Электросхема зарядного устройства для автомобильного аккумулятора: Зарядное устройство для автомобильного аккумулятора своими руками: схемы и сборка

Содержание

Автомобильные зарядные устройства. Схемы. Принцип работы.

Обзор распространённых автомобильных зарядных устройств. Принципиальные схемы. Назначение. Устройство. Возможные неисправности.

Зима. Мороз. Двигатель запускается тяжело. Резко возрастает нагрузка на аккумулятор. А за состоянием аккумулятора нужно следить: проверять и вовремя его заряжать. Летом АКБ редко когда приходится заряжать, часто хватает зарядки от генератора автомобиля, а зима — это время частого использования автомобильных зарядных устройств.

Рассмотрим некоторые модели зарядных устройств промышленного производства, выпускаемых раньше и наиболее часто используемых автомобилистами.

 УСТРОЙСТВО ЗАРЯДНО-ВЫПРЯМИТЕЛЬНОЕ БЫТОВОЕ ТИПА УЗС-П-12-6,3 УХЛ 3.1. «Электроника», «Электроника-М», «Электроника-И» 

Устройство зарядно-выпрямительные с плавным регулированием стабилизированного тока зарядки предназначена для зарядки и подзарядки стартерных свинцово-кислотных аккумуляторных батарей типа 6 СТ (12В.

) и 3 СТ (6 В.) ёмкостью до 60 А-ч в автоматическом и ручном режимах.

Разрешается заряжать батареи емкостью более 60 А-ч, но при этом ток зарядки не должен превышать 6,3 А!

12-вольтовая батарея может заряжаться как автоматическом, так и в ручном режимах, а 6-вольтовая батарея заряжается только в ручном режиме. Можно заряжать последовательно соединенные две 6-вольтовые батареи.

С помощью зарядного устройства можно определить полярность аккумуляторных батарей.

Устройство зарядное имеет электронную защиту от короткого замыкания при подключении его к аккумуляторной батарее, а также при ошибочной переполюсовки.

Технические характеристики зарядного устройства
ТИПА УЗС-П-12-6,3 УХЛ 3.1. «Электроника», «Электроника-М», «Электроника-И»
  • Питание устройства осуществляется от сети переменного тока напряжением (220±22) В и частотой 50 и 60 Гц.
  • Максимальный ток зарядки — 6,3 А.
  • Диапазон регулирования стабилизированного тока зарядки от 0,2 до 6,3 А.
  • Номинальное напряжение заряжаемой батареи — 12 В.
Устройство

Органы управления и индикации устройства зарядного выведены на лицевую панель:

  • в  устройстве зарядном «Электроника»
    стрелочный индикатор предназначен для индикации величины тока зарядки.
  • в устройстве зарядном «Электроника–И» величина тока зарядки определяется по маркировке, нанесенной около светодиодного индикатора;
  • в устройстве зарядном «Электроника-М» величина тока зарядки определяется по нанесенной на панели маркировке;
  • регулятор предназначен для регулирования величины тока зарядки.
  • индикаторы предназначены для определения режима работы устройства зарядного.
  • кнопка КОНТРОЛЬ предназначена для контроля работоспособности и запуска устройства зарядного при подключении незаряженной емкостной нагрузки, а также слабозаряженной аккумуляторной батареи.

У зарядного устройства «Электроника–И» шаг индикации значения зарядного тока составляет :

  • 0,5А – у12 разрядного индикатора тока;
  • 1,0А – у 6 разрядного индикатора тока.
 Порядок работы

Режим зарядки батарей согласно требованиям «Инструкции по эксплуатации» батарей аккумуляторных.

Устройство зарядное функционирует только с емкостной нагрузкой. Для запуска устройства зарядного, при подключении к устройству слабозаряженной аккумуляторной батареи или незаряженной емкостной нагрузки, необходимо нажимать кнопку

КОНТРОЛЬ до включения устройства (до 1/3 секунд), что определяется включением индикатора.

В устройстве зарядном «Электроника – М» величина зарядного тока определяется по маркировке, нанесенной на панели, а также по яркости свечения индикатора. Отклонение величины тока зарядки от маркированного значения при номинальном значении напряжения питания не более ±0,5А. При зарядке аккумуляторной батареи с наличием сульфатации значение зарядного тока может отличаться от указанного.

Работа устройства зарядного при зарядке 12-вольтовой и 6-вольтовой аккумуляторных батарей в ручном режиме.

Установите ручку регулятора в левое крайнее положение, переключатель на режим работы

РУЧ.

Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».

Включите устройство зарядное в сеть: должен включиться (загореться) индикатор, установите регулятором тока необходимую величину тока зарядки, при этом должен включиться (загореться) индикатор, сигнализирующий о протекании зарядного тока. Признаком окончания процесса зарядки является обильное газовыделение, кипение во всех элементах батареи, а также постоянство плотности электролита и напряжения на батарее в течение 2-3 часов.

Порядок работы при зарядке 12-вольтовой аккумуляторной батареи в автоматическом режиме.
  • Установите ручку регулятора в левое – крайнее положение. Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».
  • Включите устройство зарядное в сеть, при этом должен включиться индикатор.
  • Установите ручкой регулятора необходимую величину зарядного тока, включается индикатор, переключатель на режим работы «АВТ». Стрелочный индикатор в устройстве зарядном «Электроника» показывает величину тока зарядки, далее наступает бестоковая пауза, индикатор отключается, а стрелка индикатора на нулевой отметке. После бестоковой паузы начинается процесс зарядки аккумуляторной батареи: зарядка-пауза-зарядка-пауза. Длительность бестоковой паузы зависит от степени заряженности аккумуляторной батареи.
  • Признаками окончания процесса зарядки являются длительные без токовые паузы, обильное газовыделение, а также постоянство плотности электролита и напряжения на аккумуляторной батарее.
  • Для окончательной зарядки аккумуляторной батареи рекомендуем в конце процесса зарядки перейти на ручной режим.

 ВНИМАНИЕ!

Стабилизация тока зарядки устройства зарядного в режиме  «РУЧ» и в режиме «АВТ» не осуществляется при зарядке аккумуляторных батарей с наличием сульфатации электродной массы, с прорастанием сепараторов или их разрушением, с короблением электродов, с наличием вредных примесей в электролите. В большинстве случаев при этом происходит самопроизвольное неуправляемое снижение тока зарядки.

Порядок работы при определении состояния 12-вольтовой аккумуляторной батареи.
  1. Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме
    «+»
    аккумуляторной батареи, со знаком «-» к клемме «-».
  2. Подключите устройство зарядное к сети. Установите ручкой регулятора необходимую величину тока зарядки, переключатель на режим работы «АВТ».
  3. Включается индикатор, а стрелочный индикатор в устройстве зарядном «Электроника» показывает величину тока зарядки, далее наступает бестоковая пауза, отключается индикатор, а стрелка индикатора на нулевой отметке. Проконтролируйте по индикаторам бестоковую паузу. Если бестоковая пауза длится (0,5-1) секунд, аккумуляторную батарею необходимо зарядить. Если бестоковая пауза длится (1-2) минуты, аккумуляторная батарея не требует зарядки.
  4. Описанный временной режим работы устройства может не совпадать при включении аккумуляторной батареи, отработавший свой гарантийный срок, а также при следующих отклонениях в аккумуляторной батарее:
  • коррозия токоотводов положительных электродов;
  • оплывание активной массы положительного электрода;
  • коробление электродов;
  • прорастание сепараторов или их разрушение;
  • короткое замыкание между электродами различной полярности;
  • необратимая сульфатация электродной массы, наличие вредных примесей в электролите.
Определение полярности аккумуляторных батарей при отсутствии на них маркировки.

Подключите зажимы зарядного устройства к клеммам аккумуляторной батареи, ручку регулятора тока установите в крайнее левое положение, переключатель на режим работы «РУЧ». Подключите устройство зарядное к сети. Поверните ручку регулятора тока по часовой стрелке. Если при этом включается индикатор, полярность клемм аккумулятора соответствует маркировке на зажимах кабеля нагрузки. Если индикатор не включается, поменяйте местами зажимы и произведите проверку повторно.

Ещё одна схема зарядного устройства «ЭЛЕКТРОНИКА»

Печатная плата зарядного устройства «ЭЛЕКТРОНИКА»

Схема пуско-зарядного устройства для автомобильного АКБ «ЭЛЕКТРОНИКА ЗП-01»

Другой вариант схемы «Электроника ЗП-01»:

Этот вариант, но перерисованый:

Устройство зарядное с автоматическим отключением УЗ-ПА-6/12-6,3-УХЛЗ. 1

Устройство зарядное с автоматическим отключением УЗ-ПА-6/12-6,3-УХЛЗ-1 (в дальнейшем — устройство УЗ-ПА) предназначено для заряда 6 и 12-вольтовых стартерных аккумуляторных батарей, установленных на мотоциклах и автомобилях личного пользования. Перед началом эксплуатации устройства УЗ-ПА необходимо изучить руководство по эксплуатации, а также правила по уходу и эксплуатации аккумуляторной батареи. Устройство УЗ-ПА имеет плавную установку зарядного тока, электронную схему защиты, обеспечивающую сохранность аккумуляторной батареи при перегрузках, коротких замыканиях и неправильной полярности подключения выходных зажимов. При этом защита выполнена таким образом: что на выходе зарядный ток появляется только в случае, если к выходным зажимам подключен источник напряжения (аккумуляторная батарея).

Внимание. Данное устройство производит заряд при наличии напряжения на аккумуляторной батарее не менее 4-х вольт.

В устройстве отсутствует указанный на схеме переключатель SВ1 и кнопка   на лицевой панели. Обнуление счетчика таймера происходит автоматически при включении устройства в сеть.

Устройство УЗ-ПА рассчитано на эксплуатацию в условиях умеренного климата при температуре окружающего воздуха от минус 10° С до плюс 40° С и относительной влажности до 98% при 25° С.

ТЕХНИЧЕСКИЕ   ДАННЫЕ
Напряжение питающей сети(220±22) В
Частота сети(50 ±0,5) Гц
Диапазон установки тока зарядаот 0,5 до 6,3 А
Переменное напряжение для питания переносной автомобильной лампы(36 ±3) В
Автоматическое отключение от аккумуляторной батареичерез (10,5±1) ч
Габаритные размеры, не более240x175x85 мм
Масса, не более4,2 кг
Потребляемая мощность, не более145 Вт
Устройство УЗ-ПА-6/12-6,3 и принцип работы

Устройство УЗ-ПА представляет собой выпрямитель, с плавной установкой тока. С выводов 3,6 сетевого трансформатора TV1 напряжение поступает на 2-х-полупериодный управляемый выпрямитель, выполненный на тиристорах VS1 и VS2. Выпрямленное напряжение подается на аккумуляторную батарею через контакты XI («плюс») и Х2 («минус»).

Для контроля величины тока заряда служит индикатор тока РА1.

Для отключения цепи заряда от аккумулятора через (10,5 ±1) ч, управления работой тиристоров и установки необходимого тока заряда служит схема, собранная на транзисторах VT1, VT4, VТ8, VТ9, VТ10 и интегральной схеме (ДД1).

На транзисторе VТ1 выполнен формирователь импульсов с частотой 50 Гц, на интегральной схеме ДД1 — счетчик с импульсов, на транзисторах VТ8 и VТ10 — делитель частоты на 2, на транзисторе VТ6 — управляемый генератор (стабилизатор) тока.

При этом необходимый ток заряда устанавливается потенциометром RP1.

Генератор управляющих импульсов выполнен на транзисторах VТЗ, VТ7. Транзистор VТ2 является усилителем этих импульсов по мощности.

На диоде VД1 выполнена схема защиты от короткого замыкания и переполюсовки выводов.

Схема на транзисторах VТ4 и VТ5 служит для переключения устройства в режим уменьшенного тока (через 6 — 8 часов ток уменьшится в 1,3  — 2,5 раза).

На диодах VД7 и VД8 собран выпрямитель питания схемы формирователя импульсов и счетчика.

Диоды VД5 и VД6 запрещают подачу импульсов на управляющий электрод тиристора в момент, когда к тиристору приложено обратное напряжение.

Для индикации включения сети и конца заряда служат светодиоды VД2 и VД13.

С выводов 3 и 6 силового трансформатора снимается переменное напряжение 36 В.

Конструктивно устройство состоит из нижнего и верхнего корпуса, лицевой панели, радиатора, печатной платы с радиоэлементами и силового трансформатора.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Устройство зарядное просто и надежно в эксплуатации. Однако, в практике имеются случаи, когда потребители из-за неправильного использования не могут получить необходимый зарядный ток и ошибочно считают это неисправностью зарядного устройства. Некоторые неисправности приведены в таблице ниже. 

Перечень возможных неисправностей и методы их устранения

Наименование неисправностей, внешнее проявление и дополнительные признаки

Вероятная причина

Метод  устранения

Примечание

1. При подключении зарядного устройства к аккумуляторной батарее отсутствует показание зарядного тока1. Ручка недостаточно    повернута по часовой    стрелке1. Вращением    ручки установить необходимый ток
2. Плохой контакт между выходными зажимами «+» и «-» и выводами аккумуляторной батареи2. Проверить состояние выводов. При необходимости зачистить их
3.  Перепутана  полярность при подключении зарядного      устройства к выводам аккумуляторной батареи3. Проверить полярность и подключить согласно рис. 4
4. Выходные зажимы «+» и «-» замыкаются между собой4.  Разомкнуть   зажимы
5. Короткое замыкание в аккумуляторной батарее или она чрезмерно  разряжена, напряжение на ней менее 4В)5. Проверить аккумуляторную батарею, если устройство  исправноПроверить   устройство   следующим  образом:     подключить  к  выходным  зажимам соблюдая полярность («+» к «+», «-» к  «-») любой источник  постоянного напряжения не менее 4 В (заведомо исправную аккумуляторную батарею или батарею из сухих элементов): вращая ручку проверить   по     амперметру наличие тока. Если ток заряда есть, то устройство    исправно, неисправность следует искать  в  заряжаемой  аккумуляторной  батарее
2. При подключении зарядного устройства к аккумуляторной батарее стрелка амперметра зашкаливает1.  Ручка выведена   вправо до конца1. Установить ток вращением  ручки против  часовой стрелки
3. При включении зарядного   устройства    в сеть не горит светодиод СЕТЬ1. Сгорел предохранитель1. Заменить предохранитель

 Другой похожий вариант схемы устройства зарядного автоматического «ЭЛЕКТРОНИКА»

Отличие от предыдущей схемы — добавление транзистора VT11 КТ315Г, ограничивающий максимальный ток устройства.

Устройство зарядно-разрядное УЗР-П-12/6-6,3-УХЛ3,1

  На рисунке стрелками обозначены основные узлы схемы.

Назначение

Устройство зарядно-разрядное (УЗР) предназначено для заряда обычным и восстановительным режимом стартерных аккумуляторных батарей всех типов, применяемых в отечественных автомобилях, мотоциклах и мотороллерах, а также для питания низковольтной активной нагрузки.

В режиме восстановительного заряда УЗР обеспечивает восстановление структуры активных масс свинцового аккумулятора путем поляризации его электродов асимметричным током инфранизкой частоты, что позволяет снизить скорость коррозии решеток положительных пластин и увеличить срок службы аккумулятора на 20—40%.

Электронная схема зарядного устройства обеспечивает его защиту при несоответствии полярности подключаемых с аккумуляторной батарее зажимов, коротких замыканиях. А так же есть возможность плавно регулировать ток заряда от 0,1 до 6А, при входном напряжении 220 ±22 В.

Восстановительные заряды рекомендуется проводить:
  • один раз в 3—4 месяца при малоинтенсивной эксплуата­ции аккумулятора;
  • ежемесячно при длительной стоянке;
  • до и после длительного бездействия;
  • при введении в действие сухозаряженных аккумуля­торов с просроченным сроком хранения.
Технические характеристики
  • Номинальное напряжение питающей сети, В ~ 220;
  • Номинальное напряжение заряжаемой акку­муляторной батареи, 6-12;
  • Номинальный выпрямительный ток, А — 6,3;
  • Максимальная потребляемая мощность, Вт не более — 160.
  • Масса, кг, не более — 4,3 кг.
В восстановительном режиме работы:
  • время протекания тока в прямом направлении, режим заряда — от 90 до 160 с.;
  • время протекания тока в обратном направлении, режим разряда — от 9 до 24 с.

Устройство для автоматической зарядки и разрядки автомобильных аккумуляторов на таймере КР1006ВИ1

Принцип работы зарядно-разрядного устройства

Зарядно-разрядное устройство состоит из собственно зарядного устройства (ЗУ), обозначенного на схеме прямоугольником, и электронного узла управления. Питание узла управления осуществляется от аккумуляторной батареи. В качестве порогового элемента (компаратора), вырабатывающего сигнал при достижении напряжением на аккумуляторе значения свыше 14,2…14,5 В и при снижении до 10,5 В, используется интегральный таймер КР1006ВИ1 (микросхема DA1).

Ток зарядки устанавливают в соответствии с инструкцией по эксплуатации аккумуляторной батареи, т.е. равным 1/10 или 1/20 емкости батареи. Если зарядка идет без контроля оператора, следует обеспечить ограничение колебаний зарядного тока при возможных колебаниях сетевого напряжения.

Самый простой способ стабилизации тока — включение двух-трех параллельно соединенных автомобильных ламп мощностью 40… 50 Вт в разрыв одного из выходных проводов зарядного устройства. Такой же эффект может быть достигнут включением лампы напряжением 220 В и мощностью 200…300 Вт в разрыв одного из входных (сетевых) проводов ЗУ. Сопротивление вольфрамовой нити ламп накаливания возрастает с увеличением температуры, т.е. лампа обладает свойствами стабилизатора тока. Зарядный ток содержит дозированную разрядную составляющую, что благотворно сказывается на протекании электрохимических процессов в батарее. Разрядная составляющая тока протекает через резистор R 19 и транзистор VT3 и равна примерно 0,5 А.

В процессе зарядки напряжение на полюсных выводах аккумулятора плавно увеличивается. Известно, что напряжение полностью заряженной батареи составляет 14,2…14,5 В. Измерение этого напряжения следует производить в отсутствие зарядного тока, поскольку импульсы зарядного тока в зависимости от степени разряженности аккумуляторной батареи увеличивают мгновенное значение напряжения на ее зажимах на 1…3 В по сравнению с режимом, когда ток зарядки не протекает. Для обеспечения такого режима измерения в устройстве использованы элементы U1, R4, VT2. В режиме зарядки транзистор VT2 открыт.

Подробнее о работе этого зарядно-разрядного устройства Вы можете прочитать скоро в следующей статье.

Ещё один вариант автоматического зарядного устройства на двух счётчиках К176ИЕ12 и К176ИЕ8

На транзисторе VT6 КТ503Б собран формирователь импульсов для работы счётчиков (100 Гц).

Запускается зарядное устройство кнопкой «Пуск» после чего счётчики сбрасываются и начинается отчёт времени. По истечении заданного числа импульсов с выв 3 МС К176ИЕ8  логич. 0 сначала закрывается полевой транзистор VT5 (КП103Б), тем самым ограничивая ток зарядки.  Затем после появления лог. 0 (сигнала закрытия) с выв.4 МС К176ИЕ8 закрывается VT4 (КП103Б), тем самым отключается зарядка АКБ. Через VT1, VT2, VT3 осуществляется регулировка управления тиристорами.

Зарядное устройство «КЕДР-АВТО»

Ниже приведены несколько схем зарядного устройства семейства «Кедр»

При написании статьи использовались руководства по эксплуатации вышеописанных устройств.

А. Зотов, Волгоградская обл. 



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Электрическая принципиальная схема скутера
  • В любом автомобиле, мотоцикле, мопеде, а также скутере есть электропроводка — провода, соединяющие электронные узлы, блоки и модули техники.

    От её исправности зависит правильная работа всех систем, а также в нашем случае скутера в целом. Сегодня рассмотрим различные варианты принципиальных схем электропроводки скутера.

    Подробнее…

  • Индикатор напряжения аккумулятора на TAA2765A
  • Не во всех автомобилях, даже современных установлен вольтметр. Обычно индикатором зарядки служит обычная лампочка в щитке приборов. А это далеко не достаточно. По приведенной, ниже схеме можно собрать простой светодиодный указатель напряжения автомобильного аккумулятора.

    Подробнее…

  • Ремонт зарядного устройства «Рассвет» своими руками
  • Устройство зарядное «Рассвет» модель КМ-14 хоть и выпускалось ещё в 80-х годах, но ещё используется у некоторых автовладельцев для зарядки АКБ.

    Несколько раз приносили в ремонт данное устройство, поэтому решил написать небольшую статью с фото и таблицей напряжений, возможно кому-то пригодится.

    Подробнее…


Популярность: 162 072 просм.

Самодельное пусковое устройство на ток до 80А

Что-то не так?
Пожалуйста, отключите Adblock.

Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.

Как добавить наш сайт в исключения AdBlock

Пусковое устройство, при подключении параллельно аккумулятору автомобиля, обеспечивает дополнительным током 80А питания стартёра при запуске двигателя. Схема пускателя простая и состоит из двух основных узлов: трансформатора и выпрямителя с фильтром. Трансформатор мощностью 1440VA, после модернизации, использован от СВЧ печи.

 

Замена вторичной обмотки трансформатора

Вначале при помощи стамески и молотка нужно удалить вторичную обмотка и её каркас. Края окон зачистить надфилем от заусенцев. Стержень трансформатора, особенно углы, изолировать пластиковой пластиной. Для вторичной обмотки необходимо иметь изолированный многожильный медный провод сечением 10мм2. Чтобы получить выходное напряжение в холостом режиме 15В, необходимо намотать семнадцать витков, что соответствует длине провода около четырёх метров. Поместить такое число витков очень сложно из-за большого внешнего диаметра проводника – 6.2мм. Для уменьшения внешнего диметра провода необходимо снять изоляцию. Просто лезвием прорезать изоляцию вдоль всего провода, а затем по частям сдирать изоляцию и начать его изолировать в один слой изоляционной лентой из ацетатной ткани. Теперь имеем новый эластичный провод с внешним диаметром 4.5мм. Нужно ещё подготовить пластиковые прокладки толщиной не более 0.2 мм из различной упаковочной тары, которые нужно проложить между слоями вовремя намотки только внутри окна трансформатора. Не помешает, если заготовите заранее несколько деревянных разной толщины планок для фиксации вовремя намотки витков. После такой подготовки можно начать намотку вторичной обмотки. Как только поместили нужное число витков, не удаляйте остаток провода. Проверьте напряжение на выводах обмотки. Дело в том, что параметры трансформатора могут быть другими и зависят от количества сварных швов.

 

Компоновка элементов пускателя

 

Фильтр выпрямителя состоит набора конденсаторов ёмкостью по 2200мк х25В. Ни коем случае нельзя ставить один конденсатор на 10000мк обычными выводами предназначен для печатных плат. Выводы просто раскалятся до красна и т.д. Нужно применить емкость у которого – клеммы под болты предназначены. Такие конденсаторы довольно дорогие.

 

 

Несущие элементы нужны только для удобства монтажа диодов и выключателя. Шасси состоит из двух слоёв: на первом слое из стеклотекстолита толщиной 2.5мм устанавливаются все узлы, второй слой ламинита скрывает все выступы крепежных элементов. После монтажа выпрямителя, фильтра и трансформатора всё это монтируем на нишу устройства и закрепляем винтами, которыми крепятся резиновые арматизторы. Проводим окончательный монтаж.

Как проверить работу устройства

Если имеете возможность замерить сопротивление нагрузки 0.15 Ом, тогда проблем нет. Просто нужно достать две спирали от дивана или матраса и создать из них необходимою нагрузку. Далее готовое сопротивление 0.15 Ом подключить пусковику, а вольтметр – к выходу диодного моста. Наблюдая за вольтметром на несколько секунд включить сеть. Напряжение на нагрузке должно быть (12.0 – 12.7) В. При заниженном напряжении – увеличиваем общюю ёмкость фильтра, а при превышении – уменьшаем. После проверки и принятых мер пусковик готов к работе.


Комментарии

Отзывы читателей — Скажите свое мнение!

Оставьте свое мнение


Отзывы читателей — Скажите свое мнение!

Схема автомобильного зарядного устройства | 2 Схемы

Зима неумолимо приближается и скоро начнется сезон покупки (сборки) автомобильных зарядных устройств. Хотим представить зарядное устройство, которое изготовлено самостоятельно для собственных потребностей в зарядке двух АКБ на 40 и 60 А/ч. Оно работает уже в нескольких экземплярах у разных людей, и зимой особенно необходимо.

В дешевых зарядных устройствах, доступных в магазинах, бывает так что зарядное напряжение в финальной фазе достигает 20 В (такое без стабилизатора при росте сетевого напряжения до 250 В вполне возможно), а электролит превращается в газ. Они не подходят по соображениям безопасности, поэтому лучше о покупке таких девайсов даже не думайте!

При минимальных знаниях и ровности рук можно потратив наименьшее количество денег, используя что есть под рукой, собрать вполне приличную зарядку для авто 12 В.

Схема зарядного к автомобилю

Потенциометр PR1 позволяет регулировать рабочее напряжение компаратора U1 в диапазоне не менее 13,5 … 15 В. Если напряжение батареи ниже чем рабочее напряжение компаратора, то после каждого сброса триггера U2A после дополнительного короткого момента высокое состояние выводится на Q-выход. Конденсатор С1 заряжается, и напряжение на затворе транзистора становится как минимум на 10 В выше, чем напряжение на его истоке — транзистор открывается. Важной характеристикой схемы является то, что описанный цикл зарядки C1 не повторяется в каждой половине работы сети, только каждый полный период, то есть каждые 20 мс. Благодаря этому система всегда будет проходить через четное число синусоидальных полуволн, что полезно для трансформатора, поскольку поглощенный ток не содержит постоянной составляющей.

Данное зарядное устройство построено на хорошо известной микросхеме 4013. Единственное изменение в схеме — это использование CEP50N06 вместо транзистора BUZ11, он имеет еще более низкое сопротивление перехода (19 мОм вместо 30 мОм). Это действительно очень хорошая и многократно проверенная схема, хотя она имеет два недостатка, а именно: отсутствие регулировки зарядного тока и невозможность работать при напряжении аккумулятора ниже 10 В. Трудно сказать каково предельное нижнее напряжение для правильной работы схемы, но подключив разряженную батарею, на которой напряжение без нагрузки было 8 В — система не запускалась, нужно было ненадолго подключить аккумулятор к БП напрямую (чуть поднять напряжение), после чего зарядное устройство справилось.

Корпус от классического блока питания компьютера, в котором всё было возможно разместить. В середине был прикручен трансформатор от поврежденного ИБП, от которого была использована только одна обмотка 17 В. Схема также работает с выпрямительным мостом 25 А, V / A модулем производства Китая. Что касается модуля V / A, его преимуществом является широкий диапазон напряжения питания до 30 В и то, что он может легко запитываться от самого измеренного напряжения. Точность измерения может быть откалибрована с помощью микро потенциометров. Модуль имеет встроенный шунт, диапазон измерения тока составляет 10 А. Выход защищен предохранителем на 15 А.

Вентилятор установлен на задней части корпуса БП, рабочее напряжение его ограничено резистором 220 Ом, 5 Вт (чтоб меньше шумел). Резистор подобран экспериментальным путем, чтобы у кулера не было проблем с запуском, а его обороты были ниже. Он ведь должен не шуметь, а только обеспечивать циркуляцию воздуха. Конечно можно отказаться от вентилятора вообще, но тогда было бы полезно иметь большой радиатор для транзистора.

Кабель подключения к АКБ 2×1,5 мм длиной 3 м, зажимы типа «крокодил», он используется для подключения к аккумулятору. Кабель может быть и более толстым, так как при токе 8 А падение напряжения составляет около 0,75 В, при 5 А — около 0,5 В, а при 2 А — всего 0,2 В. Это не слишком большая проблема, потому что на последней стадии зарядки ток очень маленький и напряжение тоже падает.

Расходы на самодельную автозарядку вышли несравнимо меньшие, чем на покупку готовой, пусть даже на дешевом китайском сайте.

При зарядке не нужно отсоединять аккумулятор от автомобильной электроники (схема контролирует выходное напряжение, которое установлено на 14,4 В), и не нужно контролировать время зарядки, когда заряд аккумулятора завершается, ток зарядки со временем упадет почти до нуля.

Максимальный ток, который удавалось достичь на представленной конструкции, составляет 12 А (модуль V / A выдержал) при разряженной батарее до 8 В, о которой упоминалось ранее. При нормальной работе аккумуляторных батарей ток в начальной фазе составляет 6 А, а затем постепенно уменьшается. Его значение зависит от степени разрядки аккумулятора.

Цифровой вольтметр подключен к аккумулятору. Амперметр подключен сразу к диодному мосту. Во время зарядки вольтметр колебался в диапазоне около 0,1 В и это нормальная работа. После зарядки батареи до 14,4 В вольтметр перестал колебаться и постоянно отображал это значение. Во время зарядки амперметр изменял свои показания с максимума на ноль. Ноль показывал строго и не колебался как на вольтметре 14.4 В.

Инструкция по работе с ЗУ к авто

Зарядное устройство работает следующим образом:

  1. Вы подключаете батарею несколько разряженную, предположим что после подключения напряжение составляет 12,3 В. Поскольку сопротивление такой батареи низкое, а напряжение ниже установленного 14,4 В, транзистор открывается и течет постоянный ток. Насколько велик этот ток, зависит от мощности трансформатора и сопротивления аккумулятора. Предположим, что это будет 6 А.
  2. Батарея заряжается, напряжение на ней увеличивается, а ток немного уменьшается.
  3. Напряжение достигает заданного значения 14,4 В, схема переходит в импульсный режим, чтобы ограничить дальнейшее повышение напряжения.
  4. Напряжение больше не будет увеличиваться, но батарея будет подзаряжаться все время, ток будет постепенно уменьшаться, амперметр будет колебаться по показаниям.
  5. Батарея продолжает заряжаться, пиковый ток становится ниже, а при полной зарядке колеблется в пределах очень низких значений. Аккумулятор следует считать заряженный, когда ток составляет около 0-0,3 А.

Схема переходит в импульсный режим подпитки, когда напряжение достигает 14,4 В, и к этому времени ток протекающий через АКБ становится стабильным, амперметр также показывает это. В импульсном режиме амперметр будет показывать около нуля, это означает что батарея полностью заряжена.

Это не первое самодельное зарядное устройство собранное по предлагаемой схеме, предыдущие выглядели так как на фото выше. Все они работают у людей уже давным-давно. Описание ЗУ в оригинале и рисунок печатной платы скачайте в архиве.

Зарядное устройство для автомобильного аккумулятора своими руками: принцип работы, простые схемы

Все владельцы автотранспортных средств знают, что аккумуляторную батарею необходимо периодически заряжать и особенно это актуально в холодную пору года. При наличии навыков в сфере электротехники можно сделать зарядное устройство для автомобильного аккумулятора своими руками. Если все требуемые работы по его созданию были проведены правильно, то оно может оказаться ни чем не хуже заводского изделия.

Принцип работы

Аккумуляторная батарея автомобиля требуется зарядка при снижении напряжения на контактах ниже отметки в 11,2 В. Хотя даже в такой ситуации двигатель может быть запущен, в случае продолжительного простоя автотранспортного средства в АКБ начинают протекать реакции сульфатации пластин, что неизбежно приведет к падению емкости батареи.

Именно поэтому в зимнее время года настоятельно рекомендуется в гараже или на стоянках подзаряжать АКБ и отслеживать напряжение на ее клеммах.

Оптимальным вариантом является снятие аккумулятора с последующим хранением в теплом месте, но даже в такой ситуации стоит помнить о необходимости подзарядки.

Аккумуляторная батарея заряжается под воздействием импульсного либо постоянного тока. Во втором случае сила тока должна быть равна 0,1 от емкости батареи. Например, при емкости АКБ в 55 А/ч, то сила зарядного тока должна соответствовать 5,5 А. Если этот параметр будет ниже, то предотвратить активацию процессов сульфатации не удастся .

Также следует помнить, что существует достаточно надежный способ десульфатации. Для этого необходимо предварительно разрядить батарею до 3−5 вольт с помощью высоких токов небольшой длительности, например, включая стартер. После этого следует провести полную зарядку аккумулятора током в 1 А. Эту процедуру необходимо повторять от 7 до 10 раз.

Аналогичный принцип работы имеют специальные десульфатирующие зарядные устройства. На протяжении нескольких миллисекунд на клеммы батареи подается импульсный ток с обратной полярностью, а затем более длительный импульс прямой полярности.

Также следует помнить, что во время зарядки АКБ нельзя допускать достижения ею максимального заряда. Это может привести к увеличению концентрации и плотности раствора электролита, что произведет разрушающее воздействие на пластины. В заводских ЗУ для предотвращения этого явления используется электронная система контроля и автоматического отключения.

Самодельные зарядные устройства

Существует несколько вариантов изготовления самодельного ЗУ. Причем некоторые из них собираются буквально за несколько минут из подручных материалов.

Простейший прибор

Он может пригодиться в ситуации, когда утром батарея оказалась полностью разряженной, а необходимо срочно отправиться в дорогу. Для зарядки АКБ в такой ситуации потребуется отыскать источник постоянного тока в 12−25 В и сопротивление.

Сегодня у многих людей есть ноутбуки, ЗУ которого выдает ток силой в 2 А при напряжении в 19 В. Этого хватит для решения поставленной задачи. Внешний контакт разъема блока питания имеет отрицательный заряд, а внутренний — положительный.

Сопротивлением, в свою очередь, может стать простая лампа, используемая для освещения салона машины.

В теории возможно применять и более сильную лампу, например, от габаритов, но в такой ситуации риск перегрузки БП окажется довольно высоким. В результате можно собрать простейшую схему зарядки аккумулятора.

Если ноутбука нет, можно заранее приобрести выпрямительный диод с показателем обратного напряжения от 1000 В и силой тока не менее трех ампер. Благодаря небольшим габаритам, этот полупроводниковый прибор всегда может находиться в автомобиле. В качестве сопротивления в этом случае может быть использована обычная лампа накаливания на 220 В.

Из блока питания ПК

Сложность изготавливаемого зарядного устройства своими руками следует выбирать в соответствии с имеющимися навыками в области электротехники. Найти блок питания от ПК не составит большого труда. Он, кроме питания в 5 В, имеет шину с напряжение в 12 вольт при силе тока в два ампера. Этих параметров достаточно для создания несложного зарядного устройства.

Так как напряжения в 12 В будет недостаточно для полноценной зарядки АКБ и его необходимо увеличить. Для этого потребуется найти сопротивление около 1 кОм и соединить его со вторым сопротивлением, подключенным к восьмиконтактной микросхеме. Эта простая схема должна быть присоединена к вторичной цепи компьютерного блока питания.

Подбирая номинал второго сопротивления можно довести выходное напряжение до 13,5 В, которого будет достаточно для зарядки аккумуляторной батареи. Затем потребуется лишь подключить собранное устройство к клеммам АКБ. В отличие от первого ЗУ, в этом случае необходимости в использовании дополнительного сопротивления нет.

Трансформаторное устройство

Такие ЗУ являются наиболее распространенными и безопасными. Собрать их несколько сложнее, но при наличии определенного опыта в работе с электротехникой разобраться со схемой можно. Наиболее простое устройство этого типа состоит из следующих элементов:

  • Трансформатор сетевой.
  • Ограничительная нагрузка.
  • Выпрямительный диодный мост.

Так как через нагрузку проходит большой ток, она сильно нагревается. Чаще всего для ограничения силы тока зарядки используются конденсаторы, подключенные к первичной цепи трансформатора. Если точно подобрать емкости конденсаторов, то можно и вовсе обойтись без трансформатора, но такое устройство будет более опасным для человека. Диодный мост можно собрать самостоятельно либо использовать готовый от вышедшего из строя генератора. Более сложные устройства основаны на микросхемах или микропроцессорах и собрать их сможет хорошо подготовленный человек.

Техника безопасности

Заводские зарядные устройства являются безопасными в эксплуатации. С этой точки зрения, самодельные приборы не столь надежны и это их основной недостаток. При работе с ними следует придерживаться нескольких правил безопасности:

  • Батарею и ЗУ необходимо расположить на несгораемой поверхности.
  • При работе с простейшим устройством следует использовать средства индивидуальной защиты — резиновый коврик и изолирующие перчатки.
  • Когда ЗУ используется впервые, необходимо внимательно следить за ходом зарядки.
  • Основными параметрами, которые следует контролировать, являются ток, напряжение на клеммах батареи, температура корпуса ЗУ и АКБ.
  • Если самодельное зарядное устройство планируется оставлять на ночь, необходимо предусмотреть систему аварийного отключения от сети.

Правильно собранное самодельное зарядное устройство может стать хорошей альтернативой заводскому прибору. Кроме этого, используя подручные материалы и детали от вышедших из строя устройств, можно неплохо сэкономить.

Зарядное устройство для автомобильного аккумулятора своими руками: принцип работы, простые схемы

  • Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.
  • Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.
  • Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.
  • Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.
  • Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 амперчасов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 амперчасов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Введите электронную почту и получайте письма с новыми поделками.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

  1. Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.
  2. По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.
  3. Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).
  4. Плата в формате .lay; скачать…
  5. Автор; АКА КАСЬЯН

Источник: https://xn--100—j4dau4ec0ao.xn--p1ai/sxema-prostogo-zaryadnogo-ustrojstva-dlya-akb/

Автомобильное зарядное устройство своими руками — пошаговое описание как сделать зарядку для АКБ (85 фото + видео)

Зарядное устройство (ЗУ) для аккумуляторной батареи – вещь, необходимая любому автовладельцу. Его продают во всех магазинах, специализирующихся на продаже автодетелей. Однако стоимость ЗУ способна значительно опустошить ваш кошелёк.

Кроме того, вам придётся время от времени ездить в сервисный центр для проведения его профилактики. Поэтому лучше всего собрать конструкцию самим. Как сделать автомобильное зарядное устройство своими руками — в этой статье.

Причины и признаки того, что АКБ нуждается в зарядке

Считается, что аккумулятор может разрядиться в следующих случаях:

  • при большой изношенности;
  • при нарушении правил эксплуатации АКБ;
  • продолжительное простаивание автомобиля зимой;
  • езда с частыми остановками, когда батарея не успевает полностью зарядиться;
  • не выключение электрических приборов машины во время её стоянки;
  • выход из строя проводки и электрооборудования авто;
  • наличие утечек по электроцепям.
  • Признаками, указывающими на разряд АКБ, являются:
  • при запуске зажигания лампочки на панели или не светятся, или святятся тускло;
  • при включённом состоянии мотора стартер остаётся неподвижным;
  • появление посторонних звуков в области стартера;
  • автомобиль не реагирует на включение зажигания.

Если вы обнаружили один из подобных «симптомов», нужно провести проверку состояния клемм аккумулятора. Им, возможно, требуется очистка и поджатие.

Зимой можно занести АКБ в отапливаемое помещение, чтобы она прогрелась, или попытаться «прикурить» от другого авто. Если все эти способы не дают результата, то единственный выход — применить ЗУ.

Принцип действия

Рассмотрим схему зарядных устройств автомобильных аккумуляторов своими руками.

По виду исполнения в подобных приспособлениях используется свинцово-кислотная батарея, состоящая из шести последовательно соединённых между собой элементов питания. Номинальное напряжение каждого компонента – 2,2В.

Внешне звенья батареи имеют вид решётчатых пластин из свинца, покрытых активным материалом и погружённых в электролитический раствор. Электролит представляет собой серную кислоту, раздавленную дистиллированной водой.

У каждой пластины два изолированных друг от друга полюса: положительный (с покрытием из диоксида свинца) и отрицательный (покрытый губчатым свинцом). Корпус элемента обычно полипропиленовый.

  1. Подключение к аккумулятору нагрузки способствует началу химической реакции активного материала с электролитической жидкостью, результатом которой является выработка электрического тока.

При зарядке аккумуляторной батареи происходит обратное действие. Процесс преобразования сульфата свинца и воды приводит к повышению плотности электролита и восстановлению величины заряда.

Зарядка АКБ в домашних условиях

Если вы обнаружили, что АКБ на вашей машине разрядилась, а СТО и автомагазинов поблизости нет – расстраиваться не стоит.

Вы можете, используя доступные средства, смастерить зарядное устройство для аккумулятора машины своими руками. Существует несколько вариантов.

Вариант первый – элементарная конструкция на 6В и 12В, состоящая из понижающего трансформатора и мощного выпрямителя. Предназначение – зарядка свинцовых АКБ ёмкостью 10 – 120 А/ч.

  • Еще одна разновидность простого зарядного автомобильного устройства своими руками собирается из обыкновенного блока питания ноутбука.

При этом обязательно нужно включить в цепь заряда ограничивающее сопротивление в виде автомобильной электролампочки.

Третий вариант – приспособление с плавной регулировкой тока. В изготовлении оно чуть труднее. Дефицитных деталей также не потребуется. Такой прибор можно использовать для зарядки аккумуляторов с рабочим напряжением 12В и ёмкостью до 120 А/ч.

Собственноручная сборка ЗУ имеет ряд преимуществ. Главным из них является облегчение ремонта автомобильного зарядного устройства своими руками, ведь вам уже знакомы его конструкционные особенности.

  1. Занимаясь самостоятельным изготовлением зарядки для АКБ, важно точно следовать правилам техники безопасности и использовать индивидуальные средства защиты в виде перчаток и резинового коврика.
  2. Также желательно применять особый инструмент с электроизоляционным покрытием.

Фото автомобильного зарядного устройства своими руками

Пожалуйста, сделайте репост;)

Источник: https://avtoadvice.ru/avtomobilnoe-zaryadnoe-ustrojstvo-svoimi-rukami/

Зарядное устройство своими руками для зарядки автомобильного аккумулятора – инструкция по проектированию и созданию устройства (105 фото и схем)

Практически каждый современный автомобилист встречался с проблемами аккумулятора. Для того чтобы возобновить его нормальную работоспособность, необходимо иметь мобильное зарядное устройство. Оно позволяет реанимировать устройство в считанные секунды.

Главная составляющая деталь любой зарядки – трансформатор. Благодаря ему можно сделать простое зарядное устройство своими руками в домашних условиях.

Здесь вы узнаете какие детали понадобятся при сборке конструкции. Советы опытных экспертов помогут избежать распространённых ошибок.

Как должна осуществляться зарядка аккумулятора?

Заряжать аккумулятор необходимо по определенным правилам, которые помогут продлить эксплуатационный срок данному устройству. Нарушение одного из пунктов может спровоцировать преждевременную поломку деталей.

Параметры зарядки должны подбираться в соответствии с характерными особенностями автомобильного аккумулятора. Этот процесс позволяет регулировать специализированное устройство, которое продается в специализированных отделах. Как правило, оно имеет довольно высокую стоимость, что делает его не доступным для каждого потребителя.

Именно поэтому большинство предпочитает сделать блок питания зарядного устройства своими руками. Перед тем как приступить к рабочему процессу, необходимо ознакомиться с видами зарядок для машины.

Разновидности зарядки для аккумуляторных батарей

Процесс заряжения аккумуляторных батарей представляет собой восстановление утраченной мощности. Для этого используют специальные клеммы, которое продуцируют постоянный ток и постоянное напряжение.

В процессе подсоединения важно соблюдать полярность. Неправильная установка приведет к появлению короткого замыкания, которое приведет к возгоранию деталей внутри автомобиля.

Опытные автомобилисты рекомендуют применять постоянный ток. Он долго будет восстанавливать мощность, но при этом не сокращая эксплуатационный срок деталям. В среднем это время составляет от 10 до 15 часов.

Для быстрого реанимирования аккумулятора, рекомендуют использовать постоянное напряжение. Оно способно восстановить работоспособность автомобиля за 5 часов.

Простая схема зарядного устройства

Из чего можно сделать зарядное устройство? Все детали и расходные материалы, можно использовать из старых бытовых приборов.

Для этого понадобится:

Понижающий трансформатор. Он имеется в старых ламповых телевизорах. Он помогает понизить 220 В до необходимых 15 В. На выходе трансформатора получится переменное напряжение. В дальнейшем его рекомендуется выпрямить. Для этого понадобится выпрямляющий диод. На схемах как сделать зарядное устройство своими руками, изображен чертеж соединений всех элементов.

Диодный мост. Благодаря ему получают отрицательное сопротивление. Ток получается пульсирующим, но контролируемым. В некоторых случаях применяют диодный мост со сглаживающим конденсатором. Он обеспечивает постоянный ток.

Расходные элементы. Здесь присутствуют предохранители, а также измерители. Они помогают контролировать весь процесс подачи заряда.

Мультиметр. Он будет указывать на перепады мощности в процессе зарядки автомобильного аккумулятора.

Единственным недостатком этого способа, является отсутствие возможности контролировать параметры подаваемой мощности. Здесь важно получить заряд в пределах 15 В. Чтобы ток получился намного больше, рекомендуется использовать дополнительный резистор.

Это устройство в процессе работы будет сильно греться. Предотвратить перегревание установки поможет специальный кулер. Он будет контролировать скачки мощности. Его используют вместо диодного моста. На фото зарядного устройства своими руками запечатлено готовое оборудование для дозарядки автомобильного аккумулятора.

Регулировать процесс можно путем изменения сопротивления. Для этого используют подстроечный резистор. Это способ применяют в большинстве случаев.

Сделать ручную регулировку подающего тока можно при помощи двух транзисторов и подстроечного резистора. Эти детали обеспечивают равномерную подачу постоянного напряжения и обеспечивают правильный уровень напряжения на выходе.В интернете представлено множество идей и инструкций как сделать зарядное устройство.

Фото зарядного устройства своими руками

Присоединяйтесь к обсуждению обзора!

Источник: https://clubsamodelok.ru/zaryadnoe-ustrojstvo-svoimi-rukami/

Зарядное устройство для автомобильного аккумулятора своими руками

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи.

При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток.

Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора.

Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается.

Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

  Как снять патрон с шуруповёрта своими руками

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5.

Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.

Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А.

На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242.

Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ.

Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В.

PA1 — амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

  Модели и чертежи отвалов для мотоблока своими руками

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А.

Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт.

Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

  Изготовление картофелекопалки для мотоблока своими руками

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность — не менее 10 Вт.

Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ.

Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Источник: https://pochini.guru/tehnika/zaryadnoe-ustroystvo

Простое зарядное устройство — Сообщество «Кулибин Club» на DRIVE2

Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя.

И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора. Однако стоимость зарядного устройства сильно «бьёт» по карману, и поэтому я решил сам собрать зарядное устройство.

Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пенопласта, автомобильного насоса-компрессора для подкачки колёс. Устройство не содержит дефицитных деталей и при исправных элементах не требует налаживания.

Для данной схемы использован сетевой понижающий трансформатор ТС270-1(выдран из старого лампового телевизора) с напряжением вторичной обмотки 17В. Без внесения изменений подойдет любой с напряжением на вторичной обмотке от 17 до 22В. Корпус использован от блока управления станции катодной защиты газопровода КСС-600(охлаждение в корпусе естественное).

В данном зарядном устройстве есть возможность, при возникшей необходимости, установить схему для зарядки малогабаритных аккумуляторов (типа Д-0.55С и др). При этом контроль зарядного тока осуществляется установленным миллиамперметром.Принципиальная схема устройства показана на фото ниже.

Принципиальная схема устройства

Она представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1,VT2.

Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот. Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1.

Печатная плата устройства и монтажная плата на фото ниже.

Печатная плата

Монтажная плата

Если у готового, используемого трансформатора на вторичной обмотке более 17В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26В до 200Ом). В случае, когда вторичная обмотка имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.

  • А при сборке выпрямителя точно по схеме подойдут следующие детали:
  • Больше фото можно посмотреть в моём блоге тут:)

С1 — К73-11, емкостью от 0,47 до 1мкФ, а также К73-16, К42У-2, МБГП.Диоды VD1 — VD4 могут быть любыми на прямой ток 10А и обратное напряжение не менее 50В (это серии Д242, КД203, КД210, КД213).Вместо тринистора Т10-25 подойдут КУ202В — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250 (В моём случае это Т10-25).Транзистор КТ361А заменим на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К, а КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, КТ503В — КТ503Г, П307.Вместо диода КД105Б подойдут диоды КД105В, КД105 или Д226 с любым буквенным индексом.Переменный резистор R1 — СП-1, СП3-30а или СПО-1.Амперметр РА1 — любой постоянного тока со шкалой на 10А либо изготовить самому из любого миллиамперметра, подобрав к нему шунт.Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.Предохранитель FU1 – плавкий на 3А, FU2 – плавкий на 10А.Диоды и тринистор необходимо установить на теплоотводы, каждый полезной площадью около 100см². Для улучшения теплового контакта данных деталей с теплоотводами желательно использовать теплопроводные пасты.

Источник: https://www.drive2.ru/c/2014662/

Автоотключение любого ЗУ автомобиля при завершении зарядки, схема

Всем привет, сегодня рассмотрим несколько универсальных схем, которые позволят отключить зарядное устройство при полной зарядке аккумулятора, иными словами внедрением этих схем можно построить автоматическое зарядное устройство или доработать функцию автоотключения промышленной зарядки.

Сразу хочу пояснить один момент, если зарядное устройство работает по принципу стабильный ток — стабильное напряжение, то нет смысла использовать функцию автоотключения, поскольку естественным образом по мере заряда батареи ток в цепи будет падать и в конце заряда он равен нулю.

  • Схемы, которые мы сегодня рассмотрим, предназначены для работы с автомобильными свинцово — кислотными аккумуляторами, хотя они могут работать с любыми зарядными устройствами, без всякой переделки последних.
  • Начнём с простых схем…
  • Первый вариант построен всего на одном транзисторе, переключающим элементом в схеме является реле с напряжением катушки 12 вольт.

Использованы те контакты, которые замкнуты без подачи питания на реле

Резистивный делитель или переменный резистор, задает нужное напряжение, смещение на базе транзистора, тот срабатывая подаёт питание на обмотку реле, вследствие чего реле включается размыкая контакт, который в состоянии покоя был замкнут и через который протекал ток заряда.

Используя подстроечный резистор мы можем выставить то напряжение при котором сработает транзистор.

Для настройки схемы удобно использовать регулируемый источник питания,

на котором нужно выставить напряжение около 13.5-13.7 вольт, что равноценно напряжению полностью заряженного автомобильного аккумулятора.

Затем медленно вращая подстроечный резистор добиваемся срабатывания транзистора, а следовательно и реле при выставленном напряжении.

Теперь проверяем схему еще раз, допустим в начале заряда напряжение на аккумуляторе 12 вольт, по мере заряда оно увеличивается и по достижению порога 13.5 вольт реле срабатывает, отключив зарядное устройство от сети.

Кстати, можно подключить реле следующим образом, в этом случае зарядка не отключается от сети,

а просто пропадает выходное напряжение и процесс заряда прекратиться, в этом случае контакты реле должны быть рассчитаны на токи в полтора раза больше максимального выходного тока зарядного устройства.

Транзистор буквально любой обратной проводимости, советую взять транзисторы средней мощности наподобие BD139,

  1. диоды в эмиттерной цепи транзистора тоже особо не критичны, ток потребления схемы всего 10-20 миллиампер, но схема имеет несколько недостатков.
  2. Например, низкая помехоустойчивость, из-за которых возможно ложное срабатывание реле и невысокая точность работы, из-за отсутствия источника опорного напряжения и прочих стабилизирующих узлов.
  3. Добавив в базовую цепь ключа стабилитрон,

мы решим указанные проблемы и появится возможность довольно точно выставить нужное напряжение срабатывания.

Для настройки советую использовать многооборотный подстроечный резистор. Диод VD1 защищает транзистор от самоиндукции в случае размыкания реле.

Настраиваем схему точно так, как в первом варианте, лампочка имитирует процесс заряда и подключена вместо аккумулятора, при превышении определенного порога, реле срабатывает и лампа потухает.

Вторая схема построена на базе любого таймера NE555, этот вариант похож на предыдущие, микросхема NE555 в своей конструкции содержит два компаратора, пониженное опорное напряжение формирует стабилитрон, порог срабатывания устанавливается подстроечным резистором, как только напряжение на батарее будет равна пороговому, на выходе таймера получим высокий уровень, вследствие чего сработает транзистор.

В этом варианте использовать те контакты реле, которые находятся в разомкнутом состоянии без подачи питания. Во время настройки точку «А» размыкают от выходного контакта и подключают к плюсу зарядного устройства. К выходному контакту реле подключают лампу, второй вывод лампы подключают к массе питания.

В обеих схемах порог срабатывания можно выставить в пределах от 13.5 до 14 вольт, напряжение полностью заряженного автомобильного аккумулятора составляет от 12.6 до 12.8 вольт но при заведенном двигателе напряжение доходит до 14.5 вольт, так что небольшой перезаряд аккумулятора никак не повредит.

Аналогичную схему можно собрать на базе компаратора или операционного усилителя в компараторном включении, принцип работы тот же, что и в случае внедрения таймера NE555. В этой же статье, приведены наиболее простые и доступные варианты.

Все печатки в формате .lay можно скачать для повторения.

Автор; Ака Касьян

Больше интересных статей можно почитать на сайте 100-советов.рф

Подписывайтесь на канал, будет много интересных статей. Ставьте палец вверх, если понравилась статья.

Источник: https://zen.yandex.ru/media/id/5c73e4a1fc48e500b1b3a737/5d03e60224ccb50dc611c031

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки.

Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей.

Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт.

Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать.

Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца.

Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах.

Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше.

Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования.

В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт.

Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла.

Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

1 схема мощного ЗУ

Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость.

Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт.

Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так.

Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить.

Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

Схема

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

Схема

1 простая схема — как собрать ЗУ

Схема

Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

РадиоДом — Сайт радиолюбителей

Выпрямительные диоды в зарядных приспособлениях могут быть выведены из строя при случайном замыкании выходных клемм либо неверном включении АКБ. Обычное средство защиты — плавкие предохранители, но для возобновления работоспособности прибора в этом потребуется замена спаленного предохранителя новым, которого как традиционно в нужный момент под рукою нет. Приходится ставить «жучок», чем ещё более снижается защищённость зарядного устройства.

Добавлено: 07.10.2018 | Просмотров: 16458 | Зарядное устройство

Зарядное устройство (ЗУ) обеспечивает условия заряда, близкие к оптимальным. Основным его отличием данной схемы от остальных является то, что сравнение напряжения на заряжаемой батарее с образцовым происходит в течение отрезка времени, при котором через батарею не протекает зарядный ток (при зарядном токе по напряжению на батарее затруднительно судить о степени её заряда). Сравнение происходит в начале каждого положительного полупериода, пока тиристор VS1 ещё закрыт.

Добавлено: 07.10.2018 | Просмотров: 11322 | Зарядное устройство

Устройство с электронным управлением зарядным током, выполнено на базе тиристорного фазоимпульсного регулятора мощности. Оно не содержит редкие радиокомпоненты, при заведомо рабочих деталях не требует налаживания. Зарядное устройство позволяет заряжать АКБ током от 0 до 10 ампер, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы и просто блока питания на все случаи жизни.

Добавлено: 24.09.2018 | Просмотров: 29291 | Зарядное устройство

Устройство в условиях хранения аккумулятора в зимнее время позволяет автоматом подключать его на зарядку при понижении напряжения и также автоматом отключать зарядку при достижении напряжения, соответственного полностью заряженному аккумулятору. Схема обеспечивает 2 режима работы — ручной и автоматический.

Добавлено: 01.07.2018 | Просмотров: 8382 | Зарядное устройство

Схемы зарядных устройств для автомобильных АКБ довольно распространены и каждая обладает своими достоинствами и недостатками.  Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах. Эти схемы обладают существенными недостатками — ток заряда непостоянен и зависит от достигнутого на АКБ напряжения.

Добавлено: 27.06.2018 | Просмотров: 5187 | Зарядное устройство

При зарядке автомобильных АКБ производители рекомендуют поддерживать средний зарядный ток на постоянном уровне. Обычно в стабилизаторах тока в качестве регулирующего элемента используют транзистор, но в процессе работы на нем рассеивается большая мощность, снижая КПД устройства и в связи с этим приходится применять огромные радиаторы.

Добавлено: 25.06.2018 | Просмотров: 6392 | Зарядное устройство

В статье представлена схема автомобильного зарядного устройства для мобильного телефона работающего от прикуривателя автомобиля. Схема данного устройства типовая и может немного отличатся у отдельных производителей. При включении зарядного устройства в гнездо прикуривателя без телефона, горит зеленый светодиод (G).

Добавлено: 25.03.2018 | Просмотров: 3072 | Зарядное устройство

Правильное соблюдение режима эксплуатации аккумуляторных батарей (АКБ), и главное, режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку АКБ производят током, значение которого можно определить по формуле: I=0,1*Q. Где I — средний зарядный ток в амперах., а Q — паспортная электрическая емкость АКБ в ампер-часах. Например, АКБ ёмкостью 70 ампер-час заряжают током не более 7 ампер.

Добавлено: 25.03.2018 | Просмотров: 12709 | Зарядное устройство

Описываемое зарядное устройство было разработано для восстановления и заряда АКБ автомобилей и мотоциклов. Его главная особенность — это импульсный ток заряда, что положительно сказывается на времени и качестве регенерации АКБ. В новой разработке использована схема на составных тиристорах, расширена полоса регулирования, не требуются мощные охлаждающие теплоотводы.

Добавлено: 11.03.2018 | Просмотров: 14502 | Зарядное устройство

Схема зарядного устройства для автомобильного АКБ с выходным плавно регулируемым напряжением от 2 до 20 вольт с током до 6 ампер. Снабжен стабилизатором. Состоит из сетевого понижающего трансформатора на 200 Вт, зарубежная микросхема TL494CN и ключ на транзисторе КТ825.

Добавлено: 09.12.2017 | Просмотров: 10022 | Зарядное устройство
Автомобильное зарядное устройство

— электрические схемы

Это зарядное устройство быстро и легко зарядит большинство свинцово-кислотных аккумуляторов.
Зарядное устройство обеспечивает полный ток, пока ток, потребляемый аккумулятором
, не упадет до 150 мА. В это время применяется более низкое напряжение, чтобы завершить работу
и предотвратить перезарядку. Когда аккумулятор полностью заряжен, цепь
отключается и загорается светодиод, сообщая вам, что цикл
завершен.

Схема

Детали

Деталь Общее кол-во Описание Замены
R1 1 Резистор 500 Ом 1/4 Вт
R2 1 Резистор 3 кОм 1/4 Вт
R3 1 Резистор 1 кОм 1/4 Вт
R4 1 Резистор 15 Ом 1/4 Вт
R5 1 Резистор 230 Ом 1/4 Вт
R6 1 Резистор 15 кОм 1/4 Вт
R7 1 0.2 Ом 10 Вт Резистор
C1 1 0,1 мкФ 25 В керамический конденсатор
C2 1 1 мкФ 25 В электролитический конденсатор
C3 1 1000pF 25V Керамический конденсатор
D1 1 1N457 Диод
1 квартал 1 2N2905 PNP транзистор
U1 1 Регулятор LM350
U2 1 LM301A Операционный усилитель
S1 1 нормально разомкнутый кнопочный переключатель
РАЗНОЕ 1 Провод, плата, радиатор для U1, корпуса, переплетных столбов или зажимов типа «крокодил» для вывода

Банкноты

  1. Схема предназначалась для питания от источника питания, поэтому
    является причиной отсутствия трансформатора, выпрямителя или фильтрующих конденсаторов на схеме
    .Нет причин, по которым вы не можете их добавить.
  2. Для U1 потребуется радиатор.
  3. Чтобы использовать схему, подключите ее к источнику питания / вставьте вилку.
    Затем подключите заряжаемую батарею к выходным клеммам. Все, что вам нужно сделать
    , это нажать S1 (переключатель «Пуск») и дождаться завершения цепи
    .
  4. Если вы хотите использовать зарядное устройство без внешнего источника питания, используйте следующую схему.

    Деталь
    Общее кол-во.
    Описание
    Замены

    C116800uF Электролитический конденсатор 25 В
    T113A Трансформатор 15 В
    BR115A Мостовой выпрямитель 50 В 10A Мостовой выпрямитель 50 В
    S115A Переключатель SPST
    F114A Предохранитель 250 В

  5. В первый раз, когда вы используете схему, вы должны проверять ее
    время от времени, чтобы убедиться, что она работает должным образом и аккумулятор
    не заряжается слишком сильно.
Цепи зарядного устройства

| CircuitDiagram.Org

Вот схема контроля батареи, которую можно использовать для контроля напряжения свинцово-кислотных батарей 12 В, таких как автомобильные.Схема построена на микросхеме LM3914 …

Это проект автомобильного зарядного устройства mini USB. Схема может заряжать USB-устройства от автомобильного аккумулятора …

Схема полностью автоматического зарядного устройства NiMH аккумуляторов с использованием интегрального положительного стабилизатора напряжения IC 7805, обеспечивающего постоянный ток для зарядки аккумуляторов …

Очень интересная и полезная схема зарядного устройства для аккумуляторов, которая может заряжать аккумуляторы многих электронных устройств, например радио, mp3-плееров, сотовых телефонов…

Это портативное зарядное устройство USB с питанием от батареи. Эта схема может заряжать ваши КПК, Ipods, MP3-плееры и любое устройство, которое подключается к компьютеру через USB-порт для зарядки …

Это схема зарядного устройства для никель-кадмиевых аккумуляторов. Эта схема может заряжать аккумуляторную батарею 12 В Nicd. Но вы также можете заряжать аккумуляторы 6 В и 9 В …

Схема зарядного устройства для свинцово-кислотных аккумуляторов

с использованием известной микросхемы IC LM 317. Схема обеспечивает правильное напряжение для зарядки герметичных свинцово-кислотных аккумуляторов на 12 В или аккумуляторов SLA на 12 В…

Вот схема зарядного устройства для солнечных батарей, которое может заряжать 12-вольтовые батареи SLA. Эта схема зарядного устройства для солнечных батарей имеет функцию автоматического отключения, поэтому она автоматически прекращает зарядку, когда батарея полностью заряжена …

Это схема простого зарядного устройства для одноячеечной литий-ионной батареи. В схеме зарядного устройства для литий-ионных аккумуляторов используется стабилизатор LP2931 IC …

Это принципиальная схема полностью автоматического зарядного устройства 12 В для зарядки аккумуляторов автомобилей и т. Д.Эта схема имеет максимальную скорость зарядки 2 ампера …

Схема может заряжать никель-кадмиевые батареи 2,4 В, 4,8 В и 9,6 В. Микросхема LM317T, показанная на схеме зарядного устройства для никель-кадмиевых аккумуляторов, используется для регулирования …

Вот схема зарядного устройства 6 В, 4,5 Ач, которая может заряжать свинцово-кислотные батареи 6 В, 4,5 Ач. Схема очень проста и состоит всего из нескольких компонентов …

Показанный здесь проект представляет собой схему резервного питания от батареи 6 В. Схема проста в сборке и работает как мини-ИБП для устройств на 6 В.

Хорошая схема зарядного устройства для щелочных батарей. Интересная особенность этой схемы заключается в том, что в ней используется светодиод, который мигает, показывая заряд батареи, когда вы подключаете полностью разряженную батарею, светодиод мигает быстрее, но когда начинается процесс зарядки батареи, скорость мигания светодиода уменьшается медленно и полностью прекращается. когда аккумулятор будет полностью заряжен.

Это схема преобразователя постоянного тока в постоянный, это универсальная схема, которая может использоваться для многих целей, на этой схеме LT1073 используется для 1.Преобразование 5 вольт в 5 вольт, напряжение может быть взято от батареи 1,5 вольта любого размера, например AA или AAA.

Миниатюрная схема зарядного устройства для литий-ионных аккумуляторов с малым падением напряжения с использованием LTC1731.

Полезная схема солнечного зарядного устройства, схема заряжает батареи типа AA или AAA. Наилучшая мощность зарядки достигается при помещении схемы под прямыми солнечными лучами. Эту схему также можно использовать для питания любого оборудования, например радио, дискового манипулятора, пальмы и т. Д., В котором используются батареи типа AA или AAA.

Эта цепь резервного аккумулятора на 9 В работает как мини-ИБП.Схема мгновенно перейдет на питание от батареи, если входное напряжение отсутствует …

Вот схема простого DIY-телефона на солнечных батареях или зарядного устройства USB. Эта схема зарядного устройства USB на солнечной батарее может использоваться для зарядки …

Вот проект простой схемы монитора батареи. Схема будет контролировать напряжение батарей 12 и 9 В и указывать с помощью светодиода, когда уровень заряда батареи будет …

Это проект универсальной схемы таймера автоматической зарядки аккумулятора.Схема способна заряжать многие типы аккумуляторов от 5 до 12 вольт …

На рисунке ниже показан очень полезный проект монитора уровня заряда батареи с использованием микросхемы TL071. Схема проста и удобна в сборке и использовании …

Вот очень полезный проект отключения низкого напряжения аккумулятора или цепи отключения. Аккумуляторы обеспечивают очень хорошую производительность и срок службы, если мы позаботимся о …

Это очень полезный проект простой схемы индикатора состояния батареи 12 В.Схема будет отображать уровень напряжения аккумулятора 12В четырьмя светодиодами …

Чтобы батареи прослужили дольше, необходимо заботиться о них, одним из основных факторов, ослабляющих аккумуляторные батареи, является их глубокая разрядка …

В этой статье описывается очень простая схема автоматического зарядного устройства 12, 9 В, 6 В. Схема может быть настроена для зарядки аккумуляторов разного напряжения …

Вот очень простая схема автоматического зарядного устройства 12 В и 6 В с реле автоматического отключения.Термин «автоматическое отключение» означает, что цепь автоматически …

Мы часто чувствуем потребность в автоматическом ИБП (источник бесперебойного питания) или в цепи обратной батареи для наших проектов на 5 В, 6 В и 9 В. Итак, здесь мы разработали хороший …

Этот блок аккумуляторов для сотовых телефонов своими руками можно использовать в качестве резервного зарядного устройства для ваших мобильных телефонов и других устройств, например MP3-плееров, iPad, iPod и любых других устройств, которые …

Очень полезный проект простого аварийного сотового телефона или мобильного зарядного устройства.Схема также может использоваться для зарядки других устройств, которым требуется вход 5 В для зарядки …

Проект простой схемы автоматического резервного батарейного питания 12В. Схема автоматически переключает нагрузку на батарею при отсутствии сетевого питания …

На рисунке ниже показан очень простой и полезный проект индикатора низкого напряжения для батарей 12 В с использованием микросхемы таймера 555. Схема укажет, активировав светодиод …

Вот очень простой и легкий проект индикатора разряда батарей 555 для 6В батарей.Каждый раз, когда батарея полностью разряжается, она теряет часть своей емкости из-за …

Вот очень простой и легкий проект индикатора разряда батарей 555 для 6В батарей. Схема автоматически отключит аккумулятор от нагрузки при напряжении …

Схема может быть настроена для автоматической зарядки любого типа аккумуляторной батареи от 6 В до 24 В и подачи максимального тока 10 А …

Схема может быть с батареями 12 В, размещенными где угодно, например, солнечные электростанции, ИБП и т.Его можно использовать с любыми типами аккумуляторов, такими как герметичные свинцово-кислотные, свинцово-кислотные …

Эту простую двухступенчатую схему контроля высокого и низкого уровня заряда батарей можно использовать с различными батареями от 6 В до 12 В. Схема довольно проста в сборке и использовании невысокой стоимости …

Простой недорогой и точный монитор напряжения батареи с 4 светодиодами с использованием двух рабочих микросхем lm358 …

Это интеллектуальное зарядное устройство позаботится о вашей перезаряжаемой батарее и автоматически начнет зарядку при падении напряжения батареи…

Хороший 4-х светодиодный индикатор батареи LM324. Схема универсальна и может применяться от АКБ любого типа и напряжения …

Вот проект схемы монитора батареи, использующей LM339 IC. Схема может использоваться для контроля любых типов аккумуляторов от 6В до 12В …

На рисунке ниже показан проект монитора автомобильного аккумулятора с функцией отключения разряда аккумулятора. Схема может использоваться с любым транспортным средством …

Это проект недорогого 8-светодиодного монитора батареи, использующего LM324 IC.Схема может использоваться для контроля различных напряжений и типов батарей. Используется два LM324 …

Выход велосипедного динамо-машины можно использовать для питания различных устройств, в этой статье мы обсуждаем схему зарядного устройства USB для велосипеда, сделанную самим собой …

Вот очень интересный и полезный проект схемы автоматической велосипедной динамо-фары и зарядного устройства …

Эта схема обеспечивает раннее предупреждение или индикацию выхода из строя автомобильного аккумулятора путем включения зуммера на несколько секунд, чтобы вы могли понять, что аккумулятор сейчас…

Вот очень полезный проект схемы сигнализации полного заряда аккумулятора. Схема может использоваться с разными типами батарей с разным напряжением …

На рисунке показана цепь аварийной сигнализации индикатора низкого уровня заряда батареи, цепь может быть настроена для контроля любого типа батареи от 6 В до 24 В. Он подаст звуковой сигнал …

Резервный аккумуляторный источник питания необходим в ситуациях, когда требуется непрерывная работа оборудования без отключения питания во время отключения электроэнергии…

Солнечные панели являются хорошим источником бесплатной энергии, солнечные системы обычно используются для зарядки высокоамперных аккумуляторов 12 В, в некоторые дни аккумуляторы заряжаются целый день …

Это проект простого транзисторного зарядного устройства для солнечных батарей с функцией автоматического отключения, которое будет заряжать батарею от солнечной панели и отключать ее при заполнении …

Микросхема

LM3914 предназначена для измерения уровней напряжения источников питания и аккумуляторов, но ее можно легко превратить в очень интеллектуальное автоматическое зарядное устройство, которое можно использовать…

Вот проект автоматического зарядного устройства 12 В и 6 В с функцией автоматического определения заряда батареи. Обычно зарядные устройства предназначены для зарядки батарей с одним напряжением …

На рисунке ниже показана регулируемая цепь отключения разряда батареи для всех аккумуляторных батарей. Аккумуляторы очень дороги, будь то свинцово-кислотные батареи, …

Зарядное устройство

Circuitsfree electronic circuit links

Зарядное устройство 12 В — переменный источник питания — Схема, представленная здесь, может заряжать свинцово-кислотную батарею 12 В емкостью от 50 Ач до 80 Ач (даже до 100 Ач) и может даже использоваться как Регулируемая мощность 18V DC __ Electronics Projects for You

Вход 12 В Зарядное устройство для аккумулятора 12 В — Хорошо подходит для зарядки гелевых аккумуляторов от автомобиля при работающем или остановленном двигателе.__ Разработан Манфредом Морнхинвегом

Зарядное устройство с дифференциальной температурой 12 В, 4 элемента AA. В этом проекте вносится ряд улучшений по сравнению с моей схемой зарядного устройства NIC D с контролируемой температурой. Новая схема работает от 12 В постоянного тока, что позволяет использовать ее в автомобиле или от солнечной системы на 12 В. Кроме того, светодиод датчика тока проверяет, получают ли элементы зарядный ток. Обратите внимание, что схема датчика тока __ Разработана G. Forrest Cook

12v_To_24v_Solar_Battery_Charger — Некоторое время назад я получил электронное письмо от посетителя Discover Circuits.Он хотел знать, как можно использовать одну солнечную панель на 12 В для зарядки батареи свинцово-кислотных аккумуляторов на 24 В. Он сказал, что использовал 24-вольтовую батарею для работы аварийной системы электроснабжения 120 В переменного тока. Используя более высокие 24 В вместо 12 В, его инвертор постоянного тока в переменный мог выдавать больше пиковой мощности для запуска таких вещей, как колодезные насосы и оконные кондиционеры. . . . Hobby Circuit Дэвида Джонсона P.E. — июль 2017 г.

Зарядное устройство для 2-элементных литий-ионных аккумуляторов

— эта схема была создана для зарядки нескольких литиевых элементов (3.6 вольт каждый, емкость 1 ампер-час), установленный в переносном транзисторном радиоприемнике. Зарядное устройство работает путем подачи короткого импульса тока через последовательный резистор и последующего контроля напряжения батареи, чтобы определить, требуется ли еще один импульс. Ток можно регулировать путем изменения последовательного резистора или регулировки входного напряжения __ Разработано Биллом Боуденом

Схема изолятора батареи 2–12 В с LTC4412 — только что анонсировал небольшой аккуратный чип (LTC4412). Он был разработан для использования вместе с внешним силовым полевым транзистором P-канала, чтобы сформировать идеальную диодную функцию с очень низким нулем.Падение напряжения 05в. Микросхема контролирует напряжение на eit. . . Hobby Circuit, разработанный Дэвидом А. Джонсоном P.E. — август 2006 г.

Зарядное устройство для литий-ионных аккумуляторов с 2-элементными солнечными панелями. На этой схеме показано компактное зарядное устройство на солнечных батареях, использующее LTC3105 в качестве повышающего преобразователя и LTC4071 в качестве шунтирующего литий-ионного зарядного устройства. Двухэлементная солнечная панель мощностью 400 мВт обеспечивает входную мощность для LTC3105 для выработки тока заряда более 60 мА при полном солнечном свете. Контроль максимальной мощности предотвращает попадание напряжения солнечной панели __ Linear Technology / Analog Devices App Note, 1 июля 2011 г.

3.Для питания литиевых элементов 3 В требуется один индуктор — 05.08.99 Идеи дизайна EDN: из-за растущей популярности литий-ионных (Li-ion) батарей и источников питания 3,3 В разработчикам портативного оборудования часто приходится создавать источник питания 3,3 В, который один литий-ионный элемент может питать __ Схема разработки Мэтта Шиндлера и Джея Сколио, Maxim Integrated Products, Саннивейл, Калифорния

4-элементный никель-кадмиевый стабилизатор / зарядное устройство для портативных компьютеров — DN54 Примечания по конструкции__ Linear Technology / Analog Devices

4_D-Cell_LED_Lantern_Modified — Однажды, делая покупки в магазине спортивных товаров, я заметил компактный светодиодный фонарь.Похоже на фонарь, который я мог переделать. Светодиоды фонаря были сгруппированы в три секции по 7 светодиодов в каждой, ориентированные под углом 120 градусов. Светодиоды были стандартными эпоксидными типами Т 1-3 / 4. Фонарь имел трехрежимный переключатель, который выбирал между выключенным, полным и половинным режимами. В режиме половинной мощности горела только половина из 21 светодиода. На полной мощности горели все светодиоды. . . . Hobby Circuit Дэвида Джонсона P.E. — сентябрь 2017 г.

Регулятор на 5 В — Прокрутите для этого — Вам нужно добавить регулятор на 5 В для питания USB-устройства, и этот регулятор должен быть с малым падением напряжения, потребляющим «микро» мощность, чтобы не разряжать аккумулятор. свой собственный.В корпусе PWP есть коммерческие стабилизаторы, такие как TPS76750Q, которые справятся с этой задачей с помощью всего лишь пары хороших керамических байпасных конденсаторов. (Существует поразительное количество подходящих вариантов регуляторов.) Но если вам нравится собирать свой гаджет из имеющихся деталей, ниже приведены несколько схем, которые будут работать. __ Контактное лицо: Чарльз Венцель из Wenzel Associates, Inc.

Солнечное зарядное устройство на 5 В — В этом проекте используется аккумулятор 1,2 В и солнечная панель от солнечного садового светильника. Эти фонари можно купить менее чем за 5 долларов.00 в большинстве магазинов по 2,00 доллара или аналогичных магазинов, где продаются предметы домашнего обихода. __ Связаться с Коллином Митчеллом

Зарядное устройство для гелевых аккумуляторов на 6 В — для этой схемы требуется стабилизированный входной каскад 10 В постоянного тока, способный обеспечить ток 2 А. Начинает цикл зарядки при 240 мА и при полной зарядке автоматически переключается в плавающее состояние (постоянный заряд) 12 мА. __ Разработан Тони ван Рооном VA3AVR

Тестер аккумуляторов NMH / NiCd 6 В — я разработал эту схему для проверки аккумуляторных батарей на 6 В в условиях постоянного тока.В соответствии с конструкцией схема прикладывает к аккумуляторной батарее нагрузку 10 А. На главном силовом транзисторе необходимо использовать радиатор. . . Схема Дэйва Джонсона P.E. — декабрь 2004 г.

Полевое зарядное устройство 7,2 В — Это зарядное устройство было разработано мной в 1993 году, чтобы удовлетворить мою потребность. Это было у меня два R.C. модели лодок, которым требовалось по 2 батареи, и мне нужно было заряжать их одновременно от автомобильного аккумулятора. Я не мог найти для этого коммерческое подразделение, поэтому придумал аккуратный проект, чтобы оплатить счет.Макет был выполнен на 2 прототипах, одна плоская, а другая вертикальная для отображения гистограмм. Перед ними отображается красный фильтр. __ Разработан Тони ван Рооном VA3AVR

Зарядное устройство для литий-ионных аккумуляторов на 8 солнечных элементов, версия 2 — Джим Уилбер рассмотрел мою конструкцию зарядного устройства и прислал мне несколько предложенных изменений. Он предложил использовать идеальную диодную ИС LTC4412 для отключения пути тока от солнечной батареи к батарее в темноте. Он также отметил, что версия 2.Выбранный мною регулятор 5 В от Seiko больше не производился и предлагал использовать шунтирующий источник. . . Схема Дэвида А. Джонсона P.E. — май 2013 г.

8 Светодиодный светильник на солнечных батареях. За последние несколько лет я модифицировал множество солнечных садовых и дорожных светильников. Я покупаю некоторые устройства в магазинах товаров для дома, затем полностью их выпотрошиваю. Достаю аккумулятор, электронную плату управления, светодиод и солнечную панель. Затем я заменяю эти компоненты новыми. Увеличиваю размер солнечной панели и аккумулятора.Я использую более эффективный и яркий светодиод. . . Схема Дэвида Джонсона P.E. — сентябрь 2017 г.

Зарядное устройство Nicad 9 В — только схема __ Разработано Яном Хамером

Схема подключения контроллера заряда солнечной панели Введение в схему подключения контроллера заряда солнечной панели

Схема подключения контроллера заряда солнечной панели

и пошаговое руководство по подключению автономной солнечной системы . Правильное подключение контроллера заряда солнечной панели (MPPT или PWM — одно и то же), солнечной батареи и фотоэлектрической батареи — это важная работа, прежде чем пользоваться солнечной энергией.Схема подключения контроллера заряда панели солнечных батарей

Схема подключения контроллера заряда панели солнечных батарей

Этапы подключения системы солнечной энергии

В целом, существует 5 шагов для подключения системы солнечной энергии
    • Подключение батареи
    • Подключение нагрузки
    • Подключение PV массив
    • Проверьте соединение
    • Проверьте питание
Давайте подключим солнечную энергетическую систему по очереди.

Шаг 1: Подключите аккумулятор.

Примечание. Короткое замыкание между положительной и отрицательной клеммами аккумулятора или короткое замыкание между положительным и отрицательным проводами клеммы может привести к возгоранию или взрыву.Перед подключением батареи к солнечной системе убедитесь, что напряжение батареи выше 6 В. Затем запустите контроллер. Если система составляет 24 В., убедитесь, что напряжение батареи не ниже 18 В. Распознавание напряжения системы является автоматическим процессом, когда При установке предохранителя максимальное расстояние между предохранителем и положительной клеммой аккумулятора должно составлять 150 мм, и перед включением предохранителя убедитесь, что шнур подключен правильно.

Шаг 2: Подключение нагрузки

Клемма нагрузки солнечного контроллера может быть подключена к устройству питания постоянного тока, рабочее напряжение которого совпадает с номинальным напряжением батареи, и контроллер подает питание на нагрузку с напряжением батареи.Подключите положительный и отрицательный полюса нагрузки к клеммам нагрузки контроллера. На стороне нагрузки может быть напряжение. Будьте осторожны, чтобы избежать короткого замыкания при подключении нагрузки. К положительному или отрицательному проводу должен быть подключен предохранитель. нагрузки. Не подключайте предохранитель во время установки. После установки убедитесь, что предохранитель подключен без ошибок. Если нагрузка подключена через распределительный щит, каждая цепь нагрузки имеет отдельный предохранитель, и все токи нагрузки не могут превышать номинальный ток контроллера.

Шаг 3: Подключите фотоэлектрическую батарею

ПРЕДУПРЕЖДЕНИЕ : Опасность поражения электрическим током! Фотоэлектрические батареи могут вызывать очень высокое напряжение, поэтому будьте осторожны при подключении, чтобы избежать поражения электрическим током. Контроллер можно использовать с автономными солнечными энергосистемами на 12 В и 24 В. , или сетевые компоненты с напряжением холостого хода, не превышающим заданное входное напряжение. Напряжение солнечного модуля в системе не должно быть ниже, чем напряжение системы.

Шаг 4: Проверьте соединение

Проверьте все соединения еще раз, чтобы убедиться, что положительные и отрицательные клеммы каждой клеммы правильны или нет.и все 6 клемм должны быть затянуты.

Шаг 5: Подтвердите включение питания

Когда батарея подает питание на контроллер, контроллер запускается, затем загорается светодиодный индикатор батареи на контроллере, убедитесь, что он нормальный. Схема подключения контроллера заряда солнечной батареи

Заключение

Последовательность подключения: сначала подключите аккумулятор, установите режим работы нагрузки через контроллер заряда солнечной батареи, подключите солнечную панель, подключите нагрузку в последнюю очередь, при отключении системы солнечной энергии отключите в обратном порядке Купите лучший контроллер заряда солнечной батареи MPPT: Лучший контроллер заряда от солнечных батарей MPPT для продажи Статьи по теме MPPT vs.ШИМ: какой контроллер выбрать? MPPT Solar Charge Controller Ultimate Guide Солнечный контроллер заряда Окончательное руководство в 2020 году Окончательное руководство по выравниванию заряда батареи (2020) Контроллер заряда солнечной батареи не заряжает Руководство по установке батареи 10 советов по выбору лучшего контроллера заряда солнечной панели

это простые шаги для подключения всего система солнечной энергии. В общем, есть 5 шагов для подключения системы солнечной энергии.

Подключение солнечной батареи

Всегда сначала подключайте солнечную батарею при подключении системы солнечной энергии.

Подключите нагрузку

Подключите нагрузку к порту нагрузки контроллера заряда солнечной батареи

Подключите солнечную батарею

Подключите солнечную батарею после подключения батареи

Подключите инвертор к солнечной батарее

только инвертор разрешен для подключения к солнечной батарее.

Электрические схемы для легковых и грузовых автомобилей Загрузить с практическим руководством

Что такое электрическая схема подключения:

Схема электрических соединений (также известная как принципиальная схема или электронная схема) — это графическое изображение электрической цепи.На нем показаны различные компоненты схемы в виде упрощенных и стандартных пиктограмм, а также силовые и сигнальные соединения (шины) между устройствами. Расположение компонентов и соединений на схеме обычно не соответствует их физическому расположению в готовом устройстве.

Схема подключения автомобиля

включает электрические схемы для автомобилей и электрические схемы для грузовиков.

Программа для электрических схем CAR:

Mercedes-Benz WIS / EPC:

http: // www.obdii365.com/wholesale/2017-09-mb-star-sd-c4-hdd.html

W-I-S net 2017.04: Информационная система для семинаров

EPC.net 2017.04: Электронный каталог запчастей

Обеспечивает полный вид электрической схемы в автомобиле, схемы расположения компонентов и метода обслуживания. Вам нужно ввести номер шасси, после чего вы получите подробные данные о производстве, конфигурации двигателя и модели автомобиля.

Порше ПЭТ 7.3 электронный каталог запчастей:

http://www.obdii365.com/wholesale/porsche-pet-73.html

Каталог запчастей Porsche позволяет вводить VIN-номер машины и проводить фильтрацию, используя его, но при этом номер кузова не учитывается, то есть программа Porsche определит VIN-номер модели и модельный год (используя первые 11 символов VIN), остальные нужно выбирать самостоятельно. Это означает, что программа Porsche легко переваривает номера VIN с придуманными последними цифрами, что может привести к ошибкам в идентификации агрегатов.

BMW ETK 3.1.30 Каталог запчастей BMW Electronic:

http://www.obdii365.com/wholesale/bmw-electronic-parts-catalog-etk.html

BMW ETK содержит весь спектр запчастей, предлагаемых для продажи BMW Group, и предназначен для облегчения поиска необходимых запчастей (автомобильные и мотоциклетные), расходных материалов и аксессуаров. Добавлен в прайс-лист в BMW ETK Local с помощью ETK Admin.
Для этого в вашем распоряжении различные функции поиска, такие как поиск по названию, по артикулу и т. Д.Кроме того, система предлагает подробную информацию о конкретных деталях, а также возможность создания так называемого списка найденных деталей.

Audi VW Skoda Seat Электронная сервисная информация ELSAWIN 5.2:

http://www.obdii365.com/wholesale/elsawin-52-electronic-service-information-for-audi-vw-skoda-seat.html

ELSAWIN 5.2 для Audi-VW-SKODA-SEAT имеет полную информацию по ремонту в основном новых автомобилей 1986-2011 гг., Электрические схемы 1992-2009 гг., В т.ч.подробное описание технологии ремонта, электрические схемы, кузовные работы, каталог запчастей для гарантийной замены, особенно. информация о новых и старых машинах

Land Rover электронный код:

http://www.obdii365.com/wholesale/land-rover-microcat-electronic-parts-selling-system.html

Система продажи электронных компонентов Microcat для Land Rover, последняя версия — 2013.07, поддерживает несколько транспортных средств.Он включает в себя информацию по всем сериям Land Rover и за разные годы.

электросхемы грузовиков:

Clark ForkLift (PartProPlus) Электронные каталоги запасных частей:

http://www.obdii365.com/wholesale/clark-forklift-partproplus-electronic-spare-parts-catalogs.html

Интерфейс программы запчастей Clark Fork Lift очень простой и удобный, есть поиск по модели, серийным номерам, списку применимости детали, так как программа содержит сервисные бюллетени.

John Deere Каталог запчастей:

http://www.obdii365.com/wholesale/john-deere-power-systems-cd.html

Технические руководства по компонентам John Deere, руководства по эксплуатации и обслуживанию John Deere, руководства по ценам на обслуживание, каталог запчастей John Deere, John Deere PowerTech.

Hitachi Каталог запчастей:

http://www.obdii365.com/wholesale/hitachi-parts-catalogue-2013.html


Каталог запчастей Hitachi 2013 для тяжелой строительной техники, каталог запчастей для оборудования Hitachi, типов оборудования, охватываемых Hitachi HOP 2013.

MAN большегрузный грузовик WIS / EPC:

http://www.obdii365.com/wholesale/man-mantis-2015-catalogue.html

(Mantis) 2015 Информационная система для мастерских Электронный каталог запчастей EPC V5.9.1.85

Каталог запчастей MAN MANTIS содержит полную информацию о запчастях для грузовых автомобилей, автобусов и различных шасси специального назначения, а также о двигателях MAN.В этом каталоге много фотографий, иллюстраций с подробным описанием компонентов оборудования.

Caterpillar ET 2017A V1.0 Техник по электронике:

http://www.obdii365.com/wholesale/caterpillar-et2017A-electronic-technician-diagnostic-software.html

Cat ET (Caterpillar ET) 2017A — это обновленная версия программы дилерского уровня для диагностики всего оборудования Caterpillar.

Эта программа работает с дилерским диагностическим сканером Caterpillar Communication Adapter, а также с другими адаптерами для диагностики, включая сканер Nexiq, программа предоставляет полную информацию при устранении неисправностей.При покупке программы Cat ET (Caterpillar ET) 2017A сразу вы получаете подробную и понятную инструкцию по ее активации.

Молодца:

Универсальный , автомобильные электрические схемы:

Программа VVDI: http://www.obdii365.com/wholesale/vvdi-prog-programmer.html

Ktag: http://www.obdii365.com/wholesale/v2-23-ktag-ktm100-ecu-programming-tool.html

Kess v2: http://www.obdii365.com/wholesale/v5017-kess-v2-ecu-programmer-online-version.html

Free электрические схемы автомобиля скачать бесплатно:

https://cardiagn.com/wiring/

Как читать автомобильные электрические схемы:

У электрических схем и дорожных карт много общего. Дорожные карты показывают, как добраться из точки «А» в точку «Б.» Однако вместо того, чтобы соединять межгосударственные автомагистрали, автомагистрали и дороги, на схеме подключения показаны все взаимосвязанные основные электрические системы, подсистемы и отдельные цепи.Еще одна их общая черта — это уровни детализации. Например, если вы посмотрите на дорожную карту Калифорнии, вы не сможете найти адрес в Лос-Анджелесе. Вы можете найти город или поселок, но не найти конкретный адрес. Чтобы найти точное местоположение конкретного дома или здания, вам понадобится подробная карта улиц или подключитесь к Интернету и воспользуйтесь Google Maps или функцией GPS на смартфоне.

Хотя эта электрическая схема для Ford Mustang 1979 года устарела, навыки, необходимые для ее использования для диагностики электрической проблемы, ничем не отличаются от просмотра онлайн-схемы на автомобиле последней модели.К сожалению, нет инструкций относительно того, как на самом деле читать и / или интерпретировать большинство электрических схем, будь то в печатном виде, на DVD или в Интернете.

Электрические схемы и дорожные карты имеют много общего. Дорожные карты показывают, как добраться из точки «А» в точку «Б.» Однако вместо того, чтобы соединять межгосударственные автомагистрали, автомагистрали и дороги, на схеме подключения показаны все взаимосвязанные основные электрические системы, подсистемы и отдельные цепи. Еще одна их общая черта — это уровни детализации.Например, если вы посмотрите на дорожную карту Калифорнии, вы не сможете найти адрес в Лос-Анджелесе. Вы можете найти город или поселок, но не найти конкретный адрес. Чтобы найти точное местоположение конкретного дома или здания, вам понадобится подробная карта улиц или подключитесь к Интернету и воспользуйтесь Google Maps или функцией GPS на смартфоне.

То же самое (в меньшей степени) и со схемами подключения. Электрические схемы автомобилей, выпущенных до 1970-х годов, обычно содержались на одной или двух страницах в руководстве по обслуживанию.К 1980-м годам сложность автомобильной бортовой электроники изменилась, и в большинстве руководств по автомобилям было несколько страниц со схемами подключения, чтобы показать всю электрическую систему транспортного средства. В 1990-х годах печатные руководства по обслуживанию начали исчезать, и теперь руководства и электрические схемы можно найти на цифровых носителях или в Интернете. Есть один аспект электрических схем, который, к сожалению, остался неизменным. Им не хватает указаний относительно того, как их на самом деле читать. Подобно карте, электрические схемы будут иметь легенду, в которой прописаны символы и соглашения об именах, но не будет никаких инструкций.

Хотя интерактивные руководства по обслуживанию автомобилей написаны для «профессиональных» техников, каждый технический специалист должен был научиться читать и интерпретировать электрические схемы на определенном этапе своей карьеры. Дизайн и компоновка электрических схем не рассчитаны на технических специалистов среднего или начального уровня, поскольку они начинают с простых для понимания схем, которые становятся все труднее читать и понимать. В этой статье мы рассмотрим другой подход и начнем с простых схем и схем подключения, а затем перейдем к более сложным схемам.Этот пошаговый процесс не только делает обучение чтению электрической схемы менее болезненным, но и способствует лучшему пониманию того, как работают электрические цепи. Чтобы стать более опытным во всем, в том числе в чтении электрических схем, требуется практика, и для этой цели также есть несколько сложных вопросов.

Лампочка, питаемая от батареи, иллюстрирует 3 вещи, которые должны работать все 12-вольтовые электрические цепи: питание, нагрузочное устройство и заземление.Хотя это может показаться очевидным, найти 3 элемента и все, что контролирует схему, на многостраничной схеме соединений — непростой процесс.

3 штуки

Упрощенная схема подключения аккумулятора, лампочки и проводов проста для понимания. Однако, если бы эта же схема была более сложной и включала несколько реле, несколько источников питания и компьютер, управляющий всей схемой, получившуюся электрическую схему было бы гораздо сложнее читать.Быстрый обзор основных электрических схем облегчит понимание того, как они изображены на электрической схеме. Каждая электрическая цепь в автомобиле должна иметь три элемента для работы: 1) источник питания, 2) нагрузочное устройство и 3) заземление. Система зарядки и аккумулятор работают как источники питания и проходят по всему автомобилю с помощью множества проводов. Нагрузочные устройства — это просто все, что выполняет электрические работы и может включать в себя освещение, стартер, бортовые компьютеры, реле, электрические стеклоподъемники, вход без ключа и многие другие компоненты.Возврат заземления завершает электрический путь от положительной клеммы аккумулятора к нагрузочному устройству и обратно к отрицательной клемме аккумулятора. Если что-то из трех отсутствует, схема не будет работать, а электрические схемы представляют собой «карту», ​​помогающую определить, какой из трех элементов отсутствует.

В дополнение к 3 вещам, необходимо управлять устройствами нагрузки. Некоторые устройства нагрузки включаются или выключаются путем управления их источником питания, в то время как другие управляются путем включения или выключения заземления.Наиболее распространенный сценарий — использование электронного блока управления транспортного средства или ЭБУ для заземления реле, которые, в свою очередь, управляют устройствами нагрузки. Процесс определения того, как управляется нагрузочное устройство, а также его источники питания и заземления, можно определить с помощью электрической схемы. Чтобы изучить логический процесс чтения сложных схем подключения, мы начнем с простой схемы противотуманных фар.

Рисунок 1 не типичен для электрических схем, приведенных в руководстве по обслуживанию.Схема противотуманных фар показана как во включенном, так и в выключенном состоянии и использует цветные линии, чтобы показать наличие питания. Зеленая пунктирная линия показывает, как электричество возвращается к отрицательной клемме аккумулятора после подачи питания на противотуманные фары.

На рисунке 1 представлена ​​простая электрическая схема, показывающая цепь противотуманного освещения. Схема состоит из аккумуляторной батареи, предохранителя на 20 А (используется для защиты цепи), переключателя (расположен на передней панели) и двух противотуманных фар. Возвраты с земли показаны символом земли в виде вертикальной линии с тремя горизонтальными линиями.Не на всех схемах подключения показаны провода заземления, и предполагается, что символы заземления обозначают провода, которые подключены к отрицательной клемме аккумулятора. Эта диаграмма необычна тем, что наличие 12 вольт иллюстрируется схемой как во включенном, так и в выключенном состоянии. Красные линии указывают на наличие 12 вольт, а черные линии представляют собой сторону заземления цепи, которая подключается к отрицательной клемме аккумулятора. В отключенной части схемы показано, что 12 вольт от аккумуляторной батареи, через предохранитель и до выключателя разомкнутой приборной панели.В нижней части схемы показан выключатель на приборной панели в замкнутом состоянии, подключении аккумулятора к фарам и их включении. Это также иллюстрирует один аспект закона Киршоффа, согласно которому нагрузочное устройство (устройства) будет использовать всю мощность (12 вольт) в цепи, так как напряжение на отрицательной клемме аккумулятора и на стороне заземления противотуманных фар близко к 0,0. вольт. К сожалению, настоящие электрические схемы не обеспечивают ни одного из этих преимуществ, а автомобильные схемы последних моделей могут не изолировать цепи до такой степени — более вероятно, что они будут частью общей системы освещения.Цвет, если он вообще используется на схеме подключения, предназначен для идентификации отдельных цветов проводов, а не для обозначения силовой и заземляющей сторон цепи. Кроме того, электрические схемы всегда по умолчанию показывают нагрузочное устройство в выключенном состоянии, и технические специалисты должны представить себе наличие мощности во всей цепи при включенной и работающей нагрузке.

На рисунке 2 показано, что реле было добавлено в цепь противотуманных фар. Вместо использования переключателя, как на Рисунке 1, теперь реле контролирует высокий ток в амперах, необходимый для работы ламп.Переключатель на приборной панели используется для подачи питания на катушку управления реле, которая подключает питание от аккумулятора к противотуманным фарам через контакты с высоким током внутри реле.
Реле, подобные этому, используются во многих автомобильных цепях с напряжением 12 В. Обычно они управляются компьютером и обеспечивают питание различных устройств нагрузки. Эти реле могут иметь 4 или 5 клемм. Пятая клемма указывает, что реле переключаемого типа, с пятой клеммой нормально замкнутой (подает питание), когда реле выключено.Четырехконтактные реле обеспечивают питание только во включенном состоянии.

Имеется неотъемлемая проблема с конструкцией схемы противотуманных фар, как показано на рисунке 1. Эти конкретные противотуманные фары требуют большой силы тока (8 ампер каждая, или всего 16 ампер) от батареи для работы и этой высокой электрической нагрузки. должен пройти через все провода и переключатель на передней панели, чтобы добраться до огней. Провода, и особенно переключатель, должны быть прочными, чтобы выдерживать большой ток.Простым решением является добавление 12-вольтового реле, как показано на рис. 2. Реле заменяет выключатель для тяжелых условий эксплуатации и обеспечивает соединение с высоким током между противотуманными фарами и аккумулятором. Переключатель на приборной панели по-прежнему является частью общей схемы, но теперь он должен переключать только катушку управления реле малой силы тока (0,3 А) вместо противотуманных фар высокой силы тока. Выключатель на приборной панели и провода, соединяющие его с цепью, могут быть меньше, потому что реле подключает аккумулятор к фарам, а не выключатель.

Управляющая катушка внутри реле представляет собой электромагнит, и когда клемма 4 реле подключается к заземлению переключателем на приборной панели, катушка находится под напряжением и опускает контакты с высоким током внутри клемм 1 и 2 реле. Эта диаграмма показывает цепь в выключенном положении и более типична для реальной схемы подключения, поскольку техник должен визуализировать, где присутствует мощность в цепи, когда свет включен.

Хотя на рисунке 2 показана базовая схема использования реле для работы в цепи с высоким током, он имеет отношение к современной электронике, используемой в современных автомобилях.Многие автомобильные цепи управляются автомобильным PCM (модулем управления мощностью), который не может напрямую управлять сильноточными нагрузками. Использование нескольких реле решает эту проблему, поскольку PCM должен только включать и выключать реле с низким током.

На рис. 3 показана более сложная схема противотуманных фар, в которую добавлено второе реле. Конструкция этой цепи предотвращает включение противотуманных фар, если ключ зажигания не находится в рабочем или вспомогательном положении, независимо от того, включен ли переключатель на приборной панели.

На схеме подключения, изображенной на рисунке 3, показано, как добавление второго реле к цепи противотуманных фар улучшает ее функциональность. Реле №1 обеспечивает питание реле №2, то же самое реле, которое изображено на предыдущей схеме. Реле №1 управляется выключателем зажигания и позволяет противотуманным фарам работать только тогда, когда выключатель зажигания находится в положении «вспомогательное оборудование» или «работа». Если ключ зажигания находится в положении «замок» или «выключено» или полностью вынут из замка зажигания, на реле № 2 не подается питание.Это предотвращает непреднамеренное включение противотуманных фар, даже если переключатель на передней панели остается включенным. Эта схема более типична для электрических схем, приведенных в руководстве по обслуживанию. Провода идентифицируются по цвету, но нет цвета, указывающего на наличие питания; цепь показана в выключенном состоянии, а клеммы реле обозначены номерами.

Самый эффективный способ научиться читать и использовать электрические схемы — это практика. Имея это в виду, следующие три практических вопроса проверят ваши знания и способность читать и интерпретировать электрические схемы.Мы вместе рассмотрим первые два вопроса, а на третий оставим вам ответ.

A Схемы электрических соединений двигателя Вопросы

Вопрос 1. Этот вопрос относится к рисунку 3. Когда ключ зажигания находится в положении «Acc», а приборная панель выключена, какие номера клемм на реле №1 и №2 будут иметь напряжение 12 В? Рисунок номер три типичен для электрических схем, которые можно найти в руководстве по обслуживанию. Реле и переключатели показаны в их «разомкнутом» положении, и цвет не используется для обозначения наличия питания или заземления.При чтении любой монтажной схемы начните с известного источника питания (12 В), обычно с положительной клеммы аккумулятора. Реле №1, клемма 3, напрямую подключено к аккумулятору через 20-амперный предохранитель. Клемма 1 идет к замку зажигания и в положении «Accy» также будет иметь 12 вольт (КРАСНЫЙ провод к замку зажигания и ORN провод между переключателем и реле). Клемма 2 является постоянным заземлением катушки управления реле. Реле включено, и клеммы 3 подключены к 4 через контакты с высоким током.

Клеммы реле № 2 с напряжением 12 В: 1 (КРАСНЫЙ / БЕЛЫЙ) и 3 (BRN), которые получают питание от клеммы 4 реле № 1. Клеммы 1 и 2 подключаются через катушку управления малой силой тока реле, поэтому на клемму 2 подается питание, потому что переключатель на приборной панели разомкнут. Если бы переключатель на приборной панели был замкнут, на клемме 2 было бы 0 вольт, потому что она подключена к массе, а реле было бы «включено». На клемму 4 нет питания, потому что реле выключено.

На этой электрической схеме показана схема охлаждающего вентилятора для автомобиля последней модели.Схема имеет три реле, управляемые модулем управления мощностью автомобиля (PCM), которые управляют вентиляторами в низко- или высокоскоростном режимах. Провода идентифицируются по цвету. Клеммы реле охлаждающего вентилятора также обозначаются буквой и цифрой.

Вопрос 2. Проследите путь, по которому питание и заземление передаются каждому охлаждающему вентилятору в высокоскоростном режиме.

Вопрос 2 использует более сложную электрическую схему, чем та, которая использовалась для первого вопроса.На рисунке 4 представлена ​​типовая автомобильная электрическая схема, на которой показана схема вентилятора системы охлаждения радиатора. Два предохранителя (40 и 10 ампер) питают цепь и напрямую подключены к аккумуляторной батарее автомобиля (всегда горячий). Есть три реле, которые подключают питание к охлаждающим вентиляторам и управляют низкой и высокой скоростью. Реле контролируются модулем управления мощностью автомобиля или PCM. Схема также содержит примечания относительно маркировки компонентов, их физического расположения и информацию о том, какие еще схемы соединений являются частью общей схемы.Катушки управления реле выглядят немного иначе, чем те, что показаны на рисунке 3. Резистор показан (заштрихованная линия) и используется для предотвращения скачков напряжения, достигающих PCM, когда реле работает. В остальном реле работают так же, как на Рисунке 3.

ПРИМЕЧАНИЕ : Эта цепь работает от 12 вольт. Однако, когда двигатель работает, рабочее напряжение составляет 14 вольт или напряжение зарядки, обеспечиваемое генератором переменного тока.

Три реле вентилятора охлаждения определяют пути питания и заземления к вентиляторам охлаждения.Чтобы оба вентилятора охлаждения работали в высокоскоростном режиме, PCM заземляет обе клеммы 42 и 33 (реле управления низкими и высокими оборотами вентилятора охлаждения). Если клемма № 33 блока PCM заземлена, провод DK BLU становится заземлением для управляющей катушки реле № 3 охлаждающего вентилятора на клемме B4. Это включает реле, потому что на клемму C6 постоянно подается питание от предохранителя на 10 А. КРАСНЫЙ провод на клемме C4 реле подключен к предохранителю охлаждающего вентилятора на 40 А, а при включенном реле подключается к клемме B6 внутри реле.БЕЛЫЙ провод от реле (клемма B6) подключается к правому охлаждающему вентилятору и обеспечивает питание. Правый вентилятор системы охлаждения имеет постоянное заземление на ЧЕР проводе. При 14 В (двигатель работает) на БЕЛОМ проводе и заземлении на ЧЕР проводе правый вентилятор системы охлаждения работает на высокой скорости.

Левый вентилятор системы охлаждения получает питание от предохранителя 40a на КРАСНОМ проводе реле №1 вентилятора системы охлаждения (клемма B3). Блок управления реле низкоскоростного вентилятора системы охлаждения блока PCM (42) заземлен PCM, обеспечивающим заземление на проводе клеммы B1 (DK GRN) на реле № 1 вентилятора охлаждения.На том же реле клемма C3 получает питание от предохранителя 10a на проводе ORN. При подаче питания на C3 и заземлении a B1 реле срабатывает и соединяет клеммы реле B3 с C1, обеспечивая питание левого охлаждающего вентилятора на проводе LT BLU. СЕРЫЙ провод от левого вентилятора системы охлаждения является массой, но только тогда, когда реле № 2 охлаждающего вентилятора включается заземлением управления высокоскоростным реле PCM на клемме C10 на синем проводе DK. Реле № 2 соединяет СЕРЫЙ провод левого вентилятора системы охлаждения с ЧЕРНЫМ проводом (номер клеммы не указан).ЧЕР провод заземляет левый вентилятор системы охлаждения, и он работает на высокой скорости.

Мы рассмотрели ответы и проанализировали вопросы 1 и 2. Ответ на вопрос 3 зависит от вас.

Вопрос 3. Проследите путь, по которому подается питание на каждый охлаждающий вентилятор в низкоскоростном режиме. Определите цвета проводов, реле и клеммы реле, на которые подается питание во время работы вентилятора. Проследите обратный путь заземления для реле и охлаждающих вентиляторов — определите цвета проводов и клеммы реле, используемые на стороне заземления цепи.

Ответ на вопрос 3

Чтобы понять, как работает тихоходный вентилятор, поможет краткий обзор теории электричества. В параллельной цепи (наиболее распространенный тип, используемый в автомобилях) все нагрузочные устройства работают от системного напряжения. Например, когда охлаждающие вентиляторы работают в высокоскоростном режиме, каждый имеет 14 В от предохранителя на 40 А. Последовательная схема работает иначе. При последовательном соединении двух нагрузочных устройств они делят доступное напряжение между собой. В низкоскоростном режиме охлаждающие вентиляторы подключены последовательно, и каждый вентилятор работает от 7 вольт — это половина напряжения системы в 14 вольт.

Во время работы низкоскоростного вентилятора управление реле низкой скорости PCM заземлено, включая реле №1 охлаждающего вентилятора. С заземлением на клемме реле B1 (провод DK GRN) и питанием на C3 катушка управления реле соединяет контакты с высоким током (клеммы B3 и C1). Он подключает питание (14 В) от предохранителя 40a (КРАСНЫЙ провод) к проводу LT BLU, идущему к левому охлаждающему вентилятору. СЕРЫЙ провод от левого вентилятора системы охлаждения идет к контакту C8 реле №2. Реле № 2 охлаждающего вентилятора не срабатывает PCM в режиме низкой скорости, а соединение реле C8 — B9 нормально замкнуто.БЕЛЫЙ провод на реле № 2 охлаждающего вентилятора (B9) идет к правому охлаждающему вентилятору, обеспечивающему 7 В (половину 14 В) для питания вентилятора. Реле №3 охлаждающего вентилятора не срабатывает при малой скорости вентилятора. ЧЕРНЫЙ провод от правого вентилятора обеспечивает заземление ОБОИХ вентиляторов. Поскольку вентиляторы подключены последовательно, они делят системное напряжение (14 вольт) поровну между собой, и оба работают от 7 вольт, заставляя их работать на низкой скорости.

(источник: http://www.searchautoparts.com/automechanika-chicago/commitment-training/how-read-automotive-wiring-diagrams)

Установка судового зарядного устройства

Скажите «НЕТ» Egg-Timer Зарядные устройства

Похоже, мы говорим нет на многие вещи, и не без оснований.Во-первых, позвольте мне сказать очевидное.

Идеальный алгоритм зарядки , для судовых зарядных устройств, еще не реализован

Почему?

Чтобы получить идеальную зарядку , зарядное устройство действительно должно знать, что такое домашняя нагрузка и что идет на батарею . Поскольку зарядные устройства для аккумуляторов знают только выходной ток , или, точнее, процентов используемого источника питания , а также напряжение , они не могут понять, что течет в батарею и что течет. домашние грузы.Это в лучшем случае затрудняет реализацию алгоритма только для напряжения . Некоторые зарядные устройства используют интеллектуальные алгоритмы и , а некоторые используют довольно глупые алгоритмы типа таймера яйца .

Sterling ProCharge Ultra использует ряд факторов для настройки и адаптации продолжительности цикла поглощения к тому, что, по его мнению, нужно батарее. По алгоритмам заряда работает неплохо. Простое объяснение заключается в том, что ProCharge Ultra проверяет длительность, потраченную навалом, и затем может добавить или вычесть времени, потраченного на стадии поглощения.Этот тип алгоритма, безусловно, умнее или , чем простой таймер яйца . Хотя он и не идеален, он лучше справляется с поддержанием здоровья аккумуляторов, чем многие зарядные устройства на основе яичного таймера .

В идеальной перезарядке зарядное устройство не будет падать до постоянного напряжения, пока аккумуляторная батарея не достигнет точки SOC от 99,5% до 100%. Почти все зарядные устройства для морских судов опускаются на плаву до того, как аккумуляторная батарея достигает 100% SOC.Хотя это делает их « безопасными », для юристов производителей это также означает, что для возврата к 100% SOC требуется немного больше времени. В доке это не имеет большого значения, если мы попадаем в средние и верхние 90-е до перехода к плаванию. Когда зарядное устройство переходит в плавающее положение, время, необходимое для достижения 100% SOC, значительно увеличивается. Цикл абсорбции, возможно, является наиболее важным этапом зарядки, и если он слишком короткий из-за таймера яйца, батареи могут хронически недозаряжаться и страдать от последствий сульфатирования.

К сожалению, слишком много зарядных устройств работают по простому принципу «таймера яйца». Вот как обычно работает зарядное устройство egg-timer .

  • Батарея заряжается массово, увеличивая напряжение банка
  • Блок батарей достигает предельного напряжения поглощения
  • После достижения предела напряжения поглощения фиксированный таймер запускает
  • Когда Egg-Timer завершает переход зарядного устройства в плавающее положение

Хм ??

Что, если бы батареи были уже полностью заряжены, когда вы загрузили зарядное устройство, и теперь у него есть 4-часовой таймер яйца , чтобы сгореть?

Что, если бы вы начали зарядку при 50% SOC и дали батареям только 1-часовой цикл поглощения? Даже для лучших AGM-аккумуляторов требуется более 3 часов абсорбционной зарядки в идеальных условиях, чтобы приблизиться к 100% SOC от 50% SOC, даже при замене со скоростью до 40% емкости Ач или 40 А для 100 Ач. аккумулятор.

Что делать, если батареи разряжены на 50% и для достижения 98-99% SOC требуется более 5 часов поглощения, а в вашем зарядном устройстве есть таймер для яиц на 1 час?

Один производитель даже использует этот алгоритм таймера яйца :

  • Зарядное устройство включено
  • Четыре часа спустя зарядное устройство перестает плавать независимо от SOC

Да еще называют это «умным» ..

Алгоритмы таймера яйца не соответствуют smart и во многих случаях могут быть вредными для батарей.Зарядные устройства с таймером для яиц — это самая низкая форма «умных» устройств, которую вы можете получить.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *