Атх ремонт: Ремонт блоков питания компьютера своими руками. Схема блока

Ремонт блоков питания компьютера своими руками. Схема блока

      Рубрики

    • Автомобили
    • Бизнес
    • Дом и семья
    • Домашний уют
    • Духовное развитие
    • Еда и напитки
    • Закон
    • Здоровье
    • Интернет
    • Искусство и развлечения
    • Карьера
    • Компьютеры
    • Красота
    • Маркетинг
    • Мода
    • Новости и общество
    • Образование
    • Отношения
    • Публикации и написание статей
    • Путешествия
    • Реклама
    • Самосовершенствование
    • Спорт и Фитнес
    • Технологии
    • Финансы
    • Хобби
    • О проекте
    • Реклама на сайте
    • Условия
    • Конфиденциальность
    • Вопросы и ответы

    FB

    Войти Похудевшая Анита Цой удивила поклонников молодежным имиджем

    Блок питания Morex PFC-300A: ремонт схемы дежурного питания

    Пришел на ремонт АТХ блок питания Morex PFC-300A с проблемой — «не включается». Примечательно, что это простоюй бюджетный блок питания на 300W, собранный по схеме half-bridge, но с APFC (активным корректором фактора мощности), что немного усложняет ремонт. При визуальном осмотре сразу бросилось в глаза, что схема дежурного питания что называется выгорела: текстолит с обеих сторон сильно потемнел, практически все элементы в этой схеме потемнели до такого состояния, что распознать их номинал не удалось, что говорит о том, что схема в течении довольно продолжительного времени сильно грелась (а не сгорела в один момент). Также были вздуты большие входные конденсаторы 220uF 200V, которые были сразу же заменены на аналогичные. Схема дежурки собрана на мощном биполярном транзисторе 2SC5353, в раскачке транзистор H945 (то же самое, что С945), в цепи обратной связи оптрон h21A817. Остальные элементы были практически неузнаваемы: кольца на резисторах слились с потемневшим корпусом, керамические конденсаторы совсем почернели, а диоды (или стабилитроны?) в стеклянных корпусах было сложно идентифицировать, так как маркировка была очень расплывчатая и плохо читалась. Ремонт предстоял сложный — восставновить практически с нуля всю схему дежурки, так как схему на этот блок питания в интернете найти не удалось. Но с помощью ребят с rom.by все получилось! 

    Начальная информация о блоке питания:

    1. Модуль PFC собран на МС L6561 и мосфете (полевом транзисторе) K264, там же дроссель, обвязка и диодный мост RS405L.

    2. БП: ШИМ TL494CN, супервизор TPS3510P, два силовых транзистора E13009-2, транзисторы в дежурке 2SC5353 и H945, оптопара 817B.

     3. Сопротивление обмоток трансформатора дежурки: первичная (по схеме ниже анод VD1 — земля) — 0,6 Ом, первичная (коллектор С5353 — плюс диодного моста) — 4,9 Ом; вторичная 0,5 Ом.

    Восстановление блока питания решено было произвести по методу реверс-инжиниринга.

    Обратная разработка (обратный инжиниринг, реверс-инжиниринг; англ. reverse engineering) — исследование некоторого устройства или программы, а также документации на него с целью понять принцип его работы; например, чтобы […] воспроизвести устройство, программу или иной объект с аналогичными функциями, но без копирования как такового.

    1. Итак, первым делом была распаяна вся схема дежурки и найдены еще «живые» элемнты (коих оказалось ничтожно мало), далее я сфотографировал плату со стороны пайки и в программе Sprint Layout по фотографии отрисовал печатную плату. (Рисовал не очень аккуратно, лишь бы было понятно, что где стояло.)

      

     
    2. После этого, отрисованную печатную плату, я распачатал и маркером нарисовал на ней условные обозначения элементов, так как это было с другой стороны платы (по шелкографии).

    3. Следующим этапом было привести получившуюся схему к более привычному виду — сделать из печатной платы схему электрическую принципиальную. Я для этого использовал карандаш и бумагу, постепенно шаг за шагом восстанавливал схему. Хотя есть другой способ, более продвинутый: открыть картинку с дорожками в Microsoft Visio, расставить на ней элементы, соединить их, удалить подложку и выровнять элементы так как это удобно. Связи между элементами не потеряются и перед Вами будет принципильная схема. Но мне проще с карандашом.

     

     
    4. В итоге схема получилась вполне читаемая, но без номиналов. Тут пришлось обращатся к типовым схемам блоков питания. И сразу выяснилось, что схема нетиповая и «содрать» ее откуда-либо не выйдет. Остался один пусть — на rom.by, где мне и помогли восстановить схему до рабочего вида.

     

    Схема вполне рабочая и уже некоторое время трудится в одном из офисных ПК.

     

    Правда, восстановление шло, не совсем гладко: во время первого восстановления что называется взорвался транзистор С5353, потом появился писк и свист в дежурке, потом были завышенные напряжения и т.п.

    Сразу оговорюсь: все тестовые включения необходимо делать через лапму накаливания 100-150 Вт, впаянную вместо предохранителя! Это ограничит ток и не даст сгореть ценным элементам.
    5. Еще меня очень смущало то, что здесь APFC, а лампа с APFC ведет себя не совсем так как в обычном блоке питания. Ясно и понятно никто ответить не смог — как именно должна вести себя лампа при наличии в БП активного PFC. Выяснение этого факта было второстепенной задачей. И вот, что удалось выяснить:
     

     

    При включении в сеть ~220V — лампа несколько раз моргает и тухнет, а при замыкании PS_ON на землю — лампа моргает постоянно, это нормальное поведение APFC. Примерно на такой эффект и нужно ориентироваться.

      

    Небольшие замечания по схеме:

    — свист в дежурке: когда схема была уже практически восстановлена и выдавала все необходимые напряжения, но при включении и во время работы схема издавала пронзительный высокочастотный свист, скорее даже писк. Один из решений было заменить дешевій коричневій китайский керамический коденсатор С3 103 (10nF) 1kV на аналогичный, только пленочный. Но я пошел немного по другому пути, заменил его на более качественный дисковый высоковольтный (синий) 103 (10nF) 5кВ. Свист исчез.

    мощный транзистор C5353 можно (и нужно) заменить на С3150 или С5027.

    признак «живой» дежурки это наличие 5 вольт на разъеме АТХ (фиолетовый провод +5VSB), наличие питания Vcc (8 — 40 вольт) на 12-й ноге ШИМ TL494 и наличие опорного напряжения 5 вольт на 14-ноге ШИМ TL494;

    — в процессе ремонта оказалось, что на разъеме АТХ (фиолетовый провод +5VSB) присутствует завышенное напряжение 12,3 — 13,8 вольт, после замены оптопары на аналогичную напряжение стабилизировалось и упало до 4,96 вольт. Примечательно, то что отптопара звонилась как рабочая, а оказалось, что нет.

     

    Многие могут сказать, а зачем оно нужно было в таком дешевом и слабеньком БП восстанавливать схему, а не легче ли было выкинуть его и купить новый. Отвечу: нет, не легче. Во-первых — это просто интересно, кто кого, азарт сложного ремонта как есть; во-вторых — это бесценный опыт; ну и в-третьих — это БП из бюджетной организации, а кто работает с бюджетных конторах, тот знает, что там комплектующими не разрасываются и по возможности ремонтируют все и вся, так как денег на новое никто просто так не даст.

     

    Ну и в заключении хочу отметить, что с появлением этой статьи наш сайт немного отклоняется от прошивочно-заправочной тематики, теперь здесь будут появлятся статьи все больше по части ремонта оргтехники и электроники. Также мы будем дополнять раздел «Технический ликбез» полезной теоретической информацией из области электроники и схемотехники. Надеемся, что эти изменения будут Вам полезны.

    Ремонт АТХ БП компьютера своими руками: починка блока питания

    Схема компьютерного БП

    Блок питания является самым важным и обязательным компонентом любого системного блока. Он отвечает за формирование напряжения, что позволяет обеспечивать питание для всех блоков ПК. Также, немаловажная его функция заключается в устранении утечки тока и паразитных токов при сопряжении устройств.

    Для создания гальванической развязки, требуется трансформатор с большим количеством обмотки. Исходя из этого, компьютер требует весьма большой мощности и естественно, что подобный трансформатор для ПК должен быть габаритным и с немалым весом.

    Но из-за частоты тока, который требуется для создания магнитного поля, требуется намного меньшее количество витков на трансформаторе. Благодаря этому, при использовании преобразователя, создаются небольшие и лёгкие блоки питания.

    Блок питания – на первый взгляд довольно непростой прибор, но если случается не особо серьёзная поломка, то его вполне реально отремонтировать самостоятельно.

    Ниже представлена стандартная схема БП. Как видно ничего сложного нет, главное выполнять всё поочерёдно, чтобы не было путаницы:

    Пошаговая инструкция

    Итак, вооружившись всеми необходимыми инструментами, можно приступать к ремонту:

    1. Прежде всего, надо отключить системный блок от сети и дать ему немного остыть.
    2. Поочерёдно откручиваются все 4 винта, которые фиксируют заднюю часть компьютера.
    3. Такая же операция проводится для боковых поверхностей. Эта работа выполняется аккуратно, дабы не задеть провода блока. Если есть винты, которые спрятаны под наклейками их также надо отвинтить.
    4. После того, как будет снят полностью корпус, БП надо будет продуть (можно воспользоваться пылесосом). Влажной тряпкой протирать ничего не нужно.
    5. Следующим этапом будет внимательное рассмотрение и обнаружение причины неполадки.

    В некоторых случаях, БП выходит из строя из-за микросхемы. Поэтому, следует тщательно осмотреть её детали. Особое внимание надо уделить предохранителю, транзистору и конденсатору.

    Зачастую, причиной поломки блока питания является вздутие конденсаторов, которые ломаются из-за плохой работы кулера. Вся эта ситуация легко диагностируется в домашних условиях. Достаточно лишь внимательно рассмотреть верхнюю часть конденсатора.

    вздутые конденсаторы

    Выпуклая крышечка является показателем слома. В идеальном состоянии, конденсатор – это ровный цилиндр плоскими стенками.

    Для устранения этой поломки понадобится:

    1. Извлечь сломанный конденсатор.
    2. На его место устанавливается аналогичная сломанному новая исправная деталь.
    3. Кулер снимается, чистится его лопасти от пыли и других частиц.

    Чтобы не подвергать компьютер перегреву, его следует регулярно продувать.

    Для того, чтобы проверить предохранитель ещё одним способом, его не обязательно выпаивать, а наоборот присоединить медную жилу к контактам. В случае, если БП начнёт работать, тогда достаточно просто припаять предохранитель, возможно, он просто отходил от контактов.

    Для проверки работоспособности предохранителя, достаточно лишь включить блок питания. В случае, если он сгорает во второй раз, тогда надо искать причину поломки в других деталях.

    Следующий вариант поломки может зависеть от варистора. Он используется для того, чтобы пропускать ток и выравнивать его. Признаком его неисправности являются следы нагара или чёрные пятна. Если таковы были обнаружены деталь надо заменить на новую.

    варистор Примечание! Варистор – это та деталь компьютера, которая проверяется во включенном состоянии, поэтому надо быть осторожным и внимательным. По аналогичному принципу проверяется каждая отдельная деталь: диоды, резисторы, конденсатор.

    Следует отметить, что проверка и замена диодов не слишком простая задача. Для их проверки следует выпаять каждый диод по отдельности или же сразу всю деталь. Заменять их следует аналогичными деталями с заявленным напряжением.

    Если после замены транзисторов они снова сгорают, тогда следует искать причину в трансформаторе. Кстати, эту деталь достаточно тяжело найти и купить. В таких ситуациях опытные мастера рекомендуют покупать новый БП. К счастью, подобная поломка случается достаточно редко.

    Ещё одна причина поломки БП может быть связана с кольцевыми трещинами, которые нарушают контакты. Это можно обнаружить и визуально, тщательно осмотрев печатную планку. Устранить подобный дефект можно с помощью паяльника, выполнив тщательную пайку, но при этом надо хорошо уметь паять. При малейшей ошибке, можно нарушить целостность контактов и тогда придется менять всю деталь целиком.

    кольцевые трещины

    Если же обнаружена более сложная поломка, тогда потребуется отличная техническая подготовка. Также, придется использовать сложные измерительные приборы. Но следует отметить, что приобретение подобных приборов обойдётся дороже нежели весь ремонт.

    Следует знать, что элементы, которые требуют замены, иногда бывают в дефиците и мало того, что трудно достать, так они ещё и дорого стоят. Если же случается сложная поломка и затраты на ремонт превышают цену по сравнению с приобретением нового блока питания. В таком случае, выгоднее и надежнее будет приобрести новый прибор.

    Признаки сломанного блока питания

    На пустом месте неисправность БП не возникнет. В случае, если появились признаки, которые указывают на его неисправность, то перед началом ремонта следует сначала устранить причины, приведшие его выхода из строя.

    Причины:

    1. Плохое качество питающего напряжения (перепады напряжения).
    2. Не очень качественные комплектующие компоненты.
    3. Дефекты, которые были допущены ещё на заводе.
    4. Плохой монтаж.
    5. Расположение деталей на плите блока питания расположено таким образом, что приводит его к загрязнению и перегреву.

    Признаки:

    1. Компьютер может не включаться, а если вскрыть системный блок, то можно обнаружить, что материнская плата не работоспособна.
    2. БП может и работать, но при этом не стартует оперативная система.
    3. При включении ПК всё вроде и начинает работать, но через некое время всё выключается. Это может сработать защита блока питания.
    4. Появление неприятного запаха.

    Неисправность БП невозможно упустить, поскольку начинаются проблемы с включением системного блока (он не включается совсем) или же после нескольких минут работы отключается.

    Если замечена хоть одна из проблем, следует задуматься о ликвидации неисправности, в противном случае, компьютер и вовсе может выйти из строя, и тогда не обойтись без вмешательства опытного специалиста.

    Основные неполадки:

    1. Самый распространённый момент, который может повлиять на работу блока питания – это вздутие конденсатора. Подобная проблема может быть определена только после вскрытия БП и его полном осмотре конденсатора.
    2. Если из строя выходит хотя бы 1 диод, тогда и весь диодный мост выходит из строя.
    3. Горение резисторов, которые находятся возле конденсаторов, транзисторов. Если случается такая проблема, то надо будет поискать проблему во всей электрической схеме.
    4. Неполадки с ШИМ контроллером. Его достаточно сложно проверить, для этого надо использовать осциллограф.
    5. Силовые транзисторы также часто выходят из строя. Для их проверки используется мультиметр.

    Примечание! Силовые конденсаторы имеют свойство некоторое время удерживать заряд, в связи с этим не рекомендуется прикасаться к ним голыми руками после того, как будет отключено питание. Также, следует помнить, что при подключенном блоке питания к сети не надо трогать плиту или радиатор.

    Принцип работы и основные узлы

    Перед тем как взяться за ремонт БП, необходимо понимать, каким образом он работает, знать его основные узлы. Ремонт блоков питания следует осуществлять предельно осторожно и помнить про электробезопасность во время работы. К основным узлам БП относят:

    • входной (сетевой) фильтр;
    • дополнительный формирователь стабилизированного сигнала 5 вольт;
    • главный формирователь +3,3 В, +5 В, +12 В, а также -5 В и -12В;
    • стабилизатор напряжения линии +3,3 вольта;
    • выпрямитель высокочастотный;
    • фильтры линий формирования напряжений;
    • узел контроля и защиты;
    • блок наличия сигнала PS_ON от компьютера;
    • формирователь напряжения PW_OK.

    Фильтр, стоящий на входе, используется для подавления помех, генерирующихся БП в​ электрическую цепь. Одновременно с этим он выполняет защитную функцию при нештатных режимах работы БП: защита от превышения значения тока, защита от всплесков напряжения.

    При включении БП в сеть на 220 вольт на материнскую плату через дополнительный формирователь поступает стабилизированный сигнал с величиной равной 5 вольт. Работа основного формирователя в этот момент блокируется сигналом PS_ON, сформированным материнской платой и равным 3 вольта.

    После нажатия кнопки включения на ПК, значение PS_ON становится равным нулю и происходит запуск основного преобразователя. Источник питания начинает вырабатывать основные сигналы, поступающие на компьютерную плату и схемы защиты. В случае значительного превышения уровня напряжения схема защиты прерывает работу основного формирователя.

    Для запуска материнской платы на неё одновременно, с прибора питания, подаётся напряжение +3,3 вольта и +5 вольт для формирования уровня PW_OK, что обозначает питание в норме. Каждый цвет провода в устройстве питания соответствует своему уровню напряжения:

    • чёрный, общий провод;
    • белый, -5 вольт;
    • синий, -12 вольт;
    • жёлтый, +12 вольт;
    • красный, +5 вольт;
    • оранжевый, +3,3 вольта;
    • зелёный, сигнал PS_ON;
    • серый, сигнал PW_OK;
    • фиолетовый, дежурное питание.

    Устройство питания в основе своей работы использует принцип широтно-импульсной модуляции (ШИМ). Сетевое напряжение, преобразованное диодным мостом, поступает на силовой блок. Его величина составляет 300 вольт. Работой транзисторов в силовом блоке управляет специализированная микросхема ШИМ контроллер. При поступлении сигнала на транзистор происходит его открывание, и на первичной обмотке импульсного трансформатора возникает ток. В результате электромагнитной индукции проявляется напряжение и на вторичной обмотке. Изменяя длительность импульса, регулируется время открытия ключевого транзистора, а значит и величина сигнала.

    Контроллер, входящий в состав основного преобразователя, запускается от разрешающего сигнала материнской платы. Напряжение попадает на силовой трансформатор, а с его вторичных обмоток поступает на остальные узлы источника питания, формирующих ряд необходимых напряжений.

    ШИМ контроллер обеспечивает стабилизацию выходного напряжения путём использования в схеме обратной связи. При увеличении уровня сигнала на вторичной обмотке, схема обратной связи уменьшает величину напряжения на управляющем выводе микросхемы. При этом микросхемой увеличивает длительность сигнала, посылаемого на транзисторный ключ.

    В конце каждой линии БП ставится фильтр. Его назначение убирать паразитные пульсации, образованные переходными процессами транзисторов. Состоит он, как и любой сетевой фильтр, из электролитического конденсатора и индуктивности.

    Диагностика устройства питания

    Перед тем, как перейти непосредственно к диагностике компьютерного прибора питания, нужно убедиться, что неполадка именно в нём. Проще всего, это сделать, подключив заведомо исправный блок к системному блоку. Поиск неисправностей в блоке питания компьютера можно осуществлять по следующей методике:

    1. В случае повреждения БП необходимо попытаться найти пособие по его ремонту, принципиальную электрическую схему, данные о типичных неисправностях.
    2. Проанализировать условия, при каких условиях работал источник питания, исправна ли электрическая сеть.
    3. Используя свои органы чувств определить есть ли запах горевших деталей и элементов, не было ли искрения или вспышки, прислушаться слышны ли посторонние звуки.
    4. Предположить одну неисправность, выделить неисправный элемент. Обычно это самый трудоёмкий и кропотливый процесс. Этот процесс ещё более трудоёмкий, если отсутствует электрическая схема, которая просто необходима при поиске «плавающих» неисправностей. Используя измерительные приборы проследить путь прохождение сигнала неисправности до того элемента, на котором имеется рабочий сигнал. В результате сделать вывод, что сигнал пропадает на предыдущем элементе, который и является нерабочим и требует замены.
    5. После ремонта необходимо протестировать источник питания с максимально возможной его нагрузкой.

    Практические рекомендации по ремонту

    Если принято решение самостоятельно починить источник питания, в первую очередь он извлекается из корпуса системного блока. После выкручиваются крепёжные винты и снимается защитный кожух. Продув и почистив от пыли, приступают к его изучению. Практический ремонт блока питания компьютера своими руками пошагово можно представить следующим образом:

    1. Внешний осмотр. При нём особое внимание уделяется почерневшим местам на плате и элементах, внешнему виду конденсаторов. Верхушка конденсаторов должна быть плоской, выпуклость говорит о его негодности, внизу у основания не должно быть подтёков. Если имеется кнопка включения, не лишним будет провести её проверку.
    2. Если осмотр не вызвал подозрений, то следующим шагом будет прозвонка входных и выходных цепей на присутствие короткого замыкания (КЗ). При присутствии короткого замыкания выявляется пробитый полупроводниковый элемент, стоящий в цепи с КЗ.
    3. Измеряется сетевое напряжение на конденсаторе выпрямительного блока и проверяется предохранитель. В случае наличия напряжения 300 B переходим к следующему этапу.
    4. Если напряжение отсутствует, при этом сгорает предохранитель, проверяется диодный мост, ключевые транзисторы на короткое замыкание. Резисторы и защитный терморезистор на обрыв.
    5. Проверяется присутствие дежурного напряжения, стабилизированных пяти вольт. Статистика свидетельствует, что когда устройство питания не включается, одна из наиболее распространённых причин, это неисправность схемы дежурного питания, при работоспособных силовых элементах.
    6. Если стабилизированные пять вольт присутствуют, проверяется наличие PS_ON. Когда значение менее четырёх вольт, ищется причина занижения уровня сигнала. Обычно PS_ON формируется от дежурного напряжения через подтягивающий резистор номиналом 1 кОм. Проверяется цепь супервизора, прежде всего на соответствие в цепи значений ёмкости конденсаторов и номиналы резисторов.

    В случае, если причина не найдена, проверяется ШИМ контроллер. Для этого понадобится стабилизированный прибор питания на 12 вольт. На плате отключается нога микросхемы, отвечающая за задержку (DTC), а питание источника подаётся на ногу VCC. Осциллографом смотрится наличие генерации сигнала на выводах, подключённых к коллекторам транзисторов, и присутствие опорного напряжения. Если импульсы отсутствуют проверяется промежуточный каскад, собранный чаще всего на маломощных биполярных транзисторах.

    Типовые неисправности и проверка элементов

    При восстановлении блока питания ПК понадобится использовать различного рода приборы в первую очередь, это мультиметр и желательно осциллограф. С помощью тестера возможно провести измерения на короткое замыкание или обрыв как пассивных, так и активных радиоэлементов. Работоспособность микросхемы, если отсутствуют визуальные признаки выхода её из строя, проверяется с использованием осциллографа. Кроме, измерительной техники для ремонта блока питания ПК, потребуется: паяльник, отсос для припоя, промывочный спирт, вата, олово и канифоль.

    Если не запускается блок питания компьютера, возможные неисправности можно представить в виде типичных случаев:

    1. Перегорает предохранитель в первичной цепи. Пробиты диоды в выпрямительном мосту. Звонятся на короткое замыкание элементы разделительного фильтра: B1-B4, C1, C2, R1, R2. Обрыв варисторов и терморезистора TR1, звонятся накоротко переходы силовых транзисторов и вспомогательных Q1-Q4.
    2. Постоянное напряжение пять вольт или три вольта занижены или завышены. Нарушения в работе стабилизирующей цепи, проверяются микросхемы U1, U2. Если проверить ШИМ контроллер не удаётся, то проводится замена микросхемы на идентичную или аналог.
    3. Уровень сигнала на выходе отличается от рабочего. Неисправность в цепи обратной связи. Виновата микросхема ШИМ и радиоэлементы в её обвязке, особое внимание уделяется конденсаторам C и маломощным резисторам R.
    4. Нет сигнала PW_OK. Проверяется присутствие напряжений основных напряжений и сигнала PS_ON. Проводится замена супервизора, отвечающего за контроль выходного сигнала.
    5. Отсутствует сигнал PS_ON. Сгорела микросхема супервизора, элементы обвязки её цепи. Проверить путём замены микросхемы.
    6. Не крутит вентилятор. Замерить напряжение, поступающее на него, оно составляет 12 вольт. Прозвонить терморезистор THR2. Замерить сопротивление выводов вентилятора на отсутствие короткого замыкания. Провести механическую чистку и смазать посадочное место под лопасти вентилятора.

    Принципы измерения радиоэлементов

    Корпус БП соединён с общим проводом печатной платы. Измерение силовой части источника питания проводится относительно общего провода. Предел на мультиметре выставляется более 300 вольт. Во вторичной части присутствует только постоянное напряжение, не превышающее 25 вольт.

    Проверка резисторов осуществляется путём сравнений показаний тестера и маркировки, нанесённой на корпус сопротивления или указанной на схеме. Проверка диодов проводится тестером, если он показывает нулевое сопротивление в оба направления, то делается вывод о его неисправности. Если существует возможность в приборе проверить падение напряжения на диоде, то можно его не выпаивать, величина составляет 0,5−0,7 вольта.

    Проверка конденсаторов происходит путём измерения их ёмкости и внутреннего сопротивления, для чего необходим специализированный прибор ESR-метр. При замене следует учитывать, что используются конденсаторы с низким внутренним сопротивлением (ESR). Транзисторы прозванивают на работоспособность p-n переходов или в случае полевых на способность открываться и закрываться.

    Ремонт компьютерного блока питания

    Для более доступного объяснения данного материала настоятельно рекомендую прочесть статью по основам ремонта компьютерных блоков питания.

    Проверяем входное сопротивление

    Итак, дали в ремонт блок питания Power Man на 350 Ватт

    Что делаем первым делом? Внешний и внутренний осмотр. Смотрим на “потроха”. Если ли какие сгоревшие радиоэлементы? Может где-то обуглена плата или взорвался конденсатор, либо пахнет горелым кремнием? Все это учитываем при осмотре. Обязательно смотрим на предохранитель. Если он сгорел, то ставим вместо него временную перемычку примерно на столько же Ампер, а потом замеряем входное сопротивление через два сетевых провода. Это можно сделать на вилке блока питания при включенной кнопке “ВКЛ”. Оно НЕ должно быть слишком маленькое, иначе при включении блока питания еще раз произойдет короткое замыкание.

    Замеряем напряжения

    Если все ОК, включаем наш блок питания в сеть с помощью сетевого кабеля, который идет вместе с блоком питания, и не забываем про кнопочку включения, если она у вас была в выключенном состоянии.

    Далее меряем напряжение на фиолетовом проводе

    Мой пациент на фиолетовом проводе показал 0 Вольт. Беру мультиметр и прозваниваю фиолетовый провод на землю. Земля – это провода черного цвета с надписью СОМ. COM – сокращенно от “common”, что значит “общий”. Есть также некоторые виды “земель”:

    Как только я коснулся земли и фиолетового провода, мой мультиметр издал дотошный сигнал “ппииииииииииип” и показал нули на дисплее. Короткое замыкание, однозначно.

    Ну что же, будем искать схему на этот блок питания. Погуглив по просторам интернета, я нашел схему. Но нашел только на Power Man 300 Ватт. Они все равно будут похожи. Отличия в схеме были лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схемы, то это не будет большой проблемой.

    А вот и схемка на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

    Ищем виновника

    Как мы видим в схеме, дежурное питание, далее по тексту – дежурка, обозначается как +5VSB:

    Прямо от нее идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон – это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Скорее всего стабилитрон сгорел и PN переход разрушен.

    Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным, или иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким, или иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта, как короткое замыкание, так и обрыв.

    В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

    Вспоминаем простые подсказки:

    1)При последовательном соединении работает правило больше большего, иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

    2)При параллельном же соединении работает обратное правило, меньше меньшего, иначе говоря итоговое сопротивление будет меньше чем сопротивление резистора меньшего из номиналов.

    Можете взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра ? Правильно, тоже равное нулю…

    И до тех пор пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том, что при звуковой прозвонке, ВСЕ детали параллельно соединенные с деталью находящейся в коротком замыкании, будут у нас звониться накоротко с общим проводом!

    Пробуем выпаять стабилитрон. Как только я к нему прикоснулся, он развалился надвое. Без комментариев…

    Дело не в стабилитроне

    Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Я сходил в радиомагазин за новым стабилитроном и запаял его. Включаю блок питания, и… вижу как мой новый, только что купленный стабилитрон испускает волшебный дым)…

    И тут я сразу вспомнил одно из главных правил ремонтника:

    Если что-то сгорело, найди сначала причину этого, а только затем меняй деталь на новую или рискуешь получить еще одну сгоревшую деталь.

    Ругаясь про себя матом, перекусываю сгоревший стабилитрон бокорезами и снова включаю блок питания.

    Так и есть, дежурка завышена: 8,5 Вольт. В голове крутится главный вопрос: “Жив ли еще ШИМ контроллер, или я его уже благополучно спалил?”. Скачиваю даташит на микросхему и вижу предельное напряжение питания для ШИМ контроллера, равное 16 Вольтам. Уфф, вроде должно пронести…

    Проверяем конденсаторы

    Начинаю гуглить по моей проблеме на спец сайтах, посвященных ремонту БП ATX. И конечно же, проблема завышенного напряжения дежурки оказывается в банальном увеличении ESR электролитических конденсаторов в цепях дежурки. Ищем эти конденсаторы на схеме и проверяем их.

    Вспоминаю о своем собранном приборе ESR метре

    Самое время проверить, на что он способен.

    Проверяю первый конденсатор в цепи дежурки.

    ESR в пределах нормы.

    Находим виновника проблемы

    Проверяю второй

    Жду, когда на экране мультиметра появится какое-либо значение, но ничего не поменялось.

    Понимаю, что виновник, или по крайней мере один из виновников проблемы найден. Перепаиваю конденсатор на точно такой же, по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь хочу остановиться подробнее:

    Если вы решили поставить в блок питания ATX электролитический конденсатор не с донора, а новый, из магазина, обязательно покупайте LOW ESR конденсаторы, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания, как раз именно такие цепи.

    Итак, я включаю блок питания и снова замеряю напряжение на дежурке. Наученный горьким опытом уже не тороплюсь ставить новый защитный стабилитрон и замеряю напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

    Снова сажусь гуглить по проблеме завышенного напряжения на дежурке, и на сайте rom.by, посвященном как ремонту БП ATX и материнских плат так и вообще всего компьютерного железа. Нахожу свою неисправность поиском в типичных неисправностях данного блока питания. Рекомендуют заменить конденсатор емкостью 10 мкФ.

    Замеряю ESR на конденсаторе…. Жопа.

    Результат, как и в первом случае: прибор зашкаливает. Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно – они припухшие, или вскрывшиеся розочкой

    Да, я согласен с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

    Итак, перебрав свои платы был найден и второй нужный мне конденсатор на одной из плат доноров. На всякий случай было измерено его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаю блок питания клавишным выключателем и измеряю дежурное напряжение. То, что и требовалось, 5,02 вольта… Ура!

    Измеряю все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5%. Осталось впаять стабилитрон на 6,3 Вольта. Долго думал, почему стабилитрон именно на 6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего, этот стабилитрон стоит здесь как защитный, для того, чтобы в случае повышения напряжения на дежурке, выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив нашу материнскую плату от сгорания при поступлении на нее завышенного напряжения через дежурку.

    Вторая функция этого стабилитрона, видать, защита ШИМ контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, поэтому на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и присутствует у нас на дежурке.

    Заключение

    Итак, какие можно сделать выводы из этого ремонта:

    1)Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей, такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

    2)Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

    3)Найдя какую либо сгоревшую деталь, не торопимся менять её на новую, а ищем причину которая привела к её сгоранию, иначе мы рискуем получить еще одну сгоревшую деталь.

    % PDF-1.3 % 1 0 obj > endobj 2 0 obj > endobj 3 0 obj > / Шрифт> >> / MediaBox [0 0 612 792] >> endobj 15 0 объект > endobj 18 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 778 250 333 5555 500 500 1000 833 278 333 333 500 570 250 333250 278 500 500 500 500 500 500 500 500 500 500 333 333 570 570 570 500 930 722 667 722 722 667 611 778 778 389 500 778 667 944 722 778 611 778 722 556 667 722 722 1000 722 722 667 333 278 333 581 500 333 500 556 444 556 444 333 500 556 278 333 556 278 833 556 500 556 556 444 389 333 556 500 722 500 500 444 394 220 394 520 778 500 778 333 500 500 1000 500 500 333 1000 556 333 1000 778 667 778 778 333 333 500 500 350500 1000333 1000389333722778444722250333500500500500220500333747300500570333747500400549300300333576540250 3333300330500750750750500722722722722722722 1000 722 667 667 667 667 389 389 389 389 722 722 778 778 778 778 778570778722 722 722 722 611 556 500 500 500 500 500 500 722 444 444 444 444 444 278 278 278 278 500 556 500 500 500 500 500 549 500 556 556 556 556 500 556 500] endobj 17 0 объект > endobj 16 0 объект > endobj 20 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 778 250 333 408 500 500 833 778 180 333 333 500 564 250 333250 278 500 500 500 500 500 500 500 500 500 500 278 278 564564 444 921 722 667 667 722 611 556 722 722 333 389 722 611 889 722 722 556 722 667 556611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444500 444 333 500 500 278 278 500 278 778 500 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 778 500 778 333 500 444 1000 500 500 333 1000 556 333 889 778 611 778 778 333 333 444 444 350500 1000 333980389333722778444722250 333500500500500200500 333760 276 500 564 333760 500 400 549 300 300 333 576 453250 333 300 310 500 750 750 750 444722 722 722 722 722 889 667 611 611 611 611 333 333 333 722 722 722 722 722 722 564 722 722 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 549 500 500 500 500 500 500 500 500] endobj 19 0 объект > endobj 14 0 объект > ручей t 좂 _phWZk; 94yV ‹wiv:% x} XZA] W-_G4! Nc% axhg> ߯5: 71 H.M) th |! Ҽ {Tf9RjmſR $ s’K CEa, ~ 1 | EF21NbG ת iUwѕsnVM- k ܱ T7U; kT ׷ Nԇ / Cyb2wgbSO} 3 (VXhPLr # fmjCA | Ѩ5 + JR # b =,} / CU̹îJ- (`Fi% ko + K! Dẽmf [{GIC6Y, xYA> Bw = GOJt, (p 4d # D% c6X4i = C7 9NWJ, 7 (p? Q [HzlwlNM]? C! 3T]. {SDKP} F; \ G6e (Zg!) $ QI-; ͷZQ2) [? Bh9A? BH \ rDj \? S /, wJ7oQ0% ‘h w = Ezm

    Лучший ремонт atx по цене — Отличные предложения по ремонту atx от глобальных продавцов ремонта atx

    Отличные новости !!! Вы попали в нужное место для ремонта ATX.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

    Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

    AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший ремонт ATX в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что сделали ремонт ATX на AliExpress.С самыми низкими ценами в Интернете, дешевыми тарифами на доставку и возможностью получения на месте вы можете еще больше сэкономить.

    Если вы все еще не уверены в ремонте ATX и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

    А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести ремонт atx по самой выгодной цене.

    У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

    Ремонт блока питания Atx

  • Поиск и устранение неисправностей и ремонт блока питания ATX

    Принесено вам Джестин Йонг

    http://www.PowerSupplyRepairGuide.com

    Надеюсь, вам понравился краткий отчет «Легкий способ понять» Импульсный источник питания.Здесь я хотел бы поделиться с вами еще одной статьей, в которой рассказывается о том, как я решил немного более высокое выходное напряжение в блоке питания ATX. Из-за более высокого выходного напряжения ЦП не загружался.

    Начнем. Один из моих клиентов попросил меня отремонтировать его блок питания ATX. Я сказал ему купить новый (так как сейчас он был очень дешевым), но он сказал, что не может найти тот, который подошел бы его клиентскому процессору. Он хотел блок питания того же размера или меньше, чем исходный, с такими же или более высокими характеристиками, но все, что он смог найти, это блок питания ATX стандартного размера! К вашему сведению: блок питания стандартного размера ATX

  • не может поместиться в ПК.В качестве услуги своему клиенту я взялся за ремонт.

    При включении питания были проведены измерения. Результат был повышенным напряжением. Линия 12 вольт поднялась до 13 + вольт, а линия 5 вольт стала 5,6 вольт. После того, как кожух был снят, он оказался очень грязным, и я использовал пылесос и щетку, чтобы очистить грязь. Затем я увидел, что четыре электролитических конденсатора фильтра вздулись, и вы могли видеть это в верхней части конденсатора.

  • Как вы знаете, мы, мастера по ремонту электроники, не можем видеть вещи только с одной стороны; мы должны увидеть и окрестности.Я имел в виду, прежде чем начинать проверку подозрительной области, попытайтесь увидеть, есть ли какие-либо подозрительные компоненты, которые способствовали отказу источника питания, такие как сломанные компоненты, сухие соединения, неплотное соединение, разложившийся клей и т. Д.

  • Я увидел на первичной стороне некоторые компоненты, покрытые разложившимся клеем, как показано на рисунке. Я должен аккуратно удалить его, соскоблив слои разложившегося клея, сохранив при этом внешние слои компонентов.Как только это было сделано, я очистил его раствором Растворителя. Разложившийся клей может вызвать серьезные или периодические проблемы в электронном оборудовании, поскольку он может быть токопроводящим.

  • Если вы ремонтируете какой-либо блок питания ATX, убедитесь, что вы проверили и вентилятор, потому что некоторый сбой блока питания был вызван нагревом, вызванным неисправным вентилятором. Назначение вентилятора — отвод всего тепла, выделяемого компонентами внутри источника питания, особенно импульсным трансформатором и диодами Шоттки, прикрепленными к радиатору.Чтобы вентилятор работал бесперебойно, вы можете отремонтировать его, используя аэрозоль на масляной основе Philips, как показано на фотографии.

    Удалите наклейку позади вентилятора, откройте небольшую резиновую крышку и распылите на нее масло. Если это по-прежнему не работает, я предлагаю вам купить новый вентилятор, потому что новый вентилятор не будет стоить много.

    После замены четырех электролитических конденсаторов и удаления разложившегося клея я должен вставить его в ненужную материнскую плату вместе с жестким диском, чтобы проверить производительность блока питания ATX и измерить все его выходные напряжения.Похоже, что выходное напряжение вернулось к норме. После этого я протестировал его в ЦП клиента, чтобы проверить отображение. Это сработало отлично.

  • Причина, по которой я сначала протестировал его на ненужной материнской плате, чтобы это не привело к выходу из строя хорошей материнской платы (в процессоре) на всякий случай, если выходное напряжение источника питания все еще будет высоким. Лучше перестраховаться, чем потом сожалеть. Кстати, вы не можете протестировать блок питания ATX без нагрузки, иначе он может на некоторое время включиться, а затем выключиться.Это связано с тем, что без нагрузки создаваемое выходное напряжение станет очень высоким, и это приведет к срабатыванию схемы защиты для отключения источника питания.

  • Если вы посмотрите на блок-схему с предыдущей страницы, то при отсутствии нагрузки, подключенной к источнику питания, усилитель считывания отправит напряжение ошибки на схему управления, и эта схема управления отключит схему переключения. Если переключающая схема не работает, выходное напряжение не будет, потому что переключающий трансформатор не работает.

    Так как вы сначала тестируете ненужную материнскую плату, вам нужно создать переключатель для включения источника питания. Вам необходимо подключить контакт 14 к любому контакту заземления (Com), чтобы включить источник питания.

  • Знаете ли вы, что большинство блоков питания ATX используют выпрямители с двойным барьером Шоттки для преобразования волны переменного тока в напряжение постоянного тока? Даже в блоке питания ЖК-монитора в выпрямлении использовались двойные диоды Шоттки.

  • К сведению, проверка диода Шоттки отличается от проверки обычного диода.Если аналоговый измеритель установлен на X10 кОм, он должен показывать некоторые показания утечки при выполнении теста обратного смещения. Если этот компонент выходит из строя, очень легко получить замену, конечно, вы должны получить компонент с правильной спецификацией.

    Кстати, если вы хотите стать профессионалом в ремонте импульсных блоков питания, вы всегда можете получить мою электронную книгу, так как она содержит все секреты, позволяющие легко решать проблемы с импульсными блоками питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *