Металлы и сплавы. Таблицы плотности металлов и сплавов
Каждый школьник, который знаком с таблицей Менделеева, знает, что количество металлов в ней составляет большую часть химических элементов. Одной из важных физических характеристик для них является плотность. Рассмотрим эту величину в статье и приведем таблицу плотности металлов и сплавов.
Что такое плотность
Если взять одинаковые объемы пластмассы и стали, то первая будет гораздо легче, чем вторая. Наоборот, кусок пластмассы будет иметь точно такой же вес, как кусок стали, если он будет намного больше его по объему. Причиной указанных различий является такая физическая величина, как плотность. Формула для ее вычисления имеет следующий вид:
ρ = m/V.
Здесь m — масса тела, V — его объем. Греческая буква ρ (ро) часто используется для обозначения плотности. Из формулы следует, что единицами измерения величины в СИ являются килограммы на кубический метр (кг/ м3). Также могут использоваться внесистемные единицы, например, г/ см3 или г/ л (для жидкостей).
Что такое металлы
Прежде чем приводить таблицу плотности металлов, поясним, о каком веществе идет речь. Металлические материалы отличаются от неметаллов высокими тепло- и электропроводностью и пластичностью. Это главные отличительные их свойства. Также существуют второстепенные свойства, например, наличие характерного металлического блеска, ковкость и низкая электроотрицательность для их атомов.
Все металлы при нормальных условиях существуют в твердом виде. Исключение составляет лишь ртуть, для которой температура кристаллизации составляет -39oC. Твердый металл существует в виде кристаллической решетки. Последняя представляет собой совокупность атомов, которые определенным геометрическим способом организованы в пространстве. Любой чистый (однокомпонентный) металлический материал существует в одном из трех типов кристаллических решеток при данных условиях. Это следующие решетки:
- Гранецентрированная кубическая (ГЦК).
- Объемно-центрированная кубическая (ОЦК).
- Гексагональная плотноупакованная (ГПУ).
Если условия (температура, давление) изменить, то металл может перейти из одного в другое кристаллическое состояние. Классическим примером является переход ОЦК железа в ГЦК, когда температура падает ниже 1392oC, или когда она повышается выше 911oC.
Таблица плотности металлов
Плотность металлов определяется двумя основными факторами:
- Типом кристаллической решетки и межатомными расстояниями в ней.
- Массой атома химического элемента.
Таблица плотности металлов и других элементов приводится ниже.
Здесь приведены цифры в г/ см3. Чтобы таблица плотности металлов в кг/ м3 выражалась, необходимо соответствующую величину умножить на 1000. Из таблицы видно, что металлы обладают самой разной плотностью. Они могут быть легче воды (натрий, литий, калий) или же являться очень тяжелыми (иридий, осмий, платина, золото).
Плотность сплавов
Сплавы представляют собой многокомпонентные вещества, например, сталь — это сплав железа и углерода. Кристаллическая структура сплавов является более сложной, чем для чистых металлов. Для стали, которая состоит из атомов железа и углерода, существует несколько возможностей их взаимного расположения (твердый раствор углерода в ОЦК или ГЦК железе, образование специальной фазы — цементита, образование графитных включений и некоторые другие).
Что касается плотности сплавов, то во многих случаях ее можно оценить по следующей простой формуле:
ρ = ∑imi/∑iVi.
Где i — номер компонента в сплаве. Если это выражение применить для двухкомпонентного сплава, то можно получить следующую формулу:
ρ = ρ1*ρ2/(ρ1+x*(ρ2-ρ1)).
Где ρ1 и ρ2 — плотности соответствующих компонент, x — массовая доля первого компонента в сплаве. Она определяется так:
x = m1/(m1 + m2).
Таблица плотности некоторых сплавов в тоннах на метр кубический приведена ниже.
Поскольку каждый сплав содержит преимущественно один компонент (сталь — железо, бронза — медь, нихром — никель и так далее), то неудивительно, что их плотности близки к соответствующим величинам для чистых металлов.
Конвертер плотности, что такое плотность, как и в чем ее измеряют
Любое тело состоит из определенного количества молекул, где каждая имеет свою массу. Таким образом, масса тела — это сумма масс молекул из которых оно состоит. Независимо от того, где находится это тело, в нем всегда одинаковое количество молекул и его масса не меняется. В разных веществах и материалах концентрация молекул сильно отличается. Их масса в единице объема — это плотность. Стандартно она измеряется в кг / м 3. Если необходимо перевести в другие величины, то проще всего использовать конвертер плотности.
Для этого достаточно поставить значение в соответствующее поле и выбрать нужные единицы измерения. После нажатия кнопки «Перевести» конвертер плотности проведет пересчет.
Что такое плотность и как ее рассчитать
Плотность вещества — это его масса в единице объема. Плотность — уникальное физическое свойство, которое стало основой для великого открытия Архимеда — его знаменитого закона: на тело, погруженное в жидкость действует выталкивающая сила, которая равна массе вытесненной жидкости.
Здесь плотность играет решающую роль — чем она больше, тем больше тело будет погружаться. Плотность и твердость — разные понятия. Хороший пример этому вода и лед. У воды плотность больше чем у льда, поэтому он всплывает на ее поверхность, а не тонет.
Наглядный пример этому — простой эксперимент «Башня плотности». Он доступен для проведения в домашних условиях.
Плотность обозначают символом ρ, в химии можно встретить ее обозначение буквой d латинского алфавита.
Для ее расчета используют следующую формулу: ρ = m/V, где:
ρ = плотность тела, m = его масса, V = объем.
- Плотность можно объяснить как соотношение между массой вещества и объемом, который он занимает.
- По физическим свойствам — чем плотнее вещество, тем больше его масса в единице объема.
- Если тела при одинаковом объеме имеют разную массу, то это значит, что у них разная плотность..
Единицы измерения плотности
Официальной единицей измерения плотности в системе СИ является кг/м³. Поскольку это довольно большой объем, то для удобства чаще всего используют
- г/см³ для твердых веществ,
- г/мл для жидкостей,
- г/л для газов.
Плотность воды составляет примерно 1 грамм / кубический сантиметр. Она принимается за стандартное значение для расчетов.
Другие единицы измерения плотности
В качестве других единиц измерения плотности, также используются метрические тонны и литры, хотя они не включены в Международную систему СИ. Другие единицы включают:
- грамм на миллилитр (г/мл)
- метрическая тонна на кубический метр (т/м³)
- килограмм на литр (кг/л)
- мегаграмм (метрическая тонна) на кубический метр (мг/м³)
- грамм на кубический сантиметр (г/см³)
1г/см³ = 1000 кг/м³ - килограмм на кубический дециметр (кг/дм³ )
Чтобы сделать быстрый и точный перевод из одних величин в другие вы можете использовать наш конвертер плотности.
Применение понятия плотности
В нашей реальной жизни знания о плотности материалов находят широкое практическое применение. Например, при сооружении трубопроводов, в судостроении, при расчете и распределении веса в самолете и др.
Напомним: в физике плотность определяет массу вещества в единице объема, поэтому она связана с его «весом», а не с его текучестью (вязкостью).
- При изменении температуры и давления плотность меняется. Изменения относительно несущественны для твердых тел и жидкостей, но заметны для газов.
- Плотность тела можно определить в лаборатории, например, взвесив его и затем погрузив в воду, отмечая увеличение объема. Плотность вычисляем делением массы на объем.
Примеры плотности разных веществ
Вода имеет плотность 1000 кг / м³ (т.е. 1 г / см³). Это не совпадение. Исторически сложилось так, что один литр воды, при четырех градусах Цельсия при нормальном давлении, считался эталоном 1 кг массы.
Железо, платина, золото и свинец — материалы с высокой плотностью. Многие виды горных пород и минералов также яв
Удельный вес: формула, расчет, единицы измерения
Среди множества параметров, характеризующих свойства материалов существует и такой как удельный вес. Иногда применяют термин плотность, но это не совсем верно. Но так или иначе эти оба термина имеют собственные определения и имеют хождение в математике, физике и множестве других наук, в том числе и материаловедении.
Удельный весОпределение удельного веса
Физическая величина, являющаяся отношением веса материала к занимаемому им объему, называется УВ материала.
Материаловедение ХХI века далеко ушло вперед в и уже освоены технологии, которые каких-то сто лет назад считались фантастикой. Эта наука может предложить современной промышленности сплавы, которые отличаются друг от друга качественными параметрами, но и физико-техническими свойствами.
Для определения того, как некий сплав может быть использован для производства целесообразно определить УВ. Все предметы, изготовленные с равным объемом, но для их производства был использованы разные виды металлов, будут иметь разную массу, она находится в четкой связи с объемом. То есть отношение объема к массе это есть некое постоянное число, характерная для этого сплава.
Для расчета плотности материала применяют специальную формулу, имеющую прямую связь с УВ материала.
Кстати, УВ чугуна, основного материала для создания стальных сплавов, можно определить весом 1 см3, отраженного в граммах. Тем больше УВ металла, тем тяжелее будет готовое изделие.
Формула удельного веса
Формулу расчета УВ выглядит как отношение веса к объему. Для подсчета УВ допустимо применять алгоритм расчета, который изложен в школьном курсе физики.
Для этого необходимо использовать закон Архимеда, точнее определение силы, которая является выталкивающей. То есть груз с некоей массой и при этом он держится на воде. Другими словами на него влияют две силы – гравитации и Архимеда.
Формула для расчета архимедовой силы выглядит следующим образом
F=g×V,
где g – это УВ жидкости. После подмены формула приобретает следующий вид F=y×V, отсюда получаем формулу УВ груза y=F/V.
Разница между весом и массой
В чем состоит разница между весом и массой. На самом деле в быту, она не играет ни какой роли. В самом деле, на кухне, мы не делаем развития между весом курицы и ее массой, но между тем между этими терминами существуют серьезные различия.
Эта разница хорошо видна при решении задач, связанных с перемещением тел в межзвездном пространстве и ни как имеющим отношения с нашей планете, и в этих условиях эти термины существенно различаются друг от друга.
Можно сказать следующее, термин вес имеет значение только в зоне действия силы тяжести, т.е. если некий объект находиться рядом с планетой, звездой и пр. Весом можно называть силу, с которой тело давит на препятствие между ним и источником притяжения. Эту силу измеряют в ньютонах. В качестве примера можно представить следующую картину — рядом с платным образованием находиться плита, с расположенным на ее поверхности неким предметом. Сила, с которой предмет давит на поверхность плиты и будет весом.
Масса и вес
Масса тела напрямую связана с инерцией. Если детально рассматривать это понятие то можно сказать, что масса определяет размер гравитационного поля создаваемого телом. В действительности, это одна из ключевых характеристик мироздания. Ключевое различие между весом и массой заключается в следующем — масса не зависит от расстояния между объектом и источником гравитационной силы.
Для измерения массы применяют множество величин – килограмм, фунт и пр. Существует международная система СИ, в которой применяют привычные, нам килограммы, граммы и пр. Но кроме нее, в многих странах, например, Британских островах, существует собственная система мер и весов, где вес измеряют в фунтах.
Разница между удельным весом и плотностью
УВ – что это такое?
Удельный вес – это есть отношение веса материи к его объему. В международной системе измерений СИ его измеряют как ньютон на кубический метр. Для решения определенных задач в физике УВ определяют следующим образом – насколько обследуемое вещество тяжелее, чем вода при температуре 4 градусов при условии того, что вещество и вода имеют равные объемы.
По большей части такое определение применяют в геологических и биологических исследованиях. Иногда, УВ, рассчитываемый по такой методике, называют относительной плотностью.
В чем отличия
Как уже отмечалось, эти два термина часто путают, но так как, вес напрямую зависим от расстояния между объектом и гравитационным источником, а масса не зависит от этого, поэтому термины УВ и плотность различаются между собой.
Но необходимо принять во внимание то, что при некоторых условиях масса и вес могут совпадать. Измерить УВ в домашних условиях практически невозможно. Но даже на уровне школьной лаборатории такую операцию достаточно легко выполнить. Главное что бы лаборатория была оснащена весами с глубокими чашами.
Предмет необходимо взвесить при нормальных условиях. Полученное значение можно будет обозначить как Х1, после этого чашу с грузом помещают в воду. При этом в соответствии с законом Архимеда груз потеряет часть своего веса. При этом коромысло весов будет перекашиваться. Для достижения равновесия на другую чашу необходимо добавить груз. Его величину можно обозначить как Х2. В результате этих манипуляций будет получен УВ, который будет выражен как соотношение Х1 и Х2. Кроме вещества в твердом состоянии удельных можно измерить и для жидкостей, газов. При этом замеры можно выполнять в разных условиях, например, при повышенной температуре окружающей среды или пониженной температуры. Для получения искомых данных применяют такие приборы как пикнометр или ареометр.
Единицы измерения удельного веса
В мире применяют несколько систем мер и весов, в частности, в системе СИ УВ измеряют в отношении Н (Ньютон) к метру кубическому. В других системах, например, СГС у удельного веса используется такая единица измерения д(дин) к сантиметру кубическому.
Металлы с наибольшим и наименьшим удельным весом
Кроме того, что понятие удельного веса, применяемое в математике и физике, существуют и довольно интересные факты, например, об удельных весах металлов из таблицы Менделеева. если говорить о цветных металлах, то к самым «тяжелым» можно отнести золото и платину.
Эти материалы превышают по удельному весу, такие металлы как серебро, свинец и многие другие. К «легким» материалам относят магний с весом ниже чем у ванадия. Нельзя забывать и радиоактивных материалах, к примеру, вес урана составляет 19,05 грамм на кубический см. То есть, 1 кубический метр весит 19 тонн.
Удельный вес других материалов
Наш мир сложно представить без множества материалов, используемых в производстве и быту. Например, без железа и его соединений (стальных сплавов). УВ этих материалов колеблется в диапазоне одной – двух единиц и это не самые высокие результаты. Алюминий, к примеру, обладает низкой плотностью и малым удельным весом. Эти показатели позволили его использовать в авиационной и космической отраслях.
Удельный вес металлов
Медь и ее сплавы, обладают удельным весом сопоставимый со свинцом. А вот ее соединения – латунь, бронза легче других материалов, за счет того, в них использованы вещества с меньшим удельным весом.
Как рассчитать удельный вес металлов
Как определить УВ — этот вопрос часто встает у специалистов занятых в тяжелой промышленности. Эта процедура необходима для того, что бы определить именно те материалы, которые будет отличаться друг от друга улучшенными характеристиками.
Одна из ключевых особенностей металлических сплавов заключается в том, какой металл является основой сплава. То есть железо, магний или латунь, имеющие один объем будут иметь разную массу.
Плотность материала, которая рассчитывается на основании заданной формулы имеет прямое отношение к рассматриваемому вопросу. Как уже отмечено, УВ – это соотношение веса тела к его объему, надо помнить, что эта величина может быть определена как силу тяжести и объема определенного вещества.
Для металлов УВ и плотность определяют в той же пропорции. Допустимо использовать еще одну формулу, которая позволяет рассчитать УВ. Она выглядит следующим так УВ (плотность) равна отношению веса и массы с учетом g, постоянной величины. Можно сказать, что УВ металла может, носит название веса единицы объема. Дабы определить УВ необходимо массу сухого материала поделить на его объем. По факту, эта формула может быть использована для получения веса металла.
Кстати, понятие удельного веса широко применяют при создании металлических калькуляторов, применяемых для расчета параметров металлического проката разного типа и назначения.
УВ металлов измеряют в условиях квалифицированных лабораторий. В практическом виде этот термин редко применяют. Значительно чаще, применяют понятие легкие и тяжелые металлы, к легким относят металлы с малым удельным весом, соответственно к тяжелым относят металлы с большим удельным весом.
02Х17Н11М2 | 20 | 8000 |
02Х22Н5АМ3 | 20 | 8000 |
03Н18К9М5Т | 20 | 8000 |
03Х11Н10М2Т | 20 | 8000 |
03Х13Н8Д2ТМ (ЭП699) | 20 | 7800 |
03Х24Н6АМ3 (ЗИ130) | 20 | 8000 |
06Х12Н3Д | 20 | 7810 |
06ХН28МДТ (0Х23Н28М3Д3Т, ЭИ943) | 20 | 7960 |
07Х16Н6 (Х16Н6, ЭП288) | 20 | 7800 |
Сталь 08 | 20…100…200…300…400…500… 600…700…800…900 | 7871…7846…7814…7781…7745…7708… 7668…7628…7598…7602 |
08ГДНФЛ | 20 | 7850 |
08кп | 20…100…200…300…400…500… 600…700…800…900 | 7871…7846…7814…7781…7745…7708… 7668…7628…7598…7602 |
08Х13 (0Х13, ЭИ496) | 20…100…200 | 7760…7740…7710 |
08Х17Т (0Х17Т, ЭИ645) | 20 | 7700 |
08Х17Н13М2Т (0Х17Н13М2Т) | 20…100…200…300…400…500… 600…700 | 7900…7870…7830…7790…7750…7700… 7660…7620 |
08Х18Н10 (0Х18Н10) | 20 | 7850 |
08Х18Н10Т (0Х18Н10Т, ЭИ914) | 20 | 7900 |
08Х22Н6Т (0Х22Н5Т, ЭП53) | 20 | 7700 |
3Х3М3Ф | 600…700…800…900 | 7828…7808…7783…7754…7721…7684… 7642…7597…7565…7525 |
4Х4ВМФС (ДИ22) | 20…100…200…300…400…500… 600…700…800…900 | 7808…7786…7757…7726…7693…7658… 7624…7581…7554…7550 |
4Х5МФ1С (ЭП572) | 20…100…200…300…400…500… 600…700…800…900 | 7716…7692…7660…7627…7593…7559… 7523…7490…7459…7438 |
9ХС | 20 | 7830 |
9Х2МФ | 20 | 7840 |
Сталь 10 | 20…100…200…300…400…500… 600…700…800…900 | 7856…7832…7800…7765…7730…7692… 7653…7613…7582…7594 |
10Г2 | 20 | |
10кп | 20…100…200…300…400…500… 600…700…800…900 | 7856…7832…7800…7765…7730…7692… 7653…7613…7582…7594 |
10Х11Н20Т3Р (ЭИ696) | 20 | 7900 |
10Х11Н23Т3МР (ЭП33) | 20 | 7950 |
10Х12Н3М2ФА(Ш) (10Х12Н3М2ФА-А(Ш)) | 20 | 7750 |
10Х13Н3М1Л | 20 | 7745 |
10Х14Г14Н4Т (Х14Г14Н3Т, ЭИ711) | 20 | 7800 |
10Х17Н13М2Т (Х17Н13М2Т, ЭИ448) | 20…100…200…300…400…500… 600…700 | 7900…7870…7830…7790…7750…7700… 7660…7620 |
10Х18Н18Ю4Д (ЭП841) | 20 | 7630 |
12МХ | 20…100…200…300…400…500… 600…700 | 7850…7830…7800…7760…7730…7690… 7650…7610 |
12ХН2 | 20 | 7880 |
12ХН3А | 20…100…200…300…400…500…600 | 7850…7830…7800…7760…7720…7680…7640 |
12X2МФБ (ЭИ531) | 20 | 7800 |
12X1МФ (ЭИ575) | 20…100…200…300…400…500… 600…700…800…900 | 7800…7780…7750…7720…7680…7650… 7600…7570…7540…7560 |
12Х2Н4А | 20…100…300…400…600 | 7840…7820…7760…7710…7630 |
12Х13 (1Х13) | 20…100…200…300…400…500… 600…700…800…900 | 7720…7700…7670…7640…7620…7580… 7550…7520…7490…7500 |
12Х17 (Х17, ЭЖ17) | 20 | 7720 |
12Х18Н9 (Х18Н9) | 20…100…200…300…400…500… 600…700…800…900 | 7900…7860…7820…7780…7740…7690… 7650…7600…7560…7510 |
12Х18Н9Т (Х18Н9Т) | 20…100…200…300…400…500… 600…700…800…900 | 7900…7860…7820…7780…7740…7690… 7650…7600…7560…7510 |
12Х18Н10Т | 20 | 7900 |
12Х18Н12Т (Х18Н12Т) | 20…100…200…300…400…500… 600…700 | 7900…7870…7830…7780…7740…7700… 7850…7610 |
12Х25Н16Г7АР (ЭИ835) | 20 | 7820 |
13Х11Н2В2МФ-Ш (ЭИ961-Ш) | 20 | 7800 |
14Х17Н2 (1Х17Н2, ЭИ268) | 20 | 7750 |
Сталь 15 | 20…100…200…300…400…500… 600…700…800…900 | 7850…7827…7794…7759…7724…7687… 7648…7611…7599…7584 |
15Г | 20 | 7810 |
15кп | 20…100…200…300…400…500… 600…700…800…900 | 7850…7827…7794…7759…7724…7687… 7648…7611…7599…7584 |
15К | 20 | 7850 |
15Л | 20 | 7820 |
15Х | 20…100…200…400…600 | 7830…7810…7780…7710…7640 |
15ХМ | 20…100…200…300…400…500…600 | 7850…7830…7800…7760…7730…7700…7660 |
15ХФ | 20…100…200…300…400…500… 600…700 | 7760…7730…7710…7670…7640…7600… 7570…7530 |
15Х5М (12Х5МА, Х5М) | 20…100…200…300…400…500…600 | 7750…7730…7700…7670…7640…7610…7580 |
15Х12ВНМФ(ЭИ802, ЭИ952) | 20…100…200…300…400…500… 600…700 | 7850…7830…7800…7780…7760…7730… 7700…7670 |
15Х25Т (Х25Т, ЭИ439) | 20 | 7600 |
16ГС | 20 | 7850 |
17Х18Н9 (2Х18Н9) | 20 | 7850 |
18Х2Н4МА (18Х2Н4ВА) | 20…100…200…300…400…500…600 | 7950…7930…7900…7860…7830…7800…7760 |
18Х12ВМБФР-Ш (ЭП 993-Ш) | 20 | 7850 |
18ХГТ | 20 | 7800 |
Сталь 20 | 20…100…200…300…400…500… 600…700…800…900 | 7856…7834…7803…7770…7736…7699… 7659…7617…7624…7600 |
20Г | 20 | 7820 |
20К | 20 | 7850 |
20Л | 20 | 7850 |
20кп | 100…200…300…400…500…600… 700…800…900 | 7834…7803…7770…7736…7699…7659… 7617…7624…7600 |
20Х | 20…100…200…400…600 | 7830…7810…7780…7710…7640 |
20ХГР | 20 | 7800 |
20ХГСА | 20 | 7760 |
20ХМЛ | 20…100…200…300…400…500…600 | 7800…7780…7750…7720…7690…7650…7620 |
20ХН3А | 20…100…300…600 | 7850…7830…7760…7660 |
20Х2Н4А | 20 | 7850 |
20Х3МВФ (ЭИ415, ЭИ579) | 20…400…500…600 | 7800…7690…7660…7620 |
20Х5МЛ | 20 | 7730 |
20Х13 (2Х13) | 20…100…200…300…400…500… 600…700…800 | 7670…7660…7630…7600…7570…7540… 7510…7480…7450 |
20Х13Л | 20 | 7740 |
20Х20Н13 (Х23Н13, ЭИ319) | 20…100…600…800 | 7820…7790…7580…7480 |
20Х20Н14С2 (Х20Н14С2, ЭИ211) | 20…100…600…700…800…900 | 7800…7760…7550…7510…7470…7420 |
20Х23Н18 (Х23Н18, ЭИ417) | 20…400…500…600…700…900 | 7900…7760…7720…7670…7620…7540 |
20Х25Н20С2 (Х25Н20С2, ЭИ283) | 20…100…800…900 | 7720…7680…7440…7390 |
Сталь 25 | 20 | 7820 |
25Л | 20 | 7830 |
25ХГСА | 20…100…200…300…400…500… 600…700 | 7850…7830…7790…7760…7730…7690… 7650…7610 |
25Х1МФ (ЭИ10) | 20…200…400…600 | 7840…7790…7720…7650 |
25Х2М1Ф (ЭИ723) | 20…100…200…300…400…500…600 | 7800…7780…7750…7720…7680…7650…7600 |
25Х13Н2 (2Х14Н2, ЭИ474) | 20 | 7680 |
Сталь 30 | 20 | 7850 |
30Г | 20 | 7810 |
30Л | 20 | 7810 |
30Х | 20…100…200…300…400…500… 600…700…800…900 | 7820…7800…7770…7740…7700…7670… 7630…7590…7610…7560 |
30ХМ, 30ХМА | 20…100…200…300…400…500 | 7820…7800…7770…7740…7700…7660 |
30ХН3А | 20…100…200…300…400…500… 600…700…800…900 | 7850…7830…7800…7760…7730…7700… 7670…7690…7650…7600 |
30Х13 (3Х13) | 20…100…200…300…400…500… 600…700…800…900 | 7670…7650…7620…7600…7570…7540… 7510…7480…7450…7460 |
31Х19Н9МВБТ (ЭИ572) | 20 | 7960 |
33ХС | 20 | 7640 |
34ХН3М, 34ХН3МА | 20…100…200…400…600 | 7830…7810…7780…7710…7650 |
Сталь 35 | 20…100…200…300…400…500… 600…700…800…900 | 7826…7804…7771…7737…7700…7662… 7623…7583…7600…7549 |
35Г2 | 20 | 7790 |
35Л | 20 | 7830 |
35ХГСЛ | 20 | 7800 |
35ХМ | 20…100…200…400…600 | 7820…7800…7770…7770…7630 |
35ХМЛ | 20 | 7840 |
35ХМФЛ | 20 | 7820 |
37Х12Н8Г8МФБ (ЭИ481) | 20 | 7850 |
38ХА | 20…200…600 | 7850…7800…7650 |
38ХН3МФА | 20 | 7900 |
38ХС | 20 | 7800 |
38Х2МЮА (38ХМЮА) | 20 | 7710 |
Сталь 40 | 20 | 7850 |
40Г | 20 | 7810 |
40Г2 | 20 | 7800 |
40Л | 20 | 7810 |
40Х | 20…200…500 | 7850…7800…7650 |
40ХЛ | 20 | 7830 |
40ХН | 20…100…200…300…400 | 7820…7800…7770…7740…7700 |
40ХН2МА (40ХНМА) | 20 | 7850 |
40ХС | 20…100…200…400…600 | 7740…7720…7690…7620…7540 |
40ХФА | 20 | 7810 |
40Х9С2 (4Х9С2, ЭСХ8) | 20…100…200…400…600…800 | 7630…7610…7580…7510…7440…7390 |
40Х10С2М (4Х10С2М, ЭИ107) | 20…100…800 | 7620…7610…7430 |
40Х13 (4Х13) | 20…100…200…300…400…500… 600…700…800 | 7650…7630…7600…7570…7540…7510… 7480…7450…7420 |
40Х24Н12СЛ (ЭИ316Л) | 20 | 7800 |
Сталь 45 | 20…100…200…300…400…500… 600…700…800 | 7826…7799…7769…7739…7698…7662… 7625…7587…7595 |
45Г2 | 20 | 7810 |
45Л | 20 | 7800 |
45Х | 20 | 7820 |
45ХН | 20 | 7820 |
45Х14Н14В2М (ЭИ69) | 20…200…400…600…800 | 8000…7930…7840…7760…7660 |
Сталь 50 | 20 | 7810 |
50Г | 20 | 7810 |
50Г2 | 20 | 7500 |
50Л | 20 | 7820 |
50Х | 20 | 7820 |
50ХН | 20 | 7860 |
50ХФА | 20…100…200…300…400…500…600 | 7800…7780…7750…7720…7680…7650…7610 |
Сталь 55 | 20 | 7820 |
Сталь 60 | 20 | 7800 |
60С2, 60С2А | 20…100…200…300…400…500 | 7680…7660…7630…7590…7570…7520 |
65Г (ЗМИ3) | 20…100…200…400 | 7850…7830…7800…7730 |
75ХМ | 20 | 7900 |
95Х18 (9Х18, ЭИ229) | 20…100…800 | 7750…7730…7540 |
Х23Ю5Т | 20 | 7210 |
ХН32Т (ЭП670) | 20 | 8160 |
ХН35ВТ (ЭИ612) | 20 | 8164 |
ХН35ВТЮ (ЭИ787) | 20 | 8040 |
ХН45Ю (ЭП747) | 20 | 7700 |
ХН55ВМТКЮ (ЭИ929), ХН55ВМТКЮ-ВД (ЭИ929-ВД) | 20 | 8400 |
ХН58ВКМТЮБЛ (ЦНК8МП) | 20 | 8210 |
ХН60Ю (ЭИ559А) | 20 | 7900 |
ХН60ВТ (ЭИ868) | 20 | 8350 |
ХН60КВМЮТБЛ (ЦНК21П) | 20 | 8110 |
ХН60КВМЮТЛ (ЦНК7П) | 20 | 8200 |
ХН62МБВЮ (ЭП709) | 20 | 8700 |
ХН62МВКЮ (ЭИ867), ХН62МВКЮ-ВД (ЭИ867-ВД) | 20 | 8570 |
ХН64ВМКЮТЛ (ЗМИ3) | 20 | 8250 |
ХН65ВКМБЮТЛ (ЭИ539ЛМУ) | 20 | 8220 |
ХН65ВМТЮ (ЭИ893) | 20 | 8790 |
ХН65ВМТЮЛ (ЭИ893Л) | 20 | 8790 |
ХН65КМВЮТЛ (ЖС6К) | 20 | 8200 |
ХН67МВТЮ (ЭП202, ЭИ445Р) | 20 | 8360 |
ХН70КВМЮТЛ (ЦНК17П) | 20 | 8000 |
ХН70ВМТЮФ (ЭИ826), ХН70ВМТЮФ-ВД (ЭИ826-ВД) | 20 | 8470 |
ХН70ВМЮТ (ЭИ765) | 20 | 8570 |
ХН70Ю (ЭИ652) | 20 | 7900 |
ХН73МБТЮ (ЭИ698) | 20 | 8320 |
ХН75ВМЮ (ЭИ827) | 20 | 8430 |
ХН77ТЮР (ЭИ437Б) | 20 | 8200 |
ХН78Т (ЭИ435) | 20 | 8400 |
ХН80ТБЮ (ЭИ607) | 20 | 8300 |
ХН80ТБЮА (ЭИ607А) | 20 | 8300 |
Х15Н60-Н | 20 | 8200 |
Х20Н80-Н | 20 | 8400 |
Х27Ю5Т | 20 | 7190 |
ХВГ | 20…100…300…600 | 7850…7830…7760…7660 |
А12 | 20 | 7830 |
Р6М3 | 20 | 8000 |
Р6М5К5 | 20 | 8200 |
Р9 | 20 | 8300 |
Р9М4К8 | 20 | 8300 |
Р12 | 20 | 8300 |
Р18 | 20 | 8800 |
У7, У7А | 20 | 7830 |
У8, У8А | 20…100…200…300…400…500… 600…700…800 | 7839…7817…7786…7752…7714…7676… 7638…7600…7852 |
У9, У9А | 20…100…200…300…400…500… 600…700…800…900 | 7745…7726…7717…7690…7686…7655… 7622…7586…7568…7523 |
У10, У10А | 20 | 7810 |
У12, У12А | 20…100…200…300…400…500… 600…700…800…900 | 7830…7809…7781…7749…7713…7675… 7634…7592…7565…7489 |
ШХ15 | 20…100…200…300…400…500 | 7812…7790…7750…7720…7680…7640 |
ШХ15СГ | 20 | 7650 |
Абс-пластик | 1030…1060 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) | 1100…1200 |
Альфоль | 20…40 |
Алюмель | 8480 |
Алюминий | 2700 |
Аминопласт | 1450…1500 |
Арболит на портландцементе | 300…800 |
Асбест в засыпке | 300…800 |
Асбест волокнистый | 470 |
Асбестобетон | 2100 |
Асбестобумага | 800…900 |
Асбестовойлок | 200…300 |
Асбестоцемент | 1500…1900 |
Асбестоцементный лист | 1600 |
Асбозурит | 400…650 |
Асбокартон | 900…1250 |
Асбослюда | 450…620 |
Асботекстолит Г | 1500…1700 |
Асботермит | 500 |
Асбофанера жесткая | 1700…1900 |
Асбофанера мягкая | 1400 |
Асбоцемент войлочный | 144 |
Асбошифер | 1700…2100 |
Асбошифер с 10-50% асбеста | 1800 |
Асфальт | 1100…2110 |
Асфальт в полах и стяжках | 1800 |
Асфальт литой | 1500 |
Асфальтобетон | 2000…2450 |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 |
Аэрогель Aspen aerogels | 110…200 |
Базальт | 2600…3000 |
Бакелит | 1250 |
Бальза | 110…140 |
Бемит (кровельный материал) | 570 |
Береза | 510…770 |
Береза свежесрубленная | 880…1000 |
Бериллий | 1840 |
Бетон крупнопористый беспесчаный | 1600…1900 |
Бетон крупнопористый беспесчаный огнеупорный | 1450…1750 |
Бетон легкий на керамзите | 500…1800 |
Бетон легкий на коксе | 1200 |
Бетон легкий с природной пемзой | 500…1200 |
Бетон на вулканическом шлаке | 800…1600 |
Бетон на гравии или щебне из природного камня | 2400 |
Бетон на доменных гранулированных шлаках | 1200…1800 |
Бетон на зольном гравии | 1000…1400 |
Бетон на каменном щебне | 2200…2500 |
Бетон на котельном шлаке | 1400 |
Бетон на песке | 1800…2500 |
Бетон на топливных шлаках | 1000…1800 |
Бетон особо тяжелый лимонитовый | 2800…3000 |
Бетон особо тяжелый магнетитовый | 2800…4000 |
Бетон рентгенозащитный на естественном кусковом барите | 3000…3100 |
Бетон рентгенозащитный на пылевидном барите | 2500…2600 |
Бетон силикатный плотный | 1800 |
Бетон термоизоляционный | 500 |
Битумоперлит | 300…400 |
Битумы нефтяные строительные и кровельные | 1000…1400 |
Блок газобетонный | 400…800 |
Блок известково-песчаный | 1450…1600 |
Болты стальные навалом | 1430…1670 |
Брикеты угольные | 1050 |
Бронза | 7500…9300 |
Брюква навалом | 650…850 |
Бук | 600…700 |
Бук свежесрубленный | 970…1000 |
Бумага | 700…1150 |
Бут | 1800…2000 |
Ванадий | 6500…7100 |
Вата минеральная легкая | 50 |
Вата минеральная тяжелая | 100…150 |
Вата стеклянная | 155…200 |
Вата хлопковая | 30…100 |
Вата хлопчатобумажная | 50…80 |
Вата шлаковая | 200 |
Вермикулит (в виде насыпных гранул) | 100…200 |
Вермикулитобетон | 250…1200 |
Винипласт | 1350…1400 |
Винипор жесткий | 200 |
Войлок строительный в кипах | 300 |
Войлок шерстяной | 150…330 |
Волокно ацетатное (ацетилцеллюлоза) | 1300…1350 |
Волокно вискозное (гидроцеллюлоза) | 1500…1540 |
Вольфрам | 19250 |
Воск пчелиный | 950 |
Вяз свежесрубленный | 1000 |
Газобетон конструкционный | 1100…1200 |
Газобетон теплоизоляционный | 400…700 |
Газогипс | 400…600 |
Газосиликат | 280…1000 |
Газостекло | 200…400 |
Галька | 1800…1900 |
Гетинакс | 1350 |
Гипс формованный сухой | 1100…1800 |
Гипсобетон на доменном гранулированном шлаке | 1000 |
Гипсобетон на котельном шлаке | 1300 |
Гипсокартон | 500…900 |
Гипсолит (плиты) | 1400…1600 |
Гипсошлак | 1000…1300 |
Глина в виде теста | 1600…2900 |
Глина огнеупорная | 1800 |
Глиногипс | 800…1800 |
Глинозем | 3100…3900 |
Гнейс (облицовка) | 2800 |
Граб свежесрубленный | 995 |
Гравий (наполнитель) | 1850 |
Гравий керамзитовый (засыпка) | 200…800 |
Гравий шунгизитовый (засыпка) | 400…800 |
Гранит (облицовка) | 2600…3000 |
Графит порошкообразный | 445 |
Грунт 20% воды | 1700 |
Грунт в насыпях | 1600…1800 |
Грунт илистый сухой | 1600 |
Грунт мергелистый | 1700 |
Грунт сухой | 1500 |
Груша (древесина) | 730 |
Гудрон | 950…1030 |
Гуммигут | 1200 |
Дакрил | 1190 |
Динас в огнеупорных изделиях | 1700…1900 |
Доломит плотный сухой | 2800 |
Дрова березовые | 500 |
Дрова хвойных пород | 350…450 |
Дуб | 700 |
Дуб свежесрубленный | 1000…1030 |
Дюралюминий | 2600…2900 |
Ель свежесрубленная | 800…850 |
Железо | 7870 |
Железобетон | 2500 |
Железобетон на известняковом щебне вибрированный | 2450 |
Железобетон на керамзите | 1500…1800 |
Железобетон на пемзе | 1100…1500 |
Железобетон набивной | 2400 |
Желуди в мешках | 470…520 |
Жом сухой навалом | 200…260 |
Засыпка песчаная из гидрофобного песка | 1500 |
Засыпка торфяная | 150 |
Засыпка шлаковая | 700…1000 |
Зола древесная | 780 |
Зола коксовая | 750 |
Золото | 19320 |
Известняк (облицовка) | 1400…2000 |
Известняк плотный | 2400…2900 |
Известняк пористый | 2000…2100 |
Изделия вулканитовые | 350…400 |
Изделия диатомитовые | 500…600 |
Изделия из вспученного перлита на битумном связующем | 300…400 |
Изделия ньювелитовые | 160…370 |
Изделия пенобетонные | 400…500 |
Изделия перлитофосфогелевые | 200…300 |
Изделия совелитовые | 230…450 |
Инвар | 7900 |
Ипорка (вспененная смола) | 15 |
Какао-бобы в мешках | 250…340 |
Каменноугольная пыль | 730 |
Камень бордюрный из твердых пород | 2000…2300 |
Камень керамический поризованный Braer | 810…840 |
Камень строительный | 2200 |
Камни гипсобетонные | 1100…1500 |
Камни многопустотные из легкого бетона | 500…1200 |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 |
Канифоль | 1070 |
Каолин в порошке | 520 |
Капролит | 1200 |
Капролон | 1150 |
Капрон (поликапролактам) | 1140 |
Карболит черный | 1100 |
Картон асбестовый изолирующий | 720…900 |
Картон бумажный волнистый | 150 |
Картон гофрированный | 700 |
Картон облицовочный | 1000 |
Картон плотный | 600…900 |
Картон пробковый | 145 |
Картон строительный многослойный | 650 |
Картон термоизоляционный | 500 |
Каучук вспененный | 82 |
Каучук вулканизированный мягкий серый | 920 |
Каучук натуральный | 910 |
Каучук фторированный | 180 |
Кварц дробленый | 1450…1600 |
Кедр красный | 500…570 |
Керамзит | 800…1000 |
Керамзитобетон легкий | 500…1200 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 |
Керамзитобетон на перлитовом песке | 800…1000 |
Керамзитовый горох | 900…1500 |
Керамика | 1700…2300 |
Кирпич асбозуритовый | 900 |
Кирпич диатомовый | 500 |
Кирпич доменный (огнеупорный) | 1000…2000 |
Кирпич карборундовый | 1000…1300 |
Кирпич клинкерный | 1800…2000 |
Кирпич красный плотный | 1700…2100 |
Кирпич красный пористый | 1500 |
Кирпич облицовочный | 1800 |
Кирпич силикатный | 1000…2200 |
Кирпич строительный | 800…1500 |
Кирпич трепельный | 700…1300 |
Кирпич шлаковый | 1100…1400 |
Кладка «Поротон» | 800 |
Кладка бутовая из камней средней плотности | 2000 |
Кладка газосиликатная | 630…820 |
Кладка из газосиликатных теплоизоляционных плит | 540 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 |
Кладка из малоразмерного кирпича | 1730 |
Кладка из пустотелых стеновых блоков | 1220…1460 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 |
Кладка из силикатного кирпича на цементно-песчаном растворе | 1800 |
Кладка из трепельного кирпича на цементно-песчаном растворе | 1000…1200 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 |
Кладка из ячеистого кирпича | 1300 |
Клен | 620…750 |
Клен в свежесрубленном состоянии | 1000 |
Кобальт | 8900 |
Кожа искусственная в рулонах | 1300 |
Кожа натуральная | 800…1000 |
Кокс рудничный | 380…530 |
Кокс торфяной | 275…400 |
Копель | 8900 |
Костра | 100…200 |
Кость слоновая | 1830…1920 |
Кофе в зернах сырой в мешках | 440…670 |
Краска масляная (эмаль) | 1030…2045 |
Крахмал фасованный в мешках | 590…750 |
Кремний | 2000…2330 |
Кремнийорганический полимер КМ-9 | 1160 |
Крупа гречневая | 720 |
Крупа перловая | 810…830 |
Крупа пшенная 1-го сорта | 825 |
Крупа рисовая | 830 |
Крупа ячневая | 670 |
Ксилолит (магнолит) | 1000…1800 |
Лавсан (полиэтилентерефталат, ПЭТ) | 1380 |
Латунь | 8100…8850 |
Лед 0°С | 917 |
Лед -20°С | 920 |
Лед -60°С | 924 |
Линолеум поливинилхлоридный многослойный | 1600…1800 |
Линолеум поливинилхлоридный на тканевой подоснове | 1400…1800 |
Липа (15% влажности) | 320…650 |
Липа свежесрубленная | 795 |
Лиственница | 670 |
Лиственница в свежесрубленном состоянии | 840 |
Листы асбестоцементные плоские | 1600…1800 |
Листы гипсовые обшивочные (сухая штукатурка) | 800 |
Листы пробковые легкие | 220 |
Листы пробковые тяжелые | 260 |
Литий | 530 |
Лук в мешках | 400…480 |
Магнезит каустический | 800…900 |
Магнезия в форме сегментов для изоляции труб | 220…300 |
Магний | 1740 |
Манганин | 8400 |
Марганец | 7400 |
Мастика асфальтовая | 2000 |
Мастика битумная | 1350…1890 |
Маты и полосы из стеклянного волокна прошивные | 150 |
Маты минераловатные прошивные и на синтетическом связующем | 50…125 |
Маты, холсты базальтовые | 25…80 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 | 100…150 |
Медь | 8940 |
Мел | 1800…2800 |
Мел порошкообразный (молотый) | 950…1200 |
Миканит | 2000…2200 |
Мипора | 16…20 |
Молибден | 10300 |
Морозин | 100…400 |
Мрамор (облицовка) | 2800 |
Мука пшеничная высшего сорта | 680…900 |
Накипь котельная (богатая известью) | 1000…2500 |
Накипь котельная (богатая силикатом) | 300…1200 |
Настил палубный | 630 |
Натрий | 967 |
Нейлон | 1300 |
Никель | 8900 |
Ниплон | 1320 |
Нихром | 8400 |
Олово | 7300 |
Ольха свежесрубленная | 800…830 |
Опилки древесные | 200…400 |
Пакля | 120…160 |
Панели стеновые из гипса по DIN 1863 | 600…900 |
Парафин | 870…920 |
Паркет дубовый | 1800 |
Паркет штучный | 1150 |
Паркет щитовой | 700 |
Паронит (прокладочный материал) | 1200 |
Пемза | 400…700 |
Пемзобетон | 800…1600 |
Пенобетон строительный | 600…1200 |
Пенобетон теплоизоляционный | 300…500 |
Пеногипс | 300…600 |
Пенозолобетон | 800…1200 |
Пенопласт МФП-1 | 40 |
Пенопласт ПС-1 | 100 |
Пенопласт ПС-4 | 70 |
Пенопласт ПХВ-1 и ПВ-1 | 65…125 |
Пенопласт резопен ФРП-1 | 65…110 |
Пенополистирол | 40…150 |
Пенополистирол «Пеноплекс» | 35…43 |
Пенополиуретан | 40…80 |
Пенополиуретановые листы | 150 |
Пеносиликальцит | 400…1200 |
Пеносиликат | 280…1000 |
Пеностекло | 200…400 |
Пеностекло легкое | 100. .200 |
Пенофол | 44…74 |
Пергамин | 600 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 |
Перекрытие монолитное плоское железобетонное | 2400 |
Перлит | 200 |
Перлит вспученный | 100 |
Перлитобетон | 600…1200 |
Перлитопласт-бетон | 100…200 |
Перлитофосфогелевые изделия | 200…300 |
Песок горный | 1500…1600 |
Песок для строительных работ | 1600 |
Песок кварцевый молотый | 1450 |
Песок перлитовый | 50…250 |
Песок речной мелкий | 1500 |
Песок речной мелкий (влажный) | 1650 |
Песок сухой | 1500 |
Песок туфовый | 700…1000 |
Песок формовочный утрамбованный | 1650 |
Песок шлаковый | 800…900 |
Песчаник | 2200…2700 |
Песчаник обожженный | 1900…2700 |
Пихта | 450…550 |
Пластобетон (фурфуролбетон) | 2000…2500 |
Платина | 21450 |
Плита бумажная прессованная | 600 |
Плита огнеупорная теплоизоляционная Avantex марки Board | 200…500 |
Плита пробковая | 80…500 |
Плитка облицовочная, кафельная | 2000 |
Плиты древесно-волокнистые и древесно-стружечные | 200…1000 |
Плиты из гипса | 1000…1200 |
Плиты из керамзитобетона | 400…600 |
Плиты из полистиролбетона | 200…300 |
Плиты из резольноформальдегидного пенопласта | 40…100 |
Плиты из стеклянного штапельного волокна на синтетическом связующем | 50 |
Плиты из ячеистого бетона | 350…400 |
Плиты камышитовые | 200…300 |
Плиты льнокостричные изоляционные | 250 |
Плиты минераловатные на битумной связке марки 200 | 150…200 |
Плиты минераловатные на синтетической связке фирмы «Партек» | 170…230 |
Плиты минераловатные на синтетическом связующем марки 200 | 225 |
Плиты минераловатные повышенной жесткости | 200 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 |
Плиты мягкие и жесткие минераловатные на синтетическом и битумном связующих | 50…350 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол | 80…100 |
Плиты пенополистирольные (экструзионные) | 32 |
Плиты перлито-битумные | 300 |
Плиты перлито-волокнистые | 150 |
Плиты перлито-фосфогелевые | 250 |
Плиты строительный из пористого бетона | 500…800 |
Плиты термобитумные теплоизоляционные | 200…300 |
Плиты торфяные теплоизоляционные | 200…300 |
Плиты фибролитовые | 300…800 |
Покрытие ковровое | 630 |
Покрытие синтетическое (ПВХ) | 1500 |
Пол гипсовый бесшовный | 750 |
Полиамид | 1020…1130 |
Поливинилхлорид (ПВХ) | 1400…1600 |
Полиизобутилен листовой | 1320…1430 |
Поликарбонат (дифлон) | 1200 |
Полипропилен | 900…910 |
Полистирол УПП1, ППС | 1025 |
Полистиролбетон | 150…600 |
Полистиролбетон модифицированный | 200…500 |
Полиуретан | 1200 |
Полихлорвинил | 1290…1650 |
Полиэтилен высокой плотности | 955 |
Полиэтилен низкой плотности | 920 |
Полотно (текстиль) в кусках | 600 |
Полуэбонит М-1751 и М1814 | 1320…1330 |
Поролон | 34 |
Порох (прессованный) | 1750 |
Порох (сыпучий) | 900 |
Прессшпан | 1000…1500 |
Пробка гранулированная техническая | 45 |
Пробка минеральная на битумной основе | 270…350 |
Пробковое покрытие для полов | 540 |
Пыль асбестовая | 400…600 |
Пыль угольная | 540…680 |
Ракушечник | 1000…1800 |
Раствор гипсовый затирочный | 1200 |
Раствор гипсоперлитовый | 600 |
Раствор гипсоперлитовый поризованный | 400…500 |
Раствор известково-песчаный | 1400…1600 |
Раствор известковый | 1650 |
Раствор легкий LM21, LM36 | 700…1000 |
Раствор сложный (песок, известь, цемент) | 1700 |
Раствор цементно-перлитовый | 800…1000 |
Раствор цементно-песчаный | 1800…2000 |
Раствор цементно-шлаковый | 1200…1400 |
Раствор цементный, цементная стяжка | 2000 |
Резина пористая | 160…580 |
Резина твердая обыкновенная | 900…1200 |
Репа | 570…650 |
Рогожа | 200 |
Рубероид | 600 |
Рубракс | 1050 |
Сажа ламповая порошкообразная | 1900 |
Сало | 930 |
Саман | 1200…1500 |
Самшит (10% влажности) | 1000 |
Сахар-песок в мешках | 730…800 |
Свинец | 11370 |
Семена конопли насыпью | 520…580 |
Семечки подсолнечника в мешках | 400…440 |
Сера в порошке | 780 |
Сера ромбическая | 2085 |
Серебро | 10500 |
Ситалл | 2500 |
Сланец | 2600…3300 |
Сланец глинистый вспученный | 400 |
Сланец кровельный | 1500 |
Слюда вдоль слоев | 2700…3200 |
Слюда вспученная | 100 |
Слюда поперек слоев | 2600…3200 |
Смола эпоксидная | 1260…1390 |
Снег лежалый при 0°С | 400…560 |
Снег свежевыпавший | 120…200 |
Солома | 50…120 |
Солома прессованная | 250…280 |
Соломит | 150…400 |
Соль поваренная | 2200 |
Сосна | 500 |
Сосна смолистая 15% влажности | 600…750 |
Сталь нержавеющая, жаростойкая и жаропрочная | 7900…8200 |
Сталь стержневая арматурная | 7850 |
Стальное литье | 7800 |
Стеарин | 900 |
Стекло кварцевое | 2200 |
Стекло оконное | 2420…2590 |
Стекло термостойкое | 2200…2400 |
Стекло флинт | 3860 |
Стекловата | 155…200 |
Стекловолокно | 1700…2000 |
Стеклопластик | 1800…2000 |
Стеклотекстолит | 1600…1900 |
Стружка древесная прессованная | 800 |
Стяжка ангидритовая | 2100 |
Стяжка из литого асфальта | 2300 |
Суглинок | 1600…1700 |
Супесок мокрый | 1800…2000 |
Сургуч | 1800 |
Тальк в порошке | 870 |
Текстолит листовой | 1300…1400 |
Термозит | 300…500 |
Тефлон | 2120 |
Тик (древесина 10% влажности) | 730 |
Тисс | 750…940 |
Титан | 4500 |
Толь | 500…600 |
Тополь | 350…500 |
Торф сырой | 550…800 |
Торфоплиты | 275…350 |
Торфяная крошка | 300 |
Туф (облицовка) | 1000…2000 |
Туф известковый | 1000…1500 |
Туфобетон | 1200…1800 |
Уголь древесный кусковой | 190 |
Уголь каменный газовый | 1420 |
Уголь каменный обыкновенный | 1200…1350 |
Фанера бакелитовая водостойкая | 780…850 |
Фанера клееная | 600…700 |
Фаолит формованный | 1500…1700 |
Фарфор | 2300…2500 |
Фасоль в мешках | 500…560 |
Фаянс | 1940 |
Фенолит | 1550 |
Фибра красная | 1450 |
Фибролит (серый) | 1100 |
Фибролит гипсовый | 500…700 |
Фибролит цементный | 250…600 |
Фосфор желтый (воскообразная масса) | 1820 |
Фосфор красный (порошок) | 2200 |
Фосфорит | 1270…1600 |
Фторопласт | 1650…1800 |
Хром | 7140 |
Хромель | 8700 |
Целлулоид | 1400 |
Цемент глиноземистый рыхлый | 1000…1350 |
Цемент глиноземистый уплотненный | 1600…1900 |
Цемент затвердевший | 2600…3200 |
Цемент шлакопортландский | 1100…1250 |
Цинк | 7130 |
Черепица бетонная | 2100 |
Черепица глиняная | 1900 |
Черепица из ПВХ асбеста | 2000 |
Черепица кровельная | 1800…2000 |
Чугун антифрикционный | 7400…7600 |
Чугун белый | 7600…7800 |
Чугун ковкий и высокопрочный | 7200…7400 |
Чугун серый | 7000…7200 |
Шамотный порошок | 1350…1500 |
Шевелин | 100…260 |
Шелк | 100 |
Шифер | 2700…2800 |
Шлак гранулированный | 500 |
Шлак доменный | 2600…3000 |
Шлак коксовый | 600 |
Шлак котельный | 1000 |
Шлак мартеновский | 1700…1800 |
Шлак торфяной | 600…1000 |
Шлакобетон | 1120…1500 |
Шлаковата уплотненная | 400 |
Шлакопемзобетон (термозитобетон) | 1000…1800 |
Шлакопемзогазобетон | 800…1600 |
Штукатурка гипсовая | 800 |
Штукатурка из полистирольного раствора | 300 |
Штукатурка из синтетической смолы | 1100 |
Штукатурка известковая | 1600 |
Штукатурка известковая с каменной пылью | 1700 |
Штукатурка перлитовая | 350…800 |
Штукатурка утепляющая | 500 |
Штукатурка фасадная с полимерными добавками | 1800 |
Штукатурка цементно-песчаная | 1800 |
Шунгизитобетон | 1000…1400 |
Щебень гранитный | 1700…1800 |
Щебень и песок из перлита вспученного (засыпка) | 200…600 |
Щебень из доменного шлака, шлаковой пемзы и аглопорита (засыпка) | 400…800 |
Щебень кирпичный | 1200…1500 |
Щебень туфовый | 700…1000 |
Эбонит | 1140…1210 |
Эбонит вспученный | 640 |
Эковата | 35…60 |
Энант (полиэнантолактам) | 1140 |
Энсонит (прессованный картон) | 400…500 |
Яблоня | 670 |
Янтарь | 1100 |
Ясень (влажность 10%) | 700…750 |
Плотность — это. .. Что такое Плотность?
Пло́тность — скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму. Более строгое определение плотности требует уточнение формулировки:
- Средняя плотность тела — отношение массы тела к его объёму. Для однородного тела она также называется просто плотностью тела.
- Плотность вещества — это плотность тел, состоящих из этого вещества. Отсюда вытекает и короткая формулировка определения плотности вещества: плотность вещества — это масса его единичного объёма.
- Плотность тела в точке — это предел отношения массы малой части тела (), содержащей эту точку, к объёму этой малой части (), когда этот объём стремится к нулю[1], или, записывая кратко, . При таком предельном переходе необходимо помнить, что на атомарном уровне любое тело неоднородно, поэтому необходимо остановиться на объёме, соответствующем используемой физической модели.
Виды плотности и единицы измерения
Исходя из определения плотности, её размерность кг/м³ в системе СИ и в г/см³ в системе СГС.
Для сыпучих и пористых тел различают:
- истинную плотность, определяемую без учёта пустот;
- удельную (кажущуюся) плотность, рассчитываемую как отношение массы вещества ко всему занимаемому им объёму.
Истинную плотность из кажущейся получают с помощью величины коэффициента пористости — доли объёма пустот в занимаемом объёме.
Формула нахождения плотности
Плотность (плотность однородного тела или средняя плотность неоднородного) находится по формуле:
где m — масса тела, V — его объём; формула является просто математической записью определения термина «плотность», данного выше.
- При вычисления плотности газов эта формула может быть записана и в виде:
- где М — молярная масса газа, — молярный объём (при нормальных условиях равен 22,4 л/моль).
Плотность тела в точке записывается как тогда масса неоднородного тела (тела с плотностью, зависящей от места) рассчитывается как
Зависимость плотности от температуры
Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность ведёт себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого числа.
При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Правда, вода является исключением из этого правила, её плотность при затвердевании уменьшается.
Диапазон плотностей в природе
Для различных природных объектов плотность меняется в очень широком диапазоне.
- Самую низкую плотность имеет межгалактическая среда (2·10−31÷5·10−31 кг/м³)[2].
- Плотность межзвёздной среды приблизительно равна 10−23÷10−21 кг/м³.
- Средняя плотность Солнца примерно в 1,5 раза выше плотности воды.
- Средняя плотность красных гигантов на много порядков меньше, чем у Солнца, из-за того, что их радиус в сотни раз больше.
- Средняя плотность Земли равна 5520 кг/м³.
- Жидкий водород при атмосферном давлении и температуре −253 °C имеет плотность 70 кг/м³.
- Плотность жидкого гелия при атмосферном давлении равна 130 кг/м³.
- Плотность пресной воды составляет 1000 кг/м³.
- Гранит имеет плотность 2600 кг/м³.
- Плотность железа равна 7874 кг/м³.
- Наибольшую плотность среди металлов имеет осмий (22 587 кг/м³).
- Плотность атомных ядер приблизительно равна 2·1017 кг/м³.
- Плотность белых карликов составляет 108÷1012 кг/м³.
- Плотность нейтронных звёзд имеет порядок 1017÷1018 кг/м³.
- Теоретически верхнюю границу представляет планковская плотность (современная физика оценивает её в 5,1·1096 кг/м³, хотя не исключено, что она очень сильно завышена).
Плотности астрономических объектов
Средние плотности планет Солнечной системы и Солнца:
Средняя плотность Солнца и планет (в г/см³)[3][4]- Межпланетная среда в Солнечной системе достаточно неоднородна и может меняться во времени, её плотность в окрестностях Земли ~10−21÷10−20 кг/м³.
- Плотность межзвёздной среды ~10−23÷10−21 кг/м³.
- Плотность межгалактической среды от 2×10−34 до 5×10−34 кг/м³.
- Средняя плотность красных гигантов на много порядков меньше из-за того, что их радиус в сотни раз больше, чем у Солнца.
- Плотность белых карликов 108÷1012 кг/м³
- Плотность нейтронных звёзд имеет порядок 1017÷1018 кг/м³.
- Средняя (по объёму под горизонтом событий) плотность чёрной дыры
- у чёрной дыры с массой порядка солнечной превышает ядерную плотность,
- у сверхмассивной чёрной дыры с массой в 109 солнечных масс (существование таких чёрных дыр подозревается в квазарах) оставляет около 20 кг/м³,
- у сверхмассивной чёрной дыры в центре галактики может быть 0,2 кг/м³.
Плотности некоторых газов
Азот | 1,250 | Кислород | 1,429 |
Аммиак | 0,771 | Криптон | 3,743 |
Аргон | 1,784 | Ксенон | 5,851 |
Водород | 0,090 | Метан | 0,717 |
Водяной пар (100 °C) | 0,598 | Неон | 0,900 |
Воздух | 1,293 | Углекислый газ | 1,977 |
Хлор | 3,164 | Гелий | 0,178 |
Этилен | 1,260 |
Плотности некоторых жидкостей
Бензин | 0,74 | Молоко | 1,04 |
Вода (4 °C) | 1,00 | Ртуть (0 °C) | 13,60 |
Керосин | 0,82 | Эфир | 0,72 |
Глицерин | 1,26 | Спирт | 0,80 |
Морская вода | 1,03 | Скипидар | 0,86 |
Масло оливковое | 0,92 | Ацетон | 0,792 |
Масло машинное | 0,91 | Серная кислота | 1,84 |
Нефть | 0,81—0,85 | Жидкий водород (−253 °C) | 0,07 |
Плотность некоторых пород древесины
Бальса | 0,15 | Пихта сибирская | 0,39 |
Секвойя вечнозелёная | 0,41 | Ель | 0,45 |
Ива | 0,46 | Ольха | 0,49 |
Осина | 0,51 | Сосна | 0,52 |
Липа | 0,53 | Конский каштан | 0,56 |
Каштан съедобный | 0,59 | Кипарис | 0,60 |
Черёмуха | 0,61 | Лещина | 0,63 |
Грецкий орех | 0,64 | Берёза | 0,65 |
Вишня | 0,66 | Вяз гладкий | 0,66 |
Лиственница | 0,66 | Клён полевой | 0,67 |
Тиковое дерево | 0,67 | Бук | 0,68 |
Груша | 0,69 | Дуб | 0,69 |
Свитения (Махагони) | 0,70 | Платан | 0,70 |
Жостер (крушина) | 0,71 | Тис | 0,75 |
Ясень | 0,75 | Слива | 0,80 |
Сирень | 0,80 | Боярышник | 0,80 |
Пекан (кария) | 0,83 | Сандаловое дерево | 0,90 |
Самшит | 0,96 | Эбеновое дерево | 1,08 |
Квебрахо | 1,21 | Бакаут | 1,28 |
Пробка | 0,48 |
Измерение плотности
Для измерения плотности используются:
См. также
Примечания
- ↑ Подразумевается также, что область стягивается к точке, то есть, не только ее объем стремится к нулю (что могло бы быть не только при стягивании области к точке, но, например, к отрезку), но также стремится к нулю и ее диаметр (максимальный линейный размер).
- ↑ Агекян Т. А. Расширение Вселенной. Модель Вселенной. // Звёзды, галактики, Метагалактика / Под ред. А. Б. Васильева. — 3-е изд. — М.: Наука, 1982. — С. 249. — 416 с.
- ↑ (англ.)Planetary Fact Sheet
- ↑ (англ.)Sun Fact Sheet
Ссылки
Источники
- Большая советская энциклопедия
- Физическая энциклопедия под. ред. А. М. Прохорова. Москва. Научное издательство «Большая российская энциклопедия», 1992 г. Т.3, стр.637.
Наука
- Анатомия и физиология
- Астрономия
- Астрофизика
- Биология
- Химия
- науки о Земле
- Наука об окружающей среде
- Органическая химия
Расчет плотности
По окончании этого урока вы сможете:
- рассчитать одну переменную (плотность, массу или объем) из уравнения плотности
- рассчитывает удельный вес объекта, а
- определяет, будет ли объект плавать или тонуть, учитывая его плотность и плотность окружающей среды.
Введение в плотность
Плотность — это масса объекта, деленная на его объем.Плотность часто выражается в граммах на кубический сантиметр (г / см 3 ). Помните, что граммы — это масса, а кубические сантиметры — это объем (такой же объем, как 1 миллилитр).
Ящик с большим количеством частиц будет более плотным, чем такой же ящик с меньшим количеством частиц.Плотность — фундаментальное понятие в науке; вы увидите это во время учебы.Он довольно часто используется при идентификации горных пород и минералов, поскольку плотность веществ редко меняется значительно. Например, золото всегда будет иметь плотность 19,3 г / см 3 ; если минерал имеет другую плотность, это не золото.
Вероятно, вы интуитивно чувствуете плотность часто используемых материалов. Например, у губок низкая плотность; они имеют низкую массу на единицу объема. Вы не удивитесь, когда большую губку легко поднять. Напротив, железо плотное. Если вы возьмете в руки железную сковороду, она будет тяжелой.
Студенты и даже учителя часто путают массу и плотность. Слова «тяжелый» и «легкий» сами по себе относятся к массе, а не к плотности. Очень большая губка может весить много (иметь большую массу), но ее плотность низкая, потому что она все еще весит очень мало на единицу объема . Что касается плотности, вам также необходимо учитывать размер или объем объекта.
Как определить плотность?
Бетонный куб будет весить больше, чем куб воздуха того же размера, потому что он плотнее Плотность не измеряется напрямую.Обычно, если вы хотите узнать плотность чего-либо, вы его взвешиваете, а затем измеряете объем. Вы собираете валун и приносите его в лабораторию, где вы его взвешиваете и обнаруживаете, что его масса составляет 1000 г. Затем вы определяете объем 400 см 3 . Какая у вас плотность валуна? Плотность — это масса, разделенная на объем,Еще одна сложность, связанная с плотностью, заключается в том, что вы не можете добавлять плотности. Если у меня есть порода, состоящая из двух минералов, один с плотностью 2,8 г / см 3 , а другой с плотностью 3,5 г / см 3 , порода будет иметь плотность между 3,5 и 2,8 г / см 3 , а не 6,3 г / см 3 . Это потому, что и — масса и объем двух минералов будут добавлены, и поэтому, когда они разделены для получения плотности, результат будет между ними.
Типичная плотность газов составляет порядка тысячных граммов на кубический сантиметр. Жидкости часто имеют плотность около 1,0 г / см 3 , и действительно, пресная вода имеет плотность 1,0 г / см 3 . Породы часто имеют плотность около 3 г / см 3 , а металлы часто имеют плотность выше 6 или 7 г / см 3 .
Как рассчитать удельный вес?
Чтобы рассчитать удельную массу (SG) объекта, вы сравниваете плотность объекта с плотностью воды:
Потому что плотность воды в г / см 3 равна 1. 0 удельная плотность объекта будет почти такой же, как его плотность в г / см 3 . Однако удельный вес — это безразмерное число, и оно одинаково в метрической системе или любой другой системе измерения. Это очень полезно при сравнении плотности двух объектов. Поскольку удельный вес является безразмерным, не имеет значения, была ли измерена плотность в г / см 3 или в каких-либо других единицах (например, фунт / фут 3 ).
У вас есть образец базальта плотностью 210 фунтов / фут 3 .Плотность воды 62,4 фунта / фут 3 . Каков удельный вес базальта? Удельный вес — это плотность вещества, деленная на плотность воды, поэтомуТаким образом, мы разделим базальт (210 фунтов / фут 3 ) на плотность воды (62,4 фунта / фут 3 ) и получим S.G. = 3,37 .
Почему мне следует рассчитывать плотность или удельный вес?
Плотность важна для многих применений. Одним из наиболее важных является то, что плотность вещества будет определять, будет ли оно плавать на другом.Менее плотные вещества будут плавать (или подниматься) на более плотные вещества. Вот несколько примеров того, как это объясняет повседневные явления:
- Вы задавались вопросом, почему поднимаются воздушные шары? Когда воздух нагревается, он становится менее плотным, пока общая плотность воздушного шара не станет меньше плотности атмосферы; Воздушный шар буквально парит в более плотном и холодном воздухе.
- Вы когда-нибудь замечали, что в озере или океане вода теплее на поверхности и холоднее на дне? Это связано с тем, что более теплая вода немного менее плотная и в результате плавает на более плотной и холодной воде
- Вы знаете, почему извергаются вулканы? Эта огромная лодка много весит, но ее плотность должна быть меньше единицы.0 г / см 3 , потому что плавает. Основная причина того, что магма поднимается на поверхность для извержения вулканов, заключается в том, что она менее плотная, чем окружающие ее породы.
Корабль, плывущий по воде, является прекрасной иллюстрацией разницы между массой и плотностью. Корабль должен иметь плотность менее 1,0 г / см 3 (плотность воды), иначе оно затонет. Корабли имеют большую массу, потому что они сделаны из стали, но из-за большого объема их плотность меньше 1.0 г / см 3 . Если им добавить достаточно массы, чтобы их плотность превысила 1,0 г / см 3 , они утонут.
Чтобы попробовать некоторые практические задачи, перейдите на страницу с примером проблемы!
Где плотность используется в науках о Земле?
Галенит, свинцовая руда, является одним из самых плотных обычных минералов.с http://mineral.galleries.com/.
- Isostasy — определение того, насколько высоко континенты будут располагаться на мантии
- Тектоника плит — механизмы, приводящие в движение тектонику плит
- Минералы — определение названия минерала по его плотности
- Камни — определение названия и состава породы по ее плотности
- Гипсометрическая кривая — исследование причин изменения высоты на Земле
- Океанография — некоторые океанические течения и циркуляция океана контролируются плотностью
Следующие шаги
Готова к ПРАКТИКЕ!
Если вы думаете, что разбираетесь во всех перечисленных выше вещах, нажмите на эту панель, чтобы попробовать несколько практических задач с отработанными ответами!Или, если вы хотите еще больше практики, перейдите по ссылкам ниже
Дополнительная справка по плотности
Он-лайн лаборатория Edinformatics по массе, объему и плотности создана NYU. Это позволяет вам просматривать изображения измерений и вводить данные.Hyperphysics, в штате Джорджия есть страница о плотности и преобразователе плотности . Сюда входит несколько связанных страниц, включая инструкции по измерению плотности с использованием принципа Архимеда.
На странице Википедии, посвященной удельному весу, объясняется, что такое удельный вес и как он используется, и даже обсуждается его использование в геонауках и минералогии. Однако содержание статей Википедии может измениться, поэтому вы можете быть осторожны.
На странице «Плотность» Википедии есть общее обсуждение плотности, ее истории, расчета и единиц измерения. Однако содержание статей Википедии может измениться, поэтому вы можете быть осторожны.
Эта страница была написана и скомпилирована доктором Эриком М. Бэром, геологическая программа, Общественный колледж Хайлайн, и доктором Дженнифер М. Веннер, геологический факультет, Ошкошский университет Висконсина
Плотность Решенные практические задачи
Перейти к: Плотность горных пород и минералов | Удельный вес горных пород и минералов Вы можете загрузить вопросы (Acrobat (PDF) 25kB Jul24 09), если хотите проработать их на отдельном листе бумаги.
Расчет плотности горных пород и минералов
Задача 1: У вас есть камень объемом 15 см 3 и массой 45 г. Какая у него плотность?
Задача 2: У вас есть другой камень объемом 30 см 3 и массой 60 г. Какая у него плотность?
Плотность делится на массу, деленную на объем, так что плотность составляет 60 г, разделенные на 30 см 3 , что составляет 2.0 г / см 3 .Задача 3: В двух приведенных выше примерах какой камень тяжелее? Что легче?
Вопрос в том, что тяжелее и легче , что относится к массе или весу. Следовательно, все, что вас волнует, это масса в граммах, и поэтому камень весом 60 г во второй задаче тяжелее , а камень весом 45 г (в первом вопросе) легче.
Задача 4: В двух приведенных выше примерах какая порода более плотная? какой менее плотный?
Вопрос касается плотности , и это отношение массы к объему.Следовательно, первая порода более плотная , (плотность = 3,0) и вторая порода менее плотная , хотя и весит больше, потому что ее плотность составляет всего 2,0. Этот пример показывает, почему важно не использовать слова «тяжелее / легче», когда вы имеете в виду более или менее плотный.
Задача 5: Вы решили, что хотите принести домой валун с пляжа. Его длина по 30 сантиметров с каждой стороны, поэтому его объем составляет 27000 см. 3 . Он сделан из гранита, который имеет типичную плотность 2.8 г / см 3 . Сколько будет весить этот валун?
В этом случае вас просят указать массу, а не плотность. Вам нужно будет изменить уравнение плотности так, чтобы получить массу.Если умножить обе стороны на объем, мы оставим массу в покое.
Подставляя значения из задачи,
В результате масса составляет 75 600 грамм. Это более 165 фунтов! Задача 6: Иногда вдоль побережья используют скалы для предотвращения эрозии.Если камень должен весить 2000 кг (около 2 тонн), чтобы его не сдвинули волнами, какого размера (какого объема) он должен быть? Вы используете базальт, типичная плотность которого составляет 3200 кг / м 3 В этой задаче вам нужен объем, поэтому вам нужно будет изменить уравнение плотности, чтобы получить объем.
Умножив обе стороны на объем, мы можем получить объем из числителя (внизу).
Затем вы можете разделить обе стороны по плотности, чтобы получить только объем:
Подставив значения, перечисленные выше,
Таким образом, объем будет 0.625 м 3
Обратите внимание, что вышеупомянутая проблема показывает, что плотности могут быть в единицах, отличных от граммов и кубических сантиметров. Чтобы избежать потенциальных проблем, связанных с различными блоками, многие геологи используют удельный вес (SG), рассмотренный в задачах 8 и 9 ниже.
Изображение с http://www.stat.wisc.edu/~ifischer/Collections/Fossils/rocks.html
Задача 7: Вам вручают куб золотистого цвета. Человек хочет, чтобы вы купили его за 100 долларов, говоря, что это золотой самородок.Вы достаете свой старый текст по геологии, ищите золото в таблице минералов и читаете, что его плотность составляет 19,3 г / см 3 . Вы измеряете кубик и обнаруживаете, что он равен 2 см с каждой стороны и весит 40 г. Какая у него плотность? Это золото? Стоит ли покупать это? Для определения плотности вам нужны объем и масса начиная с.
Вы знаете массу (40 г), но объем не указан. Чтобы найти объем, воспользуйтесь формулой объема коробки
- объем = длина x ширина x высота.
Объем куба
- 2см x 2см x 2см = 8см 3 .
Тогда плотность — это масса, разделенная на объем:
Таким образом, куб НЕ является золотом , поскольку плотность (5,0 г / см 3 ) не такая же, как у золота (19,3 г / см 3 ). Скажите продавцу сходить в поход . Вы даже можете заметить, что плотность пирита (также известного как золото дураков) составляет 5,0 г / см 3 .К счастью, вы не дурак и знаете о плотности!
Расчет удельного веса горных пород и минералов
Задача 8: У вас есть образец гранита плотностью 2,8 г / см 3 . Плотность воды 1,0 г / см 3 . Каков удельный вес вашего гранита?
Удельный вес — это плотность вещества, деленная на плотность воды, поэтомуОбратите внимание, что единицы отменяют, поэтому в этом ответе единиц нет.Мы говорим «номер без единицы ».
Задача 9: У вас есть образец гранита плотностью 174,8 фунта / фут 3 . Плотность воды 62,4 фунта / фут 3 . Какой сейчас удельный вес гранита?
Опять же, удельный вес — это плотность вещества, деленная на плотность воды, поэтомуЭто показывает, что удельный вес не изменяется, когда измерения производятся в разных единицах, пока плотность объекта и плотность воды находятся в одних и тех же единицах.
ПРИНИМАЙТЕ ВИКТОРИНГУ !!
Думаю, я освоил плотность и готов пройти тест!
Эта ссылка ведет к WAMAP. Если ваш инструктор не дал вам инструкций о вамапе, возможно, вам не придется проходить тест. Если это не то, что вы чувствуете, вы можете вернуться к объяснениям.
Измерения и анализ ошибок
«Лучше быть примерно правым, чем совершенно неправым.»- Алан ГринспенНеопределенность измерений
Некоторые числовые утверждения точны: у Мэри 3 брата, и 2 + 2 = 4. Однако все измерения имеют некоторую степень неопределенности, которая может быть получена из разных источников. Процесс оценки неопределенности, связанной с результатом измерения, часто называется анализом неопределенности или анализом ошибки . Полный отчет об измеренном значении должен включать оценку уровня уверенность, связанная с ценностью.Правильное сообщение экспериментального результата с его неопределенностью позволяет другим людям судить о качестве экспериментируйте, и это облегчает значимые сравнения с другими аналогичными значениями или теоретическое предсказание. Без оценки неопределенности невозможно ответить на основной научный вопрос: «Согласуется ли мой результат с теоретическим предсказанием или результатами из других экспериментов? »Этот вопрос является основополагающим для принятия решения о том, гипотеза подтверждена или опровергнута.Когда мы проводим измерения, мы обычно предполагаем, что существует какое-то точное или истинное значение в зависимости от того, как мы определяем, что измеряется. Хотя мы, возможно, никогда не узнаем это истинное значение точно, мы пытаемся найти это идеальное количество в меру наших возможностей с помощью время и ресурсы. Поскольку мы проводим измерения разными методами или даже при выполнении нескольких измерений одним и тем же методом, мы можем получить немного разные результаты. Итак, как мы сообщаем о наших результатах для нашей наилучшей оценки этого неуловимого истинного значения ? Самый распространенный способ показать диапазон значений, который, по нашему мнению, включает истинное значение:(1)
измерение = (наилучшая оценка ± неопределенность) единиц
Возьмем пример.Предположим, вы хотите найти массу золотого кольца, которое вы хотел бы продать другу. Вы не хотите подвергать опасности свою дружбу, поэтому вы хотите чтобы получить точную массу кольца по справедливой рыночной цене. Вы оцениваете масса должна составлять от 10 до 20 граммов в зависимости от того, насколько тяжелой она ощущается в руке, но это не очень точная оценка. После некоторого поиска вы найдете электронные весы, которые массовое чтение 17,43 грамма. Хотя это измерение намного точнее , чем исходная оценка, откуда вы знаете, что она , точная , и насколько вы уверены, что это измерение представляет собой истинное значение массы кольца? Поскольку цифровой дисплей баланс ограничен двумя знаками после запятой, вы можете указать массу какм = 17.43 ± 0,01 г.
Предположим, вы используете те же электронные весы и получили еще несколько показаний: 17,46 г, 17,42 г, 17,44 г, так что средняя масса находится в диапазоне17,44 ± 0,02 г.
Теперь вы можете быть уверены, что знаете массу этого кольца с точностью до ближайшего сотые доли грамма, но откуда вы знаете, что истинная ценность определенно лежит между 17,43 г и 17,45 г? Если честно, вы решили использовать другой баланс, который дает значение 17.22 г. Это значение явно ниже диапазона значений, найденных на первый баланс, и при нормальных обстоятельствах вам может быть все равно, но вы хотите быть справедливым своему другу. Так что вы будете делать теперь? Ответ заключается в том, чтобы знать кое-что о точность каждого инструмента. Чтобы помочь ответить на эти вопросы, мы должны сначала определить термины точность и точность : Точность — это степень соответствия измеренного значения истинному или принятому значению.Ошибка измерения — это величина неточности.Точность — это мера того, насколько хорошо может быть определен результат (без ссылки на теоретическое или истинное значение). Это степень согласованности и согласия между независимыми измерениями одной и той же величины; а также надежность или воспроизводимость результата.
Неопределенность Оценка , связанная с измерением, должна учитывать как точность, так и точность измерения.
Примечание: К сожалению, термины ошибка и неопределенность часто используются как синонимы для обозначения описать как неточность, так и неточность. Это использование настолько распространено, что невозможно чтобы полностью избежать. Когда вы сталкиваетесь с этими условиями, убедитесь, что вы понимаете относятся ли они к точности или точности, или к тому и другому. Обратите внимание, что для определения точности конкретного измерения у нас есть знать идеальную, истинную ценность.Иногда у нас есть «учебное» измеренное значение, которое хорошо известно, и мы предполагаем, что это наше «идеальное» значение, и используем его для оценки точность нашего результата. В других случаях мы знаем теоретическое значение, которое рассчитывается из основные принципы, и это тоже можно принять за «идеальное» значение. Но физика — это эмпирическая наука, что означает, что теория должна быть подтверждена экспериментом, а не наоборот. Мы можем избежать этих трудностей и сохранить полезное определение понятия точность , если предположить, что даже если мы не знаем истинного значения, мы можем полагаться на наилучшее возможное значение приняло значение , с которым можно сравнить наше экспериментальное значение. В нашем примере с золотым кольцом нет приемлемого значения для сравнения, и оба измеренных значения имеют одинаковую точность, поэтому у нас нет оснований полагать, что больше, чем другие. Мы могли бы найти характеристики точности для каждого весов как предоставленные производителем (приложение в конце этого лабораторного руководства содержит данные о точности для большинства инструментов, которые вы будете использовать), но лучший способ оценить точность измерения следует сравнить с известным стандартом .В этой ситуации это может быть возможность калибровки весов с помощью стандартной массы, которая является точной в узком допуска и прослеживается к стандарту первичной массы в Национальном институте Стандарты и технологии (NIST). Калибровка весов должна устранить несоответствие показаний и дает более точное измерение массы . Прецизионность часто выражается количественно с использованием относительной погрешности или дробной неопределенности :(2)
Относительная неопределенность =неопределенность |
измеренное количество |
м = 75. 5 ± 0,5 г
имеет дробную погрешность: Точность часто выражается количественно с использованием относительной ошибки :(3)
Относительная ошибка =измеренное значение — ожидаемое значение |
ожидаемое значение |
Примечание: Знак минус означает, что измеренное значение на меньше , чем ожидаемое. значение.
При анализе экспериментальных данных важно понимать разницу между точностью и точностью. Точность указывает качество измерения без какой-либо гарантии, что измерение «правильное». Точность , с другой стороны, предполагает, что существует идеальное значение, и сообщает, насколько далеко ваш ответ от этого идеального, «правильного» ответа. Эти концепции напрямую связаны с случайными и систематическими ошибками измерения.Типы ошибок
Глава 8 — Твердые тела
Введение
Твердые тела характеризуются упорядоченным расположением частиц. Если заказ распространяется только на короткие расстояния (местный заказ), твердое тело представляет собой аморфное твердое тело . Древесный уголь и стекло — твердые аморфные вещества. Если порядок существует во всем твердом теле (дальний порядок), твердое тело называется кристаллическим твердым телом .Поваренная соль и сахар — два распространенных примера твердых кристаллических веществ. Эта глава посвящена изучению кристаллических твердых тел. Даже маленький кристалл содержит миллионы и миллионы частиц. Таким образом, изучение твердого тела может быть сложной задачей.8.1 Единичные ячейки
Введение
Однако дальний порядок, который характеризует кристаллические твердые тела, означает, что существует небольшая повторяющаяся единица, называемая элементарной ячейкой, которую можно использовать для создания всего кристалла. Наше исследование упрощено, потому что вместо изучения положения огромного числа частиц, составляющих весь кристалл, нам нужно изучать только небольшое количество частиц, составляющих элементарную ячейку.В этом разделе мы определяем элементарную ячейку и обсуждаем, как она заполнена атомами.Цели
•
Определите элементарную ячейку и решетку .
8.1-1. Определение
Элементарная ячейка — это наименьшая повторяющаяся единица кристаллической решетки, которая генерирует всю решетку с трансляцией.
Кристаллические твердые тела представляют собой упорядоченные повторяющиеся трехмерные массивы частиц, которые могут быть атомами, ионами или группами атомов, такими как многоатомные ионы или молекулы.Образец массива называется кристалл , , решетка , , а отдельные позиции называются узлами решетки . Простейшая часть решетки, составляющая повторяющийся элемент, называется элементарной ячейкой . Когда элементарная ячейка повторяется во всех трех направлениях, она генерирует всю кристаллическую решетку. На рисунке показаны две разные, но эквивалентные элементарные ячейки в двумерном массиве. Одна элементарная ячейка состоит из четырех A по углам и B в центре грани, а другая имеет B по углам с A в центре.Сдвиг по длине одного из краев любой ячейки в любом из четырех направлений дает соседнюю ячейку. Продолжение операций перевода создает полную кристаллическую решетку. Трехмерная решетка образуется путем перемещения трехмерной элементарной ячейки в трех направлениях.8.1-2. Параметры элементарной ячейки
Все элементарные ячейки можно однозначно охарактеризовать с помощью трех длин ребер ( a , b и c ) и углов ( α , β и γ ), определенных на рисунке 8.2. Они должны быть шестигранными многоугольниками, полностью заполняющими пространство; то есть дырки отсутствуют, когда многоугольники элементарной ячейки упакованы в трех измерениях. В результате существует всего семь различных типов элементарных ячеек. Мы ограничиваем наше обсуждение простейшим типом элементарной ячейки — кубической элементарной ячейкой. Кубическая элементарная ячейка — это ячейка, в которойa = b = c
иα = β = γ = 90 ° .
Есть три типа кубических элементарных ячеек, которые различаются только способом, которым частицы заполняют ячейку.•
простая кубическая (стбн)•
объемно-центрированный кубический (bcc)•
гранецентрированная кубическая (ГЦК)
8.2 Кубические элементарные ячейки и металлические радиусы
Введение
Элементарные ячейки должны быть шестиугольными многоугольниками, которые полностью заполняют пространство (без промежутков между элементарными ячейками), и есть только семь типов элементарных ячеек, которые удовлетворяют этому требованию.Однако наше обсуждение ограничивается только одним типом — кубической элементарной ячейкой.Цели
•
Различают простые объемноцентрированные и гранецентрированные кубические элементарные ячейки.•
Определите атомные радиусы по длине края элементарной ячейки или длину края по атомным радиусам.
8.2-1. Кубические элементарные ячейки
Есть три кубические элементарные ячейки, которые различаются тем, как частицы заполняют куб.В каждой кубической элементарной ячейке один и тот же тип атома занимает каждый из восьми углов куба. Тогда тип элементарной ячейки определяется тем, где еще в элементарной ячейке находится этот тип атома. Обратите внимание, что на изображениях ниже все сферы представляют собой атомы одного и того же типа — различия в цвете используются только для того, чтобы различать разные позиции в ячейке. Есть три различных типа кубических элементарных ячеек.Тип кубической элементарной ячейки | Расположение идентичных частиц | Изображение |
---|---|---|
простая кубическая (sc) | по углам, а больше нигде в ячейке | |
объемно-центрированная кубическая (bcc) | по углам и в центре ячейки | |
гранецентрированная кубическая (ГЦК) | по углам и в центрах шести граней ячейки |
Таблица 8. 1. Кубические элементарные ячейки
8.2-2. Металлический или атомный радиус
Атомы не являются твердыми сферами с четкими границами, поэтому их размеры напрямую не определяются. Однако положения атомов в твердом теле можно определить с помощью дифракции рентгеновских лучей, а размеры атомов — на основании этих расстояний. В этом методе радиус атома определяется из длины края элементарной ячейки ( a ), которая определяется по местоположению атомов, и предположения, что атомы соприкасаются, как показано на рисунках 8.3a, 8.3b и 8.3c.9.2: Металлы и неметаллы и их ионы
Все элементы, за исключением водорода, образуют положительные ионы, теряя электроны во время химических реакций, называются металлами. Таким образом, металлы являются электроположительными элементами с относительно низкими энергиями ионизации. Они характеризуются ярким блеском, твердостью, способностью резонировать со звуком и отлично проводят тепло и электричество. В нормальных условиях металлы являются твердыми телами, за исключением ртути.
Физические свойства металлов
Металлы блестящие, пластичные, пластичные, хорошо проводят тепло и электричество. Другие свойства включают:
- Состояние : Металлы представляют собой твердые вещества при комнатной температуре, за исключением ртути, которая находится в жидком состоянии при комнатной температуре (в жаркие дни галлий находится в жидком состоянии).
- Блеск : Металлы обладают свойством отражать свет от своей поверхности и могут быть отполированы, например, золотом, серебром и медью.
- Ковкость: Металлы обладают способностью противостоять ударам молотком и из них могут быть изготовлены тонкие листы, известные как фольга. Например, кусок золота размером с кубик сахара можно растолочь в тонкий лист, которым будет покрыто футбольное поле.
- Пластичность: Металлы можно втягивать в проволоку. Например, из 100 г серебра можно натянуть тонкую проволоку длиной около 200 метров.
- Твердость: Все металлы твердые, кроме натрия и калия, которые мягкие и поддаются резке ножом.
- Валентность: Металлы обычно имеют от 1 до 3 электронов на внешней оболочке их атомов.
- Проводимость : Металлы являются хорошими проводниками, потому что у них есть свободные электроны. Серебро и медь — два лучших проводника тепла и электричества. Свинец — самый плохой проводник тепла. Висмут, ртуть и железо также являются плохими проводниками
- Плотность : Металлы имеют высокую плотность и очень тяжелые. Иридий и осмий имеют самую высокую плотность, а литий — самую низкую.
- Точки плавления и кипения : Металлы имеют высокие точки плавления и кипения. Вольфрам имеет самые высокие температуры плавления и кипения, а ртуть — самые низкие. Натрий и калий также имеют низкие температуры плавления.
Химические свойства металлов
Металлы — это электроположительные элементы, которые обычно образуют основных или амфотерных оксидов с кислородом. Другие химические свойства включают:
- Электроположительный характер : Металлы имеют тенденцию к низкой энергии ионизации, а обычно теряют электроны (т.е.е. окисляются ), когда они вступают в химические реакции реакции Обычно они не принимают электроны. Например:
- Щелочные металлы всегда 1 + (теряют электрон в с подоболочки )
- Щелочноземельные металлы всегда 2 + (теряют оба электрона в s подоболочке)
- Ионы переходных металлов не следуют очевидной схеме, 2 + является обычным (теряют оба электрона в s подоболочке ), а также наблюдаются 1 + и 3 +
\ [\ ce {Na ^ 0 \ rightarrow Na ^ + + e ^ {-}} \ label {1.{-}} \ label {1.3} \ nonumber \]
Соединения металлов с неметаллами имеют тенденцию быть ионными по природе. Большинство оксидов металлов являются основными оксидами и растворяются в воде с образованием гидроксидов металлов :
\ [\ ce {Na2O (s) + h3O (l) \ rightarrow 2NaOH (aq)} \ label {1.4} \ nonumber \]
\ [\ ce {CaO (s) + h3O (l) \ rightarrow Ca (OH) 2 (aq)} \ label {1.5} \ nonumber \]
Оксиды металлов проявляют свою основную химическую природу, реагируя с кислотами с образованием солей металла и воды:
\ [\ ce {MgO (s) + HCl (водн.) \ Rightarrow MgCl2 (водн.) + H3O (l)} \ label {1.{2 -} \), следовательно, \ (Al_2O_3 \).
Пример \ (\ PageIndex {2} \)
Вы ожидаете, что он будет твердым, жидким или газообразным при комнатной температуре?
Решения
Оксиды металлов обычно твердые при комнатной температуре
Пример \ (\ PageIndex {3} \)
Напишите вычисленное химическое уравнение реакции оксида алюминия с азотной кислотой:
Решение
Оксид металла + кислота -> соль + вода
\ [\ ce {Al2O3 (s) + 6HNO3 (водн.