Формула углекислого газа в химии
Химическая, структурная и электронная формулы углекислого газа
Химическая формула: СО2.
Структурная формула: O = C = O
Электронная формула:
Молярная масса: 44,01 г/моль.
Физические свойства углекислого газа
При стандартных условиях – газ без цвета и запаха, с кисловатым вкусом. При атмосферном давлении не существует в жидком состоянии, при сильном охлаждении кристаллизуется в виде «сухого льда» – белой снегообразной массы. Температура сублимации равна –78 °С. При нормальных условиях в одном объеме воды растворяется 0,9 объемов углекислого газа.
Химические свойства углекислого газа
Является кислотным оксидом.
Качественная реакция – помутнение известковой воды (Ca(OH)2) за счет образования белого осадка карбоната кальция:
Углекислый газ образуется при гниении и горении органических веществ. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений.
В промышленности углекислый газ получают термическим разложением карбонатов:
В лаборатории – действием сильных кислот на карбонаты или гидрокарбонаты:
Примеры решения задач
Понравился сайт? Расскажи друзьям! | |||
Углекислый газ: формула, плотность, свойства, применение. Баллон для углекислоты
- Углекислый газ
- бесцветный газ с едва ощутимым запахом не ядовит, тяжелее воздуха. Углекислый газ широко распространен в природе. Растворяется в воде, образуя угольную кислоту Н
2CO3, придает ей кислый вкус. В воздухе содержится около 0,03% углекислого газа. Плотность в 1,524 раза больше плотности воздуха и равна 0,001976 г/см3 (при нулевой температуре и давлении 101,3 кПа). Потенциал ионизации 14,3В. Химическая формула – CO2.
Как получилось так, что у данного газа столько много терминов неизвестно, но в сварочном производстве, согласно ГОСТ 2601, используется термин «углекислый газ». В «Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением» принят термин «углекислота», а в ГОСТ 8050 — «двуокись углерода». Поэтому далее мы будем оперировать всеми этими понятиями.
Плотность двуокиси углерода зависит от давления, температуры и агрегатного состояния, в котором она находится. При атмосферном давлении и температуре -78,5°С углекислый газ, минуя жидкое состояние, превращается в белую снегообразную массу «сухой лед».
Под давлением 528 кПа и при температуре -56,6°С углекислота может находиться во всех трех состояниях (так называемая тройная точка).
Двуокись углерода термически устойчива, диссоциирует на окись углерода и кислород только при температуре выше 2000°С.
Жидкая двуокись углерода
- Жидкая двуокись углерода
Удельная масса жидкой двуокиси углерода значительно изменяется с температурой, поэтому количество углекислоты определяют и продают по массе. Растворимость воды в жидкой двуокиси углерода в интервале температур 5,8-22,9°С не более 0,05%.
Жидкая двуокись углерода превращается в газ при подводе к ней теплоты.
При нормальных условиях (20°С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа.
Впервые жидкую двуокись углерода получили в 1823 г. Гемфри Дэви (Humphry Davy) и Майкл Фарадей (Michael Faraday).
Сухой лед
- Твердая двуокись углерода (сухой лед)
- по внешнему виду напоминает снег и лед. Содержание углекислого газа, получаемого из брикета сухого льда, высокое — 99,93-99,99%. Содержание влаги в пределах 0,06-0,13%. Сухой лед, находясь на открытом воздухе, интенсивно испаряется, поэтому для его хранения и транспортировки используют контейнеры. Получение углекислого газа из сухого льда производится в специальных испарителях. Твердая двуокись углерода (сухой лед), поставляемая по ГОСТ 12162.
При чрезмерно быстром отборе газа, понижении давления в баллоне и недостаточном подводе теплоты углекислота охлаждается, скорость ее испарения снижается и при достижении «тройной точки» она превращается в сухой лед, который забивает отверстие в понижающем редукторе, и дальнейший отбор газа прекращается. При нагреве сухой лед непосредственно превращается в углекислый газ, минуя жидкое состояние. Для испарения сухого льда необходимо подвести значительно больше теплоты, чем для испарения жидкой двуокиси углерода — поэтому если в баллоне образовался сухой лед, то испаряется он медленно.
История открытия углекислого газа
Углекислый газ – это первый газ, который был описан как дискретное вещество. В семнадцатом веке, фламандский химик Ян Баптист ван Гельмонт (Jan Baptist van Helmont
Свойства углекислого газа были изучены намного позже в 1750г. шотландским физиком Джозефом Блэком (Joseph Black).
Он обнаружил, что известняк (карбонат кальция CaCO3) при нагреве или взаимодействии с кислотами, выделяет газ, который он назвал «связанный воздух». Оказалось, что «связанный воздух» плотнее воздуха и не поддерживает горение.
CaCO3 + 2HCl = СО2 + CaCl2 + H2O
Пропуская «связанный воздух» т.е. углекислый газ CO
Джозеф Блэк использовал этот опыт для доказательства того, что углекислый газ выделяется в результате дыхания животных.
CaO + H2O = Ca(OH)2
Ca(OH)2 + CO2 = CaCO3 + H2O
Способы получения углекислого газа
В статье «Как получить углекислый газ» рассказано все в мельчайших подробностях, здесь лишь скажем, что основными способами получения являются:
- из известняка;
- из газов при брожении спирта;
- из газов котельных;
- из газов производств химической отрасли.
Применение углекислого газа
Двуокись углерода чаще всего применяют:
- для создания защитной среды при сварке полуавтоматом;
- в производстве газированных напитков;
- охлаждение, замораживание и хранения пищевых продуктов;
- для систем пожаротушения;
- очистка сухим льдом от загрязнений поверхности изделий.
Применение углекислоты для сварки
Плотность углекислого газа достаточно высока, что позволяет обеспечивать защиту реакционного пространства дуги от соприкосновения с газами воздуха и предупреждает азотирование металла шва при относительно небольших расходах углекислоты в струе. Углекислый газ является активным газом, т.е. в процессе сварки он взаимодействует с металлом шва и оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие.
В настоящее время ввиду большого разбрызгивания металла сварочной ванны при сварке в углекислоте все чаще применяют сварочные смеси с аргоном. Производители сварочного оборудования не остались в стороне от даной проблемы и предусматривают специальный режим на сварочных полуавтоматах, при котором уменьшается эффект разбрызгивания. Еще один путь решения данной проблемы – это применение специальных спреев или жидкостей, которые не позволяют прикипать брызгам к металлу свариваемой детали. В любом случае применение любого из данных методов с лихвой окупит затраты времени и расходных материалов на удаление брызг путем механической зачистки.
Ранее препятствием для применения углекислоты в качестве защитной среды являлось образование дефектов в швах в виде пор. Поры вызывались кипением затвердевающего металла сварочной ванны от выделения окиси углерода (СО) вследствие недостаточной его раскисленности.
При высоких температурах углекислый газ диссоциирует с образованием весьма активного свободного, одноатомного кислорода:
Окисление металла шва выделяющимся при сварке из углекислого газа свободным кислородом нейтрализуется содержанием дополнительного количества легирующих элементов с большим сродством к кислороду, чаще всего кремнием и марганцем (сверх того количества, которое требуется для легирования металла шва) или вводимыми в зону сварки флюсами (полуавтоматическая сварка порошковой проволокой).
Как двуокись, так и окись углерода практически не растворимы в твердом и расплавленном металле. Свободный активный кислород окисляет элементы, присутствующие в сварочной ванне, в зависимости от их сродства к кислороду и концентрации по уравнению:
Мэ + О = МэО
где Мэ — металл (марганец, алюминий или др.).
Кроме того, и сам углекислый газ реагирует с этими элементами.
В результате этих реакций при сварке в углекислоте наблюдается значительное выгорание алюминия, титана и циркония, и менее интенсивное — кремния, марганца, хрома, ванадия и др.
Особенно энергично окисление примесей происходит при полуавтоматической сварке. Это связано с тем, что при сварке плавящимся электродом взаимодействие расплавленного металла с газом происходит при пребывании капли на конце электрода и в сварочной ванне, а при сварке неплавящимся электродом — только в ванне. Как известно, взаимодействие газа с металлом в дуговом промежутке происходит значительно интенсивнее вследствие высокой температуры и большей поверхности контактирования металла с газом.
Ввиду химической активности углекислого газа по отношению к вольфраму сварку в этом газе ведут только плавящимся электродом.
Вредность и опасность углекислого газа
Двуокись углерода нетоксична и невзрывоопасна. При концентрациях более 5% (92 г/м3) углекислый газ оказывает вредное влияние на здоровье человека, так как он тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м3 (0,5%).
Хранение и транспортировка углекислого газа
Углекислый газ поставляется по ГОСТ 8050. Для получения качественных швов используют газообразную и сжиженную двуокись углерода высшего и первого сортов.
Углекислоту транспортируют и хранят в стальных баллонах по ГОСТ 949 или цистернах большой емкости в жидком состоянии с последующей газификацией на заводе, с централизованным снабжением сварочных постов через рампы.
В стандартный баллон с водяной емкостью 40 л заливается 25 кг жидкой углекислоты, которая при нормальном давлении занимает 67,5% объема баллона и дает при испарении 12,5 м3 углекислого газа.
В верхней части баллона вместе с газообразной углекислотой скапливается воздух. Вода, как более тяжелая, чем жидкая двуокись углерода, собирается в нижней части баллона.
Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 10…15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров, ухудшая при сварке качество шва.
При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой двуокиси углерода газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого при отборе углекислого газа перед редуктором устанавливают подогреватель газа. Окончательное удаление влаги после редуктора производится специальным осушителем, наполненным стеклянной ватой и хлористым кальцием, силикогелием, медным купоросом или другими поглотителями влаги.
Баллон окрашен в черный цвет, с надписью желтыми буквами «УГЛЕКИСЛОТА».
Характеристики углекислого газа
Характеристики углекислого газа представлены в таблицах ниже:
Коэффициенты перевода объема и массы CO2 при Т=15°С и Р=0,1 МПа
Масса, кг | Объем газа, м3 |
---|---|
1,848 | 1 |
1 | 0,541 |
Коэффициенты перевода объема и массы CO2 при Т=0°С и Р=0,1 МПа
Масса, кг | Объем газа, м3 |
---|---|
1,975 | 1 |
1 | 0,506 |
Углекислый газ в баллоне
Наименование | Объем баллона, л | Масса газа в баллоне, кг | Объем газа (м3) при Т=15°С, Р=0,1 МПа |
---|---|---|---|
CO2 | 40 | 25,0 | 12,5 |
Благодаря этой таблице теперь можно легко дать ответы на вопросы, которые очень часто задают сварщики:
- Сколько углекислоты в 40 л баллоне?
Ответ: 12,5 м3 или 25,0 кг - Сколько весит баллон углекислоты?
Ответ:
58,5 кг — масса пустого баллона из углеродистой стали согласно ГОСТ 949;
25,0 — кг масса углекислоты в баллоне;
Итого: 58,5 + 25,0 = 83,5 кг вес баллона с углекислотой.
Химические свойства углекислого газа, реакции с другими веществами
Общие химические свойства углекислого газа: CO2 инертен, то есть химически не активен; при попадании в водный раствор легко вступает в реакции.
Большинство кислотных оксидов устойчивы к высоким температурам, но углекислота при их воздействии восстанавливается.
Взаимодействие с другими веществами:
1) Углекислота относится к кислотным оксидам, то есть в сочетании с водой образуется кислота. Однако угольная кислота неустойчива и распадается сразу. Эта реакция имеет обратимый характер:
СО2 + H2O ↔ CO2 × H2O (растворение) ↔ Н2СО3
Диоксид углерода + вода ↔ угольная кислота
Молекула угольной кислоты
2) При взаимодействии углекислого газа и соединений азота с водородом (аммиаком) в водном растворе происходит разложение до углеаммонийной соли.
2NH3 + CO2 + H2O = NH4HCO3
Аммиак + углекислота = гидрокарбонат аммония
Углеаммонийная соль
Полученное вещество часто используется в приготовлении хлеба и различных кондитерских изделий.
3) Ход некоторых реакций должен поддерживаться высокими температурами. Примером является производство мочевины при 130 °C и давлении 200 атм., схематически изображаемое так:
2NH3 + СО2 → (NH2)2СО + H2O
Аммиак + диоксид углерода → карбамид + вода
Также под воздействием температуры около 800 градусов протекает реакция образования оксида цинка:
Zn + CO2 → ZnO + CO
Оксид цинка
Цинк + двуокись углерода → оксид цинка + оксид углерода
4) Возможно уравнение с гидроксидом бария, при котором выделяется средняя соль.
Ba(OH)2+CO2 = BaCO3 + H2O
Гидроксид бария + углекислота = карбонат бария + оксид водорода.
Применяется для регулировки калориметров по теплоемкости. Также вещество используют в промышленности для производства красных кирпичей, синтетических тканей, фейерверков, гончарных изделий, плитки для ванн и туалетов.
5) Углекислый газ выделяется при реакциях горения.
Горение метана.
CH4 + 2O2 → CO2 + 2H2O + 891кДж
Горение газа на плите
Метан + кислород = углекислота + вода (в газообразном состоянии) + энергия
Горение этилена
C2H4 + 3O2 → 2CO2 + 2H2O + Q
Этилен + кислород = диоксид углерода + оксид водорода + энергия
Горение этана
2С2Н6 + 7О2 → 4CO2 + 6H2O + Q
Этан + кислород = двуокись углерода + вода + энергия
Горение этанола
C2H5OH + 3O2 = 3H2O + 2CO2 + Q
Молекула этанола
Этанол + кислород = вода + углекислота + энергия
6) Газ не поддерживает горения, этот процесс возможен только с некоторыми активными металлами, например, магнием.
2Mg + CO2 = C + 2MgO
Магний + углекислота = углерод + оксид магния.
MgO активно применяется при производстве косметических средств. Вещество используют в пищевой промышленности как пищевую добавку.
7) Двуокись углерода реагирует с гидроксидами с получением солей, которые существуют в двух формах, как карбонаты и бикарбонаты. Например, углекислый газ и гидроксид натрия, согласно формуле, образуют гидрокарбонат Na:
CO2 + NaOH → NaHCO3
диоксид углерода + гидроксид натрия → гидрокарбонат натрия.
Или же при большем количестве NaOH образуется карбонат Na с образованием воды:
CO2 + 2 NaOH → Na2CO3 + H2O
Диоксид углерода + гидроксид натрия → карбонат натрия + вода
Кислотно-щелочные реакции углекислоты используются на протяжении веков для затвердевания известкового раствора, что может быть выражено простым уравнением:
Ca(OH)2 + CO2 → CaCO3 + H2O
Гидроксид кальция + двуокись углерода → карбонат кальция + оксид водорода
8) В зелёных растениях играет важную роль в процессе фотосинтеза:
6CO2 + 6H2O → C6H12O6 + 6O2
Образование глюкозы
Диоксид углерода + вода → глюкоза + кислород.
9) Химические свойства углекислоты используются в промышленности при производстве соды, суть этого процесса можно выразить суммарным уравнением:
NaCl + CO2 + NH3 + H2O → NaHCO3 + NH4Cl
Хлорид натрия + Диоксид углерода + аммиак + вода → гидрокарбонат натрия + хлорид аммония
10) Фенолят Na разлагается при взаимодействии с углекислым газом, при этом малорастворимый фенол выпадает в осадок:
C6H5ONa + CO2 + H2O = C6H5OH + NaHCO3
Фенолят натрия + двуокись углерода + оксид водорода = фенол + гидрокарбонат натрия
11) Пероксид натрия и углекислый газ, взаимодействуя, образуют среднюю соль карбоната Na с выделением кислорода.
2Na2O2 + 2CO2 → 2N2CO3 + O2
Пероксид натрия + углекислота → карбонат натрия + кислород
Колба с пероксидом натрия
Образование углекислоты происходит при растворении в воде кальцинированной соды (стиральной соды).
NaHCO3 + H2O → CO2 + H2O + NaOH
Гидрокарбонат натрия + вода → углекислота + вода + гидроксид натрия
При этой реакции (гидролиз по катиону) образуется сильнощелочная среда.
12) CO2 вступает в реакцию с гидроксидом калия, последний образуется путем электролиза хлористого калия.
2KOH + CO2 → K2CO3 + H2O
Гидроксид калия + углекислота → карбонат калия + вода
13) Газ в силу своего строения не реагирует с благородными газами, то есть гелием, неоном, аргоном, криптоном, ксеноном, радоном, оганесоном.
Заключение
Мы привели большую часть химических реакций, в которых участвует CO2. Ученые всего мира пытаются решить проблему увеличения концентрации углекислоты в воздухе, не без помощи реакций с другими веществами, которые известны химикам. А какие химические формулы взаимодействия углекислого газа знаете вы?
Диоксид углерода — все про углекислый газ в нашей статье
Углекислый газ и мы: чем опасен СO2
Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.
Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед гипоксии – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.
Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.
Согласно выводам некоторых исследований, уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически снижается работоспособность, мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.
И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш эксперимент в школе показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.
Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от окислительного стресса, который разрушает клетки нашего организма.
Углекислый газ, свойства, получение и применение
Углекислый газ, свойства, получение и применение.
Углекислый газ – бинарное химическое соединение углерода и кислорода, имеющее формулу CO2.
Углекислый газ, формула, молекула, строение, состав, вещество
Физические свойства углекислого газа. Сухой лёд
Получение углекислого газа
Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа
Применение углекислого газа
Углекислый газ, формула, молекула, строение, состав, вещество:
Углекислый газ (диоксид углерода, двуокись углерода, углекислота, оксид углерода (IV), угольный ангидрид) – бесцветный газ, почти без запаха (в больших концентрациях с кисловатым «содовым» запахом).
Углекислый газ – бинарное химическое соединение углерода и кислорода, имеющее формулу CO2.
Химическая формула углекислого газа CO2.
Строение молекулы углекислого газа, структурная формула углекислого газа:
Углекислый газ тяжелее воздуха приблизительно в 1,5 раза. Его плотность при нормальных условиях составляет 1,98 кг/м3, по отношении к воздуху – 1,524. Поэтому скапливается в низких непроветриваемых местах.
Концентрация углекислого газа в воздухе (в атмосфере Земли) составляет в среднем 0,046 % (по массе) и 0,0314 % (по объему).
Углекислый газ вырабатывается в органах и тканях человека образуется в качестве одного из конечных продуктов метаболизма. Он переносится от тканей по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, уменьшается в капиллярной сети лёгких, и содержание его мало в артериальной крови. В выдыхаемом человеком воздухе содержится около 4,5% диоксида углерода, что в 60-110 раз больше, чем во вдыхаемом. Организм человека выделяет приблизительно 1 кг углекислого газа в сутки.
Углекислый газ растворяется в воде. В 100 граммах воды растворяется 0,3803 грамма CO2 при 16 °C, 0,3369 грамма CO2 – при 20 °C, 0,2515 грамма CO2 – при 30 °C. Растворяясь в воде, образует угольную кислоту Н2CO3. Растворим также в ацетоне, бензоле, метаноле и этаноле.
Термически устойчив при температурах менее 1000 °C. При температуре 1000 °C восстанавливается углем до оксида углерода (II).
При нормальном атмосферном давлении диоксид углерода не существует в жидком состоянии, существует только в твердом или газообразном состоянии. Твердая двуокись углерода при повышении температуры не плавится, а переходит (возгоняется) непосредственно из твёрдого состояния в газообразное. Твёрдую двуокись углерода также называют сухим льдом. Внешний вид сухого льда напоминает обычный лед, снегоподобную массу. При сублимации сухой лед поглощает около 590 кДж/кг (140 ккал/кг) теплоты.
Под давлением 35 000 атм. твердая углекислота становится проводником электрического тока.
Жидкий углекислый газ можно получить при повышении давления. Так, при температуре 20 °С и давлении свыше 6 МПа (~60 атм.) газ сгущается в бесцветную жидкость. При нормальных условиях (20 °С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа. Хранят и транспортируют углекислый газ, как правило, в жидком состоянии
Двуокись углерода негорюча, но в ее атмосфере может поддерживаться горение активных металлов, например, щелочных металлов и щелочноземельных – магния, кальция, бария.
Двуокись углерода нетоксична, невзрывоопасна.
Предельно допустимая концентрация двуокиси углерода в воздухе рабочей зоны не установлена, при оценке этой концентрации можно ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5% (об.) или 9,2 г/м (см. ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая. Технические условия»).
По степени воздействия на организм человека двуокись углерода относится к 4-му классу опасности по ГОСТ 12.1.007-76.
При концентрациях более 5% (92 г/м) двуокись углерода оказывает вредное влияние на здоровье человека, так как она тяжелее воздуха в полтора раза и может накапливаться в слабопроветриваемых помещениях у пола и в приямках, а также во внутренних объемах оборудования для получения, хранения и транспортирования газообразной, жидкой и твердой двуокиси углерода. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья.
Углекислый газ образуется при гниении и горении органических веществ, в результате вулканической деятельности. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Искусственными источниками образования углекислого газа являются промышленные выбросы и выхлопные газы автомобильного транспорта.
Углекислый газ легко пропускает излучение в ультрафиолетовой и видимой частях спектра, которое поступает на Землю от Солнца и обогревает её. В то же время он поглощает испускаемое Землёй инфракрасное излучение и является одним из парниковых газов, вследствие чего участвует в процессе глобального потепления.
Физические свойства углекислого газа:
Наименование параметра: | Значение: |
Химическая формула | CO2 |
Синонимы и названия иностранном языке | углерода двуокись (рус.) углерода диоксид (рус.) угольный ангидрид (рус.) оксид углерода (IV) carbon dioxide (англ.) |
Тип вещества | неорганическое |
Внешний вид | бесцветный газ |
Цвет | бесцветный |
Вкус | кисловатый вкус |
Запах | почти без запаха (в больших концентрациях с кисловатым «содовым» запахом) |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность (состояние вещества – твердое вещество, при -79 °C и атмосферном давлении 1 атм.), кг/м3 | 1561 |
Плотность (состояние вещества – твердое вещество, при -79 °C и атмосферном давлении 1 атм.), г/см3 | 1,561 |
Плотность (состояние вещества – жидкость, при -60 °C и атмосферном давлении 1 атм.), кг/м3 | 1190 |
Плотность (состояние вещества – жидкость, при -60 °C и атмосферном давлении 1 атм.), г/см3 | 1,19 |
Плотность (состояние вещества – жидкость, при -37 °C и атмосферном давлении 1 атм.), кг/м3 | 1101 |
Плотность (состояние вещества – жидкость, при -37 °C и атмосферном давлении 1 атм.), г/см3 | 1,101 |
Плотность (состояние вещества – жидкость, при 0 °C и атмосферном давлении 35,5 атм.), кг/м3 | 925 |
Плотность (состояние вещества – жидкость, при 0 °C и атмосферном давлении 35,5 атм.), г/см3 | 0,925 |
Плотность (состояние вещества – газ, при 0 °C и атмосферном давлении 1 атм.), кг/м3 | 1,9768 |
Плотность (состояние вещества – газ, при 0 °C и атмосферном давлении 1 атм.), г/см3 | 0,0019768 |
Температура сублимации (возгонки), °C | -78,5 |
Критическая температура*, °C | 31 |
Критическое давление, МПа | 7,387 |
Критический удельный объём, м3/кг | 0,468 |
Критическая точка | 31 °C, 7,38 МПа |
Тройная точка | −56,6 °C, 0,52 МПа |
Молярная масса, г/моль | 44,01 |
Растворимость в воде, г/100 г | 0,3803 при 16 °C, 0,3369 при 20 °C, 0,2515 при 30 °C |
Теплопроводность, Вт/(м·K) | 0,0166 |
Удельная теплоемкость, Дж/(кг·К) | 849 |
Удельная теплота испарения, кДж/кг | 379,5 |
Удельная теплота плавления, кДж/кг | 205 |
Стандартная энтальпия образования ΔH (при 298 К, для состояния вещества – газ), кДж/моль | -393,51 |
Стандартная энергия Гиббса образования ΔG (при 298 К, для состояния вещества – газ), кДж/моль | -394,38 |
Стандартная энтропия вещества S (при 298 К, для состояния вещества – газ) | 213,68 |
Стандартная мольная теплоемкость Cp (298 К, для состояния вещества – газ), Дж/(моль·K) | 37,11 |
Энтальпия плавления ΔHпл, кДж/моль | 8,37 |
Энтальпия возгонки ΔHвозг, кДж/моль | 25,23 |
Скорость звука в веществе (при 20°C, состояние среды – газ), м/с | 274,6 |
Давление паров, мм.рт.ст. | 0,000001 (при -186,4°C), 0,00001 (при -180,7°C), 0,0001 (при -174,3°C), 0,001 (при -166,8°C), 0,01 (при -158°C), 2,31 (при -130°C), 9,81 (при -120°C), 34,63 (при -110°C), 104,81 (при -100°C), 279,5 (при -90°C), 672,2 (при -80°C), 1486,1 (при -70°C), 3073,1 (при -60°C), 5127,8 (при -50°C), 7545 (при -40°C), 10718 (при -30°C), 14781 (при -20°C), 19872 (при -10°C), 26142 (при 0°C), 33763 (при 10°C), 42959 (при 20°C), 54086 (при 30°C) |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Получение углекислого газа:
В промышленности углекислый газ образуется в дымовых газах при сжигании различных органических и неорганических веществ или как побочный продукт химических процессов, например, при разложении природных карбонатов (доломита, известняка). Также углекислый газ как побочный продукт получают на установках разделения воздуха с целью получения чистого кислорода, азота и аргона.
В лабораторных условиях углекислый газ получают, например, в результате следующих химических реакций:
1. взаимодействия карбоната кальция и азотной кислоты:
CaCO3 + 2HNO3 → Ca(NO3)2 + CO2 + H2O,
2. в результате взаимодействия карбоната кальция с другими минеральными кислотами,
3. взаимодействия пищевой соды с лимонной кислотой или с кислым лимонным соком,
4. реакции горения углерода:
С + O2 → CO2.
Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа:
Диоксид углерода относится к кислотным оксидам, поэтому для него характерны следующие химические реакции:
1. реакция взаимодействия оксида углерода (IV) и водорода:
CO2 + 4H2 → CH4 + 2H2O (t ~ 200 °C, kat = Cu2O).
В результате реакции образуются метан и вода.
2. реакция взаимодействия оксида углерода (IV) и углерода:
CO2 + C ⇄ 2CO (t = 700-1000 °C).
В результате реакции образуется оксид углерода (II). Реакция протекает при взаимодействии углекислого газа с раскаленными углями.
3. реакция взаимодействия оксида углерода (IV) и магния:
CO2 + 2Mg → 2MgO + C (t ~ 500 °C).
В результате реакции образуются оксид магния и углерод.
4. реакция взаимодействия оксида углерода (IV) и гафния:
Hf + CO2 → HfC + HfO2 (t = 800-1000 °C).
В результате реакции образуются карбид гафния и оксид гафния.
5. реакция взаимодействия оксида углерода (IV) и германия:
Ge + CO2 → GeO + CO (t = 700-900 °C).
В результате реакции образуются оксид германия и оксид углерода (II).
6. реакция взаимодействия оксида углерода (IV) и цинка:
Zn + CO2 → ZnO + CO (t = 800-950 °C).
В результате реакции образуются оксид цинка и оксид углерода (II).
7. реакция взаимодействия оксида углерода (IV) и индия:
2In + CO2 → In2O + CO (t ~ 850 °C).
В результате реакции образуются оксид индия и оксид углерода (II).
8. реакция взаимодействия оксида углерода (IV) и циркония:
2Zr + CO2 → ZrC + ZrO2 (t = 800-100 °C).
В результате реакции образуются карбид циркония и оксид циркония.
9. реакция взаимодействия оксида углерода (IV) и вольфрама:
W + 2CO2 → WO2 + 2CO (t ~ 1200 °C).
В результате реакции образуются оксид вольфрама и оксид углерода (II).
10. реакция взаимодействия оксида углерода (IV) и оксида лития:
Li2O + CO2 → Li2CO3.
В результате реакции образуется карбонат лития.
11. реакция взаимодействия оксида углерода (IV) и оксида натрия:
Na2O + CO2 → Na2CO3 (t = 450-550 °C).
В результате реакции образуется карбонат натрия.
12. реакция взаимодействия оксида углерода (IV) и оксида калия:
K2O + CO2 → K2CO3 (t ~ 400 °C).
В результате реакции образуется карбонат калия.
13. реакция взаимодействия оксида углерода (IV) и оксида бария:
BaO + CO2 → BaCO3.
В результате реакции образуется карбонат бария.
14. реакция взаимодействия оксида углерода (IV) и оксида кальция:
CaO + CO2 → CaCO3.
В результате реакции образуется карбонат кальция.
15. реакция взаимодействия карбоната кальция, оксида углерода (IV) и воды:
CaCO3 + CO2 + H2O → Ca(HCO3)2.
В результате реакции образуется гидрокарбонат кальция.
16. реакция взаимодействия оксида углерода (IV) и оксида магния:
MgO + CO2 → MgCO3.
В результате реакции образуется карбонат магния.
17. реакция взаимодействия оксида углерода (IV) и оксида кремния (II):
SiO + CO2 → SiO2 + CO (t ~ 500 °C).
В результате реакции образуются оксид кремния (IV) и оксид углерода (II).
18. реакция взаимодействия оксида углерода (IV) и воды:
CO2 + H2O ⇄ H2CO3.
В результате реакции образуется угольная кислота.
19. реакция взаимодействия оксида углерода (IV) и гидроксида лития:
2LiOH + CO2 → Li2CO3 + H2O.
В результате реакции образуются карбонат лития и вода. В ходе реакции используется концентрированный раствор гидроксида лития.
20. реакция взаимодействия оксида углерода (IV) и гидроксида калия:
KOH + CO2 → KHCO3,
2KOH + CO2 → K2CO3 + H2O.
В первом случае в результате реакции образуются гидрокарбонат калия, во втором случае – карбонат калия и вода. Реакция протекает в первом случае в этаноле и используется разбавленный раствор гидроксида калия, во втором используется концентрированный раствор гидроксида калия.
21. реакция взаимодействия оксида углерода (IV) и гидроксида натрия:
NaOH + CO2 → NaHCO3,
2NaOH + CO2 → Na2CO3 + H2O.
В первом случае в результате реакции образуются гидрокарбонат натрия, во втором – карбонат натрия и вода. В ходе первой реакции используется разбавленный раствор гидроксида натрия, в ходе второй – концентрированный раствор гидроксида натрия.
22. реакция взаимодействия оксида углерода (IV) и гидроксида кальция:
Ca(OH)2 + CO2 → CaCO3 + H2O.
В результате реакции образуются карбонат кальция и вода.
23. реакция взаимодействия оксида углерода (IV) и гидроксида бария:
Ba(OH)2 + CO2 → BaCO3 + H2O.
В результате реакции образуются карбонат бария и вода.
24. реакция взаимодействия оксида углерода (IV) и метана:
CH4 + CO2 → 2CO + 2H2 (t = 800-900 °C, kat = NiO, нанесенный на Al2O3).
В результате реакции образуются оксид углерода (II) и вода.
25. реакция термического разложения оксида углерода (IV):
2CO2 → 2CO + O2 (t > 2000 °C).
В результате реакции образуются оксид углерода (II) и кислород.
26. реакция фотосинтеза:
6CO2 + 6H2O → C6H12O6 + 6O2 (hv, kat = хлорофилл).
В результате реакции образуются глюкоза и кислород.
Применение углекислого газа:
Углекислый газ используется во многих отраслях промышленности и быту:
– как пищевая добавка Е290 в качестве разрыхлителя в пищевом производстве и консерванта в алкогольных и безалкогольных газированных напитках, а также для газирования лимонада, газированной воды и других напитков;
– в системах пожаротушения и в огнетушителях;
– для создания защитной среды при сварке металлов;
– для охлаждения, замораживания и хранения пищевых продуктов при прямом и косвенном контакте с сухим льдом;
– для сушки литейных форм;
– в качестве активной среды углекислотного лазера.
Примечание: © Фото https://www.pexels.com, https://pixabay.com.
карта сайта
Коэффициент востребованности 1 076
Углекислый газ — это… Что такое Углекислый газ?
Диоксид углерода | |
---|---|
Другие названия | углекислый газ, углекислота, сухой лед(твердый) |
Формула | CO2 |
Молярная масса | 44.0095(14) г/моль |
В твердом виде | сухой лед |
Вид | бесцветный газ |
Номер CAS | [124-38-9] |
Свойства | |
Плотность и фазовое состояние | 1.98 кг/м³, при н.у.; 771 кг/м³, жидкий; 1512 кг/м³, твёрдый |
Растворимость в воде | 1.45 кг/м³ |
Удельная теплота плавления | 25.13 кДж/моль |
Точка плавления | −57 °C (216 K), под давлением |
Точка кипения | −78 °C (195 K), возгоняется |
Константа диссоциации кислоты (pKa) | 6.35 and 10.33 |
Вязкость | 0.07 пз при −78 °C |
Строение | |
Форма молекулы | линейная |
Кристаллическая решётка | кварцевидная |
Дипольный момент | ноль |
Техника безопасности | |
MSDS | External MSDS |
Главные опасности | удушающее, раздражающее |
NFPA 704 | 0 0 0
(жидкость) |
R-phrases | R: As, Fb |
S-phrases | S9, S23, S36 (ж) |
RTECS number | FF6400000 |
Страница дополнительных сведений | |
Структура и свойства | n, εr, и т. д. |
Спектр | УФ, ИК, ЯМР, Масс-спектроскопия |
Родственные соединения | |
Оксиды | CO C3O2 C2O CO3 |
Если не указано иное, данные даны для материалов при стандартных условиях (25 °C, 100 кПа) Infobox disclaimer and references |
Диокси́д углеро́да (двуо́кись углеро́да, углеки́слый газ, окси́д углеро́да (IV), диокси́д углеро́да, у́гольный ангидрид, углекислота́) — CO2, бесцветный газ со слегка кисловатым запахом и вкусом.
Концентрация углекислого газа в атмосфере Земли составляет 0,038 %.
- Не следует путать с Диоксин.
Свойства
Физические
Плотность при нормальных условиях 1,98 г/л. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.
Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.
Химические
По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом — реакция Кольбе) и нуклеофильного присоединения (например, с магнийорганическими соединениями).
Биологические
Диоксид углерода играет одну из главных ролей в живой природе, участвуя во многих процессах метаболизма живой клетки. Диоксид углерода получается в результате множества окислительных реакций у животных, и выделяется в атмосферу с дыханием. Углекислый газ атмосферы — основной источник углерода для растений. Однако, ошибкой будет утверждение, что животные только выделяют углекислый газ, а растения — только поглощают его. Растения поглощают углекислый газ в процессе фотосинтеза, а без освещения они тоже его выделяют.
Диоксид углерода не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье (см. Гиперкапния). Недостаток углекислого газа тоже опасен (см. Гипокапния)
Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса (см. Артериолы).
Получение
В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве закачивается в баллоны.
В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.
Применение
В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.
Жидкая углекислота (жидкая пищевая углекислота) — сжиженный углекислый газ, хранящийся под высоким давлением (~ 65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.
Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей и для производства газированной воды и лимонада. Углекислый газ используется в качестве активной среды при сварке проволокой так как при температуре дуги углекислота разлагается на угарный газ СО и кислород который в свою очередь и входит в заимодействие с жидким металом окисляя его. Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.
Твёрдая углекислота — сухой лёд — используется в качестве хладагента в ледниках и морозильных установках.
Методы регистрации
Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях — анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта.
Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф.
Концентрация
- Подземное животное голый землекоп отличается терпимостью к большим (смертельным для других животных) концентрациям углекислого газа.[1]
Примечания
См. также
Ссылки
Wikimedia Foundation. 2010.
формула, свойства и области применения :: SYL.ru
Диоксид углерода (углекислый газ) — часто встречающееся в природе соединение. Оно образуется при окислении различных органических веществ. Наиболее часто встречающиеся процессы образования этого соединения — гниение животных и растительных останков, горение различных видов топлива, дыхание животных и растений. Например, один человек за сутки выделяет в атмосферу около килограмма углекислого газа. Оксид и диоксид углерода могут образовываться и в неживой природе. Углекислый газ выделяется при вулканической деятельности, а также может быть добыт из минеральных водных источников. Углекислый газ находится в небольшим количестве и в атмосфере Земли.
Особенности химического строения данного соединения позволяют ему участвовать во множестве химических реакций, основой для которых является диоксид углерода.
Формула
В соединении этого вещества четырехвалентный атом углерода образовывает линейную связь с двумя молекулами кислорода. Внешний вид такой молекулы можно представить так:
Теория гибридизации объясняет строение молекулы диоксида углерода так: две существующие сигма-связи образованы между sp-орбиталями атомов углерода и двумя 2р-орбиталями кислорода; р-орбитали углерода, которые не принимают участие в гибридизации, связаны в соединении с аналогичными орбиталями кислорода. В химических реакциях углекислый газ записывается в виде: CO2.
Физические свойства
При нормальных условиях диоксид углерода представляет собой бесцветный газ, не обладающий запахом. Он тяжелее воздуха, поэтому углекислый газ и может вести себя, как жидкость. Например, его можно переливать из одной емкости в другую. Это вещество немного растворяется в воде – в одном литре воды при 20 ⁰С растворяется около 0,88 л CO2. Небольшое понижение температуры кардинально меняет ситуацию – в том же литре воды при 17⁰С может раствориться 1,7 л CO2. При сильном охлаждении это вещество осаждается в виде снежных хлопьев – образуется так называемый «сухой лед». Такое название произошло от того, что при нормальном давлении вещество, минуя жидкую фазу, сразу превращается в газ. Жидкий диоксид углерода образуется при давлении чуть выше 0,6 МПа и при комнатной температуре.
Химические свойства
При взаимодействии с сильными окислителями 4-диоксид углерода проявляет окислительные свойства. Типичная реакция этого взаимодействия:
С + СО2 = 2СО.
Так, при помощи угля диоксид углерода восстанавливается до своей двухвалентной модификации — угарного газа.
При нормальных условиях углекислый газ инертен. Но некоторые активные металлы могут в нем гореть, извлекая из соединения кислород и высвобождая газообразный углерод. Типичная реакция – горение магния:
2Mg + CO2 = 2MgO + C.
В процессе реакции образуется оксид магния и свободный углерод.
В химических соединениях СО2 часто проявляет свойства типичного кислотного оксида. Например, он реагирует с основаниями и основными оксидами. Результатом реакции становятся соли угольной кислоты.
Например, реакция соединения оксида натрия с углекислым газом может быть представлена так:
Na2O + CO2 = Na2CO3;
2NaOH + CO2 = Na2CO3 + H2O;
NaOH + CO2 = NaHCO3.
Угольная кислота и раствор СО2
Диоксид углерода в воде образует раствор с небольшой степенью диссоциации. Такой раствор углекислого газа называется угольной кислотой. Она бесцветна, слабо выражена и имеет кисловатый вкус.
Запись химической реакции:
CO2 + H2O ↔ H2CO3.
Равновесие довольно сильно сдвинуто влево – лишь около 1% начального углекислого газа превращается в угольную кислоту. Чем выше температура – тем меньше в растворе молекул угольной кислоты. При кипении соединения она исчезает полностью, и раствор распадается на диоксид углерода и воду. Структурная формула угольной кислоты представлена ниже.
Свойства угольной кислоты
Угольная кислота очень слабая. В растворах она распадается на ионы водорода Н+ и соединения НСО3— . В очень небольшом количестве образуются ионы СО3—.
Угольная кислота – двухосновная, поэтому соли, образованные ею, могут быть средними и кислыми. Средние соли в русской химической традиции называются карбонатами, а сильные – гидрокарбонатами.
Качественная реакция
Одним из возможных способов обнаружения газообразного диоксида углерода является изменение прозрачности известкового раствора.
Ca(OH)2 + CO2 = CaCO3↓ + H2O.
Этот опыт известен еще из школьного курса химии. В начале реакции образуется небольшое количество белого осадка, который впоследствии исчезает при пропускании через воду углекислого газа. Изменение прозрачности происходит потому, что в процессе взаимодействия нерастворимое соединение – карбонат кальция превращается в растворимое вещество – гидрокарбонат кальция. Реакция протекает по такому пути:
CaCO3 + H2O + CO2 = Ca(HCO3)2.
Получение диоксида углерода
Если требуется получить небольшое количество СО2, можно запустить реакцию соляной кислоты с карбонатом кальция (мрамором). Химическая запись этого взаимодействия выглядит так:
CaCO3 + HCl = CaCl2 + H2O + CO2 ↑.
Также для этой цели используют реакции горения углеродсодержащих веществ, например ацетилена:
СН4 + 2О2 → 2H2O + CO2.
Для сбора и хранения полученного газообразного вещества используют аппарат Киппа.
Для нужд промышленности и сельского хозяйства масштабы получения диоксида углерода должны быть большими. Популярным методом такой масштабной реакции является обжиг известняка, в результате которого получается диоксид углерода. Формула реакции приведена ниже:
CaCO3 = CaO + CO2 ↑.
Применение диоксида углерода
Пищевая промышленность после масштабного получения «сухого льда» перешла на принципиально новый метод хранения продуктов. Он незаменим при производстве газированных напитков и минеральной воды. Содержание СО2 в напитках придает им свежесть и заметно увеличивает срок хранения. А карбидизация минеральных вод позволяет избежать затхлости и неприятного вкуса.
В кулинарии часто используют метод погашения лимонной кислоты уксусом. Выделяющийся при этом углекислый газ придает пышность и легкость кондитерским изделиям.
Данное соединение часто используется в качестве пищевой добавки, повышающей срок хранения пищевых продуктах. Согласно международным нормам классификации химических добавок содержания в продуктах, проходит под кодом Е 290,
Порошкообразный углекислый газ – одно из наиболее популярных веществ, входящих в состав пожаротушительных смесей. Это вещество встречается и в пене огнетушителей.
Транспортировать и хранить углекислый газ лучше всего в металлических баллонах. При температуре более 31⁰С давление в баллоне может достигнуть критического и жидкий СО2 перейдет в сверхкритическое состояние с резким подъемом рабочего давления до 7,35 МПа. Металлический баллон выдерживает внутреннее давление до 22 МПа, поэтому диапазон давления при температурах свыше тридцати градусов признается безопасным.
Информация о качестве воды — свободный диоксид углерода в воде
Image Place Holder right
Углекислый газ (CO) присутствует в воздухе в количестве 0,03 процента по объему и 0,05 процента по массе. Почти все природные воды содержат углекислый газ, который они получают несколькими способами. Когда дождь падает в воздух, он поглощает часть этого газа.
Достигнув земли, дождевая вода, которая теперь слегка кислая, поглотит дополнительное количество углекислого газа, если она пройдет через гниющую растительность.В то же время диоксид углерода становится угольной кислотой. Если теперь вода проходит через известняковые образования, содержащаяся в ней угольная кислота вступает в реакцию с известняком с образованием растворимого бикарбоната кальция. В этом процессе угольная кислота частично нейтрализуется.
С другой стороны, если вода проходит через горные породы, такие как гранит, такой реакции не происходит. Угольная кислота не нейтрализуется. Он действует как угольная кислота, пока не попадет на поверхность, где может вызвать коррозию, если ее не нейтрализовать.
Если природа или химические вещества не нейтрализуют углекислоту, это вызовет коррозию как медных, так и оцинкованных систем водопровода. В тех частях страны, где проблема широко распространена, она серьезна, поскольку может привести к серьезным повреждениям сантехнического оборудования. Углекислый газ вместе с угольной кислотой в первую очередь является проблемой для воды, содержащей относительно низкие концентрации минералов. В такой воде недостаточно щелочных солей, чтобы нейтрализовать действие угольной кислоты.
Самый простой способ удаления угольной кислоты — пропустить воду через резервуар, содержащий известняковую крошку. Нейтрализующий фильтр этого типа воздействует на угольную кислоту так же, как и на подземные известняковые образования. Известняк в фильтре реагирует с угольной кислотой с образованием бикарбоната кальция. Таким же образом образуется меньшее количество бикарбоната магния. Примечание: для этой цели подходят не все формы известняка. Чрезмерно мягкий материал может разрушиться с образованием твердой массы и заблокировать фильтр.Лучшие виды — твердые, прочные гранулы, которые сохраняют свою физическую структуру даже при растворении.
Другой тип материала, используемого в этом процессе нейтрализации, — это оксид магния. Хотя эта процедура действительно увеличивает жесткость воды и увеличивает щелочные соли, она эффективно нейтрализует значительное количество угольной кислоты при относительно низкой стоимости.
Там, где встречаются высокие концентрации углекислого газа, в воду можно добавлять раствор кальцинированной соды карбоната натрия (Na2C03).Угольная кислота и карбонат натрия реагируют напрямую с образованием бикарбоната натрия. Преимущество этого метода обработки заключается в том, что вода не становится жесткой. Также он особенно эффективен там, где необходимо удалить углекислоту из больших объемов воды. Этот метод, как мы видели, имеет тот недостаток, что требует большего внимания при приготовлении и поддержании правильного корма.
Если воду получают из частной скважины, можно использовать небольшой поршневой насос для подачи раствора кальцинированной соды в воду.Обычно такие насосы подключаются для работы в сочетании с работой скважинного насоса. Это позволяет дозировать раствор с хорошей степенью точности.
Если частная водопроводная система не используется для подвода воды к бытовым линиям, необходимо другое устройство для кормления. Однако конструкция таких устройств ограничивается только изобретательностью производителей насосов и монтажного персонала.
Растворы кальцинированной соды необходимо добавлять в воду перед резервуаром или смесительным устройством какого-либо типа.Это необходимо для обеспечения разумно постоянных концентраций в обрабатываемой воде. Тип резервуара высокого давления, который используется в большинстве частных систем водоснабжения, подходит для этой цели.
.диоксида углерода | Определение, формула, применение и факты
Двуокись углерода , (CO 2 ), бесцветный газ со слабым резким запахом и кислым вкусом. Это один из наиболее важных парниковых газов, связанных с глобальным потеплением, но он является второстепенным компонентом атмосферы Земли (примерно 3 объема на 10000), образуется при сгорании углеродсодержащих материалов, при ферментации и дыхании животных и используется растениями при фотосинтезе углеводов.Присутствие газа в атмосфере удерживает часть получаемой Землей лучистой энергии от возврата в космос, вызывая так называемый парниковый эффект. В промышленности он восстанавливается для множества различных применений из дымовых газов, как побочный продукт при получении водорода для синтеза аммиака, из печей для обжига извести и других источников.
фотосинтез Схема фотосинтеза, показывающая, как вода, свет и углекислый газ поглощаются растением с образованием кислорода, сахаров и других углекислых газов. Британская энциклопедия, Inc.Британская викторина
Ветер и воздух: факт или вымысел?
Фермеры сажают ветрозащитные полосы в основном для украшения.
Углекислый газ был признан в начале 17 века отличным от других газом бельгийским химиком Яном Баптистой ван Гельмонтом, который обнаружил, что он является продуктом брожения и сгорания.Он разжижается при сжатии до 75 кг на квадратный сантиметр (1071 фунт на квадратный дюйм) при 31 ° C (87,4 ° F) или до 16–24 кг на квадратный см (230–345 фунтов на квадратный дюйм) при температуре от –23 до — 12 ° C (от -10 до 10 ° F). К середине 20-го века большая часть углекислого газа продавалась в жидком виде. Если жидкости позволяют расшириться до атмосферного давления, она охлаждается и частично замерзает до снежного твердого вещества, называемого сухим льдом, которое сублимируется (переходит непосредственно в пар без таяния) при -78,5 ° C (-109,3 ° F) при нормальном давлении. Атмосфера.
При обычных температурах углекислый газ практически не реагирует; выше 1700 ° C (3100 ° F) он частично разлагается на окись углерода и кислород. Водород или углерод также преобразуют его в окись углерода при высоких температурах. Аммиак реагирует с диоксидом углерода под давлением с образованием карбамата аммония, затем мочевины, важного компонента удобрений и пластмасс. Двуокись углерода слабо растворяется в воде (1,79 объема на объем при 0 ° C и атмосферном давлении, большие количества при более высоком давлении), образуя слабокислый раствор.Этот раствор содержит двухосновную кислоту, называемую угольной кислотой (H 2 CO 3 ).
Двуокись углерода используется в качестве хладагента, в огнетушителях, для надувания спасательных плотов и спасательных жилетов, взрыва угля, вспенивания резины и пластмасс, стимулирования роста растений в теплицах, иммобилизации животных перед забоем и в газированных напитках.
Britannica Premium: удовлетворение растущих потребностей искателей знаний. Получите 30% подписки сегодня. Подпишись сейчасГорящий магний продолжает гореть в двуокиси углерода, но этот газ не поддерживает горение большинства материалов.Длительное воздействие на людей 5-процентной концентрации углекислого газа может привести к потере сознания и смерти.
.Катализатор, превращающий диоксид углерода в монооксид углерода в воде
Шаровидная модель двуокиси углерода. Кредит: Википедия.(Phys.org) — Чистая энергия, или энергия, поступающая из возобновляемых источников, представляет интерес для развивающихся стран. Один из путей к чистой энергии — использование солнечной энергии и преобразование ее в электрическую, что можно сделать с помощью химического процесса, называемого Фишером-Тропшем.В этом процессе газообразный оксид углерода и водород преобразуются в жидкие углеводороды, которые затем можно использовать в качестве топлива.
Чтобы воспользоваться преимуществами этого потенциального источника топлива за счет использования возобновляемого источника, диоксид углерода должен быть преобразован в монооксид углерода таким образом, чтобы это было практично в промышленном отношении.Эта реакция требует катализатора для получения количественного выхода монооксида углерода. Кроме того, эту реакцию обычно проводят в неводных растворителях, что затрудняет промышленные процессы. Сирил Костентин, Марк Робер, Жан-Мишель Саван и Арно Татен из Лаборатории электрохимии молекулера, Парижский университет Дидро, Сорбонна Париж-Сите, Unité Mixte de Recherche Université — CNRS разработали катализатор, который превращает углекислый газ в окись углерода в ближайшем будущем. -количественные урожаи в воде.Этот катализатор также позволяет регулировать соотношение диоксида углерода к водороду, контролируя pH системы. Их работа опубликована в Proceedings of the National Academy of Science .
Превращение диоксида углерода в монооксид углерода требует наличия катализатора, препятствующего образованию энергетически неблагоприятного анион-радикала (CO 2 • — ). Порфирины железа являются желаемым кандидатом в качестве катализатора, поскольку железо можно восстановить с Fe (I) до Fe (0) с помощью электрохимии.Fe (0) может затем связываться с нежелательным промежуточным анион-радикалом, что позволяет производить монооксид углерода. Однако порфирины не растворяются в воде. Кроме того, кислота способствует каталитической реакции, но присутствие кислоты также создает риск образования газообразного водорода. Образование монооксида углерода и газообразного водорода является конкурентным, и, следовательно, чем больше производится газообразного водорода, тем ниже выход монооксида углерода.
Предыдущие исследования показали, что фенолы являются хорошим кандидатом для получения кислых протонов, не способствуя образованию газообразного водорода.Авторы решили включить фенольные группы в структуру порфиринов. Однако модифицированный фенолом катализатор все еще был нерастворим в воде. Чтобы преодолеть это, Костентин и др. включил пара-замещенный триметиламин в фенольные группы. Этот конечный продукт представляет собой водорастворимый модифицированный порфирин.
Циклические вольтамперометрические исследования их катализатора в отсутствие CO 2 показали три волны, характеристики трех степеней окисления железа.Представляет интерес волна, представляющая окисление Fe (I) до Fe (0). Fe (0) необходим для катализирования реакции превращения CO 2 в CO. Циклические вольтамперометрические исследования катализатора в присутствии CO 2 показывают большое увеличение тока, что указывает на каталитическую активность.
Циклические вольтамперометрические и препаративные исследования электролиза прояснили механизм реакции и продемонстрировали зависимость реакции от pH. Первое исследование электролиза длилось четыре часа, в течение которого CO 2 добавляли к водному раствору катализатора при -0.97 В против NHE. PH увеличивали с помощью КОН. В полученных продуктах преобладающим продуктом был CO (90%) с небольшим количеством H 2 (7%), а также другие побочные продукты. Второе исследование в течение более длительного периода времени, но при потенциале -0,87 В по сравнению с NHE, привело к почти количественному производству CO. Дополнительные исследования pH показали, что при более низком pH образуется больше H 2 .
Хотя необходимо провести дополнительные кинетические исследования, авторы полагают, что при нейтральном pH образование CO имеет конкурентное преимущество перед образованием H 2 CO 3 , что приводит к образованию H 2 .Хотя порфирины обычно катализируют образование H 2 , получение H 2 CO 3 является энергетически невыгодным и кинетически медленным с этим конкретным катализатором.
Наконец, Costentin et al. оценили перенапряжение и частоту оборота своего катализатора, используя методы, о которых они ранее сообщали, в которых перенапряжение и частота оборачиваемости связаны друг с другом через каталитический график Тафеля. Эти графики позволяют сравнивать и анализировать катализаторы на основе внутренних химических свойств, а также минимизировать эффекты побочных реакций.Используя каталитический график Тафеля, они смогли оценить максимальную частоту оборота для своего катализатора на уровне 10 7 с -1 . Кроме того, графики Тафеля, сравнивающие их катализатор с другими катализаторами в апротонных растворителях, показали, что их модифицированный порфирин является лучшим катализатором этой реакции.
Хотя необходимы дополнительные исследования, чтобы понять задействованный механизм, Costentin, et al. сообщают о новом катализаторе, который способен превращать CO 2 в CO с почти количественным выходом в нейтральной водной среде.Это открытие является ключевым шагом в процессе использования возобновляемого источника CO 2 и его преобразования в пригодный для использования источник энергии.
Долгоживущий катализатор облегчает первые шаги на пути к маломасштабному генератору водорода.
Дополнительная информация: «Эффективный и селективный молекулярный катализатор электрохимического превращения CO2 в CO в воде» PNAS , DOI: 10.1073 / пнас.1507063112
Аннотация
Замена четырех парафенильных водородов тетрафенилпорфирина железа триметиламмонио группами дает водорастворимую молекулу, способную катализировать электрохимическое превращение диоксида углерода в монооксид углерода. Реакция, проводимая в воде с нейтральным pH, образует почти исключительно монооксид углерода с очень небольшим образованием водорода, несмотря на частичное уравновешивание CO2 с угольной кислотой — кислотой с низким pKa. Этот селективный молекулярный катализатор обладает хорошей стабильностью и высокой частотой оборота.Исходя из этого, заданный состав смесей CO – h3 может быть получен путем регулирования pH раствора, при необходимости добавляя электроактивный буфер. Разработке этих стратегий будет в значительной степени способствовать тот факт, что человек работает в воде. То же самое относится к объединению катодного отсека с анодом, вырабатывающим протоны, посредством подходящего сепаратора.
© 2015 Phys.орг
Ссылка : Катализатор, превращающий диоксид углерода в моноксид углерода в воде (3 июня 2015 г.) получено 24 августа 2020 с https: // физ.org / news / 2015-06-Catalyst-углекислый-моноксид.html
Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, нет часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.
.Углекислый газ в атмосфере находится на рекордно высоком уровне. Вот что вам нужно знать.
Фотография Робба Кендрика, Nat Geo Image Collection
Прочитать подпись
Пар и дым поднимаются из градирен и дымовых труб электростанции.
Фотография Робба Кендрика, Nat Geo Image Collection
Углекислый газ, ключевой парниковый газ, который вызывает глобальное изменение климата, продолжает расти каждый месяц.Узнайте, какую опасную роль играют он и другие газы.
Удерживая тепло от солнца, парниковые газы сохраняют климат Земли пригодным для жизни людей и миллионов других видов. Но сейчас эти газы вышли из равновесия и угрожают кардинально изменить, какие живые существа могут выжить на этой планете и где.
Атмосферные уровни двуокиси углерода — наиболее опасного и распространенного парникового газа — находятся на самом высоком уровне, когда-либо зарегистрированном.Уровни парниковых газов настолько высоки в первую очередь потому, что люди выбрасывают их в воздух, сжигая ископаемое топливо. Газы поглощают солнечную энергию и удерживают тепло близко к поверхности Земли, не позволяя ему улетучиваться в космос. Это удержание тепла известно как парниковый эффект.
Корни концепции парникового эффекта уходят в XIX век, когда французский математик Жозеф Фурье в 1824 году вычислил, что Земля была бы намного холоднее, если бы на ней не было атмосферы. В 1896 году шведский ученый Сванте Аррениус первым связал повышение концентрации углекислого газа в результате сжигания ископаемого топлива с эффектом потепления.Почти столетие спустя американский ученый-климатолог Джеймс Э. Хансен засвидетельствовал Конгрессу, что «парниковый эффект был обнаружен и сейчас меняет наш климат».
Сегодня «изменение климата» — это термин, который ученые используют для описания сложных сдвигов, вызванных концентрацией парниковых газов, которые в настоящее время влияют на погодные и климатические системы нашей планеты. Изменение климата включает в себя не только повышение средних температур, которое мы называем глобальным потеплением, но и экстремальные погодные явления, изменение популяций и мест обитания диких животных, повышение уровня моря и ряд других воздействий.
Климат 101: причины и следствия Климат, безусловно, меняется.Но что вызывает это изменение? И как повышение температуры влияет на окружающую среду и нашу жизнь?
Правительства и организации во всем мире, такие как Межправительственная группа экспертов по изменению климата (МГЭИК), орган Организации Объединенных Наций, который отслеживает последние научные данные об изменении климата, измеряет парниковые газы, отслеживает их воздействие и внедряет решения.