Автоматическая сварка под слоем флюса: Лучшее аппараты для автоматической сварки под флюсом: оборудование, сравнительная характеристика, стоимость

Автоматическая наплавка и сварка под слоем флюса — Студопедия

Идея сварки под флюсом принадлежит Н.Г.Славянову. Способ автоматической наплавки и сварки под слоем флюса в том виде, в каком он в настоящее время применяется, разработан в Институте электросварки АН УССР имени академика Е.О.Патона. Сущность этого способа заключается в следующем. Между наплавляемой деталью и электродной проволокой образуется электрическая дуга . В зону горения дуги из бункера с помощью специального устройства сыплется сухой зернистый флюс, покрывающий толстым слоем наплавляемый участок поверхности детали. Выделяющееся при горении дуги тепло плавит электродную проволоку, основной металл детали и часть флюса. Над ванной расплавленного металла образуется полость (пузырь), заполненная газами и парами, выделяющимся при горении дуги. Расплавленный флюс (жидкий шлак) образует эластичную оболочку, надежно защищающую всю зону горения дуги от влияния атмосферного воздуха. Эта оболочка при повышенном давлении во флюсовом пузыре не мешает газам, образующимся в процессе наплавки, выходить наружу.

При наплавке Цилиндрической поверхности деталь вращается, для того чтобы металл не стекал с наплавляемой поверхности, электродную проволоку смещают с зенита (точки, находящейся над осью) детали в сторону, противоположную направлению вращения, на величину, которая в зависимости от режима наплавки и диаметра детали принимается равной 3…12мм.


По мере удаления расплавленного металла от места горения дуги происходит его кристаллизация и затвердевание шлака. В результате на поверхности детали образуется металлический валик, покрытый шлаковой коркой и нерасплавленным зернистым флюсом, который постепенно ссыпается вниз. Неиспользованный флюс возвращается в бункер. Электродная проволока подается в зону горения дуги с помощью подающего механизма, являющегося составной частью наплавочной головки, устанавливаемой на суппорте токарного станка. Скорость подачи проволоки составляет 80…160м/ч. Наплавляемую деталь устанавливают в центрах станка.

Наплавку производят постоянным током обратной полярности. Источниками тока обычно служат сварочные преобразователи ПС—З00, ПС—500 и др.

Наплавку цилиндрических поверхностей деталей чаще всего производят по винтовой линии. Наплавляемые валики накладывают так, чтобы каждый последующий перекрывал предыдущий. При этом валики металла должны быть хорошо сплавлены между собой (проварены) и не содержать шлаковых включений, для этого шлаковую корку необходимо удалять с поверхности наплавленного валика до того, как к нему будет приварен следующий валик, т.е. за время, меньшее, чем требуется для одного оборота детали ударами заостренного молотка.


При продольной наплавке шлицев деталь, установленная в центрах токарного станка, остается неподвижной, а суппорт станка наплавочной головкой совершает продольную подачу. После наложения одного продольного валика деталь поворачивают на 180°, с противоположной стороны ее наплавляют следующий валик.

В такой последовательности производят весь процесс продольной наплавки. При этом конец электродной проволоки должен находиться на середине впадины между шлицами. Величина продольной подачи наплавочной головки (суппорта станка) составляет 3,4— 12 мм/об (большие величины принимают при наплавке шлицев).

Круговую наплавку деталей производят электродной проволокой д1,2 или 1,4 мм, а продольную —2,0 мм наплавочной проволокой из сталей марок Нп-40, Нп-50 и сварочную проволоку из сталей марок Св-08,СП-ГА, Св-1ОГА, Св-I8ХГСА и др.

При наплавке используют аналогичные флюсы. Флюс служит не только для защиты наплавленного металла от атмосферного воздуха, но и для легирования, уменьшения обрызгивания и угара, а также сохранения тепла дуги.

Автоматической наплавкой под слоем флюса можно восстанавливать, цилиндрические поверхности и резьбы деталей диаметром более 35 мм, а также шлицы, возможна наплавка плоскостей и поверхностей отверстий, в последнем случае применяют специальные изогнутые мундштуки.

Удаление шлаковой корки при наплавке поверхности отверстия связано с известными трудностями. В этом случае наплавку производят в два прохода. Вначале наплавляют поверхность отверстия, чтобы соседние нитки не перекрывались (увеличивают шаг наплавки). Затем удаляют шлаковую корку специальным резцом или с помощью зубила и молотка, после чего оплавляют вторично (при том же шаге наплавки), но сдвинув электрод так, чтобы наплавляемый валик попадал посередине между нитками первого прохода. Твердость металла после наплавки может быть повышена термической обработкой (закалкой и отпуском). Режим наплавки:

Напряжение, В 25-40

Сила тока, А а) для круговой наплавки 75…140

б) Для продольной наплавки шлицев 170…270

Наплавленную поверхность детали подвергают механической обработке (точению, фрезерованию, шлифованию) до требуемых размеров и шероховатости поверхности. В некоторых случаях для облегчения механической обработки и уменьшении внутренних напряжений деталь после наплавки подвергают отжигу или отпуску, твердость наплавленного металла снижается.

Автоматическую наплавку под слоем флюса применяют для восстановления: коленчатого вала (наплавка шеек), полуоси (наплавка шлицевого конца), карданного в (наплавка шлицевого конца и сварка вилки с трубой), трубы оси (наплавка шеек под подшипник и под резьбу), распределительного вала (наплавка концевой шейки под резьбу) и других деталей

Особенно эффективно использование этого способа для восстановления коренных и шатунных шеек коленчатых валов.

На ремонтных предприятиях освоены различные технологические процессы наплавки шеек коленчатых валов под слоем флюса.

Восстановлению подлежат коленчатые валы, не имеющие подрезанных галтелей и трещин любого характера. Перед наплавкой шейки коленчатого вала зачищают наждачной шкуркой до металлического блеска, изолируют отверстия для смазки асбестовыми пробками и заполняя их сверху огнеупорной глиной. Уровень глиняного заполнения должен быть ниже поверхности шейки на 1…1,5 мм, отверстия не залавляются (расплавленный металл к ним не пристает) и поэтому отпадает необходимость в сверлении.

Шейки коленчатого вала наплавляют по всей длине за один проход. Вначале наплавляют шатунные шейки. При этом должен быть предусмотрен припуск на последующее шлифование шеек 0,75—1,0 мм на сторону. Необходимо отметить, что при этом способе наплавки коленчатый вал подвергается значительному нагреву и деформациям. Исследования показали, что деформации происходят не сразу после наплавки, а в период охлаждения коленчатого вала от температуры 150°С до комнатной.

Для уменьшения деформации коленчатый вал охлаждается в вертикально подвешенном положении. Затем его проверяют по средней коренной шейке на биение, величина которого не должна превышать 0,3 мм. Коленчатые валы с большим биением необходимо править. После этого их шатунные шейки шлифуют начерно.

Наплавку шеек коленчатого вала производят постоянным током обратной полярности.

Наплавленные коренные шейки подвергают черновому шлифованию, после чего коленчатый вал проверяют на биение и, если необходимо, правят. Затем зенковкой, оснащенной пластинками из твердого сплава, зенкуют отверстия для смазки в шатунных и коренных шейках коленчатого вала. После этого удаляют глину, асбестовые пробки, очищают масляные каналы от загрязнений и продувают их сжатым воздухом. Завершающими операциями являются чистовое шлифование коренных и шатунных шеек коленчатого вала под нормальный размер и полирование.

Наплавка шеек коленчатых валов под слоем флюса с легирующими компонентами обеспечивает получение наплавленного слоя, соответствующего по своему составу хромомарганцевой стали марки 60ХГ.

При охлаждении на воздухе этот слой приобретает однородную структуру мелкозернистого мартенсита с твердостью в пределах НRС56…62, благодаря чему отпадает необходимость в термической обработке. Наплавленный металл получается без пор, раковин и трещин. Восстановленные коленчатые валы по износостойкости поверхности шеек не уступают новым. Этот способ наплавки обеспечивает достаточно высокую усталостную прочность восстановленных коленчатых валов. Как показали исследования, запас усталостной прочности на кручение вала двигателя ГАЗ, шейки которого наплавлены этим способом, составляет 1,22 (для нового коленчатого вала 1,74), что при отсутствии больших перегрузок вполне обеспечивает надежность его работы. Этим способом шейки коленчатого вала нельзя восстанавливать много кратно из-за его укорочения.

Наплавка шеек коленчатых валов двигателей ГАЗ под слоем флюса с последующей термической обработкой. Технологический процесс восстановления шеек коленчатых валов этим способом имеет много общего с технологическим процессом восстановления шеек коленчатых валов наплавкой под слоем флюса с легирующими компонентами.

Перед наплавкой шеек отверстия для смазки закрывают стальными заглушками. Наплавку ведут электродной проволокой 1,8 мм с применением флюса марки АН-348А, предусматривая припуска на последующую механическую обработку шеек 2—2,5 мм на сторону. Указанную величину припуска выбирают, исходя из необходимости удаления окалины и обезуглероженного слоя, образующегося при высоком отпуске коленчатого вала.

В результате наплавки шеек отверстия для смазки оказываются заправленными. Их сверлят на радиально или настольно- сверлильном станке в горизонтальном положении: на радиально-сверлильном станке — в постелях блока цилиндров, на настольно-сверлильном — на призмах. Наклонное расположение отверстий обеспечивается наклоном шпинделя станка на соответствующий угол. В радиально станке наклон шпинделя предусмотрен его конструкцией (бабка шпинделя может поворачиваться в вертикальной плоскости). Настольно-сверлильный станок устанавливают наклонно на специальной клиновой подставке.

После черновой механической обр. (точением или шлифованием) и зенкования отверстий для смазки шейки коленчатого вала подвергают термической обработке, которая состоит из высокого отпуска и поверхностной закалки (с нагревом токами высокой частоты) с самоотпуском. Для проведения высокого отпуска коленчатые валы нагревают в печи до температуры 650С, выдерживают при этой температуре в течение 2,5 ч, после чего они охлаждаются на воздухе при температуре не ниже 15°С. Затем шейки коленчатого вала закаливают на глубину 3,0—3,5 мм с нагревом ТВЧ, в процессе закалки шейки охлаждают водой (не до полного остывания), дальнейшее охлаждение шеек производится на воздухе. При этом происходит самоотпуск закаленного слоя детали, в результате чего уменьшаются внутренние напряжения, возникающие при закалке. Твердость поверхности шеек после термообработки НRС 53…60.

Деформация коленчатого вала после термической обработки, проверенная по биению средних коренных шеек относительно крайних, не превышает в среднем 0,1 мм и устраняется шлифованием шеек. После термической обработки шейки коленчатых валов шлифуют и полируют до получения требуемых размеров и шероховатости поверхности.

Коленчатые валы восстановленные этим способом, по износостойкости шеек и усталостной прочности не уступают новым. Вместе с тем наплавка шеек коленчатых валов под слоем флюса с последующей термической обработкой несколько усложняет технологический процесс восстановления (увеличивается трудоемкость, возникает необходимость в установке ТВЧ) и поэтому ее целесообразно применять только на крупных специализированных предприятиях, для ремонтных предприятий с небольшой производственной программой можно рекомендовать наплавку шеек коленчатых валов под слоем флюса с легирующими компонентами.

Успешное внедрение в практику работы ремонтных предприятий автоматической наплавки под слоем флюса объясняется следующими ее преимуществами:

1) Высокой производительностью (в 5—10 раз выше, чем при ручной сварке и наплавке) в результате более высокой плотности тока (до 125 А/мм, рационального использования тепловой энергии и уменьшения количества расплавляемого металла.

2) Высоким качеством наплавленного металла, которое достигается благодаря защите его от действия атмосферного воздуха, а также легированию флюсом.

3) Экономией электродной проволоки и электроэнергии, которая обеспечивается отсутствием потерь на угар, разбрызгивание, лучеиспускание и уменьшением сечения швов на 20—40% против ручной сварки. Количество наплавленного металла уменьшается в результате уменьшения припусков на последующую механическую обработку. КПД дуги, горящей под слоем флюса, составляет 0,86—0,92, в то время как открытой дуги — 0,4.

4) Улучшением условий работы сварщика, так как дуга горит под слоем флюса.

5) Возможностью использования сварщиков более низкой квалификации.

6) Более низкой стоимостью работ (в 2—2,5 раза ниже стоимости таких же работ, выполненных вручную).

Автоматическая наплавка и полуавтоматическая сварка в защитной среде углекислого газа

Электрическая дуга горит в среде углекислого газа, который, оттесняя воздух, защищает от его вредного воздействия расплавленный металл сварочной ванны. Голая электродная проволока подается в зону горения дуги через специальную газоэлектрическую горелку, к которой подводятся электрический ток и углекислый газ.

Сварку и наплавку в защитной среде углекислого газа рекомендуется вести постоянным током обратной полярности, для этого используют сварочные полу и автоматы.

Для защиты расплавленного металла в процессе сварки (на плавки) используют главным образом сжиженную пищевую углекислоту, поставляемую в стальных баллонах. При выходе из баллона углекислота образует углекислый газ. В одном баллоне емкостью 40 л находит 25 кг жидкой углекислоты под давлением 4Мпа, из которой при испарении образуется около 12,5куб.м углекислого газа. Его хватает на 12…15 ч непрерывной работы одной горелки. В обычной пищевой углекислоте содержится некоторое количество воздуха и воды, которые могут увеличивать разбрызгивание металла при сварке, снижать пластические свойства шва и вызывать в нем образование пор и трещин. Для получения сварочного шва требуемого качества необходимо удалить влагу, т. е. осушить газ. С этой целью применяют специальные осушители, представляющие собой фильтры, в которых в качестве осушающего материала используется безводный порошок медного купороса или силикагель.

Для снижения давления углекислого газа до рабочего (0,3— 1,5 атм) служит редуктор (могут быть использованы обычные кислородные редукторы для газовой сварки). При большом отборе углекислого газа из баллона возможно замерзание содержащейся в нем влаги и закупорка редуктора. Для предотвращения этого между баллоном и редуктором устанавливают электрический подогреватель. Работа без подогревателя категорически запрещена правилами безопасности.

Газоэлектрическую горелку перемещают при сварке вручную применяя те же приемы, что и при обычной ручной электродуговой сварке металлическим электродом.

Полуавтоматическая сварка в среде углекислого газа применяется для соединения деталей кузовов, кабин и деталей оперения, для устранения трещин отверстий на деталях, изготовленных из листового материала (пластина крышки распределительных шестёрен двигателя ГАЗ, детали рамы и др. ), закрепления дополнительных деталей (пластин, втулок и др.). Этот способ сварки может быть использован также для устранения трещин на деталях из серого чугуна (картер коробки передач и др.).

Автоматическая наплавка в защитной среде углекислого газа применяется для восстановления изношенных поверхностей деталей цилиндрической формы. В этом случае механизированы вращение детали и перемещение электродной проволоки. Деталь устанавливают в центрах токарного станка, где она вращается в процессе наплавки.

Автоматическая наплавка поверхностей деталёй в защитной среде углекислого газа применяется для восстановления резьб, шеек под подшипники (втулки) и др.

Преимущества этого способа являются следующие:

1) Качество сварного соединения выше, чем при обычной ручной электродуговой и газовой сварке. При этом деформация тонкого листового материала в два-три раза меньшае, чем при газовой сварке.

2) Производительность труда ко сравнению с ручной электродуговой сваркой и наплавной при сварке в защитной среде углекислого газа выше на 30…40%, а при автоматической наплавке в защитной среде углекислого газа — на 70…80%

3) Стоимость наплавки на 20% ниже, чем наплавки под слоем флюса

4) Техника сварки и наплавки весьма проста и позволяет использовать рабочих более низкой квалификации, чем при ручной сварке без ущерба для качества работы.

5)Подготовка деталей к сварке отличает простотой. Не требуется зачистка кромок свариваемых деталей

6)Хорошая видимость открытой дуги обеспечивает точность наложения

7) Вредных газов выделяется значительно меньше, чем при ручной электродуговой сварке электродами с толстым покрытием.

К недостаткам этого способа сварки и наплавки следует отнести необходимость защиты сварщика от излучений дуги.

Автоматическая сварка под флюсом — режимы сварки

Кислородная среда способствует окислению поверхности свариваемых заготовок, кроме того при работе с некоторыми металлами и их сплавами требуется присадки. Для защиты сварочной ванночки берётся специальная проволока или же процесс проводят в среде инертного газа. Также пользуются способом сварки под слоем флюса, который создаёт изоляцию от агрессивного кислорода, отсутствие пор и трещин в теле соединительного шва.

Наша задача состоит в том, чтобы разобраться в сути процесса, составе флюса для сварки, необходимом оборудовании и аппаратуре, которая при этом используется.

Процесс работы с использованием флюса

Производственниками выбирается автоматическая сварка под слоем флюса, что обусловлено соображениями повышения качества работ, и существенной экономией по сравнению с аргонодуговым методом или полуавтоматической подачей специальной проволоки в зону плавления. Область применения весьма широка и включает в себя разнообразное использование сваривания металлов, где существует флюс для кузнечной сварки, а существует для точечной или дуговой. Зона плавления находится под защитой гранулированного состава, который подбирается в зависимости от материала заготовок и выпускается различными предприятиями (например, ESAB).

Размеры гранул колеблются от 0,2 до 4 мм и привносятся в сферу действия дуги короткого замыкания, где расплавляются от высокой температуры и дают сварному шву следующие качества:

  • защищают его от воздействия кислорода, создавая шлаковую и газовую среду;
  • помогают поддерживать стабильное действие дуги и перенос металла электрода в зону плавления;
  • ненужные примеси выводятся из тела сварного шва в зону шлакообразования;
  • введение флюса препятствует образованию пор и трещин, что улучшает качество соединения.

Необходимо отметить, что режимы сварки под флюсом полностью зависят от используемой аппаратуры, материала заготовок и состава гранул, в каковые могут входить присадочные добавки. В отдельном ряду стоит флюс для кузнечной сварки, который помогает соединять наилучшим образом и проковывать полосы металла с требуемым качеством.

При дуговом способе гранулы подаются вручную на место соединения деталей, а полуавтоматическая аппаратура обеспечивает подачу сварочной, специальной проволоки с наличием флюса в сварочную ванночку. После завершения цикла, жёсткий шлак убирается с изделия, а шов зашлифовывается.

Такой метод, как автоматическая сварка под флюсом логично диктует наличие бункеров для гранул, которые дозировано, подают состав в стык будущего шва и при этом перемещаются перед электродом. Такие агрегаты управляются оператором дистанционно и с определённой скоростью подают сварочную проволоку, также являющуюся электродом. Это оборудование называется сварочным трактором для сварки под флюсом и однозначно применяется в промышленном производстве.

Важно, что применение флюса в домашних условиях требует определённых знаний в этой области, поскольку неверный выбор физико-химического состава, приведёт к ощутимой потере качества. 

Виды флюса и его технические характеристики

Многообразные сварочные флюсы используются при сплавлении различных металлов и участвуют в разных технологических процессах. Их физико-химический состав отличается по условиям применения, например, флюс для кузнечной сварки состоит, в основном, из буры, которую расплавляют, чтобы удалить кристаллизационную воду, а затем измельчают до гранулированной консистенции. Любой сварке под флюсом необходим тщательный подбор состава гранул, который делится по способу его производства на неплавленый и плавленый.

Неплавленные сварочные флюсы изготавливаются путём спекания ингредиентов и содержат легирующие и раскисляющие примеси, которые либо спекают, либо смешивают с жидкой стеклянной массой и называют керамическими. Более популярен флюс сварочный плавленый, который значительно дешевле и содержит оксиды марганца и кремния. Гранулированный состав для сварки под флюсом в определённом ассортименте предлагаются компанией ЭСАБ. В плавленый вид оксиды входят в разных пропорциях и их введение обусловлено сваркой цветных металлов, спецсталей разного назначения, легированных сплавов и низкоуглеродистых сталей.

Особенное место при сварке под флюсом присуще бескислородной группе, которая применяется в работе с быстро окисляющимися сплавами и металлами. По строению гранул продукция делится на стекловидные и пемзообразные виды, а по степени легирования на керамические легирующие, и точно также плавленые низколегирующие и пассивные. Согласно ГОСТ 9087-81 составы для сварки под слоем флюса строго регламентируются и подразделяются, для разных групп свариваемых металлов, на такие виды:

  1. продукция для сваривания низкоуглеродистых сталей, в этих работах используются оксидные сорта Ан-65, ФЦ-6, ОСЦ-45 и ФВТ-4, возможно их употреблять, как флюс для кузнечной сварки;
  2. для сталей легированных используют продукцию с меньшей активностью ФЦ-16, ФВТ-1, АН-42 и АН-47;
  3. для соединения ряда сортов сталей применяется керамический флюс с примесями металлов;
  4. для работы с активными металлами выбирают солевые безоксидные флюсы с высоким содержанием окиси титана.

Очень важно подобрать не только химический состав продукции, но и режим работы, а также оборудование.

Флюс после дозировки, выплавляется в печах, а затем размалывается и гранулируется. После прокаливания продукция фасуется в мешки или жестяные контейнеры.

Оборудование для производства сварки под флюсом

Для проведения сварки под флюсом можно использовать как понижающие трансформаторы, так и полуавтоматы, согласовывая режимы производственного цикла, состав металла и параметры присадочной продукции. В производстве используется автоматическая сварка с широкими функциональными возможностями в различных отраслях, где требуются металлоконструкции серийного изготовления. Управляемые оператором, самоходные сварочные тракторы позволяют выполнить большой объём работы и применяются при сварке под флюсом. Трактор ТС-12М передвигается с помощью электродвигателя, обладает управляемым устройством подачи проволоки и бункерами для флюса.

Агрегат АДС-1000-2 имеет большую свободу движения и регулировок режима работы, которые устанавливаются оператором, по техническим условиям. Так автомат для сварки снабжён саморегулирующимся приспособлением изменения скорости подачи проволоки, и самовосстановлением тока дуги, а также функцию дистанционного управления сварочным током через трансформатор.

Автоматы или полуавтоматы состоят из следующих основных узлов:

  • источник тока, как правило, трёхфазный, питающийся от сети 380 В;
  • блока управления с настройками режима работы;
  • приспособления подачи электродной проволоки с бобиной;
  • бункеров подачи флюса сжатым воздухом под давлением;
  • шланга с подачей напряжения и проволоки с наконечником;
  • механизм передвижения.

В случае шва с разделкой кромок свариваемых поверхностей, есть возможность отрегулировать подачу флюса для создания надёжного сварочного стыка между деталями.

Автоматический сварочный процесс должен проходить в полном соответствии с требованиями ГОСТа и техники безопасности.

Что в итоге?

Таким образом, мы рассказали о том какой флюс для кузнечной сварки можно использовать, а также необходимость подбора этой продукции, как важного компонента, для автоматического сваривания металлов и их сплавов. Использование флюса существенно поднимает качество работ и удешевляет производственный процесс, а рекомендации стандартов ГОСТа не позволят сделать грубые ошибки.

Автоматическая сварка под слоем флюса

Автоматическая сварка позволяет значительно повысить производительность труда, снизив при этом расход металла на угар и разбрызгивание. В качестве электрода при автоматической сварке используется специальная проволока без покрытия, а защита сварочной ванны осуществляется расплавленным флюсом. Подача проволоки в дугу и ее перемещение осуществляются автоматически. Схема процесса автоматической сварки показана на рис. 1.12. Над свариваемыми заготовками 1 перемещается сварочный автомат, состоящий из механизма подачи проволоки 2, токопровода 3 и бункера с флюсом 5. Бункер перемещается впереди электродной, проволоки и насыпает бурт флюса шириной и высотой 30-60 мм. Сварочная дуга 7 образуется между изделием и электродной проволокой 2. Теплом дуги расплавляются электродная проволока, металл по кромкам и часть флюса.

Рис.1.12. Схема процесса автоматической сварки под флюсом

При односторонней. автоматической сварке без разделки кромок режим выбирают так, чтобы непроплавленный слой основного металла мог удержать сварочную ванну. Глубина провара в этом случае не превышает 0,7 толщины металла и достигает 20 мм, что позволяет сваривать без разделки листы толщиной до 30 мм. При двухсторонней сварке глубина провара составляет 0,5 толщины металла. В случае разделки кромок глубина провара

(1. 25)

где Н – толщина шва; – площадь проплавления; – ширина шва. При наплавке глубина провара равна (0,8-0,85) Н.

Величина сварочного тока может достигать 4000 А, что обеспечивается малым вылетом электрода.

При автоматической сварке образуется глубокая ванна жидкого металла, что создает опасность протекания его в зазор между кромками. Для предотвращения этого ее снизу закрывают флюсом с помощью подачи воздуха в резиновую камеру (флюсовая подушка) или стальной остающейся подкладкой.

Флюсы, применяемые для автоматической сварки, делятся на плавленые и керамические. Исходными материалами плавленых флюсов являются марганцевая руда ( ), плавиковый шпат ( ) двуокись титана (ТiO2) и др. Плавленые флюсы приготавливают путем сплавления указанных компонентов в электрических или пламенных печах. Большинство плавленых флюсов дают жидкие шлаки, содержащие большое количество окислов марганца и кремния. Они имеют кислый характер. При сварке в их присутствии происходит процесс окисления углерода, железа и легирующих элементов. Образующаяся FeО связывается в кислом шлаке в нерастворимый силикат и, следовательно, удаляется от металлической ванны. Марганец, образуя с серой при сварке тугоплавкие соединения, способствует повышению стойкости стали против образования горячих трещин. По содержанию окиси кремния флюсы делятся на низкокремнистые (менее 35% SiО2) и высококремнистые (35-50% SiO2) по содержанию окиси марганца — марганцевые (более 1% МnО) и безмарганцевые (менее 1% МnO). Марганцевые высококремнистые флюсы применяют для сварки углеродистых и, низколегированных сталей соответствующими сварочными проволоками. Флюсы с высоким содержанием CaO и MgO обеспечивают хорошее формирование шва, легкую удаляемость шлака и высокую плотность наплавленного металла. Низкокремнистые флюсы с повышенным содержанием СаО, MgO и CaF2, шлаки которых имеют слабокислый характер, рекомендуются для сварки легированных сталей, для сварки высоколегированных сталей с большим содержанием таких легкоокисляющихся легированных элементов, как хром, молибден, титан, алюминий и др. , применяют безкремнистые флюсы на основе СаО, СaF2, Al2О3 и бескислородные фторидные флюсы, состоящие из 60-80% CaF2.

Керамические флюсы изготовляют путем смешивания порошков шлакообразующих, раскисляющих, легирующих, газообразующих компонентов на жидком стекле. Полученную массу гранулируют на зерна, сушат и прокаливают при 300…400°С. Керамические флюсы обеспечивают хорошее раскисление и легирование металла шва. Они применяются при сварке легированных сталей, цветных металлов и их сплавов.



Читайте также:

 

Автоматическая дуговая сварка под слоем флюса.

Этот процесс автоматической электродуговой сварки был осуществлен еще Н. Г. Славяновым, который расплавлял шлак и затем подавал электродную проволоку для заварки электрической дугой усадочных раковин при отливке стали. До промышленного применения этот вид сварки был доведен только в 40-х годах. Одновременно разрабатывались автоматические устройства и сварочные флюсы, применение которых давало бы гарантированное качество металла шва и всего сварного соединения.

В этой комплексной работе принимали участие многие организации, но ведущую роль играл Институт электросварки АН УССР, которым руководил в то время Е. О. Патон, чье имя присвоено теперь институту — ИЭС имени Е. О. Патона.

Идея электродуговой автоматической сварки под слоем флюса заключается в возбуждении дугового разряда под слоем порошка, который плавится и создает жидкую вязкую оболочку вокруг дугового разряда, изолируя его от воздушной атмосферы. В то же время шлак взаимодействует с металлом сварочной ванны, улучшая его качество за счет удаления из него окислов и других вредных примесей, и легирует его нужными компонентами.

Схема процесса сварки под слоем флюса показана на рис. 23. Зону сварки под слоем флюса можно считать в значительной степени защищенной от действия воздушной атмосферы, так как в вязкой оболочке расплавленного флюса давление выше атмосферного и, даже при ее прорывах, воздух не может попасть в атмосферу дугового разряда в значительных количествах.

Сварочные флюсы специально выплавляют в дуговых или пламенных печах и измельчают. В виде крупки размером 2—4 мм они поступают на заводы для сварки. Сварочные флюсы выпускают различных марок, отличающихся по составу. В основном они содержат кремнезем — Si02, глинозем — А1203, флюорит — CaF2 и окислы кальция, магния и марганца. Содержание закиси железа — FeO, серы и фосфора строго контролируется и должно быть малым.

Кроме плавленых флюсов, в сварочной технике применяют и керамические флюсы.

Эти флюсы, предложенные академиком УССР К. К. Хреновым, представляют собой крупку из тонко измельченных материалов, замешанных на жидком стекле и подвергнутых сушке и прокаливанию. Производство керамических флюсов во многом напоминает производство электродных покрытий.

Рис. 23. Схема процесса автоматической сварки под плавленым флюсом.

Керамические флюсы разработаны для сварки различных сталей (К. К. Хренов), сварки титановых и алюминиевых сплавов (К. В. Багрянский), сварки и наплавки на сталь медных сплавов (МВТУ).

Для сварки под слоем плавленого или керамического флюса используют автоматические установки или самодвижущиеся автоматы типа трактора, описанные ранее (см. рис. 23), но, кроме автоматической головки и механизма движения, автомат снабжают устройством для подачи флюса перед дугой и отбора флюса, не изменившегося после сварки, который снова попадает в бункер для флюса.

Автоматическую сварку под слоем флюса обычно ведут на подкладках для формирования корня шва. Для прокладки используют или графит, или сварочный флюс, прижимаемый к свариваемому изделию пневматическим устройством.

Сварку под слоем флюса можно выполнять в горизонтальном положении, или под небольшим углом к горизонту. Это ограничивает применение автоматической сварки под слоем флюса и требует соответствующих устройств для поворота изделий (кантователей). Применение автоматической сварки в монтажных условиях тоже ограничено. Большое преимущество автоматической сварки под слоем флюса — отсутствие излучения, так как дуга горит в замкнутом пространстве.

В условиях заготовительных цехов автоматическую сварку под слоем флюса применяют широко, так как она позволяет получать стабильные результаты и высокое качество изделий.

Электрошлаковая сварка разработана в Институте электросварки имени Е. О.Патона для автоматической сварки вертикальных швов из металла большой толщины. Этот процесс получил распространение в тяжелом машиностроении (станины прессов и т. д.) и в металлургии для переплава металлов под слоем флюса с целью улучшения их качества.

При электрошлаковой сварке дуговой разряд возникает только в самом начале процесса для создания жидкой шлаковой ванны, а затем плавление непрерывно подаваемого электродного металла и оплавление кромок изделия происходит за счет теплоты тока при прохождении его через расплавленный флюс или шлак:

где I — ток; R — сопротивление; U — напряжение; t — время.

Рис. 24. Схема процесса электрошлаковой сварки.

Схема электрошлаковой сварки показана на рис. 24. Свариваемые детали устанавливают вертикально и собирают под сварку с зазором между кромками. Автомат с помощью специального направляющего устройства перемещается сбоку от свариваемого стыка. Электродные проволоки (их может быть несколько и притом разного состава) подаются через изогнутые токопроводящие мундштуки в зазор между деталями.

Карточки для дуговой сварки под флюсом — Cram.com

Нам не удалось определить язык звукового сопровождения на ваших карточках. Пожалуйста, выберите правильный язык ниже.

Фронт Китайский, PinyinChinese, SimplifiedChinese, TraditionalEnglishFrenchGermanItalianJapaneseJapanese, RomajiKoreanMath / SymbolsRussianSpanishAfrikaansAkanAkkadianAlbanianAmharicArabicArmenianAzerbaijaniBasqueBelarusianBengaliBihariBretonBulgarianBurmeseCatalanCebuanoChamorroChemistryCherokeeChinese, PinyinChinese, SimplifiedChinese, TraditionalChoctawCopticCorsicanCroatianCzechDanishDeneDhivehiDutchEnglishEsperantoEstonianFaroeseFilipinoFinnishFrenchFulaGaelicGalicianGeorgianGermanGreekGuaraniGujaratiHaidaHaitianHausaHawaiianHebrewHindiHungarianIcelandicIgboIndonesianInuktitutIrishItalianJapaneseJapanese, RomajiJavaneseKannadaKazakhKhmerKoreanKurdishKyrgyzLakotaLaoLatinLatvianLingalaLithuanianLuba-KasaiLuxembourgishMacedonianMalayMalayalamMalteseMaoriMarathiMarshalleseMath / SymbolsMongolianNepaliNorwegianOccitanOjibweOriyaOromoOther / UnknownPashtoPersianPolishPortuguesePunjabiPāliQuechuaRomanianRomanshRussianSanskritSerbianSindhiSinhaleseSlovakSlovenianSpanishSundaneseSwahiliSwedishTaga logТаджикскийТамильскийТатарскийТелугуТайскийТибетскийТигриньяTohono O’odhamТонгаТурецкийУйгурскийУкраинскийУрдуУзбекскийВьетнамский Валлийский Западно-фризскийИдишЙоруба

аудио еще не доступно для этого языка

Назад Китайский, PinyinChinese, SimplifiedChinese, TraditionalEnglishFrenchGermanItalianJapaneseJapanese, RomajiKoreanMath / SymbolsRussianSpanishAfrikaansAkanAkkadianAlbanianAmharicArabicArmenianAzerbaijaniBasqueBelarusianBengaliBihariBretonBulgarianBurmeseCatalanCebuanoChamorroChemistryCherokeeChinese, PinyinChinese, SimplifiedChinese, TraditionalChoctawCopticCorsicanCroatianCzechDanishDeneDhivehiDutchEnglishEsperantoEstonianFaroeseFilipinoFinnishFrenchFulaGaelicGalicianGeorgianGermanGreekGuaraniGujaratiHaidaHaitianHausaHawaiianHebrewHindiHungarianIcelandicIgboIndonesianInuktitutIrishItalianJapaneseJapanese, RomajiJavaneseKannadaKazakhKhmerKoreanKurdishKyrgyzLakotaLaoLatinLatvianLingalaLithuanianLuba-KasaiLuxembourgishMacedonianMalayMalayalamMalteseMaoriMarathiMarshalleseMath / SymbolsMongolianNepaliNorwegianOccitanOjibweOriyaOromoOther / UnknownPashtoPersianPolishPortuguesePunjabiPāliQuechuaRomanianRomanshRussianSanskritSerbianSindhiSinhaleseSlovakSlovenianSpanishSundaneseSwahiliSwedishTaga logТаджикскийТамильскийТатарскийТелугуТайскийТибетскийТигриньяTohono O’odhamТонгаТурецкийУйгурскийУкраинскийУрдуУзбекскийВьетнамский Валлийский Западно-фризскийИдишЙоруба

аудио еще не доступно для этого языка

Инвертирующий автоматический аппарат для дуговой сварки под флюсом от китайского производителя, завода, завода и поставщика ECVV. com

Технические характеристики

Производительность

Высокая производительность сварки; красивое формирование сварочной линии.

Мягкий переключатель переключения передач; высокая эффективность.

Высокая продолжительность нагрузки; низкий входной ток.

Небольшой размер, легкий вес и удобный в использовании

Функции

Источник питания, используемый в таких производственных отраслях, как стальные конструкции, автомобили, судоходства и сосуды высокого давления, может быть многофункциональным, например, для сварки под флюсом, ручной электросварки, строжки угольной дугой.

Параметр

Модель продукта

МЗ-800

МЗ-1000

МЗ-1250

Номинальное входное напряжение переменного тока (В)

Трехфазный 380

Трехфазный 380

Трехфазный 380

Номинальная входная мощность (кВА)

44

55

69

Диапазон регулировки номинального тока (A)

60-800

60–1000

60-1250

Диапазон регулировки сварочного напряжения (В)

20-50

20-50

20-50

Продолжительность номинальной нагрузки (%)

100

100

100

КПД при полной нагрузке (%)

90

90

90

Коэффициент мощности

0. 89

0. 89

0. 89

Используемая сварочная проволока, диаметр (мм)

2-4

2-6

2-6

Вес (кг)

88

97

107

Размер (мм) (Д * Ш * В *)

850 * 370 * 890

850 * 370 * 890

850 * 370 * 890

Тележка для сварки под флюсом Основные технические параметры

Входное напряжение (В): AC 110

Диапазон регулировки горизонтального перемещения центральной стойки (мм) : ± 300

Номинальная потребляемая мощность (ВА) : 400

Угол поворота колонны обмотки балки: ≥ ± 90 °

Диаметр применяемой сварочной проволоки (мм) : 2-6

Расстояние выхода луча (мм) : 100

Путь зажигания дуги: царапание, автоматический

Угол подъема головки Machnery: 45 °

Диапазон скорости сварки: (см / мин) : 10-150

Угол деления головки машины: 45 °

Диапазон скорости подачи проволоки (см / мин) : 40-200

Емкость для хранения сварочного флюса: 10л

Диапазон подъема и падения токового контактного сопла (мм) : 80

Хранение тарелки для сварочной проволоки (кг) : закрытое 15, закрытое 25

Диапазон подъема и опускания центральной колонны (мм) : 200

Вес тележки: 50 кг

Сварка под флюсом — Infogalactic: the planetary knowledge core

Файл: Дуговая сварка под флюсом. JPG

Сварка под флюсом. Сварочная головка перемещается справа налево. Порошок флюса подается из бункера с левой стороны, затем следуют три горелки для присадочной проволоки и, наконец, пылесос.

Сварка под флюсом ( SAW ) — это обычный процесс дуговой сварки. Первый патент на процесс сварки под флюсом (SAW) был получен в 1935 году и касался электрической дуги под слоем гранулированного флюса. Первоначально разработанный и запатентованный Джонсом, Кеннеди и Ротермундом, этот процесс требует непрерывной подачи расходуемого твердого или трубчатого (с металлическим сердечником) электрода. [1] Расплавленный сварной шов и зона дуги защищены от атмосферного загрязнения за счет того, что они «погружены» под слой гранулированного плавкого флюса, состоящего из извести, кремнезема, оксида марганца, фторида кальция и других соединений. В расплавленном состоянии флюс становится проводящим и обеспечивает прохождение тока между электродом и изделием. Этот толстый слой флюса полностью покрывает расплавленный металл, предотвращая разбрызгивание и искры, а также подавляя интенсивное ультрафиолетовое излучение и пары, которые являются частью процесса дуговой сварки защищенным металлом (SMAW).

SAW обычно работает в автоматическом или механизированном режиме, однако доступны полуавтоматические (ручные) SAW-пушки с подачей флюса под давлением или самотеком. Процесс обычно ограничивается положениями плоской или горизонтально-угловой сварки (хотя сварка с горизонтальным расположением канавок выполняется с помощью специального приспособления для поддержки флюса). Сообщается, что скорость наплавки приближается к 45 кг / час (100 фунтов / час) — это сопоставимо с ~ 5 кг / час (10 фунтов / час) (макс.) При дуговой сварке защищенным металлом.Хотя обычно используются токи в диапазоне от 300 до 2000 А, также используются [2] токов до 5000 А (несколько дуг).

Существуют варианты процесса с одним или несколькими (от 2 до 5) электродными проволоками. Для наплавки лентой под флюсом используется плоский ленточный электрод (например, шириной 60 мм и толщиной 0,5 мм). Может использоваться питание постоянного или переменного тока, и комбинации постоянного и переменного тока являются обычными для систем с несколькими электродами. Чаще всего используются сварочные источники постоянного напряжения; однако доступны системы постоянного тока в сочетании с механизмом подачи проволоки с датчиком напряжения.

Особенности

Сварочная головка

Подает флюс и присадочный металл к сварному шву. Здесь подается напряжение на электрод (присадочный металл).

Бункер для флюса

Он хранит флюс и контролирует скорость осаждения флюса на сварном шве.

Флюс

Гранулированный флюс защищает сварной шов от атмосферных загрязнений. Флюс очищает металл шва, а также может изменять его химический состав. Флюс гранулируется до определенного размера.Он может быть плавленым, склеенным или механически смешанным. Флюс может состоять из фторидов кальция и оксидов кальция, магния, кремния, алюминия и марганца. В соответствии с требованиями могут быть добавлены легирующие элементы. Вещества, выделяющие при сварке большое количество газов, никогда не смешиваются с флюсом. Флюс с мелкими и крупными частицами рекомендуется для сварки большей и меньшей толщины соответственно.

Электрод

Присадочный материал

SAW обычно представляет собой стандартную проволоку, а также другие специальные формы.Этот провод обычно имеет толщину от 1,6 мм до 6 мм (от 1/16 дюйма до 1/4 дюйма). При определенных обстоятельствах можно использовать скрученную проволоку, чтобы придать дуге колебательное движение. Это помогает сплавить кончик сварного шва с основным металлом. [3] Состав электрода зависит от свариваемого материала. В электроды могут быть добавлены легирующие элементы. Электроды доступны для сварки низкоуглеродистых сталей, высокоуглеродистых сталей, низкоуглеродистых и специальных легированных сталей, нержавеющей стали и некоторых цветных металлов, таких как медь и никель.Электроды обычно покрываются медью для предотвращения ржавления и увеличения их электропроводности. Электроды бывают прямой длины и катушки. Их диаметры могут быть 1,6, 2,0, 2,4, 3, 4,0, 4,8 и 6,4 мм. Приблизительное значение токов для сварки электродами диаметром 1,6, 3,2 и 6,4 мм составляет 150–350, 250–800 и 650–1350 А соответственно.

Сварка

Флюс начинает оседать на свариваемом соединении. Поскольку флюс в холодном состоянии не является проводником электричества, дугу можно зажигать либо касанием электрода работой, либо помещением стальной ваты между электродом и работой перед включением сварочного тока, либо с помощью высокочастотного устройства.Во всех случаях дуга зажигается под покрытием из флюса. В противном случае флюс является изолятором, но как только он плавится из-за тепла дуги, он становится очень проводящим, и, следовательно, между электродом и заготовкой поддерживается ток через расплавленный флюс. Верхняя часть флюса, контактирующая с атмосферой, которая видна, остается зернистой (без изменений) и может быть использована повторно. Нижний расплавленный флюс становится шлаком, который является отходом и должен быть удален после сварки.

Электрод с заданной скоростью непрерывно подается в свариваемое соединение.В полуавтоматических сварочных аппаратах сварочная головка перемещается вручную по стыку. При автоматической сварке отдельный привод перемещает либо сварочную головку над стационарной сварочной головкой, либо работа перемещается / вращается под неподвижной сварочной головкой.

Длина дуги поддерживается постоянной благодаря принципу саморегулирующейся дуги. Если длина дуги уменьшается, напряжение дуги увеличивается, ток дуги и, следовательно, скорость выгорания увеличиваются, что приводит к удлинению дуги. Обратное происходит, если длина дуги увеличивается больше, чем обычно. [ необходима ссылка ]

Опорная плита из стали или меди может использоваться для контроля проникновения и для поддержки больших количеств расплавленного металла, связанного с процессом.

Ключевые параметры процесса SAW

  • Скорость подачи проволоки (главный фактор при регулировании сварочного тока)
  • Напряжение дуги
  • Скорость передвижения
  • Вылет электрода (ESO) или контактный наконечник для работы (CTTW)
  • Полярность и тип тока (переменный или постоянный) и переменный баланс переменного тока

Применение материалов

  • Углеродистые стали (конструкционные и судостроительные)
  • Низколегированные стали
  • Нержавеющая сталь
  • Сплавы на основе никеля
  • Наплавка (наплавка, наплавка и коррозионно-стойкое покрытие стали)

Преимущества

  • Сообщается о высоких скоростях осаждения (более 45 кг / ч (100 фунтов / ч)).
  • Высокий рабочий коэффициент в механизированных приложениях.
  • Глубокое проплавление шва.
  • Качественные сварные швы выполняются легко (при хорошем проектировании и контроле процесса).
  • Возможна высокоскоростная сварка тонколистовых сталей до 5 м / мин (16 футов / мин).
  • Излучение минимального сварочного дыма или дуги.
  • В зависимости от конфигурации шва и требуемого проплавления подготовка кромок практически не требуется.
  • Процесс подходит как для внутренних, так и для наружных работ.
  • Получаемые сварные швы являются прочными, однородными, пластичными, устойчивыми к коррозии и имеют хорошую ударную вязкость.
  • Однопроходные сварные швы толстых листов можно выполнять с помощью обычного оборудования.
  • Дуга всегда покрыта слоем флюса, что исключает возможность разбрызгивания сварочного шва.
  • От 50% до 90% флюса подлежат восстановлению, переработке и повторному использованию. [4]

Ограничения

  • Ограничивается черными металлами (сталь или нержавеющая сталь) и некоторыми сплавами на основе никеля.
  • Обычно ограничивается положениями 1F, 1G и 2F.
  • Обычно ограничивается длинными прямыми швами или повернутыми трубами или резервуарами.
  • Требуются относительно сложные системы обработки флюса.
  • Остатки флюса и шлака могут представлять угрозу для здоровья и безопасности.
  • Требуется удаление шлака между проходами и после сварки.

Список литературы

  1. Электросварка , 1935-10-09
  2. ↑ Калпакджян, Сероп и Стивен Шмид. Технологии и технологии производства . 5-е изд. Река Аппер Сэдл, Нью-Джерси: Pearson Prentice Hall, 2006.
  3. ↑ Джеффус, Ларри. Сварка: принципы и применение . Флоренция, Кентукки: Thomson Delmar Learning, 2002.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *