзойти другие методы. Исследования, касающиеся производства таких устройств в соответствии с экологической безопасностью и сохранением, все еще продолжаются.

Помимо этих методов, существуют другие методы получения электричества (например, батареи, статическое электричество, пьезоэлектрические кристаллы и т. Д.), Для которых проводится множество экспериментов. Эти методы используются в относительно небольших масштабах по сравнению с описанными выше способами.Нововведения в этой области могут привести к минимизации использования невозобновляемых источников энергии для производства электроэнергии.

7 основных источников электричества, о которых вы должны знать

Само представление о мире без электричества кажется невозможным. Это один из величайших даров науки человечеству. Почти все в нашем мире сегодня зависит от электроэнергии.

Ожидается, что электрическая зависимость со временем будет только расти. Оценки показывают, что в 2018 году мировой спрос на электроэнергию вырос до 23000 ТВтч, и это число, вероятно, будет увеличиваться с каждым годом.Этот стремительно растущий спрос отвечает за половину роста потребностей в энергии и составляет 20% доли от общего потребления энергии во всем мире.

СВЯЗАННЫЕ: 3+ РАЗЛИЧНЫХ ТИПА ЭЛЕКТРОСТАНЦИЙ, ГЕНЕРИРУЮЩИХ ЭЛЕКТРОЭНЕРГИЮ ДЛЯ США

Эти статистические данные ясно показывают, что электричество является генератором будущего. Тем не менее, как мы можем генерировать такое ошеломляющее количество электроэнергии для удовлетворения постоянно растущих потребностей? Давайте узнаем!

Определение электричества

Электричество можно определить как форму энергии, которая вырабатывается в результате потока электронов из положительных и отрицательных точек внутри проводника.Мы рассматриваем электричество как вторичный источник энергии.

Это связано с тем, что он не поставляется в виде готового продукта, а должен быть получен из первичных источников, таких как ветер, солнечный свет, уголь, природный газ, реакции ядерного деления и гидроэнергетика.

Вот несколько основных способов, с помощью которых мы можем производить электричество, и как это можно сделать!

1. Электричество через трение

Первые наблюдения электрических явлений были сделаны в Древней Греции.Это произошло, когда философ Фалес Милетский (640–546 гг. До н.э.) обнаружил, что когда янтарные бруски натирают о загорелую кожу, они приобретают привлекательные характеристики, которыми раньше не обладали.

Это тот же эксперимент, который теперь можно провести, протерев пластиковый стержень тканью. Поднося его ближе к маленьким кусочкам бумаги, он привлекает их, как это характерно для наэлектризованных тел.

Все мы знакомы с эффектами статического электричества. Некоторые люди более подвержены влиянию статического электричества, чем другие.Некоторые пользователи автомобилей ощущают его воздействие при нажатии на ключ или прикосновении к пластине автомобиля.

Мы создаем статическое электричество, когда протираем ручку одеждой. То же самое происходит, когда мы натираем стекло о шелк или янтарь с шерсти.

Следовательно, понятия заряда и подвижности необходимы при изучении электричества, и без них электрический ток не мог бы существовать.

2. Электроэнергия за счет химического воздействия

Все батареи состоят из электролита (который может быть жидким, твердым или полутвердым), положительного электрода и отрицательного электрода.Электролит — это ионный проводник.

Один из электродов производит электроны, а другой электрод их принимает. Когда электроды подключены к питаемой цепи, они производят электрический ток.

Батареи, в которых химическое вещество не может вернуться в исходную форму после преобразования химической энергии в электрическую, называются первичными или гальваническими батареями.

Батареи или аккумуляторы двусторонние.В этих типах батарей химическое вещество, которое реагирует в электродах с образованием электрической энергии, может быть восстановлено путем пропускания через него электрического тока в направлении, противоположном нормальной работе батареи.

3. Электричество под действием света

Когда солнечный свет становится более интенсивным, напряжение, генерируемое между двумя слоями фотоэлектрического элемента, увеличивается. Но как работает фотоэлемент?

При отсутствии света система не вырабатывает энергию.Когда солнечный свет попадает на пластину, клетка начинает функционировать. Фотоны солнечного света взаимодействуют с доступными электронами и увеличивают их энергетические уровни.

Таким образом, электричество вырабатывается за счет солнечной энергии.

4. Тепловая электроэнергия за счет теплового воздействия

Тепловая генерирующая установка — это тип установки, в которой турбина, приводимая в действие паром под давлением, используется для перемещения оси электрогенераторов. Обычные тепловые электростанции и атомные тепловые электростанции используют энергию, содержащуюся в сжатом паре.

Самый простой пример — подключить чайник, полный кипятка, к лопастному колесу, которое, в свою очередь, связано с генератором. Струя пара из котла приводит в движение ротор.

Следовательно, мы можем получать пар разными способами, например, сжигая уголь, нефть, газ, городские отходы или используя большое количество тепла, выделяемого реакциями ядерного деления. Вы даже можете производить пар, концентрируя энергию солнца.

Не будет ошибкой сказать, что тепловая энергия — один из самых распространенных способов производства электроэнергии.

5. Электричество за счет магнетизма

В 1819 году датский физик Ганс Кристиан Эрстед сделал необычное открытие, обнаружив, что можно отклонить магнитную стрелку с помощью электрического тока. Это открытие, показавшее связь между электричеством и магнетизмом, было разработано французским ученым Андре Мари Ампером.

Ампер изучил силы между проводами, по которым циркулируют электрические токи. В том же духе французский физик Доминик Франсуа Араго, как известно, намагнитил железо, поместив его рядом с кабелем, по которому проходит ток.

После этого, в 1831 году, британский ученый Майкл Фарадей обнаружил, что движение магнита вблизи кабеля индуцирует в нем электрический ток. Этот эффект был противоположен обнаруженному Эрстедом.

Таким образом, Эрстед продемонстрировал, что электрический ток может создавать магнитное поле. С другой стороны, Фарадей продемонстрировал, что мы можем использовать магнитное поле для создания электрического тока. Оба открытия являются новаторскими.

В этом контексте полное смешение теорий магнетизма и электричества произошло благодаря британскому физику Джеймсу Клерку Максвеллу.Максвелл предсказал существование электромагнитных волн и определил свет как электромагнитное явление.

Очевидно, потребовалось много ученых и исследователей, чтобы сделать вывод, что электричество также может быть произведено с помощью магнетизма.

6. Электроэнергия, вырабатываемая под давлением

Давление, оказываемое подземными водными потоками, — это процесс, используемый на больших судах в качестве альтернативной энергии для основной системы. В плотинах электричество вырабатывается путем выпуска контролируемого потока воды под высоким давлением через принудительный трубопровод.

Вода приводит в движение турбины, которые приводят в движение генераторы и, таким образом, вырабатывают электрический ток. Затем этот высокий ток низкого напряжения проходит через усилитель напряжения, который преобразует его в электричество.

7. Гидравлическое электричество за счет действия воды

Из всех перечисленных выше способов генерации энергии магнитная энергия чаще всего используется для производства электроэнергии в больших количествах. Его производство основано на том, что при перемещении проводника в присутствии магнита в проводнике происходит упорядоченное движение электронов.

Это происходит в результате сил притяжения и отталкивания, вызванных магнитным полем. Работа генераторов переменного тока, двигателей и динамо-машин основана на этой форме производства электроэнергии.

Примечательно, что гидроэлектроэнергия вырабатывает около 9% электроэнергии в США. Более того, он является возобновляемым и может производиться с очень небольшим количеством выбросов.

СВЯЗАННЫЕ С: 21 ТОП-21 ПЛОТИНЫ В МИРЕ, КОТОРЫЕ ДЕЛАЮТ НАИБОЛЬШОЕ КОЛИЧЕСТВО ЭЛЕКТРОЭНЕРГИИ

Производство электроэнергии имеет богатую историю и еще более светлое будущее.Согласно прогнозам, сделанным Институтом энергетических исследований, ископаемое топливо продолжит сохранять свой статус ведущего источника производства электроэнергии в США до 2040 года.

генерация электричества — Перевод на немецкий — примеры английский

Эти примеры могут содержать грубые слова на основании вашего поиска.

Эти примеры могут содержать разговорные слова, основанные на вашем поиске.

Carpevigo AG планирует, строит и эксплуатирует солнечные электростанции для выработки электроэнергии из возобновляемых источников энергии.

Завод Die CARPEVIGO AG, baut und betreibt Kraftwerke für die Stromerzeugung aus erneuerbaren Energien.

Внутридневной рынок находится под сильным влиянием выработки электроэнергии из возобновляемых источников энергии.

Der Intraday-Markt wird stark von der Stromerzeugung aus erneuerbare Energien beeinflusst.

Метанизация и выработка электроэнергии из биомассы в Витцендорфе

Methanisierung und Verstromung von Biomasse in Wietzendorf

Когенерационные установки могут работать на природном газе, ферментационном газе или дизельном топливе (мазут). Кроме того, доступны технологии для производства электроэнергии из биомассы.

KWK-Anlagen können mit Erdgas, Biogas oder mit Diesel (Heizöl) betrieben werden. Es stehen aber auch Technologien zur Verstromung von Biomasse zur Verfügung.

Dürr Compact Power System — это экономичное решение для комбинированного производства электроэнергии и тепла.

Eine wirtschaftliche Lösung zur kombinierten Strom- und Wärmeerzeugung ist das Dürr Compact Power System.

Предприятия, которые эксплуатируют или владеют установками для производства электроэнергии и тепла .

Unternehmen, die Anlagen zur Strom- und Wärmeerzeugung betreiben oder besitzen.

Производство биогаза из органических отходов для выработки электроэнергии или закачки газа.

Erzeugung von Biogas zur Stromerzeugung oder Gaseinspeisung aus organischen Abfällen.

Для выработки электроэнергии тогда скорее останется меньше.

Фотоэлектрическая, гидроэлектрическая и ветровая выработка электроэнергии (2 балла)

Stromerzeugung mit Hilfe von Photovoltaik, Wasserkraft und Windenergie (2 пункта)

Каждое государство-член решает, следует ли полагаться на ядерную энергию для производства электроэнергии .

Jeder Mitgliedstaat entscheidet selbst, ob er Kernenergie zur Stromerzeugung nutzt.

Экологически безопасные инвестиции в маломасштабное производство электроэнергии игнорировались или исключались в пользу импорта ядерной энергии.

Investitionen in die umweltfreundliche Stromerzeugung im kleinen Maßstab wurden vernachlässigt bzw.zu Gunsten importierter Kernenergie zurückgestellt.

Фото: pmTUC / Bystrik Trnovec В наши дни все говорят об использовании солнечной энергии для производства электроэнергии .

Фото: pmTUC / Bystrik Trnovec Die Nutzung von Sonnenenergie zur Stromerzeugung ist inaller Munde.

В двадцатые годы производство электроэнергии в Германии могло быть существенно увеличено, и эта энергия могла быть предложена по выгодным ценам.

In den zwanziger Jahren konnte die Stromerzeugung in Deutschland wesentlich gesteigert und diese Energie zu günstigen Preisen angeboten werden.

Используя солнечную энергию, электростанция Руппольдинген сделала еще один шаг в обеспечении экологически чистого производства электроэнергии .

Mit der Nutzung der Sonnenenergie macht das Kraftwerk Ruppoldingen einen weiteren Schritt в Richtung ökologischer Stromerzeugung .

Для этого у нас есть 3 генератора на выработка электроэнергии , а также очистка воды (поставляется питьевая вода).

Dazu verfügen wir über 3 Generatoren zur Stromerzeugung , sowie eine Wasseraufbereitung (Trinkwasser wird angeliefert).

По сравнению с предыдущим годом выработано электроэнергии из биогаза (прибл.

Gegenüber dem Vorjahr erhöhte sich besonders die Stromerzeugung aus Biogas (um rd.

Это ценный горючий компонент биогаза, который используется для выработки электроэнергии или тепла.

Es ist der wertvolle brennbare Bestandteil des Biogases und Wird zur Strom- bzw. Wärmeerzeugung verwendet.

Разрабатывая совместный призыв, мы еще раз интенсивно обсудили все аргументы за и против использования ядерной энергии для производства электроэнергии .

In der Erarbeitung eines gemeinsamen Aufrufs haben wir in einer Intensive Diskussion auch noch einmal all Argumente für und wide die Nutzung der Atomenergie zur Stromerzeugung beraten.

Это соответствует предварительному условию для эффективной работы, например, чиллеров или для выработки электроэнергии из отработанного тепла через контуры ORC (рис.

Dies schafft die Voraussetzung für den Effektiven Betrieb beispielsweise von Kältemaschinen oder zur Stromerzeugung aus Abwärme über ORC-Kreisläufe (абб.

За счет объединения процесса газовой и паровой турбины с производством электроэнергии может быть достигнута очень высокая эффективность.

Aufgrund der Kopplung von Gas- und Dampfturbinenprozess zur Stromerzeugung können sehr hohe Wirkungsgrade erreicht werden.

Производство электроэнергии | Министерство энергетики

Геотермальный ресурс требует жидкости, тепла и проницаемости для выработки электроэнергии:

Жидкость — Достаточное количество жидкости должно присутствовать естественным образом или закачиваться в резервуар.

Heat — Температура Земли естественным образом увеличивается с глубиной и изменяется в зависимости от географического положения.

Проницаемость — Чтобы получить доступ к теплу, жидкость должна войти в контакт с нагретой породой либо через естественные трещины, либо через стимулирование породы.

Традиционные гидротермальные ресурсы естественным образом содержат все три элемента. Однако все чаще геотермальные системы, в которых отсутствуют подземные жидкости и проницаемость, проектируются или улучшаются для доступа к теплу Земли путем добавления жидкости к этим горячим подземным ресурсам. Эта технология, известная как усовершенствованные геотермальные системы (EGS), может изменить правила игры в геотермальном секторе, потребляя более 100 гигаватт геотермальной энергии, что составляет примерно десять процентов внутреннего спроса на энергию.

Кроме того, изучаются низкотемпературные технологии и технологии совместного производства для краткосрочных решений в области энергетики..

Электростанции

Электростанции используют пар, произведенный из геотермальных резервуаров, для производства электроэнергии. Для преобразования гидротермальных жидкостей в электричество используются три технологии геотермальных электростанций — сухой пар, мгновенный пар и бинарный цикл. Тип используемого преобразования (выбранный при разработке) зависит от состояния жидкости (пар или вода) и ее температуры.

Электростанция сухого пара
В установках с сухим паром используются гидротермальные жидкости, в основном пар.Пар поступает прямо к турбине, которая приводит в действие генератор, вырабатывающий электричество. Пар устраняет необходимость сжигать ископаемое топливо для работы турбины (также устраняя необходимость транспортировки и хранения топлива). Эти установки выделяют только избыточный пар и очень небольшое количество газов.

Системы сухих паровых электростанций были первым типом построенных геотермальных электростанций (они были впервые применены в Лардарелло в Италии в 1904 году). Паровые технологии по-прежнему эффективны и используются в настоящее время в Гейзерах в северной Калифорнии, крупнейшем в мире источнике геотермальной энергии.

Паровая электростанция мгновенного действия

Паровые установки мгновенного действия — это наиболее распространенный тип геотермальных электростанций, действующих сегодня. Жидкость при температуре выше 360 ° F (182 ° C) закачивается под высоким давлением в резервуар на поверхности, поддерживаемый при гораздо более низком давлении, в результате чего часть жидкости быстро испаряется или «вспыхивает». Затем пар приводит в движение турбину, которая приводит в действие генератор. Если в резервуаре остается какая-либо жидкость, ее можно снова промыть во втором резервуаре, чтобы извлечь еще больше энергии.

Электростанция двоичного цикла

Геотермальные электростанции с двойным циклом отличаются от систем с сухим паром и паром мгновенного испарения тем, что вода или пар из геотермального резервуара никогда не контактируют с турбогенераторами. Геотермальная жидкость с низким или умеренным нагревом (ниже 400 ° F) и вторичная (следовательно, «бинарная») жидкость с гораздо более низкой точкой кипения, чем вода, проходящая через теплообменник. Тепло от геотермальной жидкости заставляет вторичную жидкость превращаться в пар, который затем приводит в действие турбины, а затем и генераторы.

Электростанции с двойным циклом представляют собой системы с замкнутым циклом, и практически ничего (кроме водяного пара) не выбрасывается в атмосферу. Поскольку ресурсы ниже 300 ° F представляют собой наиболее распространенный геотермальный ресурс, значительная часть геотермальной электроэнергии в будущем может поступать от электростанций с двойным циклом.

Ресурсы

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *