Из блок питания: Регулируемый блок питания 2,5-24в из БП компьютера

Содержание

Зарядное устройство из блока питания компьютера

Дорогие друзья, я расскажу вам о простом способе переделки компьютерного блока питания в зарядное устройство для автомобильных аккумуляторов своими руками. Для переделки подойдут любые компьютерные блоки питания собранные на микросхемах TL494 или КА7500 с любым буквенным индексом в конце. Модель, дата производства, цвет и размер блока питания никакого значения не имеют. Самое главное, это наличие в блоке питания микросхемы TL494 или ее аналога КА7500. Снимите верхнюю крышку и проверьте на какой микросхеме собран блок.

Зарядное устройство из компьютерного блока питания на микросхеме KA7500

Прежде чем приступить к переделке компьютерного блока питания в зарядное устройство, проверьте исправность блока питания. Как включить блок питания без компьютера? Замкните зеленый провод с любым черным. Блок должен включиться.

Зарядное устройство из компьютерного блока питания. Как включить блок питания без компьютера

Для нормальной зарядки аккумулятора требуется напряжение 14,5 вольт, а на выходе из компьютерного блока питания напряжение 12 вольт.  Поэтому, надо сделать блок питания регулируемым, то есть поднять напряжение до максимального значения в 16 вольт. На этом рисунке изображена схема переделки компьютерного блока питания в зарядное устройство.

Схема переделки компьютерного блока питания в зарядное устройство

Схема переделки компьютерного блока питания в зарядное устройство

Скачать схему переделки компьютерного блока питания в зарядное устройство Скачать

В каждом блоке питания, собранном на микросхемах TL494 или КА7500, имеется защита от короткого замыкания и высокого напряжения, которая отключает блок питания в случае нештатной ситуации. Чтобы повысить выходное напряжение до 16 вольт, надо отключить защиту. Для этого отрежьте дорожку от 4 ноги микросхемы. Далее 4 ногу микросхемы соедините куском провода на минус, это большой пучок черных проводов, обозначенных на плате GND. Чтобы сделать блок питания регулируемым, надо удалить резистор, через который подается напряжение с выхода блока питания, обозначенного на плате +12V (пучок желтых проводов)  на первую ногу микросхемы и на его место поставить переменный резистор сопротивлением 50 кОм или 100 кОм. Для каждого блока подбирается индивидуально ведь блоки питания у всех разные.

Для начинающих радиолюбителей это очень сложная задача потому, что этот самый резистор очень любят прятать от зорких глаз и умелых рук начинающих радиолюбителей хитрые производители компьютерных блоков питания. Каких либо стандартов расположения резистора на печатной плате нет. Все производители блоков питания по своему располагают и нумеруют детали на плате. Поэтому, искать надо от выхода +12V  до первой ноги микросхемы или наоборот, кому как удобно. На этой плате я отключил защиту, отрезав дорожку от 4 ноги микросхемы. Потом соединил 4 ногу на минус. После включения в сеть блок питания запускается без замыкания зеленого провода с черным, это означает, что защита отключена.

Отключение защиты в компьютерном блоке питания на микросхеме КА7500 или TL494

В этом компьютерном блоке питания, резистор находится здесь, рядом с первой ногой микросхемы. Напряжение на резисторе около 12 вольт.

Зарядное устройство из компьютерного блока питания. Поиск резистора.

После установки переменного резистора на 100 кОм. Напряжение плавно регулируется от 4,5 вольт до 16 вольт и обратно. Поскольку выходное напряжение увеличилось до 16 вольт, а в некоторых блоках питания возможно поднять напряжение до 20 вольт. Во избежание мощного взрыва выходных конденсаторов настоятельно рекомендую заменить 16 вольтовые конденсаторы на выходе из блока питания на 25 вольтовые, они по диаметру идеально становятся на свои места, а по высоте немного длиннее. Вентилятор подключите через резистор от 20 до 100 ом.

Зарядное устройство из компьютерного блока питания. Выходное напряжение 16 вольт.

Для визуального контроля процесса зарядки аккумулятора желательно установить универсальный вольт амперметр китайского производства. Схема подключения изображена на рисунке внизу. Не смотря на свою универсальность, чудо прибор для точности измерительных показаний нуждается в небольшой настройке. На задней плате прибора имеется два маленьких подстроечных SMD резистора. Левый резистор предназначен для калибровки амперметра, а правый показаний вольтметра. Как откалибровать китайский вольт амперметр?

После подключения прибора к выходу компьютерного блока питания, подключите мультиметр в режиме вольтметра. Сравните показания двух приборов. В случае необходимости подкорректируйте показания вольт амперметра правым подстроечным резистором. Чтобы откалибровать амперметр, переключите мультиметр в режим амперметра и соедините последовательно с вольт амперметром через лампу накаливания 12 Вольт 21 Ватт. Точность показаний амперметра установите левым подстроечным резистором. На этом калибровка вольт амперметра окончена.

Схема подключения универсального вольт амперметра к зарядному устройству из компьютерного блока питания

Схема подключения универсального вольт амперметра к зарядному устройству из компьютерного блока питания

Скачать схему подключения вольт амперметра Скачать

Так выглядит готовое зарядное устройство, все детали легко разместились внутри стандартного корпуса.  Поскольку в зарядном устройстве отсутствует защита от короткого замыкания, не забудьте установить предохранитель на 10А в разрыв (желтого) провода выходящего из линии +12V, который надежно защитит блок питания от короткого замыкания.

Зарядное устройство из компьютерного блока питания

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Читайте также: Зарядное устройство из компьютерного блока питания

Рекомендую посмотреть видеоролик о том, как сделать зарядное устройство из компьютерного блока питания!

Лабораторный источник питания из блока ATX компьютера

Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.

Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.

Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.

Распиновка выходов блока питания компьютера



Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.

Переделка началась


Что нам понадобиться?
  • — Клеммы винтовые.
  • — Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
  • — Трубка термоусадочная.
  • — Пара светодиодов с гасящими резисторами на 330 Ом.
  • — Переключатели. Один для сети, второй для управления


Схема доработки блока питания компьютера



Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.

Начнем


Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.

Вставляем клеммы и затягиваем.

Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.

Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.

Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.

Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.

Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.

Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.

Смотрите видео изготовления лабораторного блока своими руками


Переделка компьютерного блока питания — Блоки питания — Источники питания

Подробное описание.

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.

Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ, которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 9-10 вольт (используется для дежурного питания ТЛ-ки).
Мы и будем использовать для постоянного питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.

Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:

«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»

 

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.


Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 50 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Вернее даже не желательно, а необходимо, для того, чтобы остался небольшой запас для регулировки ШИМ, то есть для стабилизации напряжения и тока.
Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (30-40 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;


Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Удачи Вам в конструировании!

 

Зарядное устройство из компьютерного блока питания

Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL494 или KA7500. Другие блоки питания, к сожалению, переделать таким способом не получится.

Компьютерный блок питания на микросхеме TL494

У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.

Печатная плата компьютерного блока питания

Чтобы отключить защиту надо перерезать дорожку от  Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.

Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.

Схема переделки компьютерного блока питания в зарядное устройство

Схема переделки компьютерного блока питания в зарядное устройство

Скачать схему Скачать

Полная схема блока питания на микросхеме TL494, KA7500.

Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство

Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство

Скачать схему Скачать

Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.

Схема подключения вольт - амперметра к зарядному устройству

Схема подключения вольт амперметра к зарядному устройству

Скачать схему Скачать

А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.

Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.

Зарядное устройство из компьютерного блока питания

Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.

Подключение галогеновой лампы к зарядному устройству

Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.

Тестирование зарядного устройства из компьютерного блока питания

Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.

Как заряжать аккумулятор?

В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.

Зарядное устройство для автомобильного аккумулятора из компьютерного блока питания

По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.

Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!

Читайте также: Зарядное устройство из блока питания компьютера. Простой способ переделать БП в зарядное устройство.

Простой лабораторный блок питания из старого компьютерного блока питания.

Эту поделку можно сделать не только для применения лабораторного блока питания, а также она ещё подойдёт, как зарядное устройство для аккумулятора автомобиля.

Поделка простая и много слов говорить не буду, итак берём старый блок питания, вскрываем его и откусываем все ненужные провода, оставляем только 12 и 5 вольт.

Простой лабораторный блок питания

Возможно кто то не знает, для того чтобы блок питания запускался нужно замкнуть на плате черный и зеленый провод.

Далее я взял 2 разъема от колонок, они удобны тем, что можно быстро подключать и отключать провода. Вы можете использовать любые разъемы на ваше усмотрение.

Простой лабораторный блок питания

Один такой разъем я подключил напрямую на 5 вольт, а вот 12 вольт я подключил к модулю повышения напряжения, который я заказывал на всем известном алиэкспрессе, может кому пригодится то вот ссылка на него.

Этот модуль имеет мощность 150 ватт и может поднимать напряжение до 32 вольт.

А вот к выходу этого модуля уже подключаем выходной разъём,

Простой лабораторный блок питания

который впоследствии будем крепить на лицевой стороне нашего блока питания и снимать с него напряжение от 12 до 32 вольт.

А чтобы плавно регулировать напряжение, нужно закрепить переменный резистор на 10 килоом, тоже на лицевой панели нашего блока питания. А для этого нужно сначала выпаять на плате маленький, переменный резистор и вместо него впаять свой.

Ничего тут сложного нет, я надеюсь, что каждый разберётся.

Ну и конечно же для удобства я ещё подключил вольт-амперметр, подключить можно по предоставленной схеме.

Простой лабораторный блок питания

Вот и всё, у нас получился простой и довольно таки мощный лабораторный блок питания и совмещенное зарядное устройство для заряда аккумуляторных батарей.

Простой лабораторный блок питания

Лабораторный источник постоянного напряжения из блока питания / Хабр

Несколько недель назад мне для некого опыта потребовался источник постоянного напряжения 7V и силой тока в 5A. Тут-же отправился на поиски нужного БП в подсобку, но такого там не нашлось. Спустя пару минут я вспомнил о том, что под руки в подсобке попадался блок питания компьютера, а ведь это идеальный вариант! Пораскинув мозгами собрал в кучу идеи и уже через 10 минут процесс начался.

Для изготовления лабораторного источника постоянного напряжения потребуется:
— блок питания от компьютера
— клеммная колодка
— светодиод
— резистор ~150 Ом
— тумблер
— термоусадка
— стяжки

Блок питания, возможно, найдётся где-то не нужный. В случае целевого приобретения — от $10. Дешевле я не видел. Остальные пункты этого списка копеечные и не дефицитные.

Из инструментов понадобится:
— клеевой пистолет a.k.a. горячий клей (для монтажа светодиода)
— паяльник и сопутствующие материалы (олово, флюс…)
— дрель
— сверло диаметром 5мм
— отвертки
— бокорезы (кусачки)

Изготовление

Итак, первое, что я сделал — проверил работоспособность этого БП. Устройство оказалось исправным. Сразу можно отрезать штекера, оставив 10-15 см на стороне штекера, т.к. он вам может пригодиться. Стоит заметить, что нужно рассчитать длину провода внутри БП так, чтобы его хватило до клемм без натяжки, но и чтобы он не занимал всё свободное пространство внутри БП.

Теперь необходимо разделить все провода. Для их идентификации можно взглянуть на плату, а точнее на площадки, к которым они идут. Площадки должны быть подписаны. Вообще есть общепринятая схема цветовой маркировки, но производитель вашего БП, возможно, окрасил провода иначе. Чтобы избежать «непоняток» лучше самостоятельно идентифицировать провода.

Вот моя «проводная гамма». Она, если я не ошибаюсь, и есть стандартной.
С жёлтого по синий, думаю, ясно. Что означают два нижних цвета?
PG (сокр. от «power good«) — провод, который мы используем для установки светодиода-индикатора. Напряжение — 5В.
ON — провод, который необходимо замкнуть с GND для включения блока питания.

В блоке питания есть провода, которые я здесь не описывал. Например, фиолетовый +5VSB. Этот провод мы использовать не будем, т.к. граница силы тока для него — 1А.

Пока провода нам не мешают, нужно просверлить отверстие для светодиода и сделать наклейку с необходимой информацией. Саму информацию можно найти на заводской наклейке, которая находится на одной из сторон БП. При сверлении нужно позаботиться о том, чтобы металлическая стружка не попала вовнутрь устройства, т.к. это может привести к крайне негативным последствиям.

На переднюю панель БП я решил установить клеммную колодку. Дома нашлась колодка на 6 клемм, которая меня устроила.

Мне повезло, т.к. прорези в БП и отверстия для монтажа колодки совпали, да еще и диаметр подошел. Иначе, необходимо либо рассверливать прорези БП, либо сверлить новые отверстия в БП.

Колодка установлена, теперь можно выводить провода, снимать изоляцию, скручивать и лудить. Я выводил по 3-4 провода каждого цвета, кроме белого (-5V) и синего (-12V), т.к. их в БП по одному.


Первый залужен — вывел следующий.


Все провода залужены. Можно зажимать в клемме.

Устанавливаем светодиод

Я взял обычный зелёный индикационный светодиод обычный красный индикационный светодиод (он, как выяснилось, несколько ярче). На анод (длинная ножка, менее массивная часть в головке светодиода) припаиваем серый провод (PG), на который предварительно насаживаем термоусадку. На катод (короткая ножка, более массивная часть в головке светодиода) припаиваем сначала резистор на 120-150 Ом, а к второму выводу резистора припаиваем черный провод (GND), на который тоже не забываем предварительно надеть термоусадку. Когда всё припаяно, надвигаем термоусадку на выводы светодиода и нагреваем ее.


Получается вот такая вещь. Правда, я немного перегрел термоусадку, но это не страшно.

Теперь устанавливаю светодиод в отверстие, которое я просверлил еще в самом начале.

Заливаю горячим клеем. Если его нет, то можно заменить супер-клеем.

Выключатель блока питания

Выключатель я решил установить на место, где раньше у блока питания выходили провода наружу.


Измерял диаметр отверстия и побежал искать подходящий тумблер.


Немного покопался, и нашел идеальный выключатель. За счёт разницы в 0,22мм он отлично встал на место. Теперь к тумблеру осталось припаять ON и GND, после чего установить в корпус.

Основная работа сделана. Осталось навести марафет.


Хвосты проводов, которые не использованы нужно изолировать. Я это сделал термоусадкой. Провода одного цвета лучше изолировать вместе.


Все шнурки аккуратно размещаем внутри.


Прикручиваем крышку, включаем, бинго!

Этим блоком питания можно получить много разных напряжений, пользуясь разностью потенциалов. Учтите, что такой приём не прокатит для некоторых устройств.
Вот тот спектр напряжений, которые можно получить.
В скобках первым идёт положительный, вторым — отрицательный.
24.0V — (12V и -12V)
17.0V — (12V и -5V)
15.3V — (3.3V и -12V)
12.0V — (12V и 0V)
10.0V — (5V и -5V)
8.7V — (12V и 3.3V)
8.3V — (3.3V и -5V)
7.0V — (12V и 5V)
5.0V — (5V и 0V)
3.3V — (3.3V и 0V)
1.7V — (5V и 3.3V)
-1.7V — (3.3V и 5V)
-3.3V — (0V и 3.3V)
-5.0V — (0V и 5V)
-7.0V — (5V и 12V)
-8.7V — (3.3V и 12V)
-8.3V — (-5V и 3.3V)
-10.0V — (-5V и 5V)
-12.0V — (0V и 12V)
-15.3V — (-12V и 3.3V)
-17.0V — (-12V и 5V)
-24.0V — (-12V и 12V)




Вот так мы получили источник постоянного напряжения с защитой от КЗ и прочими плюшками.

Рационализаторские идеи:
— использовать самозажимные колодки, как предложили тут, либо использовать клеммы с изолированными барашками, чтобы не хватать в руки отвёртку лишний раз.

Зарядное устройство из блока питания компьютера

Наверняка каждому автолюбителю приходилось собирать зарядное устройство для автомобиля своими руками. Существует масса разнообразных подходов, начиная от простых трансформаторных схем, заканчивая импульсными схемами с автоматической регулировкой. Зарядное устройство из блока питания компьютера, как раз занимает золотую середину. Оно получается за копеечную цену, а его параметры отлично справляются с зарядкой автомобильных АКБ. Сегодня мы вам расскажем, как за полчаса можно собрать зарядное устройство из компьютерного блока питания ATX. Поехали!

Зарядное устройство из блока питания компьютера

Для начала необходим рабочий блок питания. Можно брать совсем старый на 200 – 250 Вт, этой мощности хватит с запасом. Учитывая что зарядка должна происходить при напряжении в 13,9 – 14,4 В, то самой главной доделкой в блоке станет поднятие напряжение на линии 12 В до 14,4 В. Подобный метод применялся в статьи: Зарядное устройство из блока питания светодиодных лент.

Внимание! В работающем блоке питания элементы находятся под опасным для жизни напряжением. Не стоит хапаться руками за все подряд.

Первым делом отпаиваем все провода, которые выходили с блока питания. Оставляем только зеленый провод, его необходимо запаять к минусовым контактам. (Площадки, от которых выходили черные провода — это минус.) Это делается для автоматического старта блока при включении в сеть. Также сразу рекомендую припаять провода с клеммами к минусу и шине + 12 В (бывшие желтые провода), для удобства и дальнейшей настройки зарядного.

Следующие манипуляции будут производиться с режимом работы ШИМ — у нас это микросхема TL494 (есть еще куча блоков питания с ее абсолютными аналогами). Ищем первую ножку микросхемы (самая нижняя левая ножка), дальше просматриваем дорожку с обратной стороны платы.

С первым выводом микросхемы соединены три резистора, нам нужен тот, который соединяется с выводами блока +12 В. На фото этот резистор отмечен красным лаком.

Этот резистор необходимо отпаять с платы и измерить его сопротивление. В нашем случае это 38,5 кОм.

Вместо него необходимо впаять переменный резистор, который предварительно настраиваем на такое же сопротивление 38,5 кОм.

Плавно увеличивая сопротивление переменного резистора, добиваемся значения напряжения на выходе в 14,4 В.

Внимание! Для каждого блока питания номинал этого резистора будет разный, т.к. схемы и детали в блоках разные, но алгоритм изменения напряжение один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придется перезагружать, предварительно уменьшив сопротивление переменного резистора.

В нашем блоке сразу поднять напряжение до 14 В не получилось, не хватило сопротивление переменного резистора, пришлось последовательно с ним добавить еще один постоянный.

Когда напряжение 14,4 В достигнуто, можно смело выпаять переменный резистор и измерить его сопротивление (оно составило 120,8 кОм).

Поле замера резистора необходимо подобрать постоянный резистор с как можно близким сопротивлением.



Мы его составили из двух 100 кОм и 22 кОм.

Тестируем работу.

На этом этапе можно смело закрывать крышку и пользоваться зарядным устройством. Но если есть желание, можно подключить к этому блоку цифровой вольтамперметр, это даст нам возможность контролировать ход зарядки.

Также можно прикрутить ручку для удобной переноски и вырезать отверстие в крышке под цифровой приборчик.

Финальный тест, убеждаемся, что все правильно собрано и хорошо работает.

Внимание! Данное зарядное устройство сохраняет функцию защиты от короткого замыкания и перегрузки. Но не защищает от переплюсовки! Ни в коем случае не допускается подключать к зарядному устройству аккумулятор неправильной полярностью, зарядное мгновенно выйдет из строя.

При переделке блока питания в зарядное устройство желательно иметь под рукой схему. Что бы упростить жизнь нашим читателями мы сделали небольшую подборку, где размещены схемы компьютерных блоков питания ATX.

Для защиты от переполюсовки существует масса интересных схем. С одной из них можно знакомиться в этой статье.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Как определить эффективный блок питания

Как определить эффективный блок питания?

Руководящие принципы, правила и нормы

Одним из наиболее важных показателей эффективности блока питания является его соответствие рекомендациям Energy Star 5.0, а также соответствие требованиям уровня эффективности 80 PLUS. Последнее относится в первую очередь к компьютерным блокам питания и признано во всем мире. Кроме того, если вы находитесь в европейской стране, следует обратить внимание на соответствие требованиям CE и руководству ErP.

Блоки питания 80 PLUS более эффективны

Все упомянутые нами спецификации, нормы и рекомендации требуют высокой эффективности, а также улучшенного качества электроэнергии. Источники питания, которые соответствуют этим строгим правилам, пройдя определенный набор тестов, могут быть затем помечены значком 80 PLUS, соответствующим их уровню эффективности. Хотя нагрузочные / стресс-тесты могут не соответствовать определенным в спецификации ATX, в данном случае это приемлемо. Хорошие новости для наших европейских читателей: поскольку тесты проводятся с использованием нижнего U.S. напряжения, эти источники питания достигают еще более высокого уровня эффективности в сети 230 В.

80 PLUS: титан, платина, золото, серебро, бронза

Исходная концепция сертификации 80 PLUS была пересмотрена, добавлены новые, более строго определенные уровни эффективности. У каждого сертификата Bronze, Silver, Gold и Platinum есть свои требования. Таким образом, блок питания с сертификатом «80 PLUS Gold» или «80 PLUS Platinum» более эффективен, чем не имеющий сертификата. С другой стороны, более сложные схемы, необходимые для достижения этих уровней, также обычно приводят к более высокой цене.

Ниже вы найдете таблицу, в которой показано, каких уровней эффективности должен достичь блок питания при заданной нагрузке, чтобы соответствовать определенному уровню сертификации.

КПД при нагрузке 10% КПД при нагрузке 20% КПД при нагрузке 50% КПД при 100% нагрузке
80 PLUS 80% 80% 80% (PF> 0.9)
80 PLUS Bronze 82% 85% (PF> 0,9) 82%
80 PLUS Silver 85% 88 % (PF> 0,9) 85%
80 PLUS Gold 87% 90% (PF> 0,9) 87%
80 PLUS Platinum 90% 92% (PF> 0.95) 89%
80 PLUS Titanium 90% 92% (PF> 0,95) 94% 90%

Сначала организация 80 PLUS сертифицировала только блоки питания с входом 115 В, однако недавно были добавлены сертификаты 230 В с повышенными требованиями, поскольку потери энергии значительно ниже при более высоких нагрузках с этим входом напряжения. В таблице ниже вы найдете внутренние сертификаты 80 PLUS 230V ЕС.

КПД при нагрузке 10% КПД при нагрузке 20% КПД при нагрузке 50% КПД при 100% нагрузке
80 PLUS 82% 85% (PF> 0,9) 82%
80 PLUS Bronze 85% 88% (PF> 0,9) 85%
80 PLUS Silver 87% 90% (PF> 0.9) 87%
80 PLUS Gold 90% 92% (PF> 0,9) 89%
80 PLUS Platinum 92 % 94% (PF> 0,90) 90%
80 PLUS Titanium 90% 94% (PF> 0,95) 96% 94%

Когда Выключен не совсем выключен: пара слов о энергопотреблении в режиме ожидания

Когда вы выключаете компьютер, блок питания на самом деле не выключается полностью.Это необходимо для работы таких функций, как Wake-on-LAN. Дело в том, что блок питания продолжает потреблять некоторую энергию (называемую вампирским или фантомным питанием), даже когда компьютер выключен. Новые блоки питания, особенно проданные в Европе и сертифицированные как совместимые с ErP / EuP, потребляют менее 0,5 Вт в этом режиме ожидания. Если вы серьезно относитесь к экономии электроэнергии, выберите более новую модель с поддержкой ErP Lot6 2013.

Какие рельсы питания важны?

Это подводит нас к одному из важнейших моментов современных источников питания: а именно, к той мощности, которую они могут обеспечивать при различных напряжениях.В настоящее время ПК потребляют большую часть энергии от шины +12 В. Для сравнения, два других напряжения, 3,3 и 5 В, играют гораздо менее важную роль. Вот почему вы можете использовать следующее в качестве практического правила: если шина 12 В блока питания может обеспечить всю необходимую мощность с запасом места, то более низкие напряжения также будут достаточными.

Однако обратное не всегда. Сравним наклейки со спецификациями двух моделей блоков питания:

Изображение 1 из 2

Изображение 2 из 2

Разница вполне очевидна.Хотя вторая модель рассчитана на 550 Вт, ее шины +12 В в сумме дают всего 380 Вт, и даже это справедливо только в том случае, если другие направляющие не подвергаются нагрузке одновременно! Никому не нужно 315Вт на шинах 3,3 и 5 В. На практике этот источник питания, вероятно, достигнет своего предела при нагрузке 350 Вт на шине 12 В.

По иронии судьбы, даже хороший блок питания мощностью 425 Вт может выдать больше мощности, чем эта модель при 12 В. Не поддавайтесь на такие уловки.

Первоначальная стоимость по сравнению с Экономия энергии

Качественная продукция изначально стоит дороже, но это не обязательно , всегда означает более низкую стоимость в долгосрочной перспективе.Вот почему мы сразу же рассмотрим несколько конкретных компонентов и их цены, чтобы определить, какой тип блока питания имеет наибольший смысл в данной среде и какой экономии вы можете достичь, если таковая имеется. Некоторые результаты могут вас удивить!

Однако недостаточно сосредоточиться только на финансовом аспекте, потому что мы также должны учитывать долговечность, надежность и безопасность. Мы более подробно рассмотрим эти моменты на следующей странице.

.

Определение источника питания

Блок питания — это аппаратный компонент, который подает питание на электрическое устройство. Он получает питание от электрической розетки и преобразует ток из переменного (переменного тока) в постоянный (постоянный), что и требуется компьютеру. Он также регулирует напряжение до необходимого уровня, что позволяет компьютеру работать без перегрева. Блок питания является неотъемлемой частью любого компьютера и должен правильно работать, чтобы остальные компоненты работали.

Вы можете найти блок питания на системном блоке, просто найдя вход, к которому подключен шнур питания. Не открывая компьютер, обычно это единственная часть блока питания, которую вы видите. Если бы вы удалили блок питания, он бы выглядел как металлический ящик с вентилятором внутри и несколькими подключенными к нему кабелями. Разумеется, вам никогда не придется снимать блок питания, поэтому лучше оставить его в футляре.

В то время как большинство компьютеров имеют внутренние блоки питания, многие электронные устройства используют внешние.Например, некоторые мониторы и внешние жесткие диски имеют источники питания, расположенные вне основного блока. Эти источники питания подключаются напрямую к кабелю, который вставляется в розетку. Они часто включают в себя другой кабель, соединяющий устройство с источником питания. Некоторые источники питания, часто называемые «адаптерами переменного тока», подключаются непосредственно к вилке (что может затруднить их подключение в условиях ограниченного пространства). Обе эти конструкции позволяют главному устройству быть меньше или изящнее за счет перемещения источника питания за пределы устройства.

Поскольку источник питания — это первое место, где электронное устройство получает электричество, оно также наиболее уязвимо для скачков и скачков напряжения. Следовательно, источники питания предназначены для обработки колебаний электрического тока и при этом обеспечивают регулируемую или постоянную выходную мощность. Некоторые из них включают предохранители, которые перегорают при слишком сильном скачке напряжения, защищая остальное оборудование. В конце концов, заменить блок питания намного дешевле, чем весь компьютер. Тем не менее, разумно подключить всю электронику к сетевому фильтру или ИБП, чтобы защитить их от скачков напряжения.

Обновлено: 28 января 2009 г.

TechTerms — Компьютерный словарь технических терминов

Эта страница содержит техническое определение источника питания. Он объясняет в компьютерной терминологии, что означает источник питания, и является одним из многих терминов, связанных с оборудованием, в словаре TechTerms.

Все определения на веб-сайте TechTerms составлены так, чтобы быть технически точными, но также простыми для понимания. Если вы найдете это определение источника питания полезным, вы можете ссылаться на него, используя приведенные выше ссылки для цитирования.Если вы считаете, что термин следует обновить или добавить в словарь TechTerms, напишите в TechTerms!

.

лучших блоков питания 2020 года — лучшие блоки питания для игровых ПК

Блок питания / блок питания вашего ПК играет большую роль в определении надежности вашей системы в зависимости от ее производительности. Поэтому будьте осторожны при выборе правильного блока питания для вашей системы. Лучший источник питания также должен иметь функции для сохранения частей вашей системы (включая сам источник питания) на случай, если что-то пойдет не так с вашим источником питания или другими компонентами. В противном случае это явно не лучший источник питания, и он подвергает опасности другие дорогостоящие компоненты ПК.

У вас также будут разные проблемы, конечно, в зависимости от того, будет ли ваш блок питания работать с монстр-майнером, постоянно работающей рабочей станцией или базовым рабочим столом или игровым столом. Ниже мы поможем вам подобрать лучший блок питания для вашего следующего настольного ПК.

Сначала определите свои требования к мощности. Вам не нужно покупать намного большую потенциальную мощность (мощность), чем вы когда-либо использовали. Вы можете приблизительно рассчитать, сколько энергии ваша новая или модернизированная система будет потреблять от стены, и найдите точку мощности, которая удовлетворяет вашим требованиям.У некоторых продавцов блоков питания есть калькуляторы, которые дадут вам приблизительную оценку потребностей вашей системы в электроэнергии. Вы можете найти несколько ниже:

Вам, вероятно, не понадобится блок питания на 1000 Вт даже для экстремальной игровой установки. Несколько лет назад все графические карты на верхнем уровне иерархии GPU были очень энергоемкими. Но это изменилось с появлением последних архитектур Nvidia. Просто не обязательно покупать блок питания мощностью 1 кВт на пару RTX 2080. Модель 800 Вт подойдет, оставляя место и для разогнанного процессора.Поклонникам AMD Radeon VII высокого класса или более новой Radeon RX 5700 XT нужно будет планировать более высокое энергопотребление, сочетая эти карты с блоками питания с большей максимальной выходной мощностью.

Перед покупкой проверьте физические размеры вашего футляра. Если у вас стандартный корпус ПК ATX, скорее всего, подойдет блок питания ATX. Но многие блоки питания с более высокой мощностью длиннее типичных 5,5 дюйма. Так что вам нужно быть уверенным в том, что у вашего корпуса есть доступ к блоку питания. Если у вас очень крошечный или тонкий корпус ПК, может потребоваться менее типичный (и более компактный) блок питания SFX.У нас также есть выбор для этого форм-фактора ниже.

Подробнее об этом см. В нашем Базовом руководстве по форм-факторам материнской платы, корпуса и блока питания.

Хотите чистую сборку или работу в крошечном корпусе? Рассмотрим модульный блок питания. Если в вашем корпусе много места за материнской платой, или в вашем корпусе нет окна или стеклянной стороны, вы, конечно, можете обернуть кабелем ненужные провода и спрятать их внутри вашего устройства. Но если в системе, которую вы строите, нет места для этого или нет простого места, где можно спрятать беспорядок с кабелями, стоит доплатить за модульный блок питания.Модульные блоки питания позволяют подключать только необходимые кабели питания, а остальные оставлять в коробке.

Лучшие блоки питания, которые можно купить сегодня

Corsair CX450 (Изображение предоставлено Corsair)

1. Corsair CX450

Лучший дешевый блок питания (60 долларов США или менее)

Производитель (OEM): Channel Well Технологии или Великая стена | Макс. Выход постоянного тока: 450 Вт | Эффективность: 80 PLUS Bronze | Форм-фактор : ATX12V v2.4, EPS 2.92 | Охлаждение: 120-мм вентилятор с винтовым подшипником (HA1225M12F-Z или D12SM-12) | Модульный: № | Гарантия: 5 лет

Низкая цена

Полный набор защитных функций

Отличное качество пайки

Вентилятор подшипника винта

Пятилетняя гарантия

Один разъем PCIe ограничивает расширение

Не так тихо, как CWT CX450

Короткое расстояние между разъемами периферийных устройств

Из двух вариантов Corsair CX450 версия Great Wall более эффективна, чем CWT, особенно при малых нагрузках, и имеет более эффективную шину 5VSB.С другой стороны, у него более агрессивный профиль вентилятора, поэтому его выходная мощность повышена. На рынке США вы найдете только версию CWT, которая производится во Вьетнаме, а не в Китае, поэтому она избегает тарифов и сохраняет низкую цену.

Прочтите: Обзор Corsair CX450

Альтернативный лучший дешевый источник питания: Corsair VS450

Еще одна достойная альтернатива, если у вас небольшой бюджет, вам требуется мощность более 500 Вт, и вас не беспокоит эффективность или некоторый шум вентилятора под нагрузкой — это Corsair VS650.Он не получит никаких наград за производительность, но он выполняет свою работу без особых излишеств и суеты менее чем за 50 долларов.

Corsair RM550x

2. Corsair RM550x

Лучший блок питания: до 550 Вт

Производитель (OEM): CWT | Макс. Выход постоянного тока: 550 Вт | Эффективность: | Форм-фактор : ATX12V v2.4, EPS 2.92 | Охлаждение: 135-мм вентилятор подшипника винтовки (NR135L) | Модульный: Да | Гарантия: 10 лет

Полная мощность при 48 ° C

Эффективная

Полупассивная работа

Бесшумная

Японские колпачки

Полностью модульная

Дорого

Кнопка проверки вентилятора отсутствует

4-

Расстояние между контактами Разъемы Molex

RM550x — великолепный блок питания с фантастическим подавлением пульсаций, жестким регулированием нагрузки на второстепенных рельсах и отличной производительностью при переходных нагрузках.Кроме того, он почти бесшумный даже под нагрузкой. Вдобавок ко всему, этот блок очень эффективен, хотя некоторые другие блоки питания с рейтингом Gold с аналогичной емкостью работают немного лучше.

Еще одно преимущество RM550x — качество его внутренних компонентов. Единственное, что мы хотели бы видеть в этом БП, — это удобный способ проверить работоспособность вентилятора. Вентилятор вращается на короткое время при каждом включении источника питания, но мы бы хотели, чтобы Corsair добавила кнопку тестирования вентилятора, как на его устройствах RMi.

Чтение: Обзор Corsair RM550x

Лучший альтернативный блок питания 550 Вт: Phanteks AMP Series 550 Вт

Seasonic Prime Titanium 650 Вт (Изображение предоставлено SeaSonic)

3. Seasonic Prime Titanium 650 Вт

Лучший блок питания: до до Watts

Производитель (OEM): Seasonic | Макс. Выход постоянного тока: 650 Вт | КПД: 80 PLUS Titanium, ETA-A + (91-94%) | Форм-фактор : ATX12V v2.4, EPS 2.92 | Охлаждение: 135 мм гидравлический динамический подшипник (HA13525M12F-Z) | Модульный: Полностью | Гарантия: 12 лет

.

Источник питания

Регулируемый источник питания для вакуумных ламп, устанавливаемый в стойку, с возможностью подачи +/- 1500 В постоянного тока, от 0 до 100 мА на выходе с возможностью ограничения силы тока.

Источник питания — это устройство, которое подает электроэнергию на одну или несколько электрических нагрузок. Этот термин чаще всего применяется к устройствам, которые преобразуют одну форму электрической энергии в другую, хотя он также может относиться к устройствам, которые преобразуют другую форму энергии (например, механическую, химическую, солнечную) в электрическую энергию.Стабилизированный источник питания — это тот, который регулирует выходное напряжение или ток до определенного значения; контролируемое значение остается почти постоянным, несмотря на колебания тока нагрузки или напряжения, подаваемого источником энергии блока питания.

Каждый блок питания должен получать энергию, которую он передает своей нагрузке, а также любую энергию, которую он потребляет при выполнении этой задачи, от источника энергии. В зависимости от конструкции источник питания может получать энергию от:

  • Системы передачи электроэнергии.Типичные примеры этого включают источники питания, которые преобразуют напряжение сети переменного тока в напряжение постоянного тока.
  • Устройства накопления энергии, такие как батареи и топливные элементы.
  • Электромеханические системы, такие как генераторы и генераторы переменного тока.
  • Солнечная энергия.

Источник питания может быть реализован как дискретное автономное устройство или как интегральное устройство, подключенное к его нагрузке. В последнем случае, например, низковольтные источники питания постоянного тока обычно интегрируются с их нагрузками в такие устройства, как компьютеры и бытовая электроника.

Обычно указанные атрибуты источника питания включают:

  • Значение напряжения и тока, которое он может подать на нагрузку.
  • Насколько стабильно его выходное напряжение или ток при различных условиях сети и нагрузки.
  • Как долго он может поставлять энергию без дозаправки или подзарядки (относится к источникам питания, в которых используются портативные источники энергии).

Типы блоков питания

Источники питания для электронных устройств в общих чертах можно разделить на линейные (или «обычные») и импульсные источники питания.Сетевой источник питания обычно имеет относительно простую конструкцию, но он становится все более громоздким и тяжелым для сильноточного оборудования из-за необходимости в больших трансформаторах сетевой частоты и электронных схемах регулирования с теплоотводом. Обычные источники питания с линейной частотой иногда называют «линейными», но это неправильное название, потому что преобразование переменного напряжения в постоянное по своей природе нелинейно, когда выпрямители питаются в емкостных резервуарах. Линейные регуляторы напряжения вырабатывают стабилизированное выходное напряжение с помощью активного делителя напряжения, потребляющего энергию, что снижает эффективность.Импульсный источник питания того же номинала, что и сетевой источник питания, будет меньше, обычно более эффективен, но будет более сложным.

Аккумулятор

Основная статья: Аккумулятор (электричество) Щелочные батареи

Аккумулятор — это устройство, преобразующее накопленную химическую энергию в электрическую. Батареи обычно используются в качестве источников энергии во многих домашних и промышленных применениях.

Существует два типа батарей: первичные батареи (одноразовые батареи), которые предназначены для однократного использования и выбрасывания, и вторичные батареи (аккумуляторные батареи), которые предназначены для многократной подзарядки и использования.Батареи бывают разных размеров, от миниатюрных ячеек, используемых в слуховых аппаратах и ​​наручных часах, до батарейных блоков размером с комнату, которые служат в качестве резервных источников питания в телефонных станциях и компьютерных центрах обработки данных.

Источник питания постоянного тока

Самодельный линейный блок питания (здесь используется для питания любительского радиооборудования)

В нерегулируемых источниках питания переменного тока обычно используется трансформатор для преобразования напряжения от стенной розетки (сети) в другое, в настоящее время обычно более низкое напряжение. Если он используется для выработки постоянного тока, для преобразования переменного напряжения в пульсирующее постоянное напряжение используется выпрямитель, за которым следует фильтр, состоящий из одного или нескольких конденсаторов, резисторов, а иногда и индукторов, для фильтрации (сглаживания) большей части пульсаций.Небольшая остающаяся нежелательная составляющая переменного напряжения в сети или удвоенной частоте сети (в зависимости от того, используется ли полуволновое или двухполупериодное выпрямление) — прерывистое — неизбежно накладывается на прямое выходное напряжение.

Для таких целей, как зарядка аккумуляторов, пульсация не является проблемой, и простейшая нерегулируемая цепь источника постоянного тока с питанием от сети состоит из трансформатора, который управляет одним диодом последовательно с резистором.

До появления твердотельной электроники в оборудовании использовались клапаны (вакуумные лампы), которые требовали высокого напряжения; Источники питания использовали повышающие трансформаторы, выпрямители и фильтры для генерации одного или нескольких постоянных напряжений в несколько сотен вольт и низкого переменного напряжения для нитей накала.Только в самом современном оборудовании использовались дорогие и громоздкие регулируемые блоки питания.

Блок питания переменного тока

Блок питания переменного тока обычно берет напряжение от настенной розетки (сети) и понижает его до желаемого напряжения (например, 9 В переменного тока). Помимо понижения напряжения может иметь место некоторая фильтрация. Примером использования источника переменного тока является питание некоторых гитарных педалей эффектов (например, педали DigiTech Whammy), хотя для педалей эффектов чаще всего требуется постоянный ток.

Линейно-регулируемый источник питания

Напряжение, создаваемое нерегулируемым источником питания, будет варьироваться в зависимости от нагрузки и изменений напряжения питания переменного тока.Для критических приложений электроники можно использовать линейный регулятор для установки напряжения на точное значение, стабилизированное от колебаний входного напряжения и нагрузки. Регулятор также значительно снижает пульсации и шум постоянного выходного тока. Линейные регуляторы часто обеспечивают ограничение тока, защищая источник питания и подключенную цепь от перегрузки по току.

Регулируемые линейные источники питания — это обычное испытательное оборудование для лабораторий и сервисных центров, позволяющее регулировать выходное напряжение в широком диапазоне.Например, настольный источник питания, используемый разработчиками схем, может регулироваться до 30 вольт и до 5 ампер на выходе. Некоторые из них могут управляться внешним сигналом, например, для приложений, требующих импульсного выхода.

Источник питания переменного / постоянного тока
Основная статья: AC / DC (электричество)

В прошлом электричество из сети подавалось в виде постоянного тока в одних регионах и переменного тока в других. Трансформаторы нельзя использовать для постоянного тока, но простой и дешевый нерегулируемый источник питания может работать напрямую от сети переменного или постоянного тока без использования трансформатора.Источник питания состоял из выпрямителя и фильтрующего конденсатора. При работе от постоянного тока выпрямитель был по существу проводником, не оказывая никакого влияния; он был включен для обеспечения работы от переменного или постоянного тока без изменений.

Импульсный источник питания

Основная статья: Импульсный источник питания

Импульсный источник питания (SMPS) работает по другому принципу. Входной переменный ток, обычно при напряжении сети, выпрямляется без использования сетевого трансформатора для получения постоянного напряжения.Это напряжение затем включается и выключается с высокой скоростью с помощью электронной коммутационной схемы, которая затем может проходить через высокочастотный, следовательно, небольшой, легкий и дешевый трансформатор или индуктор. Рабочий цикл выходной прямоугольной волны увеличивается по мере увеличения требований к выходной мощности. Импульсные источники питания всегда регулируются. Если в SMPS используется должным образом изолированный высокочастотный трансформатор, выход будет электрически изолирован от сети, что необходимо для безопасности.

Разделение входной мощности происходит с очень высокой скоростью (обычно 10 кГц — 1 МГц).Высокая частота и высокое напряжение на этой первой стадии позволяют использовать трансформаторы и сглаживающие конденсаторы гораздо меньшего размера, чем в источнике питания, работающем с частотой сети, как это делают линейные источники питания. После вторичной обмотки трансформатора переменный ток снова выпрямляется в постоянный. Чтобы поддерживать постоянное выходное напряжение, блоку питания необходим сложный контроллер обратной связи для контроля тока, потребляемого нагрузкой.

SMPS

часто включают в себя функции безопасности, такие как ограничение тока или схему лома, чтобы защитить устройство и пользователя от повреждений. [1] В случае обнаружения аномального сильноточного потребления энергии импульсный источник питания может предположить, что это прямое короткое замыкание, и отключится до того, как будет нанесено повреждение. На протяжении десятилетий блоки питания ПК подавали на материнскую плату сигнал power good , отсутствие которого предотвращает работу при аномальных напряжениях питания.

ИИП

имеют абсолютный предел минимального выходного тока. [2] Они могут выводить мощность только выше определенного уровня и не могут работать ниже этого уровня.В условиях холостого хода частота схемы ограничения мощности увеличивается до большой скорости, в результате чего изолированный трансформатор действует как катушка Тесла, вызывая повреждение из-за возникающих в результате скачков мощности очень высокого напряжения. Импульсные источники питания со схемами защиты могут на короткое время включаться, но затем отключаться, когда нагрузка не обнаружена. К источнику питания можно подключить очень небольшую маломощную фиктивную нагрузку, такую ​​как керамический силовой резистор или 10-ваттная лампочка, чтобы он мог работать без присоединенной первичной нагрузки.

Коэффициент мощности стал недавней проблемой для производителей компьютеров. Импульсные источники питания традиционно являются источником гармоник в линии электропередачи и имеют очень низкий коэффициент мощности. Многие компьютерные блоки питания, построенные за последние несколько лет, теперь включают коррекцию коэффициента мощности, встроенную прямо в импульсный источник питания, и могут рекламировать тот факт, что они предлагают коэффициент мощности 1.0 .

При разделении синусоидальной волны переменного тока на очень маленькие дискретные части, часть неиспользованного переменного тока остается в линии электропередачи в виде очень маленьких всплесков мощности, которые не могут быть использованы двигателями переменного тока, и приводит к чрезмерному нагреву трансформаторов линии электропередач.Сотни импульсных источников питания в здании могут привести к низкому качеству электроэнергии для других потребителей, окружающих это здание, и к высоким счетам за электроэнергию для компании, если они выставляются в соответствии с их коэффициентом мощности в дополнение к фактической потребляемой мощности. Для подавления и поглощения этих отрицательных эффектов коэффициента мощности могут потребоваться батареи фильтрующих конденсаторов. [ необходима цитата ] .

Некоторые импульсные источники питания используют L-C резонанс в первичной цепи для преобразования прямоугольной волны в синусоидальную форму.Это может уменьшить потери в переключающих устройствах и снизить ВЧ-гармоники частоты переключения, но это усложняет схему и предъявляет более высокие требования к допускам конструкции.

Программируемый блок питания

Программируемые блоки питания

Программируемые источники питания позволяют дистанционно управлять выходным напряжением через аналоговый входной сигнал или компьютерный интерфейс, такой как RS232 или GPIB. К изменяемым свойствам относятся напряжение, ток и частота (для блоков вывода переменного тока).Эти источники питания состоят из процессора, схем программирования напряжения / тока, токового шунта и схем обратного считывания напряжения / тока. Дополнительные функции могут включать защиту от перегрузки по току, перенапряжения и короткого замыкания, а также температурную компенсацию. Программируемые источники питания также бывают различных форм, включая модульные, настенные, настенные, напольные или настольные.

Программируемые блоки питания могут подавать постоянный, переменный или переменный ток со смещением постоянного тока. Выход переменного тока может быть однофазным или трехфазным.Однофазное обычно используется для низкого напряжения, а трехфазное — для высоковольтных источников питания.

Программируемые блоки питания сейчас используются во многих приложениях. Некоторые примеры включают автоматическое тестирование оборудования, мониторинг роста кристаллов и дифференциальный термический анализ. [3]

Источник бесперебойного питания

Основная статья: Источник бесперебойного питания

Источник бесперебойного питания (ИБП) получает питание от двух или более источников одновременно.Обычно он питается напрямую от сети переменного тока, одновременно заряжая аккумулятор. В случае пропадания или сбоя в электросети аккумулятор мгновенно берет на себя, так что нагрузка никогда не прерывается. Такая схема может обеспечивать питание до тех пор, пока заряда батареи достаточно, например, в компьютерной установке, что дает оператору достаточно времени, чтобы произвести упорядоченное завершение работы системы без потери данных. В других схемах ИБП может использоваться двигатель внутреннего сгорания или турбина для непрерывной подачи энергии в систему параллельно с питанием от сети переменного тока.Генераторы с приводом от двигателя обычно работают на холостом ходу, но могут выйти на полную мощность в течение нескольких секунд, чтобы жизненно важное оборудование могло работать без перебоев. Такую схему можно найти в больницах или телефонных центральных офисах.

Источник питания высоковольтный

Высокое напряжение означает выходную мощность порядка сотен или тысяч вольт. Источники высокого напряжения используют линейную схему для создания выходного напряжения в этом диапазоне.

Дополнительные функции, доступные на высоковольтных источниках питания, могут включать в себя возможность обратной полярности на выходе, а также использование автоматических выключателей и специальных разъемов, предназначенных для минимизации искрения и случайного контакта с руками человека.Некоторые источники питания имеют аналоговые входы (например, 0-10 В), которые можно использовать для управления выходным напряжением, эффективно превращая их в усилители высокого напряжения, хотя и с очень ограниченной полосой пропускания.

Умножители напряжения

Основная статья: Умножитель напряжения

Умножитель напряжения — это электрическая схема, которая преобразует электрическую мощность переменного тока из более низкого напряжения в более высокое постоянное напряжение, обычно посредством сети конденсаторов и диодов. Входное напряжение может быть удвоено (удвоение напряжения), утроено (утроено напряжения), четырехкратно (учетверено напряжение) и так далее.Эти схемы позволяют получать высокое напряжение с использованием источника переменного тока гораздо более низкого напряжения.

Обычно умножители напряжения состоят из однополупериодных выпрямителей, конденсаторов и диодов. Например, утроитель напряжения состоит из трех полуволновых выпрямителей, трех конденсаторов и трех диодов (как в умножителе Кокрофта-Уолтона). Двухполупериодные выпрямители могут использоваться в другой конфигурации для достижения еще более высоких напряжений. Также доступны как параллельная, так и последовательная конфигурации. Для параллельных умножителей требуется более высокое номинальное напряжение на каждой последовательной ступени умножения, но требуется меньшая емкость.Номинальное напряжение конденсаторов определяет максимальное выходное напряжение.

Умножители напряжения

имеют множество применений. Например, умножители напряжения можно найти в повседневных предметах, таких как телевизоры и копировальные аппараты. Другие применения можно найти в лаборатории, например, электронно-лучевые трубки, осциллографы и фотоэлектронные умножители. [4] [5]

Применение источников питания

Блок питания компьютера

Основная статья: Блок питания компьютера

Современный компьютерный блок питания — это выключатель с включением и выключением, предназначенный для преобразования напряжения 110-240 В переменного тока из сети в несколько выходных как положительных (и исторически отрицательных) напряжений постоянного тока в диапазоне + 12В, -12В, + 5V, + 5VBs и +3.3В. Источники питания компьютеров первого поколения были линейными устройствами, но поскольку стоимость стала определяющим фактором, а вес стал важным, импульсные источники питания стали почти универсальными.

Разнообразный набор выходных напряжений также требует сильно различающихся требований к потребляемому току, которые трудно обеспечить всем одним и тем же импульсным источником. Следовательно, большинство современных компьютерных источников питания на самом деле состоят из нескольких источников питания с переключением режимов, каждый из которых вырабатывает только одну составляющую напряжения и каждый может изменять свою выходную мощность в зависимости от требований к питанию компонентов, и все они связаны вместе, чтобы отключиться как группа в случае состояние неисправности.

Источник сварочного тока

Основная статья: Сварочный источник питания

Дуговая сварка использует электричество для плавления поверхностей металлов с целью их соединения посредством слияния. Электроэнергия подается от сварочного источника и может быть переменным или постоянным током. Для дуговой сварки обычно требуются высокие токи, обычно от 100 до 350 ампер. Некоторые типы сварки могут использовать всего 10 ампер, в то время как в некоторых случаях точечной сварки используются токи до 60 000 ампер в течение очень короткого времени.Старые источники сварочного тока состояли из трансформаторов или двигателей, приводящих в действие генераторы. В более поздних поставках используются полупроводники и микропроцессоры, уменьшающие их размер и вес.

Адаптер переменного тока

Зарядное устройство для мобильного телефона с переключением режимов

Основная статья: Адаптер переменного тока

Блок питания, встроенный в вилку сетевого шнура переменного тока, известен как «блок вилки» или «сменный адаптер», или на сленге, например, «стенная бородавка». Они даже более разнообразны, чем их имена; часто либо с одной и той же вилкой постоянного тока с разным напряжением или полярностью, либо с другой вилкой с одинаковым напряжением.«Универсальные» адаптеры пытаются заменить отсутствующие или поврежденные, используя несколько штекеров и переключателей для разных напряжений и полярностей. Сменные блоки питания должны соответствовать напряжению и обеспечивать как минимум такой же ток, что и исходный блок питания.

Самые дешевые блоки переменного тока состоят только из небольшого трансформатора, а адаптеры постоянного тока включают несколько дополнительных диодов. Независимо от того, подключена ли нагрузка к адаптеру питания, трансформатор имеет постоянное магнитное поле и обычно не может быть полностью выключен, если не отключен от сети.

Поскольку они потребляют энергию в режиме ожидания, их иногда называют «электрическими вампирами», и их можно подключить к удлинителю, чтобы отключить их. Дорогие импульсные источники питания могут отключать протекающие электролитные конденсаторы, использовать полевые МОП-транзисторы и снижать их рабочую частоту, чтобы время от времени получать глоток энергии для питания, например, часов, которым в противном случае потребовался бы аккумулятор.

Защита от перегрузки

Блоки питания

часто включают в себя какой-либо тип защиты от перегрузки, которая защищает блок питания от сбоев нагрузки (например,ж. короткое замыкание), которые в противном случае могут вызвать повреждение из-за перегрева компонентов или, в худшем случае, электрического пожара. Предохранители и автоматические выключатели — это два обычно используемых механизма защиты от перегрузки. [6]

Предохранитель

A содержит короткий кусок провода, который плавится при протекании слишком большого тока. Это эффективно отключает источник питания от нагрузки, и оборудование перестает работать до тех пор, пока не будет выявлена ​​проблема, вызвавшая перегрузку, и не будет заменен предохранитель. В некоторых источниках питания используется очень тонкая перемычка, припаянная к месту в качестве предохранителя.Конечный пользователь может заменить предохранители в блоках питания, но для доступа к предохранителям в потребительском оборудовании и их замены могут потребоваться инструменты.

Одним из преимуществ использования автоматического выключателя по сравнению с плавким предохранителем является то, что его можно просто сбросить, вместо того, чтобы заменять перегоревший предохранитель. Автоматический выключатель содержит элемент, который нагревает, изгибает и запускает пружину, которая отключает цепь. Как только элемент остынет и проблема будет выявлена, выключатель можно будет сбросить и подать питание.

В некоторых блоках питания используется термовыключатель, расположенный в трансформаторе, а не предохранитель.Преимущество состоит в том, что он позволяет потреблять больший ток в течение ограниченного времени, чем устройство может обеспечивать непрерывно. Некоторые такие вырезы являются самовосстанавливающимися, некоторые — одноразовыми.

Ограничение тока

Некоторые источники питания используют ограничение тока вместо отключения питания в случае перегрузки. Используется два типа ограничения тока: электронное ограничение и ограничение импеданса. Первый типичен для лабораторных блоков питания, второй — для источников питания мощностью менее 3 Вт.

Ограничитель тока с обратной связью снижает выходной ток до значения, намного меньшего, чем максимальный ток без повреждения.

Преобразователь мощности

Термин « источник питания » иногда ограничивается теми устройствами, которые преобразуют некоторые другие формы энергии в электричество (например, солнечная энергия, топливные элементы и генераторы). Более точным термином для устройств, преобразующих одну форму электроэнергии в другую (например, трансформаторов и линейных регуляторов), является преобразователь мощности. Наиболее распространенное преобразование — из переменного в постоянный.

Источники питания механические

Терминология

  • SCP ​​- Защита от короткого замыкания
  • OPP — Защита от перегрузки (перегрузки)
  • OCP — Максимальная токовая защита
  • OTP — Защита от перегрева
  • OVP — Защита от перенапряжения
  • УВП — Защита от пониженного напряжения
  • ИБП — Источник бесперебойного питания
  • PSU — Блок питания
  • SMPSU — Импульсный блок питания

См. Также

Список литературы

  1. ^ Цитата из патента США № 4937722, Высокоэффективный импульсный источник питания с прямой связью : Источник питания может также включать ломовую цепь, защищающую его от повреждений путем зажима выхода на землю, если оно превышает определенное напряжение. Цитата из патента США № 5402059: Проблема может возникнуть, когда нагрузки на выходе импульсного источника питания отключаются от источника питания. Когда это происходит, выходной ток источника питания уменьшается (или исчезает, если все нагрузки отключаются). Если выходной ток становится достаточно малым, выходное напряжение источника питания может достигать максимального значения вторичного напряжения трансформатора источника питания. Это происходит потому, что при очень малом выходном токе на катушке индуктивности L-C фильтра нижних частот не падает большое напряжение (если оно вообще есть).Конденсатор в низкочастотном фильтре L-C заряжается до пикового напряжения вторичной обмотки трансформатора. Это пиковое напряжение обычно значительно выше, чем среднее напряжение вторичной обмотки трансформатора. Более высокое напряжение, которое возникает на конденсаторе и, следовательно, на выходе источника питания, может повредить компоненты в источнике питания. Более высокое напряжение также может повредить любые оставшиеся электрические нагрузки, подключенные к источнику питания. http: // www. Мальмштадт, Энке и Крауч, Электроника и приборы для ученых, The Benjamin / Cummings Publishing Company, Inc., 1981, ISBN 0-8053-6917-1, глава 3.

Внешние ссылки

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *