Аргон: применение, получение, история
Авторы:
сотрудники компанииАналитические линии плазмообразующего газа (аргона) на фрагменте спектра образца углеродистой низколегированной стали
Аргон – элемент с атомной массой 39,944 и порядковым номером 18. Принадлежит к 8-ой группе главной подгруппы таблицы Менделеева, относится к благородным инертным одноатомным газам. Не обладает ни запахом, ни цветом, ни вкусом. Негорючий и невзрывоопасный.
История открытия Аргона
Впервые неизвестный до этого газ, при химических и физических экспериментах, обнаружил в 1785 году Генри Кавендиш — английский физик и химик. Но он не смог разгадать загадку и прекратил исследования. Позднее на записи Кавендиша обратил внимание Джеймс Максвелл.
И лишь спустя более ста лет, в 1894 году, химик Уильям Рамзай и физик Джон Уильям Стретт (Лорд Рэлей) сделали доклад об открытии нового элемента, который, за свою химическую неактивность, назвали аргоном. Это случилось в Оксфорде на собрании Британской ассоциации естествоиспытателей, физиков и химиков. Название нового газа произошло от греческого слова ἀργός, что в переводе означает — неактивный, медленный.
Спустя еще 10 лет, эти ученые получили Нобелевские премии за исследования газов, открытие аргона и других инертных газов в атмосфере.
Получение Аргона
Аргон — наиболее распространенный в воздухе инертный газ. В 1 м3 содержится примерно 0,09 см3 ксенона, 1,1 см3 криптона, 5,2 см3 гелия, 18,2 см3 неона, 9000 см3 аргона.
В атмосфере Земли аргон занимает третье место. На первом – азот, на втором — кислород. В процентном отношении это примерно 0,93% по объёму или 1.3% по массе. По этой причине он является самым легкодоступным и недорогим инертным газом.
Получение и промышленное производство этого газа происходит как выделение сопутствующего газа при добыче азота и кислорода из атмосферного воздуха. Наиболее простой метод — это глубокое охлаждение и ректификация с последующей доочисткой от примесей.
Кроме того, аргон получают при производстве аммиака. Доочистку аргона осуществляют по технологии гидрирования с платиновым катализатором или адсорбционным методом с использованием молекулярных сит или активного угля.
Применение Аргона
Основными потребителями аргона являются:
Металлургия. Применение аргона в современных технологических процессах выплавки стали — продувка расплава в ковше. Эта операция выполняет несколько функций: охлаждение металла, ускорение плавления вводимых в ковш лигатур и раскислителей, гомогенизация металла по химическому составу и температуре, очищение от неметаллических включений, образующихся от раскисляющих и легирующих добавок, углеродное раскисление металла и его обезуглероживание, удаление водорода и азота, ускорение десульфурации (удаление серы из расплава), вдувание раскисляющих и легирующих порошкообразных добавок.
В металлургии высококачественных сплавов аргон используется для защиты расплава от контакта с воздухом во время выплавки и разливки. Высокотемпературная обработка титана и его сплавов требует защитной аргоновой атмосферы. Незаменим аргон и в технологиях обработки таких редких металлов как цирконий, вольфрам, тантал, ниобий, бериллий, гафний и др.
Металлообрабатывающая промышленность. Основное использование аргона — создание защитной завесы при электродуговой (АРДЭС), контактной и лазерной сварке, термообработке. Аргон — плазмообразующий газ в установках сварки и резки активных, редких металлов, сплавов на их основе, например, алюминиевых и магниевых, нержавеющих, хромоникелевых, жаропрочных сплавов и легированных сталей.
Радиоэлектронная промышленность. Здесь аргон незаменим для создания инертной среды в установках плазменного напыления, заполнение колб электрических и люминесцентных ламп, электровакуумных приборов, газосветной рекламы. Например, сине-голубое свечение получается при заполнении трубок аргоном с парами ртути.
Пищевая промышленность. Благодаря своей химической нейтральности, аргон широко используют как пропеллтен («выталкивающий» газ) в аэрозольных упаковках, антифламинг (вещество снижающее образование пены) и «упаковочный» газ в пищевой промышленности.
Спектральный анализ и метрология. В данной сфере аргон наиболее часто используется как газ-носитель, инертная среда и плазмообразующий газ в контрольно-измерительных приборах, а также при производстве поверочных газовых смесей (ПГС) для различных газоанализаторов.
В данной сфере применения чистота аргона имеет ключевое значение. Даже при минимальных отклонениях качества аргона от соответствующих ГОСТов и ТУ, регламентированных для использования в конкретных приборах, изменяются условия работы и анализа, что приводит к серьезным искажениям результатов измерений, нарушению работоспособности оборудования, снижению качества продукции, снижению ресурса фильтров и, как следствие, серьезным экономическим убыткам.
Для предотвращения вышеописанного, могут использоваться специализированные фильтры, а также установки доочистки аргона (инертных газов) лабораторного или промышленного назначения.
Так как наша компания занимается разработкой и производством спектрометров, применение аргона в этих приборах мы решили рассмотреть более подробно. Ниже в статье этому будет посвящена отдельная глава.
Прочие сферы применения. Огнетушительные установки, заполнение стеклопакетов и поддув сухих гидрокостюмов водолазов для лучшей теплоизоляции, в медицине — очистка разрезов при хирургическом вмешательстве, в химической промышленности — инертная среда для нестабильных на воздухе соединений, а так же в прочих областях промышленности.
Продолжение >
аргон — это… Что такое аргон?
АРГО́Н -а; м. [от греч. argon — недеятельный]. Химический элемент (Ar), инертный газ без цвета и запаха, входящий в состав воздуха (применяется для наполнения электрических ламп, в металлургии, химии и т.п.).
◁ Арго́новый, -ая, -ое. А-ые трубки реклам.
АРГО́Н (лат. Аrgon), Ar (читается «аргон»), химический элемент с атомным номером 18, атомная масса 39,948. Относится к группе инертных, или благородных (см. БЛАГОРОДНЫЕ ГАЗЫ), газов (восьмая группа периодической системы), замыкает третий период. Природный аргон состоит из трех стабильных нуклидов (см. НУКЛИД) : 36Ar (0,337%), 38Ar(0,063%) и 40Ar(99,600%).Радиус нейтрального атома аргона 0,192 нм. Электронная конфигурация нейтрального невозбужденного атома 1s22s2
История открытия
К открытию аргона привело обнаруженное в 1892 году английским физиком Дж. Рэлеем (см. РЭЛЕЙ Джон Уильям) небольшое (всего на 0,13%) превышение плотности азота, выделяемого из воздуха, над плотностью «химического» азота, возникающего при термическом разложении нитрита аммония NH4NO2.
Вместе с другим английским физиком У. Рамзаем (см. РАМЗАЙ Уильям) Дж. Рэлей в 1894 году выделил из воздуха примесь более тяжелого (по сравнению с азотом) газа, который отличался одноатомным составом молекул и практически полной химической недеятельностью (аргон не вступает ни в какие химические реакции). Именно из-за своей удивительной химической инертности новый газ и получил свое название (греч. аrgos — неактивный).
Аргон распространен в природе только в свободном виде. В земной коре его содержание составляет 1,2·10-4%, в морской воде — 0,45·10-4%. В атмосферном воздухе содержится 0,93% аргона по объему (9,34 л в 1м3). Это значительно больше, чем содержание в воздухе всех остальных инертных газов вместе взятых. Воздух служит неиссякаемым источником для получения аргона.
Преобладание тяжелого аргона-40 в природной смеси изотопов этого элемента приводит к тому, что атомная масса элемента аргона оказывается немного выше, чем следующего за ним в периодической системе элемента калия. Однако, когда Менделеев создавал свою знаменитую таблицу, проблема, как разместить калий и аргон, у него не возникала, так как аргон был открыт спустя почти 30 лет после открытия периодического закона, и в таблицу (в группу, которой тогда присвоили номер ноль) попал только в начале 20-го века. В настоящее время аргон, как и другие инертные газы, включают в восьмую группу периодической системы элементов.
В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот.
Физические свойства
Аргон — одноатомный газ с температурой кипения (при нормальном давлении) –185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота), температура плавления –189,3°C. Критическая температура –122,43 °C, критическое давление 4,86 МПа. Плотность при нормальных условиях 1,7839 кг/м3.
В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.
Как уже говорилось, химических соединений не образует. Однако со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом (см. ФЕНОЛ), гидрохиноном (см. ГИДРОХИНОН) и другими), образует соединения включения (клатраты (см. КЛАТРАТЫ)), где атом аргона, как своего рода «гость», находится в полости, образованной в кристалической решетке молекулами вещества-хозяина.
Применение
Аргон широко используют для создания инертной и защитной атмосферы, прежде всего при термической обработке легко окисляющихся металлов (аргоновая плавка, аргоновая сварка и другие). В атмосфере аргона получают кристаллы полупроводников и многие другие сверхчистые материалы. Аргоном часто заполняют электрические лампочки (для замедления испарения вольфрама (см. ВОЛЬФРАМ) со спирали).
При пропускании электрического разряда через стеклянную трубку, заполненную аргоном, наблюдается сине-голубое свечение, что широко используется, например, в светящейся рекламе. В геохронологии (см. ГЕОХРОНОЛОГИЯ) по оределению соотношения изотопов 40Ar/40К устанавливают возраст минераллов.
Аргон: температура, состояния, сварка
Аргон (обозначается как Ar) — наиболее часто встречающийся в воздухе инертный газ. Он отличается полной химической инертностью. Это свойство позволяет широко применять газ в таких областях, как сварка, упаковка, производство материалов высокой чистоты, а также для тушения пожаров.
Инертный газ аргонИстория открытия
Предыстория открытия Ar началась в 1785 году. Выдающийся ученый и естествоиспытатель из Великобритании Генри Кэвендиш исследовал состав воздуха. Он подвергал азот окислению и взвешивал получившиеся окислы. По окончании опыта в сосуде оставался газ. Кэвендиш определил его объем в 0,8% от начального объема воздуха.
Состав этого газа ученый определить не смог. Спустя столетие к проблеме вернулись сэры Джон Рэлей и Уильям Рэмзи. В ходе проведенных опытов они обнаружили, что азот, выделенный из воздуха, имеет большую плотность, нежели азот, получаемый в ходе реакции разложения нитрита аммония.
в 1884 году им удалось выделить из воздуха некий газ, более плотный, чем азот. Это вещество имело одноатомную молекулярную структуру и было крайне инертным — т.е. не реагировало с другими веществами.
На заседании Королевского Общества новому газу было присвоено название «аргон», что в переводе с древнегреческого значило «спокойный, ленивый»
Аргон в природе
Ввиду практически полной инертности Ar представлен в естественной среде исключительно в несвязанном виде. Его процентная доля в различных частях Земли равна приблизительно:
- земная кора — 0,00012%;
- морская вода — 0,00045%;
- атмосфера — 0,926%.
Доля Ar в воздухе выше, чем суммарная доля всех остальных инертных газов. Основным источником для его добычи служит наша атмосфера.
Содержание газов в атмосфере
В коре Земли аргон содержится также в виде радиоактивного изотопа Аргон-40 и появляется в ходе реакции распада изотопов Калия.
Современная наука вместе с остальными инертными газообразными элементами относит Ar к VIII группе периодической системы.
Как добывают аргон
Благодаря значительному с промышленной точки зрения содержанию аргона в воздухе его получают в качестве дополнительного продукта криогенной ректификации O2 и N2.
Технология основана на том факте, что температура кипения (или сжижения) Ar лежит между температурами N2 и O2.
Перед началом процесса воздух подвергается тщательной очистке от пыли в многоступенчатых фильтрах, осушается от водяных паров, а далее мощными компрессорами сжимается до тех пор, пока не перейдет в жидкое состояние. Жидкость перегоняют в ректификационной колонне, чтобы разделить ее на отдельные вещества.
Установка для добычи аргона
Первым испаряется азот при -195 °С, его пары собираются на соответствующей тарелке ректификатора и отводятся в отдельный резервуар. Следующим по высоте (и при температуре кипения -185 °С) отбирается аргонная фракция, содержащая 12% Ar, менее полпроцента азота и кислород. Она подается в следующую ректификационную колонну, в которой процентная доля Ar доводится до 85, оставшееся приходится на кислород со следами азота. Такое вещество называется сырым аргоном, исходным материалом для получения очищенного газа.
В промышленности применяется несколько методов очистки сырого аргона от примесей.
Водород, добавляемый в состав сырья, окисляется на катализаторе и нагреве до 500 °С, таким образом, из состава смеси выводится кислород. Образовавшийся на катализаторе водяной пары удаляют при посредстве влагоотделителя. Газ после этого осушают. Аргон с оставшимся в нем азотом вновь ректифицируют.
Применяются и альтернативные методы получения Ar. Во время синтеза аммиака из азота и водорода в химических реакторах Ar получают как сопутствующий продукт производства. Технологический компонент это синтеза — продувочный газ — содержит до 20% Ar. Из этого газа и извлекают самый спокойный элемент. Стоимость производства, складывающаяся в основном из затрат на охлаждение и нагрев компонентов, делится между аммиаком и аргоном, и получается существенно ниже.
Качество газа, получаемого любым методом, определяется технологией очистки его от небольших количеств остаточного N2, O2, водяных паров и H2.
Аппарат, получающий ионные пучки аргона
Общая характеристика Ar
Ar входит в группу инертных газов. Заряд его ядра — 18, под таким же номером элемент располагается в таблице Менделеева.
Из всех участников VIIIA группы он является наиболее часто встречающимся в природе. Объемная доля Ar в атмосфере -0,93%, массовая доля составляет 1,28%.Элемент является газом без цвета, вкуса и запаха. Химически не активен – аргон не вступает в реакцию и практически не соединяется ни с какими элементами или веществами, за исключением CU(Ar)O, и гидрофторида аргона.
Весьма плохо растворим водой, чуть большая растворимость наблюдается при взаимодействии с органическими растворителям.
Виды аргона
Говоря о видах, или сортах Ar, надо понимать, что это одно и то же химическое вещество. Виды различаются по степени очистки от примесей.
- Высший сорт. Содержание Ar не менее 99,99% . Этот сорт особо высокой чистоты применяется для ответственных сварочных работ, таких, как сварка материалов, химически активных в нагретом состоянии: некоторые цветные сплавы, прежде всего титановые, нержавеющая сталь и др. Используется также для сварки высоконагруженных изделий из конструкционной стали.
- Первый сорт. Содержание Ar не менее 99,98%, Применяется при сварке сплавов на основе алюминия с другими металлами и сплавами, для менее активных цветных металлов.
- Второй сорт. Содержание Ar не менее 99,95%. Используется при сваривании деталей из жаростойких стальных сплавов, алюминия и конструкционных сталей. Применение чистого Ar в этих случаях нежелательно, поскольку приводит к повышенной пористости материала шва и не позволяет защитить сварочную ванну от повышенной влажности и других загрязнений. Во избежание возникновения такого дефекта в состав смеси защитных газов добавляют углекислый газ и кислород, связывающие выделяющийся при сварке водород и другие примеси. Образующиеся в ходе этих реакций шлаки всплывают на поверхность сварочной ванны и после застывания удаляются вместе с окалиной.
Физические и химические свойства
Свойства аргона типичны для члена VIII группы.
При обычной температуре Ar пребывает в газообразном состоянии. Молекула включает в себя единственный атома, химическая формула весьма простая: Ar. Температура кипения весьма низка : -185,8 °С при атмосферном уровне давления.
Растворимость в воде низкая — всего 3,29 мл на 100 мл жидкости
Плотность аргона при нормальных условиях составляет 1,78 кг/м3. Молярная теплоемкость газа- 20,7 Дж/Кмоль.
Характеристики аргона и других инертных газов
Газ практически полностью инертен. На сегодняшний день ученым удалось получить лишь два его соединения — CU(Ar)O, и гидрофторид аргона. Соединения существуют лишь при сверхнизких температурах. Предполагается, что Ar может входить в состав неустойчивых в нормальном состоянии молекул эксимерного типа. Такие молекулы могут существовать лишь в возбужденном состоянии, например, в ходе электроразряда высокой интенсивности. Такие соединения возможны с ртутью, кислородом и фтором.
Электроотрицательность по шкале Полинга равна 4,3.
Как степень окисления, так и электродный потенциал имеют нулевое значение, что характерно для инертного газа.
Ионный радиус составляет 154, радиус ковалентности — 106 Пм. Ионизационный порог- 1519 кдж/моль
Атомная и молекулярная масса
Такие важные параметры, как атомная и молекулярная массы, показывают, насколько масса молекулы вещества и масса его атома соответственно превышают значение, равное одной двенадцатой доле массы атома водорода.
Ввиду того, что молекула Ar состоит из единственного атома, молекулярная и атомная масса аргона идентичны и составляют 39,984.
Структура аргона и его свойства
Изотопы
В природных условиях Ar встречается в качестве трех устойчивых изотопов
- 36Ar– процентная доля этого изотопа составляет 0,337% в ядре 18 протонов и 18 нейтронов;
- 38Ar- его доля всего 0,063%, в ядре 18 протонов и 20 нейтронов;
- 40Ar – наиболее распространен, его доля составляет 99,6%, в ядре так же 18 протонов, но уже 22 нейтрона.
Искусственным путем удавалось получать изотопы с массовым индексом от 32 до 55, наиболее стабильным из них оказался 39Ar, период полураспада которого составляет 268 лет.
Большая процентная доля 40Ar среди изотопов, встречающихся в природе, вызвана постоянным образованием его в ходе реакции распада изотопа калий-40. На 1000 кг калия в ходе таких реакций за год образуется не более 3100 атомов 40Ar. Но, поскольку эти реакции идут постоянно в течение сотен миллионов лет, изотоп накопился в природе в существенных объемах.
Доминирование тяжелого изотопа в природе обуславливает тот факт, что атомный вес Ar превышает атомный вес калия, находящегося в таблице следом за ним. При создании Периодической системы такого противоречия не было, поскольку аргон был обнаружен и свойства его были исследованы значительно позже, в первом десятилетии XX века. Первоначально Ar был помещен в первую группу таблицы, восьмая группа была выделена позднее.
Ионы
Как и другие инертные газы (такие, как He и Ne), Ar подвержен ионизации. При возбуждении атомов и сообщении им высоких энергий возникают молекулярные ионы Ar2+.
Молекула и атом
Для инертных газов эти понятия идентичны, поскольку эти элементы не желают вступать в химическую связь даже с себе подобными. Молекула включает в себя один атом, химическая формула газа не отличается от обозначения элемента: Ar.
Молярная масса
Молярная масса аргона составляет 39,95 г/моль.
Существуют несколько методов ее вычисления:
- С применением относительной атомной массы M и коэффициента пропорциональности к, выражающего соотношение между относительной массой и молярной. Этот коэффициент является универсальной константой и равен для всех элементов. Молярная масса M выражается как произведение коэффициента пропорциональности на относительную массу.
- С использованием молярного объема. Потребуется найти объем, занимаемый при обычных условиях некоторой массой газа, далее рассчитать массу 22,4 литров вещества при таких же условиях.
- С применением уравнения Менделеева-Клапейрона, моделирующего идеальный газ.
pV = mRT / M,
проведя преобразования, получим выражение для молярной массы:
M=mRT/pV
где
- p – давление в паскалях,
- V –объем в кубометрах
- m – масса в граммах,
- Т — температура в Кельвинах,
- R – константа, значение которой 8,314 Дж/(моль×К).
Область применения
Шире всего аргон применяется при сварочных работах. Он используется для создания защитной атмосферы вокруг сварочной ванны, вытесняя из рабочей зоны O2 и N2, содержащиеся в атмосфере. Особенно важно это для сварки цветных металлов, многие из которых, к примеру, Ti, отличаются высокой химической активностью в нагретом состоянии. Незаменим инертный газ также для неразъемного соединения нержавеющих и высоколегированных сплавов.
Также широко применяется при монтаже высоконагруженных строительных конструкций, таких, как каркасы высотных зданий, фермы мостов и многих других. Здесь его применение обеспечивает высокое качество, однородность и долговечность ответственных соединений. В строительной индустрии аргонная сварка доминирует среди других методов.
- Сварка аргоном
- Аргонно-дуговая сварка
Не менее широко применяется аргонная сварка в машиностроении, прежде всего химическом и пищевом. Швы получаются долговечные и надежные, даже в условиях воздействия агрессивных сред.
Нефтяная и газовая отрасли также применяют аргонная сварку при монтаже трубопроводов, газоперекачивающих станций и нефтеперегонных комбинатов.
Используется метод также в атомной промышленности, в транспортном машиностроении и в аэрокосмической отрасли.
В домохозяйствах аргонная сварка распространена не так широко. Это объясняется:
- высокой стоимостью оборудования и расходных материалов;
- необходимостью достаточной квалификации сварщика;
- меньшими нагрузками, испытываемыми домашними конструкциями;
- более низкими требованиями к прочности и долговечности сварных соединений.
Если в домохозяйстве возникает эпизодическая потребность в таких сварочных работах, то дешевле, быстрее и надежнее пригласить сварщика-специалиста.
- Стеклопакет с аргоном
- Принцип действия стеклопакета с аргоном
Характерным свойством Ar является его более высокая плотность по сравнению с воздухом. Поэтому максимальная эффективность аргонной сварки достигается при нижнем сварочном положении. В этом случае инертный раз растекается по поверхности детали и образует защитное облако значительной протяженности, позволяя вести сварку, как большими токами, так и на большой скорости. При сварке в наклонном и верхнем положении приходится учитывать «проваливание» аргона сквозь воздух. Чтобы компенсировать это явление, либо увеличивают подачу газа, либо проводят работы в герметичном помещении, заполненным инертным газом. В обоих случаях себестоимость работ возрастает.
Поскольку потенциал ионизации Ar невысок, его использование обеспечивает идеальные геометрических характеристик сварочного шва, прежде всего, профиля. Возбужденная электродуга в аргоновой атмосфере также отличается высокой стабильностью своих параметров. С другой стороны, низкое значение потенциала ионизации обуславливает и более низкое напряжение розжига и поддержания дуги. Это сокращает ее тепловыделение и усложняет провар толстых листов металла.
Более высокая температура дуги в аргоновой атмосфере существенно повышает проплав сварочного шва. Это позволяет проводить сварку за один проход при условии точного соблюдения параметров зазора между заготовками.
В случае применения TIG-метода сварочных работ аргоновая атмосфера защищает от коррозионного влияния не только зону сварки, но и окончание неплавкого электрода.
В ряде специфических случаев в состав защитной газовой смеси добавляют гелий.
Кроме применения при сварочных работах, аргон используется:
- Как плазмоообразующее веществона установках плазменного раскроя металла.
- Для создания инертной среды в упаковках пищевых продуктов. Он вытесняет из пакетов и контейнеров кислород воздуха и водяные пары, пагубно влияющие на срок годности продуктов. Продукты в защитной атмосфере хранятся в несколько раз дольше, чем в обычной упаковке. Применяется этот метод и для упаковки медицинских изделий и препаратов, позволяя сохранить их в должной стерильности и химической чистоте.
- В качестве активного агента в противопожарных установках. Аргон вытесняет кислород (или другой газ) из очага горения, прекращая его.
- Для создания защитной среды в технологических установках при обработке полупроводниковых устройств, создании микросхем и других электронных компонентов или материалов высоких степеней чистоты.
- Наполнитель электроламп.
- В рекламных люминесцентных трубках.
Зависимость давления аргона в баллоне от температуры
По мере нагрева давление газообразного вещества в замкнутом объеме повышается. В таблице приведены примерные значения давления в баллоне в зависимости от температуры окружающего воздуха.
T, °C | P, Мегапаскаль |
-40 | 10,45 |
-30 | 11,33 |
-20 | 12,21 |
-10 | 12,92 |
0 | 13,74 |
+10 | 14,62 |
+20 | 15,33 |
+30 | 16,03 |
Следует учитывать, что баллонное давление изменяется не мгновенно, а по мере его прогрева или охлаждения.
Техника безопасности при работе с аргоном
Сам по себе не являясь ядовитым, аргон при неправильном использовании может нанести серьезный вред здоровью или даже создать угрозу жизни.
Аргон замещает кислород воздуха и создает смесь, непригодную для дыхания. Человек может пострадать или даже погибнуть от удушья. Сжиженный аргон имеет очень низкую температуру и при контакте с незащищенной кожей приводит к тяжелым обморожениям.
Газоразрядная трубка с аргоном
Во избежание неприятных последствий при работе с газом следует неукоснительно соблюдать следующие правила:
- При работе в атмосфере аргона обязательно использовать изолирующий противогаз.
- При работе на полуавтоматах с подачей аргона обеспечить вентиляцию рабочей зоны.
- Использовать газоанализатор, содержание кислорода в воздухе должно быть не ниже 19%.
- Спецодежда должна полностью закрывать коду, быть чистой и целой.
Перед началом работы также следует осмотреть баллоны, шланги и запорную арматуру на предмет отсутствия механических повреждений и утечек газа.
Аргон: факты и фактики
А. Мотыляев
«Химия и жизнь» №7, 2015
Как аргон поставил в тупик Д. И. Менделеева и других именитых химиков? Первым аргон открыл Генри Кавендиш в 1795 году: он несколько недель пропускал электрический разряд сквозь воздух, при этом кислород реагировал с азотом (их тогда называли «дефлогистонный воздух» и «флогистонный воздух» соответственно) и давал азотистую кислоту, которую поглощал поташ. Объем газа в сосуде уменьшался, однако газ не исчезал полностью: оставалось что-то, не вступающее в реакцию. Никто на открытие Кавендиша особого внимания не обратил. Но вот в 1882 году лорд Рэлей начал серию нудных опытов по измерению плотности газов. И все время у него получалось, что соотношение веса водорода и изучаемого газа немного меньше целочисленного. Физикам же, еще не подозревавшим о существовании изотопов, очень хотелось, чтобы оно было целочисленным. Желая найти источник ошибки, Рэлей решил получить чистый, не атмосферный, азот. Для этого он прогнал над раскаленной медью смесь аммиака с кислородом: аммиак разлагался, давая азот и воду. Такой азот оказался на полпроцента легче, нежели атмосферный. А в 1894 году Уильям Рамзай обнаружил, что азот поглощается раскаленным магнием. Он-то и решил выделить обнаруженную Рэлеем тяжелую примесь к азоту. Вскоре в руках Рамзая оказалось 40 мл газа, который не поглощался магнием. Измерения показали, что его молекулярный вес равен 40. Поскольку все известные на тот момент газы были двухатомными, получался атомный вес 20, что выглядело странно — тяжелее фтора, легче натрия. Одноатомный же газ был бы слишком тяжелым и никак не вписывался в Периодическую таблицу — такой элемент следовало поставить между двумя металлами — калием и кальцием. Поэтому возникла гипотеза, что Рамзай обнаружил трехатомный азот, благо 40 примерно в три раза больше, чем 14. Вот как Менделеев пишет об этом в «Дополнении к 5-й главе» шестого издания «Основ химии»: «Гипотеза А=40 вовсе не дает места аргону в периодической системе… Мне кажется более простым предположение, что аргон содержит N3, особенно потому, что аргон содержится в азоте…» Рэлей, огорченный неприятием его нового газа, больше химией не занимался и Нобелевскую премию получил в 1904 году по физике за исследование плотностей газов и открытие в связи с этим аргона. А Рамзай за открытие и исследование элементов нулевой группы получил в том же году премию по химии.
Почему аргон с весом 39,9 стоит в таблице перед калием, вес которого 39,1? У аргона есть три устойчивых изотопа с весами 36, 38 и 40. Во Вселенной больше легких изотопов, а аргона-40 очень мало. При этом аргона в планетарных туманностях и в веществе звезд много, он преобладает над такими распространенными на Земле элементами, как калий, кальций, фтор и хлор. А вот на нашей планете и самого-то аргона немного, и его легких изотопов ничтожно мало — видимо, они улетели на периферию Солнечной системы. Аргон-40 мы не унаследовали из протопланетного облака; он образуется здесь и сейчас — в результате радиоактивного превращения калия-40. Обычно у этого изотопа, обеспечивающего основную часть природного фона излучений, нейтрон становится протоном с испусканием позитрона, и получается следующий элемент — кальций-40. Но в каждом пятом случае происходит так называемый К-захват: электрон с нижней орбитали падает в ядро, один из протонов становится нейтроном с испусканием нейтрино, атом же уходит на предыдущую клетку Периодической системы. Именно из-за недостатка легких изотопов аргона на Земле его вес, измеренный химиками, оказался больше, чем у следующего за ним калия, представленного всеми изотопами.
Есть ли на Земле радиоактивный аргон? В природе радиоактивного аргона почти нет, поскольку самый долгоживущий — аргон-39 — имеет период полураспада 269 лет. Однако высокоактивный аргон-41 с периодом полураспада 1,85 часа непрерывно образуется в атомном реакторе, а при неисправностях в системе вентиляции может попасть и за его пределы. После запуска термоядерного реактора проблема усложнится. Согласно расчету Владимира Хрипунова из Курчатовского института (Fusion Engineering and Design, 2015, DOI:10.1016/j.fusengdes.2015.02.058), при массированной нейтронной бомбардировке — напомним, что именно за счет торможения нейтронов стенками токамака планируется снимать тепло, выделяющееся при термоядерном синтезе, — начнет образовываться аргон-39 в достаточном количестве, чтобы вызвать беспокойство за здоровье работников термоядерной станции.
Как аргоном измеряют время? Калий — один из самых распространенных элементов на Земле и других каменистых планетах, а период полураспад калия-40 — 1,3 млрд лет. Постоянно образующийся аргон-40 оказывается заключенным в любую горную породу, и его количество растет начиная со времени ее затвердевания. Соответственно по соотношению аргона-40 и калия-40 можно узнать, когда эта порода (как правило, речь идет о базальте) была извержена из недр планеты. Измерения проводят, бомбардируя аргон-40 потоком нейтронов: получается короткоживущий аргон-41, его распад легко заметить. Аргоном удается мерить время в масштабе от сотен миллионов до десятков тысяч лет, то есть когда углеродный метод работает уже неточно. За разработку метода профессор Э. К. Герлинг получил в 1963 году Ленинскую премию. В частности, аргоновым методом по возрасту окружающих камешков были датированы первые, найденные в Олдувейском ущелье в Кении, останки человека умелого Homo habilis, его возраст оказался 1,7 млн лет (см. «Химию и жизнь», 1967, №6). В числе последних достижений — новая датировка Деканских траппов (Journal of Asian Earth Sciences, 2014, 84, 9–23, DOI:10.1016/j.jseaes.2013.08.021), крупнейшего разлива лавы, занимающего треть Индостана с западной его стороны. Как оказалось, возраст наиболее объемных разливов статистически неотличим от даты катастрофы, погубившей динозавров. Падение же метеорита в районе Юкатана, создавшее кратер Чиксулуб, по новейшим данным произошло на 300 тысяч лет раньше массового вымирания. Вообще, деканская гипотеза давно конкурирует с чиксулубской.
В какие реакции вступает аргон? Не имея свободных электронов и потому будучи химически инертным, аргон образует химические соединения неохотно и в весьма экзотических условиях. Однако он формирует так называемые клатратные соединения: атом аргона может оказаться заключенным в полость, образованную какой-то молекулой, либо в кристаллической решетке другого вещества. Подобно ксенону, аргон способен образовывать и соединения с белками; в результате при повышенном давлении аргон-кислородная смесь вызывает потерю сознания — аргоновый наркоз.
Чем опасен аргон? При работе с установками, заполненными аргоном, следует соблюдать меры предосторожности: аргон — тяжелый газ, он скапливается во всевозможных углублениях, например колодцах, вытесняя оттуда кислород, то есть может создать атмосферу, непригодную для дыхания. Если рабочий, потеряв сознание, упадет в такое углубление, он задохнется. Материаловеды, работающие с аргоном, говорят: «Аргон дырочку найдет», а изготовители оборудования это обстоятельство учитывают. Рассказывают такой случай. На одном предприятии ставили новый шведский газостат. Это огромная установка высотой с пятиэтажный дом, в которой можно подвергать детали нагреву и высокому давлению для устранения внутренних полостей в металле, образующихся при изготовлении. Чтобы избежать окисления детали, газостат заполняют инертным газом — аргоном. Поскольку копать вниз проще, чем строить вверх, газостат хотели заглубить, но изготовители категорически это запретили именно потому, что вытекающий из установки аргон нигде не должен скапливаться. А вот на растения аргон влияет хорошо: в атмосфере из 98% аргона и 2% кислорода семена лука, моркови и салата прорастают вполне успешно.
Зачем заполняют аргоном стеклопакет? Для повышения звукоизоляции и снижения теплопроводности — у аргона выше модуль упругости и ниже теплопроводность, чем у воздуха. Правда, с учетом правила «аргон дырочку найдет», не ясно, как долго этот газ будет находиться внутри стеклопакета.
Как получают аргон? При разделении воздуха на кислород и азот в колоннах высокого давления. Летучесть аргона больше, чем у кислорода, и меньше, чем у азота, — его и забирают из верхней трети колонны. Отделяют аргон также из отхода производства аммиака — того азота, что не израсходовался на реакцию с водородом; он сам собой оказывается обогащенным аргоном.
Как аргон применяют в технике? Будучи самым распространенным инертным газом — все-таки третий по значимости компонент атмосферы Земли после азота и кислорода, — аргон очень востребован, прежде всего в качестве вещества, не способного к химическим реакциям. Заполнив установку или весь цех аргоном, можно не бояться, что нагретая металлическая деталь или заготовка окислится либо насытится азотом с последующим выделением нитридов. Склонны к окислению, например, молибден и вольфрам: многие могли наблюдать мгновенное превращение спирали лампы накаливания в синеватый порошок при попадании в нее воздуха. В среде аргона обрабатывают титан, тантал, ниобий, бериллий, гафний, цирконий, а также уран, торий и плутоний. Продувая аргон через сталь в конвертере, из нее удаляют газовые включения. Революцию в технике совершил метод аргонно-дуговой сварки: поток аргона, подаваемый в то место, где горит электрическая дуга, вытесняет воздух и не дает металлу окисляться — оксиды снижают прочность шва, а то и вовсе делают сварку материалов невозможной. Таким методом сваривают легированные стали и цветные металлы, режут их толстые листы. Еще одно серьезное направление — распыление всевозможных материалов для получения чистого от оксидов порошка.
Что такое аргоновые кластеры? Пучки ионизированных кластеров — новый метод обработки поверхности до атомной гладкости. Его суть — бомбардировка не отдельными ионами (это называется «ионное травление»), а гораздо более тяжелыми частицами, состоящими из десятков, а то и тысяч атомов. Пучки аргоновых кластеров получили широкое распространение из-за инертности газа и его относительной дешевизны. Кластеры формируют, подавая газ под высоким давлением через узкое сопло. Проходя сквозь него, газовый поток резко расширяется и охлаждается; атомы аргона слипаются в твердое вещество, где их удерживают силы Ван-дер-Ваальса. Когда поверхность бомбардируют кластерами с высокой энергией, образуются кратеры размером в нанометры; такой будет и гладкость всей поверхности. Повторяя сканирование пучком менее энергичных кластеров, гладкость увеличивают. Таким методом обрабатывают полупроводники, тонкие пленки, поверхность дисков для компьютеров и многое другое. Кластерными пучками можно и создавать наноузоры на поверхностях. Они же позволяют, не нагревая образец, проводить послойное изучение его состава, постепенно забираясь все глубже и глубже; этот метод применяют для анализа строения органических веществ.
Как аргон работает в нанотехнологиях? Аргоновая плазма либо добавка аргона к плазме другого газа — важнейший метод получения всяческих наноструктур: сферических наночастиц, нанолезвий, наноигл. Суть плазменного метода состоит в том, что разделенное на ионы и электроны вещество обладает способностью активировать химические реакции и даже делает возможными те, что в нормальных условиях запрещены термодинамически. Аргон — прекрасный активатор: сам в реакцию не вмешивается, а продукты реакции либо конденсируются в равноосные частицы, либо оседают на поверхности, давая неравноосные структуры. Он же может служить разбавителем плазмы другого, реакционного газа — таким способом меняют параметры процесса. Наконец, высокотемпературную плазму аргона применяют для распыления металлической мишени и получения из нее нанопорошков с частицами заданного размера. Другие инертные газы — неон, ксенон — дают свои размеры. Применяют аргон и как охладитель: он выдувает порошок из зоны плазмы, что опять же позволяет регулировать размер частиц, поскольку тот зависит от времени нахождения материала в зоне плазмы.
Кому нужна пена с аргоном? С помощью аргона можно делать пористые шаблоны из желатина для последующего их заселения клетками при выращивании искусственных органов. Преимущество аргона здесь очевидно — его химическая инертность.
Что такое аргоновый лазер? В этом лазере, изобретенном в 1964 году, генератором света служит трубка, заполненная аргоном. Электроды создают в ней плазму с большой плотностью ионов аргона, а катушка, обмотанная вокруг трубки, формирует магнитное поле, еще больше увеличивающее плотность плазмы. Этот лазер дешевле твердотельных аналогов, дает мощное — 20–30 ватт — излучение в сине-зеленой части спектра, причем его цвет можно переключать между 14-ю спектральными линиями. Такие лазеры применяют для накачки других лазеров, для световых шоу, а также для стимулирования флуоресценции при химическом анализе сложных органических веществ. С его помощью, например, находят следы РНК в количестве пикограмм, то есть столько, сколько есть в одной клетке (Electrophoresis, 2015, DOI:10.1002/elps.201500117). Применяют аргоновый лазер и при лечении слепоты, вызванной диабетом, — она появляется из-за чрезмерного развития кровеносных сосудов в глазу, а лазером их можно безболезненно проредить.
Как аргоном проводят стерилизацию? Для уничтожения бактерий используют холодную аргоновую плазму. В такой плазме есть горячие электроны, а температура ионов равна комнатной, то есть она не может обжечь, но сохраняет способность активировать реакции. Реакции же эти зависят и от способа получения плазмы (от температуры ее электронов), и от добавок других газов. Например, облучение клеток млекопитающих в физиологическом растворе чистым или влажным аргоном давало прежде всего гидроксил-радикал, который угнетал развитие клеток. А вот плазма из аргона с добавками 1% кислорода или 1% воздуха давала, скорее всего, атомарный кислород. Реагируя с хлорид-ионом, он порождал радикалы Cl2– или ClO–, убийственно действующие на клетки, причем никакие ферменты-антиоксиданты вроде супероксиддисмутазы с ними справиться не могли. Время жизни таких радикалов оказалось на уровне получаса (Biointerphases, 2015, 10, 2: 029518; DOI:10.1116/1.4919710). Итог понятен: аргоновой плазмой можно проводить «холодную» дезинфекцию. Так, кишечную палочку на образце удается извести за 10 минут (Applied Biochemistry & Biotechnology, 2013, 171, 7; DOI:10.1007/s12010-013-0430-9), а с добавкой 0,5% кислорода — уже за 30 секунд (International Journal of Radiation Biology, 2009, 85, 4; DOI:10.1080/09553000902781105). Вообще, холодная плазма из различных газов очищает поверхность мяса, птицы, овощей, фруктов от таких микробов, как кишечная палочка, листерия, сальмонелла, золотистый стафилококк, за считаные секунды. И никакой антимикробной «химии», пугающей потребителя. Однако технология эта новая, оборудование не стандартизировано, каждый генератор дает свою плазму, и результаты опытов сравнивать трудно. Также неизвестно, как такая обработка повлияет на качество пищи при ее массовой обработке (Annual Review of Food Science & Technology. 2012, 3, 125-42; DOI:10.1146/annurev-food-022811-101132).
Как аргон применяют в медицине? Разными способами. Например, плазма может пригодиться для той же дезинфекции ран, хотя в случае с трофическими язвами результаты вышли неоднозначными: вроде бы число бактерий уменьшалось не так быстро, как при применении лекарства, однако язвы заживали с той же скоростью. Возможно, дело в том, что плазмой можно обрабатывать язвы меньшего размера и они заживают быстрее (Journal of Wound Care, 201, 24, 5; DOI:10.12968/jowc.2015.24.5.196). Плазменное лечение не вызывает таких побочных действий, как лекарственные средства, поэтому авторы рекомендуют продолжить исследования с разными источниками плазмы, тем более что устойчивости к ней не может развиться по определению, чего о лекарствах не скажешь.
С помощью специально придуманной плазменной щетки удается уничтожать и бактерии, вызывающие кариес. Но здесь есть нюансы. Так, основными вредителями зубов считаются Streptococcus mutans и Lactobacillus acidophilus, которые образуют на эмали бактериальные маты и выделяют много кислоты. У стрептококка клетки маленькие, и они разрушаются всего за 13 секунд. А у лактобактерии — большие, образующие толстые слои, и, чтобы избавиться от них, нужны уже минуты (Journal of Dentistry, 2011, 39, 1; DOI:10.1016/j.jdent.2010.10.002). Вряд ли такая щетка появится в быту, а вот стоматологу для дезинфекции свежеобработанного дупла пригодится. К тому же плазма изменяет поверхность вещества зуба, что увеличивает прочность ее соединения с пломбой на 60%. Тут главное — не перестараться: эффект дает обработка в течение 30 секунд, а несколько минут, наоборот, ухудшают сцепление (European Journal of Oral Science. 2010, 118, 5; DOI:10.1111/j.1600-0722.2010.00761). Аргоновой плазмой можно быстро остановить кровь при внутреннем кровотечении. Вдыхание аргона защищает нейроны, пострадавшие от ишемического удара или вследствие травмы (PLoS One, 2014, 9, 12:e115984, DOI:10.1371/journal.pone.0115984).
Как работает аргоновая криохирургия? Криохирургия — это уничтожение больных тканей в результате их быстрого замораживания. Ее применяют по самым разным показаниям, от сведения бородавок и сглаживания шрамов до удаления опухолей. Если бородавки замораживают снаружи ваткой, смоченной в жидком азоте, то шрамы и опухоли — изнутри, вводя в них полую иглу — криозонд, через которую прокачивают холодное вещество. Используют еще и криоаппликаторы — их на замораживаемый объект накладывают. Установка с жидким азотом — гораздо проще и дешевле, но в ней применяют толстые, диаметром 6 мм, зонды. Аргоновая же устроена гораздо сложнее, требует высокой квалификации персонала, в частности специальных знаний по работе с высоким давлением, но позволяет очень точно замораживать ткань: диаметр иглы может быть величиной с миллиметр, такая игла легко проходит сквозь кожу. Заморозку проводят газообразным аргоном. Газ хранят под давлением 400 атмосфер, а, проходя через узкое сопло и затем резко расширяясь, он вследствие эффекта Джоуля—Томсона охлаждает до –140°С. Если термодатчики, воткнутые рядом с местом заморозки, показывают, что температура слишком упала и могут пострадать здоровые ткани, в зонд подают гелий, который отогревает замерзшую ткань. Так можно проводить циклы контролируемого замораживания-размораживания, что увеличивает эффективность процедуры, да и примерзший криозонд проще извлекать.
Как аргоновый резак используют хирурги? С помощью аргонового плазменного резака можно проводить удивительные по виртуозности операции — подрезать стенты, вставленные в кишечник, или тонкие протоки пищеварительной системы, например те, что доставляют желчь и секрет поджелудочной железы. В силу разных причин (опухоль, камни и подобное) проток может перекрыться. Для лечения туда вставляют трубочку — стент, например, из интерметаллида NiTi — нитинола. Изначально ее диаметр невелик, а попав на место и нагревшись, изделие, в силу эффекта памяти формы нитинола, увеличивается в размере и расширяет просвет сосуда. Однако может получиться так, что размер стента выбран неверно либо со временем из-за изменений в организме становится неподходящим. Кроме того, стент может зарасти или сдвинуться с места и так перекрыть канал, что к нему не подберешься с тем эндоскопом, которым этот стент размещали. Тогда вводят плазменный резак мощностью в несколько десятков ватт и подрезают стент. Во многих случаях эта операция проходит вполне успешно, никаких повреждений сосудов и кровотечения не вызывает (а если и вызовет, той же плазмой можно остановить кровь), но для самочувствия пациента она гораздо лучше, нежели изъятие старого стента и установка нового (Endoscopy, 2005, 37, 5,434–438). Это важно, поскольку возраст пациента может быть преклонным.
Газ аргон – химические свойства и сфера применения
В переводе с греческого «argon» означает «медленный» или «неактивный». Такое определение газ аргон получил благодаря своим инертным свойствам, позволяющим широко его использовать во многих промышленных и бытовых целях.
Химический элемент Ar
Ar – 18-й элемент периодической таблицы Менделеева, относящийся к благородным инертным газам. Данное вещество является третьим после N (азота) и O (кислорода) по содержанию в атмосфере Земли. В обычных условиях – бесцветен, не горюч, не ядовит, без вкуса и запаха.
Другие свойства газа аргона:
- атомная масса: 39,95;
- содержание в воздухе: 0,9% объема и 1,3% массы;
- плотность в нормальных условиях: 1,78 кг/м³;
- температура кипения: -186°С.
На рисунке название химического элемента и его свойства
Данный элемент был открыт Джоном Стреттом и Уильямом Рамзаем при исследовании состава воздуха. Несовпадение плотности при различных химических испытаниях натолкнуло ученых на мысль, что в атмосфере помимо азота и кислорода присутствует инертный тяжелый газ. В итоге в 1894 г. было сделано заявление об открытии химического элемента, доля которого в каждом кубометре воздуха составляет 15 г.
Как добывают аргон
Ar не поддается изменениям в процессе его использования и всегда возвращается в атмосферу. Поэтому ученые считают данный источник неисчерпаемым. Он добывается как сопутствующий продукт при разделении воздуха на кислород и азот посредством низкотемпературной ректификации.
Для реализации этого метода применяются специальные воздухоразделительные аппараты, состоящие из колонн высокого, низкого давления и конденсатора-испарителя. В результате процесса ректификации (разделения) получается аргон с небольшими примесями (3-10%) азота и кислорода. Чтобы произвести очистку, примеси убираются с помощью дополнительных химических реакций. Современные технологии позволяют достичь 99,99% чистоты данного продукта.
Представлены установки по производству данного химического элемента
Хранится и транспортируется газ аргон в стальных баллонах (ГОСТ 949-73), которые имеют серый окрас с полосой и соответствующей надписью зеленого цвета. При этом процесс наполнения емкости должен полностью соответствовать технологическим нормам и правилам безопасности. Детальную информацию о специфике заполнения газовых баллонов можно прочитать в статье: баллоны со сварочной смесью – технические особенности и правила эксплуатации.
Где применяется газ аргон
Данный элемент имеет достаточно большую сферу применения. Ниже приведены основные области его использования:
- заполнение внутренней полости ламп накаливания и стеклопакетов;
- вытеснение влаги и кислорода для долгого хранения пищевых продуктов;
- огнетушащее вещество в некоторых системах тушения пожара;
- защитная среда при сварочном процессе;
- плазмообразующий газ для плазменной сварки и резки.
В сварочном производстве он применяется как защитная среда в процессе сварки редких металлов (ниобия, титана, циркония) и их сплавов, легированный сталей разных марок, а также алюминиевых, магниевых и хромоникелевых сплавов. Для черных металлов, как правило, применяют смесь Ar с другими газами – гелием, кислородом, углекислотой и водородом.
Вид защитной среды при сварочном процессе, которую создает аргон
Являясь тяжелее воздуха, аргоновая струя надежно защищает металл во время сварки. Инертный газ на протяжении длительного времени является защитой для расплавленной и нагретой металлической поверхности. Больше о сварочном процессе с применением аргоновой защитной среды читайте в статье: сварка аргоном – технология и режимы работы оборудования.
Меры предосторожности при эксплуатации
Данный химический элемент не представляет абсолютно никакой опасности для окружающей среды, но при большой концентрации оказывает удушающее воздействие на человека. Он нередко скапливается в районе пола в недостаточно проветриваемых помещениях, а при значительном уменьшении содержание кислорода может привести к потере сознания и даже смертельному исходу. Поэтому важно следить за концентрацией кислорода в закрытом помещении, которая не должна падать ниже 19%.
Еще мы советуем посмотреть третью часть обучения сварке в защитной среде аргона:
Жидкий Ar способен вызвать обморожение участков кожи и повредить слизистую оболочку глаз, поэтому в процессе работы важно использовать спецодежду и защитные очки. При работе в атмосфере этого газа с целью предотвращения удушения необходимо применять изолирующий кислородный прибор или шланговый противогаз.
Заправить баллоны аргоном можно в компании «Промтехгаз», где соблюдается правильная технология заправки и предоставляется качественное обслуживание.
Если вы интересуетесь другими техническими газами, информацию можете найти здесь.
Аргон — это… Что такое Аргон?
Внешний вид простого вещества | |
---|---|
Свойства атома | |
Имя, символ, номер | Арго́н / Argon (Ar), 18 |
Атомная масса (молярная масса) | 39,948 а. е. м. (г/моль) |
Электронная конфигурация | [Ne] 3s2 3p6 |
Радиус атома | ? (71)[1]пм |
Химические свойства | |
Ковалентный радиус | 106[1]пм |
Радиус иона | 154[1]пм |
Электроотрицательность | 4,3 (шкала Полинга) |
Электродный потенциал | 0 |
Степени окисления | 0 |
Энергия ионизации (первый электрон) | 1519,6(15,75) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 1,784·10−3 г/см³ |
Плотность при т. п. | 1,40 г/см³ |
Температура плавления | 83,8 К (-189,35 °C) |
Температура кипения | 87,3 К (-185,85 °C) |
Теплота испарения | 6,52 кДж/моль |
Молярная теплоёмкость | 20,79[2] Дж/(K·моль) |
Молярный объём | 24,2 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | кубическая гранецентрированая |
Параметры решётки | 5,260 Å |
Температура Дебая | 85 K |
Прочие характеристики | |
Теплопроводность | (300 K) 0,0177 Вт/(м·К) |
Арго́н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440-37-1) — инертный одноатомный газ без цвета, вкуса и запаха.
История
История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырек газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха[3][4][5]. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.
Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота[3].
Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос[3][4].
У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы)[4].
Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней[3].
Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа[3].
Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество[3].
Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества[3].
Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов[3].
7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %)[3][4]. Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон[3].
Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии[3].
Происхождение названия
По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность[3].
Распространённость
Во Вселенной
Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе[6].
Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения[7].
Земная кора
Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе[4][7], его запасы в атмосфере оцениваются в 4·1014 т[2][4]. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона)[4][7].
Содержание аргона в литосфере — 4·10−6 % по массе[2]. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5·10−5 — 9,7·10−5 %. Его содержание в Мировом океане оценивается в 7,5·1011 т, а в изверженных породах земной оболочки — 16,5·1011 т[7].
Определение
Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, H2, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа[2].
Физические свойства
Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Плотность при нормальных условиях составляет 1,7839 кг/м3
Химические свойства
Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.
Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[8]. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.
Изотопы
Аргон представлен в земной атмосфере тремя стабильными изотопами: [4][7]. Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:
Первый процесс (обычный β-распад) протекает в 88 % случаев и ведет к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.
Вероятные источники происхождения изотопов 36Ar и 38Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.
Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона[7].
Получение
В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C аргон конденсируется, при −189,4 °C — кристаллизуется.
Применение
Заполненная аргоном и парами ртути газоразрядная трубкаНиже перечислены области применения аргона:
- в аргоновых лазерах
- в лампах накаливания и при заполнении внутреннего пространства стеклопакетов
- в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов (например, титана), так и неметаллов
- в качестве плазмаобразователя в плазматронах при сварке и резке
- в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа
- в качестве огнетушащего вещества в газовых установках пожаротушения
- в медицине во время операций для очистки воздуха и разрезов, так как аргон почти не образует химических соединений
- в качестве составной части атмосферы эксперимента Марс-500[9] с целью снижения уровня кислорода для предотвращения пожара на борту космического корабля при путешествии на Марс
- из-за низкой теплопроводности аргон применяется в дайвинге для поддува сухих гидрокостюмов, однако есть ряд недостатков:
- высокая цена газа (кроме этого нужна отдельная система для аргона)
Биологическая роль
Аргон не играет никакой биологической роли.
Физиологическое действие
Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа[10].
Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания)[11].
Примечания
Ссылки
Аргон, свойства атома, химические и физические свойства
Аргон, свойства атома, химические и физические свойства.
Ar 18 Аргон
39,948(1) 1s2 2s2 2p6 3s2 3p6
Аргон — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 18. Расположен в 18-й группе (по старой классификации — главной подгруппе восьмой группы), третьем периоде периодической системы.
Атом и молекула аргона. Формула аргона. Строение аргона
Изотопы и модификации аргона
Свойства аргона (таблица): температура, плотность, давление и пр.
Физические свойства аргона
Химические свойства аргона. Взаимодействие аргона. Реакции с аргоном
Получение аргона
Применение аргона
Таблица химических элементов Д.И. Менделеева
Атом и молекула аргона. Формула аргона. Строение аргона:
Аргон (лат. Argon, от др.-греч. ἀργός – «ленивый, медленный, неактивный») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Ar и атомным номером 18. Расположен в 18-й группе (по старой классификации — главной подгруппе восьмой группы), третьем периоде периодической системы.
Аргон самый лёгкий элемент периодической таблицы химических элементов Д. И. Менделеева из группы инертных (благородных) газов.
Аргон – химически инертный неметалл. Химически малоактивен.
Как простое вещество аргон (химическая формула Ar) при нормальных условиях представляет собой одноатомный газ без цвета, вкуса и запаха.
Молекула аргона одноатомна.
Химическая формула аргона Ar.
Электронная конфигурация атома аргона 1s2 2s2 2p6 3s2 3p6. Потенциал ионизации атома аргона равен 15,76 эВ (1519,6 кДж/моль).
Строение атома аргона. Атом аргона состоит из положительно заряженного ядра (+18), вокруг которого по трем атомным оболочкам движутся 18 электронов. При этом 10 электронов находятся на внутреннем уровне, а 8 электронов – на внешнем. Поскольку аргон расположен в третьем периоде, оболочки всего три. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внешняя оболочка представлена s- и р-орбиталями. Внешний энергетический уровень атома аргона полностью завершен – 8 спаренных электронов. Поэтому аргон химически малоактивен. В свою очередь ядро атома аргона состоит из 18 протонов и 22 нейтронов. Аргон относится к элементам p-семейства.
Радиус атома аргона составляет 71 пм.
Атомная масса атома аргона составляет 39,948(1) а. е. м.
Аргон – третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объёму и 1,288 % по массе. Аргон – самый распространённый инертный газ в земной атмосфере.
Изотопы и модификации аргона:
Свойства аргона (таблица): температура, плотность, давление и пр.
Общие сведения | |
Название | Аргон/ Argon |
Символ | Ar |
Номер в таблице | 18 |
Тип | Неметалл |
Открыт | Уильям Рамзай, Джон Уильям Стретт (лорд Рэлей), Англия, 1894 г. |
Внешний вид и пр. | Инертный газ без цвета, вкуса и запаха. |
Содержание в земной коре | 0,00015 % |
Содержание в океане | 0,000045 % |
Свойства атома | |
Атомная масса (молярная масса) | 39,948(1) а. е. м. (г/моль) |
Электронная конфигурация | 1s2 2s2 2p6 3s2 3p6 |
Радиус атома | 71 пм |
Химические свойства | |
Степени окисления | 0 |
Валентность | 0 |
Ковалентный радиус | 106 пм |
Радиус Ван-дер-Ваальса | |
Радиус иона | 154 пм |
Электроотрицательность | 4,3 (шкала Полинга) |
Энергия ионизации (первый электрон) | 1519,6 кДж/моль (15,76 эВ) |
Электродный потенциал | 0 |
Физические свойства | |
Плотность (при +20 °C и нормальных условиях, состояние вещества – газ) | 0,0017839 г/см3 |
Плотность (при -185,7 °C и нормальных условиях, состояние вещества – жидкость) | 0,402 г/см3 |
Плотность (при -233 °C и нормальных условиях, состояние вещества – твердое тело) | 1,65 г/см3 |
Температура плавления | -189,35 °C (83,8 К) |
Температура кипения | -185,85 °C (87,3 К) |
Уд. теплота плавления | 7,05 кДж/моль |
Уд. теплота испарения | 6,45 кДж/моль |
Молярная теплоёмкость | 20,79 Дж/(K·моль) |
Молярный объём | 24,2 см³/моль |
Критическая температура | -122,5 °C |
Критическое давление | 4,86 МПа |
Критическая плотность | 0,531 г/см3 |
Давление паров | 1 мм.рт.ст. (при -219,5°C), 10 мм.рт.ст. (при -211,3°C), 100 мм.рт.ст. (при -200,1°C) |
Стандартная энтальпия образования ΔH (при 298 К, для состояния вещества – газ) | 0 кДж/моль |
Стандартная энергия Гиббса образования ΔG (при 298 К, для состояния вещества – газ) | 0 кДж/моль |
Стандартная энтропия вещества S (при 298 К, для состояния вещества – газ) | 154,7 Дж/(моль·K) |
Теплопроводность (при 300 K) | 0,0164 Вт/(м·К) |
Диэлектрическая проницаемость | 1,000504 (при 25°C), 1,3247 (при -133,2°C) |
Электропроводность в твердой фазе | |
Сверхпроводимость при температуре | |
Твёрдость | |
Структура решётки | кубическая гранецентрированная |
Параметры решётки | 5,260 Å |
Температура Дебая | 85 К |
Физические свойства аргона:
Химические свойства аргона. Взаимодействие аргона. Реакции с аргоном:
Получение аргона:
Применение аргона:
Таблица химических элементов Д.И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Найти что-нибудь еще?
Похожие записи:
карта сайта
аргон атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле аргона
сколько электронов в атоме свойства металлические неметаллические термодинамические
Коэффициент востребованности 1 194
Определение аргона, Факты, Символ, Открытие, Собственность, Использует
Что такое аргон
Аргон (произношение: AR-гон) — это бесцветный инертный элемент без запаха, принадлежащий к группе инертных газов периодической таблицы, и представлен химическим символом Ar [1, 2, 3] . Хотя когда-то он считался полностью инертным, теперь известно, что он образует соединение фторгидрид аргона (HArF) во время фотолизного разложения фтороводорода в твердой матрице аргона при температуре 7.5 К [4] .
Символ аргона
Изотопы
Известно 25 изотопов аргона (из 30 Ar- 54 Ar), из которых три являются стабильными, в том числе 40 Ar, 36 Ar и 38 Ar с естественным содержанием 99,604%. , 0,334% и 0,063% соответственно [5] . Самыми долгоживущими радиоизотопами являются 39 Ar, 42 Ar и 37 Ar с периодом полураспада 269 лет, 32,9 года и 35 лет.04 дня соответственно [5] .
Где находится аргон
Поскольку аргон составляет 0,94 процента атмосферы Земли, он занимает третье место по содержанию в воздухе [1] . Он образуется при распаде естественного 40 K (радиоактивный калий) до 40 Ar [1, 4] . Его производят в промышленных масштабах путем отделения его и других газов от жидкого воздуха методом фракционной перегонки [1] .
Аргон
История
Происхождение своего названия : Оно происходит от «Аргос», что по-гречески означает бездействующий или бездействующий [1, 2]
Кто его открыл : Английский химик лорд Рэлей и шотландский химик сэр Уильям Рамзи приписывают открытие аргона [1, 2] .
Когда и как было обнаружено
Британский ученый Генри Кавендиш успешно отделил газ в 1785 году и сообщил, что он составляет 1% воздуха, оставаясь инертным даже в экстремальных условиях [1, 3] . Однако ему не удалось выяснить газ и полностью понять его свойства [3] . Несмотря на присутствие в атмосфере Земли, аргон оставался неоткрытым в течение многих лет, пока Уильям Рамзи и лорд Рэлей не изолировали его от жидкого воздуха в 1894 г. [1] .
В 1893 году лорд Рэлей обнаружил, что азот, извлеченный из воздуха, плотнее, чем азот, полученный из аммиака или других соединений азота [1, 4] . Чтобы объяснить эту аномалию, Рэлей и Рамзи провели дальнейшие эксперименты и уведомили друг друга о прогрессе [1] .
В 1894 году Рамзи изолировал из воздуха все компоненты, включая азот, кислород и углекислый газ [4] . Азот удаляли из газа путем его реакции с магнием, в результате чего получали твердый нитрид магния [1] .Оставшийся газ занимал 1/80 первоначального объема и был химически инертным [1, 4] . Изучив его спектр, Рамзи обнаружил новые красные и зеленые спектральные линии [1] . В 1895 году Рамзи и Рэлей объявили миру о своем открытии [4] .
Фазовая диаграмма аргона
Идентификация аргона | |||
Атомный номер | 18 [1] | ||
Номер CAS | 7440-37-1 [1] | ||
Позиция в таблице Менделеева | Группа | Период | Блок |
18 [1] | 3 [1] | п. [1] |
Что такое аргон?
Что такое аргон? Происхождение / значение имени Аргон
Название происходит от греческого слова «аргос», означающего неактивный.
Что такое аргон? Группа Периодической таблицы и классификация элемента аргона
Элементы могут быть классифицированы на основе их физических состояний (состояний вещества), например газ, твердое тело или жидкость. Этот элемент — газ. Аргон классифицируется как элемент в разделе «Благородные газы», который может находиться в группе 18 Периодической таблицы.Термин «благородный газ» происходит от древневерхненемецкого слова Edelgas от слова «edili», означающего «благородный». Название «благородные газы» является намеком на старые, так же называемые «благородные металлы». Благородные металлы включали золото, серебро и платину, которые получили свое название из-за их давней связи с аристократией.
Факты об открытии и История элемента аргона
Аргон был открыт сэром Уильямом Рэмси в 1894 году.
Сэр Уильям Рамзи (1852-1916)
Сэр Уильям Рамзи открыл благородные газы и получил Нобелевская премия по химии 1904 г. «в знак признания его заслуг в открытии инертных газообразных элементов в воздухе».Эти элементы включали неон, криптон и ксенон. Рамзи также выделил гелий, который наблюдался в спектре Солнца, но не был обнаружен на Земле. В 1910 году Рамзи также создал и охарактеризовал радон.
Сэр Уильям Рамзи (1852-1916)
Что такое аргон? Появление элемента аргона
Атмосфера содержит только 0,94% объема аргона (1,29% массы)
Содержание элемента в различных средах
% во Вселенной 0.02%
% на Солнце 0,007%
% в метеоритах Нет
% в земной коре 0,00015%
% в океанах 0,000045%
% у людей Нет
Связанное использование аргона
Электрические лампы
Люминесцентные лампы
Факты об аргоне
Аргон — 18 -й элемент периодической таблицы Менделеева. Эти факты об аргоне содержат химические и физические данные, а также общую информацию и историю.
Ячейка периодической таблицы аргонаОсновные факты об аргоне
Имя: Аргон
Атомный номер: 18
Символ элемента: Ar
Группа: 18
Блок: p
Семейство элементов: Благородный газ
Атомная масса: 39.948 (1)
Электронная конфигурация: [Ne] 3s 2 3p 6 (сокращенно) или 1s 2 2s 2 2p 6 3s 2 3p 6
(полное) 9000Открытие: Лорд Рэлей и сэр Уильям Рамзи в 1894 году
Рэлей заметил разницу в плотности между азотом, полученным из воздуха, и азотом, полученным в результате химических реакций. Он также заметил, что кислород имел одинаковую плотность, независимо от того, как вы его получали.Рамзи услышал об этой проблеме и начал сотрудничать с Рэли. Рамзи разработал метод удаления кислорода, углекислого газа и азота из определенного объема воздуха. Закончив, он обнаружил, что осталось небольшое количество газа. Оставшийся газ не вступил в реакцию с другими химическими веществами. Его спектральный анализ показал, что газ был неизвестным элементом.
Имя Происхождение: Газообразный аргон совершенно не реагирует с другими химическими веществами, почти как аргон слишком ленив, чтобы реагировать. Рамзи и Рэлей назвали аргон от греческого слова argos , означающего ленивый или неактивный.
Изотопы:
Природный аргон состоит из трех стабильных изотопов: 36 Ar, 38 Ar и 40 Ar. Существует двадцать один радиоактивный изотоп в диапазоне от 30 Ar до 53 Ar.
36 Ar
Аргон-36 — стабильный изотоп, содержащий 18 нейтронов. 0,3336% природного аргона составляет аргон-35.
38 Ar
Аргон-37 — стабильный изотоп, содержащий 20 нейтронов. 0,0629% природного аргона составляет аргон-38.
40 Ar
Аргон-40 — стабильный изотоп, содержащий 22 нейтрона. 99,6035% природного аргона составляет аргон-40.
Аргон-39 — радиоактивный изотоп, содержащий 21 нейтрон. Он образуется при взаимодействии космического излучения с атмосферным аргоном-40. Аргон-39 распадается в результате β-распада до 39 K с периодом полураспада 269 лет и может быть обнаружен в природе в следовых количествах.
Небольшой образец плавящегося твердого аргона. Предоставлено: Deglr6328 / Creative Commons
Physical Data
Плотность: 0.001633 г / см 3
Точка плавления: 83,81 K (-189,34 ° C, -308,81 ° F)
Точка кипения: 87,302 K (-185,848 ° C, -302,526 ° F )
Тройная точка: 83,8058 K при 68,89 кПа
Критическая точка: 150,687 K при 4,863 МПа
Состояние при 20ºC: Газ
Теплота плавления: 1,18 кДж / моль Теплота испарения: 6,53 кДж / моль
Молярная теплоемкость: 20.85 Дж / моль · K
Конфигурация электронной оболочки атома хлора.
Атомные данные
Атомный радиус: 1,88 Å
Ковалентный радиус: 1,06 Å
Радиус Ван-дер-Ваальса: 1,88 Å
Сродство к электрону 0002 нестабильно
1 st Энергия ионизации: 1520,571 кДж / моль
2 nd Энергия ионизации: 2665.857 кДж / моль
3 rd Энергия ионизации: 3930,81 кДж / моль
4 th Энергия ионизации: 5770,79 кДж / моль
5 th Энергия ионизации 8 3/10 3 9005 7 моль 6 th Энергия ионизации: 8781,034 кДж / моль 7 th Энергия ионизации: 11995,347 кДж / моль 8 th Энергия ионизации: 13841,79 9000 кДж / моль состояния 9000
Аргон в разрядной трубке.При ионизации аргон излучает фиолетовый свет. Предоставлено: Alchemisthp / Creative Commons
Интересные факты об аргоне
- Аргон — это бесцветный газ без запаха при комнатной температуре. При ионизации аргон излучает характерное фиолетовое свечение.
- Аргон получают промышленным способом путем криогенной дистилляции воздуха.
- Аргон составляет всего 0,94% от объема газов в атмосфере. Тем не менее, это третий по содержанию газ в воздухе.
- Аргон — это лучший газ, когда требуется инертная среда.
- Аргон используется в системах пожаротушения. Аргон вытесняет кислород в комнате, и горение прекращается.
- В лампы накаливания добавляют аргон для защиты нити от кислорода. Он также широко используется в люминесцентных лампах.
- В окнах с двойным остеклением между стеклами используется аргон.