Генератор электричества как сделать: Электрогенератор своими руками — как спроектировать и построить современный механизм

Содержание

Электрогенератор своими руками — видео обзор готовых генераторов и рекомендации как сделать в домашних условиях самому

Автор Aluarius На чтение 6 мин. Просмотров 363 Опубликовано

К сожалению, отечественные электроснабжающие организации не держат своего слова. Их контракты, подписанные с потребителями, ничего не стоят. Подача электроэнергии за пределами больших городов непостоянная, качество подаваемого тока низкое (имеется в виду напряжение), поэтому жители небольших городов и поселков в запасе всегда имеют свечи, керосиновые лампы, а самые продвинутые устанавливают бензиновые генераторы тока. В этой статье будет предложен другой вариант, который будет обозначен вопросом, как сделать электрогенератор своими руками? Давайте рассмотрим один вариант этого прибора.

Электрический генератор из мотоблока

Жители загородных поселков давно пользуются мотоблоками. Ведь это на сегодняшний день, если так можно выразиться, самый надежный помощник, без которого работы в огороде или саду не проводятся. Правда, как и все этого типа инструменты, мотоблок выходит из строя. Восстановить его можно, но как показывает практика, лучше купить новый.

Владельцы инструмента распрощаться с ним не спешат, поэтому у каждого хозяина загородного дома в кладовке найдется один старый экземпляр. Его-то и можно будет использовать в конструкции электрогенератора напряжением 220/380 вольт. Он будет создавать крутящий момент генератору тока, в качестве которого можно приспособить обычный асинхронный двигатель. При этом необходим будет мощный электродвигатель (не меньше 15 кВт, с частотой оборотов вала 800-1600 об/мин). Почему такая большая мощность электродвигателя?

Для сборки самодельного генератора подойдут детали мотоблока

Делать самодельный генератор для парочки лампочек нет смысла, ведь решается вопрос полного обеспечения загородного дома электроэнергией. А с электродвигателем небольшой мощности получить достаточно электроэнергии не получиться. Хотя все зависит от суммарной мощности бытовых приборов и освещения дома. Ведь в небольших дачах кроме холодильника с телевизором ничего-то и нет. Поэтому совет – сначала рассчитайте мощность дома, затем выбирайте электрический мотор-генератор.

Сборка электрогенератора

Итак, чтобы собрать бензиновый генератор своими руками напряжением 220 вольт, необходимо установить на одной станине мотоблок и электродвигатель так, чтобы их валы располагались параллельно. Все дело в том, что вращение от мотоблока к электрическому мотору будет передаваться при помощи двух шкивов. Один будет установлен на валу бензинового двигателя, второй на валу электрического. При этом необходимо правильно выбрать диаметры шкивов. Именно этими размерами подбирается частота вращения электрического мотора. Этот показатель должен быть равен номинальному, который указан на бирке оборудования. Небольшое отклонение в большую сторону в пределах 10-15% приветствуется.

Когда механическая часть сборки будет закончена, будут установлены шкивы, соединяемые ремнем, можно переходить к электрической части.

Устройство электрогенератора
  • Во-первых, обмотки электрического мотора соединяются по схеме звезда.
  • Во-вторых, подключаемые к каждой обмотке конденсаторы должны образовать треугольник.
  • В-третьих, напряжение в такой схеме снимается между концом обмотки и средней точкой. Именно здесь получается ток напряжением 220 вольт, а между обмотками 380 вольт.

Внимание! Устанавливаемые в электрическую схему конденсаторы должны иметь одинаковую емкость. При этом величину емкости подбирают в зависимости от мощности электродвигателя. Именно данное соотношение будет поддерживать правильно саму работу генератора тока, но особенно его пуск.

Для информации даем соотношение мощности мотора с емкостью конденсаторов:

  • 2 кВт – 60 мкФ.
  • 5 кВт – 140 мкФ.
  • 10 кВт – 250 мкФ.
  • 15 кВт – 350 мкФ.

Генератор переменного тока

Обратите внимание на некоторые полезные советы, которые дают специалисты.

  • Если электрический двигатель будет греться, то необходимо поменять конденсаторы на элементы с пониженной емкостью.
  • Обычно для самодельных электрогенераторов используют конденсаторы напряжением не меньше 400 вольт.
  • Обычно одного конденсатора хватает для активной нагрузки.
  • Если есть необходимость использовать для питания дома все три фазы электродвигателя, то необходимо установить в сеть трехфазный трансформатор.

И еще один момент. Если перед вами стоит проблема, как организовать отопление с помощью самодельного электрогенератора, то двигатель от мотоблока здесь будет мал (имеется в виду мощность прибора). Оптимальный вариант – это двигатель от автомобиля, к примеру, от Оки или Жигулей. Многие могут сказать, что такое оборудование обойдется в копеечку. Ничего подобного. Купить сегодня подержанный автомобиль можно именно за копейки, так что расходы будут мизерными.

Достоинства и недостатки

Итак, в чем достоинства этого прибора:

  • Вы тешите себя мыслью, что сделали его сами. То есть, вы горды собой.
  • Финансовые затраты снижены до минимума. Самодельный агрегат будет стоить гораздо меньше, чем заводской его собрат.
  • Если все этапы сборки провести грамотно, то собранное вашими руками электрическое оборудование можно считать надежным и достаточно продуктивным.

Несколько отрицательных моментов этого рода приборов.

  • Если вы в электрике новичок или пытаетесь, не вникая во все тонкости и нюансы сборки, изготовить генератор тока, то потерпите фиаско. Затраченное вами время и деньги будут считаться выброшенными на ветер.

В принципе, это и есть единственный недостаток, что и вселяет оптимизм.

Другие конструкции электрогенератора

Бензиновый вариант не является единственным. Заставить вращаться вал электродвигателя можно разными способами. К примеру, с помощью ветряка или водяного насоса. Не самые простые конструкции, но именно они позволяют отойти от потребления энергоносителя в виде бензина.

К примеру, собрать гидрогенератор своими руками тоже несложно. Если возле дома протекает речка, ее воду можно использовать в качестве силы для вращения вала. Для этого в ее русло устанавливается колесо со множеством емкостей. С помощью этой конструкции можно создать поток воды, который будет вращать турбину, прикрепленную к валу электродвигателя. И чем больше объем каждой емкости, чем чаще они установлены (увеличивается количество), тем большей мощности водяной поток. По сути, это своеобразный регулятор напряжения генератора.

Схема ветрогенератора

С ветровыми генераторами все немного по-другому, потому что ветровые нагрузки не являются величинами постоянными. Вращение ветряка, которое передается валу электрического мотора, необходимо регулировать, подстраивая под необходимую величину частоты вращения вала электродвигателя. Поэтому в этой конструкции регулятор напряжения – это обычный механический редуктор. Но здесь, как говорится, палка о двух концах. Если ветер снижает порывы, необходим повышающий редуктор, если, наоборот, увеличивает, нужен снижающий. В этом и заключается сложность сооружения ветрового электрогенератора тока.

Заключение по теме

Подводя итог, нужно понять, что самодельные электрогенераторы не панацея. Лучше добиться того, чтобы в поселок постоянно подавался электрический ток. Добиться этого сложно, а вот получить компенсацию за неудобства можно через суд. А уже полученные деньги направить на приобретение заводского бензинового генератора. Правда, придется учитывать расход недешевого топлива (бензина). Но если есть желание собрать электрогенератор своими руками, тогда вникайте в тему и пытайтесь.

Как сделать самодельный генератор из асинхронного двигателя

Для нужд строительства частного жилого дома или дачи домашнему мастеру может понадобиться автономный источник электрической энергии, который можно купить в магазине или собрать своими руками из доступных деталей.

Самодельный генератор способен работать от энергии бензинового, газового или дизельного топлива. Для этого его надо подключить к двигателю через амортизирующую муфту, обеспечивающую плавность вращения ротора.

Если позволяют местные природные условия, например, дуют частые ветры или близко расположен источник проточной воды, то можно создать ветряную или гидравлическую турбину и подключить ее к асинхронному трехфазному двигателю для выработки электроэнергии.

За счет подобного устройства у вас будет постоянно работающий альтернативный источник электричества. Он снизить потребление энергии от государственных сетей и позволить экономить на ее оплате.

В отдельных случаях допустимо использовать однофазное напряжение для вращения электрического двигателя и передачи им крутящего момента на самодельный генератор для создания собственной трехфазной симметричной сети.

Содержание статьи

Как подобрать асинхронный двигатель для генератора по конструкции и характеристикам

Технологические особенности

Основу самодельного генератора составляет асинхронный электродвигатель трехфазного тока с:

  • фазным;
  • или короткозамкнутым ротором.
Устройство статора

Магнитопроводы статора и ротора изготавливают из изолированных пластин электротехнической стали, в которых созданы пазы для размещения проводов обмотки.

Конструкция статора трехфазного электродвигателя
Три отдельные обмотки статора могут быть соединены на заводе по схеме:

  • звезды;
  • или треугольника.

Их выводы подключают внутри клеммной коробки и соединяют перемычками. Сюда же монтируют кабель питания.


В отдельных случаях может выполняться подключение проводов и кабеля другими способами.

Подключение проводов к асинхронному двигателю
К каждой фазе асинхронного двигателя подводятся симметричные напряжения, сдвинутые по углу на треть окружности. Они формируют токи в обмотках.

Формы синусоид векторов напряжений и токов в асинхронном двигателе
Эти величины удобно выражать в векторной форме.

Виды векторных диаграмм у трехфазного двиг

сделать рабочий БТГ своими руками

Многие из нас любят сэкономить, поэтому встретив в интернете рекламу о продаже бестопливного генератора (БТГ), руки так и тянутся к кнопке «оформить заказ». Но поможет ли такой чудо-аппарат сэкономить на самом деле?

Возможно ли сделать бестопливный генератор энергии своими руками?

Что обещают производители бестопливных генераторов

В интернете можно найти разные сайты, которые предлагают купить БТГ, причём за весьма немаленькие деньги (в среднем – 12 т. р.). При этом каждый продавец по-своему объясняет принцип работы механизма. Кто-то говорит, что бестопливный генератор работает на некоей «энергии земли», у других источником является эфир, а кто-то говорит о статической энергии, которая не подчиняется известным законам физики, но вполне реальна.

ВАЖНО! Теория эфира была актуальна до начала ХХ века, пока в 1910 году Эйнштейн не опроверг её в своей научной статье «Принцип относительности и его следствия в современной физике».

На самом деле БТГ – красивая выдумка, и в природе не существует подобных приборов.

Возможно ли сделать бестопливный генератор энергии своими руками?

Тем не менее, для тех, кто плохо знаком с физикой, объяснений про эфир и «энергию земли» вполне достаточно чтобы купить дорогой, но бесполезный генератор.

Можно ли сделать бестопливный генератор своими руками

Если вы всё ещё сомневаетесь, попробуйте собрать такой генератор самостоятельно. В сети есть много разных схем по сбору БТГ в домашних условиях. Среди них нашлось два довольно простых способа: мокрый (или масляный) и сухой.

Масляный способ сбора БТГ

Вам потребуется:

  • Трансформатор переменного тока – необходим для создания постоянных сигналов тока;
  • Зарядное устройство – обеспечивает бесперебойную работу собранного устройства;
  • Аккумулятор (или обычная батарея) – помогает накоплению и сохранению энергии;
  • Усилитель мощности – увеличит подачу тока;

Трансформатор нужно подключить сначала к батарее, а затем к усилителю мощности. Теперь к этой конструкции подсоединяется зарядное устройство, и портативный БТГ готов!

Сухой способ

Вам потребуется:

  • Трансформатор;
  • Прототип генератора;
  • Незатухающие проводники;
  • Динатрон;
  • Сварка.

Объедините трансформатор с прототипом генератора при помощи незатухающих проводников. Используйте для этого сварку. Динатрон нужен для контроля работы готового прибора. Такой генератор должен проработать около 3 лет.

Успех и эффективность этих конструкций во многом зависят от вашей удачи. Она же потребуется, чтобы найти все необходимые элементы, указанные в инструкции. Но наверно вы уже догадались, что всё это вряд ли будет работать.

Кто вёл разработки генератора свободной энергии

Генератор Адамса

В 1967 году на производство этого генератора был получен патент. БТГ оказался рабочим, но выдаваемая им мощность была настолько мала, что вряд ли с его помощью получилось бы обеспечить энергией даже маленькую комнату.

Но мошенников это не беспокоит. Поэтому в интернете можно найти сайты, продающие генератор Адамса. Только зачем тратить деньги на прибор, который не поможет сэкономить?

Возможно ли сделать бестопливный генератор энергии своими руками?

Генератор Тесла

Жизнь и работа известного учёного давно обросли разными выдумками. Что из них правда, а что вымысел никто точно не знает. И это стало нескончаемым источником вдохновения для аферистов.

Никола Тесла действительно пытался изобрести особый прибор. Только не бестопливный генератор, а вечный двигатель. Но давайте будем реалистами. Подумайте, если бы учёному удалось придумать такой аппарат, стали бы его продавать массовому покупателю?

Возможно ли сделать бестопливный генератор энергии своими руками?

Генератор Хендершота

Впервые информация об этом устройстве появилась в Америке начала ХХ века. Но широкую известность генератор приобрёл во время конгресса, посвящённого изучению энергии гравитационного поля, который проходил в Торонто в 1981 году.

СПРАВКА. Существует мнение, что физик не является автором БТГ. Как и когда Хендершот получили аппарат или схемы по его сбору никто не знает.

Возможно ли сделать бестопливный генератор энергии своими руками?

Генератор Хендершота работает благодаря магнитному полю земли, поэтому его использование вызывает некоторые затруднения, ведь генератор всегда должен быть правильно расположен относительно южного и северного полюсов планеты.

Вскоре после конгресса Лестера Хендершота стали считать мошенником, а его устройство объявили подделкой.

Генератор Тариэля Капанадзе

Тариэл Капанадзе – грузинский изобретатель, которому, как многие считают, удалось невозможное. Он изобрёл БТГ, и назвал его в свою честь – капаген. Работоспособность прибора была продемонстрирована перед зрителями. Но было это шоу или демонстрация реального бестопливного генератора сказать сложно, потому что Капанадзе хранит свою технологию в тайне, ожидая богатого спонсора для дальнейшего развития проекта.

Вопреки секретности проекта, некоторые продавцы утверждают, что им удалось получить схемы генератора Капанадзе, по которым его можно собрать самостоятельно. Но верится в это с трудом.

Возможно ли сделать бестопливный генератор энергии своими руками?

Генератор Дональда Смита

Дональд Смит является самым известным изобретателем бестопливного генератора. Конструкция прибора довольно проста: берётся волновой резонатор и раскачивается с помощью искрового генератора. Помимо этого, в схеме есть диоды, функция которых совершенно не ясна. Но самое главное, откуда в генераторе берётся дополнительная энергия, да ещё и в количестве около 10 КВт?

Дональд Смит долго пытался объяснить принцип работы своего изобретения, но его так и не смогли понять. Повторить это устройство пытались многие, но мощность всегда оказывалась гораздо меньше, чем у оригинала.

Возможно ли сделать бестопливный генератор энергии своими руками?

Генератор TPU Стивена Марка

Конструкция устройства Стивена Марка сильно отличается от остальных БТГ, так как основой генератора TPU является металлическое кольцо, диаметром 20 см и одетые на него катушки из толстого многожильного провода.

СПРАВКА. Стивен Марк какое-то время искал инвестора для своего проекта, но потом неожиданно пропал. Никаких сведений о судьбе изобретателя или его устройства в данный момент нет.

Собрать самостоятельно генератор TPU Марка очень трудно. Сложность конструкции в использовании многофазного задающего генератора. К тому же, ни сам изобретатель, ни его последователи никогда не рассказывали о принципе работы устройства.

Возможно ли сделать бестопливный генератор энергии своими руками?

Генератор Кулабухова

Изобретатель Руслан Кулабухов придумал БТГ для использования в быту. Но увы, он так и не смог объяснить принцип работы своего изобретения, что ставит под сомнение эффективность прибора.

В конструкции БТГ отсутствуют разрядники. Механизм состоит из высокочастотной качерной части и низкочастотной пуш-пульной части. В интернете можно найти много разных схем для сбора генератора. Но создал их не сам Руслан, а его помощники. Но мало кому удавалось собрать рабочий механизм по этим чертежам, потому что, как говорилось выше, даже сам автор не может объяснить принцип работы своего БТГ.

Генератор Хмелевского

В конце ХХ века Хмелевский по чистой случайности изобрёл аппарат похожий на бестопливный генератор. Он пытался получить на него патент и продавать как полезный инструмент для геологов. Но у последних прибор не получил популярности, поэтому производство генераторов было остановлено.

СПРАВКА. Патент изобретателю получить так и не удалось, по причине ошибки в описании работы устройства.

Несмотря на все неудачи Хмелевского, схема его БТГ пользуется популярностью в интернете. Её можно приобрести за небольшую сумму.

Как видите, многие изобретатели пытались создать бестопливный генератор, но ни одному из них это не удалось. До массового покупателя работающий БТГ так и не дошёл, а все интернет-магазины, продающие этот чудо-прибор, просто наживаются на желании сэкономить и неосведомлённости своих покупателей.

Конечно, вы можете попытаться убедиться в обратном, и самостоятельно собрать БТГ. Но стоит ли тратить на это время и деньги?

Генератор свободной энергии с самозапиткой своими руками. Схема генератора свободной энергии :: SYL.ru

Многие в своей жизни задумывались о возможности обладания источником возобновляемой энергии. Известный своими уникальными изобретениями гениальный физик Тесла, творивший в начале прошлого века, свои секреты широкой огласке не предал, оставив после себя лишь намёки на свои открытия. Говорят, в проводимых опытах ему удалось научиться управлять гравитацией и телепортировать предметы. Также известно о его работах в направлении получения энергии из-под пространства. Возможно, что у него получилось создать генератор свободной энергии.

Немного о том, что такое электричество

Атом создаёт вокруг себя два типа энергетических полей. Одно образуется круговым вращением, скорость которого близка к световой скорости. Это движение знакомо нам как магнитное поле. Оно распространяется по плоскости вращения атома. Два других возмущения пространства наблюдаются по оси вращения. Последние вызывают появление у тел электрических полей. Энергия вращения частиц и есть свободная энергия пространства. Мы не делаем никаких затрат для того, чтобы она появилась — энергия изначально заложена мирозданием во все частицы материального мира. Задача заключается в том, чтобы вихри вращений атомов в физическом теле сложились в один, который и можно будет извлечь.

Электрический ток в проводе не что иное, как ориентация вращения атомов металла по направлению тока. Но можно ориентировать оси вращения атомов перпендикулярно к поверхности. Такая ориентация известна как электрический заряд. Однако последний способ задействует атомы вещества только на его поверхности.

Удивительное рядом

Генератор свободной энергии можно увидеть в работе обычного трансформатора. Первичная катушка создаёт магнитное поле. Ток появляется во вторичной обмотке. Если достичь коэффициента полезного действия трансформатора больше 1, то можно получить наглядный пример того, как работают генераторы свободной энергии с самозапиткой.

Повышающие трансформаторы также являются наглядным примером устройства, берущего извне часть энергии.

Сверхпроводимость материалов может повысить производительность, но создать условия, чтобы степень полезного действия превышала единицу, пока никому не удавалось. Во всяком случае, публичных заявлений такого рода не существует.

Генератор свободной энергии Тесла

Известного всему миру физика в учебниках по предмету упоминают крайне редко. Хотя его открытие переменного тока сейчас использует всё человечество. У него более 800 зарегистрированных патентов на изобретения. Вся энергетика прошлого века и сегодняшних дней основана на его творческом потенциале. Несмотря на это, часть его работ была скрыта от широкой общественности.

генератор свободной энергии

Он участвовал в разработках современного электромагнитного оружия, будучи директором проекта «Радуга». Известный филадельфийский эксперимент, телепортировавший большой корабль с экипажем на немыслимое расстояние – его рук дело. В 1900 году физик из Сербии внезапно разбогател. Он продал часть своих изобретений за 15 миллионов долларов. Сумма в те времена была просто огромна. Кто приобрёл секреты Теслы, остаётся тайной. После его смерти все дневники, которые могли содержать и проданные изобретения, пропали бесследно. Великий изобретатель так и не открыл миру, как устроен и работает генератор свободной энергии. Но, возможно, на планете есть люди, обладающие этой тайной.

Генератор Хендершота

Свободная энергия, возможно, открыла свой секрет американскому физику. В 1928 году он продемонстрировал широкой общественности устройство, которое сразу окрестили бестопливным генератором Хендершота. Первый прототип работал только при правильном расположении прибора согласно магнитному полю Земли. Мощность его была невелика и составляла до 300 Вт. Учёный продолжал работать, совершенствуя изобретение.

Однако в 1961 году его жизнь трагически оборвалась. Убийцы учёного так и не понесли наказание, а само уголовное производство по факту только запутало расследование. Ходили слухи, что он готовился запустить серийное производство своей модели.

Устройство настолько просто в исполнении, что его сможет сделать практически любой желающий. Последователи изобретателя недавно выложили в сеть информацию о том, как собрать генератор Хендершота «Свободная энергия». Инструкция в качестве видеоурока наглядно демонстрирует процесс сборки устройства. С помощью этой информации можно за 2,5 – 3 часа собрать это уникальное устройство.

Не работает

Несмотря на пошаговую видеоподсказку, собрать и запустить генератор свободной энергии своими руками не получается практически ни у кого из пытавшихся это сделать. Причина не в руках, а в том, что учёный, дав людям схему с подробным указанием параметров, забыл упомянуть о нескольких мелких деталях. Скорее всего, сделано это было сознательно, чтобы защитить своё изобретение.

Не лишена смысла и теория о ложности изобретённого генератора. Многие энергетические компании таким образом ведут работу по дискредитации научных изысканий альтернативных источников энергии. Людей, идущих по ложному пути, в конечном счёте ждёт разочарование. Много пытливых умов после неудачных попыток отвергло саму идею свободной энергии.

В чём секрет Хендершота

Ещё при жизни автора изобретения последователи, собиравшие аппарат по его схеме, не могли его запустить. Кто имел возможность, приходили к изобретателю с просьбой помочь запустить аппарат. Он помогал не всем.

генератор свободной энергии схема

А с тех, кому решал довериться, брал обязательство в том, что секрет запуска аппарата будет сохранён. Хендершот хорошо разбирался в людях. Те, кому он открыл секрет, сохраняют в тайне знание о том, как запустить генератор свободной энергии. Схема запуска устройства так и не была до сих пор разгадана. Или те, у кого это получилось, решили также эгоистично сохранить знание в тайне от окружающих.

Магнетизм

Это уникальное свойство металлов даёт возможность собирать генераторы свободной энергии на магнитах. Постоянные магниты генерируют магнитное поле определённой направленности. Если их расположить должным образом, то можно заставить ротор долго вращаться. Однако постоянные магниты имеют один большой недостаток – магнитное поле со временем сильно ослабевает, то есть магнит размагничивается. Такой магнитный генератор свободной энергии может выполнять только демонстрационную и рекламную роль.

генератор свободной энергии своими руками

Особенно много в сети схем по сборке устройств с использованием неодимовых магнитов. Они имеют очень сильное магнитное поле, но и стоят они тоже дорого. Все устройства на магнитах, схемы которых можно найти в сети, выполняют свою роль ненавязчивой подсознательной рекламы. Цель одна – больше неодимовых магнитов, хороших и разных. С их популярностью растёт и благосостояние производителя.

генераторы свободной энергии с самозапиткой

Тем не менее магнитные двигатели, генерирующие энергию из пространства, имеют право на существование. Существуют удачные модели, о которых рассказ пойдёт ниже.

Генератор Бедини

Американский физик – исследователь Джон Бедини, наш современник, изобрёл на основе работ Теслы удивительное устройство.

магнитный генератор свободной энергии

Анонсировал он его ещё в далёком 1974 году. Изобретение способно увеличивать ёмкость существующих аккумуляторов в 2,5 раза и может восстановить большую часть неработающих аккумуляторов, которые не поддаются зарядке обычным методом. Как говорит сам автор, радиантная энергия увеличивает ёмкость и очищает пластины внутри накопителей энергии. Характерно, что при зарядке напрочь отсутствует нагрев.

Всё-таки она существует

Бедини удалось наладить серийное производство практически вечных генераторов радиантной (свободной) энергии. Ему это удалось, невзирая на то что и правительство, и многие энергетические компании, мягко говоря, невзлюбили изобретение учёного. Тем не менее сегодня любой может купить его, заказав на сайте автора. Стоимость устройства немногим более 1 тысячи долларов. Можно приобрести комплект для самостоятельной сборки. Кроме того, автор не напускает мистики и секретности на своё изобретение. Схема не является тайным документом, а сам изобретатель выпустил пошаговую инструкцию, позволяющую собрать генератор свободной энергии своими руками.

«Вега»

Не так давно украинская компания «Вирано», специализировавшаяся на производстве и реализации ветрогенераторов, начала продажу бестопливных генераторов «Вега», которые вырабатывали электроэнергию мощностью 10 КВт без какого-либо источника извне. Буквально в считанные дни продажа была запрещена из-за отсутствия лицензирования такого типа генераторов. Несмотря на это, запретить само существование альтернативных источников невозможно. В последнее время появляется всё больше людей, желающих вырваться из цепких объятий энергетической зависимости.

Битва за Землю

Что случится с миром, если в каждом доме появится такой генератор? Ответ прост, как и принцип, по которому работают генераторы свободной энергии с самозапиткой. Он просто прекратит своё существование в том виде, в котором пребывает сейчас.

Если в масштабе планеты начнётся потребление электричества, которое даёт генератор свободной энергии, произойдет удивительная вещь. Финансовые гегемоны утратят контроль над миропорядком и рухнут с пьедесталов своего благосостояния. Первоочередная задача их состоит в том, чтобы не дать нам стать действительно свободными гражданами планеты Земля. На этом пути они очень преуспели. Жизнь современного человека напоминает беличьи бега в колесе. Времени остановиться, оглядеться, начать неспешно размышлять нет.

генератор Хендершота свободная энергия

Если остановишься, то сразу выпадешь из «обоймы» успешных и получающих награду за свой труд. Награда на самом деле невелика, но на фоне многих, не имеющих этого, выглядит значительно. Такой образ жизни — путь в никуда. Мы сжигаем не только свои жизни во благо других. Мы оставляем своим детям незавидное наследство в виде загрязнённой атмосферы, водных ресурсов, а поверхность Земли превращаем в свалку.

Поэтому свобода каждого находится в его руках. Теперь у вас есть знание, что в мире может существовать и работать генератор свободной энергии. Схема, с помощью которой человечество скинет многовековое рабство, уже запущена. Мы на пороге великих перемен.

Инструкция по сборке генератора статического электричества своими руками

До этого я уже создавал несколько генераторов статического электричества и эти проекты всегда вызывали сильный интерес. С ними очень весело проводить время и они позволяют делать много разных трюков с помощью электростатического разряда. Например, можно щелкать током своих друзей (и себя), заставлять руками частицы песка или пыли вести себя странно, так как они подвержены влиянию статических зарядов. Также можно притягивать струю воды, заряжать бумагу, чтобы она прилипала к стене и производить множество других магических трюков.

Вышеприложенное видео демонстрирует процесс сборки этого проекта, а текстовая версия ниже даст вам пошаговую инструкцию. Это третья версия моего генератора статического электричества, при этом она самая дешевая. Она позволяет создавать заряд примерно такой же, какой бывает, когда вы ловите искру от ковра, гуляя по нему в пижаме.

Ионизатор USB, который является основным компонентом проекта, можно найти здесь: ссылка

Нам понадобятся:

  • Ионизатор.
  • Изолированная проволока.
  • Термоусадочная трубка.
  • Горячий клей.
  • Припой и паяльник.
  • Батарейки-кнопки на 1.5v.
  • Изолента.

Шаг 1: Разбираем ионизатор

Ионизаторы такого типа разбираются очень просто. Если вы будете использовать их по назначению, то корпус, скорее всего, сам треснет уже через неделю. С помощью плоскогубцев моно легко вскрыть корпус и получить доступ к плате устройства. К слову, хочу заметить, что я бы не подключал такое устройство к USB-порту компьютера. Высоковольтные устройства лучше вообще не подключать к компьютеру.

Если вы обратите внимание на последние две картинки, то заметите, что я разделил устройство на две секции. Первая часть, близкая к USB, представляет собой конвертер, который преобразует постоянный ток от USB в переменный ток, который затем проходит через крошечный трансформатор во вторую часть устройства. Вторая часть состоит из цепи четырех последовательных усилителей напряжения, которым для работы нужен переменный ток. Но в конце мы имеем постоянный ток, который направляется на белый провод.

Схема представляет как раз то, что нужно, чтобы получить статический заряд, но нам нужно модифицировать её так, чтобы она работала от батареек.

Шаг 2: Добавляем входной и выходной провода

Чтобы изменить схему до нужного нам состояния, первым делом избавимся от USB. Отвернём два ушка по бокам, и порт будет держаться лишь на 4 пинах. Прислоним паяльник сразу ко всем пинам и высвободим плату от USB порта.

На другой стороне платы есть обозначения, по которым можно определить, какая клемма предназначена для положительного заряда и какая для земли, они соответственно обозначены символами V+ и GND. Я припаял к этим клеммам по проводу, другие концы проводов будут соединены с батарейками.

На последней картинке видно, что я работаю на другой стороне платы, где я выпаиваю короткий выходной провод и припаиваю вместо него новый, значительно более длинный.

Шаг 3: Изолируем схему

Нам нужно изолировать схему от высокого напряжения, которое она будет генерировать, иначе она поджарит сама себя. Перед тем как поместить всё в термоусадочную трубку, я сперва прошелся по схеме горячим клеем, это позволило создать для проводов соединение более прочное, чем просто маленькая капелька припоя. Затем я поместил поверх устройства термоусадочную трубку и малым огнём аккуратно закрепил её на месте. Концы трубки остались не слишком зажатыми, и я также заполнил их горячим клеем. Такие ионизаторы идут со световым индикатором, чтобы вы знали, что они работают, так что я убрал немного термоусадки в том месте, где находился диод.

Шаг 4: Запитываем генератор

Источники питания USB, под которые проектируются такие устройства, дают на выходе 5 Вольт постоянного тока. Достаточно сложно найти батарейку с таким же напряжением, но обычно электроприборы могут работать в небольшом диапазоне напряжений, поэтому мы можем совместить три батарейки на 1.5V и этого вполне должно хватить.

Чтобы соединить их, оголите небольшой участок заземляющего провода (также оставив длинный изолированный его конец) и согните его, чтобы можно было придавить этот участок к отрицательной клемме батареек. Я добавил к оголенной части немного припоя и она стала держать форму.

Затем поместите пачку батареек между двумя проводами, положительный вход совместите с положительной клеммой батареек, а заземляющий провод соедините с отрицательной клеммой батареек. Небольшое количество изоленты удержит батарейки вместе и плотно прижмёт провода к их клеммам.

При желании на положительный провод можно припаять выключатель, но я решил, что устройство будет всегда включено. Для выключения я просто просовываю небольшую пластиковую пластину между батареек, и она разрывает соединение.

Шаг 5: Заключение

Устройство на данном этапе полностью работоспособно. Для того чтобы оно зарядило ваше тело (или любой проводящий объект), выходной провод должен касаться вашей кожи, в то время как конец длинного заземляющего провода должен соприкасаться с поверхностью, на которой вы стоите. Более токопроводящая поверхность позволит девайсу работать лучше, так как это даст возможность получить больший дифференциал заряда между вами и вашим окружением.

Для своих предыдущих генераторов я создавал соединения на липучках, они позволяли надежно закрепить выходные провода на теле и прикрепить заземляющий провод к низу моей подошвы.

На этом всё! Надеюсь вам понравилось читать о моём проекте.

Самодельный генератор из асинхронного электродвигателя

В стремлении получить автономные источники электроэнергии специалисты нашли способ как своими руками переделать, трехфазный асинхронный электродвигатель переменного тока в генератор. Такой метод имеет ряд преимуществ и отдельные недостатки.

Электродвигатель

Внешний вид асинхронного электродвигателя

В разрезе показаны основные элементы:

  1. чугунный корпус с радиаторными рёбрами для эффективного охлаждения;
  2. корпус короткозамкнутого ротора с линиями сдвига магнитного поля относительно его оси;
  3. коммутационно контактная группа в коробке (борно), для коммутации обмоток статора в схемы звезда или треугольник и подключения проводов электропитания;
  4. плотные жгуты медных проводов обмотки статора;
  5. стальной вал ротора с канавкой для фиксации шкива клиновидной шпонкой.

Детальная разборка асинхронного электродвигателя с указанием всех деталей показана на рисунке ниже.

Разборка

Детальная разборка асинхронного двигателя

Достоинства генераторов, переделанных из асинхронных двигателей:

  1. простота сборки схемы, возможность не разбирать электродвигатель, не перематывать обмотки;
  2. возможность вращения генератора электротока ветряной или гидротурбиной;
  3. генератор из асинхронного двигателя широко используется в системах мотор-генератор для преобразования однофазной сети 220В переменного тока в трёхфазную сеть с напряжением 380В.
  4. возможность использования генератора, в полевых условиях раскручивая его от двигателей внутреннего сгорания.

Как недостаток можно отметить сложность расчёта ёмкости конденсаторов, подключаемых к обмоткам, фактически это делается экспериментальным путём.

Поэтому трудно добиться максимальной мощности такого генератора, бывают сложности с электропитанием электроустановок, которые имеют большое значение пускового тока, на циркулярных электропилах с трёхфазными двигателями переменного тока, бетономешалках и других электроустановках.

Принцип работы генератора

В основу работы такого генератора заложен принцип обратимости: «любая электроустановка преобразующая электрическую энергию в механическую, может сделать обратный процесс». Используется принцип работы генераторов, вращение ротора вызывает ЭДС и появление электрического тока в обмотках статора.

Исходя из этой теории, очевидно, что асинхронный электродвигатель можно переделать в электрогенератор. Чтобы осознано провести реконструкцию необходимо понять, как происходит процесс генерации и что для этого требуется. Все двигатели, которые приводит в движение сила переменного тока, считаются асинхронными. Поле статора движется с небольшим опережением относительно магнитного поля ротора, подтягивая его за собой в сторону вращения.

Чтобы получить обратный процесс, генерацию, поле ротора должно опережать движение магнитного поля статора, в идеальном случае вращаться в противоположном направлении. Добиваются этого включением в сеть питания, конденсатора большой ёмкости, для увеличения ёмкости используют группы конденсаторов. Конденсаторная установка заряжается, накапливая магнитную энергию (элемент реактивной составляющей переменного тока). Заряд конденсатора по фазе противоположный источнику тока электродвигателя, поэтому вращение ротора начинает замедляться, обмотка статора генерирует ток.

Этот принцип работы используется практически в электровозах, трамваях при необходимости плавного торможения. По такому же принципу некоторые «Кулибины», замедляют вращение диска электросчётчиков, пытаясь сократить расходы на электроэнергию.

Преобразование

Как практически своими руками преобразовать асинхронный электродвигатель в генератор?

Для подключения конденсаторов надо открутить верхнюю крышку борно (коробка), где расположена контактная группа, коммутирующая контакты обмоток статора и подключены провода питания асинхронного двигателя.

Коробка

Открытое борно с контактной группой

Обмотки статора могут быть соединены в схему «Звезда» или «Треугольник».

Схемы

Схемы включения «Звезда» и «Треугольник»

На шильдике или в паспорте на изделие показаны возможные схемы подключения и параметры двигателя при различных подключениях. Указывается:

  • максимальные токи;
  • напряжение питания;
  • потребляемая мощность;
  • количество оборотов в минуту;
  • КПД и другие параметры.
Информация

Параметры двигателя, которые указаны на шильдике

В трёхфазный генератор из асинхронного электродвигателя, который делают своими руками, конденсаторы подключаются по аналогичной схеме «Треугольником» или «Звездой».

Вариант включения со «Звездой» обеспечивает пусковой процесс генерации тока на более низких оборотах, чем при соединении схемы в «Треугольник». При этом напряжение на выходе генератора будет немного ниже. Подключение по схеме «Треугольника» предоставляет незначительное увеличение выходного напряжения, но требует более высоких оборотов при запуске генератора. В однофазном асинхронном электродвигателе подключается один фазосдвигающий конденсатор.

Схема

Схема подключения конденсаторов на генераторе в «Треугольник»

Используются конденсаторы модели КБГ-МН, или другие марки не менее 400 В бесполярные, двухполюсные электролитические модели в этом случае не подходят.

Конденсатор

Как выглядит бесполюсный конденсатор марки КБГ-МН

Так как в бытовых условиях рассчитать необходимую ёмкость конденсаторов для используемого двигателя практически невозможно, экспериментальным путём была составлена таблица.

Расчёт ёмкости конденсаторов для используемого двигателя

Номинальная выходная мощность генератора, в кВтПредположительная ёмкость в, мкФ
260
3,5100
5138
7182
10245
15342

В синхронных генераторах возбуждение процесса генерации происходит на обмотках якоря от источника тока. 90% асинхронных двигателей имеют короткозамкнутые роторы, без обмотки, возбуждение создаётся остаточным в роторе статическим зарядом. Его достаточно чтобы на первоначальном этапе вращения создать ЭДС, которое наводит ток, и подзаряжает конденсаторы, через обмотки статора. Дальнейшая подзарядка уже поступает от генерируемого тока, процесс генерации будет непрерывным, пока вращается ротор.

Автомат подключения нагрузки к генератору, розетки и конденсаторы рекомендуется установить в отдельный закрытый щит. Соединительные провода от борно генератора до щита проложить в отдельном изолированном кабеле.

Даже при неработающем генераторе необходимо избегать прикосновения к клемам конденсаторов контактов розеток. Накопленный конденсатором заряд остаётся длительное время и может ударить током. Заземляйте корпуса всех агрегатов, мотора, генератора, щита управления.

Монтаж системы мотор-генератор

При монтаже генератора с мотором своими руками надо учитывать, что указанное количество номинальных оборотов используемого асинхронного электродвигателя на холостом ходу больше.

Схема

Схема мотор-генератора на ременной передаче

На двигателе в 900 об/м при холостом ходе будет 1230 об/м, чтобы получить на выходе генератора, переделанного из этого двигателя достаточную мощность, надо иметь количество оборотов на 10% больше холостого хода:

1230 + 10% =1353 об/м.

Ременная передача рассчитывается по формуле:

Vг = Vм x Dм\Dг

Vг – необходимая скорость вращения генератора 1353 об/м;

Vм – скорость вращения мотора 1200 об/м;

Dм – диаметр шкива на моторе 15 см;

Dг – диаметр шкива на генераторе.

Имея мотор на 1200 об/м где шкив Ø 15 см, остаётся рассчитать только Dг – диаметр шкива на генераторе.

Dг = Vм x Dм/ Vг = 1200об/м х 15см/1353об/м = 13,3 см.

Генератор на ниодимовых магнитах

Как сделать генератор из асинхронного электродвигателя?

Этот самодельный генератор исключает применение конденсаторных установок. Источник магнитного поля, которое наводит ЭДС и создаёт ток в обмотке статора, построен на постоянных ниодимовых магнитах. Для того чтобы это сделать своими руками необходимо последовательно выполнить следующие действия:

  • Снять переднюю и заднюю крышки асинхронного электродвигателя.
  • Извлечь ротор из статора.

Как выглядит ротор асинхронного двигателя

  • Ротор протачивается, снимается верхний слой на 2 мм больше толщины магнитов. В бытовых условиях сделать расточку ротора своими руками не всегда представляется возможным, при отсутствии токарного оборудования и навыков. Нужно обратиться к специалистам в токарные мастерские.
  • На листе обычной бумаги готовится шаблон для размещения круглых магнитов, Ø 10-20мм, толщиной до 10 мм, с силой притяжения 5-9 кг, на кв/см, размер зависит от величины ротора. Шаблон наклеивается на поверхность ротора, магниты размещаются полосами под углом 15 – 20 градусов относительно оси ротора, по 8 штук в полосе. На рисунке ниже видно, что на некоторых роторах отмечены тёмно-светлые полосы смещения линий магнитного поля относительно его оси.
Ротор

Установка магнитов на ротор

  • Ротор на магнитах рассчитывается так, чтобы получилось четыре группы полос, в группе по 5 полосок, расстояние между группами 2Ø магнита. Промежутки в группе 0.5-1Ø магнита, такое расположение снижает силу залипания ротора к статору, он должен проворачиваться усилиями двух пальцев;
  • Ротор на магнитах, сделанный по рассчитанному шаблону, заливается эпоксидной смолой. После того как она немного подсохнет цилиндрическая часть ротора покрывается слоем стекловолокна и опять пропитывается эпоксидной смолой. Это исключит вылет магнитов при вращении ротора. Верхний слой на магнитах не должен превышать первоначального диаметра ротора, который был до проточки. В противном случае ротор не встанет на своё место или при вращении будет тереться об обмотку статора.
  • После просушки, ротор можно поставить на место и закрыть крышки;
  • Испытывать, электрогенератор необходимо – проворачивать ротор электродрелью, измеряя напряжение на выходе. Количество оборотов при достижении нужного напряжения измеряется тахометром.
  • Зная необходимое количество оборотов генератора, ременная передача рассчитывается по методике описанной выше.

Интересный вариант применения, когда электрогенератор на основе асинхронного электродвигателя, используется в схеме электрический мотор-генератор с самоподпиткой. Когда часть мощности вырабатываемой генератором поступает на электродвигатель, который его раскручивает. Остальная энергия расходуется на полезную нагрузку. Осуществив принцип самоподпитки практически можно на долгое время обеспечить дом автономным электропитанием.

Видео. Генератор из асинхронного двигателя.

Для широкого круга потребителей электроэнергии покупать мощные дизельные электростанции как TEKSAN TJ 303 DW5C с мощностью на выходе 303 кВА или 242 кВт не имеет смысла. Маломощные бензиновые генераторы дорогие, оптимальный вариант сделать своими руками ветровые генераторы или устройство мотор-генератор с самопдпиткой.

Используя эту информацию можно собрать генератор своими руками, на постоянных магнитах или конденсаторах. Такое оборудование очень полезно на загородных домах, в полевых условиях, как аварийный источник питания, когда отсутствует напряжение в промышленных сетях. Полноценный дом с кондиционерами, электрическими плитами и нагревательными бойлерами, мощный мотор циркулярной пилы они не потянут. Временно обеспечить электроэнергией бытовые приборы первой необходимости могут, освещение, холодильник, телевизор и другие, которые не требуют больших мощностей.

Оцените статью:

Как работают генераторы и динамо-машины

Search

Реклама

Electricity generator at REA Power Plant Museum near Hampton, Iowa by Carol M. Highsmith

  • WhatsApp share
  • Tweet

Криса Вудфорда. Последнее изменение: 31 мая 2019 г.

Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили. Электричество очень удобно.Вы можете производить его различными способами, используя все, от угля и нефти до ветра и волн. Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя. Что делает электрические возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя работа в обратном направлении, которая преобразует обычную энергию в электричество.Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

Фото: Дизельный электрогенератор середины 20-го века, сделанный в музее электростанции REA недалеко от Хэмптона, штат Айова. Предоставлено фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

Откуда берется электричество?

Лучший способ понять электричество — начать с того, что его собственное название: электрическая энергия. Если вы хотите что-нибудь запустить электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам необходимо обеспечить его постоянным запасом электроэнергии.Откуда ты это возьмешь? Есть основной закон физики называется закон сохранения энергии, который объясняет, как можно получить энергия — и как нельзя. Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать. Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

Large electricity generator at a geothermal power plant in Imperial County, California

Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно. Вы будете использовать энергию преобразованы из какой-то другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него через кабель.Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо. В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветряные турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя высокая температура). Где бы ни была ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора.Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

Как мы можем производить электричество?

Electricity generator

Фото: Типичный электрогенератор. Он может производить до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий в обратном направлении.Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

Электродвигатель — это, по сути, просто плотный моток медной проволоки, намотанный на железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться.Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь по кругу и питая что угодно из электрическая зубная щетка к электричке.

The rotor (rotating inner core) of a small electric motor.

Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри.Вместо того, чтобы позволять батарее питать двигатель, который толкает щетку, что, если бы вы сделали напротив? Что, если вы несколько раз поворачиваете щетку вперед и назад? То, что вы делали бы, было бы вручную крутить электродвигатель. ось вокруг. Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора.По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

Как работает генератор?

Why the current reverses in a simple generator made from a loop of wire and a magnet.

Изображение: простой генератор, подобный этому, вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное). Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он генерирует односторонний ток; когда он движется вниз, ток течет в другую сторону.Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

Возьмите кусок провода и подсоедините его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита. Теперь резко проведите проволокой сквозь невидимое магнитное поле, которое создает магнит, и через провод на короткое время протекает ток (регистрируемый на измерителе). Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (читать краткая биография или длинная биография).Если вы переместите провод в противоположном направлении, вы создадите ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для выяснения того, как работают двигатели.)

Важно отметить, что вы генерируете ток только тогда, когда вы перемещаете провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же).Недостаточно просто поднести провод к магниту: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать какой-то способ перемещения провода мимо магнита, установив тот или иной из них на колесо. Затем, когда вы повернете колесо, проволока и магнит будут двигаться относительно друг друга, и будет образовываться электрический ток.

А теперь самое интересное.Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и размещаете так, чтобы она постоянно вращалась — как на схеме. Вероятно, вы можете видеть, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество будет течь в одну сторону; когда он движется вниз, ток будет течь в обратном направлении. Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток).Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

Генераторы постоянного тока

Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается. Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Это звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока.Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое он производит каждые пол-оборота, просто потому, что он вращается, а задача коммутатора состоит в том, чтобы нейтрализовать эффект вращения катушки, обеспечивая получение постоянного тока.

Simple diagram comparing a DC generator with a commutator and an AC alternator without.

Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока. В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный.В генераторе постоянного тока (вверху) коммутатор меняет направление тока каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходной сигнал просто повышается, падает и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора в таблице справа.

Генераторы переменного тока

Что, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам понадобится генератор, который представляет собой просто генератор переменного тока.Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора. Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают по индукции аналогичным образом.

Генераторы в основном используются для выработки электроэнергии от автомобильных двигателей. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

Генераторы в реальном мире

Repairing the alternator on an outboard motor engine.

Фотография: Генератор переменного тока — это генератор, вырабатывающий переменный ток (переменный ток) вместо постоянного (постоянного). Здесь мы видим, как механик снимает генератор с двигателя подвесной моторной лодки. Фото Есении Росас любезно предоставлено ВМС США.

Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии.Вы поймете это, если у вас есть велосипед с динамо-машиной фары, работающие от колес: вам нужно крутить педали немного сильнее, чтобы фары светились — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек. Динамо — это просто очень маленькое электричество генератор. Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами. Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо.(Обратите внимание, как действует сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает из топлива. А также топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца. Суть проста: энергия всегда должна исходить от где-то.)

Какую мощность вырабатывает генератор?

Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду).Как и следовало ожидать, чем больше генератор, тем большую мощность он производит. Вот приблизительное руководство от самого маленького до самого большого:

Тип Мощность (Вт)
Велосипед динамо 3
Генератор USB с ручным приводом 20
Ветряная микро турбина 500
Малый дизельный генератор 5000 (5 кВт)
Ветряная турбина 2 000 000 (2 МВт)

Генераторы переносные

A portable generator power by a diesel engine.

Фото: переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

В большинстве случаев мы принимаем электричество как должное. Мы включаем фонари, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. Но что, если вы работаете на открытом воздухе, в глуши, и нет источник электроэнергии, который можно использовать для питания бензопилы или электродрель?

Одна из возможностей — использовать аккумуляторные инструменты с аккумуляторы. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать портативный электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, сжигая бензин, он толкает поршень взад-вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С участием с помощью трансформатора вы можете использовать такой генератор для производите практически любое необходимое напряжение в любом месте, где оно вам нужно.В качестве пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

Edward Weston

Artwork: Генераторная технология быстро развивалась в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082 переиздание 8 141 Эдварда Уэстона, любезно предоставленного Управлением по патентам и товарным знакам США.

  • WhatsApp share
  • Tweet

Узнать больше

На этом сайте

Возможно, вам понравятся эти другие статьи на нашем сайте по связанным темам:

Видео

  • Демонстрация электрического генератора ?: Превосходное короткое видео от доктора Джонатана Хэра и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
  • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалированный провод, магниты, картон и т. Д.).
  • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность генератора электроэнергии). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

Книги

Для читателей постарше
Для младших читателей

Статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

  • Follow us on Facebook
  • Flickr

Поделиться страницей

Сохраните эту страницу на будущее или поделитесь ею, добавив в закладки:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Power Move: манипулирование магнитами для улучшения выходной мощности генератора

Области науки Электричество и электроника
Сложность
Требуемое время Очень короткий (≤ 1 день)
Предварительные требования У вас должно хватить терпения и ловкости, чтобы аккуратно намотать несколько слоев проволоки (или найти кого-нибудь, кто может вам помочь).Вам также потребуется подключить базовую схему. Понимание электрических цепей не является предварительным условием для этого научного проекта, хотя оно позволит глубже понять электрический генератор.
Наличие материала Набор, содержащий все специальные предметы, необходимые для этого проекта, можно получить у нашего партнера. Инструменты домашней науки.
Стоимость Низкая (20–50 долларов)
Безопасность Неодимовые магниты очень сильные.Соблюдайте правила техники безопасности, изложенные в разделе «Процедура работы с этими магнитами».

Абстрактные

Электроэнергия, которую вы используете для питания повседневных устройств, вырабатывается электрическими генераторами . Эти увлекательные и мощные машины работают с магнитами. Хотя они могут показаться чрезвычайно сложными, как только вы закончите этот научный проект, вы поймете, как, почему и когда они производят электричество. Вы построите свой собственный генератор, внесете небольшие изменения в расположение магнитов и протестируете, когда движущиеся магниты генерируют электричество.

Объектив

Постройте электрический генератор и изучите, как конфигурация постоянных магнитов влияет на то, когда и сколько вырабатывается электроэнергии.

Поделитесь своей историей с друзьями по науке!

I did this project Да, Я сделал этот проект! Пожалуйста, войдите в систему (или создайте бесплатную учетную запись), чтобы сообщить нам, как все прошло.

Планируете ли вы сделать проект от Science Buddies?

Вернитесь и расскажите нам о своем проекте, используя ссылку «Я сделал этот проект» для выбранного вами проекта.

Вы найдете ссылку «Я сделал этот проект» на каждом проекте на сайте Science Buddies, так что не забудьте поделиться своей историей!

Кредиты

Сабина де Брабандере, доктор философии, приятели науки

цитировать эту страницу

Здесь представлена ​​общая информация о цитировании. Обязательно проверьте форматирование, включая использование заглавных букв, для метода, который вы используете, и обновите цитату по мере необходимости.

MLA Стиль

Сотрудники Science Buddies. «Power Move: манипулирование магнитами для улучшения выходной мощности генератора». Друзья науки , 23 июня 2020, https://www.sciencebuddies.org/science-fair-projects/project-ideas/Elec_p079/electricity-electronics/manipulating-magnets-to-improve-generator-output. Доступ 4 ноября 2020 г.

APA Style

Сотрудники Science Buddies. (2020, 23 июня). Power Move: Управление магнитами для улучшения выходной мощности генератора. Извлекаются из https://www.sciencebuddies.org/science-fair-projects/project-ideas/Elec_p079/electricity-electronics/manipulating-magnets-to-improve-generator-output

Дата последнего редактирования: 2020-06-23

Введение

Вы когда-нибудь исследовали или интересовались мощной связью между электричеством и магнетизмом? Может быть, вы построили электромагнит как в научном проекте Сила электромагнита, или вы создали электродвигатель в Постройте простой электродвигатель! Или, возможно, вы даже вырабатывали собственное электричество в Энергия человека.Независимо от того, экспериментировали ли вы, читали или просто интересуетесь взаимоотношениями, этот научный проект даст вам практическое представление о том, что важно при проектировании электрического генератора. Чтобы полностью понять этот научный проект, вам нужно будет поработать с некоторыми основами физики, прежде чем вы начнете практическую часть.

Электромагнетизм — это исследование того, как электричество и магнетизм работают вместе. И электричество, и магнетизм возникают в результате движения электронов , которые представляют собой крошечные частицы с электрическим зарядом, которые вращаются внутри каждого атома.Объяснение того, как они создают электрических токов в проводниках , можно найти в Приятели науки Учебное пособие по электричеству, магнетизму и электромагнетизму: Электрический ток.

Электрический генератор — мощная машина, вырабатывающая электрический ток. Большинство используют сильные магниты . Учебное пособие по электричеству, магнетизму и электромагнетизму: магнетизм познакомит вас с магнитами и магнитными полями , которые представлены силовыми линиями .Прочтите внимательно; это поможет вам лучше понять этот научный проект.

В руководстве объясняется, как магнитное поле можно обнаружить с помощью компаса. Он показывает, как можно сделать видимыми линии поля с помощью железных опилок, что является забавным занятием, которым вы сможете заняться в этом научном проекте! Помните, что сильное поле означает, что магнит имеет сильное притяжение или притяжение магнитного материала и представлен силовыми линиями, которые сгруппированы близко друг к другу. Поле слабее там, где линии расположены дальше друг от друга.

В технической заметке учебного пособия объясняется, как ферромагнитный материал намагничивается, когда магнитные поля крошечных магнитных доменов выстраиваются внутри материала, делая его магнитным. Если рассмотреть всю информацию, может показаться логичным, что силовые линии магнитного поля не заканчиваются на северном или южном полюсах; они продолжаются внутри магнита или магнитного материала, образуя замкнутые контуры, как показано на Рисунке 1. Обратите внимание, что силовые линии сгруппированы вместе внутри магнита или ферромагнитного материала, что указывает на сильное магнитное поле.

Drawing of a bar magnet with magnetic fields and directions drawn inside and outside the magnet
Рисунок 1. Стержневой магнит с силовыми линиями магнитного поля, показанными внутри и снаружи магнита. Обратите внимание, что внутри и снаружи магнита должно быть одинаковое количество (здесь показано 13) силовых линий. Внутри магнита нарисовано всего семь (семь синих стрелок).

В руководстве также объясняется, как электрический ток (или движущийся электрический заряд) создает магнитное поле и создает электромагнит .Вы можете это изменить? Может ли движущийся магнит каким-либо образом генерировать электрический ток в замкнутом контуре проводящего провода? Майкл Фарадей (1791–1867) и Джозеф Генри (1797–1878) независимо друг от друга обнаружили, что это возможно. Эффект называется электромагнитная индукция , и это именно то, что вы будете изучать в этом научном проекте.

Обратите внимание, что если в какой-либо момент подробности того, как, почему и когда генерируется этот ток, слишком велики, подумайте о том, чтобы начать с научного проекта. Пролить свет на электрические генераторы: больше катушек генерируют больше электроэнергии? Вы по-прежнему сможете производить электричество и сможете изучить, как изменение количества витков провода влияет на генерируемое электричество.Тогда вы сможете вернуться к этому научному проекту, когда будете готовы.

Итак, как работает электромагнитная индукция? Во-первых, важно отметить, что электричество будет вырабатываться только , когда магнит и замкнутый контур провода перемещаются на относительно друг друга. Если вы держите магнит неподвижно рядом с проводом, электричество не будет генерироваться. Здесь это немного сложно. Движение одного относительно другого мало .Движение должно вызвать изменение количества силовых линий, пересекающих область, охватываемую петлей. Рисунок 2 иллюстрирует эту идею. На рисунке 2 силовые линии параллельны области, покрытой петлей. Перемещение магнита ближе к петле не изменяет количество силовых линий, пересекающих область, охватываемую петлей. Это движение не будет индуцировать (или создавать) электрический ток. Если силовые линии перпендикулярны области, охватываемой петлей, как показано на рисунке 2.C., движение магнита вызовет большое изменение количества силовых линий, пересекающих область, и вызовет большой электрический ток.Рисунок 2.B. иллюстрирует промежуточную ситуацию, когда силовые линии расположены под углом по отношению к петле. Перемещение Магнит будет индуцировать электрический ток.

Drawing of a bar magnet with magnetic fields and directions drawn next to a wire loop in parallel with the magnet
Drawing of a bar magnet with magnetic fields and directions drawn next to a wire loop at an angle with the magnet
Drawing of a bar magnet with magnetic fields and directions drawn next to a wire loop perpendicular with the magnet
Рисунок 2. Если количество линий магнитного поля, пересекающих область, охватываемую замкнутым контуром проводящего провода, изменяется, в проводе будет индуцироваться электрический ток. Прямая оранжевая стрелка представляет движение магнита; изогнутая оранжевая стрелка представляет наведенный электрический ток.

Количество производимого электрического тока пропорционально скорости изменения количества силовых линий, проходящих через контур, что означает, насколько быстро количество силовых линий, проходящих через контур, изменяется во времени. Вы можете увеличить это, используя более сильный магнит (который имеет более сильное магнитное поле, представленное большим количеством силовых линий), или перемещая магнит быстрее, или (как поясняется на Рисунке 2), изменяя ориентацию силовых линий относительно петля.

Итак, вы узнали об электрическом токе, индуцируемом в петле из проводящего провода. Теперь давайте кратко посмотрим на направление индуцированного электрического тока. Переворачивание магнита (изменение северного и южного полюсов) заставит ток, индуцированный в контуре, течь в другом направлении, как показано на рисунке 3. Другой способ изменить направление индуцированного тока на противоположное — это изменить направление движения. (движение по направлению к петле проводящего провода или от него).

Drawing of a magnet passing through a circle of conductive wire in different orientations which creates a current in the wire

Схема, показывающая, как магнит движется вверх и проходит через петлю из проводящего провода в различных ориентациях, чтобы создать ток в проводе. Направление тока может быть как по часовой стрелке, так и против часовой стрелки, в зависимости от того, какой полюс магнита проходит через петлю. Когда северный полюс магнита сначала проходит через петлю, создается ток по часовой стрелке. Когда южный полюс магнита сначала проходит через петлю, возникает ток против часовой стрелки.


Рисунок 3. Перемещение магнита к замкнутому контуру проводящего провода вызовет в проводе электрический ток. Ток изменит направление на противоположное, когда вы меняете полюса (как показано на рисунке) или когда вы меняете направление, в котором движется магнит. Обратите внимание, что когда магнит и петля не движутся относительно друг друга, ток в петле из проводящего провода не индуцируется.

Если вы поднесете попеременно южный, а затем северный полюса к проволочной петле или перемещаете полюс к проволочной петле и затем от нее снова и снова, электроны будут продолжать двигаться взад и вперед (или ток продолжает менять направление), создавая то, что называется переменного тока (AC) .Прежде чем начать, прочтите Учебное пособие по электричеству, магнетизму и электромагнетизму: постоянный ток и переменный ток. Тогда вы будете готовы узнать, как количество петель или витков влияет на количество вырабатываемой электроэнергии, и зажгите свет!

Термины и понятия

  • Электромагнетизм
  • Электричество
  • Магнетизм
  • Электронов
  • Электрический ток
  • Проводник
  • Генератор
  • Постоянные магниты
  • Магнитные поля
  • Полевые линии
  • Электромагнитная индукция
  • Скорость изменения
  • Переменный ток (AC)

Вопросы

  • Что такое электрический ток?
  • В чем разница между переменным и постоянным током?
  • Что представляют собой силовые линии магнитного поля? Как можно провести силовые линии магнитного поля вокруг постоянного магнита?
  • Что из перечисленного ниже вызывает электричество в замкнутом проводящем контуре?
    • Перемещение стола, на котором размещены магнит и петля, таким образом, чтобы силовые линии магнитного поля были перпендикулярны области, охватываемой петлей.
    • Перемещение полюса магнита вдоль силовых линий магнитного поля к проволочной петле, параллельной силовым линиям.
    • Пропустить магнитный полюс через петлю так, чтобы он оказался на другой стороне петли.
  • Что такое ротор, статор, вал и якорь генератора?

Лента новостей по этой теме

Примечание: Компьютеризированный алгоритм сопоставления предлагает указанные выше статьи.Это не так умно, как вы, и иногда может давать юмористические, смешные или даже раздражающие результаты! Узнать больше о ленте новостей

Как производится электричество — Управление энергетической информации США (EIA)

Как вырабатывается электричество

В 1831 году ученый Майкл Фарадей обнаружил, что когда магнит перемещается внутри катушки с проволокой, в ней течет электрический ток. Электрогенератор — это устройство, преобразующее форму энергии в электричество.Генераторы работают благодаря взаимосвязи между магнетизмом и электричеством. Генераторы, преобразующие кинетическую (механическую) энергию в электрическую, производят почти всю электроэнергию, которую используют потребители.

Обычный метод производства электроэнергии — это генератор с электромагнитом — магнит, производимый электричеством, а не традиционный магнит. Генератор имеет серию изолированных витков проволоки, образующих неподвижный цилиндр. Этот цилиндр окружает вращающийся электромагнитный вал.Когда электромагнитный вал вращается, он индуцирует небольшой электрический ток в каждой секции катушки с проволокой. Каждая секция проволочной катушки становится небольшим отдельным электрическим проводником. Небольшие токи отдельных секций объединяются в один большой ток. Этот ток представляет собой электричество, которое перемещается по линиям электропередач от генераторов к потребителям.

Diagram of an electricity generator - Spinning rotor turning coiled copper wire inside stationary magnets to generate electricity.

Электрогенератор

Источник: по материалам Energy for Keeps (общественное достояние)

Большая часть U.S. Производство электроэнергии осуществляется электростанциями, которые используют турбину или аналогичную машину для привода генераторов электроэнергии.

Турбина преобразует потенциальную и кинетическую энергию движущейся жидкости (жидкости или газа) в механическую энергию. В турбогенераторе движущаяся жидкость, такая как вода, пар, газообразные продукты сгорания или воздух, толкает ряд лопастей, установленных на валу, который вращает вал, соединенный с генератором. Генератор, в свою очередь, преобразует механическую энергию в электрическую на основе взаимосвязи между магнетизмом и электричеством.

Различные типы турбин включают паровые турбины, турбины внутреннего сгорания (газовые), водяные (гидроэлектрические) турбины и ветряные турбины. В паровых турбинах горячая вода и пар производятся путем сжигания топлива в котле или использования теплообменника для улавливания тепла от жидкости, нагретой, например, солнечной или геотермальной энергией. Пар приводит в движение турбину, которая приводит в действие генератор. Топливо или источники энергии, используемые для паровых турбин, включают биомассу, уголь, геотермальную энергию, нефтяное топливо, природный газ, ядерную энергию и солнечную тепловую энергию.Большинство крупнейших электростанций США имеют паровые турбины.

Газовые турбины внутреннего сгорания, аналогичные реактивным двигателям, сжигают газообразное или жидкое топливо для получения горячих газов для вращения лопаток в турбине.

Двигатели внутреннего сгорания, такие как дизельные двигатели, также используются для производства механической энергии для работы генераторов электроэнергии. Дизель-генераторы используются во многих удаленных деревнях на Аляске и широко используются для электроснабжения на строительных площадках, а также для аварийного или резервного электроснабжения зданий и электростанций.Дизель-генераторы могут использовать различные виды топлива, включая нефтяное дизельное топливо, биодизель, природный газ, биогаз и пропан. Небольшие генераторы с двигателями внутреннего сгорания, работающие на бензине, природном газе или пропане, обычно используются строительными бригадами и торговцами, а также для аварийного электроснабжения домов.

Теплоэлектроцентрали (ТЭЦ), иногда называемые когенераторами , используют тепло, которое не преобразуется напрямую в электричество в паровой турбине, турбине внутреннего сгорания или генераторе с двигателем внутреннего сгорания, для других целей, например для космоса. отопление или промышленное тепло.Некоторые электростанции используют неиспользованное тепло или газы сгорания от одной турбины, такой как газовая турбина, для выработки большего количества электроэнергии в другой турбине, такой как паровая турбина. Эта система из двух отдельных генераторов, использующих один источник топлива, называется комбинированным циклом. ТЭЦ и электростанции комбинированного цикла — одни из наиболее эффективных способов преобразования топлива в полезную энергию.

Гидроэлектрические турбины используют воду для вращения лопастей турбин, а ветряные турбины используют ветер.

Электрогенераторы, в которых не используются турбины, включают солнечные фотоэлектрические элементы, которые преобразуют солнечный свет непосредственно в электричество, и топливные элементы, которые преобразуют топливо, такое как водород, в электричество посредством химического процесса.

  • паровые турбины 61%
  • турбины внутреннего сгорания 24%
  • гидроэлектрические турбины 7%
  • ветряные турбины 7%
  • солнечные фотоэлектрические системы1%
  • двигатели внутреннего сгорания <1%

Последнее обновление: 5 ноября 2019 г.

электрических генераторов как источник электроэнергии: A

Раскрытие информации: этот пост может содержать партнерские ссылки.Это означает, что мы можем бесплатно для вас заработать небольшую комиссию за соответствующие покупки.

Электрические генераторы являются отличным инструментом для производства полезной энергии. Они универсальны и могут использоваться во многих различных ситуациях, будь то работа или личное использование.

Ключ к правильному использованию генератора и его максимальному потенциалу — это иметь всю информацию. Эти инструменты могут многое сделать для вас, но только если вы знаете, как их использовать. Ознакомьтесь с нашим полным руководством по генераторам, чтобы узнать о различных типах и способах их использования.

Что такое электрический генератор?

Генератор — это машина, предназначенная для преобразования механической энергии в электричество. Генераторы чаще всего используются в ситуациях, когда электричество недоступно.

Хотя в большинстве случаев вы можете использовать электроэнергию, подключив изделие к розетке, иногда розетки недоступны. Генератор позволяет вашему продукту вырабатывать собственное электричество, используя энергию батареи или топливо.

Какие бывают электрические генераторы?

Сегодня существует несколько различных типов генераторов.У каждого из них есть свои преимущества, а также идеальные ситуации использования. Давайте посмотрим на некоторые из различных типов.

Портативные генераторы / генераторы для отдыха:

Портативные генераторы — это самые маленькие типы генераторов, которые вы можете найти. Чаще всего их используют в рекреационных целях, например, для питания жилых автофургонов или использования в походах.

Переносные бытовые генераторы также используются дома в чрезвычайных ситуациях. Они являются отличным решением для случайных отключений электроэнергии из-за стихийных бедствий, таких как штормы и сильный ветер.Многие домовладельцы любят использовать эти небольшие генераторы для питания холодильников, осветительных приборов, насосов и печей во время простоев.

Некоторые портативные генераторы могут приводить в действие большинство бытовых приборов в доме, тогда как другие более полезны для зарядки устройств и поддержания света.

Портативные строительные и промышленные генераторы:

Хотя верно, что портативные генераторы универсальны для бытового и промышленного использования, некоторые портативные генераторы просто созданы для того, чтобы лучше справляться с более требовательными потребностями строительства.Эти генераторы обеспечивают отличную эффективность и мощность на стройплощадке.

Многие из них оснащены модернизированными дизельными двигателями, рассчитанными на более высокие нагрузки, в то время как в других портативных генераторах используются традиционные бензобаки. Строительные и промышленные генераторы также обычно имеют многоцикловую мощность для электроинструментов.

Автомобильные генераторы:

Название говорит само за себя: автомобильные генераторы устанавливаются на транспортных средствах. Они часто используются в экстренных случаях, а также на строительстве, в горнодобывающей промышленности и в полевых условиях.

Резервные генераторы:

Резервные генераторы — это большие генераторы, прикрепленные к предприятиям или жилым зданиям для использования в качестве резервного источника питания. Как правило, они предназначены для автоматического включения питания здания при отключении электричества.

Они очень сильные, так как им нужны для питания целых зданий, но они также иногда используются в промышленных или сельскохозяйственных условиях.

Генераторы с ВОМ:

Генераторы

с ВОМ — это портативные машины, которые используются для мобильных приложений, например тракторов.Чаще всего они используются во дворе или на ферме, поскольку легко переносятся на мобильных машинах.

Есть несколько других типов генераторов, но есть лишь несколько основных типов.

Как работают генераторы?

Мы уже знаем, что генератор преобразует механическую энергию в электрическую. Это достаточно легко сказать, но действительно ли мы понимаем, что это значит?

Вопреки тому, что может подразумевать его название, генератор на самом деле не создает собственную электрическую энергию.Машина предназначена для приема подводимой к ней механической энергии и использования ее для создания движения электрических зарядов. Вот откуда исходит вывод.

Чтобы заставить движение электрических зарядов, каждому генератору нужен двигатель, как и вашему автомобилю. И, как и в вашей машине, двигатель нужно чем-то подпитывать.

Есть несколько различных видов топлива, которые используют генераторы:

  • Бензин
  • Пропан
  • Природный газ
  • Дизель
  • Батареи

Каждый из этих источников топлива имеет свои преимущества и недостатки.Например, дизель более эффективен и служит дольше, но он намного дороже бензина.

Для более крупных генераторов промышленного типа чаще всего используется дизельное топливо или пропан. Генераторы меньшего размера, как правило, работают на бензине или батареях.

Батареи и топливо:

Многие генераторы меньшего размера работают от батареи, а некоторые используют топливо с возможностью включения батареи. Нет правильного или неправильного ответа, но у обоих есть плюсы и минусы.

Батареи великолепны, потому что они перезаряжаемые. В отличие от источника топлива, вам нужно сделать только одну покупку для дальнейшего использования. Когда у вашего генератора заканчивается питание, вы просто включаете его и заряжаете.

Звучит неплохо, так почему бы всем просто не использовать батарейки? Что ж, обратная сторона батареек многогранна. Во-первых, их заряда не хватает до тех пор, пока хватает полного бака топлива. Второй недостаток состоит в том, что генераторы с батарейным питанием обычно дороже, чем машины, работающие на топливе.

В-третьих, полная зарядка аккумулятора занимает много времени. В экстренной ситуации, когда вы в течение длительного времени теряете электроэнергию в своем доме, у вас не только нет ресурсов для подзарядки батареи, но и у вас точно нет времени — тогда как с топливом вы можете просто пополнить бак и запустить его снова.

Наконец, генераторы с батарейным питанием обычно не вырабатывают столько энергии, как двигатели, работающие на топливе.

Топливо сейчас кажется очевидным выбором, хотя у топлива также есть несколько недостатков.Самое большое раздражение по поводу топлива заключается в том, что вам приходится покупать его снова и снова, чтобы заправить его. А если вы забудете запастись, то можете оказаться в аварийной ситуации с генератором, но без топлива.

В зависимости от вашего источника топлива — газ, дизельное топливо, пропан — это может стать дорого. Однако, если вы в основном используете в качестве резервного источника питания, вероятно, стоит иметь под рукой несколько галлонов. Вы будете счастливы, если не замерзнете во время снегопада.

Общие области применения электрических генераторов

Вы можете узнать все, что вам нужно знать о генераторах и о том, как они работают, но какую пользу они приносят вам или вашему бизнесу? На самом деле, генераторы имеют очень практическое применение и сегодня довольно распространены в домах и коммерческих зданиях.

Резервное питание:

Резервное питание, вероятно, является причиной номер один, по которой люди покупают генераторы. Отключение электроэнергии случается по нескольким причинам: ураганы, наводнения, строительство, сильный ветер — вы называете это; это может повлиять на вашу силу.

Некоторые люди могут довольствоваться тем, что сидят и терпят это, пока электрическая компания не выяснит проблему и не решит ее, но другие предпочитают более активный подход. Иногда неизвестно, как долго продлится отключение. В зимнее время в вашем доме может начаться холода.

Вы также можете потерять сотни долларов в бакалейных товарах без электричества для холодильника. Семьи с маленькими детьми могут найти утешение, просто включив свет.

Резервные генераторы — используете ли вы генератор для всего дома или небольшой портативный генератор — могут дать вам достаточно энергии, чтобы прослужить вам, пока проблема не будет устранена.

Резервная мощность:

Резервные генераторы, как мы обсуждали ранее, очень распространены в общественных зданиях и на предприятиях.Перебои в подаче электроэнергии все приостановили. Владельцы умного бизнеса должны вкладывать средства в резервные генераторы, чтобы поддерживать свои здания в рабочем состоянии, даже когда нет электричества.

Государственная и частная собственность часто инвестируют в резервные источники энергии. Такие здания, как отели, общежития, общежития, школы и многоквартирные дома, вероятно, будут иметь резервные генераторы, потому что они обслуживают большое количество людей на регулярной основе.

Крупные мероприятия:

Концерты, фестивали, свадьбы — все это веселые мероприятия, требующие много энергии.События в густонаселенных районах, вероятно, будут иметь доступ к электричеству, а также к резервному источнику энергии, но некоторые из этих случаев происходят за пределами основных электрических сетей и в сельской местности.

Генераторы

отлично подходят для поддержки таких событий или даже служат в качестве резервной копии, если что-то случится с основным источником. Их можно использовать для освещения, колонок, оборудования для общественного питания и диджейского оборудования.

Кемпинг и путешествия:

Любители активного отдыха могут по-прежнему наслаждаться природой, принося с собой немного комфорта.Портативные генераторы (особенно инверторные) идеально подходят для походов и отдыха на природе. Даже с небольшим генератором вы можете взять с собой телефон и устройства, а также дополнительное освещение и обогреватели.

Вы также можете включить проекторы, чтобы смотреть фильмы, или колонки, чтобы послушать музыку у костра. Переносные печи и микроволновые печи — даже варианты, если у вас есть надежный генератор.

Более мощные переносные генераторы очень часто используются для питания жилых автофургонов и прицепов.Если вы путешествуете в трейлере за пределами парка трейлеров, вам понадобится источник энергии, чтобы использовать дом на колесах.

Спортивные соревнования:

Знаете ли вы, что на стадионах высшей лиги требуется использование резервных генераторов? Резервный генератор может означать разницу между отличной игрой и ее отменой в середине квартала.

Электрогенераторы могут использоваться для обеспечения надлежащего функционирования прожектора и подачи электроэнергии для вентиляторов. Без освещения и питания игроки не видят, болельщики не могут наслаждаться, и уж точно не будет в продаже хот-догов.

Техобслуживание генератора и советы

Генераторы недешевы. Нет ничего похожего на другие инструменты, которые можно заменить в тот день, когда он сломается или перестанет работать. При таких инвестициях важно правильно обслуживать машину, чтобы вы могли использовать ее как можно больше лет.

Не игнорируйте мощность:

Когда вы покупаете или используете генератор любого типа, первое, что вы, вероятно, будете искать, — это мощность.Генераторы предложат вам два разных числа мощности. Первая — это номинальная или рабочая мощность, а вторая — начальная или максимальная мощность.

Самым важным из этих двух чисел является рабочая мощность. Это будет меньшее число, которое описывает мощность, которую ваш генератор будет предлагать в расширенном режиме.

Начальная мощность показывает, какую мощность генератор может выдать за первые несколько секунд. Этот небольшой дополнительный импульс помогает вашему генератору запустить другие двигатели.Однако, как только вы их запустите, мощность упадет до рабочей мощности.

Попытка запустить что-то, основанное на начальной мощности, наверняка сожжет ваш генератор.

Замена масла и фильтра:

Очень важно соблюдать согласованность при замене масла и фильтра. Точно так же, как вашему автомобилю требуется регулярная замена масла для поддержания работы двигателя, и генератор тоже. Каждый генератор отличается с точки зрения точного количества времени между изменениями, поэтому убедитесь, что вы определили эти числа и запастись, прежде чем начать использовать генератор.

Внимательно следите за уровнем топлива:

Работа генератора на низком уровне топлива может серьезно повредить машину. Дешевые машины просто выходят из строя без предупреждения, в то время как другие имеют функцию автоматического отключения, которая остановит вашу машину, когда уровень вашего газа или масла упадет до определенного минимума.

Однако не все машины имеют эту функцию, поэтому внимательно следите за своими уровнями и регулярно их проверяйте. Если вы достигнете низкого уровня топлива, вы можете испытать утечку в магнитном поле катушек генератора, и это может стать дорогостоящим ремонтом.

Инвестируйте в длинные шнуры:

Хотя вам не следует использовать портативный генератор на расстоянии более 100 футов от ваших приборов, приобретение длинных и прочных шнуров 12-го калибра может стать большим облегчением. Генераторы обычно довольно громкие. Если вас легко беспокоят громкие звуки, вы можете немного обрести покой, вытянув генератор как можно дальше от дома во время использования.

Убедитесь, что у вас есть качественный шнур. Легкий непрочный шнур может вызвать падение напряжения и преждевременное сгорание двигателя.

Заключение:

Генераторы, хотя и являются дорогостоящими инструментами, чрезвычайно полезны во многих ситуациях. Их удобно иметь дома в качестве резервных источников питания, а большие генераторы отлично подходят для промышленного использования на крупных предприятиях или на сельскохозяйственных угодьях.

В наши дни генераторы позволяют получать электроэнергию везде и всегда, когда она вам нужна. Постоянно обновляйте знания об этих продуктах, чтобы использовать их максимально эффективно.

Хотите узнать больше о генераторах? См. Связанные темы:

Самодельный генератор бесплатной энергии 220 В, прикрепленный к велосипеду.Бесплатный генератор электроэнергии своими руками

Привет, ребята, вот новое видео моего проекта «Самодельный генератор бесплатной энергии 220В, прикрепленный к велосипеду. Бесплатный генератор электроэнергии своими руками». от «Электротехнические и электронные проекты» Канал «E&EP».

Это двигатель стиральной машины старого образца, и я преобразовал его в генератор свободной энергии, он выдает как напряжение переменного, так и постоянного тока, используя мостовой выпрямитель, просто вращайте вал двигателя регулярным круговым движением
и он будет продолжать подавать напряжение, увеличивая скорость, давая большую скорость снижения напряжения, давая низкое напряжение, мы также можем использовать его как ветряную турбину, просто подключив к ней лопасти вентилятора, и она станет ветряной турбиной, и теперь я прикрепил ее к велосипеду и он работает идеально, как вы видели на видео. Спасибо за просмотр моего видео и дайте мне знать комментарии ниже, которые должны я подключить двигатель к своему генератору бесплатной энергии, угадайте меня и дайте мне несколько идей, над которыми я буду работать. Спасибо.
Подпишитесь на мой канал Поставьте лайк моему видео, если да, я принесу вам больше, ребята Спасибо за просмотр!

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ:
Обратите внимание, что держите каждую часть тела подальше от проводов везде, не связывайтесь с высоким напряжением, это может убить вас, и этот бесплатный генератор энергии выдает высокое напряжение примерно от 150 до 250 В, что очень опасно для человека и любых живых существ в мире
которые могут убить вас и поранить вас, и не вращать вал двигателя очень быстро, когда вы пытаетесь электроники 12 В постоянного тока работать с высоким напряжением, это может повредить вашу электронику, и я не могу нести ответственность за потерю имущества, повреждение или потерю жизни если уж на то пошло.

|| *** СПАСИБО ЗА ПРОСМОТР *** ||
Чтобы увидеть больше видеороликов и проектов DIY, включая автомобили и механику, щелкните ссылку ниже:
https://www.youtube.com/c/ElectricalElectronicsProjects

ФОНАРИ ДЛЯ ФОНАРОВ E & EP / LED
https://www.youtube.com/watch?v=sJhI31EbTAE&list=PL0DTp_GYFoyMRWetRl-6KGZwE7vG7JwhQ

E & EP / Автомобиль и механика
https://www.youtube.com/watch?v=bFVDrVqnAJM&list=PL0DTp_GYFoyOd8O9BX6jT5aBkpHFrpudl

E & EP / DIY Projects
https: // www.youtube.com/watch?v=THTvcZyuya8&list=PL0DTp_GYFoyNV577sQ8Z4A127zuvtCqdQ

E & EP / Электрика и электроника
https://www.youtube.com/watch?v=L-TYrTFA1-0&list=PL0DTp_GYFoyMGtaQs1K61bifK-XW9N8H8

Подпишитесь на наш канал здесь:
https://www.youtube.com/c/ElectricalElectronicsProjects?sub_confirmation=1

Простая английская Википедия, бесплатная энциклопедия

Электричество — это наличие и поток электрического заряда.Используя электричество, мы можем передавать энергию способами, которые позволяют нам выполнять простые домашние дела. [1] Его самая известная форма — это поток электронов через проводники, такие как медные провода.

Слово «электричество» иногда используется для обозначения «электрической энергии». Это не одно и то же: электричество — это среда передачи электроэнергии, как морская вода — среда передачи энергии волн. Предмет, через который проходит электричество, называется проводником. Медные провода и другие металлические предметы являются хорошими проводниками, позволяя электричеству проходить через них и передавать электрическую энергию.Пластик — плохой проводник (также называемый изолятором) и не пропускает много электричества через него, поэтому он остановит передачу электрической энергии.

Передача электроэнергии может происходить естественным путем (например, молния) или производиться людьми (например, в генераторе). Его можно использовать для питания машин и электрических устройств. Когда электрические заряды неподвижны, электричество называется статическим электричеством. Когда заряды движутся, они представляют собой электрический ток, иногда называемый «динамическим электричеством».Молния — самый известный и опасный вид электрического тока в природе, но иногда статическое электричество заставляет вещи слипаться и в природе.

Электричество может быть опасным, особенно вокруг воды, потому что вода является хорошим проводником, поскольку в ней есть примеси, такие как соль. Соль может помочь току электричества. С девятнадцатого века электричество использовалось во всех сферах нашей жизни. До этого это было просто любопытство, увиденное в молнии грозы.

Электрическая энергия может быть получена, если магнит проходит близко к металлической проволоке. Это метод, используемый генератором. Самые большие генераторы находятся на электростанциях. Электроэнергия также может быть высвобождена путем объединения химикатов в банке с двумя разными видами металлических стержней. Это метод, используемый в батарее. Статическое электричество может быть создано за счет трения между двумя материалами — например, шерстяной шапочкой и пластиковой линейкой. Это может вызвать искру. Электрическая энергия также может быть создана с использованием энергии солнца, как в фотоэлектрических элементах.

Электроэнергия поступает в дома по проводам от мест, где она производится. Он используется в электрических лампах, электрических обогревателях и т. Д. Многие бытовые приборы, такие как стиральные машины и электрические плиты, используют электричество. На фабриках машины работают от электроэнергии. Людей, которые имеют дело с электричеством и электрическими устройствами в наших домах и на фабриках, называют «электриками».

Есть два типа электрических зарядов, которые толкают и притягивают друг друга: положительные заряды и отрицательные заряды.Электрические заряды толкают или тянут друг друга, если они не соприкасаются. Это возможно, потому что каждый заряд создает вокруг себя электрическое поле . Электрическое поле — это область, окружающая заряд. В каждой точке около заряда электрическое поле указывает в определенном направлении. Если в эту точку поместить положительный заряд, он будет толкаться в этом направлении. Если в эту точку поместить отрицательный заряд, он будет выталкиваться в противоположном направлении.

Он работает как магнит, и на самом деле электричество создает магнитное поле, в котором одинаковые заряды отталкиваются друг от друга, а противоположные — притягиваются.Это означает, что если вы поместите два негатива близко друг к другу и отпустите их, они разойдутся. То же верно и для двух положительных зарядов. Но если вы поместите положительный заряд и отрицательный заряд близко друг к другу, они потянутся друг к другу. Краткий способ запомнить эту фразу: противоположностей привлекают, отталкивают.

Вся материя во Вселенной состоит из крошечных частиц с положительным, отрицательным или нейтральным зарядом. Положительные заряды называются протонами, а отрицательные — электронами.Протоны намного тяжелее электронов, но оба они имеют одинаковое количество электрического заряда, за исключением того, что протоны положительны, а электроны отрицательны. Поскольку «противоположности притягиваются», протоны и электроны слипаются. Несколько протонов и электронов могут образовывать более крупные частицы, называемые атомами и молекулами. Атомы и молекулы все еще очень крошечные. Они слишком малы, чтобы их можно было увидеть. Любой большой объект, такой как ваш палец, содержит больше атомов и молекул, чем кто-либо может сосчитать. Мы можем только оценить, сколько их.

Поскольку отрицательные электроны и положительные протоны слипаются, образуя большие объекты, все большие объекты, которые мы можем видеть и чувствовать, электрически нейтральны. Электрически — это слово, означающее «описание электричества», а нейтральный — слово, означающее «сбалансированный». Вот почему мы не чувствуем, как объекты толкают и тянут нас на расстоянии, как если бы все было электрически заряжено. Все большие объекты электрически нейтральны, потому что в мире одинаковое количество положительного и отрицательного заряда.Можно сказать, что мир точно сбалансирован или нейтрален. Ученые до сих пор не знают, почему это так.

Чертеж электрической цепи: ток (I) течет от + вокруг цепи обратно к — Электричество передается по проводам.

Электроны могут перемещаться по всему материалу. Протоны никогда не движутся вокруг твердого объекта, потому что они такие тяжелые, по крайней мере, по сравнению с электронами. Материал, который позволяет электронам перемещаться, называется проводником . Материал, который плотно удерживает каждый электрон на месте, называется изолятором . Примеры проводников: медь, алюминий, серебро и золото. Примеры изоляторов: резина, пластик и дерево. Медь очень часто используется в качестве проводника, потому что это очень хороший проводник, а ее очень много в мире. Медь содержится в электрических проводах. Но иногда используются и другие материалы.

Внутри проводника электроны подпрыгивают, но не могут долго двигаться в одном направлении. Если внутри проводника создается электрическое поле, все электроны начнут двигаться в направлении, противоположном направлению, на которое указывает поле (поскольку электроны заряжены отрицательно).Батарея может создавать электрическое поле внутри проводника. Если оба конца куска провода подключены к двум концам батареи (называемые электродами , ), образованная петля называется электрической цепью . Электроны будут течь по цепи и вокруг нее, пока батарея создает электрическое поле внутри провода. Этот поток электронов по цепи называется электрическим током .

Проводящий провод, используемый для передачи электрического тока, часто оборачивают изолятором, например резиной.Это потому, что провода, по которым проходит ток, очень опасны. Если человек или животное коснутся оголенного провода, по которому проходит ток, они могут получить травму или даже умереть в зависимости от того, насколько сильным был ток и сколько электроэнергии он передает. Будьте осторожны с электрическими розетками и оголенными проводами, по которым может проходить ток.

Можно подключить электрическое устройство к цепи, чтобы электрический ток проходил через устройство. Этот ток будет передавать электрическую энергию, заставляя устройство делать то, что мы хотим от него.Электрические устройства могут быть очень простыми. Например, в лампочке ток переносит энергию через специальный провод, называемый нитью накала, который заставляет ее светиться. Электрические устройства тоже могут быть очень сложными. Электрическая энергия может использоваться для привода электродвигателя внутри такого инструмента, как дрель или точилка для карандашей. Электроэнергия также используется для питания современных электронных устройств, включая телефоны, компьютеры и телевизоры.

Некоторые термины, связанные с электричеством [изменить | изменить источник]

Вот несколько терминов, с которыми может столкнуться человек, изучая, как работает электричество.Изучение электричества и того, как оно делает электрические цепи возможными, называется электроникой. Есть область инженерии, называемая электротехникой, где люди придумывают новые вещи, используя электричество. Им важно знать все эти термины.

  • Ток — это количество протекающего электрического заряда. Когда 1 кулон электричества проходит где-то за 1 секунду, сила тока составляет 1 ампер. Чтобы измерить ток в одной точке, мы используем амперметр.
  • Напряжение, также называемое «разностью потенциалов», представляет собой «толчок» за током.Это количество работы, которую может выполнить электрический заряд на один электрический заряд. Когда 1 кулон электричества имеет 1 джоуль энергии, он будет иметь электрический потенциал 1 вольт. Для измерения напряжения между двумя точками воспользуемся вольтметром.
  • Сопротивление — это способность вещества «замедлять» течение тока, то есть уменьшать скорость, с которой заряд проходит через вещество. Если электрическое напряжение в 1 вольт поддерживает ток в 1 ампер через провод, сопротивление провода составляет 1 Ом — это называется законом Ома.Когда течению тока противостоит, энергия «расходуется», что означает, что она преобразуется в другие формы (например, свет, тепло, звук или движение).
  • Электрическая энергия — это способность выполнять работу с помощью электрических устройств. . Электрическая энергия является «сохраняемым» свойством, что означает, что она ведет себя как вещество и может перемещаться с места на место (например, по передающей среде или в батарее). Электрическая энергия измеряется в джоулях или киловатт-часах (кВтч).
  • Электроэнергия — это скорость использования, хранения или передачи электроэнергии.Расход электроэнергии по линиям электропередачи измеряется в ваттах. Если электрическая энергия преобразуется в другую форму энергии, она измеряется в ваттах. Если часть его преобразуется, а часть хранится, она измеряется в вольт-амперах, а если она хранится (например, в электрических или магнитных полях), она измеряется в реактивной вольт-амперной энергии.
Электроэнергия вырабатывается на электростанциях.

Электроэнергия в основном вырабатывается на электростанциях. Большинство электростанций используют тепло для превращения воды в пар, который превращает паровой двигатель.Турбина парового двигателя вращает машину, называемую «генератором». Спиральные провода внутри генератора вращаются в магнитном поле. Это заставляет электричество течь по проводам, неся электрическую энергию. Этот процесс называется электромагнитной индукцией. Майкл Фарадей открыл, как это сделать.

Существует множество источников тепла, которые можно использовать для выработки электроэнергии. Источники тепла можно разделить на два типа: возобновляемые источники энергии, в которых поставки тепловой энергии никогда не заканчиваются, и невозобновляемые источники энергии, запасы которых в конечном итоге будут израсходованы.

Иногда естественный поток, такой как энергия ветра или воды, может использоваться непосредственно для вращения генератора, поэтому нагрев не требуется.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *