Ветрогенератор как сделать самому: Как сделать ветрогенератор 💨 на 220В своими руками: самодельный ветряк

Содержание

Как сделать небольшой ветрогенератор своими руками


Итак, мы собираемся сделать небольшой ветрогенератор. Его можно изготовить в домашних условиях. 90% деталей выполнены из пластиковых труб и фитинга, поэтому его с легкостью можно разбирать для транспортировки и снова собирать. Давайте начнем.

Изготовление лопастей


Как сделать небольшой ветрогенератор
Как сделать небольшой ветрогенератор
Как сделать небольшой ветрогенератор
Для этого вам понадобится пластиковая труба диаметром 8 см и длиной 25 см.
Разрежьте ее вдоль на три равные части. Каждую часть разрезаем вдоль под углом и из полученных деталей вырезаем лопасть, как на рисунке.
Для основы винта берем любую круглую пластину, диаметр которой 6 см.
Делаем в ней три равноудаленных отверстия и с помощью небольших болтов и гаек крепим лопасти к пластине.

Изготовление основы


Как сделать небольшой ветрогенератор

На основе и мачте ветрогенератора устанавливается винт, генератор, хвост и поворотный механизм. Основу сделать очень просто. Для этого понадобится несколько коротких отрезков пластиковой трубы и некоторые элементы фитинга.
4 отвода и 3 тройника соединяем, как на рисунке.

Делаем хвост


Как сделать небольшой ветрогенератор
Для нормальной работы ветрогенератора нужен хвост. Каково его назначение? Хвост нужен для автоматического поворота оси винта при изменении направления ветра.
Для его изготовления нужно вырезать пластину из оцинкованной стали, сделать прорезь в пластиковой трубе, вставить в нее пластину и закрепить все болтом.

Корпус с генератором


Как сделать небольшой ветрогенератор
Как сделать небольшой ветрогенератор
Как сделать небольшой ветрогенератор
Для изготовления корпуса с генератором понадобятся:
  • электропровод,
  • корпус пластиковой ручки ,
  • пластиковый тройник,
  • два подшипника,
  • мотор (генератор) постоянного тока на 3 В.

Как сделать небольшой ветрогенератор
Вставьте генератор в тройник.
Закрепите подшипники на общей оси.
В качестве оси можно использовать отрезок корпуса ручки.
Один подшипник должен крепиться к тройнику.

Мини ветрогенератор готов


Как сделать небольшой ветрогенератор
Поставьте ветрогенератор напротив вентилятора.
Подсоедините щупы к проводам на выходе. Да, прибор покажет, что вырабатывается электрический ток. С эффективным генератором можно зарядить 3-вольтовую батарею. Кроме этого, подобным образом можно сделать ветрогенератор побольше, которым можно будет заряжать мобильный телефон.

Смотрите видео работы ветрогенератора


Ветрогенератор 💨 своими руками — самый простой способ по созданию ветрогенератора

В этой статье мы подробно разберем, как сделать ветрогенератор своими руками. Ведь быт современного человека без электроэнергии – трудно представим. И даже небольшие перебои в подаче электричества становятся порой «парализующим моментом» для нормальной жизни в собственном доме. А такие неполадки, приходится признать, для некоторых загородных поселков или населенных пунктов в сельской местности – увы, не редкость. Значит, необходимо каким-то образом обезопасить себя от неприятностей, обзавестись резервным источником энергии. А если принять в расчет еще и постоянно растущие тарифы, то наличие собственного источника, да еще и работающего практически «забесплатно», становится заветной мечтой многих владельцев домов.

Ветрогенератор своими рукамиВетрогенератор своими руками

Одним из направлений развития «бесплатной энергетики» в наше время является использование энергии ветра. Многие, наверное, видели впечатляющие картины огромных ветряков, успешно применяемых в некоторых странах Европы – кое-где доля выработанной ветром энергии уже достигает нескольких десятков процентов от общего объема. Вот и возникает соблазн – а не попробовать ли и мне сделать ветрогенератор своими руками, чтобы раз и навсегда получить независимость от электросетей?

Вопрос резонный, но следует сразу несколько охладить пыл «мечтателя». Чтобы создать действительно качественную, производительную установку по выработке электроэнергии, требуются немалые знания в механике и электротехнике. Нужно быть весьма опытным мастером на все руки – предстоит целый ряд операций высокой сложности, требующих точного проектирования  и квалифицированного подхода в исполнении. По совокупности этих причин, как можно судить по обсуждениям на форумах, довольно много «соискателей» либо не получили ожидаемого результата, либо и вовсе отказались от задуманного проекта.

Поэтому в данной статье будет дана обзорная картина, показывающая общие проблемы и направления их решения в процессе создания ветрогенераторов. Можно будет примерно оценить масштабность работ и трезво взвесить свои возможности – стоит ли браться самому.

Что это такое – ветрогенератор? Общее устройство системы

Существует несколько способов получения электрической энергии – за счет воздействия потоком фотонов (световой, например, солнечные батареи), за счет определенных химических реакций (широко применяется в элементах питания), за счет разницы температур. Но шире всего в настоящее время используется преобразование кинетической энергии в электрическую. Это преобразование происходит в специальных устройствах, которые как раз и называются генераторами.

Принцип работы генератора преобразователя кинетической энергии в электрическую, раскрыт и описан еще в XIX веке Фарадеем.

Принцип устройства простейшего электрического генератора.Принцип устройства простейшего электрического генератора

Он заключается в том, что если проводящую рамку разместить в изменяющемся магнитном поле, то в ней будет индуцироваться электродвижущая сила, которая при замыкании цепи приведет к появлению электрического тока. А изменение магнитного потока можно добиться вращением этой рамки в магнитном поле, или создаваемом постоянными магнитами, или появляющегося в обмотках возбуждения. При изменении положения рамки меняется величина пересекающего ее магнитного потока. И чем выше скорость изменения, тем больше показатели и наводимой ЭДС. Таким образом, чем больше оборотов передается ротору (вращающейся части генератора), те большего напряжения можно добиться на выходе.

Схема, безусловно, показана с большими упрощениями, просто для уяснения принципа.

Передача вращения на ротор генератора может осуществляться по-разному. И один из путей найти бесплатный источник энергии, который приведет в движение кинематическую часть устройства – это «поймать» силу ветра. То есть примерно так же, как это удалось сделать когда-то создателям ветряных мельниц.

Таким образом, устройство ветрового генератора подразумевает наличие генерирующего устройства и механизма передачи его статору вращательного движения, то есть ветряка. Кроме того, обязательным условием становится конструкция, обеспечивающая надежную установку системы, так как ее часто приходится размещать на немалой высоте, чтобы полноценной «ловле ветра» не мешали естественные или искусственные препятствия. В ряде случаев используется еще и кинематическая передача, предназначенная для повышения количества оборотов ротора.

Один из примеров повышающей передачи вращения от ветряка на генератор.Один из примеров повышающей передачи вращения от ветряка на генератор

Но и это – еще не все. Наличие и скорость ветра – величины чаще всего крайне непостоянные. И ставить потребление выработанной энергии в зависимость от «капризов погоды» — дело неразумное. Поэтому ветрогенератор обычно работает в связке с системой аккумуляции энергии.

Примерная схема организации питания приборов потребления от электроэнергии, выработанной ветрогенераторомПримерная схема организации питания приборов потребления от электроэнергии, выработанной ветрогенератором

Выработанный ток выпрямляется, стабилизируется и через специальное устройство-контроллер или поступает непосредственно на дальнейшее потребление, или перенаправляется на зарядку включённых в схему мощных аккумуляторов. С аккумуляторов через инвертор, преобразующий постоянный ток в переменный нужного напряжения и частоты, питание поступает к точкам потребления. Аккумуляторы становятся своеобразным буферным звеном: если текущая нагрузка меньше текущей (очень зависимой от силы ветра) мощности генератора, или если на протяжении какого-то времени и вовсе не подключены приборы потребления, то идет зарядка батарей. Если нагрузка становится выше вырабатываемой мощности –  батареи разряжаются.

Интересный момент – именно эта особенность ветровой энергетической установки позволяет планировать мощность самого генератора, не исходя из пиковых показателей нагрузки (за это будет отвечать в большей мере инвертор), а отталкиваясь из прогнозируемого потребления энергии в течение определенного периода (например, месяца).

Безусловно, в быту могут использоваться и более простые схемы. Например, ветровая установка просто обслуживает какое-то низковольтное осветительное оборудование и т.п.

Плюсы и минусы ветровых электростанций

Для примера посмотрим вначале на простейшую конструкцию ветрогенератора, которую сможет собрать даже школьник средних классов. Практическое применение такой «электростанции» – не особо широкое, но просто чтобы расширить свое понимание и обрести некоторые навыки – почему бы и нет?

Узнайте, как сделать солнечный воздушный коллектор своими руками, а также ознакомьтесь с подробным руководством, в специальной статье на нашем портале.

Миниатюрный ветрогенератор из старых компьютерных комплектующих

Понятно, что надеяться на сколь-нибудь значимое подспорье в плане экономии электроэнергии с такой «мини-электростанцией» — по меньшей мере наивно. Но задача иногда ставится иначе – создать источник питания для походных условий, например, для подключения небольшого фонаря  подсветки в палатке, для обеспечения работы радиоприемника, для возможности подзарядить гаджеты.

Встречается немало предложений использовать для подобных целей генератор, изготовленный из компьютерного кулера или электромотора от отслужившего свое принтера. Давайте посмотрим, что из этого может получиться.

ИллюстрацияКраткое описание выполняемой операции
Для начала – попытка сделать что-либо серьезное их обычного корпусного кулера.
Питается такой вентилятор постоянным током, 12 вольт.
В качестве привода используется бесщёточный двигатель, с обмоткой на статоре…
…и расположенными кольцом постоянными магнитами на роторе.
Некоторым может показаться, что достаточно совершить обратные действия, то есть подать вращающий момент на крыльчатку – и спокойно снять генерированное напряжение с контактов на входе (который превратиться в выход). Однако, это не совсем так.
Простенький опыт показывает, что если раскрутить крыльчатку и подсоединить какой-нибудь маломощный светодиод к контактам разъема кулера, то, да, можно будет наблюдать не особо яркое его свечение.
Но это, увы, предел возможностей такого «генератора».
Причина – в нерациональной для генерации тока схеме расположения обмоток статора. Наводимые в них ЭДС в значительной мере «гасят» друг друга, и суммарные показатели напряжения получаются очень «скромными».
Можно попробовать перемотать катушки статора – хотя бы в целях эксперимента.
Для этого кулер придется разобрать.
Вначале аккуратно поддевается ножом и снимается круглая наклейка, закрывающая все «внутренности» этой сборки.
Вот что открылось под ней.
Снимается центральная заглушка, под которой расположен подшипник крыльчатки-ротора с фиксатором.
Производится разборка этого узла – снимается стопорная шайба, а затем аккуратно извлекаются шайбы подшипника скольжения.
После этого крыльчатка-ротор свободно вынимается из корпуса-статора.
Вот так выглядят обмотки статора, которые придется заменить.
С платы аккуратно выпаиваются провода питания кулера.
Чтобы снять старую обмотку, проще всего будет просто перерезать витки ножом…
…а затем постепенно аккуратно удалить обрезки проволоки.
В итоге должен получиться вот такой голый якорь статора.
Как видно, на нем четыре сердечника, расположенных крестом. На них и будет наматываться новая обмотка.
Работа несложная, но может показаться утомительной.
Все четыре обмотки должны быть выполнены из одного провода, без разрывов. То есть их расположение будет последовательным.
Число витков – чем больше, тем лучше. Соответственно, чем тоньше будет провод для намотки – тем больше получится витков.
Естественно, количество витков на каждом из сердечников должно быть одинаковым – так что при выполнении операции намотки придется внимательно их считать.
А вот направление обмотки будет меняться. На первом сердечнике витки ложатся по направлению часовой стрелки.
Следующий сердечник: направление намотки витков – против часовой стрелки.
На третьем сердечнике – вновь по часовой стрелке.
И последний сердечник – витки против часовой стрелки.
Статор после намотки.
С двух концов этой обмотки будет сниматься сгенерированное напряжение – все по схеме простейшего генератора переменного тока.
Плата, которая стояла в статоре кулера (с электролитическими конденсаторами) в данном случае не нужна – ее можно просто удалить.
Статор заводится в свое гнездо – для его точной посадки там имеются шлицы.
Концы проводов через окошко в корпусе выводятся вниз.
К ним можно после зачистки и облуживания сразу припаять провода, которые пойдут на выпрямитель.
Затем на место устанавливается крыльчатка-ротор.
Производится сборка подшипника и фиксация стопорной шайбой – в противоположном проведенной разборке порядке
Получившийся генератор будет выдавать переменное напряжение. То есть необходимо установить выпрямитель – диодный мост.
Можно использовать готовую сборку, либо спаять самостоятельно из четырех диодов.
Для сглаживания пульсации рекомендуется дополнить схему электролитическим конденсатором, естественно, с соблюдением полярности контактов.
На иллюстрации показана очень упрощенная сборка схемы, так как вся работа проводится, по сути, лишь в экспериментальных целях.
В качестве нагрузки к выпрямителю подключено четыре параллельно соединенных светодиода.
Теперь – практическая проверка возможностей получившегося ветрогенератора. Крыльчатке рукой придается максимально возможное вращение.
Да, светодиодная сборка отреагировала свечением, но назвать это успехом – вряд ли можно. Свечение неустойчивое, довольно тусклое.
А замер напряжения показывает, что на максимальных оборотах оно едва достигает 2.3 вольт. Про силу тока и говорить не приходится.
Возможные причины – слишком большой просвет между якорем статора и постоянным магнитом ротора. Для режима электропривода – достаточно, а вот для генератора – явно нет. Кроме того, и магнитные качества ротора – весьма слабенькие. И плюс ко всему – часть выработанной энергии неизбежно теряется в выпрямителе.
Имеет ли смысл проводить в данном случае какую-либо доработку такого генератора? – наверное, нет. Вряд ли из подобной схемы можно будет «выжать» что-нибудь серьезное.
Теперь – попытка использовать в качестве генерирующего устройства электропривод от разобранного принтера.
Электродвигатель здесь коллекторный, со щетками, и это позволяет снимать постоянное напряжение, не прибегая к применению диодного моста. То есть потери однозначно будут меньше.
Кроме того, никаких переработок (перемоток, перепаек контактов) при этом не требуется.
Соединение вала электромотора (генератора) с крыльчаткой (опять же, взятой от обычного кулера), произведено с помощью муфты-переходника, на которой расположены две пары симметрично расположенных фиксирующих винтов.
Одной парой винтов поджимается ось крыльчатки, второй – вал электромотора.
Сам электродвигатель после припаивания проводов размещается в штатном цилиндрическом кожухе.
При желании несложно придумать для такого ветрогенератора дополнительный корпус со стойкой (кронштейном) для закрепления, например, к оконной раме на балконе, или с подставкой, для временной установки, скажем, «на природе».
Кроме того, как видно на иллюстрации, мастер придумал для своей модели еще и обтекаемый аэродинамический колпак.
Что показали испытания этой модели?
Если скорость ветра менее 4÷5 метров в секунду, то просто рабочей площади крыльчатки становится недостаточно, чтобы придать генератору сколь-нибудь значимую для выработки электроэнергии угловую скорость.
При скорости в 5 м/с и выше ветрогенератор «оживает». Например, обеспечивает достаточно яркое свечение светодиодного фонаря.
Вполне может он служить при таких условиях и источником питания для обычного небольшого радиоприемника.
Уже положительный результат!
А вот эксперимент с зарядкой мобильного телефона, увы, окончился неудачно.
Да, на дисплее мобильника появляются признаки подключения зарядного устройства. Но этим все и ограничивается – самой зарядки не происходит.
Объясняется просто – при вполне приемлемом напряжении на выходе сила тока в цепи зарядки, как показали замеры, не превышает 50 мА.
То есть такой силы просто недостаточно, чтобы «впихнуть» заряд в аккумулятор. Для этого требуется хотя бы 0,5 А, то есть вдесятеро больше.

Но все же найти применение такому мини-ветрогенератору можно – в качестве источника питания дежурного освещения, светового маячка во дворе (в саду) или, опять же, радиоприёмника при выездах на природу.

Ну и плюс опыт выполнения подобных электромонтажных работ – он для многих начинающих вообще бесценен.

Но это, конечно, «игрушки» и пора перейти к более серьезным задачам.

Какие могут быть препятствия к установке личного ветрогенератора?

Прежде чем приступать к реализации такого довольно масштабного проекта, хозяину было бы логичным поинтересоваться, не будет ли к этому препятствий, так сказать, административного плана. Что об этом говорит законодательство?

  • А говорит оно то, что если выходная мощность планируемого к установке ветрогенератора не превышает 1 кВт, то это вообще рассматривается, как одна из разновидностей бытовых приборов. То есть никак не попадает ни под какую регламентацию.

А что такое мощность в 1 кВт? Не слишком много, но вполне достаточно, например, для дачного или даже небольшого жилого дома. Если не применять отопительные электрические приборы, электроплиту, бойлер и иную мощную технику, то совокупно на все освещение, питание телевизора, ноутбука, на зарядку гаджетов – с лихвой будет хватать. И даже некоторый домашний электроинструмент, при разумном подходе к одновременному подключению устройств, можно будет использовать.  А с мощной аккумулирующей установкой откроются и более широкие возможности – за счет накопления энергии в периоды, когда потребление отсутствует или минимально.

Мощности ветрогенератора в 1 кВт, при которой он вообще с точки зрения закона рассматривается как бытовой прибор, порой бывает вполне достаточно для полного обеспечения небольшого загородного домика.Мощности ветрогенератора в 1 кВт, при которой он вообще с точки зрения закона рассматривается как бытовой прибор, порой бывает вполне достаточно для полного обеспечения небольшого загородного домика
  • Не стоит переживать и хозяевам участков, собравшимся устанавливать более мощную систему. Порог, определяющий необходимость сертификации энергетических установок – 75 кВт. То есть никакие чиновники местной власти не имеют права своим решением потребовать прохождения каких-то разрешительных процедур.

Правда, перед началом реализации проекта стоит все же поинтересоваться особенностями регионального законодательства – нет ли там какой-то лазейки для «чиновничьего беспредела».

  • Не облагаются такие электростанции и никакими налогами. Ветер пока что еще остается «бесплатным ресурсом», и если генератор используется исключительно для личного потребления энергии, то претензий к владельцам возникать не должно.
  • Иное дело – конструкционные особенности ветряка. Иногда могут быть установлены ограничения на высоту мачты – этим стоит поинтересоваться заранее. Например, вблизи линий электропередач, вышек связи, аэродромов и т.п. Возможны и иные ограничения на высоту индивидуальных построек и сооружений. Иногда претензии приходят и со стороны экологических служб – дескать, самостоятельно установленные мачты могут стать помехой свободному перелету птиц. Маловероятно – но все же…
  • Установленный и работающий ветрогенератор не должен стать причиной конфликта с соседями по участку. А вот здесь разнообразие претензий, в том числе и надуманных, бывает очень широким.

— Так, соседям может внушать опасение установленная мачта – что она в случае падения рухнет на забор и их участок. Вполне закономерная претензия.

— Далеко не все ветрогенераторы работают тихо. Наоборот – от некоторых исходит весьма внушительный низкочастотный шум и вибрация. И если хозяева, бывает, с этим готовы мириться, то соседям такой раздражающий фактор – совсем ни к чему. Значит, придется или договариваться, или принимать какие-то меры для недопущения сильного шума, или отказываться от ветряка.

Мощные промышленные ветровые турбины вообще по нормативам не должны располагаться ближе 300 метров от жилых домов. И даже на таком расстоянии шум и вибрации могут ощущаться.Мощные промышленные ветровые турбины вообще по нормативам не должны располагаться ближе 300 метров от жилых домов. И даже на таком расстоянии шум и вибрации могут ощущаться.

Если вы уверены в своей правоте в этом вопросе, то уровень шума желательно измерить с помощью специального прибора — пригласить для этого специалиста и зафиксировать показатели документально. Появится весомый аргумент при решении возможных конфликтов.

— Не исключены претензии (возможно, что и «высосанные из пальца»), что после запуска такой мини-электростанции у соседей ухудшился прием телевизионного или радиосигнала, снизилось качество мобильной телефонной связи.

— Возможны и иные претензии, степень серьезности которых во многом зависит от уровня «мирного сосуществования» с соседями.

Узнайте, какие автономные электростанции для загородного дома возможно выбрать, в специальной статье на нашем портале.

Как быть? Выход видится один – договариваться заранее, а со своей стороны – постараться смонтировать систему так, чтобы она действительно причиняла минимум беспокойства (для себя же лучше). Если договоренность достигнута, и претензий к работающему вертогенератору у соседей нет, то это будет разумным закрепить каким-то произвольным, но письменным соглашением. Ощущения – дело субъективное, и то что сегодня кажется приемлемым, однажды, в период плохого настроения соседей, может «сменить полярность». И даже если вы будете уверены в том, что предъявляемые претензии надуманные – доказать обратное будет практически невозможно или чрезвычайно сложно.

  • Кстати, еще раз вспомним о вибрации. Ветряки с мощностью более 1,5÷2 кВт ни в коем случае не рекомендуется устанавливать на крыше дома. Вибрационное воздействие вполне способно сделать свое «черное дело», постепенно расшатывая стропильную систему с кровлей или даже другие конструктивные элементы здания.
  • При выборе места установки ветряка следует не упускать из виду и вопросы личной безопасности. Вращение лопастей даже при умеренном ветре происходит с очень высокой линейной скоростью. Случайно отколовшийся осколок или элемент крепежа может развить скорость более 100 км/час, то есть представлять весьма серьезную опасность для человека.

Насколько выгодной (или наоборот) может оказаться реализация проекта?

Как уже становится потихоньку понятно, проблем с установкой ветровой электростанции – больше, чем хотелось бы. И при этом еще необходимо трезво оценивать реальные условия. Прежде всего – средний уровень ветров, характерных для данной местности. Иногда просто не имеет смысла связываться.

Карта-схема среднегодовой скорости ветра на территории России

На карте-схеме выше показаны примерные значения среднегодовой скорости ветра по регионам России. Понятно, что эти данные – ну очень ориентировочные. Но их всегда можно уточнить в местной метеорологической службе. Или, наверняка, их знают и в строительных компаниях города (района).

Плюс к этому (точнее сказать – минус) – свободному движению ветра могут мешать естественные (складки рельефа, высокие деревья и т.п.) или искусственные (высокая застройка) препятствия. В таких условиях приходится увеличивать высоту мачты, чтобы «поймать» ветер над препятствием, но это превращается в очень сложную, дорогостоящую и небезопасную технологическую проблему.

Наверное, будет интересно заранее посмотреть, на что можно рассчитывать. То есть какой ожидаемый приток бесплатной энергии возможен в зависимости от мощности генератора и среднегодовой скорости ветра.

Смотрим в таблицу.

(Значения паспортной мощности указаны для скорости ветра в 12 м/с – именно такой показатель очень часто встречается в технических характеристиках установок, предлагаемых в продаже – от него идёт расчет номинальных значений).

Ожидаемое количество выработанной электроэнергии (кВт в месяц) в зависимости от номинальной мощности ветрогенератора и среднегодовой скорости ветра в месте его установки.

Номинальная мощность ветрогенератора, кВт, рассчитанная для скорости ветра 12 м/сСреднегодовая скорость ветра в месте установки ветрогенератора, м/с
2,02,53,04,05,06,0
0,31.534.51236108
1,04.89.614.438.4115345
2,09.619.228.876.8230690
3,014.428.843.21153451035
5,02448721925751725

И видим, что ожидать каких-то чудес – не приходится.

Например, довольно мощный, недешевый и сложный в установке ветрогенератор паспортной номинальной мощностью в 3 кВт, размещенный на местности, где среднегодовая скорость ветра не превышает 3 м/с, выработает в течение месяца всего 43,2 кВт электроэнергии. И это еще – в лучшем случае, и без учета неизбежных потерь при передаче и преобразовании электрического тока.

Вот и считайте, какова предполагается экономия, выраженная в рублях (с привязкой к местным тарифам), и за какое количество лет ветровая энергетическая установка в таких условиях себя окупит…

Такая таблица хороша в том случае, если известна номинальная мощность приобретаемой готовой модели. А как спрогнозировать мощность, если ветрогенератор планируется изготавливать самостоятельно?

Подсчитать мощность ветрового потока можно по следующей формуле:

W = 0.5 × ρ × Sr ×

Символами в формуле обозначены:

W — мощность ветрового потока, проходящего через определенную площадь.

ρ — плотность воздуха (можно принять усредненное значение 1,25 кг/м³).

Sr — площадь, с которой «снимается» энергия ветра. В приложении к горизонтальным ветрогенераторам – это площадь ротора, то есть круга, ограниченного длиной лопастей.

V -— расчетная скорость ветра.

Понятно, что далеко не вся энергия, переносимая ветром, будет преобразована в электрическую. Часть воздушного потока расходуется на образование завихрений, на обтекание конструкции. Кроме того, неизбежны потери общего плана, свойственные для любых механизмов – преодоление силы трения, нагрев и т.п. В итоге обычно можно всерьез говорить о полезном использовании всего порядка 30÷40% от потенциала ветрового потока.

Поэтому формулу лучше представить вот в таком виде:

Wg = 0.5 × ρ × ξ × Sr × V³ × ηg × ηr

Разбираемся с добавившимися в формулу величинами:

ξ — это коэффициент использования ветровой энергии. С некоторой долей условности его можно назвать и коэффициентом полезного действия ветрогенератора. В реальных условиях эксплуатации даже для быстроходных установок с лопастями аэродинамического профиля, при номинальных показателях скорости ветра значение коэффициента обычно лежит в пределах 0,35÷0,45. Для расчетов прогнозируемой мощности энергоустановки можно взять усредненное значение — 0,4. Только в некоторых высокотехнологичных ветрогенераторах с практически идеальными аэродинамическими формами лопастей удается достичь значения этого коэффициента в 0,5 или даже несколько выше.

ηg — коэффициент полезного действия самого генератора. Обычно не поднимается выше 0,85.

ηr — коэффициент полезного действия редуктора (если он используется в схеме). Тоже обычно ограничивается показателем 0,9. Если вращение передается на генератор напрямую, без механического преобразования, то эту величину можно оставить равной 1,0.

Вот с этой формулой уже можно подсчитать более приближенные к реалиям показатели мощности планируемого к установке ветрогенератора.

Чтобы облегчить читателю задачу, составлен специальный онлайн-калькулятор, который выполнит расчеты буквально за секунды.

Калькулятор расчета прогнозируемой мощности ветрового генератора

Перейти к расчётам

Обычно расчеты проводят для двух скоростей ветра.

  • При указании среднегодовой скорости можно представить, на какое количество выработанной энергии можно рассчитывать в определенный период времени – обычно это исчисляется месяцами или даже полным годом.
  • Номинальная же мощность установки обычно вычисляется по так называемой расчётной скорости ветра, которая, впрочем, не должна превышать среднегодовую более, чем в 1.5 ÷ 2.0 раза.

Итак, прежде чем приступать к реализации задуманной установки ветрогенератора, стоит все же просчитать, на что можно рассчитывать при его дальнейшей эксплуатации. В большинстве случаев говорить о реальном режиме экономии материальных средств – неблагоразумно. Затраты на приобретение системы (или комплектующих для ее создания) и ее установку ожидаются немалые, а отдача, как видно по расчетам – не особо впечатляющая.

Иными словами, такой проект можно назвать, скорее, инвестицией в будущее, но никак не ожидать от запуска энергетической установки сиюминутной отдачи. Правильнее, наверное, ее будет рассматривать в качестве вспомогательного источника энергии или резервного, на случаи перебоев в линиях электропередач, если этим грешат местные электросети.

Цены на солнечные модули DELTA

Солнечный модуль DELTA

Иное дело, если по каким-либо причинам подведение ЛЭП к объекту (дому) становится или невозможным, или чрезвычайно затратным. Тогда, действительно, приходится рассчитывать только на автономные источники электроэнергии. В таких ситуациях видится оптимальным сочетание ветрового генератора и дизельной (бензиновой) энергетической установки. При хороших показателях скорости ветра энергообеспечение ложится на ветрогенератор, в периоды штиля или очень слабого ветра придётся переходить на жидкотопливный агрегат.

Примерная блок-схема автономной системы энергоснабжения дома с использованием нескольких источников выработки энергии

Кстати, еще одним помощником в общей схеме энергообеспечения дома могут стать и солнечные батареи – этот источник при создании полностью автономной системы тоже никак нельзя сбрасывать со счетов.

Основные узлы и агрегаты самостоятельно создаваемого ветрогенератора

Еще раз повторимся – целью статьи не является публикация точных чертежей и инструкций по самостоятельной сборке ветрового генератора. По мнению автора – это и вовсе сделать невозможно, по крайней мере в полном отрыве от информации о конкретных условиях установки такой системы. А тот массив публикаций в интернете, который преподносится в качестве руководств к созданию ВУЭ своими руками – по большей части таковым не является.

Без расчетов, без детально продуманного проекта, без багажа определённых знаний и умений приступать к такому делу и вовсе не стоит. А проектирование действительно работающей и приносящей ощутимый эффект системы – все же задача для специалистов.

Но народный энтузиазм – неистребим, и многие домашние мастера на свой страх и риск все же стремятся создать такие источники автономного питания. И если желание попробовать собственные силы преобладает, то можно подсмотреть, как это уже пытались сделать другие.

Итак, конструктивно всю систему можно разделить на несколько основных узлов и агрегатов:

  • Ветряк с устройством стабилизации положения и с передачей вращательного момента на вал генератора.
  • Конструкция, обеспечивающая установку ветряка с генератором на требуемой высоте.
  • Собственно, само генерирующее устройство, в котором происходит преобразование вращательного движения в электрическую энергию.
  • Электрическая схема, обеспечивающая контроль и дальнейшее использование выработанной энергии.

Электрическую часть «оставим в покое» — здесь вообще отдельный вопрос, требующий очень пристального профессионального рассмотрения. А с остальными попробуем внести некоторую ясность.

Конструкция ветряка

Ветряк – самая заметная часть общей конструкции. Именно ему «поручается» преобразовать поступательно перемещение воздуха (ветра) во вращательное движение ротора генератора. И, как мы видели из расчетов, размеры ветряка напрямую влияют на мощностные показатели энергоустановки — чем больше площадь охватывания ветром, тем больших результатов можно ожидать.

По расположению оси вращения ветряки могут быть горизонтальными и вертикальными.

Ветряки с горизонтальной осью вращения

Ветряки горизонтального исполнения отличаются большим количеством оборотов и более высокими показателями мощности. Опять же, в силу немалой площади, с которой снимается кинетическая энергия ветра.

Ветряк с горизонтальным расположением оси вращения. Такие модели обычно отличаются более высокими показателями скорости и преобразуемой энергии.Ветряк с горизонтальным расположением оси вращения. Такие модели обычно отличаются более высокими показателями скорости и преобразуемой энергии.

Лопасти ветряка могут быть жесткими или парусного типа. Но парусные, хотя они зачастую бывают и легче, и проще в изготовлении, не показывают нужных для эффективного ветрогенератора значений скорости вращения. Обычно их применяют в тех механизмах, где важно само стабильное вращение, так сказать, «ради вращения». Классическим примером могут служить ветряные мельницы или помпы.

Ветряк с лопастями парусного типа – высоких скоростей и показателей мощности от такого ожидать не приходится.Ветряк с лопастями парусного типа – высоких скоростей и показателей мощности от такого ожидать не приходится

Кроме того, парусные лопасти не столь долговечны и требуют довольно частного ремонта – перетяжки.

А для выработки электроэнергии оптимальным вариантом все же считаются жесткие лопасти с аэродинамическим профилем. При нормальном ветре за счет сочетания приложения нескольких сил они способны создавать скорость вращения в 1000 и даже более оборотов в минуту.

Кстати, гнаться за количеством лопастей – совершенно бессмысленное занятие. Оптимальную производительность как раз показывают ветряки с  двумя или тремя лопастями. Если посмотреть на многочисленные иллюстрации в интернете, то видно, что преимущественно ветрогенераторы заводского изготовления – трехлопастные.

Среди великого многообразия моделей горизонтальных ветряков преобладают все же трехлопастные.Среди великого многообразия моделей горизонтальных ветряков преобладают все же трехлопастные

Можно, безусловно, встретит и другое количество лопастей – есть модели и вообще с одной. Но именно трехлопастные считаются той «золотой серединой», которая обеспечивает и эффективность работы, и высокие скорости, и простоту в балансировке.

Такое тоже встречается, но уже значительно реже.Такое тоже встречается, но уже значительно реже

А вот возрастание числа лопастей (парадоксально, но факт) только ухудшает показатели ветровой установки. Возникающие завихрения и зоны разряжения воздуха приводят к лишнему торможению вращения. Так что определяющими становятся не количество, а длина лопастей и скорость их вращения.

Несмотря на то что конфигурация лопастей – довольно сложная штука, их успешно мастерят и самостоятельно, например, раскраивая жесткие пластиковые трубы среднего диаметра. Например, канализационная труба, распущенная вдоль на четыре одинаковых сектора, послужит заготовкой для изготовления трех лопастей. (Один сектор останется в запасе – можно из него сделать лекало, чтобы в любой момент по имеющемуся образцу вырезать новую лопасть для замены вышедшей из строя).

Если в качестве исходного материала решено использовать пластиковую трубу, то лучше взять оранжевую – она и прочнее, и долговечнее.Если в качестве исходного материала решено использовать пластиковую трубу, то лучше взять оранжевую – она и прочнее, и долговечнее

Стоят трубы недорого, так что с формами лопастей вполне можно поэкспериментировать. Обычно вначале вырезается и обрабатывается одна лопасть. А в дальнейшем – она уже служит шаблоном для изготовления остальных.

Опытные мастера, уже опробовавшие эту схему, рекомендуют придерживаться определённого соотношения длины лопасти и диаметра предназначенной для ее изготовления трубы – 5:1. То есть, например, для метровой лопасти лучше применить трубу диаметром 200 мм.

Цены на ПВХ трубы

ПВХ труба 200 мм

В интернете можно отыскать уже готовые рекомендуемые лекала для изготовления лопастей из трубы. В таких схемах просчитаны и проставлены оптимальные размеры, и остается только перенести их на заготовки.

Для примера – парочка таких лекал для трехлопастного ветряка разного диаметра:

Чертеж 1 – лопасть из трубы 200 мм для ветряка диаметром 1700 мм

Лекало для лопасти длиной 850 ммЛекало для лопасти длиной 850 мм

Чертёж 2 – лопасть из трубы 250 мм для ветряка диаметром 2300 мм

Лекало для лопасти длиной 1150 ммЛекало для лопасти длиной 1150 мм

Естественно, изготовленные лопасти следует тщательно обработать, придав им обтекаемую форму. В ход последовательно идут напильники, надфили, мелкозернистая наждачная бумага.

Если оставить лопасти вот в таком, необработанном виде, то ничего хорошего от работы ветряка ждать не приходится – сопротивление из-за создаваемых завихрений будет слишком большим, что скажется и на эффективности, и на шумности работы энергетической установки.Если оставить лопасти вот в таком, необработанном виде, то ничего хорошего от работы ветряка ждать не приходится – сопротивление из-за создаваемых завихрений будет слишком большим, что скажется и на эффективности, и на шумности работы энергетической установки.

Имеет значение и профиль обрабатываемой кромки. По той стороне, которая будет «разрезать» воздух, кромка шлифуется до обтекаемой округлой формы. С противоположной стороны делается заострение на внешнюю сторону – для облегчения схода с плоскости лопасти воздушного потока.

Профили обработки кромок лопасти

Существует и немало других, правда – более сложных в исполнении, но и более надежных вариантов изготовлении лопастей. Так, хорошими показателями традиционно обладают алюминиевые «крылья», которым может придаваться или такая же, как у трубчатых, изогнутая форма в сечении, или даже коробчатая.

Можно отыскать интересный материал по изготовлению объемных лопастей из стеклоткани с последующей пропиткой эпоксидной смолой. Для этого сначала изготавливается матрица – деревянный шаблон, выполненный точно по форме будущей лопасти.

Затем по этой матрице изготавливаются две стеклотканевые детали одной лопасти, которые впоследствии склеиваются в одну полую, очень легкую и, вместе с тем, прочную деталь. Но это уже, если честно, «высший пилотаж» мастерства, доступный только для опытных мастеров.

Стеклотканевые заготовки – из таких половинок будет склеиваться цельная полая лопасть ветряка

Лопасти после тщательно проведенной разметки крепятся к ступице винта – обычно для этого используют резьбовое соединения. А ступица уже будет непосредственно соединяться с валом генератора, или через систему передачи с повышением числа оборотов.

Один из вариантов крепления лопастей в ступице ветрякаМноголопастный винт неспособен давать большое количество оборотов, но зато чутко реагирует на небольшой ветер. Повысить угловую скорость вала генератора можно и вот таким нехитрым способом. Ступица ветряка, кстати, изготовлена из обычного велосипедного колеса, которое стало одновременно шкивом для ременной передачи.Многолопастный винт неспособен давать большое количество оборотов, но зато чутко реагирует на небольшой ветер. Повысить угловую скорость вала генератора можно и вот таким нехитрым способом. Ступица ветряка, кстати, изготовлена из обычного велосипедного колеса, которое стало одновременно шкивом для ременной передачи.Вариант зубчатой повышающей передачи вращения на вал генератора. Как видно, в ход пошли запчасти от старого шуруповерта. Хорошо видна хвостовая часть флюгерной станины с вертикальным килем.Вариант зубчатой повышающей передачи вращения на вал генератора. Как видно, в ход пошли запчасти от старого шуруповерта. Хорошо видна хвостовая часть флюгерной станины с вертикальным килем.
  • Важным элементом конструкции ветряка всегда является вся флюгерная часть — поворотная станина, на которой, собственно, и размещаешься сам винт, передача и генерирующее устройство. Естественно, и материал изготовления, и сама сборка должны выдерживать немалые нагрузки, в том числе – и динамические, и вибрационного плана.

В задней части предусматривается хвостовик, который оснащается вертикальной пластиной – килем. Это позволяет правильно позиционировать винт ветряка относительно направления ветра – перпендикулярно ему. Естественно, хвостовик еще и играет роль противовеса – для балансировки всей флюгерной части ветрогенератора относительно оси мачты.

Кстати, в «продуманных» моделях ветрогенератора предусматривается система изменения угла атаки ветра – это позволяет сохранить целостность конструкции при резких порывах или аномально сильном ветре. Один из вариантов показан на схеме ниже.

Механизм изменения положения плоскости вращения ветряка относительно направления ветра (вид сверху).Механизм изменения положения плоскости вращения ветряка относительно направления ветра (вид сверху)

Сам ветряк (поз. 1) соединён с хвостовиком, оснащенным килем (поз. 2), не жестко, а через шарнир. Кроме того, в конструкцию добавлен еще один элемент – боковая лопатка (поз. 4), которая в точке шарнира жестко соединена с ветряком и расположена перпендикулярно ему. Исходное, нормальное положение роторной части обеспечивается усилием пружины (поз. 5).

Если скорость ветра – в пределах нормы, то ветряк и хвостовик с килем, как им и положено, расположены соосно. И плоскость вращения винта – перпендикулярна направлению ветра.

При усилении ветра лопатка, за счет своей парусности, начинает, растягивая пружину, отклоняться назад, и тем самым ветер попадает на винт уже не перпендикулярно, а под определенным углом. Снижается площадь «контакта», соответственно – и мощность генератора. То есть происходит своеобразное предохранение и конструкции всего ветряка в целом, и генерирующего устройства – от перегрузки и перегорания. При очень больших скоростях лопатка и вовсе выведет ветряк из работы – плоскость вращения встанет параллельно направлению ветра.

Ветряки с вертикальной осью вращения

Такую схему тоже применяют достаточно часто, так как она обладает рядом преимуществ. Ветряки такой компоновки (их обычно называют роторными) очень чувствительны даже к небольшим скоростям ветра. Достоинством является и то, что их работа сопряжена с гораздо меньшим уровнем шума и вибрации, поэтому их зачатую без особой опаски монтируют на крышах, что для осевых ветряков, как мы помним, противопоказано. Мало того, нередко такие ветряки, исполненные «с любовью» и проявлением креативности мышления, становятся даже оригинальным украшением внешнего облика дома.

Несколько примеров ветряков с вертикальной осью вращенияНесколько примеров ветряков с вертикальной ось

Вертикальный ветрогенератор своими руками — пошаговые инструкции по сборке

Здесь вы узнаете:

Вертикальный ветрогенератор своими руками — это метод преобразования энергии ветра в электрическую энергию. Альтернативная энергия, получаемая от ветра — экологичный и экономичный способ.

Законность установки ветрогенератора

Альтернативные источники энергии – мечта любого дачника или домовладельца, участок которого находится вдали от центральных сетей. Впрочем, получая счета за электроэнергию, израсходованную в городской квартире, и глядя на возросшие тарифы, мы осознаём, что ветрогенератор, созданный для бытовых нужд, нам бы не помешал.

Прочитав эту статью, возможно, вы воплотите свою мечту в реальность.

samodelnyiy-vetrjgenerator-01-1-1.jpg
Ветрогенератор – отличное решение для обеспечения загородного объекта электроэнергией. Причем в ряде случаев его установка является единственным возможным выходом

Чтобы не потратить зря деньги, силы и время, давайте определимся: есть ли какие-либо внешние обстоятельства, которые создадут нам препятствия в процессе эксплуатации ветрогенератора?

Для обеспечения электроэнергией дачи или небольшого коттеджа достаточно малой ветроэнергетической установки, мощность которой не превысит 1 кВт. Такие устройства в России приравнены к бытовым изделиям. Их установка не требует сертификатов, разрешений или каких-либо дополнительных согласований.

samodelnyiy-vetrjgenerator-01-1-430x230.jpg
Для того чтобы определиться с целесообразностью устройства ветрогенератора, необходимо выяснить ветроэнергетический потенциал конкретной местности (кликните для увеличения)

Никакого налогообложения производства электроэнергии, которая расходуется на обеспечение собственных бытовых нужд, не предусмотрено. Поэтому маломощный ветряк можно смело устанавливать, вырабатывать с его помощью бесплатную электроэнергию, не уплачивая при этом государству никаких налогов.

Впрочем, на всякий случай следует поинтересоваться, нет ли каких-либо местных нормативных актов, касающиеся индивидуального энергоснабжения, которые могли бы создать препятствия в установке и эксплуатации этого устройства.

Претензии могут возникнуть у ваших соседей, если они будут испытывать неудобства, связанные с эксплуатацией ветряка. Не забывайте, что наши права заканчиваются там, где начинаются права других людей.

Поэтому при покупке или самостоятельном изготовлении ветрогенератора для дома нужно обратить серьёзное внимание на следующие параметры:

  • Высота мачты. При сборке ветрогенератора нужно учитывать ограничения на высоту индивидуальных построек, которые существуют в ряде стран мира, а также местонахождение собственного участка. Знайте, что поблизости от мостов, аэропортов и тоннелей строения, высота которых превышает 15 метров, запрещены.
  • Шум от редуктора и лопастей. Параметры создаваемого шума можно установить при помощи специального прибора, после чего зафиксировать результаты замеров документально. Важно, чтобы они не превышали установленные шумовые нормы.
  • Эфирные помехи. В идеале при создании ветряка должна быть предусмотрена защита от создания телепомех там, где ваше устройство может такие неприятности обеспечить.
  • Претензии экологических служб. Эта организация может препятствовать вам в эксплуатации установки только в том случае, если она мешает миграции перелетных птиц. Но это маловероятно.

При самостоятельном создании и монтаже устройства учите эти моменты, а при покупке готового изделия обратите внимание на параметры, которые стоят в его паспорте. Лучше заранее обезопасит себя, чем впоследствии расстраиваться.

  • Целесообразность устройства ветряка обосновывается в первую очередь достаточно высоким и стабильным ветряным напором в местности;
  • Необходимо располагать достаточно большим участком, полезная площадь которого не будет существенно сокращена из за установки системы;
  • Из-за сопровождающего работу ветряка шума желательно, чтобы между жильем соседей и установкой было не менее 200 м;
  • Убедительно аргументирует в пользу устройства ветрогенератора неуклонно повышающаяся стоимость электроэнергии;
  • Устройство ветрогенератора возможно только в местностях, власти которых не препятствуют, а лучше еще и поощряют использование зеленых видов энергии;
  • Если в регионе сооружения мини электростанции, перерабатывающей энергию ветра, случаются частые перебои, установка минимизирует неудобства;
  • Владелец системы должен быть готов к тому, что вложенные в готовое изделие средства не окупятся сразу. Экономический эффект может стать ощутимым через 10 — 15 лет;
  • Если окупаемость системы — не последний момент, стоит задуматься об сооружении мини электростанции собственными руками.

Преимущества и принцип работы ветряков

Современный вертикальный генератор – один из вариантов альтернативной энергии для дома. Агрегат способен преобразовать порывы ветра в энергетический ресурс. Для корректной работы он не нуждается в дополнительных устройствах, определяющих направление ветра.

samodelnyiy-vetrjgenerator-02.jpg
Ветряной генератор роторного типа очень легко изготовить своими руками. Конечно, полностью взять на себя обеспечение частного крупногабаритного коттеджа энергией он не сможет, но с освещением хозяйственных построек, садовых дорожек и придомовой территории справится на отлично

Прибор вертикального типа функционирует на низкой высоте. Для его обслуживания не нужны различные приспособления, обеспечивающие безопасное проведение высотных ремонтных и обслуживающих работ.

Минимум движущихся деталей делает ветряную установку более надежной и эксплуатационно устойчивой. Оптимальный профиль лопастей и оригинальной формы ротор обеспечивают агрегату высокий уровень КПД независимо от того, в каком направлении дует ветер в каждый отдельный момент.

vertikalniyvetrogenerator002-430x350.jpg
Малые бытовые модели состоят из трех и более легких лопастей, моментально улавливают самый слабый порыв и начинают вращаться, как только сила ветра превышает 1,5 м/с. Благодаря этой способности их эффективность часто превышает КПД крупных установок, нуждающихся в более сильном ветре

Генератор работает абсолютно бесшумно, не мешает хозяевам и соседям, не создает вредных выбросов в атмосферу и надежно служит в течение многих лет, аккуратно поставляя энергию в жилые помещения.

Вертикальный генератор ветрового типа работает по принципу магнитной левитации. В процессе вращения турбин образуются импульсная и подъемная силы, а также сила фактического торможения. Первые две заставляют крутиться лопасти агрегата. Это действие активирует ротор и он создает магнитное поле, вырабатывающее электричество.

vertikalniyvetrogenerator004-430x350.jpg
Ветряк, имеющий вертикальную ось вращения, по эффективности уступает своим горизонтальным аналогам. Зато не предъявляет претензий к территориальному расположению и полноценно работает практически в любом удобном для домовладельцев месте

Прибор функционирует полностью самостоятельно и не требует вмешательства хозяев в процесс.

Ветрогенератор с вертикальной осью вращения

В ветряных генераторах данного вида вращающаяся ось генератора расположена вертикально по отношению к поверхности земли.

5464.jpg

За годы использования устройств данного вида появились разнообразные конструкции которые объединены в группы, это:

С ротором Дарье — агрегаты оснащаются двумя или тремя лопастями, изогнутыми в форме овала.

К положительным особенностям данной конструкции можно отнести:

  • Самостоятельную ориентацию по отношению к воздушным потокам;
  • Удобное обслуживание установки.
  • Простота схемы агрегата.

К отрицательным относятся:

  • Нет возможности в самостоятельной раскрутке лопастей;
  • Значительная нагрузка на элементы конструкции;
  • Лопасти должны быть идентичны и соответствовать заданному профилю;
  • Повышенный уровень шума в процессе работы.
  • С ротором Савониуса – агрегаты оснащены лопастями в виде цилиндрических поверхностей.

Достоинствами данной группы являются:

  • Для запуска в работу требуются незначительные потоки ветра;
  • Способность быстрого набора крутящего момента;
  • Надёжность конструкции;
  • Низкая стоимость.

К недостаткам можно отнести:

  • Низкий КПД устройств этой группы.

Устройства с ротором Савониуса применяют при монтаже комбинированных ветровых генераторов, их используют для разгона агрегатов с ротором Дарье.

С вертикально-осевой конструкций ротора — у агрегатов этой группы лопасти напоминают форму крыла самолета и расположены вертикально, ось ротора расположена параллельна валу.

По внешнему виду агрегаты данной группы похожи на устройства с ротором Дарье.

464.jpg

К положительным качествам устройств относятся:

  1. Простота в изготовлении;
  2. Способность быстрого набора скорости вращения;
  3. Низкий уровень шума.
  4. Надежность в работе.
  5. С геликоидным ротором – агрегаты этой группы являются более развитым вариантом устройств с вертикально-осевым ротором. Лопасти имеют форму геликоидной кривой.

Положительные качества:

  1. Более низкие нагрузки на элементы конструкции;
  2. Быстрый набор скорости вращения.

Недостатки:

  • Повышенный уровень шума;
  • Высокая стоимость.
  • Многолопастный ротор – в основу агрегатов этого типа положена вертикально-осевая конструкция с устройством дополнительного внешнего кольца неподвижных лопастей.

Достоинства агрегатов данной группы:

  • Более высокий КПД установок;
  • Чувствительность к потокам ветра.

Недостатки:

  • Высокая стоимость;
  • Повышенный уровень шума.

ВС

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье

Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал

На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

vetrogenerator_svoimi_rukami_chertezhi-_izgotovlenie-_generator_dlya_vetryaka_7.jpg

Карусельный и ортогональный роторы

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50%. В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид

Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка

На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

vetrogenerator_svoimi_rukami_chertezhi-_izgotovlenie-_generator_dlya_vetryaka_8.jpg

Вертикальный ротор с направляющим аппаратом

  • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
  • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
  • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
  • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
  • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

Видео: ветрогенератор Ленца

Как сделать ветрогенератор на 220В своими руками: инструкция

Автор aquatic На чтение 8 мин. Просмотров 4.6k. Обновлено

С ежегодным повышением цен за коммунальные услуги, люди, в целях экономии, стараются применять альтернативные источники энергии и тепла. Один из вариантов – это автономная электроэнергия. Существуют несколько разнообразных источников: солнечные панели, дизельные или бензиновые генераторы, гидроустановки, ветроэлектрические установки (ВЭУ). Эта статья посвящена прибору, вырабатывающему электричество при помощи ветра, а именно: как сделать ветрогенератор на 220В своими руками и оправдает ли это устройство ваши ожидания.

Как сделать ветрогенераторна 220В своими руками Как сделать ветрогенераторна 220В своими руками Один из многочисленных вариантов конструкции ветряка

Классификация и принципы работы

В сети возможно найти великое множество разных примеров сборки ветряных генераторов, но все они делятся на два класса: вертикальные и горизонтальные. Каждый класс имеет подвиды:

  • Вертикальные:
  • Промышленные. Высота таких электростанций может достигать больше 100 метров, мощность варьируется от 4 до 6 МВт.

Одна из самых мощных ветряных электростанций «Энеркон Е-126»Одна из самых мощных ветряных электростанций «Энеркон Е-126»Одна из самых мощных ветряных электростанций «Энеркон Е-126»

  • Устройства для бытовых целей. Существуют модели, изготовленные на специализированных заводах и устройства, изготовленные своими руками;

Прибор мощностью в 600 ВтПрибор мощностью в 600 Вт Прибор мощностью в 600 Вт
Спиралевидное устройствоСпиралевидное устройствоСпиралевидное устройство
Образец с лопастями, выполненными из тканевых материаловОбразец с лопастями, выполненными из тканевых материаловОбразец с лопастями, выполненными из тканевых материалов
Ветряк с металлическими лопастямиВетряк с металлическими лопастями

  • Горизонтальные:
  • Стандартные;

Агрегат с классическим расположением лопастейАгрегат с классическим расположением лопастей

Конструктивные элементы таких устройств могут быть расположены под разным угломКонструктивные элементы таких устройств могут быть расположены под разным угломКонструктивные элементы таких устройств могут быть расположены под разным углом

Весь класс устройств, изготовленные своими руками, будь то ветряные электростанции или промышленные, работают по принципу электромагнитной индукции, то есть магниты, закрепленные в роторе, при вращении лопастей вырабатывают переменный ток. Он подается в накопительные аккумуляторы через контроллер. Это прибор, преобразующий переменный ток в постоянный и контролирующий степень заряда аккумуляторных батарей.

Следующим узлом является инвертор, который преобразует постоянный ток в переменный и выравнивает колебание электроэнергии до значения 50гц, далее ток подается на потребителей.

Обратите внимание! Контроллер переключает поток электроэнергии напрямую на инвертор в момент полного заряда аккумуляторов.

Стандартная схема работы ветряной электростанцииСтандартная схема работы ветряной электростанции

Статья по теме:

описание эффективного ветряка для слабого ветра и изготовление для него ротора своими руками

Ветряки для слабого ветра

Ветроэнергетика, имевшая невысокую ценность в глазах большинства еще совсем недавно, обретает уверенный подъем и рост. Даже в условиях преобладания слабых и умеренных ветров ведутся серьезные разработки, позволяющие использовать неограниченный природный ресурс с максимальной пользой. Создаются новые, более удачные и эффективные образцы конструкции ветряков, дающие возможность предполагать скорое развитие автономных сельских усадеб.

Единственная проблема — высокая стоимость промышленных моделей, ограничивающая спрос на них у населения. В то же время, дороговизна оборудования способствует самостоятельной разработке и изготовлению собственных образцов, позволяющих производить электричество в тех же количествах, или даже больше.

Европейская часть континента Евразия, исключая прибрежные зоны, имеет преобладающие слабые и умеренные ветра. Использование ветряков обычных горизонтальных конструкций в большинстве регионов малоэффективно. Ресурс устройства в таких условиях используется на ничтожно малый процент, поэтому эффективность крайне низка.

При этом, менее производительные в теории вертикальные модели зачастую выигрывают у горизонтальных, так как имеют более приспособленную для слабых потоков геометрию лопастей, не нуждаются в наведении на ветер, что снижает потери.

Тем не менее, разработки в области горизонтальных роторов продолжаются. Созданы различные устройства, дающие высокие показатели на низких скоростях вращения. Основные направления исследований:

  • создание генератора, дающего высокую производительность при низкой скорости вращения
  • изготовление оптимальной для слабых потоков конструкции крыльчатки, способной уверенно вращаться при слабом ветре

Решение вопроса возможно только при одновременном развитии в обоих направлениях, так как ветрогенератор представляет собой комплекс оборудования, работающий в единой системе. Слабый элемент в комплексе снижает его эффективность, что вынуждает подбирать оборудования в максимальном соответствии всех узлов и деталей.

Ветрогенератор конструкции Онипко

Интересное решение предложил украинский физик Алексей Онипко. Конструкция горизонтального типа представляет собой пространственную фигуру, внешне напоминающую гигантское сверло. Впервые увидевший этот ротор человек испытывает эстетическое удовольствие, настолько он красив в своей сложности и элегантности. Между тем, устройство предназначено далеко не для декоративных целей.

Крыльчатка начинает вращаться уже при скорости ветра 0,3 м/с, делая устройство необычайно чувствительным. Кроме того, отсутствие разрывов значительно снижает шум, возникающий при работе таких устройств. Ротор Онипко практически бесшумен. Также удачно найдена конструкция, использующая поток ветра в пределах окружности крыльчатки целиком.

Разработка коллектива Онипко (он работает не в одиночку, трудится целый коллектива) получила широкое признание на Западе. Так, в 2013 году конструкция получила Гран-при на Всемирном конкурсе в Нюрнберге, была признана наиболее удачной и эффективной разработкой в мире.

Мировое признание, тем не менее, не способствует пока еще массовому производству ветряка. Разработка находится в стадии подготовки к производству, ведется поиск инвесторов. При этом, отдельные устройства, созданные по схеме Онипко, создаются и успешно работают в некоторых установках.

Принцип работы

Принцип действия ротора Онипко основан на классических аэродинамических посылках. Изменения коснулись самой идеи вращающихся лопастей. Они превращены в сплошное полотно, не имеющее разрывов в плане, но вытянутое в боковом сечении в конус. В результате получается крыльчатка, максимально эффективно контактирующая с потоком ветра.

Площадь контакта имеет наиболее высокую величину из возможных, что позволяет получить высокочувствительный ротор. Параметры спирали оптимальным образом взаимодействуют с потоком, позволяя получить устойчивое вращение при слабых ветрах и вполне уверенно чувствовать себя при скорости ветра, близкой к 40 м/с.

В остальном ветрогенератор Онипко не отличается от обычных устройств подобного типа — крыльчатка воздействует на генератор, который заряжает аккумуляторные батареи. Заряд батарей через инвертор подается на приборы потребления. Единственным дополнением является электронный блок, установленный перед выпрямителем и преобразующий частоту в более удобные для аппаратуры 50-100 Гц. Стандартные параметры тока — 220 В 50 Гц — достигаются при скорости вращения в 150 об/мин.

Согласно расчетным данным, ветрогенератор Онипко способен развивать от 50 до 10000 Вт мощности. При этом, простым увеличением диаметра крыльчатки обойтись невозможно.

По утверждениям разработчиков, каждый типоразмер проходит специальные испытания в аэродинамической трубе и корректируется по итогам испытаний. Это свидетельствует о том, что точной математической модели установки еще не существует, приходится уточнять параметры на практике.

Тем не менее, созданные образцы демонстрируют высокие показатели, признанные всеми специалистами в этой области, что дает основания предполагать скорое теоретическое обоснование и описание формы лопастей. Такое обоснование необходимо для производства, иначе изменение размеров может стать причиной ухудшения аэродинамики ротора.

Противоречивость конструкции

Споры о возможностях конструкции Онипко выдавать заявленные параметры на практике ведутся практически с первых дней появления разработки. Мнения специалистов разделились на горячих сторонников изобретения и не менее убежденных противников. Аргументы приверженцев конструкции уже изложены, поэтому следует прислушаться к доводам противников разработки.

Прежде всего, критике подвергают диапазон скоростей ветра. Здесь аргументы весьма серьезны, так как в расчете мощности крыльчатки участвует квадрат скорости. Слишком малые значения способны настолько снизить эффективность, что никакая конструкция не увеличит ее. Кроме того, все параметры, заявленные конструктором, учтены без нагрузки. Противники конструкции видят в этом единственное объяснение — ротор под нагрузкой вращаться не будет.

Вторым сомнительным моментом представляется утверждение о высоком коэффициенте использования энергии ветра. Здесь крыльчатка рассматривается как вариант парусного ротора с неизменяемой геометрией лопастей. С этой точки зрения ротор Онипко является устройством, предназначенным для использования со строго определенной скоростью потока.

Величина поверхности соприкосновения с ветром также не имеет важного значения, поскольку поток не создает фронтальной нагрузки, а обтекает лопасти, поэтому воздействие косвенное. Отсутствие точных данных о мощности и подтверждающих это мероприятий нет.

Эти доводы относятся к наиболее серьезным и подтверждаемым математически. Противники конструкции также высказывают вполне обоснованные возражения против других утверждений разработчиков конструкции об универсальности крыльчатки, ее огромном потенциале и диапазоне мощности. Если учесть, что расчетный КПД любого ветрогенератора не может превышать 53 %, то многие заявления конструкторов представляются слишком смелыми, преувеличенными.

Основная причина сомнений — закрытость подробной и точной информации по ветряку. Нет промышленных образцов, не существует точной математической модели крыльчатки. Купить готовую установку невозможно, на обращения коллектив создателей устройства реагирует уклончиво и туманно.

По мнению многих, это выглядит довольно странно. Подозревают, что данная разработка не более, чем коммерческий прием, создающий шум из ничего. Тем не менее, существуют ролики, демонстрирующие работу ротора в достаточно сложных условиях. Практика покажет, насколько правы те и другие.

Чертежи ротора

Изобретатель не предоставляет подробные чертежи своих разработок, но в качестве модели для построения лопастей использован принцип математической спирали:

Именно по этой кривой строится каждая из трех лопасть крыльчатки, в сумме образуя сплошную поверхность, близкую по очертаниям при взгляде сбоку к форме конуса. Спираль строится на основе золотого сечения, три лопасти образуют угол между осями в 120°. Конструкторы считают возможным использование множества вариантов изготовления лопастей, главным условием считая использование архимедова винта в качестве основы.

Уникальные чертежи ветрогенератора Онипко: принцип работы и противоречивость конструкции

Такое обилие возможностей увеличивает шансы самодеятельных изготовителей ветряков, нуждающихся в создании устройства для своих нужд.

Ветрогенератор Онипко своими руками

Создание ротора Онипко для своих нужд — достаточно сложная задача. Конструкторы в качестве генератора используют мотор-колесо, что имеется в наличии не у всех. Но основная проблема, встающая перед самодеятельным изготовителем — создание сложных криволинейных поверхностей, их точное соединение и качественная балансировка колеса.

Для создателя подобной конструкции наиболее правильным вариантом станет создание качественного шаблона и создание крыльчатки из стеклопластика. Эта методика позволит изготовить легкое и достаточно точно выполненное колесо. Сами разработчики первые рабочие модели создавали из пенопласта и стеклоткани, поэтому наиболее разумно будет последовать их примеру.

Представляется нерациональным создавать ротор малой площади. Учитывая угол наклона потока по отношению к точкам поверхности лопастей, следует создать достаточно большое колесо, способное развивать мощность, соответствующую потребностям генератора. Использование мотор-колеса, которое применили конструкторы, не обязательно, можно приспособить любой тихоходный образец, не создающий значительной нагрузки на валу ротора.

Создание рабочей модели ротора Онипко — сплошной эксперимент от начала до конца. Отсутствие точных данных или чертежей открывает путь для творческой фантазии. Вполне возможно, что кому-нибудь удастся создать модель, полностью подтверждающую заявленные показатели и наглядно демонстрирующую возможности устройства.

Рекомендуемые товары

схема и чертеж, инструменты и материалы, подробная инструкция

Один из простых способов получить дешёвую электроэнергию — ветрогенератор. Его необязательно покупать, можно построить своими руками, используя правильно составленные чертежи и схемы, детали и материалы.

Принцип работы ветрогенератора

Принцип действия ветрогенератора прост: ветер приводит в движение лопасти, вращающие ротор турбины, который преобразует энергию ветра в механическую. Ветровые турбины бывают:

  • с роторами горизонтальной оси;
  • с роторами вертикальной оси.

Преимущество последних в том, что они работают независимо от направления ветра и его силы. Мощность, генерируемая самодельным ветрогенератором, составляет от 100 до 6000 Вт. Минимальная скорость, при которой турбина может начать вырабатывать электроэнергию — 2,5-3 м/с, но для достижения номинальной мощности необходима скорости ветра от 10 м/с.

Ротор обычно вращается со скоростью 15–20 об/мин, тогда как типичный асинхронный генератор вырабатывает электричество со скоростью более 1500 об/мин. Для самодельного ветряка подойдёт автомобильный генератор на 12 вольт.

1552427328_5c88293a8c802.png1552427328_5c88293a8c802.png

Принцип работы ветрогенератора

Как сделать ветрогенератор своими руками

Основой создания ветрогенератора является грамотно сделанный проект и подготовленный чертёж. Это очень важно, потому что без чёткого представления о том, как должен выглядеть прибор, будет трудно построить его правильно, не нарушив порядок монтажа всех элементов.

Чертежи и схемы

Начинать нужно с составления общего эскиза ветротурбины, пометив ключевые элементы: башню, генератор, деревянное основание, лопасти и ступицу, которая соединяет их вместе. Самостоятельно составленная схема может быть не сильно подробной: в этом нет необходимости. Её следует использовать для общего представления о том, каким будет расположение различных частей ветряного двигателя, и как конструкция будет выглядеть на завершающих этапах.

1552427361_5c882959c535b.jpg1552427361_5c882959c535b.jpg

Схема сборки ветроэлектрического генератора

После подготовки схемы нужно выставить правильные размеры ветрогенератора. Они должны включать в себя высоту, длину и ширину деревянного основания, которое соединяет генератор и хвостовой плавник с башней. Также определить размеры для лопастей из металлических труб или труб из ПВХ, в зависимости от того, какой материал будет использоваться. Отдельные измерения нужны для хвостового плавника: высота, ширина и длина, а также диаметр – для лезвий, которые определяют размер ветровой турбины.

После того как будет готов чертёж и черновой набросок устройства с выставленными размерами, можно переходить к подготовке материалов и инструментов для работы.

Необходимые инструменты и материалы

Для изготовления самодельного ветряка потребуются такие детали:

  • ротор с лопастями;
  • редуктор для регулирования скорости вращения ротора;
  • гелевый или щелочной аккумулятор для питания электроприборов;
  • инвертор для трансформации тока;
  • хвостовая часть;
  • мачта.

Ротор с лопастями можно сделать самостоятельно, тогда как остальные элементы, вероятно, придётся купить или собрать из необходимых деталей. Кроме этого, для сборки самодельного ветряка потребуются такие инструменты и материалы:

  • пила по дереву;
  • ножницы по металлу;
  • горячий клей;
  • паяльник;
  • дрель.

Обязательно нужны винты и болты для соединения лезвий со ступицей и для скрепления металлической трубы с деревом.

Лопасти для ветрогенератора своими руками

Изготавливая лопасти самостоятельно, стоит особое внимание уделить соблюдению заданной чертежом формы изделий. Лопасти могут быть крыльчатого или парусного типа. Второй более прост в изготовлении, но имеет невысокий КПД, что делает его неэффективным в самодельных ветрогенераторах даже средних размеров.

Для изготовления лопастей самодельного ветрогенератора подойдут такие материалы как:

  • пластик;
  • дерево;
  • алюминий;
  • стекловолокно;
  • поливинилхлорид.
1552427406_5c88298a91dc8.jpg1552427406_5c88298a91dc8.jpg

Устройство лопастной части ветрогенератора

Если выбирать поливинилхлорид, то для создания лопастей отлично подойдут ПВХ-трубы диаметром от 160 мм. Пластик и дерево — менее износостойкие материалы, которые под воздействием осадков и сильного ветра через несколько лет придут в негодность. Оптимальный вариант — алюминий: он прочный и лёгкий, устойчивый к разрыву и залому, невосприимчивый к влаге и повышенным температурам.

Пошаговая инструкция по изготовлению

Когда все чертежи будут составлены, а материалы и инструменты подготовлены, можно начинать собирать ветрогенератор своими руками, руководствуясь следующим порядком:

  1. Подготовить бетонный фундамент. Глубина ямы и объём бетонной смеси рассчитывается исходя из типа грунта и климатических условий. После заливки фундаменту нужно несколько недель, чтобы набрать нужную прочность. Только после этого можно устанавливать в него мачту на глубину 60-70 см, закрепив её растяжками.
  2. Поместить подготовленные лопасти в трубу, закрепить их с помощью винтов и гаек на втулке, на которую будет установлен двигатель.
  3. Расположить диодный мост рядом с двигателем и закрепите его с помощью саморезов. Подсоединить провод от двигателя к диодному мосту «плюс», а другой провод к отрицательному мосту.
  4. Закрепить вал двигателя, надеть на него втулку и плотно затянуть её против часовой стрелки.
  5. Уравновесить основание трубы с прикреплённым к нему двигателем и валом и отметить точку баланса.
  6. Закрепить основание прибора болтами.

Ветрогенератор может прослужить гораздо дольше, если покрасить не только лопасти, но основание, вал и крышку двигателя. Чтобы включить установку потребуется комплект проводов, зарядное устройство, амперметр и аккумулятор.

Подготовка автомобильного генератора

Для того чтобы сделать ветрогенератор своими руками из автомобильного генератора? потребуется установка силой от 95A с напряжением 12 В. При 125 оборотах в минуту он вырабатывает 15,5 Вт, а при 630 оборотах этот показатель составит 85,7 Вт. Если говорить о нагрузке в 630 об/мин, то вольтметр покажет 31,2 вольт, а амперметр – 13,5 ампер. Таким образом, мощность генератора составит 421,2 Вт. Для достижения этого показателя необходимо использовать неодимовые магниты, которые в 7 раз эффективнее, чем ферритовые.

В начале подготовки автомобильного генератора нужно удалить роторную обмотку магнитного возбуждения и электронные щётки с коллектором. На место кольцевых ферромагнетиков нужно установить неодимовые магниты в количестве 3 штук, размер каждого из них должен составлять 85 х 35 х 15 миллиметров. Недостатком использования мощных магнитов может стать «залипание», затрудняющее движение вала. Для его уменьшения магниты должны размещаться под небольшим углом относительно друг друга.

Перед запуском генератора, его нужно протестировать на токарном станке, раскрутив вал до 950–1000 об/мин. Если устройство работает нормально, отдача будет составлять не менее 200 Вт. В большинстве случаев подойдёт классическая силовая установка с вертикальной осью: она характеризуется низкими оборотами и бесшумностью.

В процессе эксплуатации ветрогенератора рекомендуется периодически проверять надёжность креплений у основания мачты, смазывать подшипники поворотного устройства, проводить балансировку наклона установки. Раз в полгода рекомендуется проверять и менять электроизоляцию, которая нередко повреждается из-за использования в неблагоприятных условиях.

Самодельный ветрогенератор, собранный из автомобильного генератора и простых деталей, способен обеспечить электроэнергией небольшой дом и стать автономным резервным источником питания. Экологически безопасный и нетребовательный в обслуживании, он окупится в течение 2–4 лет в зависимости и прослужит десятки лет.

Как построить ветрогенератор? (с иллюстрациями)

Энергия ветра уже давно заинтриговала многих как источник бесплатного электричества. Строительство ветряного генератора дома — отличный способ задействовать этот источник энергии, и это может сделать любой, у кого есть желание и достаточно свободного времени. Лопасти генератора, вероятно, будут самой сложной и трудоемкой частью процесса, но многие, кто построил ветряные генераторы, сообщают, что это приятный и стоящий проект, особенно после его завершения.Лопасти и ступицу лучше всего делать в домашних условиях, тогда как мотор ветрогенератора, скорее всего, будет существующим мотором от другого устройства. Также важна башня для поднятия ветряной мельницы над окружающей средой, и ее на удивление легко достать.

A horizontal axis wind turbine. Ветряк с горизонтальной осью.

Мастера, которым нравится работать с деревом и другими подобными материалами, скорее всего, найдут создание лезвий весьма приятным. Строгание или резка лезвий вручную — один из хороших способов их придания формы после того, как древесина была распилена до общей формы с помощью ленточной пилы или аналогичного инструмента. Длина лопастей определяется мастером, но имейте в виду, что чем длиннее лопасти, тем большую мощность будет производить ваш ветрогенератор. Важно, чтобы лопасти были как можно точнее сбалансированы на ступице, поэтому может возникнуть необходимость в добавлении или снятии веса после их установки.

A DC motor can be used for the generator. В качестве генератора можно использовать двигатель постоянного тока.

Поиск подходящего двигателя для вашего ветрогенератора, который будет производить значительную мощность, может оказаться наиболее сложным с точки зрения логистики этапом строительства.Полезны хорошие базовые знания о том, как работает электричество и как его производят генераторы. В большинстве случаев гораздо лучше найти уже построенный двигатель от беговой дорожки или потолочного вентилятора, чем пытаться построить его. Практически любой двигатель постоянного тока с постоянным магнитом может быть кандидатом. Поиск в Интернете по запросу «двигатели ветряных генераторов» даст другие возможные решения, поскольку люди продолжают изобретать новые двигатели и новые способы использования старых.

Приобретение башни для установки ветрогенератора, вероятно, будет легкой частью и даже может быть несколько прибыльным.Из некоторых вышек телевизионных антенн получаются отличные башни ветрогенераторов, и если вы знаете кого-то, кому он не нужен, он может даже заплатить вам, чтобы он их снял и унес. Эти башни особенно распространены в сельской местности, где антенна должна находиться высоко в воздухе для приема сигналов вещания, и это может быть хорошим вариантом для рассмотрения. Какой бы высокой ни была башня, они обычно разъединяются на три метра, что позволяет легко их вытащить и использовать в другом месте.

Wind generators can take the shape of traditional windmills. Ветряные генераторы могут принимать форму традиционных ветряных мельниц.

Как сделать ветрогенератор

Поиск новых способов освоения и использования возобновляемых и эффективных источников энергии в наши дни является главным приоритетом для всех. Ветряные генераторы — это лишь один из хороших способов использовать наши природные источники энергии, и если вы стремитесь к самоокупаемости или «живете за пределами сети», ветрогенератор может стать неотъемлемой частью любых планов по обеспечению электроэнергией вашего дома.

Однако для создания собственного ветрогенератора необходимо много спланировать.Если вы зададите себе следующие вопросы, это поможет вам сделать ветрогенератор, который наилучшим образом соответствует потребностям вашей семьи:

  1. Самый важный фактор при расчете, сколько мощности будет производить ваш генератор, — это место, где будет размещен ветрогенератор. . Свяжитесь с местной метеостанцией, узнайте о ветрах в районе вашего проживания и обязательно обсудите с местными властями необходимые разрешения или ограничения на строительство.
  2. Другие важные соображения включают размер лезвия, размер батареи и количество электричества, которое вам действительно нужно. .Бывают моменты, когда у вас будет избыток электроэнергии, которую придется снимать. Спланируйте это и убедитесь, что у вас есть способ контролировать уровень энергии.
  3. После того, как вы выяснили, какой тип ветрогенератора вам нужен, вам нужно определить, сколько фактического здания вы хотите построить. . Есть несколько вариантов изготовления собственного ветряного генератора, в том числе его создание с нуля, использование комплекта или покупка готового.
  4. Если вы досконально не разбираетесь в физике и ветроэнергетике, не рекомендуется строить ветрогенератор с нуля. .Однако, если вы выбрали именно этот маршрут, не забудьте купить хорошо продуманный набор планов.
  5. Существует несколько очень эффективных и простых в использовании комплектов, требующих разного уровня сборки и отвечающих большинству потребностей семейства . После выбора системы внимательно следуйте инструкциям производителя по сборке и эксплуатации. Несоблюдение этих указаний может привести к аннулированию любых гарантий или может привести к серьезным травмам себе или другим людям.
  6. Даже если вы покупаете готовый ветрогенератор, безопасность всегда должна быть на первом месте. .Всегда соблюдайте все инструкции по безопасности и не позволяйте детям или домашним животным играть на ветряных генераторах или рядом с ними. Также рекомендуется, чтобы ваш ветрогенератор проверил сертифицированный электрик, разбирающийся в ветроэнергетике.

После того, как ваш ветрогенератор запущен, регулярное техническое обслуживание

Научная выставка: Ультра-простой электрический генератор, отладка


НЕ ИСПОЛЬЗУЙТЕ РАЗНЫЕ ЧАСТИ.
Если лампочка не горит, обычно это потому, что использовалась не та лампочка. Следовать инструкциям. Если вы поменяли магниты, ничего не получится. Так не используйте разные магниты. Если вы использовали другую лампочку, она не подойдет. Используйте детали из списка деталей, не вносите изменений. Если вы не используете # 30 проволока покрытая эмалевым лаком, то не пойдет. Так что не используйте другой провод. Не используйте разные детали. Прежде чем тестировать что-либо еще, спросите себя, вы использовали детали из списка деталей.Если вы использовали разные детали, генератор выйдет из строя. Примечание: очень важно использовать детали перечислены, и не используйте заменители. И я уже упоминал, НЕ ИСПОЛЬЗУЙТЕ РАЗНЫЕ ЧАСТИ FREAKIN! Что, вы хотите, чтобы он потерпел неудачу? 🙂

ВРАЩАЙТЕ ЭТО БЫСТРО, В ТЕМНОМУ
Иногда ваш генератор работает хорошо, но вы не вращаете его достаточно быстро. Проведите ногтем между пальцем и большой палец, например, когда вы щелкаете пальцами … или когда вы вращаете волчок максимальная скорость.Сделайте ваши магниты действительно такими, как размытие. (Если они будут задевать картон, это не сработает.) Или, возможно, тусклое свечение света в ярко освещенной комнате не хватает лампочки. Итак, идите в полумрак. Затем раскрутите эту штуку ДЕЙСТВИТЕЛЬНО БЫСТРО. Попробуйте провернуть его старомодным ручная дрель (электродрели не ходят очень быстро). Или попробуйте приклеить маленькое колесо на ногте, а затем потри колесо о вращающуюся шину перевернутый велосипед (не езжайте слишком быстро, иначе лампочка перегорит.)

ДОБАВИТЬ БОЛЬШЕ ПРОВОДА
Посмотреть поставщиков проволоки ниже. Если ваша катушка имеет более 250 витков провода №30, то магнит не нужно так быстро вращаться. И лампочка горит ярче. Катушка # 30 тонкой красной проволоки Radio Shack имеет длину 200 футов, что дает около 250 оборотов. Если бы вы могли намотать больше витков на катушке, тогда ваша лампочка загорится при более низкой скорости магнита. Купите два комплекта проволоки из Radio Shack, затем используйте обе катушки самый тонкий тип (красный №30.) Соскребите красное пластиковое покрытие со всех концов проводов. Затем надежно закрутите то конец новой катушки до конца старой. Накройте стык кусочек пластиковой ленты, если хотите. Это создает единый дольше провод. Обязательно намотайте лишнюю проволоку в такой же направление как раньше. Еще лучше, купите несколько соленоидов с открытой рамой у заказ по почте или купите катушки с проволокой большего размера. Это намного дешевле, чем Радио Хижина.

Если провод тоньше 30 калибра, сопротивление слишком велико. и лампочка будет быть очень тусклым.Если провод слишком толстый (или у него толстая изоляция) тогда 250 витков будут размером с грейпфрут, а внешние витки будут быть слишком далеко от магнитов. Лучший источник провода: купить большой «Соленоид» от компании, занимающейся доставкой по почте, затем используйте плоскогубцы, чтобы открыть металлический скобка. Снимите большую катушку, снимите ленту и намотайте ее на свой генератор. Попробуй это:

ЭЛЕКТРОНИКА GOLDMINE:
12В соленоид $ 3.75

НЕ ИСПОЛЬЗУЙТЕ ДРУГИЕ МАГНИТЫ
Используйте большие 2-дюймовые прямоугольные магниты из керамических блоков, продаваемые Radio Shack. и другие №64-1899.Или попробуйте другие перечислены здесь. Они стоят около 2 долларов каждый и не имеют отверстий в центре. Не использовать меньшие магниты 1 дюйм Radio Shack. Большинство других магнитов слишком слабые и не будет работать, если вы не раскрутите магниты невероятно быстро на тысячи об / мин (оборотов в минуту.) Нео редкоземельный супермагниты того же размера, что и выше, будут работать даже лучше, но дорого.

ИСПОЛЬЗОВАНИЕ МАЛЕНЬКИХ МАГНИТОВ
Если вы не можете дождаться почтового заказа подходящие магниты, вместо них вы можете использовать двадцать из 1-дюймовых магнитов 64-1879.Склейте их вместе, чтобы получились два больших магнита. Вот как я это сделал. Сначала я сформировал четыре больших магнита: я склеил двадцать магнитов по четыре. отдельные стопки по пять магнитов в каждой. Я использовал 5-минутную эпоксидную смолу. Перед клей затвердевает, отрегулируйте магниты так, чтобы стороны каждой небольшой стопки были ровно и сотрите излишки эпоксидной смолы. (Чтобы стороны были плоскими, я положил каждую сложите на алюминиевую фольгу, прижмите их, чтобы совместить магниты, затем отклеил фольгу, когда клей затвердел.) Затем приклейте два таких 5 магнитов складываются бок о бок, поэтому стопки отталкиваются друг от друга. другой, затем держите их вместе, пока клей не затвердеет.Таким образом N полюс одного стека находится около полюса N другого, а S — около S. то же самое с двумя другими стопками. Это дает вам два больших магнита, каждая состояла из десяти маленьких. На каждом магните должно быть по два отверстия. плоская поверхность полюса. Пусть магниты защелкнутся по обе стороны от вашего гвоздь как обычно. Они не такие мощные, как четыре «высокоэнергетических» керамических магниты, поэтому вам понадобится вдвое больше проволоки для генератор.

НЕ ИСПОЛЬЗУЙТЕ ДРУГИЕ ЛАМПОЧКИ
Этот генератор не может питать обычную лампочку фонарика, ему нужен специальный 40-миллиамперный, 1.Лампа на 5 В в продаже у All Electronics и др. (Миниатюрная лампа №48 или №49.) Также попробуйте использовать красный светодиод (но вы должны вращать магниты намного быстрее, вроде двадцать оборотов в секунду. Или удвоить обороты провода, а не только 250 футов.) Не используйте обычную лампу фонарика, поскольку такой лампочке требуется гораздо больше энергии, прежде чем она начнет светиться. Чтобы зажечь светодиод, генератору нужно намотать более 250 витков. вокруг него. Пятьсот поворотов лучше, так тебе не придется крутиться магниты так быстро.Специальной лампочке нужно чуть больше половины вольт, а красные светодиоды загораются при 1,7 вольт.

СОСТАВЬТЕ МАГНИТЫ, ЧТОБЫ ОНИ СИЛЬНО ПРИВЛЕКАЮТ Убедитесь, что магниты сложены так, чтобы образовались две прочные опоры, иначе генератор не будет работать. Сделайте это: сложите все четыре магнита, так что их самые широкие грани прилегают друг к другу. Затем зажмите гвоздь через щель в середине стопки. Тогда возьми это отдельно и таким же образом соберите его внутри генератора.

ТЩАТЕЛЬНО ОЧИСТИТЕ ПРОВОД
Если генератор отказывается работать, осмотрите место скручивания проводов. все вместе. Катушка генератора имеет очень тонкое красное пластиковое покрытие, и вы необходимо очистить ВСЕ это покрытие с концов проводов перед их скручиванием. провода лампочки. Также концы проводов лампочки должны быть очищен от пластика. Металлические провода должны соприкасаться. Если между металлом провода генератора и светом пластик провод лампочки, цепь будет «разомкнута» и заряд не будет течь.

Обязательно следуйте инструкциям и схемам. Вы ДОЛЖНЫ намотать катушку так что катушка проходит через ту сторону коробки, в которой есть отверстие для гвоздя. Если вы наматываете его так, чтобы катушка не пересекала сторону коробки с отверстиями для гвоздей, затем магнитные поля не будут проходить через провода, и электрическое напряжение не будет быть создан.

Также не наматывайте катушку на открытый конец коробки, иначе вы не сможет просунуть пальцы внутрь, чтобы внести изменения в магнит.

Если вы не можете вращать магниты пальцами достаточно быстро, попробуйте «спиральное сверло» или ручное сверло.Зажмите гвоздь в конце дрель и вращайте магниты так быстро, как только можете. Электрический дрель тоже может работать, но большинство электродрелей движутся не так быстро, как ручного типа. Также попробуйте трюк Арвинда Гупты: 300 см шнурка вокруг гвоздя, затем сильно потяните, чтобы вращать магниты быстро.

ВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА
[ПРЕДУПРЕЖДЕНИЕ, НЕКОТОРЫЕ ВОЛЬТМЕТРЫ ПЕРЕМЕННОГО ТОКА НЕ РАБОТАЮТ НА 4 ЦИКЛАХ В СЕКУНДУ, И РАЗРАБОТАНЫ ТОЛЬКО ДЛЯ ИЗМЕРЕНИЯ 50 Гц или 60 Гц.]
Если у тебя есть Цифровой мультиметр, установите на измерение два вольт переменного тока, затем подключите его к проводам генератора и раскрутите генератор.Лампочке нужно немного больше 0,50 В переменного тока, чтобы зажечь смутно. При 1.0V горит ярко. Если напряжение вашего генератора ниже чем 0,5 В, вам нужно крутить его намного быстрее, или вам нужны сильные магниты, или вам нужно добавить намного больше витков провода.

НЕ ЗАМЕНЯЙТЕ МАГНИТЫ ИЛИ ЛАМПОЧКУ ИНЫМИ ТИП
Для этого нужны сильные магниты и низковольтная слаботочная лампа накаливания. Если ваш генератор не работает, проверьте детали еще раз и убедитесь, что вы иметь правильный тип магнитов и правильный тип света лампочка.Не надо используйте меньше магнитов. Теоретически более слабые магниты могут работать, но вы — нет. достаточно быстро раскрутить их вручную, а высокоскоростной мотор будет требуется для их вращения. Не используйте светодиод. Красный светодиод может работать теоретически, но вам нужно как минимум 1-1 / 2 вольта, чтобы он едва загорелся ( зеленому или синему нужно еще большее напряжение.) Лампочка лучше потому что загорается менее чем на 1/2 вольта. (Если тебе действительно нужно загореться светодиод, используйте красный вид, а также добавьте еще около трех катушек провода №30 к катушке генератора.)

Возможно, вам не повезло, и у вас перегорела лампочка. Чтобы проверить это, получите любой новый, свежий аккумулятор на 1,5 В (размер не имеет значения). Снимите лампочку. генератор, затем прикоснитесь к одному проводу от лампочки к верхней части батареи и один провод к низу. Лампочка должна ярко загореться. Если остается темно, лампочка плохая.

Генератор можно улучшить, если использовать большее количество витков провода. Вы использовали только катушка с проволокой №30. С большим количеством проволоки магниты не должны вращаться, как быстро зажечь лампочку.Соедините самую тонкую из оставшихся катушек с к одному концу уже намотанной проволоки, не забудьте соскоблить концы проволоки полностью зачистите, прежде чем скручивать их вместе. Убедитесь, что намотайте дополнительный провод в том же направлении, что и остальную катушку.

Или, если вы хотите ДЕЙСТВИТЕЛЬНО зажечь лампочку, купите второй комплект. проволоки, прикрепите вторую катушку №30 к уже сделанной катушке, затем намотайте всю проволоку на катушку. Обязательно очистите весь красный пластик концы добавленной вами дополнительной проволоки.


22 способа представиться студентам лично или через Интернет

Нет ничего лучше самого первого момента первого дня в школе. Вы стоите перед классом или перед веб-камерой, впервые глядя на все эти ожидающие лица. Теперь у вас есть шанс представиться своим ученикам, рассказать им, кто вы и чего им ожидать в следующем году. Как сделать это особенным?

Мы попросили учителей из нашей группы WeAreTeachers HELPLINE на Facebook поделиться своими любимыми способами помочь ученикам лучше узнать их.Вот их ответы и другие наши любимые идеи. Здесь есть варианты, которые работают как лично, так и онлайн, поэтому независимо от того, как выглядит ваш класс в этом году, вы обязательно найдете вдохновение!

1. Отправьте открытки, чтобы представиться

Фото: The_Techie_Teacher / Instagram

Не ждите первого дня — вместо этого дайте детям понять, чего ожидать летом. «Я сделал снимок, на котором я играю в фетч со своим верным золотистым ретривером, и летом разослал его каждому из моих новых учеников», — сказал Джеймс С.акции. «На обратной стороне я написал короткую записку, в которой представился и рассказал им, как я рад, что они в моем классе». Хизер У. расширяет это, заставляя своих детей писать ответы. «Мои ученики каждый год пишут мне письма, и я использую свое письмо им как образец».

2. Украсьте виртуальный класс Bitmoji

Источник: Мир социальных исследований г-жи Дж. / Instagram

Ваш класс всегда был отражением вашей личности и отличным способом представиться своим ученикам.Так что же произойдет, когда ваш класс станет виртуальным, как это случилось со многими учителями этой осенью? Нет проблем! У вас еще есть много способов персонализировать свое учебное пространство. Классы Bitmoji — один из наших любимых вариантов. Узнайте, как его создать здесь.

3. Создайте профиль Fakebook

Introduce Yourself to Students Fakebook

Показывать студентам свои настоящие страницы в социальных сетях — не лучшая идея. Вместо этого создайте профиль «Fakebook», как это делает учительница Марисса К. Воспользуйтесь бесплатным онлайн-инструментом или создайте макет на бумаге, поделившись интересными фактами, фотографиями и другой информацией о себе, которую вам удобно с детьми.

4. Представьтесь в фильме

Это немного больше работы, но учителя указывают, что вы можете использовать их, чтобы снова и снова представиться. Кроме того, фильм работает как в обычных, так и в виртуальных классах. Многие учителя уже имеют доступ к iMovie на своих школьных компьютерах. Узнайте, как им пользоваться здесь.

5. Нарисуйте карту имени

Introduce Yourself to Students Teach With Me

Mapping — отличная стратегия письма, и вы можете научить концепции на раннем этапе с помощью забавной карты имен.Создайте один, чтобы представиться в первый день занятий, а затем попросите своих учеников сделать то же самое. Узнайте больше от Teach With Me.

6. Сделайте фотокнигу, чтобы представиться

Introduce Yourself to Students Yeehaw Teaching in Texas

Источник: Yeehaw! Преподавание в Техасе

Начните год с чтения вашим детям книги о вас! Хайди Дж. Говорит: «В прошлом году я сделала фотокнигу« ABC »на Shutterfly и добавила по одному сообщению о себе для каждой буквы алфавита. (И да, мне действительно пришлось потянуться, чтобы понять «X» и «Q».’) Прочитав его своим ученикам в первый день в школе, я оставил его в классной библиотеке. Дети читают его снова и снова в течение года ». Преподаете практически в этом году? Вместо этого сделайте слайд-шоу!

7. Проведите охоту за мусором

Фото: Moms and Munchkins

Совместите введение с учителем с уроком по сбору информации из заслуживающих доверия первоисточников. «Я даю студентам стопку первичных документов из своей жизни (письма, табели успеваемости, фотографии с занятий и т. Д.)), а вся конфиденциальная информация скрыта », — говорит учитель восьмого класса Фил Л.. «Я прошу студентов создать график на основе этой информации, выдвинуть гипотезу о том, что произошло в промежутках, и сделать выводы о том, каким человеком они меня считают».

Ян Р. делает еще один шаг вперед, превращая своих учеников в сыщиков. Она складывает все документы в конверты с пометкой СОВЕРШЕННО СЕКРЕТНО и прячет их по комнате. Она даже дает им лупы, чтобы читать мелкий шрифт!

8.Пусть делают математику

С помощью этой умной идеи проведите небольшой обзор математики в своем представлении учителю! Придумайте ряд фактов о себе, которые можно представить в виде чисел, а затем превратите их в математические задачи. Это работает в разных классах, и дети всегда получают от этого удовольствие! Узнайте больше из «Великолепного четвертого класса».

9. Представьте себя с помощью викторины

Introduce Yourself to Students Kahoot

Тесты первого дня — действительно популярный способ представиться студентам.Kahoot! даже есть простой в настройке шаблон, чтобы лучше узнать своего учителя!

Если вы хотите, чтобы викторина не была похожа на игру в угадайку, сначала расскажите им о себе. Лиза Т. делает слайд-шоу о себе в первый день, а затем на второй день проводит викторину, чтобы узнать, что они помнят. Эмили Ф. позволяет ей помочь с классом прошлого года. «В конце года мои студенты делают брошюру для студентов следующего года. Если дети прочитают его, они получат много правильных ответов на мои вопросы.”

10. Соберите именную палатку

Именные палатки работают в традиционных или виртуальных классах. В очном классе положите это на стол в течение первой недели или около того. В сети размещайте изображение во время перерывов или оставляйте его в углу экрана. (Дети тоже могут выполнять это задание!) Узнайте больше от Spark Creativity.

11. Дайте им совок на вас

Есть ли более привлекательный способ представиться своим ученикам? Если вы действительно хотите гарантировать себе награду «лучший учитель в истории», вы можете устроить вечеринку с мороженым вместе с ней! Узнайте больше из «Истинной жизни». Я учитель.

12. Пусть сияет твоя звезда

Introduce Yourself to Students Amanda Hager Pinterest

Фото: Аманда Хагер / Pinterest

«Каждую неделю в течение года один ученик становится звездой недели, и он может показывать в классе коллаж из своих любимых вещей», — говорит Джудит Г. «В первую неделю я звезда, и мой коллаж позволяет мои ученики, чтобы узнать меня ».

13. Платье деталь

«Я знаю, что мои ученики думают обо мне как о немного помешанном (эй, что я могу сказать, я учитель математики!), Так что я полностью увлекаюсь в первый день в школе», — признается Грег С.«Я ношу футболку с пианистом и толстые очки и действительно играю с учительницей математики». Хотите выложиться на полную? Попробуйте эти платья для учителей, в которых вы будете выглядеть как мисс Фризл!

14. Играйте «Красный свет», «Зеленый свет»… стиль знакомства

Вот забавный поворот к классической книге «Две истины и ложь» (еще одно любимое введение для учителей). Выровняйте детей в одном конце комнаты или игровой площадки. Встаньте с другой стороны и заявите о себе. Если учащиеся думают, что утверждение верно, они делают шаг вперед.Если они ошибаются, они вернутся к началу! Первый ученик, который встретится с вами, станет победителем. Узнайте больше об этом уникальном способе представиться от Rulin ’The Roost.

15. Напишите автобиографическое стихотворение

Introduce Yourself Bio Poem Melulater

Фото: Melulater

Эта идея принадлежит Брианне Х., которая говорит: «Мне нравится писать автобиографические стихотворения. Я делаю модель о себе, чтобы использовать ее в качестве ориентира для них. Студенты пишут свои собственные, используя шаблон, а затем пишут его на цветной бумаге и вырезают изображения, чтобы создать вокруг него коллаж.”

16. Покажи им, что ты часть пазла

Introduce Yourself to Students Supply Me

Воспользуйтесь этой милой идеей, чтобы представиться и сразу создать потрясающую доску объявлений о выпуске в школу! Украсьте свой пазл картинками или фактами о себе. Пусть дети сделают то же самое и соединят все части вместе, чтобы получилась потрясающая фреска для вашего класса. Узнайте больше от Supply Me.

17. Соберите коллаж из фотографий

Из картинок сделайте коллаж, который расскажет детям о вас картинками вместо слов.«Мы проводим« Познакомься со мной в картинках », — говорит Пейдж Т., — Я сделала его для себя и представилась всему классу, используя свою». Если вы действительно хотите проявить творческий подход, сделайте свой коллаж в форме вашего силуэта. Узнайте, как это сделать на Kix. (Это тоже работает онлайн — попробуйте с помощью Padlet.)

18. Составьте график своей жизни

Нарисуйте временную шкалу на доске, прежде чем представиться, предлагает Ян Р. По мере того, как вы делитесь фактами о себе из разных моментов своей жизни, попросите детей подойти и добавить эти события в нужное место на временной шкале.Сделайте это еще веселее, добавив фотографии из своей жизни!

19. Представьтесь на Flipgrid

Источник: Henderson ISD

Flipgrid — лучший интерактивный инструмент, которым вы еще не пользуетесь. Он позволяет учителям и детям записывать и безопасно размещать короткие видеоролики… и это совершенно бесплатно! Запишите видео Flipgrid, чтобы представиться студентам, а затем попросите их сделать то же самое. Независимо от того, преподаете ли вы лично или онлайн, это интересный способ познакомиться друг с другом.

20. Создайте знакомую ливню

Эта простая и красочная поделка позволяет учащимся узнать, что для вас важно. Пусть они сделают свои собственные, чтобы вы тоже могли с ними познакомиться. Совет для GuysTeachToo в Instagram за эту идею.

21. Напишите эссе с загадочной коробкой

Источник: Добро пожаловать в комнату 36!

Дон М. объясняет: «Я кладу 3 предмета, которые представляют меня в сумку, и использую их для обучения в формате эссе из 5 абзацев.Каждый пункт — это один абзац моего эссе. Затем я делюсь своим эссе с детьми и вытаскиваю каждый пункт, читая его абзац ». Затем она предлагает детям написать свои собственные вводные эссе в том же формате.

22. Лопните пузырь с эмодзи

Нам нравится эта умная маленькая игра, которая работает с Google Slides и идеально подходит для виртуальных или традиционных классов. Учащиеся выбирают смайлик и «лопают» пузырек, а вы отвечаете на вопрос, чтобы немного рассказать им о себе.Дети тоже могут играть! Получите игру от SSSTeaching on Teachers Pay Teachers.

Теперь, когда они знают вас, вам нужно познакомиться с ними! Вот несколько отличных действующих ледоколов, чтобы поднять их и сдвинуть с места.

Plus, 15 способов практически вернуть детей в школу .

22 Unique Ways to Introduce Yourself to Your Students, In Person or Online

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *