В чем измеряется плотность металла: Что это — плотность металлов, как она определяется? Расчет плотности для осмия

Содержание

Металлы и сплавы. Таблицы плотности металлов и сплавов

Каждый школьник, который знаком с таблицей Менделеева, знает, что количество металлов в ней составляет большую часть химических элементов. Одной из важных физических характеристик для них является плотность. Рассмотрим эту величину в статье и приведем таблицу плотности металлов и сплавов.

Что такое плотность

Если взять одинаковые объемы пластмассы и стали, то первая будет гораздо легче, чем вторая. Наоборот, кусок пластмассы будет иметь точно такой же вес, как кусок стали, если он будет намного больше его по объему. Причиной указанных различий является такая физическая величина, как плотность. Формула для ее вычисления имеет следующий вид:

ρ = m/V.

Здесь m — масса тела, V — его объем. Греческая буква ρ (ро) часто используется для обозначения плотности. Из формулы следует, что единицами измерения величины в СИ являются килограммы на кубический метр (кг/ м3). Также могут использоваться внесистемные единицы, например, г/ см3 или г/ л (для жидкостей).

Что такое металлы

Прежде чем приводить таблицу плотности металлов, поясним, о каком веществе идет речь. Металлические материалы отличаются от неметаллов высокими тепло- и электропроводностью и пластичностью. Это главные отличительные их свойства. Также существуют второстепенные свойства, например, наличие характерного металлического блеска, ковкость и низкая электроотрицательность для их атомов.

Все металлы при нормальных условиях существуют в твердом виде. Исключение составляет лишь ртуть, для которой температура кристаллизации составляет -39oC. Твердый металл существует в виде кристаллической решетки. Последняя представляет собой совокупность атомов, которые определенным геометрическим способом организованы в пространстве. Любой чистый (однокомпонентный) металлический материал существует в одном из трех типов кристаллических решеток при данных условиях. Это следующие решетки:

  • Гранецентрированная кубическая (ГЦК).
  • Объемно-центрированная кубическая (ОЦК).
  • Гексагональная плотноупакованная (ГПУ).

Если условия (температура, давление) изменить, то металл может перейти из одного в другое кристаллическое состояние. Классическим примером является переход ОЦК железа в ГЦК, когда температура падает ниже 1392oC, или когда она повышается выше 911oC.

Таблица плотности металлов

Плотность металлов определяется двумя основными факторами:

  • Типом кристаллической решетки и межатомными расстояниями в ней.
  • Массой атома химического элемента.

Таблица плотности металлов и других элементов приводится ниже.

Здесь приведены цифры в г/ см3. Чтобы таблица плотности металлов в кг/ м3 выражалась, необходимо соответствующую величину умножить на 1000. Из таблицы видно, что металлы обладают самой разной плотностью. Они могут быть легче воды (натрий, литий, калий) или же являться очень тяжелыми (иридий, осмий, платина, золото).

Плотность сплавов

Сплавы представляют собой многокомпонентные вещества, например, сталь — это сплав железа и углерода. Кристаллическая структура сплавов является более сложной, чем для чистых металлов. Для стали, которая состоит из атомов железа и углерода, существует несколько возможностей их взаимного расположения (твердый раствор углерода в ОЦК или ГЦК железе, образование специальной фазы — цементита, образование графитных включений и некоторые другие).

Что касается плотности сплавов, то во многих случаях ее можно оценить по следующей простой формуле:

ρ = ∑imi/∑iVi.

Где i — номер компонента в сплаве. Если это выражение применить для двухкомпонентного сплава, то можно получить следующую формулу:

ρ = ρ12/(ρ1+x*(ρ21)).

Где ρ1 и ρ2 — плотности соответствующих компонент, x — массовая доля первого компонента в сплаве. Она определяется так:

x = m1/(m1 + m2).

Таблица плотности некоторых сплавов в тоннах на метр кубический приведена ниже.

Поскольку каждый сплав содержит преимущественно один компонент (сталь — железо, бронза — медь, нихром — никель и так далее), то неудивительно, что их плотности близки к соответствующим величинам для чистых металлов.

Конвертер плотности, что такое плотность, как и в чем ее измеряют

Любое тело состоит из определенного количества молекул, где каждая имеет свою массу. Таким образом, масса тела — это сумма масс молекул из которых оно состоит. Независимо от того, где находится это тело, в нем всегда одинаковое количество молекул и его масса не меняется. В разных веществах и материалах концентрация молекул сильно отличается. Их масса в единице объема — это плотность. Стандартно она измеряется в кг / м 3. Если необходимо перевести в другие величины, то проще всего использовать конвертер плотности.


Для этого достаточно поставить значение в соответствующее поле и выбрать нужные единицы измерения. После нажатия кнопки «Перевести» конвертер плотности проведет пересчет.

Что такое плотность и как ее рассчитать

Плотность вещества — это его масса в единице объема. Плотность — уникальное физическое свойство, которое стало основой для великого открытия Архимеда — его знаменитого закона: на тело, погруженное в жидкость действует выталкивающая сила, которая равна массе вытесненной жидкости.

Здесь плотность играет решающую роль — чем она больше, тем больше тело будет погружаться. Плотность и твердость — разные понятия. Хороший пример этому вода и лед. У воды плотность больше чем у льда, поэтому он всплывает на ее поверхность, а не тонет.

Наглядный пример этому — простой эксперимент «Башня плотности». Он доступен для проведения в домашних условиях.

Плотность обозначают символом ρ, в химии можно встретить ее обозначение буквой d латинского алфавита.

Для ее расчета используют следующую формулу: ρ = m/V, где:
ρ = плотность тела, m = его масса, V = объем.

  1. Плотность можно объяснить как соотношение между массой вещества и объемом, который он занимает.
  2. По физическим свойствам — чем плотнее вещество, тем больше его масса в единице объема.
  3. Если тела при одинаковом объеме имеют разную массу, то это значит, что у них разная плотность..

Единицы измерения плотности

Официальной единицей измерения плотности в системе СИ является кг/м³. Поскольку это довольно большой объем, то для удобства чаще всего используют

  • г/см³ для твердых веществ,
  • г/мл для жидкостей,
  • г/л для газов.

Плотность воды составляет примерно 1 грамм / кубический сантиметр. Она принимается за стандартное значение для расчетов.

Другие единицы измерения плотности

В качестве других единиц измерения плотности, также используются метрические тонны и литры, хотя они не включены в Международную систему СИ. Другие единицы включают:

  • грамм на миллилитр (г/мл)
  • метрическая тонна на кубический метр (т/м³)
  • килограмм на литр (кг/л)
  • мегаграмм (метрическая тонна) на кубический метр (мг/м³)
  • грамм на кубический сантиметр (г/см³)
    1г/см³ = 1000 кг/м³
  • килограмм на кубический дециметр (кг/дм³ )

Чтобы сделать быстрый и точный перевод из одних величин в другие вы можете использовать наш конвертер плотности.

Применение понятия плотности

В нашей реальной жизни знания о плотности материалов находят широкое практическое применение. Например, при сооружении трубопроводов, в судостроении, при расчете и распределении веса в самолете и др.

Напомним: в физике плотность определяет массу вещества в единице объема, поэтому она связана с его «весом», а не с его текучестью (вязкостью).

  • При изменении температуры и давления плотность меняется. Изменения относительно несущественны для твердых тел и жидкостей, но заметны для газов.
    Увеличение давления вызывает увеличение плотности (при уменьшении объема). Повышение температуры приводит к уменьшению плотности (с увеличением объема).
  • Плотность тела можно определить в лаборатории, например, взвесив его и затем погрузив в воду, отмечая увеличение объема. Плотность вычисляем делением массы на объем.

Примеры плотности разных веществ

Вода имеет плотность 1000 кг / м³ (т.е. 1 г / см³). Это не совпадение. Исторически сложилось так, что один литр воды, при четырех градусах Цельсия при нормальном давлении, считался эталоном 1 кг массы.

Железо, платина, золото и свинец — материалы с высокой плотностью. Многие виды горных пород и минералов также яв

Удельный вес: формула, расчет, единицы измерения

Среди множества параметров, характеризующих свойства материалов существует и такой как удельный вес. Иногда применяют термин плотность, но это не совсем верно. Но так или иначе эти оба термина имеют собственные определения и имеют хождение в математике, физике и множестве других наук, в том числе и материаловедении.

Удельный вес

Определение удельного веса

Физическая величина, являющаяся отношением веса материала к занимаемому им объему, называется УВ материала.

Материаловедение ХХI века далеко ушло вперед в и уже освоены технологии, которые каких-то сто лет назад считались фантастикой. Эта наука может предложить современной промышленности сплавы, которые отличаются друг от друга качественными параметрами, но и физико-техническими свойствами.

Для определения того, как некий сплав может быть использован для производства целесообразно определить УВ. Все предметы, изготовленные с равным объемом, но для их производства был использованы разные виды металлов, будут иметь разную массу, она находится в четкой связи с объемом. То есть отношение объема к массе это есть некое постоянное число, характерная для этого сплава.

Для расчета плотности материала применяют специальную формулу, имеющую прямую связь с УВ материала.

Кстати, УВ чугуна, основного материала для создания стальных сплавов, можно определить весом 1 см3, отраженного в граммах. Тем больше УВ металла, тем тяжелее будет готовое изделие.

Формула удельного веса

Формулу расчета УВ выглядит как отношение веса к объему. Для подсчета УВ допустимо применять алгоритм расчета, который изложен в школьном курсе физики.
Для этого необходимо использовать закон Архимеда, точнее определение силы, которая является выталкивающей. То есть груз с некоей массой и при этом он держится на воде. Другими словами на него влияют две силы – гравитации и Архимеда.

Формула для расчета архимедовой силы выглядит следующим образом

F=g×V,

где g – это УВ жидкости. После подмены формула приобретает следующий вид F=y×V, отсюда получаем формулу УВ груза y=F/V.

Разница между весом и массой

В чем состоит разница между весом и массой. На самом деле в быту, она не играет ни какой роли. В самом деле, на кухне, мы не делаем развития между весом курицы и ее массой, но между тем между этими терминами существуют серьезные различия.

Эта разница хорошо видна при решении задач, связанных с перемещением тел в межзвездном пространстве и ни как имеющим отношения с нашей планете, и в этих условиях эти термины существенно различаются друг от друга.
Можно сказать следующее, термин вес имеет значение только в зоне действия силы тяжести, т.е. если некий объект находиться рядом с планетой, звездой и пр. Весом можно называть силу, с которой тело давит на препятствие между ним и источником притяжения. Эту силу измеряют в ньютонах. В качестве примера можно представить следующую картину — рядом с платным образованием находиться плита, с расположенным на ее поверхности неким предметом. Сила, с которой предмет давит на поверхность плиты и будет весом.

Масса и вес

Масса тела напрямую связана с инерцией. Если детально рассматривать это понятие то можно сказать, что масса определяет размер гравитационного поля создаваемого телом. В действительности, это одна из ключевых характеристик мироздания. Ключевое различие между весом и массой заключается в следующем — масса не зависит от расстояния между объектом и источником гравитационной силы.

Для измерения массы применяют множество величин – килограмм, фунт и пр. Существует международная система СИ, в которой применяют привычные, нам килограммы, граммы и пр. Но кроме нее, в многих странах, например, Британских островах, существует собственная система мер и весов, где вес измеряют в фунтах.

Разница между удельным весом и плотностью

УВ – что это такое?

Удельный вес – это есть отношение веса материи к его объему. В международной системе измерений СИ его измеряют как ньютон на кубический метр. Для решения определенных задач в физике УВ определяют следующим образом – насколько обследуемое вещество тяжелее, чем вода при температуре 4 градусов при условии того, что вещество и вода имеют равные объемы.

По большей части такое определение применяют в геологических и биологических исследованиях. Иногда, УВ, рассчитываемый по такой методике, называют относительной плотностью.

В чем отличия

Как уже отмечалось, эти два термина часто путают, но так как, вес напрямую зависим от расстояния между объектом и гравитационным источником, а масса не зависит от этого, поэтому термины УВ и плотность различаются между собой.
Но необходимо принять во внимание то, что при некоторых условиях масса и вес могут совпадать. Измерить УВ в домашних условиях практически невозможно. Но даже на уровне школьной лаборатории такую операцию достаточно легко выполнить. Главное что бы лаборатория была оснащена весами с глубокими чашами.

Предмет необходимо взвесить при нормальных условиях. Полученное значение можно будет обозначить как Х1, после этого чашу с грузом помещают в воду. При этом в соответствии с законом Архимеда груз потеряет часть своего веса. При этом коромысло весов будет перекашиваться. Для достижения равновесия на другую чашу необходимо добавить груз. Его величину можно обозначить как Х2. В результате этих манипуляций будет получен УВ, который будет выражен как соотношение Х1 и Х2. Кроме вещества в твердом состоянии удельных можно измерить и для жидкостей, газов. При этом замеры можно выполнять в разных условиях, например, при повышенной температуре окружающей среды или пониженной температуры. Для получения искомых данных применяют такие приборы как пикнометр или ареометр.

Единицы измерения удельного веса

В мире применяют несколько систем мер и весов, в частности, в системе СИ УВ измеряют в отношении Н (Ньютон) к метру кубическому. В других системах, например, СГС у удельного веса используется такая единица измерения д(дин) к сантиметру кубическому.

Металлы с наибольшим и наименьшим удельным весом

Кроме того, что понятие удельного веса, применяемое в математике и физике, существуют и довольно интересные факты, например, об удельных весах металлов из таблицы Менделеева. если говорить о цветных металлах, то к самым «тяжелым» можно отнести золото и платину.

Эти материалы превышают по удельному весу, такие металлы как серебро, свинец и многие другие. К «легким» материалам относят магний с весом ниже чем у ванадия. Нельзя забывать и радиоактивных материалах, к примеру, вес урана составляет 19,05 грамм на кубический см. То есть, 1 кубический метр весит 19 тонн.

Удельный вес других материалов

Наш мир сложно представить без множества материалов, используемых в производстве и быту. Например, без железа и его соединений (стальных сплавов). УВ этих материалов колеблется в диапазоне одной – двух единиц и это не самые высокие результаты. Алюминий, к примеру, обладает низкой плотностью и малым удельным весом. Эти показатели позволили его использовать в авиационной и космической отраслях.

Удельный вес металлов

Медь и ее сплавы, обладают удельным весом сопоставимый со свинцом. А вот ее соединения – латунь, бронза легче других материалов, за счет того, в них использованы вещества с меньшим удельным весом.

Как рассчитать удельный вес металлов

Как определить УВ — этот вопрос часто встает у специалистов занятых в тяжелой промышленности. Эта процедура необходима для того, что бы определить именно те материалы, которые будет отличаться друг от друга улучшенными характеристиками.

Одна из ключевых особенностей металлических сплавов заключается в том, какой металл является основой сплава. То есть железо, магний или латунь, имеющие один объем будут иметь разную массу.

Плотность материала, которая рассчитывается на основании заданной формулы имеет прямое отношение к рассматриваемому вопросу. Как уже отмечено, УВ – это соотношение веса тела к его объему, надо помнить, что эта величина может быть определена как силу тяжести и объема определенного вещества.

Для металлов УВ и плотность определяют в той же пропорции. Допустимо использовать еще одну формулу, которая позволяет рассчитать УВ. Она выглядит следующим так УВ (плотность) равна отношению веса и массы с учетом g, постоянной величины. Можно сказать, что УВ металла может, носит название веса единицы объема. Дабы определить УВ необходимо массу сухого материала поделить на его объем. По факту, эта формула может быть использована для получения веса металла.

Кстати, понятие удельного веса широко применяют при создании металлических калькуляторов, применяемых для расчета параметров металлического проката разного типа и назначения.

УВ металлов измеряют в условиях квалифицированных лабораторий. В практическом виде этот термин редко применяют. Значительно чаще, применяют понятие легкие и тяжелые металлы, к легким относят металлы с малым удельным весом, соответственно к тяжелым относят металлы с большим удельным весом.

Плотность стали различных типов и марок: таблица температурной зависимости плотности

02Х17Н11М2208000
02Х22Н5АМ3208000
03Н18К9М5Т208000
03Х11Н10М2Т208000
03Х13Н8Д2ТМ (ЭП699)207800
03Х24Н6АМ3 (ЗИ130)208000
06Х12Н3Д207810
06ХН28МДТ (0Х23Н28М3Д3Т, ЭИ943)207960
07Х16Н6 (Х16Н6, ЭП288)207800
Сталь 0820…100…200…300…400…500…
600…700…800…900
7871…7846…7814…7781…7745…7708…
7668…7628…7598…7602
08ГДНФЛ207850
08кп20…100…200…300…400…500…
600…700…800…900
7871…7846…7814…7781…7745…7708…
7668…7628…7598…7602
08Х13 (0Х13, ЭИ496)20…100…2007760…7740…7710
08Х17Т (0Х17Т, ЭИ645)207700
08Х17Н13М2Т (0Х17Н13М2Т)20…100…200…300…400…500…
600…700
7900…7870…7830…7790…7750…7700…
7660…7620
08Х18Н10 (0Х18Н10)207850
08Х18Н10Т (0Х18Н10Т, ЭИ914)207900
08Х22Н6Т (0Х22Н5Т, ЭП53)207700
3Х3М3Ф
20…100…200…300…400…500…
600…700…800…900
7828…7808…7783…7754…7721…7684…
7642…7597…7565…7525
4Х4ВМФС (ДИ22)20…100…200…300…400…500…
600…700…800…900
7808…7786…7757…7726…7693…7658…
7624…7581…7554…7550
4Х5МФ1С (ЭП572)20…100…200…300…400…500…
600…700…800…900
7716…7692…7660…7627…7593…7559…
7523…7490…7459…7438
9ХС207830
9Х2МФ207840
Сталь 1020…100…200…300…400…500…
600…700…800…900
7856…7832…7800…7765…7730…7692…
7653…7613…7582…7594
10Г220
7790
10кп20…100…200…300…400…500…
600…700…800…900
7856…7832…7800…7765…7730…7692…
7653…7613…7582…7594
10Х11Н20Т3Р (ЭИ696)207900
10Х11Н23Т3МР (ЭП33)207950
10Х12Н3М2ФА(Ш) (10Х12Н3М2ФА-А(Ш))207750
10Х13Н3М1Л207745
10Х14Г14Н4Т (Х14Г14Н3Т, ЭИ711)207800
10Х17Н13М2Т (Х17Н13М2Т, ЭИ448)20…100…200…300…400…500…
600…700
7900…7870…7830…7790…7750…7700…
7660…7620
10Х18Н18Ю4Д (ЭП841)207630
12МХ20…100…200…300…400…500…
600…700
7850…7830…7800…7760…7730…7690…
7650…7610
12ХН2207880
12ХН3А20…100…200…300…400…500…6007850…7830…7800…7760…7720…7680…7640
12X2МФБ (ЭИ531)207800
12X1МФ (ЭИ575)20…100…200…300…400…500…
600…700…800…900
7800…7780…7750…7720…7680…7650…
7600…7570…7540…7560
12Х2Н4А20…100…300…400…6007840…7820…7760…7710…7630
12Х13 (1Х13)20…100…200…300…400…500…
600…700…800…900
7720…7700…7670…7640…7620…7580…
7550…7520…7490…7500
12Х17 (Х17, ЭЖ17)207720
12Х18Н9 (Х18Н9)20…100…200…300…400…500…
600…700…800…900
7900…7860…7820…7780…7740…7690…
7650…7600…7560…7510
12Х18Н9Т (Х18Н9Т)20…100…200…300…400…500…
600…700…800…900
7900…7860…7820…7780…7740…7690…
7650…7600…7560…7510
12Х18Н10Т207900
12Х18Н12Т (Х18Н12Т)20…100…200…300…400…500…
600…700
7900…7870…7830…7780…7740…7700…
7850…7610
12Х25Н16Г7АР (ЭИ835)207820
13Х11Н2В2МФ-Ш (ЭИ961-Ш)207800
14Х17Н2 (1Х17Н2, ЭИ268)207750
Сталь 1520…100…200…300…400…500…
600…700…800…900
7850…7827…7794…7759…7724…7687…
7648…7611…7599…7584
15Г207810
15кп20…100…200…300…400…500…
600…700…800…900
7850…7827…7794…7759…7724…7687…
7648…7611…7599…7584
15К207850
15Л207820
15Х20…100…200…400…6007830…7810…7780…7710…7640
15ХМ20…100…200…300…400…500…6007850…7830…7800…7760…7730…7700…7660
15ХФ20…100…200…300…400…500…
600…700
7760…7730…7710…7670…7640…7600…
7570…7530
15Х5М (12Х5МА, Х5М)20…100…200…300…400…500…6007750…7730…7700…7670…7640…7610…7580
15Х12ВНМФ(ЭИ802, ЭИ952)20…100…200…300…400…500…
600…700
7850…7830…7800…7780…7760…7730…
7700…7670
15Х25Т (Х25Т, ЭИ439)207600
16ГС207850
17Х18Н9 (2Х18Н9)207850
18Х2Н4МА (18Х2Н4ВА)20…100…200…300…400…500…6007950…7930…7900…7860…7830…7800…7760
18Х12ВМБФР-Ш (ЭП 993-Ш)207850
18ХГТ207800
Сталь 2020…100…200…300…400…500…
600…700…800…900
7856…7834…7803…7770…7736…7699…
7659…7617…7624…7600
20Г207820
20К207850
20Л207850
20кп100…200…300…400…500…600…
700…800…900
7834…7803…7770…7736…7699…7659…
7617…7624…7600
20Х20…100…200…400…6007830…7810…7780…7710…7640
20ХГР207800
20ХГСА207760
20ХМЛ20…100…200…300…400…500…6007800…7780…7750…7720…7690…7650…7620
20ХН3А20…100…300…6007850…7830…7760…7660
20Х2Н4А207850
20Х3МВФ (ЭИ415, ЭИ579)20…400…500…6007800…7690…7660…7620
20Х5МЛ207730
20Х13 (2Х13)20…100…200…300…400…500…
600…700…800
7670…7660…7630…7600…7570…7540…
7510…7480…7450
20Х13Л207740
20Х20Н13 (Х23Н13, ЭИ319)20…100…600…8007820…7790…7580…7480
20Х20Н14С2 (Х20Н14С2, ЭИ211)20…100…600…700…800…9007800…7760…7550…7510…7470…7420
20Х23Н18 (Х23Н18, ЭИ417)20…400…500…600…700…9007900…7760…7720…7670…7620…7540
20Х25Н20С2 (Х25Н20С2, ЭИ283)20…100…800…9007720…7680…7440…7390
Сталь 25207820
25Л207830
25ХГСА20…100…200…300…400…500…
600…700
7850…7830…7790…7760…7730…7690…
7650…7610
25Х1МФ (ЭИ10)20…200…400…6007840…7790…7720…7650
25Х2М1Ф (ЭИ723)20…100…200…300…400…500…6007800…7780…7750…7720…7680…7650…7600
25Х13Н2 (2Х14Н2, ЭИ474)207680
Сталь 30207850
30Г207810
30Л207810
30Х20…100…200…300…400…500…
600…700…800…900
7820…7800…7770…7740…7700…7670…
7630…7590…7610…7560
30ХМ, 30ХМА20…100…200…300…400…5007820…7800…7770…7740…7700…7660
30ХН3А20…100…200…300…400…500…
600…700…800…900
7850…7830…7800…7760…7730…7700…
7670…7690…7650…7600
30Х13 (3Х13)20…100…200…300…400…500…
600…700…800…900
7670…7650…7620…7600…7570…7540…
7510…7480…7450…7460
31Х19Н9МВБТ (ЭИ572)207960
33ХС207640
34ХН3М, 34ХН3МА20…100…200…400…6007830…7810…7780…7710…7650
Сталь 3520…100…200…300…400…500…
600…700…800…900
7826…7804…7771…7737…7700…7662…
7623…7583…7600…7549
35Г2207790
35Л207830
35ХГСЛ207800
35ХМ20…100…200…400…6007820…7800…7770…7770…7630
35ХМЛ207840
35ХМФЛ207820
37Х12Н8Г8МФБ (ЭИ481)207850
38ХА20…200…6007850…7800…7650
38ХН3МФА207900
38ХС207800
38Х2МЮА (38ХМЮА)207710
Сталь 40207850
40Г207810
40Г2207800
40Л207810
40Х20…200…5007850…7800…7650
40ХЛ207830
40ХН20…100…200…300…4007820…7800…7770…7740…7700
40ХН2МА (40ХНМА)207850
40ХС20…100…200…400…6007740…7720…7690…7620…7540
40ХФА207810
40Х9С2 (4Х9С2, ЭСХ8)20…100…200…400…600…8007630…7610…7580…7510…7440…7390
40Х10С2М (4Х10С2М, ЭИ107)20…100…8007620…7610…7430
40Х13 (4Х13)20…100…200…300…400…500…
600…700…800
7650…7630…7600…7570…7540…7510…
7480…7450…7420
40Х24Н12СЛ (ЭИ316Л)207800
Сталь 4520…100…200…300…400…500…
600…700…800
7826…7799…7769…7739…7698…7662…
7625…7587…7595
45Г2207810
45Л207800
45Х207820
45ХН207820
45Х14Н14В2М (ЭИ69)20…200…400…600…8008000…7930…7840…7760…7660
Сталь 50207810
50Г207810
50Г2207500
50Л207820
50Х207820
50ХН207860
50ХФА20…100…200…300…400…500…6007800…7780…7750…7720…7680…7650…7610
Сталь 55207820
Сталь 60207800
60С2, 60С2А20…100…200…300…400…5007680…7660…7630…7590…7570…7520
65Г (ЗМИ3)20…100…200…4007850…7830…7800…7730
75ХМ207900
95Х18 (9Х18, ЭИ229)20…100…8007750…7730…7540
Х23Ю5Т207210
ХН32Т (ЭП670)208160
ХН35ВТ (ЭИ612)208164
ХН35ВТЮ (ЭИ787)208040
ХН45Ю (ЭП747)207700
ХН55ВМТКЮ (ЭИ929), ХН55ВМТКЮ-ВД (ЭИ929-ВД)208400
ХН58ВКМТЮБЛ (ЦНК8МП)208210
ХН60Ю (ЭИ559А)207900
ХН60ВТ (ЭИ868)208350
ХН60КВМЮТБЛ (ЦНК21П)208110
ХН60КВМЮТЛ (ЦНК7П)208200
ХН62МБВЮ (ЭП709)208700
ХН62МВКЮ (ЭИ867), ХН62МВКЮ-ВД (ЭИ867-ВД)208570
ХН64ВМКЮТЛ (ЗМИ3)208250
ХН65ВКМБЮТЛ (ЭИ539ЛМУ)208220
ХН65ВМТЮ (ЭИ893)208790
ХН65ВМТЮЛ (ЭИ893Л)208790
ХН65КМВЮТЛ (ЖС6К)208200
ХН67МВТЮ (ЭП202, ЭИ445Р)208360
ХН70КВМЮТЛ (ЦНК17П)208000
ХН70ВМТЮФ (ЭИ826), ХН70ВМТЮФ-ВД (ЭИ826-ВД)208470
ХН70ВМЮТ (ЭИ765)208570
ХН70Ю (ЭИ652)207900
ХН73МБТЮ (ЭИ698)208320
ХН75ВМЮ (ЭИ827)208430
ХН77ТЮР (ЭИ437Б)208200
ХН78Т (ЭИ435)208400
ХН80ТБЮ (ЭИ607)208300
ХН80ТБЮА (ЭИ607А)208300
Х15Н60-Н208200
Х20Н80-Н208400
Х27Ю5Т207190
ХВГ20…100…300…6007850…7830…7760…7660
А12207830
Р6М3208000
Р6М5К5208200
Р9208300
Р9М4К8208300
Р12208300
Р18208800
У7, У7А207830
У8, У8А20…100…200…300…400…500…
600…700…800
7839…7817…7786…7752…7714…7676…
7638…7600…7852
У9, У9А20…100…200…300…400…500…
600…700…800…900
7745…7726…7717…7690…7686…7655…
7622…7586…7568…7523
У10, У10А207810
У12, У12А20…100…200…300…400…500…
600…700…800…900
7830…7809…7781…7749…7713…7675…
7634…7592…7565…7489
ШХ1520…100…200…300…400…5007812…7790…7750…7720…7680…7640
ШХ15СГ207650

более 500 веществ и материалов

Абс-пластик1030…1060
Аглопоритобетон и бетон на топливных (котельных) шлаках1000…1800
Акрил (акриловое стекло, полиметилметакрилат, оргстекло)1100…1200
Альфоль20…40
Алюмель8480
Алюминий2700
Аминопласт1450…1500
Арболит на портландцементе300…800
Асбест в засыпке300…800
Асбест волокнистый470
Асбестобетон2100
Асбестобумага800…900
Асбестовойлок200…300
Асбестоцемент1500…1900
Асбестоцементный лист1600
Асбозурит400…650
Асбокартон900…1250
Асбослюда450…620
Асботекстолит Г1500…1700
Асботермит500
Асбофанера жесткая1700…1900
Асбофанера мягкая1400
Асбоцемент войлочный144
Асбошифер1700…2100
Асбошифер с 10-50% асбеста1800
Асфальт1100…2110
Асфальт в полах и стяжках1800
Асфальт литой1500
Асфальтобетон2000…2450
Ацеталь (полиацеталь, полиформальдегид) POM1400
Аэрогель Aspen aerogels110…200
Базальт2600…3000
Бакелит1250
Бальза110…140
Бемит (кровельный материал)570
Береза510…770
Береза свежесрубленная880…1000
Бериллий1840
Бетон крупнопористый беспесчаный1600…1900
Бетон крупнопористый беспесчаный огнеупорный1450…1750
Бетон легкий на керамзите500…1800
Бетон легкий на коксе1200
Бетон легкий с природной пемзой500…1200
Бетон на вулканическом шлаке800…1600
Бетон на гравии или щебне из природного камня2400
Бетон на доменных гранулированных шлаках1200…1800
Бетон на зольном гравии1000…1400
Бетон на каменном щебне2200…2500
Бетон на котельном шлаке1400
Бетон на песке1800…2500
Бетон на топливных шлаках1000…1800
Бетон особо тяжелый лимонитовый2800…3000
Бетон особо тяжелый магнетитовый2800…4000
Бетон рентгенозащитный на естественном кусковом барите3000…3100
Бетон рентгенозащитный на пылевидном барите2500…2600
Бетон силикатный плотный1800
Бетон термоизоляционный500
Битумоперлит300…400
Битумы нефтяные строительные и кровельные1000…1400
Блок газобетонный400…800
Блок известково-песчаный1450…1600
Болты стальные навалом1430…1670
Брикеты угольные1050
Бронза7500…9300
Брюква навалом650…850
Бук600…700
Бук свежесрубленный970…1000
Бумага700…1150
Бут1800…2000
Ванадий6500…7100
Вата минеральная легкая50
Вата минеральная тяжелая100…150
Вата стеклянная155…200
Вата хлопковая30…100
Вата хлопчатобумажная50…80
Вата шлаковая200
Вермикулит (в виде насыпных гранул)100…200
Вермикулитобетон250…1200
Винипласт1350…1400
Винипор жесткий200
Войлок строительный в кипах300
Войлок шерстяной150…330
Волокно ацетатное (ацетилцеллюлоза)1300…1350
Волокно вискозное (гидроцеллюлоза)1500…1540
Вольфрам19250
Воск пчелиный950
Вяз свежесрубленный1000
Газобетон конструкционный1100…1200
Газобетон теплоизоляционный400…700
Газогипс400…600
Газосиликат280…1000
Газостекло200…400
Галька1800…1900
Гетинакс1350
Гипс формованный сухой1100…1800
Гипсобетон на доменном гранулированном шлаке1000
Гипсобетон на котельном шлаке1300
Гипсокартон500…900
Гипсолит (плиты)1400…1600
Гипсошлак1000…1300
Глина в виде теста1600…2900
Глина огнеупорная1800
Глиногипс800…1800
Глинозем3100…3900
Гнейс (облицовка)2800
Граб свежесрубленный995
Гравий (наполнитель)1850
Гравий керамзитовый (засыпка)200…800
Гравий шунгизитовый (засыпка)400…800
Гранит (облицовка)2600…3000
Графит порошкообразный445
Грунт 20% воды1700
Грунт в насыпях1600…1800
Грунт илистый сухой1600
Грунт мергелистый1700
Грунт сухой1500
Груша (древесина)730
Гудрон950…1030
Гуммигут1200
Дакрил1190
Динас в огнеупорных изделиях1700…1900
Доломит плотный сухой2800
Дрова березовые500
Дрова хвойных пород350…450
Дуб700
Дуб свежесрубленный1000…1030
Дюралюминий2600…2900
Ель свежесрубленная800…850
Железо7870
Железобетон2500
Железобетон на известняковом щебне вибрированный2450
Железобетон на керамзите1500…1800
Железобетон на пемзе1100…1500
Железобетон набивной2400
Желуди в мешках470…520
Жом сухой навалом200…260
Засыпка песчаная из гидрофобного песка1500
Засыпка торфяная150
Засыпка шлаковая700…1000
Зола древесная780
Зола коксовая750
Золото19320
Известняк (облицовка)1400…2000
Известняк плотный2400…2900
Известняк пористый2000…2100
Изделия вулканитовые350…400
Изделия диатомитовые500…600
Изделия из вспученного перлита на битумном связующем300…400
Изделия ньювелитовые160…370
Изделия пенобетонные400…500
Изделия перлитофосфогелевые200…300
Изделия совелитовые230…450
Инвар7900
Ипорка (вспененная смола)15
Какао-бобы в мешках250…340
Каменноугольная пыль730
Камень бордюрный из твердых пород2000…2300
Камень керамический поризованный Braer810…840
Камень строительный2200
Камни гипсобетонные1100…1500
Камни многопустотные из легкого бетона500…1200
Камни полнотелые из легкого бетона DIN 18152500…2000
Камни полнотелые из природного туфа или вспученной глины500…2000
Канифоль1070
Каолин в порошке520
Капролит1200
Капролон1150
Капрон (поликапролактам)1140
Карболит черный1100
Картон асбестовый изолирующий720…900
Картон бумажный волнистый150
Картон гофрированный700
Картон облицовочный1000
Картон плотный600…900
Картон пробковый145
Картон строительный многослойный650
Картон термоизоляционный500
Каучук вспененный82
Каучук вулканизированный мягкий серый920
Каучук натуральный910
Каучук фторированный180
Кварц дробленый1450…1600
Кедр красный500…570
Керамзит800…1000
Керамзитобетон легкий500…1200
Керамзитобетон на кварцевом песке с поризацией800…1200
Керамзитобетон на керамзитовом песке и керамзитопенобетон500…1800
Керамзитобетон на перлитовом песке800…1000
Керамзитовый горох900…1500
Керамика1700…2300
Кирпич асбозуритовый900
Кирпич диатомовый500
Кирпич доменный (огнеупорный)1000…2000
Кирпич карборундовый1000…1300
Кирпич клинкерный1800…2000
Кирпич красный плотный1700…2100
Кирпич красный пористый1500
Кирпич облицовочный1800
Кирпич силикатный1000…2200
Кирпич строительный800…1500
Кирпич трепельный700…1300
Кирпич шлаковый1100…1400
Кладка «Поротон»800
Кладка бутовая из камней средней плотности2000
Кладка газосиликатная630…820
Кладка из газосиликатных теплоизоляционных плит540
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе1600
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе1700
Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…1400
Кладка из малоразмерного кирпича1730
Кладка из пустотелых стеновых блоков1220…1460
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе1500
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе1400
Кладка из силикатного кирпича на цементно-песчаном растворе1800
Кладка из трепельного кирпича на цементно-песчаном растворе1000…1200
Кладка из шлакового кирпича на цементно-песчаном растворе1500
Кладка из ячеистого кирпича1300
Клен620…750
Клен в свежесрубленном состоянии1000
Кобальт8900
Кожа искусственная в рулонах1300
Кожа натуральная800…1000
Кокс рудничный380…530
Кокс торфяной275…400
Копель8900
Костра100…200
Кость слоновая1830…1920
Кофе в зернах сырой в мешках440…670
Краска масляная (эмаль)1030…2045
Крахмал фасованный в мешках590…750
Кремний2000…2330
Кремнийорганический полимер КМ-91160
Крупа гречневая720
Крупа перловая810…830
Крупа пшенная 1-го сорта825
Крупа рисовая830
Крупа ячневая670
Ксилолит (магнолит)1000…1800
Лавсан (полиэтилентерефталат, ПЭТ)1380
Латунь8100…8850
Лед 0°С917
Лед -20°С920
Лед -60°С924
Линолеум поливинилхлоридный многослойный1600…1800
Линолеум поливинилхлоридный на тканевой подоснове1400…1800
Липа (15% влажности)320…650
Липа свежесрубленная795
Лиственница670
Лиственница в свежесрубленном состоянии840
Листы асбестоцементные плоские1600…1800
Листы гипсовые обшивочные (сухая штукатурка)800
Листы пробковые легкие220
Листы пробковые тяжелые260
Литий530
Лук в мешках400…480
Магнезит каустический800…900
Магнезия в форме сегментов для изоляции труб220…300
Магний1740
Манганин8400
Марганец7400
Мастика асфальтовая2000
Мастика битумная1350…1890
Маты и полосы из стеклянного волокна прошивные150
Маты минераловатные прошивные и на синтетическом связующем50…125
Маты, холсты базальтовые25…80
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5100…150
Медь8940
Мел1800…2800
Мел порошкообразный (молотый)950…1200
Миканит2000…2200
Мипора16…20
Молибден10300
Морозин100…400
Мрамор (облицовка)2800
Мука пшеничная высшего сорта680…900
Накипь котельная (богатая известью)1000…2500
Накипь котельная (богатая силикатом)300…1200
Настил палубный630
Натрий967
Нейлон1300
Никель8900
Ниплон1320
Нихром8400
Олово7300
Ольха свежесрубленная800…830
Опилки древесные200…400
Пакля120…160
Панели стеновые из гипса по DIN 1863600…900
Парафин870…920
Паркет дубовый1800
Паркет штучный1150
Паркет щитовой700
Паронит (прокладочный материал)1200
Пемза400…700
Пемзобетон800…1600
Пенобетон строительный600…1200
Пенобетон теплоизоляционный300…500
Пеногипс300…600
Пенозолобетон800…1200
Пенопласт МФП-140
Пенопласт ПС-1100
Пенопласт ПС-470
Пенопласт ПХВ-1 и ПВ-165…125
Пенопласт резопен ФРП-165…110
Пенополистирол40…150
Пенополистирол «Пеноплекс»35…43
Пенополиуретан40…80
Пенополиуретановые листы150
Пеносиликальцит400…1200
Пеносиликат280…1000
Пеностекло200…400
Пеностекло легкое100. .200
Пенофол44…74
Пергамин600
Перекрытие армокерамическое с бетонным заполнением без штукатурки1100…1300
Перекрытие из железобетонных элементов со штукатуркой1550
Перекрытие монолитное плоское железобетонное2400
Перлит200
Перлит вспученный100
Перлитобетон600…1200
Перлитопласт-бетон100…200
Перлитофосфогелевые изделия200…300
Песок горный1500…1600
Песок для строительных работ1600
Песок кварцевый молотый1450
Песок перлитовый50…250
Песок речной мелкий1500
Песок речной мелкий (влажный)1650
Песок сухой1500
Песок туфовый700…1000
Песок формовочный утрамбованный1650
Песок шлаковый800…900
Песчаник2200…2700
Песчаник обожженный1900…2700
Пихта450…550
Пластобетон (фурфуролбетон)2000…2500
Платина21450
Плита бумажная прессованная600
Плита огнеупорная теплоизоляционная Avantex марки Board200…500
Плита пробковая80…500
Плитка облицовочная, кафельная2000
Плиты древесно-волокнистые и древесно-стружечные200…1000
Плиты из гипса1000…1200
Плиты из керамзитобетона400…600
Плиты из полистиролбетона200…300
Плиты из резольноформальдегидного пенопласта40…100
Плиты из стеклянного штапельного волокна на синтетическом связующем50
Плиты из ячеистого бетона350…400
Плиты камышитовые200…300
Плиты льнокостричные изоляционные250
Плиты минераловатные на битумной связке марки 200150…200
Плиты минераловатные на синтетической связке фирмы «Партек»170…230
Плиты минераловатные на синтетическом связующем марки 200225
Плиты минераловатные повышенной жесткости200
Плиты минераловатные полужесткие на крахмальном связующем125…200
Плиты мягкие и жесткие минераловатные на синтетическом и битумном связующих50…350
Плиты пенопластовые на основе резольных фенолформальдегидных смол80…100
Плиты пенополистирольные (экструзионные)32
Плиты перлито-битумные300
Плиты перлито-волокнистые150
Плиты перлито-фосфогелевые250
Плиты строительный из пористого бетона500…800
Плиты термобитумные теплоизоляционные200…300
Плиты торфяные теплоизоляционные200…300
Плиты фибролитовые300…800
Покрытие ковровое630
Покрытие синтетическое (ПВХ)1500
Пол гипсовый бесшовный750
Полиамид1020…1130
Поливинилхлорид (ПВХ)1400…1600
Полиизобутилен листовой1320…1430
Поликарбонат (дифлон)1200
Полипропилен900…910
Полистирол УПП1, ППС1025
Полистиролбетон150…600
Полистиролбетон модифицированный200…500
Полиуретан1200
Полихлорвинил1290…1650
Полиэтилен высокой плотности955
Полиэтилен низкой плотности920
Полотно (текстиль) в кусках600
Полуэбонит М-1751 и М18141320…1330
Поролон34
Порох (прессованный)1750
Порох (сыпучий)900
Прессшпан1000…1500
Пробка гранулированная техническая45
Пробка минеральная на битумной основе270…350
Пробковое покрытие для полов540
Пыль асбестовая400…600
Пыль угольная540…680
Ракушечник1000…1800
Раствор гипсовый затирочный1200
Раствор гипсоперлитовый600
Раствор гипсоперлитовый поризованный400…500
Раствор известково-песчаный1400…1600
Раствор известковый1650
Раствор легкий LM21, LM36700…1000
Раствор сложный (песок, известь, цемент)1700
Раствор цементно-перлитовый800…1000
Раствор цементно-песчаный1800…2000
Раствор цементно-шлаковый1200…1400
Раствор цементный, цементная стяжка2000
Резина пористая160…580
Резина твердая обыкновенная900…1200
Репа570…650
Рогожа200
Рубероид600
Рубракс1050
Сажа ламповая порошкообразная1900
Сало930
Саман1200…1500
Самшит (10% влажности)1000
Сахар-песок в мешках730…800
Свинец11370
Семена конопли насыпью520…580
Семечки подсолнечника в мешках400…440
Сера в порошке780
Сера ромбическая2085
Серебро10500
Ситалл2500
Сланец2600…3300
Сланец глинистый вспученный400
Сланец кровельный1500
Слюда вдоль слоев2700…3200
Слюда вспученная100
Слюда поперек слоев2600…3200
Смола эпоксидная1260…1390
Снег лежалый при 0°С400…560
Снег свежевыпавший120…200
Солома50…120
Солома прессованная250…280
Соломит150…400
Соль поваренная2200
Сосна500
Сосна смолистая 15% влажности600…750
Сталь нержавеющая, жаростойкая и жаропрочная7900…8200
Сталь стержневая арматурная7850
Стальное литье7800
Стеарин900
Стекло кварцевое2200
Стекло оконное2420…2590
Стекло термостойкое2200…2400
Стекло флинт3860
Стекловата155…200
Стекловолокно1700…2000
Стеклопластик1800…2000
Стеклотекстолит1600…1900
Стружка древесная прессованная800
Стяжка ангидритовая2100
Стяжка из литого асфальта2300
Суглинок1600…1700
Супесок мокрый1800…2000
Сургуч1800
Тальк в порошке870
Текстолит листовой1300…1400
Термозит300…500
Тефлон2120
Тик (древесина 10% влажности)730
Тисс750…940
Титан4500
Толь500…600
Тополь350…500
Торф сырой550…800
Торфоплиты275…350
Торфяная крошка300
Туф (облицовка)1000…2000
Туф известковый1000…1500
Туфобетон1200…1800
Уголь древесный кусковой190
Уголь каменный газовый1420
Уголь каменный обыкновенный1200…1350
Фанера бакелитовая водостойкая780…850
Фанера клееная600…700
Фаолит формованный1500…1700
Фарфор2300…2500
Фасоль в мешках500…560
Фаянс1940
Фенолит1550
Фибра красная1450
Фибролит (серый)1100
Фибролит гипсовый500…700
Фибролит цементный250…600
Фосфор желтый (воскообразная масса)1820
Фосфор красный (порошок)2200
Фосфорит1270…1600
Фторопласт1650…1800
Хром7140
Хромель8700
Целлулоид1400
Цемент глиноземистый рыхлый1000…1350
Цемент глиноземистый уплотненный1600…1900
Цемент затвердевший2600…3200
Цемент шлакопортландский1100…1250
Цинк7130
Черепица бетонная2100
Черепица глиняная1900
Черепица из ПВХ асбеста2000
Черепица кровельная1800…2000
Чугун антифрикционный7400…7600
Чугун белый7600…7800
Чугун ковкий и высокопрочный7200…7400
Чугун серый7000…7200
Шамотный порошок1350…1500
Шевелин100…260
Шелк100
Шифер2700…2800
Шлак гранулированный500
Шлак доменный2600…3000
Шлак коксовый600
Шлак котельный1000
Шлак мартеновский1700…1800
Шлак торфяной600…1000
Шлакобетон1120…1500
Шлаковата уплотненная400
Шлакопемзобетон (термозитобетон)1000…1800
Шлакопемзогазобетон800…1600
Штукатурка гипсовая800
Штукатурка из полистирольного раствора300
Штукатурка из синтетической смолы1100
Штукатурка известковая1600
Штукатурка известковая с каменной пылью1700
Штукатурка перлитовая350…800
Штукатурка утепляющая500
Штукатурка фасадная с полимерными добавками1800
Штукатурка цементно-песчаная1800
Шунгизитобетон1000…1400
Щебень гранитный1700…1800
Щебень и песок из перлита вспученного (засыпка)200…600
Щебень из доменного шлака, шлаковой пемзы и аглопорита (засыпка)400…800
Щебень кирпичный1200…1500
Щебень туфовый700…1000
Эбонит1140…1210
Эбонит вспученный640
Эковата35…60
Энант (полиэнантолактам)1140
Энсонит (прессованный картон)400…500
Яблоня670
Янтарь1100
Ясень (влажность 10%)700…750

Плотность — это. .. Что такое Плотность?

Пло́тность — скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму. Более строгое определение плотности требует уточнение формулировки:

  • Средняя плотность тела — отношение массы тела к его объёму. Для однородного тела она также называется просто плотностью тела.
  • Плотность вещества — это плотность тел, состоящих из этого вещества. Отсюда вытекает и короткая формулировка определения плотности вещества: плотность вещества — это масса его единичного объёма.
  • Плотность тела в точке — это предел отношения массы малой части тела (), содержащей эту точку, к объёму этой малой части (), когда этот объём стремится к нулю[1], или, записывая кратко, . При таком предельном переходе необходимо помнить, что на атомарном уровне любое тело неоднородно, поэтому необходимо остановиться на объёме, соответствующем используемой физической модели.

Виды плотности и единицы измерения

Исходя из определения плотности, её размерность кг/м³ в системе СИ и в г/см³ в системе СГС.

Для сыпучих и пористых тел различают:

  • истинную плотность, определяемую без учёта пустот;
  • удельную (кажущуюся) плотность, рассчитываемую как отношение массы вещества ко всему занимаемому им объёму.

Истинную плотность из кажущейся получают с помощью величины коэффициента пористости — доли объёма пустот в занимаемом объёме.

Формула нахождения плотности

Плотность (плотность однородного тела или средняя плотность неоднородного) находится по формуле:

где m — масса тела, V — его объём; формула является просто математической записью определения термина «плотность», данного выше.

  • При вычисления плотности газов эта формула может быть записана и в виде:
где М — молярная масса газа,  — молярный объём (при нормальных условиях равен 22,4 л/моль).

Плотность тела в точке записывается как тогда масса неоднородного тела (тела с плотностью, зависящей от места) рассчитывается как

Зависимость плотности от температуры

Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность ведёт себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого числа.

При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Правда, вода является исключением из этого правила, её плотность при затвердевании уменьшается.

Диапазон плотностей в природе

Для различных природных объектов плотность меняется в очень широком диапазоне.

  • Самую низкую плотность имеет межгалактическая среда (2·10−31÷5·10−31 кг/м³)[2].
  • Плотность межзвёздной среды приблизительно равна 10−23÷10−21 кг/м³.
  • Средняя плотность Солнца примерно в 1,5 раза выше плотности воды.
  • Средняя плотность красных гигантов на много порядков меньше, чем у Солнца, из-за того, что их радиус в сотни раз больше.
  • Средняя плотность Земли равна 5520 кг/м³.
  • Жидкий водород при атмосферном давлении и температуре −253 °C имеет плотность 70 кг/м³.
  • Плотность жидкого гелия при атмосферном давлении равна 130 кг/м³.
  • Плотность пресной воды составляет 1000 кг/м³.
  • Гранит имеет плотность 2600 кг/м³.
  • Плотность железа равна 7874 кг/м³.
  • Наибольшую плотность среди металлов имеет осмий (22 587 кг/м³).
  • Плотность атомных ядер приблизительно равна 2·1017 кг/м³.
  • Плотность белых карликов составляет 108÷1012 кг/м³.
  • Плотность нейтронных звёзд имеет порядок 1017÷1018 кг/м³.
  • Теоретически верхнюю границу представляет планковская плотность (современная физика оценивает её в 5,1·1096 кг/м³, хотя не исключено, что она очень сильно завышена).

Плотности астрономических объектов

Средние плотности планет Солнечной системы и Солнца:

Средняя плотность Солнца и планет (в г/см³)[3][4]

  • Межпланетная среда в Солнечной системе достаточно неоднородна и может меняться во времени, её плотность в окрестностях Земли ~10−21÷10−20 кг/м³.
  • Плотность межзвёздной среды ~10−23÷10−21 кг/м³.
  • Плотность межгалактической среды от 2×10−34 до 5×10−34 кг/м³.
  • Средняя плотность красных гигантов на много порядков меньше из-за того, что их радиус в сотни раз больше, чем у Солнца.
  • Плотность белых карликов 108÷1012 кг/м³
  • Плотность нейтронных звёзд имеет порядок 1017÷1018 кг/м³.
  • Средняя (по объёму под горизонтом событий) плотность чёрной дыры
    • у чёрной дыры с массой порядка солнечной превышает ядерную плотность,
    • у сверхмассивной чёрной дыры с массой в 109 солнечных масс (существование таких чёрных дыр подозревается в квазарах) оставляет около 20 кг/м³,
    • у сверхмассивной чёрной дыры в центре галактики может быть 0,2 кг/м³.

Плотности некоторых газов

Плотность газов и паров (0 °C, 101325 Па), кг/м³
Азот1,250Кислород1,429
Аммиак0,771Криптон3,743
Аргон1,784Ксенон5,851
Водород0,090Метан0,717
Водяной пар (100 °C)0,598Неон0,900
Воздух1,293Углекислый газ1,977
Хлор3,164Гелий0,178
Этилен1,260

Плотности некоторых жидкостей

Плотность жидкостей, г/см³
Бензин0,74Молоко1,04
Вода (4 °C)1,00Ртуть (0 °C)13,60
Керосин0,82Эфир0,72
Глицерин1,26Спирт0,80
Морская вода1,03Скипидар0,86
Масло оливковое0,92Ацетон0,792
Масло машинное0,91Серная кислота1,84
Нефть0,81—0,85Жидкий водород (−253 °C)0,07

Плотность некоторых пород древесины

Плотность древесины, г/см³
Бальса0,15Пихта сибирская0,39
Секвойя вечнозелёная0,41Ель0,45
Ива0,46Ольха0,49
Осина0,51Сосна0,52
Липа0,53Конский каштан0,56
Каштан съедобный0,59Кипарис0,60
Черёмуха0,61Лещина0,63
Грецкий орех0,64Берёза0,65
Вишня0,66Вяз гладкий0,66
Лиственница0,66Клён полевой0,67
Тиковое дерево0,67Бук0,68
Груша0,69Дуб0,69
Свитения (Махагони)0,70Платан0,70
Жостер (крушина)0,71Тис0,75
Ясень0,75Слива0,80
Сирень0,80Боярышник0,80
Пекан (кария)0,83Сандаловое дерево0,90
Самшит0,96Эбеновое дерево1,08
Квебрахо1,21Бакаут1,28
Пробка0,48

Измерение плотности

Для измерения плотности используются:

См. также

Примечания

  1. Подразумевается также, что область стягивается к точке, то есть, не только ее объем стремится к нулю (что могло бы быть не только при стягивании области к точке, но, например, к отрезку), но также стремится к нулю и ее диаметр (максимальный линейный размер).
  2. Агекян Т. А. Расширение Вселенной. Модель Вселенной. // Звёзды, галактики, Метагалактика / Под ред. А. Б. Васильева. — 3-е изд. — М.: Наука, 1982. — С. 249. — 416 с.
  3.  (англ.)Planetary Fact Sheet
  4.  (англ.)Sun Fact Sheet

Ссылки

Источники

  • Большая советская энциклопедия
  • Физическая энциклопедия под. ред. А. М. Прохорова. Москва. Научное издательство «Большая российская энциклопедия», 1992 г. Т.3, стр.637.
3?
Химия
Наука
  • Анатомия и физиология
  • Астрономия
  • Астрофизика
  • Биология
  • Химия
  • науки о Земле
  • Наука об окружающей среде
  • Органическая химия

Расчет плотности

По окончании этого урока вы сможете:

  • рассчитать одну переменную (плотность, массу или объем) из уравнения плотности
  • рассчитывает удельный вес объекта, а
  • определяет, будет ли объект плавать или тонуть, учитывая его плотность и плотность окружающей среды.

Введение в плотность

Плотность — это масса объекта, деленная на его объем.

Плотность часто выражается в граммах на кубический сантиметр (г / см 3 ). Помните, что граммы — это масса, а кубические сантиметры — это объем (такой же объем, как 1 миллилитр).

Ящик с большим количеством частиц будет более плотным, чем такой же ящик с меньшим количеством частиц.

Плотность — фундаментальное понятие в науке; вы увидите это во время учебы.Он довольно часто используется при идентификации горных пород и минералов, поскольку плотность веществ редко меняется значительно. Например, золото всегда будет иметь плотность 19,3 г / см 3 ; если минерал имеет другую плотность, это не золото.

Вероятно, вы интуитивно чувствуете плотность часто используемых материалов. Например, у губок низкая плотность; они имеют низкую массу на единицу объема. Вы не удивитесь, когда большую губку легко поднять. Напротив, железо плотное. Если вы возьмете в руки железную сковороду, она будет тяжелой.

Студенты и даже учителя часто путают массу и плотность. Слова «тяжелый» и «легкий» сами по себе относятся к массе, а не к плотности. Очень большая губка может весить много (иметь большую массу), но ее плотность низкая, потому что она все еще весит очень мало на единицу объема . Что касается плотности, вам также необходимо учитывать размер или объем объекта.

Как определить плотность?

Бетонный куб будет весить больше, чем куб воздуха того же размера, потому что он плотнее Плотность не измеряется напрямую.Обычно, если вы хотите узнать плотность чего-либо, вы его взвешиваете, а затем измеряете объем. Вы собираете валун и приносите его в лабораторию, где вы его взвешиваете и обнаруживаете, что его масса составляет 1000 г. Затем вы определяете объем 400 см 3 . Какая у вас плотность валуна? Плотность — это масса, разделенная на объем,
В данном случае масса 1000 г, а объем 400 см 3 , поэтому вы разделите 1000 г на 400 см 3 , чтобы получить 2. 5 г / см 3 .

Еще одна сложность, связанная с плотностью, заключается в том, что вы не можете добавлять плотности. Если у меня есть порода, состоящая из двух минералов, один с плотностью 2,8 г / см 3 , а другой с плотностью 3,5 г / см 3 , порода будет иметь плотность между 3,5 и 2,8 г / см 3 , а не 6,3 г / см 3 . Это потому, что и — масса и объем двух минералов будут добавлены, и поэтому, когда они разделены для получения плотности, результат будет между ними.

Типичная плотность газов составляет порядка тысячных граммов на кубический сантиметр. Жидкости часто имеют плотность около 1,0 г / см 3 , и действительно, пресная вода имеет плотность 1,0 г / см 3 . Породы часто имеют плотность около 3 г / см 3 , а металлы часто имеют плотность выше 6 или 7 г / см 3 .

Как рассчитать удельный вес?

Чтобы рассчитать удельную массу (SG) объекта, вы сравниваете плотность объекта с плотностью воды:

Потому что плотность воды в г / см 3 равна 1. 0 удельная плотность объекта будет почти такой же, как его плотность в г / см 3 . Однако удельный вес — это безразмерное число, и оно одинаково в метрической системе или любой другой системе измерения. Это очень полезно при сравнении плотности двух объектов. Поскольку удельный вес является безразмерным, не имеет значения, была ли измерена плотность в г / см 3 или в каких-либо других единицах (например, фунт / фут 3 ).

У вас есть образец базальта плотностью 210 фунтов / фут 3 .Плотность воды 62,4 фунта / фут 3 . Каков удельный вес базальта? Удельный вес — это плотность вещества, деленная на плотность воды, поэтому

Таким образом, мы разделим базальт (210 фунтов / фут 3 ) на плотность воды (62,4 фунта / фут 3 ) и получим S.G. = 3,37 .

Почему мне следует рассчитывать плотность или удельный вес?

Плотность важна для многих применений. Одним из наиболее важных является то, что плотность вещества будет определять, будет ли оно плавать на другом.Менее плотные вещества будут плавать (или подниматься) на более плотные вещества. Вот несколько примеров того, как это объясняет повседневные явления:

  • Вы задавались вопросом, почему поднимаются воздушные шары? Когда воздух нагревается, он становится менее плотным, пока общая плотность воздушного шара не станет меньше плотности атмосферы; Воздушный шар буквально парит в более плотном и холодном воздухе.
  • Вы когда-нибудь замечали, что в озере или океане вода теплее на поверхности и холоднее на дне? Это связано с тем, что более теплая вода немного менее плотная и в результате плавает на более плотной и холодной воде
  • Вы знаете, почему извергаются вулканы? Эта огромная лодка много весит, но ее плотность должна быть меньше единицы.0 г / см 3 , потому что плавает. Основная причина того, что магма поднимается на поверхность для извержения вулканов, заключается в том, что она менее плотная, чем окружающие ее породы.

Корабль, плывущий по воде, является прекрасной иллюстрацией разницы между массой и плотностью. Корабль должен иметь плотность менее 1,0 г / см 3 (плотность воды), иначе оно затонет. Корабли имеют большую массу, потому что они сделаны из стали, но из-за большого объема их плотность меньше 1.0 г / см 3 . Если им добавить достаточно массы, чтобы их плотность превысила 1,0 г / см 3 , они утонут.

Чтобы попробовать некоторые практические задачи, перейдите на страницу с примером проблемы!


Где плотность используется в науках о Земле?

Галенит, свинцовая руда, является одним из самых плотных обычных минералов.

с http://mineral.galleries.com/.

  • Isostasy — определение того, насколько высоко континенты будут располагаться на мантии
  • Тектоника плит — механизмы, приводящие в движение тектонику плит
  • Минералы — определение названия минерала по его плотности
  • Камни — определение названия и состава породы по ее плотности
  • Гипсометрическая кривая — исследование причин изменения высоты на Земле
  • Океанография — некоторые океанические течения и циркуляция океана контролируются плотностью


Следующие шаги


Готова к ПРАКТИКЕ!

Если вы думаете, что разбираетесь во всех перечисленных выше вещах, нажмите на эту панель, чтобы попробовать несколько практических задач с отработанными ответами!
Или, если вы хотите еще больше практики, перейдите по ссылкам ниже

Дополнительная справка по плотности

Он-лайн лаборатория Edinformatics по массе, объему и плотности создана NYU. Это позволяет вам просматривать изображения измерений и вводить данные.

Hyperphysics, в штате Джорджия есть страница о плотности и преобразователе плотности . Сюда входит несколько связанных страниц, включая инструкции по измерению плотности с использованием принципа Архимеда.

На странице Википедии, посвященной удельному весу, объясняется, что такое удельный вес и как он используется, и даже обсуждается его использование в геонауках и минералогии. Однако содержание статей Википедии может измениться, поэтому вы можете быть осторожны.

На странице «Плотность» Википедии есть общее обсуждение плотности, ее истории, расчета и единиц измерения. Однако содержание статей Википедии может измениться, поэтому вы можете быть осторожны.


Эта страница была написана и скомпилирована доктором Эриком М. Бэром, геологическая программа, Общественный колледж Хайлайн, и доктором Дженнифер М. Веннер, геологический факультет, Ошкошский университет Висконсина

Плотность Решенные практические задачи


Перейти к: Плотность горных пород и минералов | Удельный вес горных пород и минералов Вы можете загрузить вопросы (Acrobat (PDF) 25kB Jul24 09), если хотите проработать их на отдельном листе бумаги.

Расчет плотности горных пород и минералов

Задача 1: У вас есть камень объемом 15 см 3 и массой 45 г. Какая у него плотность?

Плотность делится на массу, разделенную на объем, так что плотность составляет 45 г, разделенные на 15 см 3 , что составляет 3,0 г / см 3 .

Задача 2: У вас есть другой камень объемом 30 см 3 и массой 60 г. Какая у него плотность?

Плотность делится на массу, деленную на объем, так что плотность составляет 60 г, разделенные на 30 см 3 , что составляет 2.0 г / см 3 .

Задача 3: В двух приведенных выше примерах какой камень тяжелее? Что легче?

Вопрос в том, что тяжелее и легче , что относится к массе или весу. Следовательно, все, что вас волнует, это масса в граммах, и поэтому камень весом 60 г во второй задаче тяжелее , а камень весом 45 г (в первом вопросе) легче.

Задача 4: В двух приведенных выше примерах какая порода более плотная? какой менее плотный?

Вопрос касается плотности , и это отношение массы к объему.Следовательно, первая порода более плотная , (плотность = 3,0) и вторая порода менее плотная , хотя и весит больше, потому что ее плотность составляет всего 2,0. Этот пример показывает, почему важно не использовать слова «тяжелее / легче», когда вы имеете в виду более или менее плотный.

Задача 5: Вы решили, что хотите принести домой валун с пляжа. Его длина по 30 сантиметров с каждой стороны, поэтому его объем составляет 27000 см. 3 . Он сделан из гранита, который имеет типичную плотность 2.8 г / см 3 . Сколько будет весить этот валун?

В этом случае вас просят указать массу, а не плотность. Вам нужно будет изменить уравнение плотности так, чтобы получить массу.

Если умножить обе стороны на объем, мы оставим массу в покое.

Подставляя значения из задачи,

В результате масса составляет 75 600 грамм. Это более 165 фунтов! Задача 6: Иногда вдоль побережья используют скалы для предотвращения эрозии.Если камень должен весить 2000 кг (около 2 тонн), чтобы его не сдвинули волнами, какого размера (какого объема) он должен быть? Вы используете базальт, типичная плотность которого составляет 3200 кг / м 3 В этой задаче вам нужен объем, поэтому вам нужно будет изменить уравнение плотности, чтобы получить объем.

Умножив обе стороны на объем, мы можем получить объем из числителя (внизу).
Затем вы можете разделить обе стороны по плотности, чтобы получить только объем:

Подставив значения, перечисленные выше,
Таким образом, объем будет 0.625 м 3
Обратите внимание, что вышеупомянутая проблема показывает, что плотности могут быть в единицах, отличных от граммов и кубических сантиметров. Чтобы избежать потенциальных проблем, связанных с различными блоками, многие геологи используют удельный вес (SG), рассмотренный в задачах 8 и 9 ниже.

Изображение с http://www.stat.wisc.edu/~ifischer/Collections/Fossils/rocks.html

Задача 7: Вам вручают куб золотистого цвета. Человек хочет, чтобы вы купили его за 100 долларов, говоря, что это золотой самородок.Вы достаете свой старый текст по геологии, ищите золото в таблице минералов и читаете, что его плотность составляет 19,3 г / см 3 . Вы измеряете кубик и обнаруживаете, что он равен 2 см с каждой стороны и весит 40 г. Какая у него плотность? Это золото? Стоит ли покупать это? Для определения плотности вам нужны объем и масса начиная с
.
Вы знаете массу (40 г), но объем не указан. Чтобы найти объем, воспользуйтесь формулой объема коробки
объем = длина x ширина x высота.

Объем куба
2см x 2см x 2см = 8см 3 .

Тогда плотность — это масса, разделенная на объем:


Таким образом, куб НЕ является золотом , поскольку плотность (5,0 г / см 3 ) не такая же, как у золота (19,3 г / см 3 ). Скажите продавцу сходить в поход . Вы даже можете заметить, что плотность пирита (также известного как золото дураков) составляет 5,0 г / см 3 .К счастью, вы не дурак и знаете о плотности!

Расчет удельного веса горных пород и минералов

Задача 8: У вас есть образец гранита плотностью 2,8 г / см 3 . Плотность воды 1,0 г / см 3 . Каков удельный вес вашего гранита?

Удельный вес — это плотность вещества, деленная на плотность воды, поэтому

Обратите внимание, что единицы отменяют, поэтому в этом ответе единиц нет.Мы говорим «номер без единицы ».

Задача 9: У вас есть образец гранита плотностью 174,8 фунта / фут 3 . Плотность воды 62,4 фунта / фут 3 . Какой сейчас удельный вес гранита?

Опять же, удельный вес — это плотность вещества, деленная на плотность воды, поэтому

Это показывает, что удельный вес не изменяется, когда измерения производятся в разных единицах, пока плотность объекта и плотность воды находятся в одних и тех же единицах.

ПРИНИМАЙТЕ ВИКТОРИНГУ !!

Думаю, я освоил плотность и готов пройти тест!
Эта ссылка ведет к WAMAP. Если ваш инструктор не дал вам инструкций о вамапе, возможно, вам не придется проходить тест. Если это не то, что вы чувствуете, вы можете вернуться к объяснениям.

Измерения и анализ ошибок

«Лучше быть примерно правым, чем совершенно неправым.»- Алан Гринспен

Неопределенность измерений

Некоторые числовые утверждения точны: у Мэри 3 брата, и 2 + 2 = 4. Однако все измерения имеют некоторую степень неопределенности, которая может быть получена из разных источников. Процесс оценки неопределенности, связанной с результатом измерения, часто называется анализом неопределенности или анализом ошибки . Полный отчет об измеренном значении должен включать оценку уровня уверенность, связанная с ценностью.Правильное сообщение экспериментального результата с его неопределенностью позволяет другим людям судить о качестве экспериментируйте, и это облегчает значимые сравнения с другими аналогичными значениями или теоретическое предсказание. Без оценки неопределенности невозможно ответить на основной научный вопрос: «Согласуется ли мой результат с теоретическим предсказанием или результатами из других экспериментов? »Этот вопрос является основополагающим для принятия решения о том, гипотеза подтверждена или опровергнута.Когда мы проводим измерения, мы обычно предполагаем, что существует какое-то точное или истинное значение в зависимости от того, как мы определяем, что измеряется. Хотя мы, возможно, никогда не узнаем это истинное значение точно, мы пытаемся найти это идеальное количество в меру наших возможностей с помощью время и ресурсы. Поскольку мы проводим измерения разными методами или даже при выполнении нескольких измерений одним и тем же методом, мы можем получить немного разные результаты. Итак, как мы сообщаем о наших результатах для нашей наилучшей оценки этого неуловимого истинного значения ? Самый распространенный способ показать диапазон значений, который, по нашему мнению, включает истинное значение:

(1)

измерение = (наилучшая оценка ± неопределенность) единиц

Возьмем пример.Предположим, вы хотите найти массу золотого кольца, которое вы хотел бы продать другу. Вы не хотите подвергать опасности свою дружбу, поэтому вы хотите чтобы получить точную массу кольца по справедливой рыночной цене. Вы оцениваете масса должна составлять от 10 до 20 граммов в зависимости от того, насколько тяжелой она ощущается в руке, но это не очень точная оценка. После некоторого поиска вы найдете электронные весы, которые массовое чтение 17,43 грамма. Хотя это измерение намного точнее , чем исходная оценка, откуда вы знаете, что она , точная , и насколько вы уверены, что это измерение представляет собой истинное значение массы кольца? Поскольку цифровой дисплей баланс ограничен двумя знаками после запятой, вы можете указать массу как

м = 17.43 ± 0,01 г.

Предположим, вы используете те же электронные весы и получили еще несколько показаний: 17,46 г, 17,42 г, 17,44 г, так что средняя масса находится в диапазоне

17,44 ± 0,02 г.

Теперь вы можете быть уверены, что знаете массу этого кольца с точностью до ближайшего сотые доли грамма, но откуда вы знаете, что истинная ценность определенно лежит между 17,43 г и 17,45 г? Если честно, вы решили использовать другой баланс, который дает значение 17.22 г. Это значение явно ниже диапазона значений, найденных на первый баланс, и при нормальных обстоятельствах вам может быть все равно, но вы хотите быть справедливым своему другу. Так что вы будете делать теперь? Ответ заключается в том, чтобы знать кое-что о точность каждого инструмента. Чтобы помочь ответить на эти вопросы, мы должны сначала определить термины точность и точность : Точность — это степень соответствия измеренного значения истинному или принятому значению.Ошибка измерения — это величина неточности.

Точность — это мера того, насколько хорошо может быть определен результат (без ссылки на теоретическое или истинное значение). Это степень согласованности и согласия между независимыми измерениями одной и той же величины; а также надежность или воспроизводимость результата.

Неопределенность Оценка , связанная с измерением, должна учитывать как точность, так и точность измерения.

Примечание: К сожалению, термины ошибка и неопределенность часто используются как синонимы для обозначения описать как неточность, так и неточность. Это использование настолько распространено, что невозможно чтобы полностью избежать. Когда вы сталкиваетесь с этими условиями, убедитесь, что вы понимаете относятся ли они к точности или точности, или к тому и другому. Обратите внимание, что для определения точности конкретного измерения у нас есть знать идеальную, истинную ценность.Иногда у нас есть «учебное» измеренное значение, которое хорошо известно, и мы предполагаем, что это наше «идеальное» значение, и используем его для оценки точность нашего результата. В других случаях мы знаем теоретическое значение, которое рассчитывается из основные принципы, и это тоже можно принять за «идеальное» значение. Но физика — это эмпирическая наука, что означает, что теория должна быть подтверждена экспериментом, а не наоборот. Мы можем избежать этих трудностей и сохранить полезное определение понятия точность , если предположить, что даже если мы не знаем истинного значения, мы можем полагаться на наилучшее возможное значение приняло значение , с которым можно сравнить наше экспериментальное значение. В нашем примере с золотым кольцом нет приемлемого значения для сравнения, и оба измеренных значения имеют одинаковую точность, поэтому у нас нет оснований полагать, что больше, чем другие. Мы могли бы найти характеристики точности для каждого весов как предоставленные производителем (приложение в конце этого лабораторного руководства содержит данные о точности для большинства инструментов, которые вы будете использовать), но лучший способ оценить точность измерения следует сравнить с известным стандартом .В этой ситуации это может быть возможность калибровки весов с помощью стандартной массы, которая является точной в узком допуска и прослеживается к стандарту первичной массы в Национальном институте Стандарты и технологии (NIST). Калибровка весов должна устранить несоответствие показаний и дает более точное измерение массы . Прецизионность часто выражается количественно с использованием относительной погрешности или дробной неопределенности :

(2)

Относительная неопределенность =
неопределенность
измеренное количество
Пример:

м = 75. 5 ± 0,5 г

имеет дробную погрешность:

Точность часто выражается количественно с использованием относительной ошибки :

(3)

Относительная ошибка =
измеренное значение — ожидаемое значение
ожидаемое значение
Если ожидаемое значение для м составляет 80,0 г, то относительная погрешность составляет:

Примечание: Знак минус означает, что измеренное значение на меньше , чем ожидаемое. значение.

При анализе экспериментальных данных важно понимать разницу между точностью и точностью. Точность указывает качество измерения без какой-либо гарантии, что измерение «правильное». Точность , с другой стороны, предполагает, что существует идеальное значение, и сообщает, насколько далеко ваш ответ от этого идеального, «правильного» ответа. Эти концепции напрямую связаны с случайными и систематическими ошибками измерения.

Типы ошибок

Глава 8 — Твердые тела

Введение

Твердые тела характеризуются упорядоченным расположением частиц. Если заказ распространяется только на короткие расстояния (местный заказ), твердое тело представляет собой аморфное твердое тело . Древесный уголь и стекло — твердые аморфные вещества. Если порядок существует во всем твердом теле (дальний порядок), твердое тело называется кристаллическим твердым телом .Поваренная соль и сахар — два распространенных примера твердых кристаллических веществ. Эта глава посвящена изучению кристаллических твердых тел. Даже маленький кристалл содержит миллионы и миллионы частиц. Таким образом, изучение твердого тела может быть сложной задачей.

8.1 Единичные ячейки

Введение

Однако дальний порядок, который характеризует кристаллические твердые тела, означает, что существует небольшая повторяющаяся единица, называемая элементарной ячейкой, которую можно использовать для создания всего кристалла. Наше исследование упрощено, потому что вместо изучения положения огромного числа частиц, составляющих весь кристалл, нам нужно изучать только небольшое количество частиц, составляющих элементарную ячейку.В этом разделе мы определяем элементарную ячейку и обсуждаем, как она заполнена атомами.
Цели
  • Определите элементарную ячейку и решетку .

8.1-1. Определение

Элементарная ячейка — это наименьшая повторяющаяся единица кристаллической решетки, которая генерирует всю решетку с трансляцией.

Кристаллические твердые тела представляют собой упорядоченные повторяющиеся трехмерные массивы частиц, которые могут быть атомами, ионами или группами атомов, такими как многоатомные ионы или молекулы.Образец массива называется кристалл , , решетка , , а отдельные позиции называются узлами решетки . Простейшая часть решетки, составляющая повторяющийся элемент, называется элементарной ячейкой . Когда элементарная ячейка повторяется во всех трех направлениях, она генерирует всю кристаллическую решетку. На рисунке показаны две разные, но эквивалентные элементарные ячейки в двумерном массиве. Одна элементарная ячейка состоит из четырех A по углам и B в центре грани, а другая имеет B по углам с A в центре.Сдвиг по длине одного из краев любой ячейки в любом из четырех направлений дает соседнюю ячейку. Продолжение операций перевода создает полную кристаллическую решетку. Трехмерная решетка образуется путем перемещения трехмерной элементарной ячейки в трех направлениях.

8.1-2. Параметры элементарной ячейки

Все элементарные ячейки можно однозначно охарактеризовать с помощью трех длин ребер ( a , b и c ) и углов ( α , β и γ ), определенных на рисунке 8.2. Они должны быть шестигранными многоугольниками, полностью заполняющими пространство; то есть дырки отсутствуют, когда многоугольники элементарной ячейки упакованы в трех измерениях. В результате существует всего семь различных типов элементарных ячеек. Мы ограничиваем наше обсуждение простейшим типом элементарной ячейки — кубической элементарной ячейкой. Кубическая элементарная ячейка — это ячейка, в которой

a = b = c

и

α = β = γ = 90 ° .

Есть три типа кубических элементарных ячеек, которые различаются только способом, которым частицы заполняют ячейку.
  • простая кубическая (стбн)
  • объемно-центрированный кубический (bcc)
  • гранецентрированная кубическая (ГЦК)

8.2 Кубические элементарные ячейки и металлические радиусы

Введение

Элементарные ячейки должны быть шестиугольными многоугольниками, которые полностью заполняют пространство (без промежутков между элементарными ячейками), и есть только семь типов элементарных ячеек, которые удовлетворяют этому требованию.Однако наше обсуждение ограничивается только одним типом — кубической элементарной ячейкой.
Цели
  • Различают простые объемноцентрированные и гранецентрированные кубические элементарные ячейки.
  • Определите атомные радиусы по длине края элементарной ячейки или длину края по атомным радиусам.

8.2-1. Кубические элементарные ячейки

Есть три кубические элементарные ячейки, которые различаются тем, как частицы заполняют куб.В каждой кубической элементарной ячейке один и тот же тип атома занимает каждый из восьми углов куба. Тогда тип элементарной ячейки определяется тем, где еще в элементарной ячейке находится этот тип атома. Обратите внимание, что на изображениях ниже все сферы представляют собой атомы одного и того же типа — различия в цвете используются только для того, чтобы различать разные позиции в ячейке. Есть три различных типа кубических элементарных ячеек.
Тип кубической элементарной ячейки Расположение идентичных частиц Изображение
простая кубическая (sc) по углам, а больше нигде в ячейке
объемно-центрированная кубическая (bcc) по углам и в центре ячейки
гранецентрированная кубическая (ГЦК) по углам и в центрах шести граней ячейки

Таблица 8. 1. Кубические элементарные ячейки

8.2-2. Металлический или атомный радиус

Атомы не являются твердыми сферами с четкими границами, поэтому их размеры напрямую не определяются. Однако положения атомов в твердом теле можно определить с помощью дифракции рентгеновских лучей, а размеры атомов — на основании этих расстояний. В этом методе радиус атома определяется из длины края элементарной ячейки ( a ), которая определяется по местоположению атомов, и предположения, что атомы соприкасаются, как показано на рисунках 8.3a, 8.3b и 8.3c.

9.2: Металлы и неметаллы и их ионы

Все элементы, за исключением водорода, образуют положительные ионы, теряя электроны во время химических реакций, называются металлами. Таким образом, металлы являются электроположительными элементами с относительно низкими энергиями ионизации. Они характеризуются ярким блеском, твердостью, способностью резонировать со звуком и отлично проводят тепло и электричество. В нормальных условиях металлы являются твердыми телами, за исключением ртути.

Физические свойства металлов

Металлы блестящие, пластичные, пластичные, хорошо проводят тепло и электричество. Другие свойства включают:

  • Состояние : Металлы представляют собой твердые вещества при комнатной температуре, за исключением ртути, которая находится в жидком состоянии при комнатной температуре (в жаркие дни галлий находится в жидком состоянии).
  • Блеск : Металлы обладают свойством отражать свет от своей поверхности и могут быть отполированы, например, золотом, серебром и медью.
  • Ковкость: Металлы обладают способностью противостоять ударам молотком и из них могут быть изготовлены тонкие листы, известные как фольга. Например, кусок золота размером с кубик сахара можно растолочь в тонкий лист, которым будет покрыто футбольное поле.
  • Пластичность: Металлы можно втягивать в проволоку. Например, из 100 г серебра можно натянуть тонкую проволоку длиной около 200 метров.
  • Твердость: Все металлы твердые, кроме натрия и калия, которые мягкие и поддаются резке ножом.
  • Валентность: Металлы обычно имеют от 1 до 3 электронов на внешней оболочке их атомов.
  • Проводимость : Металлы являются хорошими проводниками, потому что у них есть свободные электроны. Серебро и медь — два лучших проводника тепла и электричества. Свинец — самый плохой проводник тепла. Висмут, ртуть и железо также являются плохими проводниками
  • Плотность : Металлы имеют высокую плотность и очень тяжелые. Иридий и осмий имеют самую высокую плотность, а литий — самую низкую.
  • Точки плавления и кипения : Металлы имеют высокие точки плавления и кипения. Вольфрам имеет самые высокие температуры плавления и кипения, а ртуть — самые низкие. Натрий и калий также имеют низкие температуры плавления.

Химические свойства металлов

Металлы — это электроположительные элементы, которые обычно образуют основных или амфотерных оксидов с кислородом. Другие химические свойства включают:

  • Электроположительный характер : Металлы имеют тенденцию к низкой энергии ионизации, а обычно теряют электроны (т.е.е. окисляются ), когда они вступают в химические реакции реакции Обычно они не принимают электроны. Например:
    • Щелочные металлы всегда 1 + (теряют электрон в с подоболочки )
    • Щелочноземельные металлы всегда 2 + (теряют оба электрона в s подоболочке)
    • Ионы переходных металлов не следуют очевидной схеме, 2 + является обычным (теряют оба электрона в s подоболочке ), а также наблюдаются 1 + и 3 +

\ [\ ce {Na ^ 0 \ rightarrow Na ^ + + e ^ {-}} \ label {1.{-}} \ label {1.3} \ nonumber \]

Соединения металлов с неметаллами имеют тенденцию быть ионными по природе. Большинство оксидов металлов являются основными оксидами и растворяются в воде с образованием гидроксидов металлов :

\ [\ ce {Na2O (s) + h3O (l) \ rightarrow 2NaOH (aq)} \ label {1.4} \ nonumber \]

\ [\ ce {CaO (s) + h3O (l) \ rightarrow Ca (OH) 2 (aq)} \ label {1.5} \ nonumber \]

Оксиды металлов проявляют свою основную химическую природу, реагируя с кислотами с образованием солей металла и воды:

\ [\ ce {MgO (s) + HCl (водн.) \ Rightarrow MgCl2 (водн.) + H3O (l)} \ label {1.{2 -} \), следовательно, \ (Al_2O_3 \).

Пример \ (\ PageIndex {2} \)

Вы ожидаете, что он будет твердым, жидким или газообразным при комнатной температуре?

Решения

Оксиды металлов обычно твердые при комнатной температуре

Пример \ (\ PageIndex {3} \)

Напишите вычисленное химическое уравнение реакции оксида алюминия с азотной кислотой:

Решение

Оксид металла + кислота -> соль + вода

\ [\ ce {Al2O3 (s) + 6HNO3 (водн.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *