Термообработка швов: Как выполняется термообработка сварных соединений

Содержание

Как выполняется термообработка сварных соединений

Помимо подготовительных действий, рабочего процесса и контроля качества существуют дополнительные этапы, которые просто обязательны в условиях крупномасштабного производства. Существуют отрасли, где качество сварных швов играет очень большую роль, и каждая ошибка может стоит дорого. На первый план выходит защита сварных швов от коррозии. Также нужно защитить сварочный шов от преждевременного разрушения.

Чтобы достичь наилучшего качества составляются подробные чертежи, подбираются оптимальные комплектующие и работа поручается настоящим профессионалам. Но есть еще один действенный способ — обработка сварного соединения. Существует несколько типов обработки, в этой статье мы поговорим о термической.

Содержание статьи

Общая информация

Термическая обработка сварных соединений — это метод обработки швов, основанный на применении высоких температур. Благодаря термообработке осуществляется защита сварных швов от коррозии, снижается вероятность появления трещин, улучшаются механические свойства шва, повышается жароустойчивость. Этот метод можно сравнить с обжигом глины, которая приобретает особые свойства благодаря высоким температурам.

Термообработке подвергается только сварной шов или также прилегающая к нему область. Сварное соединение нагревается до определенной температуры и выдерживается в нагретом состоянии определенное количество времени, затем охлаждается. Для процесса обработки используется специальная установка для термообработки сварных швов или отдельные приспособления, о которых мы поговорим позже.

Фото взято с сайта rem-teh.ru

Существует несколько методов термообработки. Все они отличаются температурой, используемой для нагрева шва. Температура нагрева может быть от 650 до 1125 градусов по Цельсию, выбирается в зависимости от типа стали и свойств, которые должна получить сталь. Детали могут прогревать от 1 до 5 часов. Затем металл охлаждается естественным путем, без применения дополнительных методов.

В результате улучшается пластичность и ударная вязкость сварного соединения, улучшаются механические свойства, снижается остаточное напряжение от сварки. Зачастую необходима термообработка сварных соединений технологических трубопроводов. Поскольку именно трубы формируют важнейшие узлы. Они должны быть прочными и долговечными.

Методы нагрева швов

Сварочные швы и соединения могут нагреваться несколькими способами. Среди наиболее распространенных можно выделить специальные гибкие нагревательные изделия, муфельные печи, индукционные и газопламенные приспособления.

Метод нагрева шва выбирается исходя из возможности установки дополнительного оборудования, доступа к трубам, диаметра детали и прочих субъективных факторов. Проще говоря, выбор метода нагрева не регламентируется нормами и правилами. Самое главное — нагревательные приспособления должны беспрепятственно монтироваться на деталь, весить немного и осуществлять равномерный нагрев, без перепадов температур. Такая обработка называется локальной или местной.

Локальная термообработка с помощью гибких нагревательных элементов — это самый простой и недорогой способ обработки шва. Ранее такие нагреватели выпускал завод «Минмонтажспецстрой», сейчас этим занимается «Корпорация Монтажспецстрой». Такие элементы легко подстраиваются под диаметр трубы и их монтаж не вызывает трудностей.

Также используются муфельные печи. Они вполне эффективны при работе с трубами небольшого диаметра. Но здесь есть один нюанс: чтобы прогрев был равномерным нужно устанавливать печь так, чтобы ее ось вращения не совпадала с геометрической осью.

Индукционные приспособления также довольно распространены. Они недорогие и эффективные. Широко применяются при нагреве швов как раз на трубах. В качестве нагревательного элемента здесь выступают многожильные медные кабели, которые охлаждаются с помощью воздуха. При нагреве шва труб нужно оставить небольшой зазор между самой трубой и кабелями. Такая установка для термообработки сварных швов позволяет прогреть соединения равномерно и быстро. Ниже представлена таблица с характеристиками индукторов.

Газопламенный метод нагрева предполагает использование многопламенных газовых горелок. Принцип работы такой специальной горелки ничем не отличается от обычной бытовой зажигалки, разве что каналов выхода пламени в десять раз больше. Здесь пламя образуется при сгорании кислорода и горючего газа. Газопламенный метод хорош в труднодоступных местах, но может занимать больше времени.

Технология термообработки

При проведении термической обработки учитывается длина шва, соблюдается равномерность прогрева соединения и прилегающих областей, выбирается подходящая скорость и температура нагрева, устанавливается время продолжительности нагрева (также называется выдержкой) и устанавливается скорость охлаждения.

Термообработка сварных швов трубопроводов начинается с того, что шов изолируют с помощью теплоизоляционного материала. Например, при применении газопламенной горелки шов обматывается слоем листового асбеста толщиной 2-3 сантиметра. Только затем происходит монтаж самой горелки. Тот же принцип и при сварке индукционными приспособлениями или нагревательными элементами.

Чтобы сварные швы не теряли тепло изоляционные материалы должны быть прочными и теплостойкими одновременно. При этом они должны иметь малый вес, легко изгибаться. В таблице ниже описаны основные теплоизоляционные материалы, применяемые при термообработке. Также указана из температурная область.

Обработка сварного шва доверяется только специалистам. Специалист проходит предварительное обучение и только после этого приступает к работе. При этом процессом должен руководить старший мастер. Специалист обязан не только правильно подобрать и установить нагревательное оборудование, но еще и проверить, насколько хорошо слесари подготовили металл.Термообработка сварных швов трубопроводов не начнется без тщательной подготовки.

После обработки можно осуществить термоотдых. Пусть деталь остынет. Затем производится шлифовка сварных швов болгаркой. Зачистка сварного шва после сварки необходима для удаления ненужных включений, образовавшихся при сварке. Например, шлака.

Вместо заключения

Термообработка сварных соединений технологических трубопроводов — обязательный этап, если качество шва стоит на первом месте. С помощью обработки возможна полная защита сварных швов от коррозии, трещин и разлома. Это простой, но вместе с тем эффективный метод. С помощью современных приспособлений можно быстро и равномерно обработать сварной шов. Делитесь этой статьей в социальных сетях и оставляйте комментарии к этой статье. Желаем удачи в работе!

[Всего: 1   Средний:  5/5]

Термообработка сварных швов и соединений

Для создания крупных магистральных трубопроводов используют коллекторы с большим внутренним диаметром. Это применяется в теплосетях и системах водоснабжения. Из-за большого веса проходящей жидкости возрастает и давление на стенки коммуникации. Поэтому последние выполняются из материалов достаточной толщины, чтобы выдерживать большие нагрузки. Но это создает новую проблему — сложно качественно сварить стороны с такой толщиной, обеспечив длительную последующую эксплуатацию. При такой массе изделия прогрев достигает сравнительно небольшой зоны, что приводит к ряду физических процессов, неблагоприятно сказывающихся на дальнейшем использовании материала. Для решения этой проблемы разработана и применяется термообработка сварных соединений. Что это такое? В каких случаях необходима термообработка после сварки? Каким оборудованием и как выполняется процесс?

Суть и предназначение процесса

Сварочный шов создается электрической дугой и присадочным материалом с электрода при температуре от 1500 до 5000 градусов. Это приводит к нескольким негативным явлениям на толстом металле. А именно:

  • Непосредственно в месте соединения основного и присадочного материалов происходит значительный перегрев. Это содействует кристаллизации металла с крупной зернистой структурой, что снижает его пластичность. Выгорание марганца и кремния тоже подвергает эту область преобразованию в жесткий участок, плохо взаимодействующий, при естественных расширениях, со всей конструкцией.
  • Немного дальше от шва образуется зона закалки. Она испытывает значительный, но меньший перегрев, чем предыдущий участок, поэтому в ней происходит закаливание некоторых элементов. Этот участок характеризуется включениями с высокой твердостью и сниженной пластичностью. Ухудшаются показатели металла и по ударной вязкости.
  • На удаленном расстоянии от шва появляется зона разупрочнения. Благодаря непродолжительному воздействию умеренной температуры от электрической дуги, данный участок сохраняет высокую пластичность, но снижаются характеристики по прочности.

Общим дефектом после сварки являются остаточные напряжения в металле, которые способны деформировать изделие. Из-за этого возникают трудности при монтаже объемных конструкций, где требуется точность при стыковке новых узлов. Остаточное напряжение вызывает и последующее образование трещин, что недопустимо для швов трубопроводов. В сочетании с высокой температурой, это способствует снижению коррозионной устойчивости, циклической прочности, и способности сопротивляться хрупким разрушениям в условиях холода.

Термообработка сварных швов выполняется при температуре от 700 до 1000 градусов. Это позволяет устранить последствия неравномерного прогрева при дуговой сварке на толстых металлах, чем повышает надежность будущих коллекторов и магистралей трубопроводов. Труба и наложенный шов приобретают более похожую структуру, и лучше взаимодействуют во время естественных физических процессов (расширения и сужения материалов, воздействия влаги и т.д.).

Термообработка сварных соединений трубопроводов происходит в три этапа:

  • нагрев околошовной зоны или всего изделия одним из нескольких видов оборудование;
  • выдержка материала на заданной температуре в течении определенного времени;
  • последующее планомерное охлаждение до нормальных температур.

Это нейтрализует остаточные явления от сварки, выравнивая структуру металла, и снимая напряжение в металле, способствующее деформации. Процесс может выполняться несколькими способами, а технология разнится в зависимости от типа и толщины металла.

Не все сварные соединения необходимо подвергать термообработке, но в некоторых случаях она является обязательной.

Что и когда подвергается термической обработке

Нейтрализации остаточных явлений от электродуговой сварки необходимо подвергать все трубопроводы диаметром от 108 мм, имеющими стенку 10 мм и более. Для этого используют индукционный нагрев изделия током с частотой 50 Гц. Термообработка способна воздействовать на металл трубы со стенкой 45-60 мм, для чего применяют гибкие электронагревательные проволоки или муфельные печи. Если толщина стенки конструкции не более 25 мм, то можно использовать газопламенный способ нагрева. Во всех случаях важен фактор равномерности распределения температуры во все стороны от сварочного соединения.

Стыки, выполненные с применением труб из стали 12XIMФ и ее разновидности 15XIMIФ, имеющие толщину стенки магистрали 45 мм должны подвергаться термической обработке сразу после окончания сварочных работ. Охлаждение материала не должно допускаться до температуры 300 градусов. Стыки из аналогичных сталей на трубах с диаметром 600 мм, при стенке 25 мм, обрабатываются в этот же временной период. В случае невозможности выполнить процесс, соединение необходимо укрыть слоем теплоизоляции 15 мм, а при первой же возможности произвести обработку. Максимальный срок на проведение этих работ составляет трое суток.

Термообработке необходимо подвергать не только кольцевые швы на трубопроводе, но и вваренные отводы, краны, заглушки. Крепление под участок трубы, которое присоединялось посредством сварки, тоже необходимо обработать нагревом.

Режимы процесса

Разные виды стали подвергаются термообработке в конкретный временной промежуток. Влияет на режим и толщина стенки изделия. На хромомолибденовых сталях и их сплавах с ванадием применяется нагрев индукционным способом, с частотой тока в 50 Гц и выше, или радиационным методом по следующим показателям:

Толщина стенки, ммРадиационный способ, минутыИндукционный способ, минуты
До 204025
21-257040
26-3010040
31-3512060
36-4514070
46-6016090
61-80160110
81-100160140

Виды оборудования

Термообработка выполняется несколькими видами средств, выбор которых зависит от толщины свариваемых труб и местной доступности оборудования.

Выделяются три основные способа нагрева околошовной зоны.

Индукционный

На рабочем месте устанавливается аппарат, вырабатывающий переменное высокочастотное напряжение. К нему подсоединяется нагревательный элемент, которым служит гибкий провод. Последний наматывают на сварочное соединение, предварительно укутанное асбестом для теплоизоляции. Эту технологию можно применять независимо от положения трубы в пространстве (вертикального или горизонтального).

Намотку провода производят вплотную к изолятору, а между витками оставляют зазор в 25 мм. Таким образом должно быть покрыто по 250 мм участка трубы с каждой стороны шва. После правильного наложения витков аппарат включается на время, предназначенное для конкретной толщины стенки трубопровода. Напряжение, проходя через витки провода, создает индукцию и разогревает изделие. Похожим способом выполняется и накладка цельных поясов, содержащих внутри себя ряд проводов, которые сразу покрывают нужную ширину трубы.

Радиационный

Вторым распространенным способом термической обработки сварных соединений является радиационный метод. Здесь тепловой эффект исходит от специальных нихромовых проводов, по которым идет напряжение, и околошовную зону греет непосредственно тепло от провода, а не индукция тока, как в первом способе. Тэн укладывают на основу из теплоизоляции.

Газопламенный

Самым дешевым способом выполнить термическую обработку сварного шва является пламя от горения смеси ацетилена и кислорода. Это подходит для труб с диаметром не более100 мм. На горелку устанавливается мундштук с крупным отверстием. Для равномерности подачи тепла от пламени на сопло одевается асбестовая воронка, распределяющая пламя по ширине в 250 мм. Правильный нагрев производится одновременно двумя горелками, работающими с каждой стороны.

Виды термообработки

Тепловое воздействие на сварочное соединение и прилегающую зону может выполняться по разной технологии для достижения определенных целей. Вот основные процессы и их влияние на изделие:

  • Термический отдых. Трубопровод подвергают нагреву до 300 градусов с удержание этой температуры до 120 минут.
    Это действие способствует снижению содержания водорода в шве, и частичному снятию остаточного напряжения. Метод применяется на особо толстостенных изделиях, где невозможно выполнить другие техники термообработки.
  • Высокий отпуск. Трубу и сварной шов нагревают до температуры 600-700 градусов. Выдержка происходит в течении 1-3 часов в зависимости от толщины стенки. Вследствие чего остаточное напряжение снижается до 90%. В низколегированных сталях разрушается закалочная структура, а карбиды становятся крупнее. Это приводит к повышению пластичности и ударной вязкости. Чаще всего этот вид термообработки применяют на сталях перлитного класса.
  • Нормализация. Шов и трубу нагревают до 800 градусов, но на короткое время (выдержка от 20 до 40 минут). Это частично убирает напряжение в металле, но главным образом придает однородность и мелкозернистую структуру, что улучшает механические свойства. Такая технология используется на тонкостенных трубах небольшого диаметра.
  • Аустенизация. Разогрев материала до 1100 градусов с длительным удержанием температуры (около двух часов) и последующим остыванием на воздухе. Реализуется на высоколегированных сталях для снижения остаточного напряжения и повышения пластичности.
  • Стабилизирующий отжиг. Трубопровод с наложенным швом разогревают до 970 градусов с выдержкой до 180 минут. Охлаждение выполняется естественным образом на воздухе. Метод предупреждает возникновение межкристаллической коррозии на высоколегированных сталях.

Применение термообработки на трубопроводах из различных металлов значительно продлевает их срок эксплуатации. Для успешного использования метода важно правильно подбирать температуру, время выдержки и способ нагрева.

Поделись с друзьями

0

0

0

0

Термообработка сварных швов: технология, оборудование

При крупномасштабном изготовлении металлических конструкций и соединении трубопроводов проводится дополнительная обработка, про которую забывают начинающие сварщики. К одному из таких технологических процессов относится термообработка сварных швов. Оно позволяет улучшить характеристики готового крепления, продлить срок его эксплуатации.

Термообработка сварных швов

Суть и назначение процесса

Термообработка после сварки нужна для того чтобы улучшить ухудшившиеся характеристики материала при скреплении. К ним относятся:

  1. Изменение параметров металла из-за перегрева. При использовании сварочного оборудования детали нагреваются до 5000 градусов. Появляются крупные зёрна металла, что приводит к ухудшению показателя пластичности.
  2. Вокруг готового шва образуется место закалки. Эта область не устойчива для ударов.
  3. Удалённые области обладают малым показателем прочности. Связано это с кратковременным сильным нагревом.

Главный недостаток, который образуется на соединенной конструкции после сварки — внутренние напряжения. Это приводит к деформации изделия при эксплуатации. Остаточное напряжение становится причиной разрушения соединений из-за чего трубопроводы, металлоконструкции приходят в негодность.

Тепловая обработка проводится при температуре до 1000 градусов по Цельсию. Состоит технологический процесс из трёх этапов:

  1. С помощью специального оборудования происходит равномерный прогрев в области шва. Это изменяет механические свойства материала.
  2. Сохранение рабочей температуры на определённый промежуток времени. Длительность зависит от того, насколько нужно изменить свойства и структуру материала.
  3. Последним этапом является охлаждение. Температура должна опускаться равномерно, чтобы добиться повышения пластичности и ударной вязкости.

Термообработка после сварки позволяет снять остаточные напряжения, выровнять металлическую структуру, избавиться от крупных зёрен.

Виды термообработки

Термообработка сварных соединений может проводиться несколькими способами. К наиболее эффективным относятся:

  1. Нагревание деталей до сваривания. Применяется при работе с низкоуглеродистыми сталями. Сварщик нагревает рабочие поверхности до 200 градусов. После сваривания конструкция должна остыть при комнатной температуре.
  2. Отпуск металла. Подразумевает под собой нагрев деталей до критических температур. Заготовки выдерживаются в таком режиме до 5 часов. Затем материал медленно охлаждается.
  3. Термический отдых. Заготовки разогреваются до 300 градусов. При такой температуре они выдерживается до трех часов. Постепенно остаточные нагрузки исчезают, шов становится прочнее.
  4. Нормализация. Проводится для уменьшения крупных зёрен структуры материала, увеличения показателей прочности.
  5. Аустенизация. Перед сваркой детали разогревают до 1100 градусов. Выдержка при такой температуре составляет 90 минут. Процесс охлаждения происходит на свежем воздухе. Механические свойства улучшаются, остаточное напряжение исчезает.
  6. Стабилизирующий отжиг. Готовый шов нагревают до 800 градусов. На протяжении трех часов температура поддерживается на одном уровне. Снижается риск образования ржавчины.

Метод термической обработки зависит от используемого материала.

Применение нагревательных элементов

Виды оборудования

Для проведения термической обработки используют определённое оборудование. Его выбор зависит от металла, толщины заготовок, возможностей сварщика. К нему относятся:

  1. Индукционные установки. Представляют собой аппараты, которые вырабатывают высокочастотное напряжение. Дополнительно на установке закрепляется нагревательный провод. Его другой конец обматывается вокруг шва. Важно оставлять между витками по 2,5 см.
  2. Радиационное оборудование. Для разогревания области вокруг креплений и самого соединения используются нихромовые провода. На них подаётся напряжение, которое способствует нагреванию рабочей поверхности.
  3. Газопламенное оборудование. Простой способ нагрева рабочих поверхностей. Для этого применяются газовые горелки, к которым подключается ацетилен, кислород. Чтобы увеличить зону прогрева, на горелку закрепляется широкий мундштук.

Прежде чем начинать использовать то или иное оборудование нужно изучить особенности работы с ним. Применение нагревательных машин требует определённых навыков.

Технология термообработки

Помимо изучения технологии сварки, нужно знать способы обработки швов. Этапы проведения термической обработки зависят от выбранного оборудования, используемого для соединения материала, его толщины. Сварщику необходимо равномерно прогреть область соединения.

Пошаговая термическая обработка соединений

Термическая обработка сварных швов должна происходить в определённой последовательности. Проведение работ:

  1. Нагреваемое место покрывается теплоизолирующим материалом.
  2. Сверху закрепляются нихромовые провода, через которые будет идти ток.
  3. С помощью напряжения задаётся температура нагрева.

Нагревательные элементы снимаются с места соединения. Поверхность освобождается от лишнего материала.

Термообработка сварных швов считается необходимым технологическим процессом для улучшения механических показателей соединённой конструкции. Без дополнительного нагревания остается внутреннее напряжение, которое может привести к разрушению соединения.

Термообработка сварных швов: технология и методы проведения

В процессе сооружения конструкций из металла выполняют различные процессы. Так, термообработка сварных швов проводится в процессе работы с металлами и их сплавами. Это позволяет изменить их свойства и структуру. Для термоооброботки сварных соединений используют определенный инструмент, в зависимости от выбранного метода. Зачищенный металл поддается обработке.

Основные способы обработки сварных швов

Зачистка сварных швов после сварки проводится тремя методами:

  • Термическая обработка. С помощью этого метода устраняют остаточное напряжение в металле, которое возникает в результате проведения сварки. Термическая обработка сварного шва проводится по местной и общей технологии. В первом случае речь идет о нагреве с дальнейшим охлаждением только сварного соединения. Что же касается общей термообработки, то здесь выполняется прогрев непосредственно всей детали. Этот метод зачастую используют для небольших конструкций.
  • Механическая обработка. Суть данного метода заключается в устранении с соединения и прилегающих участков остатков шлаков. Также в процессе обработки производится проверка стыка на прочность. Так, классическим вариантом является зачистка сварных швов с помощью определенных инструментов или постукивание шва. К проверке соединения относятся очень внимательно, так как от этого будет зависеть срок эксплуатации конструкции. Если в результате постукивания возникли трещины, то конструкция отбраковывается, так как прочность соединения нарушено. Что касается остатков шлака, если не выполнить его удаление, то в дальнейшем это приведет к возникновению коррозии участка. Для этого проводится шлифовка сварных швов.
  • Химическая обработка. При таком методе выполняется нанесение на соединение защитного покрытия. Это позволяет предотвратить коррозию металла в процессе эксплуатации конструкции. Самым доступным вариантом является использование грунтовочного лакокрасочного вещества.

При выборе метода обработки сварных швов стоит учесть множество факторов. Прежде всего, это касается рациональности способа в том или ином случае. Большое значение имеет и цель использования конструкции. К некоторым изделиям и соединительным швам предъявляются повышенные требования по прочности и надежности.

Термообработка

Зачастую термообработку сварных стыков используют в процессе сооружения трубопроводных магистралей. Для их создания применяют трубы, которые имеют большой внутренний диаметр и значительную толщину стенок. Это обеспечит прочность и надежность системы в процессе эксплуатации. Но, это создает новую проблему – тяжело провести качественное стыкование труб, которые имеют такие геометрические характеристики.

В процессе сварки происходит нагрев небольшого участка изделия. В результате это приводит к возникновению ряда физических процессов, которые неблагоприятно сказываются на эксплуатации конструкции.

Сама же термообработка сварных соединений проводится в несколько этапов:

  • Пдготовка изделий к сварке. От того, насколько качественно будет выполнена эта работа, зависит прочность соединения.
  • Термообработка места соединения изделий при сваривании.
  • Обработка швов после сварки.

Термическая обработка нужна для того, чтобы улучшить сварные свойства металлических конструкций. Но, прежде всего, изделия и швы поддают отжигу и высокому отпуску.

Зачем нужна?

Сварка производится под воздействием электрической дуги, а также присадочного материала с электрода. При этом температура составляет 1500-50000С. В результате такого нагрева на толстом металле возникают различные негативные явления, которые стоит рассмотреть более тщательно:

  • В месте соединения сварного и присадочного материала возникает большой перегрев. В результате повышается кристаллизация металла, который имеет крупную структуру. Это значительно понижает его пластичность. Также в процессе нагрева происходит выгорание марганца и кремния. Участок металлического изделия стает жестким и теряет свои первозданные технические характеристики.
  • Вблизи шва находится зона закалки, она также испытывает нагрев. Конечно, на нее действует меньшая температура, чем в среде непосредственного соединения присадочного и основного материала. В результате этого в металле происходит закалывание определенных элементов. Участок теряет свою первоначальную пластичность и становится более твердым. Также изменяются показатели материала по ударной вязкости.
  • Зона разупрочнения расположена на удаленном расстоянии от места непосредственной сварки металлических изделий. Она поддается воздействию умеренной температуры, которую излучает электронная дуга. Благодаря непродолжительности этого процесса материал сохраняет свою пластичность. Но, что касается прочности, то она несколько понижается.

В результате проведения сварки металла на металл действует остаточное напряжение, которое может привести к деформации. Это может вызвать некоторые сложности при монтаже объемных конструкций. Особенно это касается мест, где будут устанавливаться новые узлы.

Опасность остаточного напряжения заключается в том, что в дальнейшем оно может вызвать образование трещин. В особенности это касается места сварки. Это недопустимо, так как в дальнейшем это приведет к разрушению соединения.

Ситуация ухудшается, когда в процессе эксплуатации конструкции на место сварки действуют высокие температуры. Это приводит к снижению стойкости металла к коррозийным процессам и цикличной прочности. Это касается и способности металла противостоять хрупкости, которая возникает под действием низких температур.

Особенности проведения

Термическая обработка сварных соединений проводится под высокой температурой, значение которой составляет от 700 до 10000С. Благодаря этому можно устранить последствия неравномерного нагрева, которое проводилось во время дуговой сварки. Особенно это касается металлических изделий, которые имеют значительную толщину. В результате обработки шву придают структуру, схожую с остальным материалом.

Термообработка сварных соединений проводится в три этапа:

  1. Выполняется нагрев участка возле соединения. Для этого используется специальное оборудование, о котором мы поговорим позже.
  2. Участок или все изделие выдерживается под определенной температурой на протяжении определенного времени.
  3. На завершающем этапе выполняется планомерное охлаждение материала до нормальной температуры.

Благодаря такому процессу можно устранить остаточные явления после дуговой сварки, выровнять структуру металла, а также снять напряжение, которое часто является причиной его деформации. Процесс выполняется различными способами. Технология его проведения зависит от толщины и типа материала. Обработка проводится не всегда, но есть случаи, когда она просто необходима.

На видео: как происходит процесс термообработки.

Достоинства и недостатки

Обработка стыка термическим методом обладает определенными достоинствами и недостатками. Среди преимуществ можно выделить:

  • В результате процесса сварные стыки приобретают новые свойства. В результате этого детали станут более пригодными для эксплуатации в определенных условиях. В особенности это касается защиты металла от коррозии.
  • Обработка позволяет устранить некоторые негативные моменты, которые возникли в результате проведения сварных работ.
  • Термическая обработка снимает остаточное напряжение, которое возникает в процессе сварки.

Конечно, чтобы достичь такого результата, необходимо правильно подойти к обработке. В особенности это касается соблюдения некоторых правил. Что же касается недостатков данного метода обработки, то среди них выделяют:

  • Процесс должен выполнять опытный специалист. Это связано с тем, что обработка путем нагрева необратима. А это значит, что устранить допущенные ошибки при этом практически невозможно.
  • Для проведения обработки может понадобиться специальное оборудование, для работы с которым нужны определенные навыки. Особенно когда проводится защита сварных швов трубопроводов.
  • Процедура должна проводиться в точности с предъявляемыми требованиями.
  • В каждом случае подбираются свои параметры обработки.

Если придерживаться определенных правил, то в процессе зачистки стыка не возникнет никаких проблем.

Что подвергают обработке?

Термообработка часто применяется при сооружении трубопроводов различного назначения. В первую очередь это касается труб, которые имеют диаметр более 10 см и толщину стенок 1 см и больше. Процесс выполняется с помощью индукционного нагрева током, частота которого составляет 50 Гц.

Термическая обработка труб довольно проста. Для этого применяют муфельные печи и специальные электронагревательные проволоки, которые имеют достаточную гибкость. Если же изделие имеет толщину не больше 2,5 см, то для обработки используют газопламенный нагрев. Здесь главное равномерно распределить температуру в области соединительного шва.

Термическая обработка проводится не только на кольцевых швах, но и на соединениях, которые имеют другую форму.

При обработке сварных швов стоит учесть толщину и особенности металла. Так, например, если трубопровод изготовляется из стальных труб, толщина стенок которых составляет 45 мм, то процесс необходимо провести сразу после сварки. При этом охлаждение материала не должно достигать 3000С. Это касается и изделия толщиной 25 мм.

Если нет возможности выполнить обработку, то шов защищают теплоизоляционным материалом. При первой же возможности выполняют зачистку. Процесс должен быть проведен в течение 3 суток со дня выполнения сварки.

Параметры проведения процесса

Особенности термообработки напрямую зависят от вида и толщины стали. Так, в случае с хромомолибденовой сталью и ее сплавами процесс проводится индукционным или радиационным методами.

Итак, в зависимости от толщины материала и используемого метода, процесс обработки займет следующее время:

Толщина металла, мм

Радиационный метод, мин

Индукционный метод, мин

20

40

25

20-25

70

40

25-30

100

40

30-35

120

60

35-45

140

70

45-60

150

90

60-80

160

110

Если проанализировать таблицу, то можно отметить, что обработка металла индукционным методом занимает меньше времени. Это объясняется особенностями проведения процесса.

Какое оборудование используется?

Термическую обработку сварных швов проводят с помощью различных средств. При выборе учитывается толщина металла и возможность использования того или иного оборудования в определенном месте. Сегодня существует три основных метода нагрева околошовного участка. Рассмотрим каждый из них.

Индукционное

На месте устанавливается специальный аппарат, который вырабатывает переменное напряжение высокой частоты. К нему подключается нагревательный элемент, в качестве которого используется гибкий провод. Его наматывают на сварочное соединение, которое предварительно окутывают теплоизоляционным асбестом. Эта технология используется для обработки горизонтальных и вертикальных швов.

Провод наматывается к изолятору вплотную. При этом между витками оставляется зазор толщиной 2,5 см. В результате, с обеих сторон шва покрывается по 25 см изделия. Когда витки будут установлены, согласно всем требованиям и нормам, аппарат включается. При этом учитывается время работы оборудования. Это напрямую зависит от толщины металла. В процессе работы аппарата через витки проходит напряжение, которое создает индукцию, а также нагрев металла.

Для выполнения обработки также широко используют специальные пояса, которые содержат определенное количество проводов. Это позволяет без особых усилий и быстро подготовить изделие к зачистке после сварки.

На видео: индукционный нагрев трубы.

Радиационное

Не меньшей популярностью пользуется радиационный способ обработки сварных швов. В качестве нагревательного элемента используются специальные нихромовые провода. Через них пропускается напряжение, что приводит к их нагреву. Здесь стоит отметить, что в процессе не берет участие индукция. Нагрев материала осуществляется с помощью раскаленной проволоки. Тэны укладываются на основу из теплоизоляционного материала.

Газопламенное

Данный метод является самым дешевым. Для термообработки сварных участков используется ацетиленовая смесь и кислород. Метод используют для обработки материалов, толщина которых составляет не более 10 см. На горелку, заполненную горючей смесью, устанавливается мундштук, который имеет крупные отверстия. Чтобы обеспечить равномерную подачу тепла к обрабатываемой поверхности, на сопло надевают асбестовую воронку. Это позволяет распределить пламя на ширину в 25 см.

При использовании данного способа стоит учесть некоторые особенности. Так, чтобы выполнить качественную термообработку околошовных участков, необходимо нагревать их одновременно. А это значит, что в процессе берут участие сразу две горелки.

Виды термической обработки

Термическое воздействие на соединение сваркой может выполняться несколькими способами. При этом учитывается цель данного процесса. Среди основных методов выделяют:

  • Термический отдых. В данном случае материал подвергают нагреву до 3000С. Такая температура поддерживается на протяжении двух часов. В результате процесса происходит снижение водорода в сварочном шве, а также снимается остаточное напряжение. Данный метод зачастую используют к материалам, которые имеют толстые стенки, а также там, где нет возможности применить другие технологии.
  • Высокий отпуск. При такой технологии изделие поддают нагреву при температуре до 7000С. Такая обработка длится около трех часов. Время действия тепла на материал напрямую зависит от его толщины. Этот метод позволяет снять остаточное напряжение практически на 90%. Если речь идет об обработке низколегированной стали, то в результате происходит разрушение закалочной структуры и карбиды становятся более крупными. Таким образом, можно достичь повышения пластичности и ударной вязкости. Зачастую эта технология применяется к перлитным сталям.
  • Нормализация. Данный метод подразумевает одновременное нагревание материала и сварного шва до температуры в 8000С. При этом термическая обработка не должна превышать 40 минут. С помощью нормализации можно частично снять остаточное напряжение. Но, главным достоинством является то, что в результате обработки получается однородная и мелкозернистая структура. Это в свою очередь улучшает механические свойства шва и околошовных участков. Нормализация зачастую используется на материалах, которые имеют небольшую толщину.
  • Аустенизация. Материал разогревается до температуры в 11000С. Термическое воздействие продолжается на протяжении двух часов. После этого материал охлаждается на воздухе. Не рекомендуется выполнять принудительное охлаждение, так как это приведет к снижению прочности металла, а в результате к появлению трещин. Аустенизация используется на высоколегированных сталях. С ее помощью повышается пластичность материала, и снижается остаточное напряжение.
  • Стабилизирующий отжиг. Метод используется для обработки материалов с наложенным швом. Он подвергается нагреву температурой в 9700С на протяжении трех часов. По истечению данного времени материал поддают естественному охлаждению на воздухе. С помощью стабилизирующего отжига можно предупредить возникновение межкристаллической коррозии. Зачастую технологию применяют на высоколегированных сталях. Это позволит защитить участки от коррозии.

Термическая обработка применяется на изделиях из различных металлов. С ее помощью повышают их срок эксплуатации. Чтобы правильно провести процесс, необходимо тщательно подойти к выбору рабочей температуры, способа нагрева, а также времени проведения термической обработки. С зачищенными изделиями нужно обходиться очень аккуратно, чтобы не повредить их.

Какой способ выбрать?

Выбор технологии проведения термической обработки сварных соединений напрямую зависит от физико-химических характеристик материала. Об этом свидетельствует марка стали. Особое значение специалисты рекомендуют обратить на выполнение технологических требований. В ином случае качество сварного шва значительно понижается, что в дальнейшем может привести к его полному разрушению.

При выполнении термообработки сварного соединения стоит учесть следующие параметры:

  • ширина участка, который будет поддаваться обработке;
  • равномерность теплового воздействия на материал, как по толщине, так и по ширине;
  • длительность нагревания;
  • особенности охлаждения материала после проведения термообработки.

Если учесть все эти особенности, то можно выбрать способ термообработки, который позволит повысить качество соединения. В особенности это касается его прочности.

Контроль температуры

Как уже было сказано, в процессе термообработки необходимо тщательно следить за температурой нагрева. Для достижения этой цели используют специальные средства, такие как термокарандаш и термокраска. При достижении определенной температуры они резко меняют свой цвет. В зависимости от принципа действия, такие терморегуляторы бывают химическими и плавильными.

При достижении определенной температуры, химические регуляторы температуры меняют свой цвет в результате реакции между компонентами. На точность измерения напрямую влияет время термического воздействия на материал, а также колебания давления.

Если нагрев осуществляется на протяжении 3 минут, то погрешность измерений составит не более 100С. Стоит отметить, что изменение оттенка контролеров тепла возникает при критических температурах.

В карандашах и красках второго типа изменение оттенка возникает в результате плавление вещества, которое очень чувствительно к повышению температуры. В отличие от химических термоиндикаторов, эти средства меняются независимо от длительности теплового воздействия. Это позволяет более точно установить температуру нагрева. При этом погрешность составляет не более 20С.

Термоиндикаторы плавления обладают многими достоинствами, среди которых стоит выделить инертность к переменной температуре, разрежению, солнечной радиации, морскому туману и другим негативным факторам окружающей среды, которые могут повлиять на точность измерений.

Термокарандаши и термокраски плавления делятся на два типа:

  • Адсорбентные. Индикатор состоит из пигмента в связующем растворе и суспензии вещества, которое чувствительно к повышению температуры во время проведения нагрева материала. В результате теплового воздействия термочувствительное вещество плавится, после чего происходит его адсорбция цветовым пигментом.
  • Лаки плавления. Они имеют определенную точку плавления. Вещество наносят непосредственно на обрабатываемую поверхность. Оно быстро высыхает, после чего образуется шероховатая поверхность. В результате достижения определенной температуры она станет глянцевой.

На сегодняшний день производством термоиндикаторов занимаются лакокрасочные заводы. Вместе с этим они предоставляют информацию о критических точках плавления того или иного вещества. Это позволяет значительно повысить качество термической обработки сварных швов.

Другие виды обработки

Зачистку швов осуществляют также механическим и химическим методами. Каждый из них имеет свои особенности проведения. Стоит отметить, что комбинирование этих методов позволяет значительно повысить качество обработки.

Механическая

Обработка проводится с помощью проволочной щетки. Но, такой инструмент используют в труднодоступных местах. В иных случаях для зачистки сварных швов специалисты рекомендуют использовать шлифовальное устройство или болгарку, оснащенную лепестковой насадкой или абразивным кругом.

С помощью механической зачистки можно устранить со сварного изделия заусеницы, окислы и другие новообразования, которые возникли в результате проведения сварочных работ.

Зачистка сварочных швов проводится с учетом некоторых нюансов:

  • Особое внимание стоит уделить выбору шлифовального круга. Оптимальным вариантом станет изделие из цирконата алюминия. Особенность этого материала заключается в том, что он обладает высокой прочностью.
  • Лепестки круга должны быть изготовлены на тканевой основе. Это связано с тем, что ткань, по сравнению с бумагой, обладает высокой прочностью. При этом стоит учесть, что такие изделия стоят сравнительно недешево.
  • Для проведения работ могут понадобиться круги с разными абразивными зернами. Поэтому стоит одновременно приобрести несколько изделий.
  • При проведении работ учитывается зернистость круга. Так, если нужно устранить большие окалины, то лучше использовать крупнозернистые насадки. Финишная очистка выполняется мелкозернистыми кругами.
  • Зачистка сварных швов в труднодоступных местах осуществляется с помощью специальных инструментов. Борфрезы имеют различные размеры, что позволяет подобрать оптимальный вариант для того или иного участка. Они устанавливаются на шлифовальную машинку.

Химическая

Чтобы достичь максимального эффекта и защитить конструкцию от коррозии, специалисты рекомендуют сочетать механический и химический методы обработки. Для начала осуществляется очистка сварного шва машинкой или щеткой. После этого материал обрабатывают специальными коррозионно устойчивыми веществами, которые позволяют защитить его от негативных факторов окружающей среды.

Химическая обработка осуществляется методом травления и пассивации. Травление применяют до проведения механической шлифовки. Для выполнения процесса используется химический состав, который обеспечивает образование однородного покрытия, защищающее материал от коррозии. Помимо этого, эти вещества позволяют устранить последствия негативного влияния окружающей среды на материал. В особенности это касается мест, где есть скопления окислов хрома и никеля. Именно там чаще всего возникают коррозийные процессы.

Если деталь имеет небольшие размеры, то в процессе обработке она помещается в емкость, заполненную химическим составом. Время проведение в емкости определяется в соответствии с особенностями сварного изделия. В случае с большими изделиями используют местную обработку. Химический состав наносится непосредственно на обрабатываемый участок.

После травления приступают к пассивации сварного соединения. В процессе обработки на зачищенный участок металла наносится состав, который образует пленку. Такое защитное покрытие позволяет защитить изделие от коррозийных процессов.

В результате нанесения состава возникает химическая реакция, которая объясняется довольно просто. Оксиданты взаимодействуют со сталью, что приводит к освобождению свободного металла с поверхности. Это приводит к активации защитной пленки.

На завершающем этапе выполняется очистка сварных соединений от химических веществ. Для этого используется вода. При проведении процесса стоит соблюдать осторожность, так как в отходах после смывки содержатся токсичные вещества, тяжелые металлы и кислоты. Нейтрализовать кислоту можно с помощью щелочи. Оставшуюся жидкость фильтруют. Отработанная вода утилизируется в специально отведенных для этого местах. При этом учитываются законодательные акты по охране окружающей среды.

Обработка конструкций после сварки является весьма ответственным процессом. Работу должен проводить профессиональный мастер. Это обеспечит высокое качество конечного результата. При желании выполнить обработку сварных соединений можно своими руками. Для этого нужно следовать определенным правилам и советам специалистов.

Главное помнить о средствах безопасности. Это касается всех видов обработки. При термической зачистке опасность заключается в использовании высоких температур. С используемым оборудованием нужно обходиться очень осторожно. Это позволит предотвратить возникновение травм. При проведении работ стоит использовать средства индивидуальной защиты.

Зачистка сварных швов (3 видео)

Разные способы обработки (25 фото)

 

Термообработка сварных соединений: виды и технология проведения

При сварке структура металла шва и прилегающей зоны под действием высокой температуры изменяется. Это может привести к преждевременному разрушению деталей. Для устранения негативных последствий сильного нагрева после наложения швов выполняют термообработку сварных соединений.

Для чего нужна термообработка

При сварке в зоне нагрева происходят негативные изменения кристаллической решетки и свойств металла:

  1. Из-за перегрева в месте горения дуги структура становится крупнозернистой, что приводит к снижению пластичности. Процесс сопровождается выгоранием марганца и кремния, что также способствует преобразованию структуры. После остывания шов становится жестким, склонным к образованию трещин при изменении нагрузки во время эксплуатации. Например, к сварным соединениям технологических трубопроводов прилагаются дополнительные воздействия, возникающие при температурном расширении/сжатии.
  2. В зоне возле сварного соединения металл нагревается до температуры достаточной для закалки. Поэтому происходит снижение пластичности и стойкости к ударным нагрузкам.
  3. На более удаленных участках с умеренным нагревом происходит разупрочнение металла, но пластичность остается на прежнем уровне.
  4. Из-за неравномерности нагрева происходит образование внутренних напряжений, приводящих к деформации деталей с образованием трещин.

После проведения термообработки сварных швов и прилегающих участков восстанавливается структура и характеристики металла по прочности, пластичности, коррозионной стойкости. Термическую обработку сварных соединений для снятия напряжений в обязательном порядке выполняют при монтаже объемных конструкций из тонкостенного металла.

Термообработка защищает сварной шов от коррозии и улучшает механические свойства.

Особенности проведения

Термообработку выполняют поэтапно:

  • нагревают только шов или вместе с участками возле него;
  • поддерживают температуру в течение определенного времени;
  • планомерно охлаждают до температуры окружающей среды.

Температура термообработки зависит от выполняемых задач

В зависимости от решаемых задач термообработку после сварки выполняют при температуре от 600 до 1100⁰C. Разработано несколько методов обработки с разными графиками нагревания, временем выдерживания, охлаждения. Способ и оборудование выбирают в зависимости от марки металла, толщины и конфигурации деталей.

Термообработке должны подвергаться сварные швы трубопроводов большой протяженности, соединения на грузоподъемных механизмах, сосуды и емкости, работающие под давлением. Процедуру нельзя откладывать на срок больше трех суток. Для повышения стойкости к коррозии термообработку проводят сразу после завершения сварки.

Из достоинств отмечают:

  • увеличение надежности и долговечности сварных соединений;
  • возможность улучшения нужных параметров.

К недостаткам термообработки относят:

  1. Невозможность исправления брака при нарушении технологии термообработки. Соединение придется заново переваривать.
  2. Большую цену и габариты оборудования.
  3. Для выполнения термообработки нужен квалифицированный персонал.
  4. Повышенный расход энергоресурсов.

Продолжительность процесса

Длительность термической обработки сварных соединений зависит от вида и толщины металла. Хромомолибденовые марки стали и ее сплавы с включением ванадия нагревают радиационным или индукционным способом. Длительность процесса определяют по таблице:

Толщина,
см
Радиационный,
минуты
Индукционный,
минуты
До 2.04025
2.1 — 2.57040
2.6 — 3.010040
3.1 — 3.512060
3.6 — 4.514070
4.6 — 6.016090
6.1 — 8.0160110
8.1 — 101600140

Перед нагревом сварной шов очищают от шлака. Индукционным способом процедура выполняется быстрее, но расход электроэнергии больше.

Процесс нагрева при темрической обработке

Важно!

Длительность термической обработки сварных соединений зависит от вида и толщины металла.

Применяемое оборудование

Для термической обработки сварных швов применяют следующие виды оборудования:

  1. Индукционное. Принцип работы основан на нагреве металла вихревыми токами, создаваемыми индукционной катушкой (индуктором), подключенной к высокочастотному генератору. Нагреваемый участок предварительно накрывают асбестом. Поверх него гибким проводом наматывают витки катушки с шагом 2,5 см на расстоянии 25 см по обе стороны от стыка. В качестве индуктора также используют накладки с расположенными внутри проводами. Технология обеспечивает быстрый, равномерный нагрев участка соединения независимо от положения деталей.
  2. Радиационное. Нагрев осуществляется теплом от проводов из нихрома, по которым проходит электроток. Гибкие нагревательные элементы удобны для обработки соединений сложной формы. Радиационное оборудование эффективней индукционного при работе с металлами с низкими электромагнитными характеристиками.
  3. Газовое выгодно для применения, так как не нуждается в электроэнергии. Однако на нагрев уходит много времени. Поэтому оборудование используют на небольших конструкциях. Для обеспечения равномерного прогрева соединения работу выполняют двумя многопламенными ацетиленовыми горелками одновременно с обеих сторон.
  4. Для работы с деталями небольшого размера применяют муфельные печи. Их также используют на трубопроводах малого диаметра.

Виды термической обработки

Способ термообработки сварного шва выбирают в зависимости от поставленной цели:

  1. После термического отдыха уменьшается остаточное напряжение и количество водорода внутри шва. Процесс проводят при температуре до 300⁰C с выдержкой в течение 1,5 — 2 часов. Этим способом обрабатывают сварные соединения на толстостенных конструкциях, когда нет возможности применить другие виды.
  2. Отпуском за счет разрушения закалочных структур добиваются уменьшения напряжения на 90%, увеличения пластичности и стойкости к ударным нагрузкам. Нагрев до 600 — 700⁰C, выдержка до 3 часов. Метод применяют на перлитных сталях.
  3. Нормализацию выполняют при 800⁰C с выдержкой 20 — 40 минут на тонкостенных деталях. После завершения процесса структура становится мелкозернистой и однородной.
  4. Аустенизацию проводят на высоколегированных видах стали для снятия напряжений и восстановления пластичности. Нагрев до 1100⁰C, двухчасовая выдержка с последующим естественным охлаждением.
  5. Для отжига после сварки термообработку выполнят при 970⁰C с выдержкой в течение 3 часов и остыванием в естественных условиях. Используют при работе с высоколегированными сталями для улучшения стойкости к коррозии.

Температуру контролируют по изменению цвета меток, нанесенных на поверхность деталей термокарандашом или термокраской. Однако точность измерения этим способом невысока, поэтому чаще пользуются пирометрами и тепловизорами. Они могут быть ручными или встроенными в системы автоматического поддержания температуры на заданном уровне.

Если к качеству сварных соединений предъявляются высокие требования, выполнение термообработки обязательно. После ее проведения на швах не появятся трещины, разломы, коррозия. При использовании современного оборудования термообработка не займет много времени.

Термообработка сварных швов и соединений: процесс выполнения

Различают три разновидности термической обработки деталей. Первая разновидность — это подготовка деталей перед сваркой. Некоторые конфигурации свариваемых изделий (например, трубы больших диаметров) требуют предварительного подогрева до 110 – 120 С0 непосредственно перед сваркой. К некоторым изделиям применяют определенные методы во время сварки. В этой статье мы расскажем, как проводится термообработка сварных швов уже готовых сваренных изделий.

1 / 1

Для чего нужна термообработка

В процессе сварки в металле свариваемых деталей происходят разнообразные процессы. Главные из которых это:

  • неравномерный прогрев и охлаждение различных зон;
  • фазовые преобразования в металле;
  • химическое взаимодействие с окружающим пространством.

Все эти процессы приводят к появлению местных напряжений, которые могут стать причиной возникновения трещин и, в тяжелых случаях, привести к полному разрушению изделия. От всех этих неприятностей поможет избавиться термообработка сварных соединений.

Виды обработки

Термообработка может производиться разными способами в различных режимах. В зависимости от химического состава и геометрических размеров изделия используют следующие виды термообработки.

Стабилизирующий отжиг

Изделие нагревается до температуры 970 градусов, и эта температура поддерживается в течение полутора часов. Далее происходит естественное охлаждение. Метод получил широкое распространение при термообработке высоколегированных сталей.

Термический отдых

Этот процесс предусматривает нагрев металла до 300 С0 с последующей выдержкой при этой температуре. Идеальное время выдержки два часа. Кроме снятия напряжения, этот способ снижает количество растворенного водорода в металле шва. Такой метод более всего может пригодиться для обработки изделий с толстыми стенками, где другие методы применить сложно.

Нормализация

Применяется при термической обработке труб малого диаметра. Такие трубы имеют тонкие стенки. В данном случае шов с участком трубы нагревают до 800 градусов и выдерживают около получаса. Таким образом, удается снять только часть напряжений, но это не главное. Главная цель этого вида обработки – придание металлу мелкозернистой однородной структуры.

Высокий отпуск

Подходит для сталей перлитного класса. Время обработки выбирается в пределах нескольких часов. Температуру нагрева доводят до 600 – 700 градусов. Такая обработка решает множество проблем для низколегированных сталей. Остаточное напряжение снимается практически полностью, исчезает закалочная структура.

Аустенизация

Самый высокотемпературный вид. Процессы идут при 1100 градусах в течение 120 – 180 минут. Далее проходит естественное остывание на воздухе. Применяется, в основном, на высоколегированных сталях, придавая им высокую пластичность при незначительных остаточных напряжениях.

Применение различных видов термообработки позволяет повысить прочность сварных швов, увеличить надежность изделий и значительно продлевает срок технической эксплуатации, способствуя повышению коррозионной стойкости металла.

Особенности процесса и применяемое оборудование

Термическая обработка швов требует различных технологий и оборудования. Существует три основных типа оборудования для термической обработки.

Радиационное оборудование — это наиболее простой, а значит, и самый распространенный вид оборудования. Нагрев изделия происходит за счет передачи тепла от нагретой нихромовой проволоки. Между проволокой и изделием прокладывают термостойкий электроизоляционный материал и постепенно увеличивают напряжение на нагревательном элементе (нихромовая проволока). Работа проходит намного быстрее, если нагревательная проволока уже изолирована, и нет необходимости каждый раз изолировать изделие.

Регулировка напряжения может осуществляться различными средствами: от простейших способов переключения отводов на обмотке понижающего трансформатора или устройства гасящих сопротивлений, до высокотехнологичных электронных преобразователей напряжения на тиристорах.

Газопламенное оборудование намного хлопотнее предыдущего вида. Согласитесь, что обеспечить подачу электрического питания намного проще, чем подачу газа. Такие же сложности с регулировкой процесса и контролем параметров. И еще проблематичнее выглядят возможности механизации или автоматизации термообработки сварных швов с применением газопламенного оборудования. Но есть у этого оборудования и одно неоспоримое преимущество – низкая стоимость работ. Это становится понятным при самом приближенном сравнении стоимости электроэнергии и газа.

Индукционные установки

Этот вид термообработки требует специального дорогостоящего оборудования и квалифицированного обслуживания. Промышленность выпускает как переносные индукционные установки, рассчитанные на обработку некрупных деталей в «полевых» условиях, так и многофункциональные гиганты, на основе которых создаются целые производственные участки.

На таких участках используют мощные индукционные установки, вырабатывающие высокочастотное напряжение. Это напряжение подаётся на провода, особым образом расположенные на обрабатываемом изделии. Протекающий в проводах ток, в свою очередь, вызывает появление токов в обрабатываемой детали, которые и разогревают её до нужной температуры.

Индукционные установки используются не только для термообработки сварных швов, но и для разогрева труб в процессе их изгибания. Таким образом, имеется возможность на одной промышленной линии осуществлять разогрев труб перед сваркой, непосредственно сварку труб и термообработку сварных швов. К этому участку обычно примыкает участок приварки фланцев и других деталей.

Необходимо отметить, что все эти процессы легко механизируются и автоматизируются. При наличии необходимого набора датчиков, компьютера и программного обеспечения можно создавать полностью автоматические производственные линии.

 

Линия термообработки сварных швов труб

Правильная нормализация сварного шва восстанавливает свойства растяжения ЗТВ.

Мировой спрос на энергию рос более или менее устойчиво в течение многих лет, и конца этому не видно. По данным Международного энергетического агентства, поставки нефти увеличились с 76,76 миллиона баррелей в сутки в сентябре 2001 года до 88,7 миллиона в июле 2011 года, т.е. на 16 процентов. 1 Аналогичным образом количество эксплуатируемых нефтяных вышек увеличилось с 2242 в 2001 году до 3397 в 2011 году, т.е. 52 процента. 2

Резкий рост спроса на энергию, в свою очередь, стимулировал спрос на трубы с продольным швом, производимые на непрерывных сварочных линиях — трубы, используемые для транспортировки нефти и газа под высоким давлением. Такая труба должна соответствовать строгим стандартам, в том числе установленным API. Чтобы соответствовать этим стандартам, важно понимать динамику нормализации шва. Также необходимо понимать тепло процессы обработки, использующие промежуточную закалку. Это связано с тем, что металлы и толстые стенки, используемые в трубопроводе, усложняют термическую обработку сварных швов.Параметры процесса, такие как время нагрева, частота и конструкция змеевика, также влияют на конечный результат. Хороший способ увидеть и понять эти влияния — использовать численное моделирование.

Зачем нужно термически обрабатывать сварные швы?

При высокочастотной сварке внешняя и внутренняя стороны стенки трубы подвергаются самым высоким температурам. Это создает зону термического влияния (HAZ) с характерной формой песочных часов. Нагрев также изменяет свойства при растяжении ЗТВ, снижая ее ударную вязкость (ее способность поглощать удар без разрушения).Термическая обработка сварного шва восстанавливает свойства прочности на растяжение. HAZ, возвращая их к уровням, равным уровням основного материала.

Однако современные высокопрочные низколегированные стали (HSLA) получают свою прочность отчасти из-за небольшого размера зерна — единственного механизма прочности, который положительно влияет на ударную вязкость и . Таким образом, эти стали имеют меньший размер зерна, чем те, которые можно получить при нормализующей термообработке, поэтому для труб более высоких марок может потребоваться более сложная термообработка. процессы.

Важно понимать, что во время термической обработки шва на линии более холодная часть трубы действует как теплоотвод. Соответственно, скорость охлаждения в основном является результатом внутренней теплопроводности в трубе. Правильно выполненная термообработка сварного шва обеспечивает зону нагрева с правильными нормализующими температурами; то есть при достаточно малой разнице температур между стенками интерьер и экстерьер. Кроме того, он должен покрывать всю ЗТВ на внутренней стене.

2D Численный анализ

Единственный способ понять, что происходит внутри стальной стены, — это использовать инструменты численного моделирования для исследования процесса отжига шва. Процесс можно представить в виде двухмерной модели поперечного сечения. Электромагнитные и тепловые вычисления должны быть коррелированы для анализа процесса. 3

Несколько факторов влияют на разницу температур между внешней и внутренней стороной стенки трубы при увеличении толщины стенки.Текущая глубина проникновения мала, пока температура остается ниже точки Кюри. Независимо от глубины проникновения, напряженность магнитного поля от индукционной катушки уменьшается с расстоянием. Поэтому удельная мощность выше на внешней стороне трубы, чем внутри, даже при температуре выше точки Кюри.

На рисунке 1 показано, как тепло проводится в стенке трубы на поздней стадии процесса нагрева. Труба действует как теплоотвод для нагретой зоны, а фазовое превращение происходит в разное время снаружи и внутри стены из-за разницы температур.Энергия, необходимая для преобразования, задерживает выравнивание температуры.

Потери тепла с внутренней поверхности трубы из-за излучения и конвекции способствуют разнице температур между внутренней и внешней поверхностями стенки. Это вызывает стационарную разницу температур, которую невозможно уравновесить за счет теплопроводности, и которая может стать значительной в толстостенной трубе.

Схема линий и отслеживание швов

Результат термообработки сварного шва также зависит от расположения линии.Поскольку пространство на мельницах часто ограничено, очень важно рассчитать длину рулона и расстояние между ними, чтобы достичь оптимальных результатов. Двухмерное моделирование процесса нормализации позволяет проверить схему, а также рассчитать охлаждающую часть процесса.

Рис. 1: На этом изотемпературном графике стрелки указывают направление теплопроводного теплового потока в стенке трубы.

Часто непрерывно сварная труба скручивается после сварки.Следовательно, сварной шов перемещается из положения «12 часов», когда он попадает в секцию нормализатора шва. Отслеживание шва необходимо для удержания катушек нормализатора шва в правильном положении. Есть два типа слежения: горизонтальное и орбитальное.

Горизонтальная система слежения имеет катушку с фиксированным минимальным расстоянием до положения трубы на 12 часов и перемещается только горизонтально из этого положения. Когда сварной шов отходит от положения «12 часов», расстояние соединения между сварным швом и катушкой увеличивается, что снижает эффективность катушки.Кроме того, катушка больше не расположена симметрично относительно трубки. Горизонтальный Системы слежения не подходят для больших отклонений или для более толстых стенок, обычно используемых в трубопроводе.

Орбитальные системы слежения удерживают катушки в одном и том же положении относительно сварного шва, когда шов отклоняется от положения на 12 часов. Это означает, что на схему нагрева не влияет перекручивание трубки или трубки. Нагрев оптимизируется в любом положении в диапазоне слежения. Нет необходимости в увеличении размера нагреваемой зоны (что также требует увеличения длины охлаждения).Если все сделано правильно, Орбитальное слежение обеспечивает правильную нормализацию сварного шва независимо от положения шва.

Проверка моделирования

Результаты бегущей строки показывают, что двухмерное моделирование полезно при проектировании компоновки линий. Конечно, окончательные параметры процесса должны быть точно настроены на линии для достижения наилучших результатов для различных размеров и марок материалов. Хорошо спроектированная линия необходима для производства труб с желаемой скоростью и качеством.

Артикул:

  1. Отчет о рынке нефти , Международное энергетическое агентство, республика.iea.org
  2. Мировое количество буровых установок, текущее и историческое значение , Baker Hughes Inc., www.bakerhughes.com
  3. Джон Инге Аспергейм и Леф Маркегард, «Оптимизация процесса отжига швов с помощью двухмерного моделирования», статья размещена на сайте www.efd-induction.com

Джон Инге Асперхейм и Лейф Маркегард — инженеры-исследователи и инженеры-конструкторы в EFD Induction, Bøleveien 10, P.O. Box 363 Sentrum, 3701 Skien, Norway, [email protected] , jia @ no.efdgroup.net , www.efd-induction.com

Руководство по простым методам консервирования мяса

Руководство по простым методам консервирования мяса


ХАРАКТЕРИСТИКИ ТЕРМИЧЕСКИХ КОНСЕРВОВ И МЯСНЫХ ПРОДУКТОВ

Достигнут продленный срок хранения термически обработанного мяса и мясных продуктов. за счет уменьшения роста или инактивации микроорганизмов за счет термического процесс.Основные этапы метода сохранения тепла:

  • поместить товар в тару (банка, стеклянная банка, пакеты из синтетики). материал или ламинат с алюминием), герметично закрытый после заполнения и непроницаемый для любых внешних веществ; и
  • подвергнуть герметичное изделие термической обработке с определенная комбинация температуры и времени.

ОБОРУДОВАНИЕ ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ

Термическая обработка или термическая обработка осуществляется путем погружения продуктов в варку. чаны или скороварки, содержащие горячую воду, пар или смесь и то и другое.Может выполняться под давлением в скороварках (ретортах, автоклавы) для достижения температур выше 100 ° C («стерилизация»). Стерилизация — самый важный и эффективный вид термической обработки, так как можно получить продукты, свободные от жизнеспособных микроорганизмов, и большинство из них продукты можно хранить без охлаждения. Напротив, температуры в простых чанах для варки («пастеризация») можно достичь температуры до 100 ° C. А определенное количество микроорганизмов сопротивляется этой умеренной термической обработке и полученные пастеризованные продукты, следовательно, должны храниться в контролируемые температуры (см. «Категории термообработанных консервов», с.57.

В простых ретортных плитах (автоклавах) давление создается прямой впрыск пара путем нагрева воды до температуры выше 100 ° C или комбинированным паровым и водяным отоплением. Реторта должна быть снабжена термометр, манометр и предохранительный клапан (рис. 30). Современное автоклавы могут также иметь вращающиеся барабаны, ускоряющие нагрев товары.

После термической обработки продукт необходимо как можно быстрее охладить, во избежание переваривания.Следовательно, эта операция выполняется в плита, налив холодной водой. Контакт холодной воды с паром заставляет последний конденсироваться с быстрым падением давления в реторте. Однако при термической обработке одновременно создается избыточное давление. в банках, банках или мешочках остается в течение определенного периода и может вызвать необратимая деформация или повреждение этих контейнеров. Следовательно, высокий перепад давления между плитой и внутренним давлением в следует избегать контейнеров.Обычно это достигается за счет взрыва сжатым воздухом в реторту или достаточным гидростатическим давлением введена охлаждающая вода.

РИС. 30.
Ретортная плита. 1. корпус, 2. крышка, 3. противовес, 4. гайки, 5. нагреватель, 6. выпускной клапан, 7. предохранительный клапан, 8. манометр, 9. клапан подачи воды 10. клапан подачи пара.

КОНТЕЙНЕРЫ ДЛЯ ТЕРМООБРАБОТАННЫХ КОНСЕРВОВ

Емкости для консервированных продуктов должны быть герметичными, чтобы избежать повторное заражение микрофлорой окружающей среды.Более того, никаких следов нежелательные вещества, которые может содержать упаковочный материал, такие как тяжелые металлы (свинец, олово) должны быть допущены к попаданию в продукт. В настоящее время большая часть термически консервированных продуктов находится в металлических контейнерах. (банки), другие упакованы в стеклянные банки или пластик или алюминий / пластик ламинированные пакеты.

Металлическая тара — это банок (жестяные банки), изготовленные из белой жести или безоловянной стали .Обычно они цилиндрические. Однако другие формы, например прямоугольные или Встречаются и банки грушевидной формы. Белая жесть состоит из стального листа, с двух сторон покрыт оловом. Стальной корпус обычно составляет от 0,22 до 0,28 мм в дюймах. толщина. Слой олова составляет от 0,385 до 3,08 мкм. Стальные безоловянные пластины имеют другие защитные покрытия, такие как хром, алюминий или никель, которые обычно даже тоньше, чем слои олова белой жести.

Банки (банки) обычно состоят из трех элементов, т.е.е. тело и два заканчивается. Подшивка торцов на синтетической подкладке. В концы крепятся к телу швами, выполненными прошивкой (закрытием) машина. Принцип сшивания показан на Рис.31. Правильное сшивание крайне важно для герметичности банки. Причины утечки повторное загрязнение, особенно при охлаждении. Это приведет к отеку банок во время хранения и создает риск пищевого отравления.

Для небольших банок, которые легко открываются, часто используется алюминий. Алюминий банки имеют глубокую вытяжку, т.е. корпус и нижний конец сформированы из цельного куска, и только верхний конец зашивается после операции заполнения. В преимущества алюминиевых банок — небольшой вес, устойчивость к коррозии, хорошая теплопроводность и возможность вторичной переработки, но эти банки нельзя паять или сварной. Они менее жесткие и более дорогие, чем листовая сталь.

Стеклянные банки реже используются для мясных продуктов из-за их хрупкости.Они состоят из стеклянного корпуса и металлической крышки. В быту стеклянные банки с часто используются стеклянные крышки. Закаточная панель металлической крышки имеет накладку из синтетический материал. Стеклянные крышки закрываются резиновым кольцом.

РИС. 31.
Принципы работы тазозавивки. (А) начальная стадия завивки; (B) полностью развитый керлинг; (C) затяжка шва. 1. закаточный патрон, 2. закаточный валок, 3. жестяная стенка, 4. оловянный конец, 5. закаточный валок, 6. подкладочная масса.

Контейнеры из синтетического материала или ламината из алюминия фольга с синтетическим материалом приобретает все большее значение в термической сохранности.Подсумки из термостойкого пластика, которые закрываются зажимом, обычно изготовлен из полиэстера (ПЭТФ) и используется для сосисок в рассоле или готовых к употреблению блюда. Из ламинированных пленок, например, полиэфир / полиэтилен (ПЭТФ / PE) или полиамид / полиэтилен (PA / PE), относительно жесткие контейнеры могут быть изготавливаются, как правило, методом глубокой вытяжки, которые используются для заполнения кусочками вяленая ветчина или другие мясные полуфабрикаты. Широко используется для небольших порций, особенно колбасной смеси, это круглые емкости, изготовленные из ламината. из алюминиевой фольги и полиэтилена (PE) или полипропилена (PP).ПЭ или ПП разрешить термосварку этих контейнеров, которые затем могут быть подвергается интенсивной термической обработке.

МЯСНЫЕ ПРОДУКТЫ ДЛЯ КОНСЕРВАНИЯ

Практически все мясные продукты, требующие термической обработки для приготовления потребление также подходят для сохранения тепла. Только мясные продукты которые не подвергаются какой-либо тепловой обработке перед употреблением, такие как сушеное мясо, сырая ветчина или сухие колбасы, естественно, не подходят для консервирование.Эти продукты сохраняются за счет низкого значения pH и / или воды. деятельность.

Следующие группы мясных продуктов, не употребляемые в свежем виде вареные, часто встречаются в виде консервов:

  • Вареная ветчина
  • сосиски с рассолом типа сосиски
  • Смесь колбасная типа болонская или печеночная
  • мясные продукты, такие как солонина, рубленая свинина и т. Д.
  • готовых блюд с мясными ингредиентами, такими как говядина в соусе, курица с рисом и др.
  • супы с мясными ингредиентами, такие как куриный суп, суп из бычьих хвостов и т. Д.

ОРГАНОЛЕПТИЧЕСКИЕ, ФИЗИКО-МИКРОБИОЛОГИЧЕСКИЕ АСПЕКТЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ

Интенсивность термообработки не только решающим образом влияет на инактивация микроорганизмов, а также органолептические качества товар. Есть изделия, которые проходят интенсивную температурную обработку. без существенных потерь качества. С другой стороны, другие продукты могут после стерилизации значительно ухудшаются вкус и консистенция.В этих случаях требуется менее интенсивная термическая обработка, но в то же время другие препятствиями, такими как низкое значение pH и / или активность воды или более низкий уровень хранения температура должна быть повышена для подавления роста бактерий.

Интенсивность термической обработки можно определить физически. В Термин, широко используемый в практических условиях, — это F-значение, с которым можно определить смертельное воздействие тепла на микроорганизмы. Термическая смерть время для различных микроорганизмов, рассчитанное при 121 ° C и выраженное в минут, используется в качестве справочного значения.

Время термической смерти спор Clostridium botulinum при 121 ° C составляет 2,45 минуты или, другими словами, значение F 2,45 необходимо, чтобы отключить все эти споры в продукте при 121 ° C. Споры других микроорганизмов более или менее термостойкие. Вегетативные клетки микроорганизмов обычно разрушается при температуре ниже 100 ° C и поэтому не играет никакой роли в расчетах F-значения (см. также «Категории термообработанных пресервы », с.57). Определение значения F при 121 ° C следующее:
F = 1: смертельное воздействие на микроорганизмы при 121 ° C через 1 минуту
F = 2 (3, 4 и т. Д.): Летальный эффект при 121 ° C на микроорганизмы после 90-110 2 (3, 4 и т. Д.) Минуты. В таблицах 2 и 3 приведены некоторые примеры. для значений F, полученных при различных комбинациях времени / температуры:

Таблица 2
F-значения, соответствующие различным температурам

95 ° C в минуту: F = 0.003
100 ° C в минуту: F = 0,008
105 ° C в минуту: F = 0,025
110 ° C в минуту: = 0,079
115 ° C в минуту: F = 0,251
121 ° C в минуту: F = 1,0
125 ° C в минуту: в минуту F = 2,51
130 ° C в минуту: F = 7.94

Таблица 3
F-значения в зависимости от температуры и времени

Для достижения F = 1 требуются следующие комбинации время-температура:
110 ° C в течение 12,5 минут или
116 ° C в течение 3 минут или
121 ° C в течение 1 минуты или
130 ° C в течение 0,13 минуты
Для достижения F = 4 необходимы следующие параметры:
110 ° C в течение 50 минут или
116 ° C в течение 12 минут или
121 ° C в течение 4 минут или
130 ° C в течение 0.5 минут
Для достижения F = 0,6 необходимы следующие параметры:
110 ° C в течение 7,5 минут или
116 ° C в течение 2 минут или
121 ° C в течение 0,6 минуты или
130 ° C в течение 0,08 минут

Летальный эффект может быть показан в уменьшении (в процентах) общего количество микроорганизмов, присутствующих в продукте.Уничтожение микроорганизмов растет экспоненциально, что означает, что чем выше исходная бактериальная нагрузка (с использованием той же комбинации времени и температуры), большее количество выживших бактерий.

Таблица 4
Степени дробления при термообработке

1 000
Остаточные микроорганизмы
Начальная бактериальная нагрузка (микроорганизмы / г) Скорость разрушения 90% Скорость разрушения 99% Скорость уничтожения 99.9%
10 миллионов 1 миллион 100 000 10 000
1 миллион 100 000 10 000 1 000
100000 100
10 000 1 000 100 10
1 000 100 10 1

Показана начальная бактериальная нагрузка. в таблице 4.

Таблица 4 демонстрирует важность надлежащей гигиены мяса. Очень Загрязненное сырье с бактериальной нагрузкой 10 миллионов на грамм будет даже после интенсивной термообработки все же давать конечные продукты с довольно ограниченным срок годности из-за высокой остаточной степени загрязнения.

Так как термообработка во многих случаях будет недостаточно интенсивной, чтобы уничтожить все споры, важно, чтобы банки охлаждали как можно быстрее после автоклавы и температура хранения, как правило, не превышает 20 — 25 ° С.

Характер консервированного при нагревании продукта, его pH, количество соли и др. отвердители и количество спор, а также время выдержки и температуры, определяют степень товарной стерильности и продукта безопасность. Было показано, что значение F, равное 4, для продуктов, консервированных при нагревании, будет гарантировать коммерческую стерильность. Продукты с F-значениями ниже этого уровня нужны дополнительные меры, такие как понижение pH или w или охлаждение хранение для их микробиологической безопасности.

Микроорганизмы имеют два неблагоприятных эффекта при неправильной обработке и сохранении тепла. товаров:

  • Органолептическое ухудшение из-за деградации белка;
  • пищевое отравление бактериями и / или токсинами.

Аспекты пищевого отравления требуют особой осторожности во время производства и хранение термообработанных пресервов с учетом того, что некоторые жаропрочные микроорганизмы способны производить опасные токсины, среди них Clostridium botulinum , которое может иметь фатальные последствия.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ F-ЗНАЧЕНИЙ

Периодически измеряя температуру продукта во время лечения, можно определить окончательное значение F. Очевидно, что во время термическая обработка температура продукта будет постоянно повышаться. Температура берется в центр емкости после каждой минуты нагрева лечение соответствует определенному F-значению (см. Таблицу 3). Эти частичные F-значения складываются (например, с помощью специальных таблиц, содержащих F-значения соответствует температурам от 90 ° C до 140 ° C), а сумма равна общая F-ценность продукта.

Точное значение F имеет особое значение для производителя, потому что:

  • обеспечивает соответствующую термическую обработку продукта, что позволяет избежать переварка или недоварка;
  • позволяет определить время хранения продукта.

На практике нет необходимости повторно рассчитывать F-значение для такая же партия перерабатывается на консервном заводе. Значение F можно определить один раз для каждой партии в зависимости от размера емкостей и интенсивности и продолжительность термической обработки.Если эти параметры остаются неизменными, F-значения изменению не подлежит.

КАТЕГОРИИ ТЕРМИЧЕСКИХ КОНСЕРВОВ

Пастеризованные продукты

Только легкая термическая обработка. Достигнутые температуры в продуктовом центре находятся в диапазоне от 82 ° C и ниже 100 ° C («пастеризация»). F-значение невозможно определить, оставаясь почти на нуле.

Инактивировано: большинство вегетативных микроорганизмов
Не инактивированы: споры Bacillus и Clostridium
Требуется хранение: непрерывная холодовая цепь (2–4 ° C), до шести месяцев

Вареные консервы

Термическая обработка только кипятком (без скороварки).

Достигаемая температура в продуктовом центре до 100 ° C. Низкое значение F.

Инактивировано: все вегетативные микроорганизмы
Не инактивированы: споры Bacillus и Clostridium
Требуется хранение: не выше 10 ° C в течение одного года. Споры не будут растут в этих условиях.

Консервы «Трехчетвертные»

Термическая обработка в скороварке. Достигнутые температуры в продукте центр между 108 и 112 ° C.F-значение от 0,6 до 0,8.

Инактивировано: все вегетативные микроорганизмы, споры Bacillus
Не инактивировано: споры Clostridium
Требуется хранение: не выше 15 ° C в течение одного года. Споры Clostridium
не будут расти в этих условиях.

Консервы «Full» стабильные при умеренных условиях

Интенсивная термическая обработка в скороварке. Температура достигнута в центр продукта составляет около 121 ° C.Значение F от 4 до 6 («стерилизованный продукт»).

Инактивировано: все микроорганизмы, кроме термофильных спор
Требуется хранение: температура окружающей среды (в течение одного года), но не тропическая условия (40 ° C и более).

Консервы «Full» стабильны в тропических условиях

Очень интенсивная термическая обработка с длительным периодом 121 ° C и выше в продуктовый центр. F-значение 12 и более.

Инактивировано: все микроорганизмы, включая термофильные споры
Требуется хранение: температура окружающей среды даже в тропических условиях (до четырех лет).

Консервы длительного хранения

Эта группа консервов отличается от ранее упомянутых, поскольку сохранение достигается не только термической обработкой, но и утилизацией другие средства для предотвращения микробиологического роста, такие как нитриты, недостаток воды активность и / или низкий pH. Этот комбинированный эффект имеет то преимущество, что полностью стабильный при хранении продукт при любых условиях окружающей среды, не подвергаясь интенсивная термическая обработка (менее 100 ° C) и без больших потерь в органолептические качества.

Консервы длительного хранения — довольно новая разработка в пищевом секторе и безусловно, приобретет особое значение в странах, где нет непрерывного холодная цепь.

Применяется термообработка разной интенсивности для разных продуктов. Избегайте порчи, которая варьируется от продукта к продукту. Продолжение В таблице приведены примеры того, как следует проводить термическую обработку. В этом контексте общим правилом является то, что продукты в небольших контейнерах могут проходят более интенсивную термическую обработку из-за более быстрого проникновения тепла.

Таблица 5
Рекомендуемая термическая обработка выбранных продуктов (температуры, которые должны быть достигнуты в продуктовом центре)

Консервы пастеризованные (68–80 ° C) F <0,6–0,8 110–115 ° C F> 4 121–140 ° C
Вареные окорока или свиные лопатки в больших банках (до до 16 фунтов или 7,3 кг) или в больших глубокой пластиковой упаковке (2–3 кг).

Сосиски в непроницаемой синтетической оболочке.

Готовые к употреблению блюда в пластиковых пакетах.

(Эти продукты не считаются коммерчески стерильными. Они подвергаются только обработке, достаточной для уничтожения вегетативных клеток. Поэтому для предотвращения прорастания спор требуется охлаждение.)

Смесь для колбас болонского типа в банках или банках.

Смесь печеночная или кровяная в банках или банках.

Мясной фарш, например, на обед в банках.

Сосиски в рассоле (стаканы, банки или полиэтиленовые пакеты).

Колбасная смесь, мясо для обеда, вареная ветчина в небольших банках или в небольших ламинированных алюминиевых контейнерах глубокой вытяжкой.

Тушенка (тара всех размеров).

Блюда, готовые к употреблению, с соусом (все размеры нагревателей).


Термическая обработка металла — Решения — Bodycote plc

  • Китайский (упрощенный)
  • Турецкий
  • Шведский
  • Польский
  • Голландский
  • итальянский
  • французский
  • финский
  • Испанский
  • Английский
  • Немецкий
  • Датский
  • Чешский
  • Язык
    • Китайский (упрощенный)
    • Турецкий
    • Шведский
    • Польский
    • Голландский
    • итальянский
    • французский
    • финский
    • Испанский
    • Английский
    • Немецкий
    • Датский
    • Чешский
  • Поиск
Поиск Технический глоссарий | Контакты | Локации Меню ≡ ╳
  • английский
    • 简体 中文
    • Чески
    • Данск
    • Nederlands
    • Суоми
    • Français
    • Deutsch
    • Italiano
    • Polski
    • Español
    • Свенска
    • Türkçe
  • Дом
  • Карьера
    • Возможности
    • Возможности (Северная Америка)
  • Сервисы
    • Термическая обработка
      • Цементационная закалка с последующей операцией закалки
        • Атмосферное науглероживание
        • Науглероживание под низким давлением (LPC)
        • Boriding
        • Карбонитрирование
      • Цементационная закалка без последующей операции закалки
        • Corr-I-Dur®
        • Плазменное азотирование / ионное азотирование
        • Нитроцементация
        • Газовое азотирование
        • Ферритное нитроцементация
        • Азотирование в псевдоожиженном слое / соляная ванна / нитроцементация
      • Закалка и отпуск
        • Нейтральное отверждение
        • Закалка Ausbay
        • Аустемперирование
        • Темперирование / закалка
        • Закалка пресса
        • Индукционная закалка
        • Двойное отверждение
        • Темперирование
      • Решение и возраст
        • Решение и возраст: алюминиевые сплавы
        • Решение и возраст: никелевые сплавы
        • Осадочное упрочнение: нержавеющие стали
      • Специальные процессы из нержавеющей стали (S 3 P)
      • Отжиг / нормализация
        • Отжиг
        • Перекристаллизация
        • Нормализация
        • Докритический отжиг / межкритический отжиг
        • Мягкий отжиг
      • Ионная имплантация
      • Снятие стресса
    • Соединение металлов
      • Печь / вакуумная пайка
      • Индукционная пайка
      • Электронно-лучевая сварка
      • Диффузионное соединение HIP
      • Водородная пайка
    • Поверхностная техника
      • Плазменный спрей
      • Покрытие для высокоскоростного кислородного топлива (HVOF)
      • Распыление при горении
      • Парофазный алюминид (VPA)
      • K-Tech
      • Жидкие покрытия
      • Анодирование
      • Электродуговая проволока
      • Керамические покрытия
      • Распыление пламенем
    • Горячее изостатическое прессование
      • Технологии Powdermet®
        • Powdermet® hybrid * с 3D-печатью
        • 3D-печать Powdermet®
        • Powdermet® — форма, близкая к конечной (NNS)
        • Powdermet® Селективная форма сетки поверхности (SSNS)
      • Услуги изостатического прессования
        • Уплотнение отливки
        • Облицовка HIP
        • HIP пайка
        • Простая форма
      • Услуги по поддержке HIP
        • Моделирование и анализ
        • Лабораторные услуги для HIP
  • Рынки
    • Автомобильная промышленность
      • Автомобиль / Легкий грузовик
      • Тяжелые грузовики
      • Мотоциклы
      • Автоспорт
    • Аэрокосмическая промышленность и оборона
      • Коммерческий самолет
      • Военный истребитель
      • Вертолет
      • Оружейная палата и боеприпасы
      • Космос
    • Энергия
      • Стационарные турбины
      • Ядерная
      • Нефти и газа
      • Возобновляемые источники энергии
    • Общепромышленный
      • Инструменты
      • Сельское и лесное хозяйство
      • Строительство и гражданское строительство
      • Добыча
      • Железнодорожный и морской
      • Потребительские товары
      • Электроника и телекоммуникации
      • Медицина, здоровье и окружающая среда
      • Еда и напитки
      • Химическая промышленность и бумага
      • Машиностроение
  • Новости и СМИ
    • пресс-релизы
    • Загрузки
    • Мультимедийные ресурсы
      • Изображений
    • Контакт для СМИ
    • Больше новостей
    • История металлургии
  • Корпоративная ответственность
    • Наш подход
    • Окружающая среда
    • Наша политика
    • Безопасность
    • Общество
    • Рабочее место
    • Гендерный разрыв в оплате труда
  • Инвесторам
    • Наши ценности
    • Наша стратегия
    • Наша производительность
    • Наш бизнес
      • Основные факты
      • Что мы делаем
      • Наша торговая площадка
      • Сегменты бизнеса
        • Подразделения ADE
        • Подразделения AGI
      • Обзор сектора термической обработки
    • Управление
      • Структура управления
      • Лидерство
      • Внутренний контроль и управление рисками
      • Политика открытых дверей
      • Наша политика
      • Где мы работаем
    • Наша доска
    • Отчеты и результаты
    • Финансовая информация
      • Пятилетний обзор
      • Отчет о прибылях и убытках группы
      • Бухгалтерский баланс
      • Денежный поток
    • Информация о цене акций и дивидендах
      • Подробная цена акций
      • Дивидендная история
      • Инструменты построения графиков
        • График цены акций
        • Доходы акционеров
      • Исторический калькулятор и справочник
      • Цена акции скачать
    • Нормативные объявления
    • Финансовый календарь
    • Презентации для инвесторов
    • Информация для акционеров
      • Информация о дивидендах
      • Формы акционеров
      • Детали годового общего собрания акционеров
      • Электронное голосование по доверенности
      • Акции
      • Основные акционеры
    • Контакты с инвестором и акционером

Закалка — Закалка и отпуск

  • Китайский (упрощенный)
  • Турецкий
  • Шведский
  • Польский
  • Голландский
  • итальянский
  • французский
  • финский
  • Испанский
  • Английский
  • Немецкий
  • Датский
  • Чешский
  • Язык
    • Китайский (упрощенный)
    • Турецкий
    • Шведский
    • Польский
    • Голландский
    • итальянский
    • французский
    • финский
    • Испанский
    • Английский
    • Немецкий
    • Датский
    • Чешский
  • Поиск
Поиск Технический глоссарий | Контакты | Локации Меню ≡ ╳
  • английский
    • 简体 中文
    • Чески
    • Данск
    • Nederlands
    • Суоми
    • Français
    • Deutsch
    • Italiano
    • Polski
    • Español
    • Свенска
    • Türkçe
  • Дом
  • Карьера
    • Возможности
    • Возможности (Северная Америка)
  • Сервисы
    • Термическая обработка
      • Цементационная закалка с последующей операцией закалки
        • Атмосферное науглероживание
        • Науглероживание под низким давлением (LPC)
        • Boriding
        • Карбонитрирование
      • Цементационная закалка без последующей операции закалки
        • Corr-I-Dur®
        • Плазменное азотирование / ионное азотирование
        • Нитроцементация
        • Газовое азотирование
        • Ферритное нитроцементация
        • Азотирование в псевдоожиженном слое / соляная ванна / нитроцементация
      • Закалка и отпуск
        • Нейтральное отверждение
        • Закалка Ausbay
        • Аустемперирование
        • Темперирование / закалка
        • Закалка пресса
        • Индукционная закалка
        • Двойное отверждение
        • Темперирование
      • Решение и возраст
        • Решение и возраст: алюминиевые сплавы
        • Решение и возраст: никелевые сплавы
        • Осадочное упрочнение: нержавеющие стали
      • Специальные процессы из нержавеющей стали (S 3 P)
      • Отжиг / нормализация
        • Отжиг
        • Перекристаллизация
        • Нормализация
        • Докритический отжиг / межкритический отжиг
        • Мягкий отжиг
      • Ионная имплантация
      • Снятие стресса
    • Соединение металлов
      • Печь / вакуумная пайка
      • Индукционная пайка
      • Электронно-лучевая сварка
      • Диффузионное соединение HIP
      • Водородная пайка
    • Поверхностная техника
      • Плазменный спрей
      • Покрытие для высокоскоростного кислородного топлива (HVOF)
      • Распыление при горении
      • Парофазный алюминид (VPA)
      • K-Tech
      • Жидкие покрытия
      • Анодирование
      • Электродуговая проволока
      • Керамические покрытия
      • Распыление пламенем
    • Горячее изостатическое прессование
      • Технологии Powdermet®
        • Powdermet® hybrid * с 3D-печатью
        • 3D-печать Powdermet®
        • Powdermet® — форма, близкая к конечной (NNS)
        • Powdermet® Селективная форма сетки поверхности (SSNS)
      • Услуги изостатического прессования
        • Уплотнение отливки
        • Облицовка HIP
        • HIP пайка
        • Простая форма
      • Услуги по поддержке HIP
        • Моделирование и анализ
        • Лабораторные услуги для HIP
  • Рынки
    • Автомобильная промышленность
      • Автомобиль / Легкий грузовик
      • Тяжелые грузовики
      • Мотоциклы
      • Автоспорт
    • Аэрокосмическая промышленность и оборона
      • Коммерческий самолет
      • Военный истребитель
      • Вертолет
      • Оружейная палата и боеприпасы
      • Космос
    • Энергия
      • Стационарные турбины
      • Ядерная
      • Нефти и газа
      • Возобновляемые источники энергии
    • Общепромышленный
      • Инструменты
      • Сельское и лесное хозяйство
      • Строительство и гражданское строительство
      • Добыча
      • Железнодорожный и морской
      • Потребительские товары
      • Электроника и телекоммуникации
      • Медицина, здоровье и окружающая среда
      • Еда и напитки
      • Химическая промышленность и бумага
      • Машиностроение
  • Новости и СМИ
    • пресс-релизы
    • Загрузки
    • Мультимедийные ресурсы
      • Изображений
    • Контакт для СМИ
    • Больше новостей
    • История металлургии
  • Корпоративная ответственность
    • Наш подход
    • Окружающая среда
    • Наша политика
    • Безопасность
    • Общество
    • Рабочее место
    • Гендерный разрыв в оплате труда
  • Инвесторам
    • Наши ценности
    • Наша стратегия
    • Наша производительность
    • Наш бизнес
      • Основные факты
      • Что мы делаем
      • Наша торговая площадка
      • Сегменты бизнеса
        • Подразделения ADE
        • Подразделения AGI
      • Обзор сектора термической обработки
    • Управление
      • Структура управления
      • Лидерство
      • Внутренний контроль и управление рисками
      • Политика открытых дверей
      • Наша политика
      • Где мы работаем
    • Наша доска
    • Отчеты и результаты
    • Финансовая информация
      • Пятилетний обзор
      • Отчет о прибылях и убытках группы
      • Бухгалтерский баланс
      • Денежный поток
    • Информация о цене акций и дивидендах
      • Подробная цена акций
      • Дивидендная история
      • Инструменты построения графиков
        • График цены акций
        • Доходы акционеров
      • Исторический калькулятор и справочник
      • Цена акции скачать
    • Нормативные объявления
    • Финансовый календарь
    • Презентации для инвесторов
    • Информация для акционеров
      • Информация о дивидендах
      • Формы акционеров
      • Подробнее о годовом Общем собрании акционеров

Термическая обработка

Термическая обработка — это метод, используемый для изменения физических, а иногда и химических свойств материала.Чаще всего применяется в металлургии. Термическая обработка также используется при производстве многих других материалов, таких как стекло. Термическая обработка включает использование нагревания или охлаждения, обычно до экстремальных температур, для достижения желаемого результата, такого как отверждение или размягчение материала. Методы термообработки включают отжиг, цементирование, дисперсионное упрочнение, отпуск и закалку. Примечательно, что хотя термин «термическая обработка» применяется только к процессам, в которых нагрев и охлаждение выполняются с конкретной целью преднамеренного изменения свойств, нагрев и охлаждение часто происходят случайно во время других производственных процессов, таких как горячая штамповка или сварка.

Термическая обработка металлов и сплавов

Металлические материалы состоят из микроструктуры мелких кристаллов, называемых «зернами» или кристаллитами. Природа зерен (то есть размер и состав зерна) является одним из наиболее эффективных факторов, которые могут определять общее механическое поведение металла. Термическая обработка обеспечивает эффективный способ управления свойствами металла, контролируя скорость диффузии и скорость охлаждения внутри микроструктуры.

Металлурги часто разрабатывают сложные схемы термической обработки для оптимизации механических свойств сплава. В аэрокосмической промышленности суперсплав может подвергаться пяти или более различным операциям термической обработки для достижения желаемых свойств. Это может привести к проблемам с качеством в зависимости от точности контроля температуры печи и таймера.

Отжиг

Отжиг — это метод, используемый для восстановления холодной обработки и снятия напряжений в металле.Отжиг обычно приводит к получению мягкого пластичного металла. Когда отожженной детали дают остыть в печи, это называется термообработкой «полный отжиг». Когда отожженная деталь вынимается из печи и охлаждается на воздухе, это называется «нормализующей» термообработкой. Во время отжига мелкие зерна рекристаллизуются с образованием более крупных зерен. В сплавах с дисперсионным твердением частицы растворяются в матрице, «растворяя» сплав.

Типичные процессы отжига включают «нормализацию», отжиг «снятия напряжения» для восстановления холодной обработки и полный отжиг.

Закалка и отпуск (закалка и отпуск)

Для закалки металл (обычно сталь или чугун) необходимо нагреть до аустенитной кристаллической фазы, а затем быстро охладить. В зависимости от сплава и других соображений (например, соображений максимальной твердости по сравнению с растрескиванием и деформацией) охлаждение может осуществляться принудительным воздухом или другим газом (например, азотом), маслом, полимером, растворенным в воде, или рассолом. При быстром охлаждении часть аустентита (в зависимости от состава сплава) превращается в мартенсит, твердую хрупкую кристаллическую структуру.Закаленная твердость металла зависит от его химического состава и метода закалки. Скорость охлаждения, от самой высокой до самой низкой, зависит от полимера (например, кремния), рассола, пресной воды, масла и нагнетаемого воздуха. Однако слишком быстрая закалка некоторых сталей может привести к растрескиванию, поэтому высокопрочные стали, такие как AISI 4140, следует закалывать в масле, инструментальные стали, такие как 2767 или h23, для горячего деформирования — закалку на воздухе, а низколегированные. или стали со средним пределом прочности, такие как XK1320 или AISI 1040, должны быть закалены в рассоле или воде.Однако такие металлы, как аустенитная нержавеющая сталь (304, 316) и медь, при закалке дают противоположный эффект; они отжигаются. Аустенитные нержавеющие стали необходимо подвергнуть закалке, чтобы они стали полностью устойчивыми к коррозии, поскольку они значительно затвердевают.

Незакаленный мартенсит, хотя и очень твердый и прочный, слишком хрупкий, чтобы его можно было использовать в большинстве случаев. Метод, позволяющий решить эту проблему, называется закалкой. В большинстве случаев требуется, чтобы закаленные детали были отпущены (термообработка при низкой температуре, часто триста градусов по Фаренгейту или сто пятьдесят градусов по Цельсию) для придания некоторой прочности.Более высокие температуры отпуска (могут достигать тридцати тысяч градусов по Фаренгейту, в зависимости от сплава и области применения) иногда используются для придания дополнительной пластичности, хотя при этом теряется некоторый предел текучести.

Дисперсионное твердение

Некоторые металлы классифицируются как «металлы с дисперсионным твердением». При закалке дисперсионно-твердеющего сплава его легирующие элементы будут захвачены раствором, что приведет к получению мягкого металла. Старение «растворенного» металла позволит легирующим элементам диффундировать через микроструктуру и образовать интерметаллические частицы.Эти интерметаллические частицы будут зарождаться и выпадать из раствора и действовать как армирующая фаза, тем самым повышая прочность сплава. Сплавы могут стареть «естественным образом», что означает, что осадки образуются при комнатной температуре, или они могут стареть «искусственно», когда осадки образуются только при повышенных температурах. В некоторых случаях естественным образом стареющие сплавы могут храниться в морозильной камере, чтобы предотвратить затвердевание до тех пор, пока не будут выполнены дальнейшие операции — например, сборка заклепок может быть проще с более мягкой деталью.

Примеры дисперсионно-твердеющих сплавов включают алюминиевый сплав серий 2000, 6000 и 7000, а также некоторые суперсплавы и некоторые нержавеющие стали.

Выборочная закалка

Некоторые методы позволяют различным областям одного объекта подвергаться различной термообработке. Это называется дифференциальным упрочнением. Часто встречается в высококачественных ножах и мечах. Китайский цзянь — один из самых ранних известных примеров этого, а японская катана — наиболее широко известный.Другой пример — непальские хукури.

См. Также

* Сплав
* Отжиг (металлургия)
* Индукционный нагрев
* Осадительное упрочнение
* Углеродистая сталь
* Закалка
* Индукционная закалка
* Карбонитрирование

Ссылки

Физическая металлургия

» «. Рид-Хилл, Роберт. 3-е издание. PWS Publishing, Бостон. 1994.

Внешние ссылки

* [ http: // www.metalimprovement.com/heat_hi.php Видео по основам термообработки ]

Фонд Викимедиа. 2010.

Что такое термическая обработка?

Процесс изменения физических, химических и механических свойств металла путем применения контролируемого нагрева и охлаждения известен как термическая обработка. Это процедура, которая применяется для улучшения или восстановления технологичности продукта. Термическая обработка чаще всего применяется в металлургии, производстве, горячей штамповке и сварке.

Worker

Термическая обработка может применяться как к сырью, так и к самому металлу, или к готовой продукции. Методология включает нагрев материалов до высоких температур для увеличения внутреннего напряжения. Затем происходит охлаждение при очень низкой температуре, процесс, который также известен как закалка.Это укрепляет структуру внутренней решетки. Он также придает зернам изящество с повышенной прочностью на разрыв.

Термическая обработка обычно проводится для размягчения, затвердевания и существенного изменения продукта. Размягчение снижает твердость материала, одновременно улучшая пластичность и сопротивление.Он повышает прочность, а также улучшает размер зерна. Это более широко известно как отжиг или нормализация. Обычно его проводят для восстановления пластичности и снятия напряжений металла внутри материала. Более поздние методы включают отпуск и закалку, которые делают материалы более жесткими и быстро охлаждают.

Закалка в основном проводится для стали, чтобы улучшить ее износостойкость и эффективность.Для проведения процесса закалки требуется достаточное содержание углерода и сплава. Когда он присутствует в достаточном количестве, сталь сразу закаляется. Однако при недостаточном содержании углерода можно использовать метод обогащения углеродом, который увеличивает содержание углерода в компонентах углеродистой стали.

Выборочная закалка — это разновидность процесса закалки, при которой разные участки подвергаются разным температурам.Это также известно как дифференциальное упрочнение. В основном он применяется для изготовления таких инструментов, как мечи, ножи и щипцы. Модификация материала — это метод термической обработки, который изменяет поведенческие свойства материала. В основном применяется на стали, он используется для увеличения срока службы и старения, а также прочности и надежности.

Термическая обработка чаще всего применяется к крупным деталям из углеродистой стали.Сталь хорошо поддается термической обработке благодаря своей исключительной управляемости и повышает коммерческую эффективность после применения термической обработки. Это делает термическую обработку стали широко популярным процессом в металлургической промышленности. Помимо стали, алюминий — еще один металл, широко применяемый в термической обработке. В отличие от стали, термическая обработка алюминия проводится в специально разработанных печах в строго контролируемых термических условиях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *