Маркировка конденсаторов на плате
Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.
Как определить полярность электролитического конденсатора?
Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:
- по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
- по внешнему виду;
- с помощью универсального измерительного прибора – мультиметра.
Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.
По маркировке
Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются.
Обозначение плюса конденсатора
На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.
На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.
Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.
Обозначение минуса
Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.
Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод.
Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.
Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.
На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт.
По внешнему виду
Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.
У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.
Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.
С помощью мультиметра
Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.
Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор.
Потребуются следующие устройства и компоненты:
- ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
- мультиметр;
- резистор;
- монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
- маркер для нанесения знаков полярности на корпус проверяемого электролита.
Затем следует собрать электрическую схему:
- параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
- плюсовую клемму ИП соединить с выводом резистора;
- другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.
Если полярность подключения электролита правильная, мультиметр ток не зафиксирует.
Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.
Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП.
После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.
Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.
Как определить полярность электролитического конденсатора?
Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:
- по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
- по внешнему виду;
- с помощью универсального измерительного прибора – мультиметра.
Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.
По маркировке
Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.
Обозначение плюса конденсатора
На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.
На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.
Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.
Обозначение минуса
Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.
Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.
Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.
Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.
На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.
По внешнему виду
Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.
У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.
Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.
С помощью мультиметра
Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.
com/embed/5X-i6sLNhxo?feature=oembed»/>
Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.
Потребуются следующие устройства и компоненты:
- ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
- мультиметр;
- резистор;
- монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
- маркер для нанесения знаков полярности на корпус проверяемого электролита.
Затем следует собрать электрическую схему:
- параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
- плюсовую клемму ИП соединить с выв
Плюсы и минусы конденсаторов.
Как правильно определить полярность конденсатора — пошаговая инструкция. Как проверить неполярный конденсаторВ основном, по конструктивному исполнению конденсаторы делятся на два типа: полярные и неполярные.
К полярным конденсаторам относятся конденсаторы которые имеют полярность, грубо говоря, плюс и минус. К ним чаще всего относятся электролитические конденсаторы, но бывают также и электролитические неполярные конденсаторы. Полярные конденсаторы надо паять в схемы только определенным образом: плюсовый контакт конденсатора к плюсу схему, минусовый контакт – к минусу схемы.
Если полярность такого конденсатора нарушить, то он может серьезно пострадать и даже взорваться. Поверьте мне, взрыв конденсатора – это очень зрелищно, но электролит, который там находится, может серьезно повредить вас и ваше окружение. В основном, это только касается советских конденсаторов.
У импортных конденсаторов сверху имеется небольшое вдавление в виде крестика или какой-нибудь другой фигурки. Их толщина меньше, чем остальная толщина крышечки конденсатора. Как мы с вами знаем, где тонко, там и рвется. Это предусмотрено в целях безопасности. Поэтому, если все-таки импортный конденсатор желает взорваться, то его верхняя часть просто-напросто превратится в розочку.
На фото ниже вздутый конденсатор на материнской плате компьютера. Разрыв идет ровно по линии.
Для того, чтобы проверить конденсатор, надо вспомнить общее свойство всех конденсаторов: конденсатор пропускает только переменный ток, постоянный ток он пропускает только в самом начале на несколько долей секунд (это время зависит от его емкости), а потом – не пропускает. Более подробно про это свойство можно прочитать в этой статье. Для того, чтобы проверить конденсатор с помощью мультиметра, должно соблюдаться условие, что его емкость должна быть от 0,25 мкФ.
Как проверить полярный конденсатор
Ну что же, давайте проверим нашего подопечного. Вот собственно и он, самый настоящий импортный электролитический полярный конденсатор:
Для того, чтобы разобраться, где у него минус, а где плюс, производители нанесли маркировку. Минус конденсатора указывает галочка на самом корпусе. Видите эту черную галочку на золотой толстой линии конденсатора? Она указывает на минусовый вывод.
Давайте узнаем, жив или мертв наш пациент? Для начала его надо разрядить металлическим предметом. Я использовал пинцет.
Следующим шагом берем мультиметр и ставим его крутилку на прозвонку или на измерение сопротивления, и щупами дотрагиваемся до выводов конденсатора. Так как у нас мультиметр на прозвонке и на измерении сопротивления выдает постоянный ток, значит, в какой-то момент времени ток будет течь, следовательно, в этот момент сопротивление конденсатора будет минимальным. Далее мы продолжаем держать щупы на выводах конденсатора и, сами того не понимая, заряжаем его. А пока мы его заряжаем, его сопротивление начинает также расти, пока не будет очень большое. Давайте глянем на практике, как все это выглядит.
Вот в этом момент мы только-только коснулись щупами выводов конденсатора.
Держим и видим, что сопротивление у нас растет
и пока не станет очень большим
Очень удобен в проверке конденсаторов аналоговый мультиметр, потому что можно без труда отслеживать плавное движение стрелки, чем мерцание цифр на цифровом мультике.
Если же у нас при прикасании щупов к конденсатору мультиметр начинает пищать и показывать нулевое сопротивление, значит, в конденсаторе произошло короткое замыкание . А если сразу же показывается единичка на мультиметре, значит внутри конденсатора произошел обрыв. Конденсаторы с такими дефектами считаются нерабочими и их можно смело выбрасывать.
Как проверить неполярный конденсатор
Неполярные конденсаторы проверяются еще проще. Ставим предел измерения на мультиметре на Мегаомы и касаемся щупами выводов конденсатора. Если сопротивление меньше 2 Мегаом, то скорее всего конденсатор неисправен.
Конденсаторы полярные и неполярные номиналом меньше, чем 0,25мкФ могут с помощью мультиметра проверяться только на КЗ. Чтобы проверить все-таки их на работоспособность, нужен специальный прибор – LC – метр или универсальный R/L/C/Transistor-metr , но и некоторые мультиметры могут также измерять емкость конденсаторов, имея внутри себя такую функцию. Например, мой мультиметр может без труда определить емкость конденсатора до 200 мкФ. Имейте ввиду, что внутри мультиметра есть . Если он перегорает, то некоторые функции мультиметра теряются. На моем мультиметре при перегорании внутреннего предохранителя не работала функция измерения силы тока и измерение емкости конденсатора.
Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.
Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.
Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:
Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:
К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:
У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:
Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:
Неполярный конденсатор изображение на схеме
На фото ниже изображены пленочный и керамический конденсаторы:
Пленочный
Керамический
Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:
На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:
Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:
Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.
Переменные конденсаторы
Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:
Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.
На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:
На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:
Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.
На следующем рисунке изображено строение подстроечного конденсатора:
Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .
Обсудить статью КОНДЕНСАТОР
В элементной базе компьютера (и не только) есть одно узкое место — электролитические конденсаторы. Они содержат электролит, электролит — это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке — дело регулярное.
Поэтому замена конденсаторов — это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.
Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.
Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.
В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:
Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.
Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.
Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.
Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.
Спешить не нужно, сильно давить тоже. Мат.плата — это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.
После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.
При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.
После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже — насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.
Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).
Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.
Замена конденсатора без выпаивания с платы
Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.
Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.
Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.
Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.
Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.
На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).
Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).
Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.
Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.
Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!
Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) .
Симптомы при выходе из строя конденсаторов разнообразны. Это и зависания и синие экраны и просто нежелания компьютера включаться. Обычно к выводу о железной проблеме приходят после установки «чистой» системы и установки на нее «родных» драйверов. Если на голой системе и правильными драйверами наблюдаются зависания и BSOD’ы – проверяем железо.
Еще одной причиной зависаний является выход из строя элементов на материнской плате. Пожалуй, чаще всего из строя выходят конденсаторы.
Поломку легко определить по вздувшимся крышечкам конденсаторов. Верхние крышечки конденсаторов изготавливаются с крестообразным «надрезом» именно для того, чтобы было легко идентифицировать нерабочий конденсатор. Конденсаторы могут выходить из строя по нескольким причинам. Самая распространенная – некачественная партия. Попросту говоря – заводской брак. Отслужат такие конденсаторы примерно года два-три и «потекут». Вторая причина – время. От старости электролит в них высыхает, уменьшается емкость. Третья причина – перегрев. Если конденсатор находится вблизи горячего процессора – риск выхода его со строя возрастает.
С чего начнем.
Конечно – с выключения компьютера от сети. Помните – все манипуляции делаем только на выключенном оборудовании. При том желательно отключить от системного блока не только питающий провод, но и все остальные провода и кабели. Питание может идти от монитора по VGA кабелю, сетевая карта также может быть под напряжением от активного сетевого оборудования.
Снимаем крышку с системного блока (левую, если смотреть на блок спереди). Системную (материнскую) плату нужно отвинтить от корпуса. Снимаем все платы расширения, выкручиваем все крепежные винты, которыми прикручена материнка к стенке. Отключаем питающие кабеля от блока питания. Отключаем жгут проводов, идущий к передней панели корпуса. На всякий случай зарисуйте подключение всех проводков на плату. Процессор можно с платы не снимать.
Находим поврежденные конденсаторы. Внимательно смотрим маркировку. Нам нужно знать емкость и рабочее напряжение. Например, 1000mF, 6,3V. Бежим в ближайший магазин электроники и покупаем такие же по номиналам конденсаторы. Обратите внимание, что в компьютерные платы ставятся конденсаторы с максимальной рабочей температурой 105 градусов. Такие конденсаторы называются «низкоимпендансными» или можно в магазине просто сказать «мне компьютерные конденсаторы нужны». Продавцы в курсе. Итак, конденсаторы куплены. Кстати, возьмите штучку-две про запас. Если что-то пойдет не так – будет чем заменить. Или обнаружится еще один неисправный. Или останется на потом.
Выпаиваем старые конденсаторы
Пора включать паяльник. Учтите, что элементы на современных платах припаяны бессвинцовым припоем, который имеет температуру плавления выше, чем знакомый нам припой. Паяльник нужно будет разогреть до 300 градусов (примерно).
Берем плату в руки. Желательно заземлиться самому и иметь паяльник с заземленным жалом. Статика – вещь коварная.
Берем одной рукой конденсатор, паяльником с другой стороны прогреваем точку припоя одной ноги конденсатора на другой стороне платы. Конденсатор можно покачивать из стороны в сторону, чтобы расшевелить ногу. Выпаиваем одну ножку. Прогреваем вторую. Вытащили конденсатор. Повторяем процедуры для осталных поврежденных конденсаторов. Следите за тем, чтобы при нагреве ножек паяльник не соскользнул и не снес с материнки мелкие элементы. Не торопитесь.
Готовим места посадки
После того, как все больные конденсаторы выпаяны необходимо позаботиться о посадочных отверстиях для здоровых. Для таких целей обычно используют специальный отсос для припоя. Но скорее всего его у вас нет, так что берем иголку и аккуратно расширяем отверстия с двух сторон. Припой довольно мягкий и должен поддаваться. Не переусердствуйте, если взять шило – можно и плату поломать. Материнская плата многослойная и небольшая трещина может вывести ее из строя навсегда.
Ставим новые элементы
Вставляем все конденсаторы на свои места.
Соблюдайте полярность. На конденсаторах обычно маркируют минусовую ногу полоской на корпусе. Кроме того, минусовая нога короче, плюсовая – длиннее. На плате также есть обозначение полярности. Минусовая половина обозначена белым полукругом.
ВНИМАНИЕ! На некоторых платах (редко) полярность перепутана и полукруг обозначает «плюс». Перед выпайкой старых элементов посмотрите на полярность и маркировку.
Конденсаторы вставили, переворачиваем плату и разгибаем ножки конденсаторов, чтобы они не выпадали.
Пайка
Подошли к самому ответственному этапу – пайке. Не откусывая ножки ставим жало паяльника прямо к плате возле ножки. Подводим проволочку припоя к ножке конденсатора и чуть касаемся проволочкой паяльника. Припой тут же расплавляется и капелькой стекает по ножке на посадочное место. При должной сноровке получается красиво и быстро. Припаиваем все ножки.
Зачищаем
Берем кусачки и откусываем ножки конденсаторов. Не оставляйте длинные торчащие ноги. Они могут достать стенки корпуса и что-то обязательно сгорит. Берегите глаза! Ножки обычно от кусачек отлетают в произвольном направлении. Могут угодить в глаз. Лучше одной рукой работать кусачками, а другой рукой держать откусываемую ножку.
Сборка
Сборку, как говорится, производить в обратном порядке. Подключаем к материнской плате сначала все проводки от жгута передней панели корпуса. Затем проводи от блока питания, USB-хвосты, питание на корпусные вентиляторы. Прикручиваем плату к стенке. Вставляем платы расширения (видео, сетевые и т.д.). Подключаем питание – включаем.
Работает – закрываем крышку корпуса и наслаждаемся.
Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача — как определить полярность конденсатора.
Как определить полярность электролитического конденсатора?
Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:
- по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
- по внешнему виду;
- с помощью универсального измерительного прибора — мультиметра.
Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.
По маркировке
Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.
Обозначение плюса конденсатора
На отечественных советских изделиях обозначался только положительный контакт — знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т. е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.
На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.
Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.
Обозначение минуса
Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.
Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.
Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.
Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.
На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.
По внешнему виду
Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.
У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.
Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера — мультиметра.
С помощью мультиметра
Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.
Конденсатор должен быть полностью разряжен — для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие — на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.
Потребуются следующие устройства и компоненты:
- ИП — батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
- мультиметр;
- резистор;
- монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
- маркер для нанесения знаков полярности на корпус проверяемого электролита.
Затем следует собрать электрическую схему:
- параллельно резистору с помощью “крокодилов” (т. е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
- плюсовую клемму ИП соединить с выводом резистора;
- другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.
Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.
Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.
После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.
Испарители и конденсаторы холодильные. ТУ 3644-006-00220302-99
Испарители холодильные предназначены для охлаждения воды, растворов и жидких технологических сред, протекающих по трубам аппаратов, аммиаком, пропаном, пропиленом и другими хладагентами, испаряющимися в межтрубном пространстве аппаратов.
Испарители изготавливаются двух исполнений:
ИХ-1 — для охлаждения воды и растворов давлением до 0,6 МПа в установках, работающих в пределах температур насыщения плюс 40ºС до минус 40ºС;
ИХ-2 — для охлаждения жидких технологических сред давлением 1,0…2,5 МПа в установках, работающих в пределах температур насыщения плюс 40ºС до минус 60ºС.
Конденсаторы холодильные предназначены для сжижения холодильного агента в аммиачных и углеводородных (пропан, пропилен) холодильных установках общепромышленного назначения работающих в пределах температур конденсируемого хладагента от 0ºС до плюс 100ºС, при температуре охлаждающей среды от минус 20ºС до плюс 50ºС.
Холодильные испарители и конденсаторы изготавливаются по ТУ 3644-006-00220302-99.
В испарителях и конденсаторах применяются как гладкие (Г) теплообменные трубы, так и диафрагмированные (Д) с накатанными кольцевыми канавками.
Испарители и конденсаторы холодильные могут эксплуатироваться в условиях макроклиматических районов с умеренным и тропическим климатом. Климатическое исполнение (У) и (Т), категория изделия 1 по ГОСТ 15150.
Испарители холодильные и конденсаторы рассчитаны на установку в географических районах сейсмичностью менее 7 баллов по принятой в РФ 12-ти бальной шкале.
Пример условного обозначения испарителя при заказе: Испаритель холодильный, исполнения 1, с кожухом диаметром 1000 мм, на условное давление в трубах 0,6 МПа, в кожухе 1,6 МПа, исполнения по материалу M1, с гладкими теплообменными трубами — Г диаметром 25 мм и длиной 6 м, четырехходовой по трубам, климатического исполнения — У, с деталями для крепления теплоизоляции — И: Испаритель холодильный 1000ИХ-1-0,6-1,6-М1/25Г-6-4-У-И |
Испаритель холодильный ИХ-1
Испарители ИХ-1 с кожухом диаметром от 400 до 1000 мм изготавливаются без опор.
Пример условного обозначения испарителя при заказе: Испаритель холодильный, исполнения 2, с кожухом диаметром 1000 мм, на условное давление в трубах 1,6 МПа, в кожухе 2,5 МПа, исполнения по материалу M17, с диафрагмированными теплообменники трубами — Д диаметром 25 мм и длиной 6 м, четырехходовой по трубам климатического исполнения — Т, без деталей для крепления теплоизоляции:
Испаритель холодильный 1000ИХ-2-1,6-2,5-М17/25Д-6-4-Т
Испаритель холодильный ИХ-2
Пример условного обозначения конденсатора при заказе: Конденсатор холодильный с кожухом диаметром 1600 мм, на условное давление в трубах 0,6 МПа, в кожухе 2,0 МПа, исполнения по материалу M12, с диафрагмированными теплообменными трубами — Д диаметром 25 мм и длиной 6 м, четырехходовой по трубам, климатического исполнения — Т, без деталей для крепления теплоизоляции:
Конденсатор холодильный 1600КХ-0,6-2,0-М12/25Д-6-4-Т ТУ 3644-006-00220302-99
Конденсатор холодильный КХ
Основные технические характеристики испарителей и конденсаторов холодильных:
Наименование параметров |
Значение параметров для аппаратов типа |
|||
ИХ-1 |
ИХ-2 |
КХ |
||
Поверхность теплообмена, м² |
21-1323 |
22-1485 |
||
Внутренний диаметр кожуха, мм |
400; 600; 800; 1000; 1200; 1400; 1600; 1800; 2000 |
|||
Температура греющей и испаряемой сред ±5ºС |
в трубах |
от минус 20 до плюс 40 |
от минус 60 до плюс 60 |
от минус 20 до плюс 50 |
в кожухе |
от минус 40 до плюс 40 |
от минус 60 до плюс 40 |
от 0 до плюс 100 |
|
Условное давление, МПа, не более в трубах для аппаратов диаметром, мм |
400-1600 |
до 0,6 |
1,0; 1,6; 2,5 |
0,6 |
1800-2000 |
1,0; 1,6 |
|||
Условное давление, МПа, не более в кожухе для аппаратов диаметром, мм |
1,6 |
2,5 |
2 |
|
Длина теплообменных труб, мм для аппаратов диаметром, мм |
400 |
3000 |
||
600; 800 |
3000; 4000 |
|||
1000 |
3000; 4000; 6000 |
|||
1200; 1400 |
4000; 6000 |
|||
1600-2000 |
6000 |
|||
Наружный диаметр и толщина стенки теплообменных труб, мм |
25х2 |
|||
Число ходов по трубам |
400 |
2 |
||
600 |
2; 4; 6 |
|||
800-1400 |
2; 4; 6; 8 |
|||
1600-2000 |
2; 4; 6 |
|||
Схема и шаг размещения теплообменных труб в трубных решетках, мм |
по вершинам равносторонних треугольников |
Допускается изготавливать кожух испарителей и конденсаторов холодильных из труб наружным диаметром 426 и 630 мм.
Дополнительные технические характеристики испарителей и конденсаторов:Материалы, применяемые для изготовления сборочных единиц основных узлов и деталей аппаратов:
Тип аппаратов |
Исполнение аппарата по материалу |
Материал |
|||
кожуха |
распределительной камеры |
труб |
трубные решетки |
||
ИХ-1; ИХ-2 |
М1 |
Сталь марки 16ГС по ГОСТ 5520 |
Стали марок 10 и 20 по ГОСТ 1050, ГОСТ 550 гр. А, ГОСТ 8733 гр. В |
Сталь марки 16ГС по ГОСТ 5520 или ГОСТ 8479 гр. IV, ГОСТ 19281 |
|
КХ |
Сталь марки Ст3 сп по ГОСТ 14637 |
||||
ИХ-2 |
М12 |
Сталь марки 16ГС по ГОСТ 5520 |
Сталь марки 08Х22Н6Т по ГОСТ 9941 и ГОСТ 5632, Стали марок 08Х18Н10Т по ГОСТ 9941, ГОСТ 5632 |
Сталь марки 08Х22Н6Т по ГОСТ 5632, ГОСТ 7350 гр. М2б, ГОСТ 25054 гр. IV и технической документации утвержденной в установленном порядке |
|
КХ |
СТ3сп по ГОСТ 380, ГОСТ 14637 |
Ст3сп по ГОСТ 380, ГОСТ 14637 |
|||
ИХ-2 |
М17 |
Сталь марки 09Г2С категории В по ГОСТ 5520 Трубы-сталь марок 10Г2 по ГОСТ 8731 Гр. А и 09Г2С по технической документации, утвержденной в установленном порядке |
Сталь марки 10Г2 по ГОСТ 550 гр. А ГОСТ 8733 гр. В |
Сталь марок 09Г2С И 10Г2С1 категории В по ГОСТ 5520, 09Г2С и 10Г2 по ГОСТ 8479 гр. IV |
|
ИХ-2 |
Б6 |
Сталь марки 16ГС по ГОСТ 5520 |
Двухслойная сталь марки 16ГС+12Х18Н10Т по ГОСТ 10885 |
Стали марок 08Х18Н10Т 12Х18Н10Т по ГОСТ 9941, ГОСТ 5632. |
Сталь марки 12Х18Н10Т по ГОСТ 5632, ГОСТ 7350 гр. М2б, ГОСТ 25054 гр. IV и технической документации утвержденной в установленном порядке |
Примечания:
1. Допускается изготовлять сборочные единицы из материалов других марок ,предусмотренных ОСТ 26-291, по механическим свойствам и коррозионной стойкости не уступающие материалам, указанным в таблице.
2. Все материалы применяемые для изготовления аппаратов, должны иметь сертификаты.
3. Аппараты исполнений по материалу М1 и М12 применяются при температуре стенки кожуха до минус 40ºС, исполнения М17 — до минус 60ºС, исполнения Б6 — до минус 30ºС.
Поверхность теплообмена по наружному диаметру труб и площадь проходного сечения по трубам аппаратов ИХ-1, ИХ-2, КХ:
Внутренний диаметр кожуха, мм |
Число ходов по трубам |
Поверхность теплообмена, м² |
Площадь проходного сечения одного хода по трубам, м² |
||||||
для аппаратов ИХ-1, ИХ-2 при длине труб, мм |
для аппаратов КХ при длине труб, мм |
||||||||
3000 |
4000 |
6000 |
3000 |
4000 |
6000 |
ИХ-1; ИХ-2 |
КХ |
||
400 |
2 |
21 |
— |
— |
22 |
— |
— |
0,014 |
0,017 |
600 |
2 |
54 |
72 |
— |
59 |
79 |
— |
0,037 |
0,044 |
4 |
49 |
66 |
— |
53 |
71 |
— |
0,016 |
0,019 |
|
6 |
45 |
60 |
— |
48 |
64 |
— |
0,010 |
0,010 |
|
800 |
2 |
95 |
127 |
— |
109 |
145 |
— |
0,067 |
0,080 |
4 |
89 |
119 |
— |
101 |
135 |
— |
0,030 |
0,034 |
|
6 |
84 |
112 |
— |
96 |
128 |
— |
0,019 |
0,022 |
|
8 |
75 |
101 |
— |
90 |
121 |
— |
0,010 |
0,014 |
|
1000 |
2 |
161 |
214 |
322 |
175 |
234 |
351 |
0,115 |
0,129 |
4 |
151 |
201 |
302 |
165 |
221 |
331 |
0,053 |
0,060 |
|
6 |
143 |
191 |
287 |
158 |
211 |
317 |
0,034 |
0,038 |
|
8 |
133 |
178 |
267 |
152 |
203 |
305 |
0,021 |
0,025 |
|
1200 |
2 |
— |
309 |
463 |
— |
339 |
509 |
0,168 |
0,187 |
4 |
— |
293 |
439 |
— |
324 |
486 |
0,074 |
0,088 |
|
6 |
— |
282 |
423 |
— |
312 |
469 |
0,050 |
0,057 |
|
8 |
— |
265 |
398 |
— |
301 |
452 |
0,035 |
0,039 |
|
1400 |
2 |
— |
429 |
644 |
— |
484 |
726 |
0,233 |
0,267 |
4 |
— |
411 |
617 |
— |
464 |
697 |
0,110 |
0,125 |
|
6 |
— |
396 |
594 |
— |
451 |
677 |
0,070 |
0,081 |
|
8 |
— |
377 |
565 |
— |
438 |
657 |
0,049 |
0,058 |
|
1600 |
2 |
— |
— |
844 |
— |
— |
930 |
0,305 |
0,342 |
4 |
— |
— |
811 |
— |
— |
898 |
0,146 |
0,163 |
|
6 |
— |
— |
789 |
— |
— |
873 |
0,090 |
0,103 |
|
1800 |
2 |
— |
— |
1067 |
— |
— |
1194 |
0,390 |
0,439 |
4 |
— |
— |
1032 |
— |
— |
1156 |
0,181 |
0,206 |
|
6 |
— |
— |
1005 |
— |
— |
1130 |
0,113 |
0,136 |
|
2000 |
2 |
— |
— |
1323 |
— |
— |
1485 |
0,477 |
0,546 |
4 |
— |
— |
1283 |
— |
— |
1444 |
0,226 |
0,262 |
|
6 |
— |
— |
1253 |
— |
— |
1413 |
0,149 |
0,168 |
Наибольшая допускаемая разность температур стенок кожуха tК и теплообменных труб tТ испарителей ИХ-1, ИХ-2 и конденсаторов КХ:
Внутренний диаметр кожуха, мм |
(tТ-tК), ºС |
(tК — tТ), ºС |
для аппаратов ИХ-1, ИХ-2 |
для аппаратов КХ |
|
400; 600; 800; 1000 |
40 |
30 |
1200; 1400; 1600; 1800; 2000 |
40
|
Масса конденсаторов КХ:
Внутренний диаметр кожуха, мм |
Число ходов по трубам |
Масса, кг, при давлении в трубах 0,6 МПа, в кожухе 1,6 МПа и длине труб, мм |
||
3000 |
4000 |
6000 |
||
400 |
2 |
870 |
— |
— |
600 |
2 |
1990 |
2380 |
— |
4 |
1910 |
2270 |
— |
|
6 |
1840 |
2170 |
— |
|
800 |
2 |
3480 |
4200 |
— |
4 |
3370 |
4060 |
— |
|
6 |
3300 |
3960 |
— |
|
8 |
3220 |
3850 |
— |
|
1000 |
2 |
4800 |
6750 |
9040 |
4 |
4660 |
6560 |
8760 |
|
6 |
4560 |
6430 |
8550 |
|
8 |
4470 |
6310 |
8380 |
|
1200 |
2 |
— |
10360 |
13180 |
4 |
— |
10140 |
12840 |
|
6 |
— |
9970 |
12600 |
|
8 |
— |
9810 |
12360 |
|
1400 |
2 |
— |
13370 |
17790 |
4 |
— |
13090 |
17370 |
|
6 |
— |
12900 |
17090 |
|
8 |
— |
12710 |
16800 |
|
1600 |
2 |
— |
— |
21860 |
4 |
— |
— |
21400 |
|
6 |
— |
— |
21040 |
|
1800 |
2 |
— |
— |
29060 |
4 |
— |
— |
28520 |
|
6 |
— |
— |
28140 |
Примечание: масса аппаратов КХ рассчитана без учета массы арматуры и комплектующих изделий. Допускаемое отклонение от значения массы не должно превышать +8%.
Масса испарителей ИХ-1:
Внутренний диаметр кожуха, мм |
Число ходов по трубам |
Масса, кг, при давлении в трубах 0,6 МПа, в кожухе 1,6 МПа и длине труб, мм |
||
3000 |
4000 |
6000 |
||
400 |
2 |
750 |
— |
— |
600 |
2 |
1510 |
1870 |
— |
4 |
1450 |
1790 |
— |
|
6 |
1380 |
1700 |
— |
|
800 |
2 |
2610 |
2150 |
— |
4 |
2520 |
3130 |
— |
|
6 |
2450 |
3030 |
— |
|
8 |
2320 |
2870 |
— |
|
1000 |
2 |
4130 |
5140 |
7180 |
4 |
3990 |
4960 |
6910 |
|
6 |
3880 |
4810 |
6690 |
|
8 |
3740 |
4610 |
6390 |
|
1200 |
2 |
— |
7910 |
10770 |
4 |
— |
7680 |
10430 |
|
6 |
— |
7520 |
10190 |
|
8 |
— |
7280 |
9830 |
|
1400 |
2 |
— |
10570 |
14480 |
4 |
— |
10310 |
14090 |
|
6 |
— |
10100 |
13770 |
|
8 |
— |
9820 |
13350 |
|
1600 |
2 |
— |
— |
179770 |
4 |
— |
— |
19300 |
|
6 |
— |
— |
18990 |
|
1800 |
2 |
— |
— |
25000 |
4 |
— |
— |
24490 |
|
6 |
— |
— |
24110 |
|
2000 |
2 |
— |
— |
31190 |
4 |
— |
— |
30610 |
|
6 |
— |
— |
30190 |
Масса испарителей ИХ-2:
Внутренний диаметр кожуха, мм |
Давление в трубах, МПа, не более |
Число ходов по трубам |
Масса, кг, при давлении в трубах 0,6 МПа, в кожухе 1,6 МПа и длине труб, мм |
||
3000 |
4000 |
6000 |
|||
400 |
1,0 |
2 |
800 |
— |
— |
1,6 |
820 |
— |
— |
||
2,5 |
850 |
— |
— |
||
600 |
1,0 |
2 |
1610 |
1950 |
— |
4 |
1550 |
1870 |
— |
||
6 |
1480 |
1780 |
— |
||
1,6 |
2 |
1650 |
1980 |
— |
|
4 |
1590 |
1900 |
— |
||
6 |
1520 |
1810 |
— |
||
2,5 |
2 |
1720 |
2050 |
— |
|
4 |
1660 |
1970 |
— |
||
6 |
1590 |
1880 |
— |
||
800 |
1,0 |
2 |
3030 |
3660 |
— |
4 |
2940 |
3540 |
— |
||
6 |
2870 |
3440 |
— |
||
8 |
2740 |
3280 |
|
||
1,6 |
2 |
3100 |
3770 |
— |
|
4 |
3010 |
3650 |
— |
||
6 |
2940 |
3550 |
— |
||
8 |
2810 |
3390 |
— |
||
2,5 |
2 |
3220 |
3890 |
— |
|
4 |
3130 |
3770 |
— |
||
6 |
3060 |
3670 |
— |
||
8 |
2930 |
3510 |
— |
||
1000 |
1,0 |
2 |
4810 |
5870 |
8060 |
4 |
4670 |
5670 |
7780 |
||
6 |
4560 |
5540 |
7570 |
||
8 |
4420 |
5340 |
7270 |
||
1,6 |
2 |
4500 |
5960 |
8270 |
|
4 |
4360 |
5780 |
7990 |
||
6 |
4250 |
5630 |
7780 |
||
8 |
4110 |
5430 |
7480 |
||
2,5 |
2 |
5210 |
6210 |
8470 |
|
4 |
5070 |
6030 |
8190 |
||
6 |
4960 |
5880 |
7980 |
||
8 |
4820 |
5680 |
7680 |
||
1200 |
1,0 |
2 |
— |
7410 |
11320 |
4 |
— |
7180 |
10980 |
||
6 |
— |
7020 |
10740 |
||
8 |
— |
6780 |
10380 |
||
1,6 |
2 |
— |
8560 |
11570 |
|
4 |
— |
8330 |
11230 |
||
6 |
— |
8170 |
10990 |
||
8 |
— |
7930 |
10630 |
||
2,5 |
2 |
— |
9260 |
12270 |
|
4 |
— |
9030 |
11930 |
||
6 |
— |
8870 |
11690 |
||
8 |
— |
8630 |
11330 |
||
1400 |
1,0 |
2 |
— |
11520 |
15680 |
4 |
— |
11260 |
15290 |
||
6 |
— |
11050 |
14970 |
||
8 |
— |
10770 |
14550 |
||
1,6 |
2 |
— |
11920 |
16080 |
|
4 |
— |
11660 |
15690 |
||
6 |
— |
11450 |
15370 |
||
8 |
— |
11170 |
14950 |
||
2,5 |
2 |
— |
12570 |
16730 |
|
4 |
— |
12310 |
16340 |
||
6 |
— |
12100 |
16020 |
||
8 |
— |
11820 |
15600 |
||
1600 |
1,0 |
2 |
— |
— |
21340 |
4 |
— |
— |
20870 |
||
6 |
— |
— |
20560 |
||
1,6 |
2 |
— |
— |
22240 |
|
4 |
— |
— |
21770 |
||
6 |
— |
— |
21460 |
||
2,5 |
2 |
— |
— |
23140 |
|
4 |
— |
— |
22670 |
||
6 |
— |
— |
22360 |
||
1800 |
1,0 |
2 |
— |
— |
27540 |
4 |
— |
— |
27030 |
||
1,6 |
6 |
— |
— |
26650 |
|
2 |
— |
— |
28540 |
||
2000 |
1,0 |
2 |
— |
— |
34590 |
4 |
— |
— |
34010 |
||
1,6 |
6 |
— |
— |
33590 |
|
2 |
— |
— |
36090 |
||
4 |
— |
— |
35510 |
||
6 |
— |
— |
35090 |
Примечание: масса аппаратов ИХ-1, ИХ-2 рассчитана без учета массы арматуры и комплектующих изделий. Допускаемое отклонение от значения массы не должно превышать +8%.
расшифровка букв, цифр, смешанных значений
Маркировка конденсаторов при выборе какого-либо элемента в схеме имеет большое значение. Она разнообразная и сложная по сравнению с резисторами. Специалист, который работает непосредственно с конденсаторами должен обязательно знать, как расшифровывается та или иная маркировка.
Таблица маркировки конденсаторов
Код | Пикофарады, (пф, pf) | Нанофарады, (нф, nf) | Микрофарады, (мкф, µf) |
109 | 1.0 | 0.001 | 0.000001 |
159 | 1.5 | 0.0015 | 0.000001 |
229 | 2.2 | 0.0022 | 0.000001 |
339 | 3.3 | 0.0033 | 0.000001 |
479 | 4.7 | 0.0047 | 0.000001 |
689 | 6.8 | 0.0068 | 0.000001 |
100* | 10 | 0. 01 | 0.00001 |
150 | 15 | 0.015 | 0.000015 |
220 | 22 | 0.022 | 0.000022 |
330 | 33 | 0.033 | 0.000033 |
470 | 47 | 0.047 | 0.000047 |
680 | 68 | 0.068 | 0.000068 |
101 | 100 | 0.1 | 0.0001 |
151 | 150 | 0.15 | 0.00015 |
221 | 220 | 0.22 | 0.00022 |
331 | 330 | 0.33 | 0.00033 |
471 | 470 | 0.47 | 0.00047 |
681 | 680 | 0.68 | 0.00068 |
102 | 1000 | 1.0 | 0.001 |
152 | 1500 | 1.5 | 0.0015 |
222 | 2200 | 2.2 | 0.0022 |
332 | 3300 | 3.3 | 0. 0033 |
472 | 4700 | 4.7 | 0.0047 |
682 | 6800 | 6.8 | 0.0068 |
103 | 10000 | 10 | 0.01 |
153 | 15000 | 15 | 0.015 |
223 | 22000 | 22 | 0.022 |
333 | 33000 | 33 | 0.033 |
473 | 47000 | 47 | 0.047 |
683 | 68000 | 68 | 0.008 |
104 | 100000 | 100 | 0.1 |
154 | 150000 | 150 | 0.15 |
224 | 220000 | 220 | 0.22 |
334 | 330000 | 330 | 0.33 |
474 | 470000 | 470 | 0.47 |
684 | 680000 | 680 | 0.68 |
105 | 1000000 | 1000 | 1.0 |
Маркировка твердотельных конденсаторов
По международному стандарту — начинают читать с единиц измерения. Фарады применяются для измерения ёмкости. Маркировку наносят на корпус самого устройства.
Иногда наносят маркеры, которые указывают на допустимые отклонения от нормы емкости самого конденсатора (указывается в процентах).
Порой, вместо них используется буква, которая обозначает то или иное значение самого допуска. Затем опреедляем номинальное напряжение. В том случае, если же корпус устройства имеет большие размеры, данный параметр обозначается цифрой, за которой далее следуют буквы. Максимально допустимое значение параметра указывается с помощью цифр. Если на корпусе нет никакой информации о допустимом значении напряжения, то использовать его можно только в цепях с низким напряжением. Если же устройство, согласно его параметрам, должно использоваться в цепях, где есть переменный ток, то применяться оно, соответсвенно, должно именно так и не иначе.
Устройство, которое работает с постоянным током, нельзя использовать в цепях с переменным.
Далее, определием полярность устройства: положительную и же отрицательную. Этот шаг очень важен. Если полюса будут определены неверно, велик риск возникновения короткого замыкания или даже взрыва самого устройства. Независимо от полярности, конденсатор можно будет подключить в том случае, если не указана какая-либо информация о плюсе и же минусе клемм.
Значение полярности могут наносить в виде специальных углублений, которые имеют форму кольца, или же в виде одноцветной полосы. В конденсаторах из алюминия, которые по своему внешнему виду похожи на банку из-под консервов, подобные обозначения говорят об отрицательной полярности. А, например, в танталовых конденсаторах, которые имеют небольшие габариты, все наоборот — полярность при данных обозначениях будет являться положительной. Цветовую маркировку не стоит учитывать лишь в том случае, если на самом конденсаторе будут указаны плюс и минус.
Маркировка конденсаторов: расшифровка
Значения первых двух цифр на корпусе, которые указывают на ёмкость устройства. Если конденсатор небольшого размера — маркировка осуществляется согласно стандарту EIA.
Цифры: обозначение
Когда в обозначении указаны только одна буква и две цифры, то цифры соответствуют параметру ёмкости конденсатора. По-своему нужно расшифровывать остальные маркировки, опираясь на ту или иную инструкцию. Множитель нуля — это третья по счету цифра. Расшифровку проводят в зависимости от того, какая цифра находится в конце. К первым двум цифрам необходимо добавить определённое количество нолей, если цифра входит в диапазон от ноля до шести. Если последней цифрой является число восемь, то в таком случае необходимо на 0,01 умножить две первые цифры. Когда значение ёмкости конденсатора станет известным, нужен будет определить то, в таких единицах измерения указана данная величина. Устройства из керамики, а также плёночные варианты являются мелкими. В них данный параметр измеряется в пикофарадах. Микрофарады используются для больших конденсаторов.
Буквы: их обозначение
Далее необходимо провести расшифровку букв, которые есть в маркировке. Если в первых двух символах есть буква, то в таком случае расшифровать ее можно несколькими методами. Если есть буква R, то она играет роль запятой, которая используется в дроби. Если есть буквы u, n, p — то оно тоже выполняют роль запятой в той же самой дроби.
Керамические конденсаторы: маркировка
Данные виды устройств имеют два контакта, а также круглую форму. На корпусе будут указаны как основные показатели, так и допуск отклонений от номы параметра ёмкости. Для этого используют специальную букву, которая находится после обозначения ёмкости в цифрах.
Если есть буква В, то отклонение в таком случае будет равняться +0,1 пФ, если буква С — то + 0,25 пФ и так далее. Только при значении параметра ёмкости менее 10пФ используются данные значения. Если параметр ёмкости больше указанного выше, то буквы — это процент допустимых отклонений.
Смешанная маркировка из цифр и букв
Маркировка может быть указана в виде буквы, затем цифры, а после снова буквы. Первый символ — это самая маленькая допустимая температура. Второй символ обозначает, наоборот, самую большую допустимую температуру. Третий символ — это ёмкость устройства, которая может изменяться в переделах ранее указанных значений температур.
Остальные маркировки
Значение напряжения можно узнать с помощью маркировки, которая находится на корпусе устройства. Символы говорят о допустимом максимальном значении параметра для того или иного конденсатора. Иногда маркировку упрощают. Например, используется только первая цифра. Напряжение меньше десяти вольт будет обозначаться, например, нулём, а этот же параметр, который будет иметь напряжение в пределах от десяти до девяноста девяти вольт — единицей и так далее. Другую маркировку имеют устройства, которые были выпущены намного раньше. Тогда нужно обратиться к справочнику во избежание совершения ошибок. У нас вы можете также узнать, как проверить конденсатор мультиметром на плате.
выбор типа конденсатора
Поскольку вы сказали, что это для аудио, ответ на самом деле более сложный, чем вы, возможно, предполагали. Электрически, вам нужен неполяризованный конденсатор, что означает не электролитический или танталовый на практике.
Однако у различных типов конденсаторов есть другие компромиссы, которые имеют значение в аудио приложениях. Многослойная керамика хороша тем, что имеет хорошую емкость для размера и не поляризована. Однако, в зависимости от диэлектрического материала, они могут быть совершенно нелинейными и иметь другой эффект, который часто называют микрофонным .
Микрофоника объясняется тем, что материал обладает небольшим пьезоэффектом. Вибрация вызовет небольшие изменения напряжения, что означает, что конденсатор будет действовать как микрофон. Эффект более тонкий, чем пьезомикрофоны, специально предназначенные для этой цели, но он все же может быть значительным, учитывая высокое отношение сигнал / шум хорошего звука.
Нелинейность также является функцией диэлектрического материала. Идеальный конденсатор увеличивает свое напряжение на ту же величину, когда добавляется фиксированный заряд, независимо от других условий. Эти нелинейные диэлектрики будут иметь разное изменение напряжения при одинаковом изменении заряда в зависимости от напряжения. Это обычно определяется количественно как емкость, изменяющаяся как функция напряжения. Например, конденсатор «10 мкФ 10 В» может действовать как 10 мкФ в области ± 2 В, но действовать больше как конденсатор 5 мкФ для постепенного изменения в области 8–10 В. Этот нелинейный отклик в звуковых цепях может привести к появлению гармоник, которых не было в исходном сигнале, что означает добавление искажения.
Керамические типы диэлектриков, начинающиеся с «X» или «Y» в их названии, демонстрируют оба этих эффекта больше, чем керамические, такие как «NP0». Во многих приложениях любой эффект не имеет значения, а керамика X и Y полезна, потому что они дают вам большую емкость на объем. Для аудиоприложений это имеет значение, поэтому вы придерживаетесь других типов и понимаете, что не сможете использовать конденсаторы с кажущимися большими комбинациями емкости и напряжения на пути прохождения сигнала. Сильное снижение диапазона напряжения также помогает избежать диэлектрической нелинейности. Например, вы можете получить ограничение 20 В, когда схема гарантирует, что напряжение на ней всегда будет в пределах ± 3 В.
Другие диэлектрики, такие как майлар, полистирол и тому подобное, имеют менее нежелательный эффект в тракте аудиосигнала, но также будут иметь гораздо меньшую доступную емкость и будут физически более громоздкими и, вероятно, более дорогими.
Все это компромисс.
Полярность конденсатора на плате – где плюс, где минус по внешнему виду
где плюс, где минус по внешнему виду
Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.
Как определить полярность электролитического конденсатора?
Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:
- по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
- по внешнему виду;
- с помощью универсального измерительного прибора – мультиметра.
Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.
По маркировке
Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.
Обозначение плюса конденсатора
На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т. е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.
На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.
Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.
Обозначение минуса
Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.
Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.
Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.
Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.
На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.
По внешнему виду
Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.
У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.
Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.
С помощью мультиметра
Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.
Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.
Потребуются следующие устройства и компоненты:
- ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
- мультиметр;
- резистор;
- монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
- маркер для нанесения знаков полярности на корпус проверяемого электролита.
Затем следует собрать электрическую схему:
- параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
- плюсовую клемму ИП соединить с выводом резистора;
- другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.
Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.
Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.
Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.
После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.
odinelectric.ru
«Как определить полярность конденсатора?» – Яндекс.Знатоки
На алюминиевых электролитических конденсаторах как правило наносится маркер минуса на корпус. На конденсаторах с жесткими выводами (Snap-in) обозначение плюса или минуса также может находится на заклепке вывода. У не впаянных конденсаторов с гибкими выводами плюсовая нога длиннее. На больших конденсаторах с болтовым соединением часто обозначения наносятся рядом с клеммами
На танталовых электролитических конденсаторах наоборот на корпусе маркируется плюс
Полярность указывают на плате, под впаянным электролитом ее часто не видно
Также определить полярность можно по соседствующим электронным компонентам, скачав на них тех.документацию(даташит) можно по дорожке определить что приходит к конкретной ноге конденсатора
yandex.ru
Как определить полярность конденсатора и не перепутать?
Все конденсаторы имеют высокий показатель удельной емкости. Это объяснятся применением оксидной пленки в качестве диэлектрика, который располагается между обкладками. Этот слой появляется на поверхности металла – AL, Ta, Nb. Она характеризуется большой электрической прочностью, а также своими вентильными свойствами. Ее толщина колеблется от 0,01 до 1мкм.
Если создается напряжение в 100 вольт, создается напряженность на этом слое в 107В на см. Таким образом приближается к максимальному пределу своей прочность, исходя из теории ионной кристаллов.
В статье разобраны все аспекты как определить полярность конденсаторы и что такое полярность конденсаторов. В качестве дополнения есть ролик и скачиваемый файл на эту тему.
Полярность конденсаторов.
Параметры, которыми характеризуется конденсаторы
Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности. Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего. Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.
Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты. Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры. ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.
Маркировка конденсаторов.Это приведет к нагреву конденсатора. Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру. В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR. Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома. Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.
Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.
Параллельное соединение
Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.
Материал в тему: все о переменном конденсаторе.
На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно. Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов? Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.
Соединения конденсаторов.
Что будет если перепутать полярность
Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.
При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.
Как определить полярность электролитического конденсатора
Если у вас оказался оксидная емкость со стертой маркировкой, то прежде чем задействовать ее в какой-либо радиолюбительской схеме, нужно обязательно определить полярность, т.к эти радио компоненты нельзя включать, не соблюдая полярность. Иначе из-за огромного тока утечки конденсатор не будет работать правильно Итак, чтобы узнать полярность нужно всего лишь заряжать емкость низким током, сравнимым с этими самыми утечками. При их появлении их, этот компонент, не сумеет зарядиться до напряжения, подаваемого от источника питания.
Если его подсоединить в правильной полярности, подавая плюс на положительный, а минус на отрицательный вывод, то конденсатор медленно зарядится. При обратной полярности, он зарядится до меньшего уровня- наполовину или даже ниже.
В последнем случае напряжение будет зависеть от соотношения зарядного тока, определяемого сопротивлением, и тока утечки. Но в любом случае, оно будет заметно ниже. Аналогичным способом определить полярность можно и при помощи миллиамперметра, включенного в разрыв цепи. Если он будет показывать наличие повышенного тока утечки, то конденсатор подключен неправильно.
Как определить полярность электролитического конденсатора.
Полярные и неполярные конденсаторы – в чем отличие
Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?
В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.
Интересный материал для ознакомления: что такое вариасторы.
Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.
Полярные и неполярные конденсаторы.
Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.
Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.
Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.
Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.
Полярность конденсатора.
А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.
На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.
Полярный и неполярный конденсатор
Полярные (электролитические) конденсаторыЕсть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.
Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны. На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.
полярный и неполярный конденсатор
Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с большим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.
В данной статье были рассмотрены основные особенности трансформаторов. Больше информации можно найти в скачиваемой версии учебника по электромеханике Электрические конденсаторы В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.nauchebe.net
www.masterkit.ru
www.radiostorage.net
www.texnic.ru
www.radioelementy.ru
electroinfo.net
Меняем конденсаторы на материнской плате » PCmodern.ru
Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.
Итак, для пайки нам понадобятся следующие инструменты:
- ремонтируемая деталь (например, материнка),
- пальник или термофен,
- припой,
- флюс,
- оплётка,
- плоскогубцы,
- конденсатор,
- обезжириватель,
- кисточка.
Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.
Как подобрать нужный конденсаторНа каждом конденсаторе имеется маркировка. Там указано 4 параметра:
- напряжение в вольтах,
- емкость в микрофарадах,
- рабочая температура,
- маркировка полярности.
Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой.
На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.
Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.
Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т.е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.
Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации. Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.
Также мы должны найти этот конденсатор на обратной стороне платы.
Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.
Отпаиваем старый конденсатор
Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.
На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.
Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.
И прогреваем место пайки на расстоянии 4-5 см.
Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.
Должно получиться вот так.
Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.
На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.
Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.
Можно поставить материнку вот так.
После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.
Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.
Ставим новый конденсатор И вот финишная прямая.
Вставляем новый конденсатор в выпаянное нами отверстие.
Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).
С обратной стороны у нас должно получиться вот так.
Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.
По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.
Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.
Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!
Финальный результат выглядит так.
Те самые ножки.
Лицевая сторона. Все готово!
Источник: httрs://tehnichка.рro/change-capacitor-on-motherboard/
Конденсаторы Материнка Ремонт
pcmodern.ru
Замена конденсаторов на материнской плате: основы пайки
Всех приветствую! Сегодня я покажу вам основы замены конденсаторов на материнской плате. Будет производиться замена вышедшего из строя конденсатора.
Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.
Итак, для пайки нам понадобятся следующие инструменты:
- ремонтируемая деталь (например, материнка),
- пальник или термофен,
- припой,
- флюс,
- оплётка,
- плоскогубцы,
- конденсатор,
- обезжириватель,
- кисточка.
Полный набор
Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.
На каждом конденсаторе имеется маркировка. Там указано 4 параметра:
- напряжение в вольтах,
- емкость в микрофарадах,
- рабочая температура,
- маркировка полярности.
Конденсаторы могут отличаться в размерах, но это практически ни на что не влияет. Можно использовать конденсаторы с повышенным объемом микрофарад (но конденсаторы с пониженной электроемкостью ставить не рекомендуется).
Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой.
На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.
Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.
Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т. е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.
Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации 😀 Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.
Также мы должны найти этот конденсатор на обратной стороне платы.
Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.
Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.
На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.
Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.
И прогреваем место пайки на расстоянии 4-5 см.
Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.
Должно получиться вот так.
Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.
На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.
Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.
Можно поставить материнку вот так
После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.
Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.
И вот финишная прямая.
Вставляем новый конденсатор в выпаянное нами отверстие.
Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).
С обратной стороны у нас должно получиться вот так.
Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.
По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.
Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.
Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!
Финальный результат выглядит так.
Те самые ножки
Лицевая сторона. Все готово!
Всем пока!
Post Views: 17
tehnichka.pro
Правила проверки и пайки конденсаторов
Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.
Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).
Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.
Проверка ёмкости
Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.
Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.
Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.
Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.
Проверка конденсатора цифровым мультиметром:
Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.
Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.
Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.
При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.
Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.
Проверка в плате
Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.
Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.
При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).
Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.
Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.
Меры предосторожности при измерении
Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.
- Обязательно проследите за тем, чтобы со схемы было полностью снято напряжение. Для этого тем же мультиметром, включённым в режим измерения напряжения, следует проверить отсутствие его во всех контрольных точках платы.
- При измерении встроенных в схему «подозрительных» конденсаторов следует внимательно следить за тем, чтобы случайно не повредить включённые параллельно ему элементы.
- И, наконец, паять дополнительно монтируемые в схему элементы нужно с предельной осторожностью, чтобы не повредить остальную её часть.
Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.
Как перепаивать конденсатор на «материнке»
Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.
Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.
Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.
Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.
Последовательность действий такая:
- Вначале обесточивают компьютер, отключают не только сетевой кабель, но и другие питающие провода.
- Снимают крышку и отвинчивают материнскую плату.
- Осматривают плату и находят поврежденный элемент, изучают его параметры (на маркировке), покупают замену.
- Замечают, какая полярность подключения конденсатора была (можно сделать фото).
- С помощью паяльной станции или пальника выпаивают поврежденный конденсатор.
- Устанавливают и припаивают новый.
После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.
Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.
Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.
По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.
Процесс пайки
Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.
Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.
Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.
Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.
Как паять резисторы
Для того чтобы запаять резистор в схему той же материнской платы или любого другого электронного изделия действуют точно так же, как в случае с конденсатором. Паять резисторы надо крайне осторожно, поскольку любое неаккуратное движение паяльником может повредить расположенные поблизости детали.
С особым вниманием следует менять переменные резисторы, у которых имеется три ножки. Для того чтобы выпаять его из платы, удобнее всего воспользоваться уже упоминавшимся ранее отсосом, посредством которого припой легко извлекается из крепёжных отверстий.
После его удаления резистор беспрепятственно достаётся из освобождённых гнёзд.
Паять миниатюрные элементы схем следует, стараясь подбирать соответствующий температурный режим нагрева паяльника, обычно это 270-300 ℃. В противном случае можно повредить как устанавливаемый элемент, так и контактную площадку, предназначенную для его монтажа.
svaring.com
Что такое конденсатор. Его параметры
Приветствую, друзья!
В первой части статьи мы рассмотрели, как устроен конденсатор.
Вы уже знаете, в каких единицах измеряется его ёмкость, как конденсаторы обозначаются в электрических схемах.
Вы уже знаете, где и как используются конденсаторы в компьютерной технике.
Конденсатор, как и любой компьютерный «кирпичик», обладает параметрами, которые характеризуют его работу.
Давайте углубим наши знания и посмотрим
Какими ещё параметрами характеризуются конденсаторы?
Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности.Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего.
Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.
Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты.
Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры.
Полная информация о всех параметрах конденсатора имеется в соответствующем даташите (справочных данных), который имеется на сайте фирмы — производителя.
ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.
Это приведет к нагреву конденсатора.
Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру.
В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR.
Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома.
Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.
Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.
Параллельное соединение конденсаторов
Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.
На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно.
Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов?
Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.
Что будет, если перепутать полярность конденсатора?
Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя!
Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток.
Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус.
Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе.
Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.
При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу.
Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме.
Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.
Как правильно заменить неисправные конденсаторы при ремонте материнской платы компьютера можно прочитать здесь.
Как измерить ёмкость и ESR конденсатора?
Ёмкость конденсатора можно измерить с помощью обычного цифрового мультиметра.
Большинство цифровых мультиметров могут измерять не только ток, напряжение или сопротивление, но и ёмкость.
При измерении емкости надо с помощью переключателя выбрать необходимый поддиапазон и использовать отдельные гнёзда с маркировкой «F».
Однако большинство мультиметров измеряет емкость не более 20 микрофарад. А если надо измерить ёмкость в несколько тысяч микрофарад?
В этом случае необходимо использовать комбинированные приборы — измерители ёмкости и ESR. Существует множество разновидностей таких приборов и приборчиков.
Автор использует в своей практике мультитестер с АлиЭкспресс.
Кроме измерения ESR и ёмкости, им можно проверять полупроводниковые приборы, сопротивления и индуктивности.
Удобная штука, доложу я вам!
Если проверять вздутые электролитические конденсаторы — выяснится, что у них повышенное ESR и сниженная емкость.
Иногда тестер вообще дают ошибку, не опознавая конденсатор как конденсатор. Может быть и так, что конденсатор по внешнему виду абсолютно нормальный, но имеет повышенное ESR (хотя и достаточную емкость).
Поэтому в блоке питания он нормально работать не будет!
Заканчивая, отметим, что конденсаторы небольшой ёмкости, использующиеся в «дежурке» компьютерного блока питания, имеют очень небольшие габариты. Электролита у них внутри немного, поэтому у них «не хватает силы» вздуться.
И только измеритель ESR позволит выявить их дефект.
Купить такой мультитестер можно здесь:
Питаться он может от батареи 6F22 («Крона»). Но можно использовать и адаптер AC/DC с выходным напряжением 9-12 В.
До встречи на блоге!
vsbot.ru
Как определить полярность электролитического конденсатора
Электролитический конденсатор является необычным электронным компонентом, сочетающим в себе свойства пассивного элемента и полупроводникового прибора. В отличие от обычного конденсатора, он является полярным элементом.У электролитических конденсаторов отечественного производства, выводы которых расположены радиально или аксиально, для определения полярности найдите знак плюса, расположенный на корпусе. Тот из выводов, ближе к которому он расположен, является положительным. Аналогичным образом промаркированы и некоторые старые конденсаторы чешского производства.
Конденсаторы коаксиальной конструкции, у которых корпус рассчитан на соединение с шасси; обычно предназначены для использования в фильтрах анодного напряжения устройств, выполненных на лампах. Поскольку оно является положительным, минусовая обкладка у них в большинстве случаев выведена на корпус, а плюсовая — на центральный контакт. Но из этого правила могут быть и исключения, поэтому в случае любых сомнений поищите на корпусе прибора маркировку (обозначение плюса или минуса) либо, при отсутствии таковой, проверьте полярность способом, описанным ниже.
Особый случай возникает при проверке электролитических конденсаторов типа К50-16. Такой прибор имеет пластмассовое дно, а маркировка полярности размещена прямо на нем. Иногда знаки минуса и плюса расположены таким образом, что выводы проходят прямо через их центры.
Конденсатор устаревшего типа ЭТО непосвященный может принять за диод. Обычно полярность на его корпусе указана способом, описанным в шаге 1. При отсутствии маркировки знайте, что вывод, расположенный со стороны утолщения корпуса, подключен к положительной обкладке. Ни в коем случае не разбирайте такие конденсаторы — в них содержатся ядовитые вещества!
Полярность современных электролитических конденсаторов импортного производства, независимо от их конструкции, определяйте по полосе, расположенной рядом с минусовым выводом. Она нанесена цветом, контрастным к цвету корпуса, и является прерывистой, т.е. как бы состоит из минусов.
Для определения полярности конденсатора, не имеющего маркировки, соберите цепь, состоящую из источника постоянного напряжения в несколько вольт, резистора на один килоом и микроамперметра, соединенных последовательно. Полностью разрядите прибор, и лишь затем включите в эту цепь. После полной зарядки прочитайте показания прибора. Затем отключите конденсатор от цепи, снова полностью разрядите, включите в цепь, дождитесь полной зарядки и прочитайте новые показания. Сравните их с предыдущими. При подключении в правильной полярности утечка заметно меньше.
Как определить полярность электролитического конденсатора
Обновлено 8 сентября 2019 г.
Автор S. Hussain Ather
Конденсаторы имеют различные конструкции для использования в вычислительных приложениях и фильтрации электрического сигнала в цепях. Несмотря на различия в том, как они построены и для чего они используются, все они работают по одним и тем же электрохимическим принципам.
Когда инженеры создают их, они принимают во внимание такие величины, как значение емкости, номинальное напряжение, обратное напряжение и ток утечки, чтобы убедиться, что они идеальны для своих целей.Если вы хотите сохранить большой заряд в электрической цепи, узнайте больше об электролитических конденсаторах.
Определение полярности конденсатора
Чтобы определить полярность конденсатора, полоса на электролитическом конденсаторе указывает отрицательный полюс. Для конденсаторов с осевыми выводами (у которых выводы выходят из противоположных концов конденсатора) может быть стрелка, указывающая на отрицательный конец, символизирующая поток заряда.
Убедитесь, что вы знаете полярность конденсатора, чтобы вы могли подключить его к электрической цепи в нужном направлении.Установка в неправильном направлении может вызвать короткое замыкание или перегрев цепи.
В некоторых случаях положительный конец конденсатора может быть длиннее отрицательного, но вы должны быть осторожны с этим критерием, потому что многие конденсаторы имеют обрезанные выводы. Танталовый конденсатор иногда может иметь знак плюса (+), указывающий на положительный полюс.
Некоторые электролитические конденсаторы могут использоваться как биполярные, что позволяет при необходимости менять полярность. Они делают это, переключаясь между потоками заряда через цепь переменного тока (AC).
Некоторые электролитические конденсаторы предназначены для биполярной работы неполяризованными методами. Эти конденсаторы состоят из двух анодных пластин, соединенных с обратной полярностью. В последовательных частях цикла переменного тока один оксид действует как блокирующий диэлектрик. Это предотвращает обратный ток от разрушения противоположного электролита.
Характеристики электролитического конденсатора
Электролитический конденсатор использует электролит для увеличения емкости или способности накапливать заряд, который он может получить.Они поляризованы, что означает, что их заряды выстраиваются в линию, позволяющую им сохранять заряд. Электролит в данном случае представляет собой жидкость или гель с большим количеством ионов, благодаря которым он легко заряжается.
Когда электролитические конденсаторы поляризованы, напряжение или потенциал на положительном выводе больше, чем на отрицательном, что позволяет заряду свободно проходить через конденсатор.
Когда конденсатор поляризован, он обычно обозначается минусом (-) или плюсом (+) для обозначения отрицательного и положительного полюсов.Обратите на это особое внимание, потому что, если вы неправильно подключите конденсатор в цепь, это может привести к короткому замыканию, как в случае, когда через конденсатор протекает настолько большой ток, что может необратимо его повредить.
Хотя большая емкость позволяет электролитическим конденсаторам накапливать большее количество заряда, они могут быть подвержены токам утечки и могут не соответствовать соответствующим допускам по величине, величина емкости может варьироваться для практических целей. Определенные конструктивные факторы могут также ограничивать срок службы электролитических конденсаторов, если конденсаторы склонны к быстрому износу после многократного использования.
Из-за этой полярности электролитического конденсатора они должны быть смещены в прямом направлении. Это означает, что положительный конец конденсатора должен иметь более высокое напряжение, чем отрицательный, чтобы заряд проходил через цепь от положительного конца к отрицательному.
Подключение конденсатора к цепи в неправильном направлении может привести к повреждению оксида алюминия, изолирующего конденсатор, или к короткому замыканию. Это также может вызвать перегрев, в результате которого электролит слишком сильно нагревается или протекает.
Меры предосторожности при измерении емкости
Перед измерением емкости вы должны знать о мерах безопасности при использовании конденсатора. Даже после того, как вы отключите питание от цепи, конденсатор, скорее всего, останется под напряжением. Прежде чем прикоснуться к нему, убедитесь, что все питание схемы отключено, используя мультиметр, чтобы убедиться, что питание отключено, и что вы разряжали конденсатор, подключив резистор к его выводам.
Для безопасной разрядки конденсатора подключите 5-ваттный резистор к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что питание отключено. Постоянно проверяйте конденсатор на предмет утечек, трещин и других признаков износа.
Обозначение электролитического конденсатора
••• Syed Hussain Ather
Обозначение электролитического конденсатора является общим обозначением конденсатора. Электролитические конденсаторы изображены на принципиальных схемах, как показано на рисунке выше для европейского и американского стилей. Знаки плюс и минус указывают на положительную и отрицательную клеммы, анод и катод.
Расчет электрической емкости
Поскольку емкость является величиной, присущей электролитическому конденсатору, вы можете рассчитать ее в единицах фарад как C = ε r ε 0 A / d для области перекрытия две пластины A в м 2 , ε r как безразмерная диэлектрическая проницаемость материала, ε 0 как электрическая постоянная в фарадах / метр и d как расстояние между плитами в метрах.
Экспериментальное измерение емкости
Вы можете использовать мультиметр для измерения емкости. Мультиметр измеряет ток и напряжение и использует эти два значения для расчета емкости. Установите мультиметр в режим измерения емкости (обычно обозначается символом емкости).
После того, как конденсатор был подключен к цепи и получил достаточно времени для зарядки, отключите его от цепи, соблюдая только что описанные меры безопасности.
Подключите выводы конденсатора к клеммам мультиметра. Вы можете использовать относительный режим для измерения емкости измерительных проводов относительно друг друга. Это может быть удобно при низких значениях емкости, которые может быть труднее обнаружить.
Попробуйте использовать различные диапазоны емкости, пока не найдете показание, которое является точным в зависимости от конфигурации электрической цепи.
Приложения для измерения емкости
Инженеры часто используют мультиметры для измерения емкости однофазных двигателей, оборудования и машин небольшого размера для промышленного применения. Однофазные двигатели работают за счет создания переменного потока в обмотке статора двигателя. Это позволяет току менять направление при прохождении через обмотку статора в соответствии с законами и принципами электромагнитной индукции.
Электролитические конденсаторы, в частности, лучше подходят для использования с высокой емкостью, например, для цепей питания и материнских плат компьютеров.
Индуцированный ток в двигателе затем создает собственный магнитный поток, противоположный потоку обмотки статора.Поскольку однофазные двигатели могут быть подвержены перегреву и другим проблемам, необходимо проверить их емкость и работоспособность с помощью мультиметров для измерения емкости.
Неисправности конденсаторов могут ограничить их срок службы. Короткозамкнутые конденсаторы могут даже повредить его части, так что он может больше не работать.
Конструкция электролитического конденсатора
Инженеры создают алюминиевые электролитические конденсаторы с использованием алюминиевой фольги и бумажных прокладок, устройств, которые вызывают колебания напряжения для предотвращения разрушительных вибраций, которые пропитаны электролитической жидкостью. Обычно они покрывают одну из двух алюминиевых фольг оксидным слоем на аноде конденсатора.
Оксид в этой части конденсатора заставляет материал терять электроны в процессе зарядки и накопления заряда. На катоде материал приобретает электроны в процессе восстановления конструкции электролитического конденсатора.
Затем производители продолжают укладывать пропитанную электролитом бумагу с катодом, соединяя их друг с другом в электрическую цепь и свертывая их в цилиндрический корпус, который подключается к цепи.Инженеры обычно выбирают расположение бумаги либо в осевом, либо в радиальном направлении.
Осевые конденсаторы выполнены с одним штифтом на каждом конце цилиндра, а в радиальных конструкциях оба штифта используются на одной стороне цилиндрического корпуса.
Площадь пластины и электролитическая толщина определяют емкость и позволяют электролитическим конденсаторам быть идеальными кандидатами для таких приложений, как усилители звука. Алюминиевые электролитические конденсаторы используются в источниках питания, материнских платах компьютеров и бытовой технике.
Эти характеристики позволяют электролитическим конденсаторам сохранять гораздо больший заряд, чем другие конденсаторы. Двухслойные конденсаторы или суперконденсаторы могут даже достигать емкости в тысячи фарад.
Алюминиевые электролитические конденсаторы
Алюминиевые электролитические конденсаторы используют твердый алюминиевый материал для создания «клапана», так что положительное напряжение в электролитической жидкости позволяет образовывать оксидный слой, который действует как диэлектрик, изолирующий материал, который может быть поляризован до предотвратить утечку зарядов.Инженеры создают эти конденсаторы с алюминиевым анодом. Это используется для создания слоев конденсатора и идеально подходит для хранения заряда. Инженеры используют диоксид марганца для создания катода.
Эти типы электролитических конденсаторов могут быть далее разбиты на тонкую плоскую фольгу и протравленную фольгу типа . Типы простой фольги — это те, которые были только что описаны, в то время как в конденсаторах с протравленной фольгой используется оксид алюминия на аноде и катодной фольге, которые были протравлены для увеличения площади поверхности и диэлектрической проницаемости, что является мерой способности материала сохранять заряд.
Это увеличивает емкость, но также снижает способность материала выдерживать высокие постоянные токи (DC), тип тока, который проходит в одном направлении в цепи.
Электролиты в алюминиевых электролитических конденсаторах
Типы электролитов, используемых в алюминиевых конденсаторах, могут различаться: нетвердый, твердый диоксид марганца и твердый полимер. Обычно используются нетвердые или жидкие электролиты, поскольку они относительно дешевы и подходят для различных размеров, емкостей и значений напряжения.Однако при использовании в цепях они действительно теряют много энергии. Этиленгликоль и борная кислота составляют жидкие электролиты.
Другие растворители, такие как диметилформамид и диметилацетамид, также могут быть растворены в воде для использования. Эти типы конденсаторов также могут использовать твердые электролиты, такие как диоксид марганца или твердый полимерный электролит. Диоксид марганца также экономичен и надежен при более высоких значениях температуры и влажности. Они имеют меньший ток утечки постоянного тока и высокую электрическую проводимость.
Электролиты выбраны для решения проблем с высокими коэффициентами рассеивания, а также с общими потерями энергии электролитических конденсаторов.
Ниобиевые и танталовые конденсаторы
Танталовые конденсаторы в основном используются в устройствах поверхностного монтажа в вычислительных приложениях, а также в военном, медицинском и космическом оборудовании.
Танталовый материал анода позволяет им легко окисляться, как алюминиевый конденсатор, а также позволяет им использовать преимущества повышенной проводимости, когда порошок тантала прижимается к проводящей проволоке. Затем оксид образуется на поверхности и внутри полостей в материале. Это создает большую площадь поверхности для повышенной способности хранить заряд с большей диэлектрической проницаемостью, чем у алюминия.
Конденсаторы на основе ниобия используют массу материала вокруг проводника, который использует окисление для создания диэлектрика. Эти диэлектрики имеют большую диэлектрическую проницаемость, чем танталовые конденсаторы, но для данного номинального напряжения используется большая толщина диэлектрика. Эти конденсаторы в последнее время используются чаще, поскольку танталовые конденсаторы стали дороже.
Электролитический конденсатор | Типы | Конденсаторная направляющая
Что такое электролитические конденсаторы?
Электролитический конденсатор — это тип конденсатора, в котором используется электролит для достижения большей емкости, чем у конденсаторов других типов. Электролит — это жидкость или гель, содержащий высокую концентрацию ионов. Почти все электролитические конденсаторы поляризованы, а это означает, что напряжение на положительной клемме всегда должно быть больше, чем напряжение на отрицательной клемме. Преимущество большой емкости электролитических конденсаторов имеет также несколько недостатков. Среди этих недостатков — большие токи утечки, допуски по величине, эквивалентное последовательное сопротивление и ограниченный срок службы. Электролитические конденсаторы могут быть либо с жидким электролитом, либо с твердым полимером. Обычно они изготавливаются из тантала или алюминия, хотя могут использоваться и другие материалы. Суперконденсаторы — это особый подтип электролитических конденсаторов, также называемых двухслойными электролитическими конденсаторами, с емкостью в сотни и тысячи фарад.Эта статья будет основана на алюминиевых электролитических конденсаторах. Они имеют типичную емкость от 1 мкФ до 47 мФ и рабочее напряжение до нескольких сотен вольт постоянного тока. Алюминиевые электролитические конденсаторы используются во многих областях, таких как источники питания, материнские платы компьютеров и многие бытовые приборы. Поскольку они поляризованы, их можно использовать только в цепях постоянного тока.
Определение электролитического конденсатора
Электролитический конденсатор — это поляризованный конденсатор, в котором используется электролит для достижения большей емкости, чем у конденсаторов других типов.
Считывание значения емкости
В случае сквозных конденсаторов значение емкости, а также максимальное номинальное напряжение указаны на корпусе. Конденсатор, на котором напечатано «4,7 мкФ 25 В», имеет номинальное значение емкости 4,7 мкФ и максимальное номинальное напряжение 25 В, которое никогда не должно превышаться.
В случае электролитических конденсаторов SMD (поверхностного монтажа) существует два основных типа маркировки. В первой четко указано значение в микрофарадах и рабочее напряжение.Например, при таком подходе конденсатор 4,7 мкФ с рабочим напряжением 25 В будет иметь маркировку «4,7 25V. В другой системе маркировки за буквой следуют три цифры. Буква представляет номинальное напряжение в соответствии с таблицей ниже. Первые два числа представляют собой значение в пикофарадах, а третье число — это количество нулей, добавляемых к первым двум. Например, конденсатор 4,7 мкФ с номинальным напряжением 25 В будет иметь маркировку E476. Это соответствует 47000000 пФ = 47000 нФ = 47 мкФ.
Письмо | Напряжение |
e | 2,5 |
G | 4 |
Дж | 6,3 |
А | 10 |
С | 16 |
D | 20 |
E | 25 |
В | 35 |
H | 50 |
Характеристики
Дрейф емкости
Емкость электролитических конденсаторов с течением времени отклоняется от номинального значения, и они имеют большие допуски, обычно 20%.Это означает, что алюминиевый электролитический конденсатор с номинальной емкостью 47 мкФ, как ожидается, будет иметь измеренное значение в диапазоне от 37,6 мкФ до 56,4 мкФ. Танталовые электролитические конденсаторы могут изготавливаться с более жесткими допусками, но их максимальное рабочее напряжение ниже, поэтому они не всегда могут использоваться в качестве прямой замены.
Полярность и безопасность
Из-за конструкции электролитических конденсаторов и характеристик используемого электролита электролитические конденсаторы должны иметь прямое смещение.Это означает, что положительный вывод всегда должен иметь более высокое напряжение, чем отрицательный вывод. Если конденсатор становится смещенным в обратном направлении (если полярность напряжения на выводах меняется на обратную), изолирующий оксид алюминия, который действует как диэлектрик, может быть поврежден и начать действовать как короткое замыкание между двумя выводами конденсатора. Это может вызвать перегрев конденсатора из-за протекающего через него большого тока. Когда конденсатор перегревается, электролит нагревается и протекает или даже испаряется, что приводит к взрыву корпуса. Этот процесс происходит при обратном напряжении около 1 В и выше. Для обеспечения безопасности и предотвращения взрыва корпуса из-за высокого давления, возникающего в условиях перегрева, в корпусе установлен предохранительный клапан. Обычно это делается путем нанесения царапины на верхней поверхности конденсатора, которая контролируемым образом открывается при перегреве конденсатора. Поскольку электролиты могут быть токсичными или едкими, могут потребоваться дополнительные меры безопасности при очистке и замене перегретого электролитического конденсатора.
Существует специальный тип электролитических конденсаторов для переменного тока, который выдерживает обратную поляризацию. Этот тип называется неполяризованным или NP-типом.
Устройство и свойства электролитических конденсаторов
Алюминиевые электролитические конденсаторы состоят из двух алюминиевых фольг и бумажной прокладки, пропитанной электролитом. Одна из двух алюминиевых фольг покрыта оксидным слоем, и эта фольга действует как анод, а непокрытая фольга действует как катод. Во время нормальной работы анод должен иметь положительное напряжение по отношению к катоду, поэтому катод чаще всего маркируется знаком минус вдоль корпуса конденсатора. Анод, пропитанная электролитом бумага и катод уложены стопкой. Пакет сворачивается, помещается в цилиндрический корпус и подключается к цепи с помощью штифтов. Есть две общие геометрии: осевая и радиальная. Осевые конденсаторы имеют по одному штырьку на каждом конце цилиндра, тогда как в радиальной геометрии оба штифта расположены на одном конце цилиндра.
Электролитические конденсаторы имеют большую емкость, чем большинство других типов конденсаторов, обычно от 1 мкФ до 47 мФ. Существует особый тип электролитического конденсатора, называемый двухслойным конденсатором или суперконденсатором, емкость которого может достигать тысяч фарад. Емкость алюминиевого электролитического конденсатора определяется несколькими факторами, такими как площадь пластины и толщина электролита. Это означает, что конденсатор большой емкости является громоздким и большим по размеру.
Стоит отметить, что электролитические конденсаторы, изготовленные по старой технологии, не имели очень длительного срока хранения, обычно всего несколько месяцев. Если его не использовать, оксидный слой разрушается, и его необходимо восстанавливать в процессе, называемом риформингом конденсатора. Это можно сделать, подключив конденсатор к источнику напряжения через резистор и медленно увеличивая напряжение, пока оксидный слой не будет полностью восстановлен. Современные электролитические конденсаторы имеют срок годности 2 года и более.Если конденсатор остается неполяризованным в течение длительного времени, его необходимо преобразовать перед использованием.
Применения для электролитических конденсаторов
Есть много приложений, в которых не требуются жесткие допуски и поляризация переменного тока, но требуются большие значения емкости. Они обычно используются в качестве фильтрующих устройств в различных источниках питания для уменьшения пульсаций напряжения. При использовании в импульсных источниках питания они часто являются критическим компонентом, ограничивающим срок службы источника питания, поэтому в этом приложении используются высококачественные конденсаторы.
Они также могут использоваться во входном и выходном сглаживании в качестве фильтра нижних частот, если сигнал является сигналом постоянного тока со слабой составляющей переменного тока. Однако электролитические конденсаторы плохо работают с сигналами большой амплитуды и высокой частоты из-за мощности, рассеиваемой на паразитном внутреннем сопротивлении, называемом эквивалентным последовательным сопротивлением (ESR). В таких приложениях необходимо использовать конденсаторы с низким ESR, чтобы уменьшить потери и избежать перегрева.
Практический пример — использование электролитических конденсаторов в качестве фильтров в усилителях звука, основная цель которых — уменьшить гудение в сети.Сетевой гул — это электрический шум 50 или 60 Гц, вызванный сетью, который будет слышен при усилении.
Керамический конденсатор положительный и отрицательный?
Тип конденсатора другой, и его конструкция и принцип работы будут очень разными. С макроэкономической точки зрения конденсаторы можно разделить на полярные и неполярные. Для полярных конденсаторов при установке необходимо обеспечить точность положительного и отрицательного электродов. Ошибка подключения может привести к повреждению конденсатора или даже к взрыву.Для конденсаторов без полярности об этом не нужно беспокоиться. Итак, есть ли у керамического конденсатора положительный и отрицательный полюс? Как узнать, есть ли экстрим?
Это неполярный конденсатор, поэтому при установке этого конденсатора не нужно различать положительный и отрицательный. Для обычных электролитических конденсаторов обычного качества вы можете увидеть длину двух ножек, длина — +, короткая — -. Танталовый электролитический конденсатор чипового типа обычно можно оценить по его внешнему виду, а одна сторона цветной ленты является положительным электродом. Другие неполярные электролитические конденсаторы, полиэфирные / танталовые конденсаторы, керамические конденсаторы, переменные и подстроечные конденсаторы не имеют положительных и отрицательных полюсов.
Разницу между положительным и отрицательным конденсаторами можно определить следующим образом. Если вы не знаете положительный и отрицательный полюсы конденсатора, вы можете использовать мультиметр для измерения. Среда между двумя полюсами конденсатора не является абсолютным изолятором, и его сопротивление не бесконечное, а конечное значение, обычно выше 1000 МОм.Сопротивление между двумя полюсами конденсатора называется сопротивлением изоляции или сопротивлением утечки. Только когда положительный электрод электролитического конденсатора подключен к источнику питания (черная тестовая ручка, когда питание заблокировано), а отрицательная клемма подключена к отрицательному источнику питания (красная тестовая ручка, когда питание заблокировано), ток утечки электролитического конденсатора небольшой (сопротивление утечки большое). Напротив, ток утечки электролитического конденсатора увеличивается (уменьшается сопротивление утечки).
Вы можете предположить, что полюс очень «+», мультиметр использует R * 100 или R * 1K, тогда гипотетический полюс «+» подключен к черному счетчику мультиметра, а другой электрод подключен к красному счетчику. мультиметра. Шкала упора иглы (стрелка имеет большое значение сопротивления слева), и показания могут быть непосредственно считаны цифровым мультиметром. Затем разрядите конденсатор (соприкасаются два провода), затем два измерительных провода меняют местами, и измерение повторяется.В двух измерениях последняя позиция руки оставлена (или сопротивление велико), и черная ручка подключена к положительному электроду электролитического конденсатора.
Как правило, керамический конденсатор не имеет положительных и отрицательных полюсов, а емкость обычно мала. Он часто используется для фильтрации источника сигнала, а полярность — это временное явление. Это своего рода неполярный электролитический конденсатор, поэтому он не полярный. Следовательно, идентификация положительного и отрицательного полюсов не требуется во время процесса установки и может быть установлена по желанию.
Пусковые конденсаторы двигателя HVAC Двигатели изучают возможности двигателя сегодня
Этот мультиметр имеет настройку, специально предназначенную для проверки конденсаторов двигателя.
Внутренние рабочие конденсаторы переменного тока
Внутренняя часть конденсаторов состоит из изолятора между двумя металлическими пластинами. Свойства этого металла позволяют конденсатору накапливать электроны, а изолятор не дает электронам перетекать с одной пластины на другую. Конденсатор, таким образом, хранит энергию в виде электричества так же, как батарея хранит заряд электричества.
Следовательно, необходимо проявлять особую осторожность при работе с конденсаторами, даже если питание устройства было отключено с помощью разъединителя и прерывателя. Конденсаторы герметично закрыты и не должны пропускать жидкость (жидкости).
Характеристики конденсатора | Пусковые конденсаторы HVAC Motors
Конденсаторы измеряются или рассчитываются в соответствии с номиналом микрофарад. Как правило, конденсаторы переменного тока рассчитаны на более низкие значения микрофарад от 3 микрофарад, до 50 микрофарад.Пусковые конденсаторы имеют гораздо более высокие диапазоны и могут быть куплены размером до 800 мкФ.
Конденсаторы также имеют номинальное напряжение от 240 вольт до 440 вольт. При замене любых электрических компонентов рекомендуется использовать точную замену. Существуют практические правила, которые позволяют использовать деталь, которая не является точной заменой, которая находится в определенном диапазоне, но лучше использовать точную замену.
Как проверить конденсатор для вашей системы кондиционирования воздуха
Чтобы проверить конденсатор кондиционера на неисправность, используйте тестер емкости для измерения номинального значения микрофарад на конденсаторе. Сравните с рейтингом производителей. Если конденсатор отличается от номинального значения микрофарад более чем на десять процентов, замените его.
С рейтингами микрофарад важно, чтобы при проверке конденсатора вы проверяли его номинальную МФД или микрофарад и следовали правилу 10 процентов: он должен оставаться в пределах плюс-минус 10 процентов от номинала микрофарад.
При таком номинальном напряжении можно повышать напряжение при замене, но никогда не понижать. Другими словами, если у вас есть конденсатор на 370 вольт, то есть на 25 микрофарад, если у вас нет точной замены, но тот, на 25 микрофарад и 440 вольт, это приемлемая замена.
Тяга для высоких токов | Пусковые конденсаторы Двигатели HVAC
Высокое потребление тока может означать, что у вас выходит из строя конденсатор. Вам также может понадобиться комплект для жесткого запуска, который крепится к конденсатору. Во многих случаях компрессоры и двигатель вентилятора конденсатора используют двойной конденсатор. Каждую сторону следует проверять отдельно на конденсаторе. В индустрии HVAC используются конденсаторы двух разных типов (или форм): один круглый, а другой овальный. Когда вы проверяете сдвоенный конденсатор, вам нужно проверять обе стороны.
Вентилятор и компрессор (обычно маркируются как HERM). Если вам неудобно это делать, звоните в ремонт кондиционера. Они будут точно знать, что делать, и при необходимости добавят жесткий запуск компрессора.
Пусковые конденсаторы Двигатели HVAC — Конденсаторы двигателя
Кроме того, если двигатель или компрессор не запускается по какой-либо причине, частью списка устранения неполадок , который необходимо проверить, будет конденсатор. Плохой конденсатор может привести к отказу и возгоранию двигателя, особенно при большой нагрузке.Трудно сказать, если вы не знакомы с конденсаторами, но конденсатор, который выпирает сверху или по бокам, является неисправным конденсатором . Его нужно заменить. T
всегда представляет опасность при работе с электрическими компонентами, особенно с конденсаторами. Они будут шокировать вас, даже если питание оборудования отключено. Всегда привлекайте для проверки оборудования квалифицированного специалиста по HVAC. Они могут быстро и эффективно диагностировать проблему и мгновенно восстановить систему.Они также хорошо осведомлены обо всех возможных опасностях, поэтому это будет сделано безопасно и без травм.
Пусковые конденсаторы Двигатели нагрева и охлаждения — Замена конденсатора двигателя
Если у вас работает переменный ток или тепловой насос работает, у вас все равно может быть неисправный конденсатор или конденсатор, который становится слабым. Если у вас неисправный конденсатор в конденсаторе или конденсаторы воздухообрабатывающего агрегата, они могут стать слабыми, и система продолжит работу. Когда неисправный конденсатор становится слишком слабым, чтобы помочь двигателю, он может не работать или будет работать, но с пониженной скоростью. Это приведет к большему нагреву и большему, чем обычно, потреблению усилителя и, в конечном итоге, отказу системы. Хорошим признаком неисправного конденсатора является выпирающий или протекающий конденсатор в вашем блоке отопления и кондиционирования воздуха.Когда специалисты по ОВК проводят плановое техническое обслуживание, часть этого обслуживания должна включать проверку конденсатора, чтобы убедиться, что он находится в пределах диапазона микрофарад или мФд. Если значение меньше 10% от номинального значения mFd, замените конденсатор. Замена конденсатора несложна, но рекомендуется соблюдать осторожность, поскольку вы имеете дело с высоким напряжением даже при отключенном питании.Специалисты по HVAC обычно заменяют провод конденсатора на провод, обязательно читая этикетки, особенно на двойных конденсаторах. Обозначения: Com — Herm — Fan, причем Com — это обычный компрессор, Herm — это герметичный компрессор и, конечно, вентилятор — двигатель вентилятора конденсатора.
Здесь вы найдете всевозможную полезную информацию на самые разные темы. Методы, руководства, ссылки на детали и т. Д.Все форматы. | Частный | 57 | 1,674 | |
Все обсуждения относящиеся к барабанным колодам. К ним относятся общие вопросы по использованию, записи, воспроизведению и обслуживанию. По темам, связанным с самой лентой, см. Подфорум Open Reel под этим. Непонятные темы обслуживания, которые не совсем подходят, можно найти на подфоруме Help and Do It Yourself.ЗАПРОСЫ НА ДЕТАЛИ, РУКОВОДСТВА И ДОКУМЕНТАЦИЮ СЮДА НЕ ПОХОДИТ. Они принадлежат разделу «Объявления». | Сегодня 02:35 | 17 571 | 203 331 | |
Все обсуждения касаются кассетных дек. К ним относятся общие вопросы по использованию, записи, воспроизведению и обслуживанию. По темам, связанным с самой лентой, см. Подфорум Cassette Tape под этим.Непонятные темы обслуживания, которые не совсем подходят, можно найти на подфоруме Help and Do It Yourself. ЗАПРОСЫ НА ДЕТАЛИ, РУКОВОДСТВА И ДОКУМЕНТАЦИЮ СЮДА НЕ ПОХОДИТ. Они принадлежат разделу «Объявления». | Сегодня 03:16 | 26,197 | 349 143 | |
Любой аналоговый формат, кроме кассетного или катушечного; 8-трековый, Elcaset, микрокассета, VHS и т. Д. | Вчера 16:49 | 1,521 | 18 249 | |
Цифровая лента остается лентой! Хотите обсудить DAT, DCC и пустые носители? Это место. | 22.02.2021 22:43 | 625 | 8,174 | |
Широкоформатная лента, твердотельные записывающие устройства и передовые методы записи. | Вчера 12:02 | 185 | 1889 | |
Расслабьтесь и установите заклинание в Музыкальной комнате. Обсудите все, что вам нравится, что касается прослушивания музыки, вашей аудиосистемы и компонентов. Сигары и коньяк по желанию. | Вчера 02:48 | 401 | 7 460 | |
Целое больше суммы частей? Подробности изложите здесь. | 19.02.2021 07:55 | 135 | 2,231 | |
Обсудите все аспекты винила, включая проигрыватели, иглы, уход и обслуживание, и, конечно же … пластинки. | Сегодня 02:56 | 2,216 | 34,209 | |
Что превращает электроны в то, что вы можете слышать? Колонки и банки, мужик! Это место, где можно поговорить о ваших отправителях. | Вчера 08:21 | 972 | 10,196 | |
Сердце каждой системы. Обсудите здесь свои усилители, ресиверы и управляющие усилители. | Вчера 11:10 | 1,688 | 16,683 | |
Бутылочки, объединяйтесь! Здесь можно поговорить о вашей трубчатой шестерне. | 02-12-2021 17:06 | 293 | 2,750 | |
Форум для обсуждения CD, SACD, Laserdiscs, DVD и Blu-Ray оборудования, оборудования и записываемых носителей. Если это серебро и вращается, оно попадает сюда. | Вчера 15:36 | 719 | 10,159 | |
MiniDisc, оборудование и записываемые носители.Давайте станем маленькими! | Вчера 14:55 | 367 | 4 945 | |
Нравится FM? Или, возможно, вы DXer, который любит слышать эти далекие голоса. Поговорим о радиоволнах здесь. | 02-10-2021 12:52 вечера | 119 | 1,535 | |
Автомобильная стереосистема? Здесь вы можете поговорить об этом. | Вчера 13:50 | 316 | 3,588 | |
Улучшения вашей системы и внешнего оборудования: эквалайзеры, микшеры, выходные дисплеи, пульты дистанционного управления и т. Д. Эй, этот эквалайзер заставляет меня выглядеть толстым? | Вчера 09:57 | 413 | 4,335 | |
От консолей до комбо, это ваш раздел.Поговорим о консолях, кассиверах, моноблоках и больших «портативных» устройствах. | 14.02.2021 11:22 | 177 | 1,510 | |
Все остальное, что не описано выше: хранение и демонстрация, мелочи и т. Д. Сюда также могут попасть предметы, которые действительно не попадают в другие категории. | Вчера 20:55 | 760 | 7,136 | |
Крупные результаты и другие истории бара.Получили то, о чем мечтали 20 лет? Найти что-нибудь со скидкой 90%? В нужном месте в нужное время? Скучаете по этой неуловимой части? Расскажите о своих сладких находках и эпических неудачах. | 21.02.2021 03:34 | 803 | 12 076 | |
Не просто пишите о своих вещах, говорите об этом с помощью картинок! Это единственный форум, где разрешены изображения большого размера. | Вчера 05:37 | 939 | 16 721 |
Тупой вопрос по конденсатору!
И это вкратце — это конденсаторы переменного тока, на самом деле это два поляризованных конденсатора, соединенных спина к спине, внутри общего корпуса.Поляризованные электролитические конденсаторы используются только для постоянного тока, например, для фильтрации постоянного тока. ЕСЛИ вы использовали конденсатор постоянного тока в приложении переменного тока, вы узнаете об этом из-за шипящего шума, дымообразования и небольшого сильного взрыва.
И еще одно примечание — конденсаторы ПУСКА двигателя и конденсаторы ПУСКА двигателя внутренне разные. Пусковые колпачки будут пропускать большой ток в течение короткого периода времени, рабочие колпачки будут постоянно принимать умеренные токи. ЕСЛИ вы поместите ограничение START в приложение RUN, ожидайте его, дым и удар, как указано выше.
Некоторые ДРУГИЕ правила:
Конденсаторы накапливают электрический заряд с помощью химического процесса. НИКОГДА не предполагайте, что к клеммам конденсатора можно прикасаться, ДАЖЕ если вы разряжали их ранее, поскольку вы узнаете, что их действие не всегда завершается, что после разряда будет накапливаться остаточный заряд, потому что электролиз все еще продолжается. происходит.Единственное, что гарантирует «безопасный» конденсатор, — это постоянное короткое замыкание клемм, ДРУГОЕ, чем когда он находится в цепи, а когда он включен в цепь, подключается «спускной резистор», чтобы поддерживать его в разряженном состоянии.
Пусковой ток двигателя, особенно через этот пусковой предел, очень велик. Давным-давно я измерил его и обнаружил, что пусковые конденсаторы My 10hp RPC работают где-то в диапазоне 40А, поэтому убедитесь, что все, что вы используете в качестве пути для пускового тока, действительно прочное. Кнопочный переключатель на 3 А, вероятно, будет сваривать контакты (см. Примечание о волшебном дыме выше), поэтому в первые несколько раз, когда вы нажимаете эту кнопку, убедитесь, что аварийный выключатель находится поблизости.Если вы предпочитаете легкий переключатель, было бы разумно использовать кнопку для приведения в действие контактора для передачи пускового тока двигателя.
Наконец, прежде чем засунуть руки во ЧТО-нибудь, набитое проводами, спросите себя, не сегодня ли ваш последний день … затем оглянитесь вокруг этого шкафа и убедитесь, что разъединитель отключен. ЗАТЕМ поищите любые ДРУГИЕ источники питания, которые могут быть подключены, а также потяните их. ЗАТЕМ поищите батареи конденсаторов, и если вы не абсолютно уверены, что не вступите в контакт с этими проводами или клеммами, используйте палку с малым резистором, чтобы шунтировать клеммы.
Если вам повезет, контакт через заряженный резистор оставит неприятный ожог на вашей коже. Обычно достаточно сдувать отвертку или палец … сразу. Если вам не повезет, гробовщику будет сложно заставить вас выглядеть красиво.
Помните — убивает не накопленная энергия или машина, а самоуспокоенность.
Типы конденсаторов: работа и их применение
В любой электронной или электрической цепи конденсатор играет ключевую роль.Таким образом, каждый день может производиться от тысяч до миллионов конденсаторов различных типов. У каждого типа конденсатора есть свои преимущества, недостатки, функции и области применения. Таким образом, очень важно знать о каждом типе конденсатора при выборе для любого приложения. Эти конденсаторы варьируются от малых до больших, включая различные характеристики в зависимости от типа, что делает их уникальными. Маленькие и слабые конденсаторы можно найти в радиосхемах, тогда как большие конденсаторы используются в сглаживающих цепях.Конструирование небольших конденсаторов может быть выполнено с использованием керамических материалов, запечатанных эпоксидной смолой, тогда как конденсаторы промышленного назначения спроектированы с металлической фольгой с использованием тонких листов майлара, иначе пропитанных парафином бумаги.
Типы конденсаторов и их применение
Конденсатор является одним из наиболее часто используемых компонентов в проектировании электронных схем. Он играет важную роль во многих встроенных приложениях. Доступен с разными рейтингами. Он состоит из двух металлических пластин , разделенных непроводящим веществом, или диэлектриком .Часто это хранилища аналоговых сигналов и цифровых данных.
Сравнение конденсаторов различных типов обычно проводится в отношении диэлектрика, используемого между пластинами. Некоторые конденсаторы выглядят как трубки, небольшие конденсаторы часто изготавливаются из керамических материалов, а затем погружаются в эпоксидную смолу для их герметизации. Итак, вот несколько наиболее распространенных типов доступных конденсаторов. Посмотрим на них.
Диэлектрический конденсатор
Как правило, эти типы конденсаторов являются переменным типом, который требует непрерывного изменения емкости для передатчиков, приемников и транзисторных радиоприемников для настройки.Различные типы диэлектриков доступны в многопластинчатом исполнении и с воздушным зазором. Эти конденсаторы имеют набор фиксированных и подвижных пластин, которые перемещаются между фиксированными пластинами.
Положение подвижной пластины по сравнению с неподвижными пластинами определяет приблизительное значение емкости. В общем, емкость максимальна, когда два набора пластин полностью соединены. Настроечный конденсатор с высокой емкостью включает в себя довольно большие промежутки, в противном случае воздушные зазоры между двумя пластинами с напряжением пробоя, достигающим тысячи вольт.
Слюдяной конденсатор
Конденсатор, в котором в качестве диэлектрического материала используется слюда, известен как слюдяной конденсатор. Эти конденсаторы доступны в двух типах: зажимные и серебряные. Зажимной тип сейчас считается устаревшим из-за его более низких характеристик, но вместо него используется серебряный тип.
Эти конденсаторы изготавливаются путем размещения листов слюды с металлическим покрытием на обеих сторонах. После этого эта конструкция покрывается эпоксидной смолой для защиты от окружающей среды.Как правило, эти конденсаторы используются, когда требуются стабильные конденсаторы с относительно небольшими номиналами.
Минералы слюды чрезвычайно постоянны химически, механически и электрически из-за ее точной кристаллической структуры, которая включает типичные слои. Таким образом, возможно изготовление тонких листов толщиной от 0,025 до 0,125 мм.
Наиболее часто используемые слюда — флогопит и мусковит. В этом мусковит обладает хорошими электрическими свойствами, а второй — стойкостью к высоким температурам.Слюда исследуется в Индии, Южной Америке и Центральной Африке. Большая разница в составе сырья приводит к высокой стоимости, необходимой для экспертизы и категоризации. Слюда не реагирует на кислоты, воду и масляные растворители.
Перейдите по этой ссылке, чтобы узнать больше о слюдяном конденсаторе
Поляризованный конденсатор
Конденсатор с определенной полярностью, такой как положительная и отрицательная, называется поляризованным конденсатором. Всякий раз, когда эти конденсаторы используются в цепях, мы должны проверять, что они соединены с идеальной полярностью.Эти конденсаторы делятся на два типа: электролитические и суперконденсаторы.
Пленочные конденсаторы
Пленочные конденсаторы— это наиболее часто готовые из множества типов конденсаторов, состоящие из, как правило, обширной группы конденсаторов, отличающихся своими диэлектрическими свойствами. Они доступны практически любого номинала и напряжения до 1500 вольт. Они бывают с любым допуском от 10% до 0,01%. Пленочные конденсаторы также бывают разных форм и стилей корпуса.
Существует два типа пленочных конденсаторов: с радиальными выводами и с осевыми выводами. Электроды пленочных конденсаторов могут быть из металлизированного алюминия или цинка, нанесенного на одну или обе стороны пластиковой пленки, в результате чего получаются металлизированные пленочные конденсаторы, называемые пленочными конденсаторами. Пленочный конденсатор показан на рисунке ниже: Пленочные конденсаторы
Пленочные конденсаторыиногда называют пластиковыми конденсаторами, потому что в качестве диэлектриков они используют полистирол, поликарбонат или тефлон. Эти сорта пленки нуждаются в гораздо более толстой диэлектрической пленке, чтобы уменьшить опасность разрывов или проколов пленки, и поэтому они больше подходят для более низких значений емкости и больших размеров корпуса.
Пленочные конденсаторы физически больше и дороже, они не поляризованы, поэтому их можно использовать в приложениях с переменным напряжением, и они имеют гораздо более стабильные электрические параметры. В зависимости от емкости и коэффициента рассеяния, они могут применяться в приложениях класса 1 со стабильной частотой, заменяя керамические конденсаторы класса 1.
Керамические конденсаторы
Керамические конденсаторы используются в высокочастотных цепях, таких как аудио для RF. Они также являются лучшим выбором для компенсации высоких частот в аудиосхемах.Эти конденсаторы также называют дисковыми конденсаторами. Керамические конденсаторы изготавливаются путем покрытия двух сторон небольшого фарфорового или керамического диска серебром, а затем складываются вместе, образуя конденсатор. В керамических конденсаторах можно добиться как низкой, так и высокой емкости, изменяя толщину используемого керамического диска. Керамический конденсатор показан на рисунке ниже:
Керамические конденсаторыИмеются номиналы от нескольких пикофарад до 1 микрофарада. Диапазон напряжения составляет от нескольких вольт до многих тысяч вольт.Керамика недорогая в производстве и бывает нескольких типов диэлектрика. Переносимость керамики невысока, но для той роли, которую она играет в жизни, они прекрасно работают.
Электролитические конденсаторы
Это наиболее часто используемые конденсаторы с большой допустимой емкостью. Электролитические конденсаторы доступны с рабочим напряжением примерно до 500 В, хотя самые высокие значения емкости недоступны при высоком напряжении, а устройства с более высокой температурой доступны, но редко.Обычно существует два типа электролитических конденсаторов: танталовые и алюминиевые.
Танталовые конденсаторы обычно лучше выставляются, имеют более высокую стоимость и готовы только к более ограниченным параметрам. Диэлектрические свойства оксида тантала намного превосходят свойства оксида алюминия, что обеспечивает более легкий ток утечки и лучшую емкость емкости, что делает их пригодными для создания препятствий, развязки и фильтрации.
Толщина пленки оксида алюминия и повышенное напряжение пробоя дают конденсаторам исключительно высокие значения емкости для их размера.В конденсаторе фольговые пластины анодированы постоянным током, таким образом устанавливая край материала пластины и подтверждая полярность его стороны.
Танталовые и алюминиевые конденсаторы показаны на рисунке ниже:
Электролитические конденсаторыЭлектролитические конденсаторы подразделяются на два типа
- Алюминиевые электролитические конденсаторы
- Танталовые электролитические конденсаторы
- Ниобиевые электролитические конденсаторы см. По этой ссылке 9702
узнать больше об электролитических конденсаторах
Суперконденсаторы
Конденсаторы, которые обладают электрохимической емкостью с высокими значениями емкости по сравнению с другими конденсаторами, известны как суперконденсаторы.Их можно классифицировать как группу, состоящую из электролитических конденсаторов, а также аккумуляторных батарей, известных как ультраконденсаторы.
Использование этих конденсаторов дает несколько преимуществ, например:
- Значение емкости этого конденсатора высокое
- Заряд может сохраняться, а также очень быстро доставляться
- Эти конденсаторы могут выдерживать дополнительный заряд с циклами разрядки.
- Применения суперконденсаторов включают следующее.
- Эти конденсаторы используются в автобусах, автомобилях, поездах, кранах и лифтах.
- Они используются для рекуперативного торможения и для резервного копирования памяти.
- Эти конденсаторы доступны в различных типах, таких как двухслойные, псевдо и гибридные.
Неполяризованный конденсатор
Конденсаторы не имеют полярности, как положительную, иначе отрицательную. Электроды неполяризованных конденсаторов можно произвольно вставлять в цепь для обратной связи, связи, развязки, колебаний и компенсации.Эти конденсаторы имеют небольшую емкость, поэтому используются в чистых цепях переменного тока, а также используются для фильтрации высоких частот. Выбор этих конденсаторов может быть сделан очень удобно с аналогичными моделями и спецификациями. Типы неполяризованных конденсаторов:
Керамические конденсаторы
Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о керамических конденсаторах
Серебряные слюдяные конденсаторы
Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о слюдяных конденсаторах
Полиэфирные конденсаторы
Полиэфирные или майларовые конденсаторы дешев, точен и имеет небольшую утечку.Эти конденсаторы работают в диапазоне от 0,001 до 50 мкФ. Эти конденсаторы применимы там, где стабильность и точность не так важны.
Конденсаторы из полистирола
Эти конденсаторы чрезвычайно точны, имеют меньшую утечку. Они используются в фильтрах, а также там, где важны точность и стабильность. Они довольно дороги и работают в диапазоне от 10 пФ до 1 мФ.
Конденсаторы из поликарбоната
Эти конденсаторы дорогие и доступны в очень хорошем качестве, с высокой точностью и очень низкой утечкой.К сожалению, они были сняты с производства, и сейчас их трудно найти. Они хорошо работают в суровых и высокотемпературных условиях в диапазоне от 100 пФ до 20 мФ.
Полипропиленовые конденсаторы
Эти конденсаторы дорогие, и диапазон их рабочих характеристик может находиться в диапазоне от 100 пФ до 50 мФ. Они очень постоянны, точны во времени и имеют очень небольшую утечку.
Тефлоновые конденсаторы
Эти конденсаторы являются наиболее стабильными, точными и почти не имеют утечки.Они считаются лучшими конденсаторами. В широком диапазоне частотных вариаций образ поведения совершенно одинаков. Они работают в диапазоне от 100 пФ до 1 мФ.
Стеклянные конденсаторы
Эти конденсаторы очень прочные, стабильные и работают в диапазоне от 10 пФ до 1000 пФ. Но это тоже очень дорогие компоненты.
Полимерный конденсатор
Полимерный конденсатор — это электролитический конденсатор (e-cap), в котором вместо геля или жидких электролитов используется твердый электролит из проводящего полимера, такого как электролит.
Высыхания электролита легко избежать с помощью твердого электролита. Такая сушка является одним из факторов, ограничивающих срок службы обычных электролитических конденсаторов. Эти конденсаторы подразделяются на различные типы, такие как полимерный танталовый e-cap, полимерный алюминиевый e-cap, гибридный полимерный Al-e-cap и полимерный ниобий.
В большинстве случаев в этих конденсаторах используется альтернатива электролитическим конденсаторам, только если не повышается максимальное номинальное напряжение.Максимальное номинальное напряжение твердотельных полимерных конденсаторов меньше по сравнению с самым высоким напряжением конденсаторов классического электролитического типа, например, до 35 вольт, хотя некоторые конденсаторы полимерного типа рассчитаны на самые высокие рабочие напряжения, такие как 100 вольт постоянного тока.
Эти конденсаторы обладают другими и лучшими качествами по сравнению с более длительным сроком службы, высокой рабочей температурой, хорошей стабильностью, более низким ESR (эквивалентным последовательным сопротивлением) и гораздо более безопасным режимом отказа.
Конденсаторы с выводами и для поверхностного монтажа
Конденсаторыдоступны, как и конденсаторы с выводами и конденсаторы для поверхностного монтажа.Доступны практически все типы конденсаторов, такие как свинцовые версии, такие как керамические, электролитические, суперконденсаторы, серебряная слюда, пластиковая пленка, стекло и т. Д. Возможности поверхностного монтажа или SMD ограничены, но они должны выдерживать температуры, которые используются в процессе пайки. .
Когда у конденсатора нет выводов, а также в результате использования метода пайки, то конденсаторы SMD подвергаются полному повышению температуры самого припоя. В результате не все варианты доступны в качестве конденсаторов SMD.
К основным типам конденсаторов для поверхностного монтажа относятся керамические, танталовые и электролитические. Все они были разработаны, чтобы выдерживать очень высокие температуры пайки.
Конденсаторы специального назначения
Конденсаторы специального назначения используются в системах питания переменного тока, таких как системы бесперебойного питания и вариатора до 660 В переменного тока. Выбор подходящих конденсаторов в основном играет важную роль в ожидаемом сроке службы конденсаторов. Следовательно, совершенно необходимо использовать конденсатор надлежащей емкости через номинальное напряжение-ток, чтобы соответствовать точному применению.Эти конденсаторы отличаются прочностью, долговечностью, ударопрочностью, точностью размеров и чрезвычайно прочностью.
Типы конденсаторов в цепях переменного тока
Когда конденсаторы используются в цепях переменного тока, тогда конденсаторы действуют иначе, чем резисторы, поскольку резисторы позволяют электронам течь через них, что прямо пропорционально падению напряжения, тогда как конденсаторы сопротивляются изменениям в пределах напряжение через подачу или потребление тока, потому что они заряжаются, иначе разряжаются до нового уровня напряжения.
Конденсаторы превращаются в заряженные до значения приложенного напряжения, которое действует как запоминающее устройство для поддержания заряда до тех пор, пока напряжение питания не будет присутствовать во всем соединении постоянного тока. В конденсатор будет подаваться зарядный ток, препятствующий любым изменениям напряжения.
Например, рассмотрим схему, в которой используется конденсатор, а также источник переменного тока. Таким образом, между напряжением и током существует разность фаз в 90 градусов, при этом ток достигает своего пика в 90 градусов до того, как напряжение достигает своего пика.
Источник питания переменного тока генерирует колебательное напряжение. Когда емкость высока, то должен течь огромный источник питания, чтобы создать определенное напряжение на пластинах, и ток будет выше.
Чем выше частота напряжения, тем короче время, доступное для регулировки напряжения, поэтому ток будет большим при увеличении частоты и емкости.Конденсаторы переменной емкости
Конденсаторы переменной емкости — это конденсаторы, емкость которых может намеренно и многократно изменяться механически.Этот тип конденсатора используется для установки резонансной частоты в LC-цепях, например, для настройки радиоустройства для согласования импеданса в антенных тюнерах. Конденсаторы переменной емкости
Применения конденсаторов
Конденсаторынаходят применение как в электротехнике, так и в электронике. Они используются в фильтрах, системах накопления энергии, пускателях двигателей и устройствах обработки сигналов.
Как узнать стоимость конденсаторов?
Конденсаторы — это важные компоненты электронной схемы, без которых схема не может быть завершена.Использование конденсаторов включает в себя сглаживание пульсаций переменного тока в источнике питания, соединение и развязку сигналов в качестве буферов и т. Д. В схемах используются различные типы конденсаторов, такие как электролитический конденсатор, дисковый конденсатор, танталовый конденсатор и т. Д. Электролитические конденсаторы имеют номинал, напечатанный на корпусе, так что его контакты можно легко идентифицировать.
Обычно большой штифт положительный. Черная полоса возле отрицательного вывода указывает на полярность. Но в дисковых конденсаторах на корпусе печатается только число, поэтому очень сложно определить его значение в PF, KPF, uF, n и т. Д.Для некоторых конденсаторов значение печатается в мкФ, а для других используется код EIA. 104. Давайте посмотрим, как идентифицировать конденсатор и рассчитать его значение.
Число на конденсаторе представляет значение емкости в пикофарадах. Например, 8 = 8PF
Если третье число равно нулю, то значение находится в P, например. 100 = 100PF
Для трехзначного числа третье число представляет количество нулей после второй цифры, например, 104 = 10 — 0000 PF
Если значение получено в PF, его легко преобразовать в KPF или мкФ
PF / 1000 = KPF или n, PF / 10, 00000 = мкФ.Для значения емкости 104 или 100000 в пФ это будет 100 кпФ или н или 0,1 мкФ.
Формула преобразования
nx 1000 = PF PF / 1000 = n PF / 1000000 = мкФ мкФ x 1000000 = PF мкФ x 1000000/1000 = nn = 1 / 1000000000F мкФ = 1/1000000 F
Буква ниже значение емкости определяет значение допуска.
473 = 473 К
Для четырехзначного числа, если цифра 4 -я равна нулю, то значение емкости выражается в пФ.
Например, 1500 = 1500PF
Если это просто десятичное число с плавающей точкой, значение емкости выражается в мкФ.
Например, 0,1 = 0,1 мкФ
Если под цифрами указан алфавит, он представляет собой десятичную дробь, а значение выражается в KPF или n
Например. 2K2 = 2,2 KPF
Если значения указаны с косой чертой, первая цифра представляет значение в UF, вторая — допуск, а третья — максимальное номинальное напряжение
Например. 0,1 / 5/800 = 0,01 мкФ / 5% / 800 Вольт.
Некоторые общие дисковые конденсаторы
Без конденсатора проектирование схемы будет неполным, поскольку он играет активную роль в функционировании схемы.Конденсатор имеет две электродные пластины внутри, разделенные диэлектрическим материалом, таким как бумага, слюда и т. Д. Что происходит, когда электроды конденсатора подключаются к источнику питания? Конденсатор заряжается до полного напряжения и сохраняет заряд. Конденсатор имеет способность накапливать ток, который измеряется в фарадах.
DISC-CAPSЕмкость конденсатора зависит от площади его электродных пластин и расстояния между ними. Дисковые конденсаторы не имеют полярности, поэтому их можно подключать любым способом.Дисковые конденсаторы в основном используются для развязки / развязки сигналов. Электролитические конденсаторы, с другой стороны, имеют полярность, поэтому, если полярность конденсатора изменится, он взорвется. Электролитические конденсаторы в основном используются в качестве фильтров, буферов и т. Д.
Каждый конденсатор имеет свою собственную емкость, которая выражается как заряд в конденсаторе, деленный на напряжение. Таким образом, Q / V. При использовании конденсатора в цепи следует учитывать некоторые важные параметры. Во-первых, его ценность.Выберите подходящее значение, низкое или высокое значение, в зависимости от схемы.
Значение напечатано на корпусе большинства конденсаторов в мкФ или в виде кода EIA. В конденсаторах с цветовой кодировкой значения представлены в виде цветных полос и с использованием диаграммы цветового кода конденсатора; конденсатор легко идентифицировать. Ниже приведена цветовая диаграмма для обозначения конденсатора с цветной кодировкой.
Видите, как и у резисторов, каждая полоса на конденсаторе имеет значение. Значение первой полосы — это первое число на цветовой диаграмме.Точно так же значение Второй полосы — это Второе число на цветовой диаграмме. Третья полоса — это множитель, как в случае резистора. Четвертая полоса — это допуск конденсатора. Пятая полоса — это корпус конденсатора, который представляет рабочее напряжение конденсатора. Красный цвет представляет 250 вольт, а желтый — 400 вольт.
Допуск и рабочее напряжение — два важных фактора, которые необходимо учитывать. Ни один из конденсаторов не имеет номинальной емкости и может отличаться.
Поэтому используйте конденсатор хорошего качества, например танталовый, в чувствительных схемах, таких как схемы генератора. Если конденсатор используется в цепях переменного тока, он должен иметь рабочее напряжение 400 вольт. Рабочее напряжение электролитического конденсатора указано на его корпусе. Подбирайте конденсатор с рабочим напряжением в три раза превышающим напряжение блока питания.
Например, если источник питания 12 вольт, используйте конденсатор на 25 или 40 вольт. Для сглаживания лучше взять конденсатор емкостью 1000 мкФ, чтобы почти полностью убрать пульсации переменного тока.В источнике питания аудиосхем лучше использовать конденсатор емкостью 2200 мкФ или 4700 мкФ, так как пульсации могут создавать шум в цепи.
Ток утечки — еще одна проблема конденсаторов. Некоторые заряды будут протекать, даже если конденсатор заряжается. Это стих из схем таймера, так как временной цикл зависит от времени заряда / разряда конденсатора. Доступны танталовые конденсаторы с низкой утечкой, которые используются в схемах таймера.
Описание функции конденсатора сброса в микроконтроллере
Сброс используется для запуска или перезапуска функций микроконтроллера AT80C51.Вывод сброса следует двум условиям для запуска микроконтроллера. Это
- Электропитание должно быть в указанном диапазоне.
- Длительность импульса сброса должна быть не менее двух машинных циклов.
Сброс должен оставаться активным, пока не будут соблюдены все два условия.
В схеме этого типа конденсатор и резистор от источника питания подключены к контакту сброса №. 9. Пока переключатель питания находится в положении ON, конденсатор начинает заряжаться.В это время конденсатор вначале действует как короткое замыкание. Когда вывод сброса установлен на ВЫСОКИЙ, микроконтроллер переходит в состояние включения, и через некоторое время зарядка прекращается.
Когда зарядка прекращается, контакт сброса идет на землю из-за резистора. Пин сброса должен быть слишком высоким, затем слишком низким, тогда программа начнется с попрошайничества. Если в этом устройстве нет конденсатора сброса или он был бы оставлен неподключенным, программа запускается из любого места микроконтроллера.
Итак, это обзор различных типов конденсаторов и их применения. Теперь у вас есть представление о концепции типов конденсаторов и их применении. Если у вас есть вопросы по этой теме или по электрическим и электронным проектам, оставьте комментарии ниже.
Фото:
Пленочные конденсаторы от en.