Когда появился первый сварочный аппарат: История развития сварки. Роль сварки в современном мире

Содержание

История развития сварки. Роль сварки в современном мире

История развития сварки далеко до нашей эры. С тех пор, как люди научились добывать металл, они стремились создавать из него что-то полезное. Самый надежный способ соединения – горячим методом. Сейчас трудно представить, что два века назад русские ученые стояли у истоков современных сварочных аппаратов.

С тех пор началась новая страница жизни человечества. Сейчас существует несколько и видов сварочных технологий, применяемых на производстве и в быту. Современная история сварки – это изобретение новых агрегатов, методов соединения металлов, индивидуальных средств защиты нового поколения. Но по-прежнему популярной остается традиционная дуговая с помощью расплавляемых и тугоплавких электродов. Сварщики создают огромные металлоконструкции и миниатюрные произведения искусства.

История развития сварки

Роль сварки в современном мире

В настоящее время развиваются методы лазерной сварки. Разработана технология высокоточного соединения металлов. Появляются новые композитные материалы, распространено использование алюминия, нержавеющих сталей, цветных металлов. Широкое распространение получили следующие виды высокотемпературного соединения металлов:

  • аргонодуговая технология позволяет получать все виды соединений: стыковые, угловые, тавровые, внахлест;
  • газовая, с помощью нее создаются магистральные трубопроводы, пролегающие далеко от источников тока;
  • полуавтоматическая позволяет ускорить процесс соединения элементов, обладает высокой точностью, снижает риск образования некачественного шва;
  • всегда остается востребованной традиционная ручная электродуговая.

Меняются источники питания, усовершенствуются держатели, но принцип горячего соединения металлов не претерпевает изменений. Сварочный метод предпочтительнее других видов соединений из-за ряда преимуществ:

  • из-за экономии металла;
  • износостойкое оборудование имеет большой запас прочности, его применяют в любых условиях;
  • образуются соединения на молекулярном уровне, обладающие высокой прочностью.

Первые упоминания сварки

Задолго до появления сварочных агрегатов существовали другие способы соединения металла. Найдены образцы соединений, созданных в VIII – VII веках до нашей эры. Самородное золото, кусочки меди и метеоритные сплавы использовали для бытовых целей, оружия. Их скрепляли при нагреве методом, сравнимым с ковкой.

Этап возникновения литья – следующая страница история сварочной технологии. Зазоры между частями металла заливали расплавами, получалось подобие швов. Когда были открыты легкоплавкие металлы, для соединяя металлов стали применять их, возникла пайка. Технологии пайки и ковки использовались до открытия метода электрической дуги, до конца XIX века.

Открытие электрической дуги

Василий Владимирович Петров

Василий Владимирович Петров

Физик и электротехник, академик Василий Петров открыл эффект электродуги в 1802 году. Во время опытов он пропускал электроток через металлический и угольный стержень и заметил, что возникает яркая вспышка – высокотемпературная дуга. В его трудах есть описание этого явления. Но до открытия сварочного аппарата были годы, пока развивалась электротехника. Для дуговой технологии нужны были мощные источники тока.

Николай Николаевич Бернадос

Николай Николаевич Бернадос

Русский изобретатель Николай Бенардос разработал электродуговую сварку только через 80 лет после открытия дуги. Начался новый этап истории развития сварки. Николай Николаевич применил дугу для резки и соединения металлических элементов. Через несколько лет Славянов Николай Гаврилович создал первый сварочный аппарат и электроды. Он официальный автор, признанный во всем мире. Впервые именно он, русский инженер изобрел сварку, запатентовал ее, только потом стали развиваться технологии в других странах. Славянов активно пропагандировал свой метод:

  • исправлял брак, возникший при литье деталей;
  • восстанавливал части паровых турбин;
  • заваривал изношенные детали.
Славянов Николай Гаврилович

Славянов Николай Гаврилович

Он разработал флюсы, защищающие горячий шов от окисления, придумал сварочный генератор с регулируемой мощностью. Внедрение его изобретений занимались за рубежом. Сварка стала применяться повсеместно.

Развитие технологий в новое время

Следующий этап истории связан с фамилией Патон. Отец организовал первый институт сварки в 1929 году, под его руководством развивалась технология сварочных процессов. Во время Великой Отечественной войны новые методы применялись в оборонной промышленности. Разрабатывались новые виды флюсов, электроды для толстостенных изделий. Они применялись при производстве военной техники: танков, орудий, бомбардировщиков и их оснащения.

Евгений Патон

Евгений Патон

В киевском институте разработан метод порошковой, контактной и шлаковой сварки в жидкой и разряженной среде, для защиты шва стали применять инертные газы. Дело Евгения Патона продолжил его сын, Борис. Он возглавил институт сварки после ухода отца. Технологии космической лазерной сварки разработаны под его руководством. Стали шире применяться методы соединения металлов под водой. Эта технология используется в судоремонтных доках. Метод снижает сроки ремонта судов в 1,5 раза.

Перспективы развития сварочного процесса

В настоящее время традиционные методы потеснили лазерные методы. Им предрекают большое будущее. Управлять процессом можно будет дистанционно. Роботы приходят на смену сварщикам. Разработано устройство для автоматической подачи присадочного материала в зону шва, с высокой точностью регулируется тонкий луч, расплавляющий металл.

Второе направление развития технологии высокотемпературного соединения металлов – использование оптико-волоконных материалов. Это позволит увеличивать КПД силового оборудования: генераторов, преобразователей. Постепенно будет повышаться мощность выходного тока, сейчас максимальная 6 кВт, ее планируется довести до 25 Квт и выше.

Постепенно лазерная технология вытеснит газовый метод сварки. Будут создаваться гибкие модули, использовать которые можно будет в любых погодных условиях. Будет снижаться трудоемкость технологических процессов, разрабатываться новые методы контроля качества высокотемпературного соединения металлов.

Историческая справка об изобретении сварки

Сваркой называется технологический процесс получения неразъемных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действии того и другого.

В 1802 г. русский ученый Петров В.В. открыл электрический дуговой разряд и указал на возможность использования его для расплавления металла. На Западе принято считать, что первым в этом был английский ученый Хамфрей Дэйвис, работы которого в этой области также относятся к началу XIX века. В 1882 г. русский инженер Бенардос Н.Н. открыл способ электродуговой сварки металлов неплавящимся угольным электродом. Им были также разработаны способы дуговой сварки в защитном газе, дуговой резки и др. Несколькими годами позже (в 1888 г.) другой русский инженер Славянов Н.Г. предложил производить дуговую сварку плавящимся металлическим электродом. Он создал первый сварочный генератор, предложил флюсы, позволяющие получить высококачественные сварные швы. Работы Славянова Н.Г. и других ученых были использованы шведским инженером Оскаром Кельбергом, который в 1907 году создал первый покрытый электрод. Так была изобретена сварка покрытыми электродами. При этом использовался постоянный ток, получаемый от сварочных генераторов. Сварку покрытыми электродами на переменном токе стали применять начиная с 20-х годов XX-го столетия.

Держатели для дуговой сварки угольным электродом, предложенные Н.Н. Бенардосом

В 30 — 40-х годов прошлого столетия был разработан способ полуавтоматической и автоматической сварки под флюсом, позволяющий повысить производительность процесса сварки в несколько раз.

С 1920 года получил промышленное применение способ дуговой сварки неплавящимся электродом в инертных газах (ТИГ). Хотя первый патент, относящийся к данному способу сварки, был зарегистрирован еще в 1890 году.

Дуговая сварка плавящимся электродом в защитных газах (МИГ/МАГ) впервые была предложена в США в 1948 году.

В 1950-52 г. группой советских ученых под руководством Любавского К.Ф. и Новожилова Н.М. разработан способ сварки в среде углекислого газа низкоуглеродистых и низколегированных сталей.

В настоящее время сварка покрытыми электродами, сварка плавящимся и неплавящимся электродом в защитных газах, а также сварка под флюсом, которые являются электрическими дуговыми способами сварки, широко применяются в промышленности.

Однако существуют и другие (не дуговые) способы сварки. Так одним из широко применяемых не дуговых способов сварки является контактная сварка, при которой расплавление металла деталей в точке их соединения происходит за счет выделения тепла в месте контакта при прохождении электрического тока. Первые патенты по этому способу сварки относятся к 1885 году.

В настоящее время нашли применение и такие способы сварки как электронно-лучевая, лазерная, индукционная, сварка трением и другие.

Сварка является одним из процессов соединения материалов. Как показано на схеме ниже, все существующие способы сварки могут быть разделены на две основные группы:

сварку плавлением: газовая, электрическая дуговая, электрошлаковая, электронно-лучевая, лазерная и др.;

сварку давлением: контактная, трением, диффузионная, ультразвуком и др.

Сварка плавлением осуществляется плавлением кромок соединяемых деталей и присадочного материала с образованием общей сварочной ванны. Сварное соединение образуется без внешних усилий.

Сварка давлением осуществляется посредством установления межатомных связей между соединяемыми частями с применением внешних усилий.

Электрическая дуговая сварка – источником тепла является электрическая дуга. К этому виду сварки относится: ручная дуговая сварка покрытыми электродами (ММА), электродуговая сварка в среде защитных газов (МИГ/МАГ и ТИГ), электродуговая сварка под флюсом, плазменная сварка и другие способы сварки.

Газовая сварка — химический способ сварки плавлением, источником нагрева металла которой является тепловая энергия, получаемая в результате химического процесса сгорания газообразного (или парообразного) горючего в смеси с кислородом. Сварной шов формируется за счет основного и присадочного металлов, расплавленных газовым пламенем.


Схема газовой сварки

Ручная дуговая сварка покрытыми электродами (ММА). Источником нагрева металла является электрическая дуга. Сварной шов формируется за счет расплавленного основного и электродного металлов.


Схема сварки ММА

Механизированная дуговая сварка плавящимся электродом в защитном газе (МИГ/МАГ). Источником нагрева металла является электрическая дуга. Сварной шов формируется за счет расплавленного основного металла и металла электродной проволоки (сплошного сечения или порошковой).


Схема сварки МИГ/МАГ

Дуговая сварка неплавящимся (вольфрамовым) электродом в инертном газе. Источником нагрева металла является электрическая дуга. Сварной шов формируется либо только за счет расплавленного основного металла, либо также и за счет металла присадочной проволоки.


Схема сварки ТИГ

Международные коды и аббревиатура для основных процессов сварки

Цифровой код по EN ISO 4063Аббревиатуры:
Европейская (EU)
Американская (USA)
Российская (RU)
Украинская (UA)
Полное наименование
111EUMMAManual Metal Arc Welding
USASMAWShielded Metal Arc Welding
RUРДРучная дуговая сварка покрытыми электродами
UAРДЕРучне дугове зварювання покритим
114EUFCAWFlux-cored wire metal arc welding without gas shield
USAFCAWFlux-cored arc welding
RUМПСМеханизированная сварка самозащитной порошковой проволокой
UAЗПДугове зварювання порошковим дротом
12EUSAWSubmerged Arc Welding
USASAWSubmerged Arc Welding
RUАФАвтоматическая сварка под флюсом
121EUSubmerged arc welding with solid wire electrode
USASubmerged arc welding with solid wire electrode
RUМФМеханизированная сварка под флюсом
UAЗФДугове зварювання під флюсом дротяним електродом
13EUMIG/MAGGas Shielded Metal Arc Welding
USAGMAWGas Metal Arc Welding
RU
UA
131EUMIGMetal-arc Inert Gas Welding
USAGMAWGas Metal Arc Welding
RUМАДПМеханизированная аргонодуговая сварка плавящимся электродом
UAМІГДугове зварювання металевим (плавким) електродом в інертних газах
135EUMAGMetal-arc Active Gas Welding
USAGMAWGas Metal Arc Welding
RUМПМеханизировання сварка плавящимся электродом в среде активных газов и смесях
UAМАГДугове зварювання металевим (плавким) електродом в активних газах
136EUFCAWFlux-cored wire metal-arc welding with active gas shield
USAFCAWFlux-cored arc welding
RUМПГМеханизированная сварка порошковой проволокой в среде аткивных газов и смесях
UAПАГДугове зварювання порошкоим дротом із захистом активним газом
137EUFCAWFlux-cored wire metal-arc welding with inert gas shield
USAFCAW-SFlux-cored arc welding
RUМПИМеханизированная сварка порошковой проволокой в среде инертных газов и смесях
UAПІГДугове зварювання порошковим дротом із захистом в інертних газах
141EUTIGTungsten Inert Gas Welding
USAGTAWGas Tungsten Arc Welding
RUААДАвтоматическая аргонодуговая сварка неплавящимся электродом
UAВІГДугове зварювання вольфрамовим електродом в інертних газах із присадним дротом чи без нього

«Дазэл» – История развития сварки

Сварка является надежным, технологичным и эффективным способом создания неразъемных соединений конструкционных материалов.

Две трети производимого стального проката в России идет на изготовление сварных конструкций. Положительная тенденция роста мирового производства стали, определяет рост объема сварочного производства и производства сварочной техники, а также объемов научных исследований и разработок по созданию нового и совершенствованию существующего оборудования и технологий.

Рис. 1. Индексы металлургического производства в 2000–2017 гг.

(в %, значение показателя за год)

В начале ХХI в. объем сварочного производства оценивался примерно в 40 млрд долл., из которых около 70 % приходится на сварочные материалы и около 30 % — на оборудование. Сварочные процессы по широте применения и валовому объему конечного продукта занимают половину всех производственных работ. Трудно назвать отрасль народного хозяйства, где бы не применялась сварка. Сварка в будущем по-прежнему останется наиболее востребованным процессом в промышленности и строительстве с высокой производительностью.

Сварка как способ неразъемного соединения твердых металлических частей известна человечеству с самых древних времен.

Еще в глубокой древности при помощи каменного орудия из самородков золота, серебра, меди обковывали пластинки, острые лезвия, скребки и т.п., для увеличения размеров которых соединяли между собой. Нанося удары по сложенным вместе кускам металла, удавалось добиться их соединения. Ковкой их превращали в листочки, пластинки, острия. Такой процесс считают началом истории холодной сварки.

За несколько тысячелетий до нашей эры некоторые племена научились добывать из руды медь. Но техникой литья они еще не овладели и, поэтому для изготовления крупных изделий из меди, им приходилось прибегать к сварке отдельных подогретых кусков металла. Подогрев металла до пластического состояния облегчал схватывание, а процесс соединения напоминал ковку. Поэтому он и называется кузнечной сваркой.

В III…II тысячелетиях до н. э. в различных районах земного шара начали получать железо. Тогда плавить железо не умели и из руды получали продукт, состоявший из мельчайших частиц железа, перемешанных с частицами руды, угля и шлака. Лишь многочасовой ковкой нагретого продукта удавалось отжать неметаллические примеси и сварить частицы железа в кусок платного металла.

В Средние века развивалось искусство кузнечного дела, производилось много изделий из железа соединенных процессом получения неразъёмных соединений молотком.

Кузнечная сварка и пайка были ведущими процессами сварочной техники вплоть до конца ХIХ в., когда начался совершенно новый, современный период развития сварки.

Рис. 2 Кузнечная сварка

В XIX в. в России расширялось применение электрического привода на промышленных предприятиях, наблюдался подъём транспортного строительства, промышленность владела передовой технологией производства паровозов, вагонов, пароходов, резко увеличился выпуск паровых котлов и паровых машин и т. п. В этот период кузнечная сварка достигла своей вершины. Она была трудоёмка, малопроизводительна, но главное — качество сварных швов было нестабильным и не удовлетворяло требованиям развивающейся техники: при большом числе свариваемых заготовок имели место дефекты — непровары, приводившие к расслоению металла и разрушению нагруженных деталей во время работы. Это было связано с тем, что основными технологическими параметрами процесса сварки являлись температура свариваемого металла и величина его деформации в зоне сварки (обусловленная ударами молота), которые трудно было выдерживать в требуемом достаточно узком диапазоне.

Широко применяемая в настоящее время сварка плавлением, когда происходит локальное расплавление свариваемых поверхностей, образование общей сварочной ванны с последующей кристаллизацией, требовала мощного источника тепла, способного локально расплавить металл. А такого источника тепла в то время не было.

В начале 1802 года профессор Петербургской медико-химической академии В.В. Петров построил самый крупный для того времени источник тока — батарею из 4200 пар медных и цинковых кружков. Именно этой батареи была впервые в мире получена электрическая дуга. Он доказал, что в работе по металлу можно использовать электрическую дугу. Эта идея сразу не воспринялась учеными как нечто необычное. Хотя спустя десятки лет его заслуги были по достоинству оценены. Петров создал базовый прототип современного сварочного аппарата.

В 1800 году сэр Хамфри Дэви открыл короткоимпульсную электрическую дугу и представил свои результаты в 1801 году.

Следующее значимое открытие было сделано Н. Н. Бенардосом. Он создал более 120 оригинальных изобретений, многие из которых не потеряли своего значения и сейчас. Диапазон изобретений поразителен: железные бороны и углубители, скороварки и молотильные машины, паровые ножницы и пневматическая поливалка, пароходные колёса с поворотными лопастями и охотничьи лодки, замки и краны, турбины для гидроэлектростанций и пушка для метания канатов на терпящий бедствие пароход, летательные аппараты и станки для обработки металла и дерева, пневматические и вагонные тормоза и ветряной двигатель.

Большое количество изобретений сделал он в области электротехники. И самым важным из них, принесших ему мировую славу, явился разработанный им в 1882 г. способ электродуговой сварки, названный электрогефестом. Металл расплавлялся дугой, горящей между угольным электродом, закреплённым в специальном держателе, и изделием, подключённым к полюсам источника тока.

Рис 2. Патент на способ дуговой электросварки «Электрогефест», выданный Николаю Бенардосу 17 мая 1887 года

«Электрогефест» успешно применяли и за рубежом. К середине 90-х годов XIX века новый технологический процесс был внедрён более чем на 100 заводах Западной Европы и в США, электросварку начали применять не только для вспомогательных ремонтных работ, но и как основной технологический процесс производства новых металлических изделий.

Создателем нового направления в производстве металлических конструкций стал русский инженер Н.Г. Славянов. Он внес корректировки в изобретение Бенардоса, касающиеся металлургии сварки. Сварка сталей, содержащих легирующие компоненты и примеси, не всегда получалась удачной, так как в шов попадали оксидные включения, в нем скапливались сера и фосфор; металл выгорал и становился хрупким в месте сварки.

Н.Г. Славянов заменил неплавящийся угольный электрод металлическим плавящимся электродом-стержнем, сходным по химическому составу со свариваемым изделием. Но самое главное то, что сварочная ванна была защищена слоем шлака — расплавленного металлургического флюса. Такой процесс повышал качество наплавленного металла при сварке.

Н.Г. Славянов разработал специальный сварочный генератор на 1000 А, заменивший аккумуляторную батарею Бенардоса.

Способ Славянова получил диплом первой степени и золотую медаль на Всемирной выставке в Чикаго в 1893 году за удивительный экспонат из России — металлический двенадцатигранный стакан высотой 210 мм. Николай Гаврилович последовательно сварил семь несплавляемых металлов: колокольную бронзу, томпак (медно-цинковый сплав), никель, сталь, чугун, медь, нейзильбер (сплав меди с никелем и цинком) и бронзу. Сделанный из этой многослойной заготовки стакан массой 5330 граммов представлял сразу всю гамму конструкционных металлов того времени.

Рис.3 Стакан Славянова Н.Г.

Большое внимание Н.Г. Славянов уделял механизации и автоматизации дуговой сварки. Он изготовил и опробовал первый в мире сварочный полуавтомат, элементы которого использованы и в современных автоматических сварочных головках.

В 1891 году Н.Г. Славянов запатентовал своё изобретение во Франции, Германии, Великобритании, Австро-Венгрии, Бельгии, а в 1897 году — в США.

В 1904 году швед Оскар Кьельберг основал в Гётеборге фирму «ESAB». Деятельность предприятия была связана с применением сварки в судостроении. В результате собственных исследований и наблюдений О. Кьельберг изобрел технологию сварки покрытыми плавящимися электродами. Покрытие стабилизировало горении электрической дуги и защищало зону дуговой сварки. В 1906 году им был получен патент «Процесс электрической сварки и электроды для этих целей».

В России дальнейшее развитие нового технологического процесса электродуговой сварки столкнулось с существенными трудностями: электротехническая промышленность страны была очень слабой. Применение электросварки постепенно сокращалось, а со смертью её создателя практически прекратилось вовсе.

В то же время необходимо отметить, что новый технологический процесс. предложенный Славяновым, не всегда обеспечивал высокое качество соединений, так как плавление стали в дуговом разряде сопровождалось выгоранием углерода, марганца и кремния, при этом сварной шов мог насыщаться кислородом, азотом и водородом. Сварка применялась при изготовлении второстепенных металлоконструкций и неответственных изделий. Удачно найденные решения внедрялись в практику, развивались, служили очередной ступенькой для дальнейшего подъёма сварочного производства.

В 1923-1924 гг. сварку начали применять в металообрабатывающей промышленности.

Также заслуживает внимания первый сварной автомобильный мост в мире, мост Maurzyce, разработанный Стефаном Брюлой из Львовского технологического университета в 1927 году он был построен через реку Слудвя близ города Лович, Польша.

Самостоятельный центр развития сварки возник на Дальнем Востоке. Огромный вклад в развитие сварочного производства внес Виктор Петрович Вологдин – основатель сварного судостроения, ученого с мировым именем, профессор и в дальнейшем ректора ДВПИ (1925-1928 гг.). Он сконструировал и построил первый сварочный генератор, освоил практический опыт поддержания дуги и лично выполнил сварочные работы как рабочий-электросварщик, а в дальнейшем организовал и сварочную мастерскую. Под его же руководством были подготовлены первые кадры сварщиков и в дальнейшем открыт факультет сварки в ДВПИ (ДВГТУ).

Уже в 1930 году на Дальзаводе было построено первое в России цельносварное судно, а затем – более 15 буксирных катеров и сварных барж, и с 1931 года завод начал строить и достраивать корабли и подводные лодки для Тихоокеанского флота на Дальнем Востоке. На станции Большой Невер по проекту Вологдина впервые был построен сварной резервуар для хранения нефтепродуктов.

M / S Carolinian был первым полностью сварным коммерческим судном в мире. Оно было завершено в марте 1930 года в Чарльстоне, Южная Каролина, построенный компанией Charleston Dry Dock & Machine. Строительство корабля заняло около девяти месяцев с момента закладки киля, как обозначается приставкой M/S , судно также имело главный двигатель внутреннего сгорания. Сварная конструкция и двигатели внутреннего сгорания являются основными элементами современного судостроения, что позволяет Каролине стать первым по-настоящему современным торговым судном.

В 1932 г. – Константином Константиновичем Хреновым впервые в мире, в Советском Союзе осуществлена дуговая сварка под водой. Впервые в мировой практике подводную дуговую резку угольным электродом в лабораторных условиях осуществили в 1887 г. Н.Н. Бенардос и проф. Д.А. Лачинов. Продолжения эти работы не получили. Только в начале 30-х гг. ХХ в. были возобновлены работы по применению сварки под водой. В 1932 г. К. К. Хренов разработал электроды для подводной сварки и провел испытания их в Черном море. В середине 30-х гг. ручная дуговая сварка под водой была применена для ряда работ, например, ремонта парохода «Уссури» и подъема парохода «Борис».

В 1938-1939 годах в Западной Европе неожиданно обрушилось несколько мостов. Балки мостов были сварными. В этот период тысячи железнодорожных вагонов в России и других странах были сняты с эксплуатации из-за трещин в сварных рамах и тележках. Начались всесторонние исследования по влиянию процесса сварки на свойства металла шва и околошовной зоны, которые позволили найти способы управлять качеством сварного соединения.

В период с 1934 по 1941 год под руководством Е.О. Патона и при его непосредственном участии был выполнен цикл исследований в области проблем прочности сварных конструкций, их расчёта и надёжности. В результате систематических работ по изучению металлургических и электротехнических процессов дуговой сварки был разработан способ сварки под флюсом.

В годы войны возникла насущная проблема в подводной сварке и резке металлов при ремонте кораблей, мостов, при аварийных и спасательных работах. В декабре 1942 года был сформирован специальный поезд для подводной резки, состоящий из электростанции, водолазных станций, сварочных агрегатов, подъёмных и плавательных средств и т. д.

Характерно, что в годы войны впервые сварка стала применяться практически без ограничений. Так, в 1944 году были спроектированы цельносварные доменные печи, башни и мачты высотой 180 — м и другие ответственные сооружения.

Война открыла широкую дорогу сварке в энергетику. В каждом котельном агрегате тепловой электростанции довоенной постройки имелось по три-четыре барабана — огромных цилиндрических емкости со сферическими днищами. Изготовление этой сложной и ответственной конструкции требовало специального мощного кузнечно-штамповочного оборудования, причём на какие-либо виды сварки или подварки был наложен строжайший запрет — взрыв котла грозил разрушением всей электростанции.

Во время войны при отступлении электростанции выводились из строя взрывом сферической части барабана. Замена барабана для запуска электростанции означала сборку нового котельного агрегата. В 1943 году после освобождения оккупированных территорий было принято рискованное по тем временам решение — «отремонтировать барабаны сваркой». Ручной дуговой сваркой покрытыми электродами с предварительным подогревом свариваемого материала были восстановлены барабаны, которые выдержали гидравлическое давление, в два раза превышающее рабочее. Такого применения сварочной дуги не знала мировая практика. Электростанция была пущена в кратчайший срок.

B годы войны возникла насущная потребность в подводной сварке и резке при ремонте кораблей, мостов, при аварийных и спасательных работах. К.К. Хренов продолжил исследования и разработку техники сварки и резки под водой в специальной лаборатории, организованной в марте 1942 г. при Московском электромеханическом институте инженеров железнодорожного транспорта. В результате были созданы электродные покрытия, обеспечивающие стабильное горение дуги под водой. Результаты всесторонних исследований свойств и состава метала швов, сваренных под водой, показали возможность применения сварки для ремонта подводных частей корпусов кораблей прямо на плаву.

В 1939 г. – Евгением Оскаровичем Патоном разработаны технология автоматической сварки под флюсом и головки для автоматической сварки, электросварные башни танков, электросварной мост. Применение высокопроизводительной автоматической сварки под флюсом на танковых заводах СССР во время Второй мировой войны позволило получить нашей стране существенный перевес по количеству выпускаемых танков над Германией и ее союзниками.

В США, стране значительно удалённой от фронтов, большое внимание уделялось строительству морского транспорта. Только за год, благодаря замене клёпаной конструкции и технологии клёпки на сварную конструкцию и сварку судов было сэкономлено 500 тыс. тонн стали. Цикл постройки сократился до 50 дней. На верфи «Ричмонд Ярд» (Калифорния) был поставлен рекорд сборки и сварки корпуса — 4 дня. Для сокращения времени и уменьшения стоимости изготовления, снижения остаточных напряжений и деформаций была разработана схема «расчленения» корпуса на секции. Каждая секция сваривалась из отдельных листов и элементов набора, что позволяло изготавливать судно на поточной линии в цехе одновременно на нескольких участках. Для сварки листов обшивки, толщина которых достигала 20 мм, применялась дуговая автоматическая сварка под слоем флюса. Для уменьшения деформаций применялась многослойная обратно-ступенчатая сварка.

Сварка применялась и в строительстве американских подводных лодок. В судостроении США впервые был применен способ резки металлов угольной дугой со сжатым воздухом — «Арк эйр», разработанный М. Степатом.

В период развития военного авиастроения для соединения магниевых сплавов Р. Мередитом был разработан новый способ дуговой сварки вольфрамовым электродом в инертных газах (TIG). Дуга при обратной полярности в среде гелия и аргона горела стабильно. При этом применяли присадочную проволоку.

Другие недавние достижения в области сварки включают прорыв 1958 года в области электронно-лучевой сварки, сделавший возможной глубокую и узкую сварку с помощью концентрированного источника тепла. После изобретения лазера в 1960 году лазерная лучевая сварка дебютировала несколько десятилетий спустя и оказалась особенно полезной в высокоскоростной автоматизированной сварке. Магнитно-импульсная сварка (МПВ) промышленно применяется с 1967 года. Все эти три новых процесса остаются довольно дорогими из-за высокой стоимости необходимого оборудования, и это ограничивает их применение.

Говоря о современных достижениях в области сварки нельзя не упомянуть новый метод получения сварных соединений, получивший название «сварка трением с перемешиванием» (СТП), который был изобретен Уэйном Томасом в TWI в 1991 году патентом, зарегистрированным в Европе, США, Японии и Австралии.

Сварка трением с перемешиванием относится к процессам соединения материалов в твердой фазе и поэтому лишена недостатков, связанных с расплавлением и испарением металла. FSW в основном используется в авиационной промышленности для сварки крыльев, топливных баков, конструкций самолетов и т.д, также используется в электронной промышленности для соединения шин, алюминия с медью, соединителей и другого электронного оборудования.

В связи с увеличением объемов механизированных и автоматизированных способов сварки огромное внимание уделяется созданию новых сварочных аппаратов, прежде всего с уменьшенными массой и габаритами, которые расширят возможности их практического применения. Развитие робототехники будет способствовать дальнейшей автоматизации процессов соединения.

                                                                                                                           автор Дарья Калашникова

История развития сварки



Оборудование орбитальной сварки из Германии! Низкие цены! Наличие в России! Демонстрация у Вас.
Orbitalum Tools — Ваш надежный партнер в области резки и торцевания труб, а так же автоматической орбитальной сварки промышленных трубопроводов.


Первые способы сварки возникли у истоков цивилизации — с началом использования и обработки металлов.

Известны древнейшие образцы сварки, выполненные в VIII-VII тысячелетиях до н.э. Древнейшим источником металла были случайно находимые кусочки самородных металлов — золота, меди, метеоритного железа. Ковкой их превращали в листочки, пластинки, острия. Ковка с небольшим подогревом позволяла соединять мелкие кусочки более крупные, пригодные для изготовления простейших изделий.

Позже научились выплавлять металл из руд, плавить его и литьем изготовлять уже более крупные и часто весьма совершенные изделия из меди и бронзы.

С освоением литейного производства возникла литейная сварка по так называемому способу промежуточного литья – соединяемые детали заформовывались, и место сварки заливалось расплавленным металлом. В дальнейшем были созданы особые легкоплавкие сплавы для заполнения соединительных твои и наряду с литейной сваркой появилась пайка, имеющая большое значение и сейчас.

Весьма важным этапом стало освоение железа около 3000 лет назад. Железные руды имеются повсеместно, и восстановление железа из них производится сравнительно легко. Но в древности плавить железо не умели и из руды получали продукт, состоявший из мельчайших частиц железа, перемешанных с частицами руды, угля и шлака. Лишь многочасовой ковкой нагретого продукта удавалось отжать неметаллические примеси и сварить частицы железа в кусок платного металла. Таким образом, древний способ производства железа включал в себя процесс сварки частиц железа в более крупные заготовки. Из полученных заготовок кузнечной сваркой изготовляли всевозможные изделия: орудии труда, оружие и пр. Многовековой опыт, интуиции и чутье позволяли древним Мистерам иногда получать сталь очень высокого качества (булат) и кузнечной сваркой изготовлять изделия поразительного совершенства и красоты.

Кузнечная сварка и пайка были ведущими процессами сварочной техники вплоть до конца ХIХ в., когда начался совершенно новый, современный период развития сварки. Несоизмеримо выросло производство металла и всевозможных изделий из него, многократно — потребность в сварочных работах, которую не могли уже удовлетворить существовавшие способы сварки. Началось стремительное развитие сварочной техники — за десятилетие она совершенствовалась больше, чек за столетие предшествующего периода. Быстро развивались и новые источники нагрева, легко расплавлявшие железо: электрический ток и газокислородное пламя.

Особо нужно отметить открытие электрического дугового разряда, на использовании которого основана электрическая дуговая сварка — важнейший вид сварки настоящего времени. Видная роль в создании этого способа принадлежит ученым и инженерам нашей страны. Само явление дугового разряда открыл и исследовал в 1802 году русский физик и электротехник, впоследствии академик Василий Владимирович Петров.


Петров Василий Владимирович

В 1802 г. русский академик В.В. Петров обратил внимание на то, что при пропускании электрического тока через два стержня из угля или металла между их концами возникает ослепительно горящая дуга (электрический разряд), имеющая очень высокую температуру. Он изучил я описал это явление, а также указал на возможность использования тепла электрической дуги для расплавления металлов и тем заложил основы дуговой сварки металлов.

Н.Н. Бенардос в 1882 г. изобрел способ дуговой сварки с применением угольного электрода. В последующие годы им были разработаны способы сверки дугой, горящей между двумя или несколькими электродами; сварки в атмосфере защитного газа; контактной точечной электросварки с помощью клещей; создан ряд конструкций сварочных автоматов. Н.Н. Бенардосом запатентовано в России и за границей большое количество различных изобретении в области сварочного оборудования и процессов сварки.

Петров Василий Владимирович
Бенардос Николай Николаевич

Автором метода дуговой сварки плавящимся металлическим электродом, наиболее распространенного в настоящее время, является Н.Г. Славянов, разработавший его в 1888 г.

Петров Василий Владимирович
Славянов Николай Гаврилович

Н.Г. Славянов не только изобрел дуговую сварку металлическим электродом, описал ее в своих статьях, книгах и запатентовал в различных странах мира, но и сам широко внедрял ее в практику. С помощью обученного им коллектива рабочих-сварщиков Н.Г. Славянов дуговой сваркой исправлял брак литья и восстанавливал детали паровых машин и различного крупного оборудования. Н.Г. Славянов создал первый сварочный генератор и автоматический регулятор длины сварочной дуги, разработал флюсы для повышения качества наплавленного металла при сварке. Созданные Н.Н. Бенардосом и Н.Г. Славяновым способы сварки явились основой современных методов электрической сварки металлов.

Внедрение сварки в производство проходило очень интенсивно, так в России с 1890 по 1892 года было по их технологии отремонтировано с высоким качеством 1631 изделие, общим весом свыше 17 тыс. пудов, это в основном чугунные и бронзовые детали. Они даже разработали проект ремонта российского памятника литейного производства «Царь-колокола», но работа не была разрешена, и мы сейчас можем любоваться на российские нетленные символы: колокол, который не звонил, и на пушку, которая не стреляла.

Известный мостостроитель академик Патон Евгений Оскарович, предвидя огромное будущее электросварки в мостостроении и в других отраслях хозяйства, резко сменил поле своей научной деятельности и в 1929 году организовал сначала лабораторию, а позднее первый в мире институт электросварки (г. Киев). Им было разработано и предложено много новых и эффективных технологических процессов электросварки. В годы войны в короткий срок под его руководством были разработаны технология и автоматические стенды для сварки под слоем флюса башен и корпусов танков, самоходных орудий, авиабомб.

В настоящее время широкое развитие получили такие новые способы сварки как: порошковыми материалами, плазменная, контактная и электрошлаковая, сварка под водой и в космосе и др., многие из которых были разработаны в Институте электросварки имени Е.О. Патона, который в последние годы возглавлял сын основателя института — академик Борис Евгеньевич Патон.

Кроме головного, в этой отрасли, института сварки имени Е.О. Патона, вопросами сварки успешно занимаются многие учебные институты (УПИ, ЧИМЭСХ, ЛГАУ и др.), институты объединения «Ремдеталь».

Наибольшее развитие наука о сварке и техника применяемых в настоящее время передовых методов сварки подучила в нашей стране благодаря трудам многих советских ученых, инженеров и рабочих-новаторов сварочного производства. Ими создано большое количество типов сварочного оборудования, марок электродов, разработаны новые прогрессивные сварочные процессы, в том числе высокомеханизированные и автоматизированные, освоена техника сварки многих металлов и сплавов, глубоко и всесторонне разработана теория сварочных процессов.

В последние годы сварка повсеместно вытеснила способ неразъемного соединения деталей с помощью заклепок.

Сейчас сварка является основным способом соединения деталей при изготовлении металлоконструкций. Широко применяется сварка в комплексе с литьем, штамповкой и специальным прокатом отдельных элементов заготовок изделий, почти полностью вытеснив сложные и дорогие цельнолитые и цельноштампованные заготовки.

Далее: Сварка в прошлом. Статьи

Читать: История развития контактной сварки

Читать: История развития термитной сварки

Источник: Глизманенко Д.Л. Сварка и резка металлов

открытия, ученые и этапы развития

История сварки насчитывает несколько десятилетий, этот технологический процесс неразрывно связан с периодом, когда люди впервые начали добывать разные металлы, железо. Еще в давние времена люди применяли горячие методы для выплавки разных изделий из стали, они ее раскаляли, размягчали и формировали из нее уникальные приспособления.

Первые сварочные приборы разрабатывались несколько веков назад, и, наверное, мало, кто мог подумать, что за этот период будут достигнуты такие высоты. В настоящее время под понятием сварка подразумеваются разные процессы и виды технологий, используемое оборудование, материалы и другие важные критерии.

Предыстория сварки

История каждой технологии, включая сварку, должна рассматриваться с процессами, которые происходили в разные периоды. Каждая из них изначально обладает предпосылками возникновения, процессом развития, который проходит сквозь призму истории. Все это включает знаменательные события, значимые имена ученых, открытия, перспективы последующего развития.

История развития сварки насчитывает несколько столетий, она появилась еще в древности. Впервые ее стали использовать в VIII-VII веке до н. э. В то время люди создавали разнообразные орудия труда, для них они применяли разные материалы, включая металл, который всегда был в природе в виде самостоятельного материала. Они пытались изменить его форму, соединяли по кусочкам.

В то время применялись такие металлы, как золото и медь. Поскольку они обладают мягкой структурой, то для изменения формы применялись камни, физическая сила. Этот процесс относится к холодному виду сварочных работ.

Позднее люди стали добывать другие металлы — бронзу, свинец. Постепенно стала применяться термическая обработка, во время которой производился подогрев отдельных компонентов. Она позволяла изготавливать изделия большого размера. А литье применялось для производства совершенных конструкций.

История возникновения сварки характерна тем, что в древний период люди началась активная добыча железа. Это произошло около трех тысяч лет назад. В настоящее время этот процесс выглядит просто — для отделения металла из руд применяется плавка. Но вот в древнее время было все совсем по-другому, потому что в том время плавить не умели.

В древние времена из железной руды добывали смесь с содержанием частиц железа. Также в ней присутствовали другие элементы — уголь, шлаки и другие. Но через определенный промежуток времени ковкой из нагретой смеси люди смогли отделить железо и другие компоненты, но по отдельности.

Краткая история сварки

Чтобы понять основные этапы развития и становления стоит рассмотреть историю сварки, которая кратко рассказывает об открытиях в данной области. Она своей начало берет с 1802 года, в этот период ее изучением активно занимался русский ученый и профессор физики В. В. Петров.

И если поискать в интернете ответ на вопрос, в каком году изобрели сварку с использованием электрической дуги, то выйдут 1802-18004 года. Именно этому ученому принадлежит данное изобретение. И уже в 1881 году русский изобретатель Н. Н. Бернадос начал ее применять при соединении металлов с использованием присадочной проволоки.

Более подробно об основных открытиях и ученых будет рассказано в следующем разделе. Но все же следует для начала выделить главных основоположников сварки — В. П. Никитин, Д. А. Дульчевский, К. М. Новожилов, Г. З. Волошкевич, К. В. Любавский, Е. О. Патонов. Все они активно занимались исследованием сварочной технологии, открыли множество уникальных технологий, которые до сих пор активно применяются на производствах.

Важные открытия

История развития сварки и сварочного производства имеет множество открытий и этапов развития. За несколько веков существования технология претерпела сильные изменения, которые сделали ее востребованной и передовой. В настоящее время ни одно производство, промышленное предприятия не обходится без применения сварочных работ.

Прорыв в технологии сварочного производства произошел при промышленном перевороте. В это время совершались важные открытия в области электричества, и в результате этого ученые того времени коснулись и сварки. Они ее внимательно изучили и смогли тесно связать ее с электричеством.

В поисках ответа на вопрос кто изобрел сварку, стоит коснуться 1802 года. В этот период русский физик Василий Владимирович Петров смог открыть возможность использования в практических целях электрической дуги. Открытие стало знаменательным событием в деятельности ученого и физика-экспериментатора. Оно в последующий период стало использоваться в качестве прототипа всех сварочных устройств.

Изобретатель сварки все выводы открытия изложил в книге «Известия о гальвани-вольтовских опытах», которая была опубликована в 1803 году. Но ученый в то время был малоизвестным, поэтому на его открытия в то время особо не обращали внимания.

Когда появилась сварка точно ответить нельзя, потому что процесс ее появления зарождался постепенно. В 1821 году Сэр Гемфри Дэви проводил многочисленные исследования с использованием электрической дуги. А его ученик, Майкл Фарадей занимался усиленным исследованием электричества и магнетизма, а именно связи между ними. А в 1830 году он смог открыть электромагнитную индукцию.

Рассматривая, кто придумал сварку, стоит обратить внимание на события, которые произошли в 1881 году. В этот период русский инженер Николай Николаевич Бенардос смог открыть электродуговой сварочный процесс, который получил название «Электрогефест». На протяжении нескольких лет проводились исследования, и в 1887 году изобретение было запатентовано. Постепенно оно стало распространяться по всему миру.

А кто изобрел сварку угольным электродом? Это открытие также относится к русскому инженеру и изобретателю Николаю Николаевичу Бенардосу. Он смог разработать электродуговую сварочную технологию, во время которой предполагалось использование угольных и металлических электродов. Ученый стал основоположником идеи электродуговой сварки с металлическим стержнем с использованием переменного тока, сварки с наклонным электродом, а также технизации сварочного процесса.

В каком году появился сварочный аппарат? Появление первого прибора приходится на период в 1881-1882 году. Именно в это время проводились многочисленные исследования и открытия, на основе которых и было разработано первое сварочное оборудование.

Но все же многих интересует, кто именно изобрел сварочный аппарат? Первое время над этим работал русский инженер Бенардос, но затем данным вопросом занялся Славянов Николай Гаврилович. В 1882 году он смог создать первое сварочное оборудование и электроды. Он запатентовал сварку, только после этого данная технология стала применяться в других странах.

Инженер проводил следующие работы:

  • устранял признаки брака, возникающие во время литья деталей;
  • восстанавливал части паровых турбин;
  • заваривал изношенные детали.

Особенности развития технологий в новое время

В каком году появилась сварка с использованием резки металлов? Резаки появились в 1904 году. А в 1908-1909 годах начала использоваться технология подводной резки металлов. Эта технология широко использовалась во Франции и Германии.

После появления газовой сварки, они сразу же начала занимать лидирующие позиции, ее востребованность наблюдалась вплоть до 30-х годов. Технологию особенно усиленно использовали в годы Первой мировой войны.

Последующее развитие связано с ученым и инженером Евгением Патоном. Он организовал первый институт сварки в 1929 году. В этот период развитие сварочных процессов происходило под его руководством. Во время Великой Отечественной войны новые методы использовались в оборонной промышленности. Проводилась усиленная разработка новых видов флюсов, электродов для изделий с толстыми стенками. Их применяли при изготовлении военной техники — танков, оружия, бомбардировщиков и их оснащения.

В поисках ответа на вопрос кто придумал сварку металлов стоит остановиться на ученом Патоне. Именно он смог разработать данные методы сваривания порошкового, шлакового, контактного вида в жидкой и разряженной среде. В это время для защиты соединения стали применяться инертные газы. В 1940 году впервые стали применять электроды с покрытием из вольфрама, а поддержание электрической дуги осуществлялось с использованием гелия.

В связи с тем, что для сваривания реактивных металлов и алюминия необходимы более чистые инертные газы, в 1946 году стали применять аргон. Он является наиболее чистым и безопасным инертным газом для сварочных работ.

В 1960 году появилась новая технология сварки с применением нескольких стержней. Ее принцип состоял в следующем: две или более сварочные проволоки подаются в область сварочной ванны. Во время этого процесса они могут применяться в виде присадки, но одновременно с этим они прибывают под электрическим напряжением. Благодаря этому технологическому процессу можно существенно повысить скорость плавления металла, а также улучшить свойства эксплуатационной жидкости.

Современные виды сварки

Развитие сварки в современности вывело данную технологию на новый уровень. В этот период были созданы новые виды сварочных работ, во время которых применялось оборудование с разными функциями. Ученые смогли разработать технологии, которые можно было применять для сваривания конструкций их разных металлов.

Электрическая дуговая сварка

Это первая сварка, которая и сейчас считается востребованной. Ее используют на разных производственных предприятиях для изготовления металлических конструкций. В настоящее время она считается самой распространенной, доступной и дешевой.

Электрошлаковая сварка

Эта технология является новейшим методом сваривания, который используется для изготовления крупногабаритных изделий. Зачастую он применяется при производстве судовых конструкций, котлов, изделий для железных дорог и других элементов.

Во время сварочных работ разряды электрического тока пропускаются через шлак. Образование шлака происходит при расплавлении флюса, и он считается главным проводником электрического тока. В результате прохождения разрядов электрического тока через шлак происходит образование теплоты.

Электрошлаковая сварка бывает двух типов:

  • с использованием трех электродных проволок;
  • с применением электродов, которые имеют большое сечение.

Контактная и прессовая сварка

Контактная сварка считается старым методом. Его основоположником является Уильям Томпсон. Изначально данная технология была распространена в США, позднее она появилась в России. В период, когда она начала применяться, в нашей стране начала активно развиваться научно-исследовательская сфера.

Контактная сварочная технология разделяется на следующие разновидности:

  1. Стыкового типа. Во время нее проводится сваривание изделий по всей плоскости их касания при помощи нагревания.
  2. Точечного вида. Соединение деталей проводится в одной или нескольких точках в одно время.
  3. Рельефная. Сваривание изделий производится в одной или нескольких точках, они имеют выступы в виде рельефов.
  4. Шовная. Осуществляется сваривание элементов швом.

Прессовая технология или сваривание давлением — это сваривание металлических заготовок без их расплавления. Во время нее осуществляется деформирование с использованием силового воздействия.

Газовая сварка и резка

Газовая сварка сопровождается расплавлением металла. Для этих целей применяются специальные горелки, в которых происходит сжигание горючих газов. Впервые газовые горелки были изобретены во Франции. Для их работы применялась смесь с кислородом и водородом.

Виды лучевой сварки

Лучевая сварка считается новым методом, который появился в современный период. Новейшие исследования ученых в области оптики, квантовой физики смогли выделить виды данной технологии, основанные на энергии ионных и фотонных лучей.

К основным видам лучевой сварки относят:

  1. Электронно-лучевая. Источником теплоты является электронный луч. Процесс сваривания протекает в специальных установках — в вакуумных камерах.
  2. Лазерная. В качестве источника тепла применяется лазерный луч. Этот вид обладает отличительными качествами — экологической безопасностью, при проведении технологии отсутствует механическая обработка, высокой скоростью сварочного процесса, высокой стоимостью сварочного оборудования.
  3. Плазменная. Для источника тепла применяется струя из плазмы, а точнее дуга, которую получают при помощи плазмотрона. Плазмотрон может оказывать два вида действия — прямое и косвенное.

Роль сварки в современном мире

Рассматривая ответы на важные вопросы — когда изобрели сварку, кто придумал электрическую сварку, стоит обратить внимание на роль этой технологии в современном мире. В настоящее время активно развиваются лазерные разновидности сварочного процесса.

Не так давно была открыта технология высококачественного соединения металлов. Появляются новые композитные материалы, стало востребованным использование алюминия, нержавеющих сталей, цветных металлов. В период современности произошло усиленное развитие сварочного оборудования, появились новые приборы с широкими функциями, возможностями.

В современности широкое распространение получили следующие виды высокотемпературного соединения металлов:

  • аргонодуговая технология. При помощи нее можно производить любые виды соединений — стыковые, угловые, тавровые, внахлест;
  • газовая. При помощи нее в послевоенное время начали изготавливать всевозможные конструкции. В наше время эту технологию применяют для изготовления трубопроводов, которые пролегают на дальнем расстоянии от источников тока;
  • полуавтоматическая. Эта технология ускоряет процесс соединения элементов. Она имеет высокую точность, снижает риск образования соединения низкого качества;
  • электродуговая сварка. Всегда была и остается востребованной технологией, которую используют на разных производственных предприятиях, заводах.

В период современности произошли некоторые изменения — поменялись источники питания, усовершенствовались держатели, но все же принцип горячего соединения остался таким же.

Если внимательно изучить вышеизложенную информацию, то можно будет найти ответы на важные вопросы — когда появилась сварка металлов, и кто придумал сварочный аппарат. Стоит учитывать, что данная технология появилась еще в древнее время, ее применяли для изготовления приспособления для труда, оружия и других необходимых изделий.

История развития имеет множество этапов, которые проходили в разное время вплоть до современности. Многочисленные исследования, открытия смогли разработать уникальные методы, которые в настоящее время активно используются на предприятиях и производствах.

Интересное видео

История появления электродуговой сварки | Великие открытия человечества

Дуговая сварка покрытыми электродамиЭлектродуговая сварка — это способ сварки, использующий электрическую дугу для нагрева и плавки металла.

У истоков возникновения электродуговой сварки стоят видные российские ученые: В.В. Петров, Н.Н. Бенардос и Н.Г. Славянов. Они прославились рядом крупных открытий, которыми человечество пользуется и сейчас.

Открыл электродуговой разряд Василий Владимирович Петров. В 1802 г. следом за итальянским физиком А. Вольта, он создал агрегат, который мог выдавать электрическую энергию. Это был крупный на тот период источник тока, батарея, состоящая из 4200 пар цинковых и медных кружков, прослоённых бумагой, намоченных гидрофитным раствором аммония. Именно на ней впервые на планете была получена электрическая дуга.

Василий Владимирович ПетровВасилий Владимирович Петров

Изобретение В.В. Петрова сильно обогнало время. Реальное использование электрической дуги началось лишь в конце XIX столетия. Это связано с тем, что к периоду открытия электродугового разряда — электрика едва начала появляться, а электротехнической индустрии не существовало. Не существовало нужных агрегатов большой мощности и простых в эксплуатации, производящих электричество для питания электрической дуги. Не имелось и нужной магнитоэлектрической электроаппаратуры.

Николай Николаевич Бенардос - изобретатель электродуговой сваркиНиколай Николаевич Бенардос

В этот период русский умелец-самородок, Николай Николаевич Бенардос создал, на основании эл. дуги и приобретенных им знаний из истории электротехники, новый способ сварки и резки изделий из металла – электродуговой.

Н. Н. Бенардос совершил огромное число открытий в области электрики, большинство из которых не утратили своей ценности, и в наше время. Одним из главных открытий, которое принесло ему международную известность, стал созданный в 1882 г. метод электродуговой сварки. За это Бенардос получил патенты от большинства государств Европы и Америки.

В целях практического использования своего открытия он подробно описал механизмы и специальные электро-технологические методы (образцы сварных соединений, используемые флюсы при электросварке стали и меди и др.).

Промышленная установка дуговой сваркиПромышленная установка дуговой сварки

В 90-х годах XIX столетия электросварка благополучно используется в России и за ее пределами. В 1886 году Э. Томсоном придумал метод, состоящий в электросварке пары стальных прутков.
Германский электрик Г. Ценерер и будущий создатель фирмы «Дженерал электрик» Ч. А. Коффин придумали промышленный способ электродуговой сварки, названный «электрической паяльной трубкой». Дуга, возбуждаясь между угольными электродами, отклонялась при помощи магнита в сторону свариваемого металла. В данном примере использовалась дуга косвенного действия.

В это же время, наряду с Бенардосом работал и другой русский кулибин – Н. Г. Славянов. Он много сделал для совершенствования электродуговой сварки. Имея огромные познания в металлургии и электротехнике, Н.Г. Славянов разработал метод дуговой сварки плавящимся стальным электродом с защитой сварочной ванны флюсом, и приспособление для полуавтоматической подачи прута в область сварки — «электроплавильник». При сварке путём Славянова дуга расплавляла заодно металлическую деталь, электрод и сварочный флюс, формируя совместную сварочную ванну из расплавленного металла, закрытую расплавленным шлаком, который прочно закрывал металл от влияния атмосферы. Замена угольного электрода металлическим решила задачу науглероживания металла, что улучшило свойства сварных швов. Н. Г. Славянов отказался от использования аккумуляторной батареи Бенардоса, а воспользовался разработанной им динамо-машиной на 1000 А. Так появился первый на планете сварочный генератор.

Генератор сварочного тока конструкции Н.Г.СлавяноваГенератор сварочного тока конструкции Н.Г.Славянова

Впервые в мировой практике Славянов использовал нагрев металла накануне сварки для уменьшения охлаждения. Официальный показ этого метода прошел осенью 1888 года на Пермских пушечных заводах. В 1891 г. он получил патент в России и других странах за изобретенный им прием электрического литья металлов. Его разработки допускали проводить сварочные работы на высококачественном уровне, что признано современниками. Синхронно с дуговой сваркой появился другой тип электросварки – контактная сварка.

В 1856 г. британский электрофизик Дж.П. Джоуль обнаружил, что свитые края проволок, чрез которые идёт электрический ток, накаляются и сплавляются между собой. Лишь по истечении девяти годов джоулева теплота нашла специальное применение британцем Ф. Уальдом для сварки прутков малого диаметра.

Британский физик Уильям Томсон (граф Кельвин) инициатор проекта по прокладке кабеля связи меж Великобританией и США через Атлантический океан – рекомендовал использовать в 1856 г. стыковую контактную электросварку. Но несмотря на это, слава изобретателя этого вида сварки закрепилась за знаменитым американским изобретателем Эльхью Томсоном. Им были сконструированы все необходимые оборудования для контактной сварки: мощный трансформатор. коммутирующая аппаратура, динамо-машина, клещи-тиски для зажима свариваемых заготовок. В 1885 году он, отработав технику сварки, доводит до автоматизма безотказную работу сварочной аппаратуры.

В. П. Вологдин, основоположник использования сварочных работ в разных ветвях отечественной индустрии, построил на Дальзаводе полностью сварной корабль. Открыл первую в нашей стране профшколу электросварщиков. В июне 1921 г. организовал первый в Советском Союзе электросварочный цех. В 1925 г. создал первую в стране электролабораторию по сварке.
В 1941—1943 гг. Патон создаёт электротехнологию сварки спецсталей, которая использовалась при изготовлении танков и бомб. Это помогло снизить трудозатраты при производстве брони корпуса танка Т-34, и не требовало от рабочих специальных знаний и огромного физического труда.

История сварки и развития сварочных технологий

В самом начале 19 века, а конкретно в 1802 году, Василий Владимирович Петров (1761 – 1834 гг.), будучи профессором физики Санкт-Петербургской медико-хирургической академии, открыл и описал явление электрической дуги, а также впоследствии предложил ее возможное практическое применение, включая электросварку и электропайку металлов.

nikolay-nikolaevich-benardosВ 1882 году русский изобретатель Николай Николаевич Бенардос (1842 – 1905 гг.) открыл способ дуговой сварки с использованием угольного электрода. Дуга Бенардоса горела промеж угольного электрода и свариваемым металлом. В качестве присадочного прутка для образования шва применялась стальная проволока, а источником электрической энергии были аккумуляторные батареи. В последующие годы Н.Н. Бенардосом были разработаны и другие виды сварки: сварка дугой, горящей между двумя или несколькими электродами; сварка в атмосфере защитного газа; контактная точечная электросварка с помощью клещей. Им же были созданы и запатентованы ряд конструкций сварочного оборудования.

nikolay-gavrilovich-slavyanov-newВ 1888 году Николай Гаврилович Славянов (1854 – 1897 гг.) впервые в мире на практике применил наиболее распространенный в настоящее время метод дуговой сварки – метод сварки плавящимся металлическим электродом под слоем флюса. В присутствии государственной комиссии он сварил коленчатый вал паровой машины. Н.Г. Славянов не только изобрел дуговую сварку металлическим электродом, описал ее в своих статьях, книгах и запатентовал в различных странах мира, но и сам широко внедрял ее в практику. С помощью обученного им коллектива сварщиков Н.Г. Славянов дуговой сваркой исправлял брак литья и восстанавливал детали паровых машин и различного крупного оборудования. Н.Г. Славянов создал первый сварочный генератор и автоматический регулятор длины сварочной дуги, разработал флюсы для повышения качества наплавленного металла при сварке, организовал первый в мире электросварочный цех в Пермских пушечных мастерских, где работал с 1883 по 1897 г.

Н.Н.Бенардос и Н.Г.Славянов заложили основы автоматизации сварочного производства. К сожалению, в условиях царской России их изобретения не нашли большого применения. Лишь после Великой Октябрьской социалистической революции сварочные технологии получают распространение в нашей стране. Уже в начале 20-х гг. под руководством профессора В.П.Вологдина на Дальнем Востоке производили ремонт судов дуговой сваркой, а также изготовление сварных котлов, а несколько позже – сварку судов и ответственных конструкций.

vasiliy-petrovich-nikitinПрименение сварки в промышленных объемах требовало создание и скорейшего внедрения в массовое производство надежных источников питания, гарантирующих стабильное горение дуги. В 1924 году на Ленинградском заводе «Электрик» запустили производство сварочного генератора СМ-1 и сварочного трансформатора с нормальным магнитным рассеянием СТ-2. В том же году советский ученый Василий Петрович Никитин (1893 – 1956 гг.) разработал принципиально новую схему сварочного трансформатора типа СТН, выпуск которых был начат заводом «Электрик» в 1927 году.

В 1928 году русский изобретатель и учёный Дмитрий Антонович Дульчевский (1879 – 1961 гг.) разработал технологию автоматической сварки под флюсом.

В 1932 году русский ученый Константин Константинович Хренов (1894 – 1984 гг.) впервые в мире создал технологию электродуговой сварки и резки под водой.

evgeniy-oskarovich-patonНовая фаза развития сварки приходится на конец 1930-х годов. В это время коллектив института электросварки АН УССР под руководством академика Евгения Оскаровича Патона (1870 – 1953 гг.) изобрел промышленный способ автоматической сварки под флюсом. С 1940 года началось внедрение данного метода сварки в производства, что сыграло огромную роль в годы войны при производстве военной техники (электросварные башни танков) и снарядов. В дальнейшем был разработан способ полуавтоматической сварки под флюсом.

Конец 1940-х годов ознаменовался началом промышленного применения технологии сварки в защитном газе. В 1952 году коллективы Центрального научно-исследовательского института технологий машиностроения и Института электросварки имени Е.О. Патона разработали и внедрили в производство способ полуавтоматической сварки в углекислом газе.

Сваривать металлы практический любой толщины стало возможным после разработки в 1949 году сотрудниками Института электросварки им. Е.О. Патона технологии электрошлаковой сварки.

В дальнейшем  в нашей стране стали применяться следующие способы сварки: сварка ультразвуком, диффузионная сварка, электронно-лучевая, холодная сварка, плазменная, сварка трением и др.

19 великих изобретений, перевернувших историю

Сегодняшний день, в котором мы живем, может показаться результатом стремительных инноваций и открытий. Но если мы осмелимся проследить за оборудованием и машинами сегодняшнего дня, большинство из них — это усовершенствования устройств, которые были построены в далеком прошлом.

СМОТРИ ТАКЖЕ: 27 ИЗОБРЕТЕНИЙ ПРОМЫШЛЕННОЙ РЕВОЛЮЦИИ, ИЗМЕНИЛИ МИР

Транспорт, связь и обмен информацией следуют одному и тому же пути непрерывных инноваций в отношении изобретения, появившегося сотни лет назад.

Давайте посмотрим на некоторые из величайших изобретений, которые произвели революцию в истории.

1. Колесо (3500 г. до н.э.) — давай начнем вращаться

Источник: zsuzsannasolti / Pixabay

Если мы оглянемся назад, то первым изобретением, изменившим будущее человечества, было изобретение колеса. Будь то путешествие или транспортировка товаров, изобретение колес сделало это намного проще, чем когда-либо прежде.

В доисторические времена колеса использовались не только на транспортных средствах; они также использовались в системах шкивов.Удивительно, но применение колес в первую очередь не применялось на тележках или каретах.

Есть свидетельства того, что они впервые использовались в качестве гончарного круга в 3500 году до нашей эры. Сегодня колесо и его производные присутствуют повсюду, помогая нам облегчить наши усилия и выполнить свою работу!

2. Компас (206 г. до н.э.) — Следопыт

Источник: Тереза ​​Томпсон / Flickr

На протяжении всей истории люди испытывали неутолимую жажду исследования неизведанного.Но это было бы невозможно без знания ориентиров, которые помогли определить географическое положение.

Вот почему компасы были одним из важнейших инструментов, которые помогли человечеству исследовать и регистрировать наземные и водные массы по всему миру. В сегодняшнем мире спутников и GPS это может показаться неуместным, но это было одно из ключевых изобретений, изменивших мир к лучшему!

Компас был изобретен китайцами для помощи в гадании, но его применение в путешествиях и навигации было реализовано только в 11 -м веке нашей эры.

3. Водяное колесо (50 г. до н.э.) — недооцененное изобретение

Источник: Smallbones / Wikimedia Commons

Водяные колеса часто игнорируются из самых известных изобретений, изменивших историю. Но давайте не будем забывать о первом изобретении, которое помогло человечеству получать энергию из источников, отличных от людей и животных.

Водяное колесо было изобретено римским инженером Витрувием. Он преобразует силу текущей или падающей воды в механическую энергию.Затем эта механическая энергия использовалась для измельчения зерна, токарных станков, приводов лесопильных заводов, текстильных изделий, кузнечных сильфонов и многого другого.

Сообщается, что в 1086 году в Европе их было около 6000.

4. Календарь (45 г. до н.э.) — Сохранить Дата

Источник: Asmdemon / Wikimedia Commons

Современный календарь не использовался до 1600-х годов, поэтому было много форм календарей, которые использовались для заполнения единой системы.

Первой формой календаря, используемого египтянами, был солнечный календарь. Затем Юлий Цезарь принес юлианский календарь, в котором использовалась 12-месячная система.

Но у него был серьезный недостаток, так как он отключался на 11 минут. Григорианский календарь или современный календарь, который мы используем сегодня, был введен Папой Григорием XIII в 1582 году.

5. Пуццолана (27 г. до н.э.) — Древний бетон

Источник: Epolk / Wikimedia Commons

Мы живем в мире, который построен из кирпича и раствора.Во всех высотных зданиях, от небоскребов до одноэтажных, используется одна и та же комбинация материалов, которая удерживает их вместе, не опрокидываясь, — бетон.

Бетон был изобретен еще в Древнем Риме. Римляне использовали другую комбинацию элементов для создания связующей смеси, чем их современный эквивалент.

Pozzolana использует смесь глинозема и кремния, которая реагирует с гидроксидом кальция при комнатной температуре в присутствии воды с образованием вещества, обладающего вяжущими свойствами.

Неудивительно, почему римские колизеи и соборы выдержали испытание временем, не потеряв своей красоты и ауры!

6. Часы (725 г. н.э.) — Первые механические часы

Источник: Wikimedia Commons

Представьте себе современную цивилизацию, не имея чувства времени. Сценарий, при котором не важны ни сроки, ни рабочее время. Страшно, не правда ли?

Время — это то, что помогает нам все отслеживать. Люди не изобрели часы как таковые, поскольку это была модификация солнечных часов.

Солнечные часы были первыми устройствами, которые человек использовал для отслеживания времени, и их использование насчитывает 6 тысяч лет.

Египтяне и китайцы использовали водяные часы, чтобы отслеживать время. Первые механические часы были изготовлены И Сином из Китая в 725 году нашей эры.

7. Печатный станок (1450) — Эффект Гутенберга

Источник: Takomabibelot / Wikimedia Commons

Печатный станок является важной частью фундамента, на котором строилась современная цивилизация.Это было изобретение Иоганна Гутенберга из Германии.

Машина использовалась для массового производства газет и других информационных материалов. Это также означало, что цены на печатную бумагу упали, и она стала доступной для многих.

Печатный станок сыграл большую роль в промышленной революции, и к тому времени даже низшие классы могли позволить себе газеты и узнать, что происходило вокруг них.

Влияние печатного станка на историю невозможно сопоставить лучше, чем слова самого Марка Твена: « То, чем мир является сегодня, хорошим и плохим, он обязан Гутенбергу

8. Паровоз (1712) — Изобретение, положившее начало революции

Источник: Йост Дж. Баккер / Wikimedia Commons

Промышленная революция началась с изобретения, которое привело в действие промышленность и локомотивы одинаково. Все началось с изобретения Томасом Ньюкоменом паровой машины.

Не путайте его изобретение с паровым поездом, так как это было позднее изобретение другого изобретателя. Двигатель Ньюкомена был стационарным и использовался как стационарный насос или мотор.

Это была движущая сила промышленной революции.

9. Вакцины (1796) — Одно из самых важных изобретений для человечества

Источник: капрал. Жаклин Перес Ривера / Wikimedia Commons

Вакцины помогли нам обуздать тонну опасных для жизни эпидемий. Было подсчитано, что только от оспы было зарегистрировано около 500 миллионов смертей.

СМОТРИ ТАКЖЕ: 35 ИЗОБРЕТЕНИЙ, ИЗМЕНИВШИХ МИР

Эдвард Дженнер был первым человеком, который создал вакцину.Он изобрел вакцину против оспы, которая спасла бесчисленное количество жизней и принесла ему титул отца иммунологии.

Мир выиграл от изобретения вакцин, так как их производные помогли человечеству преодолеть периоды смертельных болезней.

10. Поезд с паровым двигателем (1814 г.) — продвижение промышленной революции

Источник: Петар Милошевич / Wikimedia Commons

Первый успешный локомотив с паровым двигателем был построен Джорджем Стефенсоном в 1814 году.Джордж Стефенсон построил паровой двигатель по проекту Джона Бленкинсопа.

Он работал на двигателе, предложенном Джеймсом Ваттом. Изобретение паровой машины и ее способности нести огромные грузы сделало ее лучшим способом быстро нести тонны груза через обширные участки земли.

Вскоре мили и мили железных дорог были проложены, чтобы соединить штаты и даже страны.

11. Электрическая батарея (1800) — Замечательный подвиг Вольты

Источник: GuidoB / Wikimedia Commons

В 1800-х годах у людей не было непрерывных линий электропередач, которые обеспечивали бы постоянную подачу энергии.Так что производство электроэнергии было задачей не из легких.

Ситуация изменилась, когда итальянский изобретатель Алессандро Вольта изобрел первую в истории батарею, в которой использовались диски из цинка и серебра, расположенные попеременно в форме цилиндрической стопки. Батарея могла генерировать повторяющиеся искры и помогала работать многим устройствам.

12. Компьютер (1822) — Первый механический компьютер Бэббиджа

Источник: Victorgrigas / Wikimedia Commons

Компьютеры, без сомнения, одно из величайших изобретений человечества.Изначально созданные для выполнения сложных математических вычислений, компьютеры прошлого превратились в машины, которые можно использовать для заранее составления карты движения звезд и камней в космосе.

Первый механический компьютер был изобретен Чарльзом Бэббиджем. Но это сильно отличалось от того, что есть сейчас.

Он использовал движущиеся части для расчетов и весил тонны. Компактные компьютеры, которые мы используем сегодня, являются результатом таких изобретений, как транзисторы и интегральные схемы.

13. Холодильник (1834 г.) — Избавление от жары в 1834 г.

Источник: Инфрогмация, Новый Орлеан / Wikimedia Commons

Согласно отчету Министерства энергетики США за 2009 г., 99% домов в США имеют как минимум один холодильник. Эта статистика сама по себе свидетельствует о популярности холодильника в современном мире.

Холодильник помогает хранить скоропортящиеся пищевые продукты намного дольше, чем они могли бы сохраниться. Работа холодильника очень проста — отвод тепла от зоны создания холодного состояния.

Первый цикл охлаждения с компрессией пара был предложен Джейкобом Перкинсом, также известным как отец охлаждения. Его холодильная машина, построенная в 1834 году, была основана на теории, выдвинутой Оливером Эвансом.

14. Телеграф (1830-1840) — Устройство связи , которое представило код Морзе

Источник: Wikimedia Commons

Телеграф был предшественником в области связи до изобретения телефона Антонио Меуччи .Он был разработан Сэмюэлем Морсом и его командой инженеров.

С изобретением телеграфа междугородная связь больше не зависела от посыльных. С использованием кода Морзе междугородное общение стало проще, и люди могли общаться со своими близкими на больших расстояниях, отправляя свои сообщения через телеграммы.

Батарейки, изобретенные Алессандро Вольта, позволили телеграммам работать в контролируемой среде.

15.Сталь (1850 г.) — От булавок до Бруклинского моста

Источник: Wlodi / Wikimedia Commons

Сталь — один из наиболее часто используемых строительных материалов. Он значительно превосходит железо и другие дорогостоящие строительные материалы. Соотношение веса и прочности сделало сталь предпочтительным выбором строителей по сравнению с другими материалами.

Но сталь — относительно новое изобретение, поскольку оно явилось результатом эксперимента Генри Бессемера с железом. Он хотел снизить содержание углерода в железе, чем это было возможно в то время.

В результате получилось нечто гибкое, чем чугун, но более прочное, чем кованое железо — идеальная смесь — сталь!

16. Электрическая лампочка (1880 г.) — Освещение мира

Источник: Уильям Дж. Хаммер / Wikimedia Commons

Попытки создать лампочку начались примерно в 1800-х годах. Но изобретения того времени не были жизнеспособными, поскольку нить накаливания порвалась через несколько дней использования.

Это сделало коммерческое использование лампочек невозможным. Но перенесемся в 1879 год, когда Томас Альва Эдисон и его группа инженеров усовершенствовали лампочку, используя вольфрам в качестве материала нити накала.

Патенты на современные волокна получены в период с 1879 по 1880 годы. Изобретение лампочек освободило человечество от зависимости только от дневного света и привело к созданию сценария, в котором люди могут работать или выполнять другие трудоемкие дела ночью при достаточном освещении.

17. Самолет (1903) — Осуществление летающей мечты

Источник: Джон Т. Дэниэлс / Wikimedia Commons

Человеческое тело не было спроектировано для полета, и те, кто думал, что это возможно, потерпели неудачу в своих усилиях.Леонардо да Винчи был одним из провидцев, которые верили, что человек действительно может летать при условии, что он сможет построить аппарат, который поможет ему в полете.

Братья Райт были теми, кто продемонстрировал человеческий полет в действии в 1903 году. Их изобретение с годами эволюционировало и превратилось в то, что мы сейчас называем современными самолетами.

Теперь люди могут преодолевать тысячи миль за считанные часы благодаря достижению Уилбура и Орвилла Райтов.

18. Транзисторы (1947 г.) — Секрет современных вычислений

Источник: Unitronic / Wikimedia Commons

Эра электроники возникла благодаря транзисторам.Они использовались для усиления электрических сигналов, и в истории их использование в основном предназначалось для телефонов.

Использование транзисторов означает, что связь между странами стала возможной, поскольку стратегически размещенные транзисторы будут усиливать сигналы в определенных точках вдоль линии передачи. Это проложило путь для сигналов, которые распространяются гораздо дальше, не оказывая при этом значительного влияния на качество.

Транзисторы были разработаны Bell Laboratories для замены электронных ламп, которые использовались для усиления сигналов.В настоящее время транзисторы используются в процессорах и многих других электронных устройствах.

19. ARPANET (1969) — Примитивный Интернет

Источник: Defense Systems Agency / Wikimedia Commons

Некоторые из вас могут быть не знакомы с термином ARPANET, но вы, возможно, уже привыкли к его современной версии — Интернет. Нет ни одного человека, которому можно приписать изобретение Интернета, как это сделали многие.

Интернет зародился как проект, предпринятый Министерством обороны США под названием ARPANET или Сеть Агентства перспективных исследовательских проектов.Он был изобретен для обмена данными между несколькими узлами, расположенными на больших расстояниях.

К 1970-м годам ученый Винтон Шеф разработал протокол управления передачей, который позволил компьютерам обмениваться данными друг с другом. Интернет, который мы знаем сегодня, был разработан программистом по имени Тим Бернерс-Ли, когда он создал Всемирную паутину, которая, по сути, представляла собой сеть информации, к которой люди могут получить доступ.

Действительно долгий путь!

Оглядываясь назад на эти новаторские изобретения, становится ясно одно — наше желание процветать и совершенствоваться.Мы видим общество, которое изобрело колесо, чтобы быстро ступать по земле, которое овладело небом и волнами. Это действительно замечательно, и мы будем делать это еще много лет!

.

Проект English ++ | История компьютеров Родерика Хеймса

Родерик Хеймс

Ранний старт

Компьютеры существуют уже несколько лет. Некоторые из ваших родителей, вероятно, были Примерно в 1951 году, когда коммерческая фирма купила первый компьютер. Компьютеры изменились так быстро, что многие люди не успевают за изменениями. Одна газета попыталась описать, как бы выглядела автомобильная промышленность, если бы развивались с той же скоростью, что и изменения в компьютерных технологиях:

«Если бы автомобиль развивался такими же темпами, как и компьютер, во время Последние двадцать лет сегодня Rolls Royce стоит менее 3 долларов.00, получи 3 миллиона миль на галлон, доставляет достаточно мощности, чтобы управлять (кораблем) Королевой Елизаветой II, а шесть из них уместится на булавочной головке! » Эти изменения произошли так быстро, что многие люди не знают, как появился наш современный компьютер.

Первые вычислительные машины «Компьютеры»

С древних времен у людей были способы работы с данными и числами. Рано люди завязывали узлы на веревках и высекали отметки на глиняных табличках, чтобы вести учет домашнего скота и торговля.Некоторые считают 5000-летний ABACUS — рамку с бусинами нанизанный на провода — чтобы стать первым настоящим вычислительным помощником.

По мере усложнения торговой и налоговой системы люди увидели, что быстрее и надежнее требовались точные инструменты для математических расчетов и ведения записей.

В середине 600-х годов Блез Паскаль и его отец, который сам был налоговым инспектором, были работал над налогами для французского правительства в Париже. Два часа потратили на размышления и пересмотр налогов, которые должен был платить каждый гражданин.Молодой Блэз решил в 1642 году построить машина для сложения и вычитания, которая может помочь в такой утомительной и трудоемкой процесс. Машина, сделанная Блейзом, имела набор из восьми шестерен, которые работали вместе в значительной степени. так же, как одометр отслеживает пробег автомобиля. Его машина столкнулась много проблем. Во-первых, он всегда ломался. Во-вторых, машина была медленно и очень дорого. В-третьих, люди боялись пользоваться машиной, думая это может заменить их работу.Позже Паскаль прославился математикой и философией, но его до сих пор помнят за его роль в компьютерных технологиях. В его честь есть компьютерный язык по имени Паскаль.

Следующий большой шаг для компьютеров произошел в 1830-х годах, когда Чарльз Бэббидж решил построить машину, которая поможет ему заполнять и печатать математические таблицы. Бэббидж был математик, преподававший в Кембриджском университете в Англии. Он начал планировать его вычислительная машина, назвав ее аналитической машиной.Идея этой машины была удивительно похож на тот компьютер, который мы знаем сегодня. Это было читать программу с перфорированной карточки, нарисуйте и сохраните ответы на разные задачи и распечатайте ответ на бумага. Бэббидж умер, не успев завершить работу над машиной. Однако из-за его Благодаря замечательным идеям и работе Бэббидж известен как отец компьютеров.

Следующий огромный шаг для компьютеров был сделан, когда Герман Холлерит принял участие в конкурсе или подготовлено Бюро переписи населения США.Конкурс заключался в том, чтобы увидеть, кто сможет построить машину. который будет считать и записывать информацию быстрее всего. Холлерит, молодой человек, работающий для Бюро построил машину под названием Табулирующая машина, которая считывает и сортирует данные с перфокарт. Отверстия, пробитые в карточках, соответствовали каждому человеку ответы на вопросы. Например, женатые, холостые и разведенные были ответами на карты. Табулятор считывал перфокарты, когда они проходили через крошечные кисти. Каждый раз, когда щетка находила отверстие, она замыкала электрическую цепь.Это вызвало особые счетчик циферблатов, чтобы увеличить данные для этого ответа.

Благодаря машине Холлерита, вместо семи с половиной лет, чтобы считать переписи населения потребовалось всего три года, даже если с тех пор прошло еще 13 миллионов человек. последняя перепись. Довольный своим успехом, Холлерит создал Табулирующую машину. Компания в 1896 году. Позднее компания была продана в 1911 году, а в 1912 году его компания стала International Business Machines Corporation, более известной сегодня как IBM.

Первый компьютер с электрическим приводом

То, что считается первым компьютером, было сделано в 1944 году профессором Гарварда. Говард Эйкен. Компьютер Mark I был очень похож на дизайн Чарльза Бэббиджа. Аналитическая машина, состоящая в основном из механических частей, но с некоторыми электронными частями. Его машина была разработана для выполнения множества вычислительных задач. Этот универсальный машина — это то, что мы теперь знаем как ПК или персональный компьютер. Марк я был Первый компьютер, финансируемый IBM, был около 50 футов в длину и 8 футов в высоту.Он использовал механические переключатели для размыкания и замыкания его электрических цепей. Он содержал более 500 миль проволоки и 750 000 деталей.

Первый полностью электронный компьютер

Первым полностью электронным компьютером был ENIAC (электронный числовой интегратор и Компьютер). ENIAC был цифровым компьютером общего назначения, построенным в 1946 году Дж. Преспером. Эккерт и Джон Мочли. ENIAC содержал более 18000 электронных ламп (использованных вместо механических переключателей Mark I) и был в 1000 раз быстрее, чем Mark I.За двадцать секунд ENIAC мог решить математическую задачу, на которую потребовалось бы 40 часов. для одного человека, чтобы закончить. ENIAC был построен во время Второй мировой войны и как его Сначала нужно было рассчитать осуществимость конструкции водородной бомбы. ENIAC был 100 футов в длину и 10 футов в высоту.

Более современные компьютеры

Компьютер более современного типа начался с разработки Джона фон Неймана. программного обеспечения, написанного в двоичном коде. Именно фон Нейман начал практику хранение данных и инструкций в двоичном коде и инициировал использование памяти для хранения данные, а также программы.Компьютер под названием EDVAC (Электронная дискретная переменная Computer) был построен с использованием двоичного кода в 1950 году. До EDVAC такие компьютеры, как ENIAC мог выполнить только одну задачу; затем их пришлось перепрограммировать для выполнения другой задачи или программа. Концепция EDVAC о хранении различных программ на перфокартах вместо того, чтобы переделывать компьютеры, привели к компьютерам, которые мы знаем сегодня.

Хотя современный компьютер намного лучше и быстрее, чем EDVAC своего времени, компьютеры сегодняшнего дня было бы невозможно без знаний и работы многих великие изобретатели и первооткрыватели.

.

Текст 3. Первые счетные устройства

Возьмем взглянем на историю компьютеров, которые мы знаем сегодня. Самый первый В качестве счетного устройства использовались десять пальцев рук человека. Эта, собственно, поэтому сегодня мы все еще считаем десятками и кратными десяткам.

Затем были изобретены счеты. Люди продолжали хорошо пользоваться какими-то абаками в 16 веке, и он до сих пор используется в некоторых частях мир, потому что его можно понять, не умея читать.

Вовремя 17-18 веков многие люди пытались найти простые способы расчет. Ж.Напье, шотландец, изобрел механический способ умножение и деление, которое теперь работает в современной логарифмической линейке. Генри Бриггс использовал идеи Напьера для создания таблиц логарифмов, которые все математики используют сегодня.

Исчисление, другой раздел математики, независимо изобретенный сэром Исаак Ньютон, англичанин, и Лейбниц, немецкий математик. Первая настоящая вычислительная машина появилась в 1820 году в результате эксперименты нескольких людей.

В 1830 г. Чарльз Бэббидж, одаренный английский математик, предложил построить универсальная машина для решения проблем, которую он назвал » аналитическая машина ». Эта машина, которую Бэббидж показал на Парижская выставка 1855 года была попыткой вырезать человеческое существо. в целом, за исключением предоставления машине необходимых фактов о проблеме, которую нужно решить. Он так и не закончил эту работу, но многие его идеи легли в основу создания сегодняшних компьютеров.

Автор электромеханические машины начала двадцатого века были разработаны и использовались для обработки бизнес-данных.Доктор Герман Холлерит, молодой статистик из Бюро переписи населения США успешно свел таблицу переписи 1890 года. Холлерит изобрел средство кодирование данных путем пробивания отверстий в карточках. Он построил одну машину для пробить дыры и другие, чтобы свести собранные данные в таблицу. Позже Холлерит покинул Бюро переписи и основал собственное табулирование машиностроительная компания. Через серию слияний компания в конечном итоге стала IBM Corporation

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *