САМОДЕЛЬНАЯ МАКЕТНАЯ ПЛАТА
Макетная плата. Наверняка многие и вас не понаслышке знают, что это такое. А кто-то недавно столкнулся с этим понятием. Если выражаться простым языком, макетная плата — это кусок текстолита или прочего электропроводящего материала, разделенный на квадратики или другие фигуры. Впоследствии на эти «квадратики» припаивают детали. На макетной плате очень удобно отлаживать схемы. Ее главное отличие от печатной платы — отсутствие отверстий, которые мешают быстро заменять нерабочую деталь при наладке схемы. Чтобы не переводить текстолит на печатную плату сначала нужно удостовериться в работоспособности схемы и собрать ее на «макетке». И если схема будет удачно повторена, то в таком случае можно уже вытравливать печатную плату и производить монтаж деталей на ней.
Итак, начинаем наш мастер-класс по самостоятельному изготовлению макетной платы. У кого есть деньги, тот купит уже готовую, из Китая, но мы с вами привыкли все делать своими руками! Сразу скажу, макетную плату вы делаете один раз — на несколько лет! То есть она многоразовая и на ней можно отладить десятки, а то и сотни электросхем. Для самостоятельного изготовления «макетки» нам понадобится небольшой кусочек любого, одностороннего или двухстороннего текстолита. Размеры вы выбираете сами, как вам удобно. Я взял примерно 10*15 см. Так же нам будет нужен резак, для того чтобы разрезать медную фольгу на квадратики. У меня такового не оказалось, поэтому использовал обычный канцелярский нож. Линейка, для предварительной разметки платы ну и паяльник, для нанесения олова на эти самые квадратики. На фото разметил текстолит на квадраты размером 5*5 мм.
Когда разметка закончена, приступаем непосредственно к разрезанию. Я прикладывал линейку плотно к текстолиту и водил ножом туда-сюда, потом можно пару раз провести острой отверткой. Так сказать для закрепления.
Дорожки полностью прорезаны. Теперь можно приступать к зачистке платы. Для этих целей использовал обыкновенную «нулевку» — очень мелкую шкурку. Давим не сильно, иначе сдерете всю медь!
После того, как плата заблестит, что означает ее очистку от грязи и окислов, поверхность необходимо дополнительно обезжирить спиртом. Если его у вас в арсенале его не имеется, то подойдет любая жиро-удаляющая жидкость типа ацетона и тому подобное.
Все — процесс приготовления завершен. Приступаем к лужению платы. Канифоль взял сухую и паяльник с плоским жалом, им удобнее.
После того, как макетная плата будет полностью покрыта оловом, ещё раз внимательно проверьте ее на предмет замыканий между «квадратиками, это обезопасит вас в будущем от не работающих схем. Так выглядит макетная плата после лужения припоем:
Засохшую канифоль специально не стал смывать, так как она защитит нашу плату от окисления и детали будут легче припаиваться. При сборке и тестировании схемы, элементы надо устанавливать ближе к центру «квадратиков», опять же во избежание замыканий.
Надеюсь, что вам будет полезен мой мастер-класс, а наладка устройств сократиться по времени, в виду того, что на макетной плате очень просто заменить детали, нежели на печатной. С вами был Alex1.
Originally posted 2019-03-04 11:28:50. Republished by Blog Post Promoter
Как пользоваться макетной платой (breadboard). Самодельные breadboard-ы
Очень часто в радиолюбительской практике возникает необходимость собрать и испытать то или иное электронное устройство для того, чтобы проверить его работоспособность и оценить функциональные возможности. Навесом это делать достаточно неудобно да и существует определенная вероятность того, что пока один радиокомпонент припаиваешь, другое в это время отваливается. Дешевые китайские макетные платы также не очень удобны, по причине низкого ресурса эксплуатации и невозможности несколько раз перепаивать радиокомпоненты. Предлагаю вашему вниманию практический пример того, как из куска фольгированного текстолита сделать макетную плату своими руками, которая прослужит радиолюбителю, как минимум пару лет.
Плата используется для моделирования, как логических схем, так и аналоговых с использованием микросхем, число ног которых может доходить до 18. В плату впаивается панелька для комфортной работы с различными микросхемами. Я обычно применяю такую плату тогда, когда надо быстро проверить работу самодельного устройства на PIC-контроллерах. Мне кажется, что эта конструкция очень удобная, если не хватает площади печатных площадок, то и ее можно увеличить, перемкнув зазоры каплей припоя.
Эта конструкция выполнена из куска стеклотекстолита, с наклепанными медными штырьками. Такие штырьки можно либо выпаять из старых радиоконструкция, либо сделать своими руками из медной проволоки диаметром приблизительно 1,2-1,3 мм. Более тонкие штырьки не подайдут, т.к сильно гнутся, а более толстые отводят слишком много тепла от жала паяльника при пайке. Эта «макетка» позволяет многократно собирать и переделывать различные радиоконструкции. Если соединения выполнить проводом из фторопластовой изоляции МГТ, то их хватит на много лет. Медную проволоку можно взять из обычного провода.
В нефольгированном стеклотекстолите проделываются отверстия, в которые продеваются полоски из жести
Все люди в мире от мала до велика знают, что перед тем, как создать что-либо, надо сначала создать макет этого «что-либо», будь это макет здания, стадиона или даже небольшого сельского туалета. В электротехнике это называют прототипом. Прототип — это работающая модель устройства. Поэтому опытные электронщики, перед тем собрать устройство по схеме в интернете, выложенной не пойми кем и не пойми зачем, должны убедиться, что эта схема реально заработает. Поэтому, схему надо быстренько тяп-наляп собрать и убедиться в ее работоспособности, то есть собрать
Виды макетных плат
Толстый картон
Давным-давно, когда еще вас не было даже и в планах, наши дедушки, а может быть и бабушки, мало ли:-), использовали
А — типа лицевая сторона, В — обратная сторона.
Все бы хорошо, но приходилось паять выводы, смотреть, чтобы ничего нигде не замкнуло, да и пока «лепишь» эту схемку можно даже ненароком растеряться:-). Да и не красиво как-то.
Самодельные макетные платы
Эти времена я еще застал на радиокружке. Тогда мы делали макетные платы сами. Брали острый резец и нарезали квадратики на фольгированном текстолите. Далее покрывали их припоем.
Если надо где-то было соединить дорожки, мы просто делали перемычки между квадратиками каплей припоя. Получалось качественно и красиво. Если было лень перепаивать радиоэлементы на нормально-разведенную плату с дорожками, просто оставляли как есть и пользовались устройством.
Одноразовые макетные платы
Производители все-таки это дело «чухнули», или как говорится в экономике, спрос рождает предложение. Стали появляться готовые макетные платки односторонние и даже двухсторонние на любой размер и вкус.
Кстати, их можно найти на Али сразу целым набором .
Отверстия очень удобно подобраны по размерам выводов микросхем, а также других радиоэлементов. Поэтому очень удобно на таких макетных платах собирать и проверять радиоэлектронное устройство. Да и стоят они недорого.
Обратная сторона таких макетных плат уже с готовыми устройствами будет выглядеть приблизительно вот так:
В чем же минусы этих макетных плат? Лучше все-таки их использовать единожды, так как при многоразовом использовании у них могут отлетать пятачки, что приведет к ее непригодности.
Беспаечные макетные платы
Прогресс шагает своим уверенным шагом по нашему миру, и вот на рынке появились
Стоят они чуть подороже, чем простые одноразовые макетные платы, но честно говоря, оно того стоит.
Они очень удобны в плане установки деталей, а также их связи между собой. В такие макетные платы можно вставлять провода не более, чем 0,7 мм и не менее, чем 0,4 мм в диаметре. Чтобы узнать, какие отверстия и дорожки между собой звонятся, проверяем все это дело . Для конструирования больших схем (вдруг вы будете разрабатывать какой-нибудь блок управления адронным коллайдером) можно добавлять такие же макетные платы впритык. Для этого есть специальные ушки. Одно движение, и макетная плата станет чуток больше.
Ну какая же макетная плата может быть без соединительных проводов? Соединительные провода, или джамперы (
Чуть позже с Алиэкспресса я купил вот такие джамперы. Они намного удобнее, чем проволочные:
Здесь все просто, берем джампер и вставляем его легким движением руки
Давайте соберем простейшую схемку включения светодиода через кнопочку на макетной плате
Вот так она будет выглядеть
Выставляем на Блоке питания 5 Вольт и нажимаем на кнопочку. Светодиод загорается ярко-зеленым цветом. Значит схема работоспособная, и мы ее можем использовать по своему усмотрению.
Заключение
Беспаечные макетные платы завоевывают мир. Любую схему на них можно собрать и разобрать за считанные минуты. После сборки и проверки схемы на макетной плате, можно смело приступать к ее сборке в чистом виде. Думаю, у каждого уважаемого себя электронщика должна быть такая макетная. Но имейте ввиду, схемы с большим током в цепи лучше все таки на ней не проверять, так как контакты макетные платки могут просто-напросто выгореть — закон Джоуля-Ленца . Удачи вам в разработке и конструировании радиоэлектронных устройств!
Где купить макетную плату
Макетную плату с гибкими джамперами и даже с готовым блоком питания 5 Вольт можно сразу купить набором на Алиэкспрессе. Выбирайте на ваш вкус и цвет!
Если же не хотите , то проще всего будет купить одноразовую макетную плату и собрать на ней готовое устройство:
В распоряжении имеется заводская макетная плата вот такого типа:
Она не нравится мне по двум причинам:
1) При монтаже деталей приходится постоянно вертеть туда-сюда, чтоб сначала поставить радиодеталь, а потом припаять проводник. На столе ведёт себя неустойчиво.
2) После демонтажа отверстия остаются залиты припоем, перед следующим использованием платы приходится их прочищать.
Поискав в интернете различные виды макетных плат, которые можно сделать своими руками и из доступных материалов, наткнулся на несколько интересных вариантов, один из которых решил повторить.
Вариант №1Цитата с форума: «Я, например многие годы, использую вот такие самодельные макетные платы. Собраны из куска стеклотекстолита, в который наклёпаны медные штырьки. Такие штырьки можно либо купить на радиорынке, либо изготовить самому из медной проволоки диаметром 1,2-1,3 мм. Более тонкие штырьки слишком сильно гнутся, а более толстые забирают слишком много тепла при пайке. Эта «макетка» позволяет многократно использовать самые затрапезные радиоэлементы. Соединения лучше делать проводом во фторопластовой изоляции МГТФ. Тогда однажды изготовленных концов хватит на всю жизнь.»
Думаю, что такой вариант подойдёт мне больше всего. Но стеклотекстолита и готовых медных штырьков в наличии не имеется, так что сделаю немного по-другому.
Медную проволоку добыл из провода:
Зачистил изоляцию и при помощи нехитрого ограничителя наделал штырьков одинаковой длины:
Диаметр штырьков — 1 мм .
За основу платы взял фанеру толщиной 4 мм (чем толще, тем крепче будут держаться штырьки ):
Чтобы не мучиться с разметкой, скотчем наклеил на фанеру разлинованную бумагу:
И просверлил отверстия с шагом 10 мм сверлом диаметром 0.9 мм :
Получаем ровные ряды отверстий:
Теперь нужно забить штырьки в отверстия. Так как диаметр отверстия меньше диаметра штырька, соединение получится внатяг и штырь будет плотно зафиксирован в фанере.
При забивании штырьков под низ фанеры нужно подложить металлический лист. Штырьки забиваются лёгкими движениями, и когда звук изменится, значит, штырь достиг листа.
Чтобы плата не ёрзала, делаем ножки:
Приклеиваем:
Макетная плата готова!
Таким же методом можно сделать плату для поверхностного монтажа (фото из интернета, радиоприёмник):
Ниже для полноты картины я приведу несколько годных конструкций, найденных в интернете.
Вариант №2В отрезок доски забиваются канцелярские кнопки с металлической головкой:
Осталось только залудить их. Омеднёные кнопки лудятся без проблем, а вот со стальными .
Всех приветствую. Речь сегодня пойдет о макетной плате. Радиолюбители поймут без лишних вопросов, поскольку через поделки на макетных платах прошли практически все в начале своего становления. Для остальных немного поподробнее. Макетная плата нужна для временного монтажа радиодеталей при отладке электронных схем и решения проблем, которые возникают на стадии изготовления устройства.
Во времена моей молодости и тотального дефицита, макетные платы изготавливали самостоятельно из куска фольгированного гетинакса или стеклотекстолита расчерчивая в клеточку медное покрытие резаком, что бы получилось много площадок, к которым можно было бы припаять контакты радиодеталей согласно схеме. Это было оправдано, поскольку изготовить плату самостоятельно было достаточно трудоемко. Случалось даже так, что самоделки оставались в первоначальном варианте на макетной плате, поскольку внутри корпуса никто не видит, как топорно все изготовлено, а схема работает и первоначальная цель достигнута. Экономия времени и ресурсов — налицо.
Самодельная макетная плата часто выглядела так:
Но время шло, прогресс не стоял на месте. С ростом навыков схемы становились сложнее, количество выводов и точек пайки увеличивалось пропорционально и самодельные макетные платы (макетки) уже не закрывали проблему в полном объеме. Вот тут и начали появляться промышленные макетные платы, вернее они существовали и раньше, но доступны были не всем. И если для ребят с радиокружка вначале сделать радиоприемник или цветомузыку было достижением, то позже схемы с цифровой логикой в реализации становились еще сложнее. Ведь приходилось сверлить много мелких отверстий и рисовать проводники лаком для ногтей, а в завершении травить в медном купоросе. И если были допущены ошибки при изготовлении, то внешний вид платы стремительно скатывался к ужасному.
Это тоже макетная плата, но уже промышленного изготовления:
В обилии проводов угадывается какой то клон спектрума.
На данный момент электронщикам доступны различные современные технологии изготовления плат, в том числе и заказы мелких серий на заводах за сравнительно невысокую цену. Но макетные платы в любом случае занимают свою нишу и рано или поздно ими приходится пользоваться.
Заказ и доставка
Во общем то в макетной плате(далее макетке) нуждался не сильно, поскольку изготовлением электроники занимаюсь не профессионально и исключительно для себя. Но увидев случайно в продаже, решил заказать. Плата была заказана в ноябре прошлого года, пришла в простом пакете без пупырок, примерно за месяц. Внутри ничего не было кроме самой платы. Повреждений учитывая хрупкость гетинакса не было.
Выглядит она так:
Цвет медной фольги приятный, почти натуральный. Дорожки макетной платы покрыты защитным составом напоминающим слабый раствор канифоли в спирте. По крайней мере при пайке количество дыма минимально и следов горелой канифоли не наблюдается.
Размеры заявлены 9х15 см, по факту так и есть, толщина 1 мм, что на мой взгляд маловато учитывая свойства материала. Слой фольги имеет толщину примерно 20 мкм.
последняя дата поверки =)
Мой микрометр 31 год как не поверялся, поэтому показания условные. В производстве минимальная толщина фольги 18 мкм, что соответствует самому дешевому варианту.
На плате 30 рядов по 48 отверстий что в итоге дает 1440. Последние выдавлены в процессе формирования платы. Сверлить такое количество отверстий экономически нецелесообразно. Диаметр отверстий 1 мм. К сожалению детали с выводами 0.7 и 0.8 мм при пайке приходится фиксировать, а то норовят выпасть.
Контактные площадки в виде восьмиугольника размер 2 мм. Металлизации в отверстиях нет. Поскольку ресурс платы минимальный и цена с металлизацией будет неоправданно завышена.
Основа макетной платы гетинакс
Гетинакс — электроизоляционный слоистый прессованный материал, имеющий бумажную основу, пропитанную фенольной или эпоксидной смолой.
В основном используется как основа заготовок печатных плат. Материал обладает низкой механической прочностью, легко обрабатывается и имеет относительно низкую стоимость. Широко используется для дешёвого изготовления плат в низковольтной бытовой аппаратуре, так как в разогретом состоянии допускает штамповку, благодаря чему получается плата любой формы вместе со всеми отверстиями.
Сразу вспоминаются платы от телевизоров. Из за низкой стойкости к механическим и тепловым нагрузкам платы на основе гетинакса имеют меньшую ремонтопригодность и в некоторых случаях даже являлись источниками пожара…
Пробное применение:
Использую вот такие ингредиенты
Для пайки
Припой с канифолью внутри, канифоль натуральная, паяльник 25 Вт, температура жала примерно 330-350 градусов без регулировки.
И для резки гравер дефорт+набор китайских фрез
фрезы конечно жуткие в плане качества, купил на новый год у JD, не удержался.
Выдался повод собрать блок питания для генератора сигналов +5В +12В-12В. Сначала хотел переделать зарядку от мобильника путем домотки обмоток, но не нашел ни одного с нормальным зазором под провода. Поэтому выбор пал на макетку.
Трансформатор неизвестной породы сыграл со мной злую шутку — поскольку шаг отверстий на плате 2.54мм — дюймовый, пришлось пересверливать отверстия по месту. Плата сверлится легко, И даже тупое сверло особо не замедляет процесс сверления, хотя выбивает с обратной стороны куски платы.
Несколько фото готового блока питания. Как раз тот случай, когда решил плату не изготавливать.
Стабилизатор 7912 сыграл со мной злую шутку — цоколевка выводов не соответствует 7812. Из за этого я спалил диодный мост кц407. Осознав свою ошибку произвел перепайку. При перепайке у меня отвалилась одна контактная площадка. Так что качество платы — пару раз смакетировать и перейти на новую.
Контактные площадки лудил практически без канифоли, той, что в припое хватило.
Сколько не пробовал, никак не получалось сделать капельку на контакте, всегда припой тянется за паяльником. Возможно температуры не хватает.
Пробую отрезать
Вроде и обороты высокие, но гетинакс крошится. Впрочем пыль не такая вредная как у стеклотекстолита.
Почему купил именно эту макетку а не более продвинутые — для редкого применения и что бы выкинуть было не жалко. Металлизацией не пользуюсь практически. Макетная плата без пайки тоже куплена, но пока лежит без применения. У нее по сравнению с обозреваемой недостаток — требуются выводы нужной длины и формованые. А поскольку у меня огромные запасы старых и в том числе б/у деталей (ругаю себя постоянно выкинуть все надо), то пайка единственный правильный вариант.
Выводы: бюджетная макетка. Если нет в запасе парочку можно иметь.
А котэ то где?
Планирую купить +13 Добавить в избранное Обзор понравился +24 +39Печатная плата – это диэлектрическое основание, на поверхности и в объеме которого нанесены токопроводящие дорожки в соответствии с электрической схемой. Печатная плата предназначена для механического крепления и электрического соединения между собой методом пайки выводов, установленных на нее электронных и электротехнических изделий.
Операции по вырезанию заготовки из стеклотекстолита, сверлению отверстий и травление печатной платы для получения токоведущих дорожек в независимости от способа нанесения рисунка на печатную плату выполняются по одинаковой технологии.
Технология ручного способа нанесения
дорожек печатной платы
Подготовка шаблона
Бумага, на которой рисуется разводка печатной платы обычно тонкая и для более точного сверления отверстий, особенно в случае использования ручной самодельной дрели, чтобы сверло не вело в сторону, требуется сделать ее более плотной. Для этого нужно приклеить рисунок печатной платы на более плотную бумагу или тонкий плотный картон с помощь любого клея, например ПВА или Момент.
Вырезание заготовки
Подбирается заготовка фольгированного стеклотекстолита подходящего размера, шаблон печатной платы прикладывается к заготовке и обрисовывается по периметру маркером, мягким простым карандашом или нанесением риски острым предметом.
Далее стеклотекстолит режется по нанесенным линиям с помощью ножниц по металлу или выпиливается ножовкой по металлу. Ножницами отрезать быстрее, и нет пыли. Но надо учесть, что при резке ножницами стеклотекстолит сильно изгибается, что несколько ухудшает прочность приклейки медной фольги и если потребуется перепайка элементов, то дорожки могут отслоиться. Поэтому если плата большая и с очень тонкими дорожками, то лучше отрезать с помощью ножовки по металлу.
Приклеивается шаблон рисунка печатной платы на вырезанную заготовку с помощью клея Момент, четыре капли которого наносятся по углам заготовки.
Так как клей схватывается всего за несколько минут, то сразу можно приступать к сверлению отверстий под радиодетали.
Сверление отверстий
Сверлить отверстия лучше всего с помощью специального мини сверлильного станка твердосплавным сверлом диаметром 0,7-0,8 мм. Если мини сверлильного станка в наличии нет, то можно просверлить отверстия маломощной дрелью простым сверлом. Но при работе универсальной ручной дрелью количество переломанных сверл будет зависеть от твердости Вашей руки. Одним сверлом точно не обойдетесь.
Если сверло зажать не удается, то можно его хвостовик обернуть несколькими слоями бумаги или одним слоем наждачной шкурки. Можно на хвостовик намотать плотно виток к витку тонкой металлической проволочки.
После окончания сверления проверяется, все ли просверлены отверстия. Это хорошо видно, если посмотреть на печатную плату на просвет. Как видно, пропущенных отверстий нет.
Нанесение топографического рисунка
Для того, чтобы места фольги на стеклотекстолите, которые будут токопроводящими дорожками, защитить при травлении от разрушения, их необходимо покрыть маской, устойчивой к растворению в водном растворе. Для удобства рисования дорожек, их лучше предварительно наметить с помощью мягкого простого карандаша или маркера.
Перед нанесением разметки нужно обязательно удалить следы клея Момент, которым приклеивался шаблон печатной платы. Так как клей не сильно затвердел, то его легко можно удалить, скатав пальцем. Поверхность фольги так же нужно обязательно обезжирить с помощью ветоши любым средством, например ацетоном или уайт-спиртом (так называется очищенный бензин), можно и любым моющим средством для мытья посуды, например Ферри.
После разметки дорожек печатной платы можно приступать к нанесению их рисунка. Для рисования дорожек хорошо подходит любая водостойкая эмаль, например алкидная эмаль серии ПФ, разведенная до подходящей консистенции растворителем уайт-спиртом. Рисовать дорожки можно разными инструментами – стеклянным или металлическим рейсфедером, медицинской иглой и даже зубочисткой. В этой статье я расскажу, как рисовать дорожки печатных плат с помощью чертежного рейсфедера и балеринки, которые предназначены для черчения на бумаге тушью.
Раньше компьютеров не было и все чертежи чертили простыми карандашами на ватмане и затем переводили тушью на кальку, с которой с помощью копировальных аппаратов делали копии.
Нанесение рисунка начинают с контактных площадок, которые рисуют балеринкой. Для этого нужно отрегулировать зазор раздвижных губок рейсфедера балеринки до требуемой ширины линии и для установки диаметра круга выполнить регулировку вторым винтом отодвинув рейсфедер от оси вращения.
Далее рейсфедер балеринки на длину 5-10 мм наполняется с помощью кисточки краской. Для нанесения защитного слоя на печатную плату лучше всего подходит краска марки ПФ или ГФ, так как она медленно высыхает и позволяет спокойно работать. Краску марки НЦ тоже можно применять, но работать с ней сложно, так как она быстро сохнет. Краска должна хорошо ложиться и не растекаться. Перед рисованием красу нужно развести до жидкой консистенции, добавляя в нее понемногу при интенсивном перемешивании подходящий растворитель и пробуя рисовать на обрезках стеклотекстолита. Для работы с краской удобнее всего ее налить во флакон от маникюрного лака, в закрутке которого установлена кисточка, устойчивая к растворителям.
После регулировки рейсфедера балеринки и получения требуемых параметров линий можно приступить к нанесению контактных площадок. Для этого острая часть оси вставляется в отверстие и основание балеринки проворачивается по кругу.
При правильной настройке рейсфедера и нужной консистенции краски вокруг отверстий на печатной плате получаются окружности идеально круглой формы. Когда балеринка начинает плохо рисовать, из зазора рейсфедера тканью удаляются остатки подсохшей краски и рейсфедер заполняется свежей. чтобы обрисовать все отверстия на этой печатной плате окружностями понадобилось всего две заправки рейсфедера и не более двух минут времени.
Когда круглые контактные площадки на плате нарисованы, можно приступать к рисованию токопроводящих дорожек с помощью ручного рейсфедера. Подготовка и регулировка ручного рейсфедера не отличается от подготовки балеринки.
Единственное, что дополнительно понадобится, так это плоская линейка, с приклеенными на одной из ее сторон по краям кусочками резины, толщиной 2,5-3 мм, чтобы линейка при работе не скользила и стеклотекстолит, не касаясь линейки, мог свободно проходить под ней. Лучше всего подходит в качестве линейки деревянный треугольник, он устойчив и одновременно может служить при рисовании печатной платы опорой для руки.
Чтобы печатная плата при рисовании дорожек не скользила, желательно ее разместить на лист наждачной бумаги, представляющий собой два склепных между собой бумажными сторонами наждачных листа.
Если при рисовании дорожек и окружностей они соприкоснулись, то не стоит принимать никаких мер. Нужно дать краске на печатной плате подсохнуть до состояния, когда она не будет пачкать при прикосновении и с помощью острия ножа удалить лишнюю часть рисунка. Чтобы краска быстрее высохла плату нужно расположить в теплом месте, например в зимнее время на батарею отопления. В летнее время года — под лучи солнца.
Когда рисунок на печатной плате полностью нанесен и исправлены все дефекты можно переходить к ее травлению.
Технология нанесения рисунка печатной платы
с помощью лазерного принтера
При печати на лазерном принтере происходит перенос за счет электростатики образованного тонером изображения с фото барабана, на котором лазерный луч нарисовал изображение, на бумажный носитель. Тонер удерживается на бумаге, сохраняя изображение, только за счет электростатики. Для закрепления тонера бумага прокатывается между валиками, один из которых является термопечкой, разогретой до температуры 180-220°C. Тонер расплавляется и проникает в текстуру бумаги. После остывания тонер отвердевает и прочно удерживается на бумаге. Если бумагу опять нагреть до 180-220°C, то тонер опять станет жидким. Это свойство тонера и используется для переноса изображения токоведущих дорожек на печатную плату в домашних условиях.
После того, как файл с рисуночком печатной платы готов, необходимо его распечатать с помощью лазерного принтера на бумажный носитель. Обратите внимание, изображение рисунка печатной платы для данной технологии должно иметь вид со стороны установки деталей! Струйный принтер для этих целей не подходит, так как работает на другом принципе.
Подготовка бумажного шаблона для переноса рисунка на печатную плату
Если напечатать рисунок печатной платы на обыкновенной бумаге для офисной техники, то из-за пористой ее структуры, тонер глубоко проникнет в тело бумаги и при переносе тонера на печатную плату, большая часть его останется в бумаге. В дополнение будут сложности с удалением бумаги с печатной платы. Придется ее долго размачивать в воде. Поэтому для подготовки фотошаблона необходима бумага, не имеющая пористую структуру, например фотобумага, подложка от самоклеящихся пленок и этикеток, калька, страницы от глянцевых журналов.
В качестве бумаги для печати рисунка печатной платы я использую кальку из старых запасов. Калька очень тонкая и печатать шаблон непосредственно на ней невозможно, она в принтере заминается. Для решения этой проблемы, нужно перед печатью на кусок кальки требуемого размера по углам нанести по капельке любого клея и приклеить на лист офисной бумаги А4.
Такой прием позволяет распечатывать рисунок печатной платы даже на самой тонкой бумаге или пленке. Для того, чтобы толщина тонера рисунка была максимальной, перед печатью, нужно выполнить настройку «Свойств принтера», отключив режим экономной печати, а если такая функция не доступна, то выбрать самый грубый тип бумаги, например картон или что то подобное. Вполне возможно с первого раза хороший отпечаток не получится, и придется немного поэкспериментировать, подобрав наилучший режим печати лазерного принтера. В полученном отпечатке рисунка дорожки и контактные площадки печатной платы должны быть плотными без пропусков и смазывания, так как ретушь на данном технологическом этапе бесполезна.
Осталось обрезать кальку по контуру и шаблон для изготовления печатной платы будет готов и можно приступать к следующему шагу, переносу изображения на стеклотекстолит.
Перенос рисунка с бумаги на стеклотекстолит
Перенос рисунка печатной платы является самым ответственным этапом. Суть технологии проста, бумага, стороной напечатанного рисунка дорожек печатной платы прикладывается к медной фольге стеклотекстолита и с большим усилием прижимается. Далее этот бутерброд разогревается до температуры 180-220°C и затем охлаждается до комнатной. Бумага отдирается, а рисунок остается на печатной плате.
Некоторые умельцы предлагают переносить рисунок с бумаги на печатную плату, используя электроутюг. Я пробовал такой способ, но результат получался нестабильным. Сложно обеспечить одновременно нагрев тонера до нужной температуры и равномерный прижим бумаги ко всей поверхности печатной платы при затвердевании тонера. В результате рисунок переносится не полностью и остаются пробелы в рисунке дорожек печатной платы. Возможно, утюг не достаточно нагревался, хотя регулятор был выставлен на максимальный нагрев утюга. Вскрывать утюг и перенастраивать терморегулятор не хотелось. Поэтому я воспользовался другой технологией, менее трудоемкой и обеспечивающей сто процентный результат.
На вырезанную в размер печатной платы и обезжиренную ацетоном заготовку фольгированного стеклотекстолита приклеил по углам кальку с напечатанным на ней рисунком. На кальку сверху положил, для более равномерного прижима, пяток листиков офисной бумаги. Полученный пакет положил на лист фанеры и сверху накрыл листом такого же размера. Весь этот бутерброд зажал с максимальной силой в струбцинах.
Осталось нагреть сделанный бутерброд до температуры 200°C и остудить. Для нагрева идеально подходит электродуховка с регулятором температуры. Достаточно поместить сотворенную конструкцию в шкаф, дождаться набора заданной температуры и через полчаса извлечь плату для остывания.
Если электродуховки в распоряжении нет, то можно воспользоваться и газовой духовкой, отрегулировав температуру ручкой подачи газа по встроенному термометру. Если термометра нет или он неисправен, то могут помочь женщины, подойдет положение ручки регулятора, при котором пекут пироги.
Так как концы фанеры покоробило, на всякий случай зажал их дополнительными струбцинами. чтобы избежать подобного явления, лучше печатную плату зажимать между металлическими листами толщиной 5-6 мм. Можно просверлить в их углах отверстия и зажимать печатные платы, стягивать пластины с помощью винтов с гайками. М10 будет достаточно.
Через полчаса конструкция остыла достаточно, чтобы тонер затвердел, плату можно извлекать. При первом же взгляде на извлеченную печатную плату становится понятно, что тонер перешел с кальки на плату отлично. Калька плотно и равномерно прилегала по линиям печатных дорожек, кольцам контактных площадок и буквам маркировки.
Калька легко оторвалась практически от всех дорожек печатной платы, остатки кальки были удалены с помощью влажной ткани. Но все, же не обошлось без пробелов в нескольких местах на печатных дорожках. Такое может случиться в результате неравномерности печати принтера или оставшейся грязи или коррозии на фольге стеклотекстолита. Пробелы можно закрасить любой водостойкой краской, маникюрным лаком или заретушировать маркером.
Для проверки пригодности маркера для ретуши печатной платы, нужно нарисовать ним на бумаге линии и бумагу смочить водой. Если линии не расплывутся, значит, маркер для ретуши подходит.
Травить печатную плату в домашних условиях лучше всего в растворе хлорного железа или перекиси водорода с лимонной кислотой. После травления тонер с печатных дорожек легко удаляется тампоном, смоченным в ацетоне.
Затем сверлятся отверстия, лудятся токопроводящие дорожки и контактные площадки, запаиваются радиоэлементы.
Такой вид приняла печатная плата с установленными на ней радиодеталями. Получился блок питания и коммутации для электронной системы, дополняющий обыкновенный унитаз функцией биде .
Травление печатной платы
Для удаления медной фольги с незащищенных участков фольгированного стеклотекстолита при изготовлении печатных плат в домашних условиях радиолюбители обычно используют химический способ. Печатная плата помещается в травильный раствор и за счет химической реакции медь, незащищенная маской, растворяется.
Рецепты травильных растворов
В зависимости от доступности компонентов радиолюбители применяют один из растворов, приведенных в таблице ниже. Травильные растворы расположены в порядке популярности их применения радиолюбителями в домашних условиях.
Наименование раствора | Состав | Количество | Технология приготовления | Достоинства | Недостатки |
---|---|---|---|---|---|
Перекись водорода плюс лимонная кислота | Перекись водорода (H 2 O 2) | 100 мл | В 3% растворе перекиси водорода растворить лимонную кислоту и поваренную соль | Доступность компонентов, высокая скорость травления, безопасность | Не хранится |
Лимонная кислота (C 6 H 8 O 7) | 30 г | ||||
Поваренная соль (NaCl) | 5 г | ||||
Водный раствор хлорного железа | Вода (H 2 O) | 300 мл | В теплой воде растворить хлорное железо | Достаточная скорость травления, повторное использование | Невысокая доступность хлорного железа |
Хлорное железо (FeCl 3) | 100 г | Перекись водорода плюс соляная кислота | Перекись водорода (H 2 O 2) | 200 мл | В 3% раствор перекиси водорода влить 10% соляную кислоту | Высокая скорость травления, повторное использование | Требуется высокая аккуратность |
Соляная кислота (HCl) | 200 мл | ||||
Водный раствор медного купороса | Вода (H 2 O) | 500 мл | В горячей воде (50-80°С) растворить поваренную соль, а затем медный купорос | Доступность компонентов | Ядовитость медного купороса и медленное травление, до 4 часов |
Медный купорос (CuSO 4) | 50 г | ||||
Поваренная соль (NaCl) | 100 г | ||||
Травить печатные платы в металлической посуде не допускается . Для этого нужно использовать емкость из стекла, керамики или пластика. Утилизировать отработанный травильный раствор допускается в канализацию.
Травильный раствор из перекиси водорода и лимонной кислоты
Раствор на основе перекиси водорода с растворенной в ней лимонной кислотой является самым безопасным, доступным и быстро работающим. Из всех перечисленных растворов по всем критериям это лучший.
Перекись водорода можно приобрести в любой аптеке. Продается в виде жидкого 3% раствора или таблеток под названием гидроперит. Для получения жидкого 3% раствора перекиси водорода из гидроперита нужно в 100 мл воды растворить 6 таблеток весом 1,5 грамма.
Лимонная кислота в виде кристаллов продается в любом продуктовом магазине, расфасованная в пакетиках весом 30 или 50 грамм. Поваренная соль найдется в любом доме. 100 мл травильного раствора хватит на удаление медной фольги толщиной 35 мкм с печатной платы площадью 100 см 2 . Отработанный раствор не хранится и повторному использованию не подлежит. Кстати, лимонную кислоту можно заменить уксусной, но из-за ее едкого запаха травить печатную плату придется на открытом воздухе.
Травильный раствор на основе хлорного железа
Вторым по популярности травильным раствором является водный раствор хлорного железа. Ранее он был самым популярным, так как на любом промышленном предприятии хлорное железо было легко достать.
Травильный раствор не требователен к температуре, травит достаточно быстро, но скорость травления снижается по мере расходования хлорного железа в растворе.
Хлорное железо очень гигроскопично и поэтому из воздуха быстро впитывает воду. В результате на дне банки появляется желтая жидкость. Это не влияет на качество компонента и такое хлорное железо пригодно для приготовления травильного раствора.
Если использованный раствор хлорного железа хранить в герметичной таре, то его можно использовать многократно. Подлежит регенерации, достаточно в раствор насыпать железных гвоздей (они сразу покроются рыхлым слоем меди). При попадании на любые поверхности оставляет трудноудаляемые желтые пятна. В настоящее время раствор хлорного железа для изготовления печатных плат применяют реже в связи с его дороговизной.
Травильный раствор на основе перекиси водорода и соляной кислоты
Отличный травильный раствор, обеспечивает высокую скорость травления. Соляную кислоту при интенсивном помешивании вливают в 3% водный раствор перекиси водорода тоненькой струйкой. Вливать перекись водорода в кислоту недопустимо! Но из-за наличия в травильном растворе соляной кислоты при травлении платы нужно соблюдать большую осторожность, так как раствор разъедает кожу рук и портит все, на что попадает. По этой причине травильный раствор с соляной кислотой в домашних условиях использовать не рекомендуется.
Травильный раствор на основе медного купороса
Метод изготовления печатных плат с применение медного купороса обычно используют в случае невозможности изготовления травильного растворов на основе других компонентов из-за их недоступности. Медный купорос является ядохимикатом и широко применяется для борьбы с вредителями в сельском хозяйстве. В дополнение время травления печатной платы составляет до 4 часов, при этом необходимо поддерживать температуру раствора 50-80°С и обеспечить постоянную смену раствора у стравливаемой поверхности.
Технология травления печатных плат
Для травления платы в любом из вышеперечисленных травильных растворов подойдет стеклянная, керамическая или пластиковая посуда, например от молочных продуктов питания. Если под рукой подходящего размера емкости не оказалось, то можно взять любую коробку из плотной бумаги или картона подходящего размера и выстелить ее внутренность полиэтиленовой пленкой. В емкость наливается травильный раствор и на его поверхность аккуратно рисунком вниз кладется печатная плата. За счет сил поверхностного натяжения жидкости и небольшого веса плата будет плавать.
Для удобства к центру платы клеем момент можно приклеить пробку от пластиковой бутылки. Пробка одновременно будет служить ручкой и поплавком. Но тут есть опасность, что на плате образуются пузырьки воздуха и в этих местах медь не вытравится.
Чтобы обеспечить равномерное вытравливание меди можно положить печатную плату на дно емкости вверх рисунком и периодически покачивать ванночку рукой. Через некоторое время, в зависимости от травильного раствора, начнут появляться участки без меди, а затем медь растворится полностью на всей поверхности печатной платы.
После окончательного растворения меди в травильном растворе печатную плату извлекают из ванночки и тщательно промывают под струей проточной воды. Тонер удаляется с дорожек ветошью, смоченной в ацетоне, а краска хорошо удаляется ветошью, смоченной в растворителе, который добавлялся в краску для получения нужной ее консистенции.
Подготовка печатной платы к монтажу радиодеталей
Следующий шаг, это подготовка печатной платы к монтажу радиоэлементов. После снятия с платы краски, дорожки нужно обработать круговыми движениями мелкой наждачной бумагой. Увлекаться не нужно, потому что медные дорожки тонкие и можно легко их сточить. Достаточно всего нескольких проходов абразивом со слабым прижимом.
Далее токоведущие дорожки и контактные площадки печатной платы покрываются спирто-канифольным флюсом и лудятся мягким припоем эклектическим паяльником. чтобы отверстия на печатной плате, не затягивались припоем, его на жало паяльника нужно брать немного.
После завершения изготовления печатной платы, останется только вставить в предназначенные позиции радиодетали и запаять их выводы к площадкам. Перед пайкой ножки деталей нужно обязательно смочить спирто-канифольным флюсом. Если ножки радиодеталей длинные, то их нужно перед пайкой обрезать бокорезами до длины выступания над поверхностью печатной платы 1-1,5 мм. После окончания монтажа деталей нужно удалить остатки канифоли с помощью любого растворителя — спирта, уайт-спирта или ацетона. Они все успешно растворяю канифоль.
На воплощение этой простой схемы емкостного реле от разводки дорожек для изготовления печатной платы до создания действующего образца ушло не более пяти часов, гораздо меньше, чем на верстку этой страницы.
Изготовление печатной платы с помощью утюга и перекиси
Рубрика: Статьи обо всем Опубликовано 02.02.2020 · Комментарии: 0 · На чтение: 8 мин · Просмотры:Post Views: 848
Любой желающий может сделать печатную плату для своего устройства в домашних условиях.Популярный и дешевый метод — это ЛУТ (Лазерно-утюжная технология). В этой статье подробно описан данный метод.
Что потребуется
Лазерный принтер (только лазерный, струйный не подойдет), утюг, пара дощечек, бумага, пластиковые контейнеры, наждачка, шуруповерт или бормашина, и раствор для травления.
От чего зависит качество
Качество технологии ЛУТ зависит от тонера и принтера. Еще важно то, с помощью какой бумаги переносится печатная плата на текстолит. На успех влияет и толщина текстолита.
Пошаговый процесс
В каждом этапе подробные комментарии и фотографии с примерами.
Печать дорожек на бумаге
Открываем схему платы. В статье используется программа Sprint-Layout и схема мультивибратора на транзисторах.
Печать схемы на бумагу
Используйте максимальное пространство для печати, чтобы не перепечатывать схему снова и приготовить запасные трафареты.
Не нужно зеркалить плату, если она чертилась со стороны радиодеталей. Так же убираем макросы и другие слои, нам нужны только дорожки и граница платы.
Качество перенесенных дорожек на текстолит зависит и от выбранного типа бумаги.
Существует несколько вариантов:
- Обычная бумага;
- Глянцевая бумага. Можно использовать из любого журнала;
- Подложка от самоклеющихся обоев. Отлично отдает тоннр на текстолит;
- Бумага с мягким покрытием. Такая продается на Aliexpress.
Офисная бумага А4 толстая для ЛУТ. Тонер хуже от нее отходит.
Пример неудачного переноса платы на текстолит. Половина дорожек отсутствует.
Пример плохого переноса
С помощью офисной бумаги действительно можно делать печатные платы, но нужен хороший принтер и тонер. Такая бумага капризная, и если вы плохо греете, или перегреете плату, то ничего не получится.
Глянцевая отличается от офисной толщиной. Ее недостаток — она застревает в принтере во время печати. Глянцевая бумага еще легко рвется, и ее легко перегреть, чем офисную.
Подложка от самоклеющейся бумаги и распечатанные платы
Подложка от самоклеющихся обоев обрела популярность среди радиолюбителей. Быстро отдает тонер на текстолит, но и распечатать на ней печатную плату довольно трудно.
Речь идет о мягкой поверхности, с которой снимаются самоклеющиеся обои. Также такая подложка иногда застревает в принтере во время печати.
Не имеет особого смысла вырезать целый формат А4 из таких обоев. В таком формате бумага выскользнет из под фотобарабана во время печати. Используйте небольшие кусочки подложки, чтобы можно было их приклеить к обычной бумаге.
Нельзя использовать жидкий клей и другие жидкие материалы. Вы можете повредить фотобарабан по время печати, и на нем останутся следы. Приклеить можно и самими обоями.
Бумага с мягким покрытием продается на Aliexpress. Она желтого цвета. Аналогично глянцевой бумаге застревает в принтере. Все зависит от вашей модели принтера.
Распечатка и подготовка
Отрезать текстолит можно с помощью ножовки по металлу, ножницами или отрезными дисками.
Подготовка и разметка текстолита
Отрезаем плату с запасом, чтобы было удобнее наносить дорожки во время нагрева утюгом.
Нанесение дорожек
Понадобится утюг, дощечка, бумага и тара с водой.
Разогреваем утюг до 100 °C, и на деревянную дощечку кладем текстолит. Почему деревянную? Она быстро нагревается и медленно отдает тепло в окружающую среду.
Ставим разогретый утюг на текстолит. Держим в течение 20 секунд. Горячий текстолит схватит бумагу.
Греем текстолит
Кладем трафарет на разогретый текстолит. Он частично прилипает.
Кладем на текстолит один лист бумаги и гладим утюгом плату в течении одной или двух минут. Бумага нужна для снижения перегрева. Гладить надо аккуратно, без резких движений.
Нанесение дорожек
Оставляем плату остывать на пять минут, чтобы тонер не отлип от меди. Помещаем ее в тару с водой.
Удаление бумаги с платы
Также ждем около пяти минут. С помощью пальцев или губки, снимем слой бумаги.
Ни в коем случае не снимайте бумагу ногтями. Так можно содрать тонер с меди.
Удаляем границы на плате. Они не нужны со стороны дорожек.
Восстановление контактов
Дорожки можно восстановить перфорированным маркером или лаком для ногтей. Нанесите на поврежденный участок лак или маркер.
Восстановление дорожек лаком для ногтей
Это защитит медь во время травления в растворе. Дождитесь полного высыхания лака, чтобы он был устойчив к воде.
Все готово к следующему этапу.
Травление платы
Основные и популярные методы:
- Хлорное железо. Можно использовать повторно. При неосторожном обращении оставляет следы на одежде и коже;
- Медный купорос. Продается в садоводческих магазинах. Медленно травит плату;
- Соляная кислота. Быстрый и опасный вариант. К тому же, кислоту трудно достать. Выделяет опасные токсины;
- Электролиз. Самый долгий и малоэффективный способ;
- Перекись водорода. Доступный и эффективный раствор. Основной недостаток — нельзя использовать повторно. Во время травления образуются осадки, которые замедляют скорость травления.
Компоненты для травления
В этой статье мы будем использовать метод с перекисью. Для платы площадью 100 см достаточно 100 миллилитров 3% переписи водорода, 30 грамм лимонной кислоты и 5 грамм поваренной соли.
Начинается процесс травления.
В пластиковой таре смешиваем все компоненты до полного растворения, и кладем плату в раствор.
Процесс травления
Травить печатные платы надо в проветриваемом помещении. При травлении выделяются ядовитые пары меди.
Чтобы процесс травления не замедлялся, перемешивайте раствор.Как ускорить травление
Для повышения скорости травления меди, надо подогреть раствор. Это катализатор химической реакции.
Ватной палочкой перемешиваем раствор для лучшего травления
Подогрев раствора с помощью второго контейнера
Не надо наливать кипяток в сам раствор. Налейте кипяток в другую тару, и поставьте на нее тару с раствором.
Остаются небольшие участки меди
После травления промываем плату в холодной воде и оставляем сушиться. Травящий раствор можно вылить как обычные отходы в раковину.
Сверление
Просверлить отверстия можно как до травления, так и после. В качестве инструментов подойдет шуруповерт или бормашина.
Перед сверлением платы желательно сделать керновку отверстий. Это углубления для точного позиционирования сверла. Если нет керна, можно использовать гвоздь.
Не делайте слишком большие углубления и не берите гвозди большего диаметра, чем будущее отверстие на плате.
Основной недостаток шуруповертов — это их низкая скорость оборотов.
Чем меньше диаметр сверла — тем быстрее должны быть обороты.
Шуруповертом не получится сделать отверстия диаметром меньше 0,8 миллиметра. От низких оборотов сверло быстро затупится. Если будете сильно давить на сверло сверху, оно погнется или сломается.У бормашины число оборотов достигает 10 000 в минуту. Поэтому для отверстий менее 0,8 миллиметров лучше использовать ее.
Устанавливаем сверло в цангу.
Центруем сверло и закрепляем.
Во время такого рода работ надевайте защитные прозрачные очки. Опилки могут попасть на лицо от высоких оборотов. Надевайте маску от пыли.
Сверлить надо на дощечке и только перпендикулярно к плате. Если угол будет острый или вы будете держать плату в руках, то сверло вылетит или сломается.
Дальше чистим плату наждачкой, чтобы удалить заусенцы и куски текстолита. Удаляем лишние куски платы и формируем границу с помощью макросов.
Как нанести макросы
Макросы — это рисунки на печатной плате, которые расположены с обратной стороны. И их можно нанести точно также, как и дорожки на плату. Только теперь надо отзеркалить макросы, и потом их можно нанести на обратную сторону платы.
Пайка и проверка работы
Печатную плату почистите бархатной наждачной бумагой. С помощью спиртоканифоли залудите дорожки. Не нужно использовать паяльную кислоту.
Полностью собранная схема
Первые в очереди — это маленькие радиодетали. Сначала паяйте их. Транзисторы и светодиоды чувствительны к температуре, поэтому паять их надо аккуратно и с перерывами.Готовый мультивибратор
После пайки проверяем работу схемы. Проверьте плату на наличие металлического мусора. Мультивибратор можно подключить к обычному аккумулятору, с напряжением 4 вольта.
Ошибки во время изготовления
Среди популярных ошибок — это перегрев платы и плохой раствор для травления. Всегда перемешивайте все компоненты раствора, иначе он не начнет травить плату. Во время лужения платы нельзя использовать паяльную кислоту. Она со временем повредит плату, если вы ее плохо почистите.
Еще у некоторых радиолюбителей есть практика лудить платы сплавом Розе. Не стоит так делать, поскольку такой сплав предназначен для выпаивания деталей, а не для постоянной пайки. К тому же, он хрупкий и со временем быстро окислится.
Другие способы
Еще можно сделать печатную плату с помощью фоторезиста, но этот метод сложнее и дороже, чем ЛУТ. Также есть вариант заказать печатную плату по интернету, однако ее придется ждать от двух недель. Да и цена может быть выше, и не получится оперативно устранить ошибку на плате.
А собрать плату можно и при помощи монтажных (макетных) плат.
Пример макетной платы
Итог
Изготовить печатную плату дома может любой начинающий. Пробуйте разные методы, разную бумагу для нанесения схемы и экспериментируйте. Только с помощью опыта, пройденных ошибок и полученных знаний можно сделать действительно качественную плату дома.
Post Views: 848
схема, как сделать контроллер [Амперка / Вики]
В этот статье мы расскажем как своими руками собрать Arduino на обычной макетной плате.
Для этого нам понадобится микроконтроллер ATmega328 — такой же как и в оригинальной Arduino Uno.
Распиновка ATmega328
В начале работы с любым микроконтроллером необходимо изучить его распиновку. После этого уже можно приступать к сборке необходимой обвязки. Ниже представлена распиновка микроконтроллера ATmega328.
Сборка Arduino на макетной плате
Необходимые компоненты
Для работы с микроконтроллером понадобятся:
Конденсатор 22 пф
Схема сборки
Соберите на макетной плате компоненты по следующей схеме:
Эксперимент «маячок» из Матрёшки
Добавьте к схеме светодиод на 13
пине. Для этого повторите первый эксперимент из набора Матрёшка Z — маячок.
Обратите внимание, 13
пин Arduino, это не 13 ножка микроконтроллера. Чтобы найти нужный пин, воспользуйтесь распиновкой ATmega328
Схема эксперимента собрана. Осталось прошить нашу Arduino.
Прошивка ATmega328
У микроконтроллера нет собственного USB-порта. К компьютеру его можно подключить одним из двух способов:
Рассмотрим их подробнее.
Прошивка ATmega328 через USB-UART преобразователь
Для сборки программатора нам понадобится:
Собранная в предыдущем эксперименте схема
Соберите следующую схему
Аппаратная часть готова. Теперь скачайте и установите на компьютер интегрированную среду разработки Arduino IDE и прошейте свой контроллер.
Прошивка ATmega328 через Arduino Uno
Для сборки программатора нам понадобится:
Собранная в предыдущем эксперименте схема
Порядок сборки:
Аккуратно извлеките из платы Arduino Uno микросхему ATMega328P. Не беспокойтесь, вы сможете вставить её обратно позднее.
Соберите следующую схему
Аппаратная часть готова. Теперь скачайте и установите на компьютер интегрированную среду разработки Arduino IDE и прошейте свою плату.
Изготовление печатных плат своими руками в домашних условиях SW19.ru
Всем привет! Сегодня мы поговорим о следующей ступени развития человека как мастера в сфере электроники — это разработка. Разработка собственных устройств это очень интересное и полезное дело, как плане приобретения новых знаний и навыков, так и экономически. Многие мастера в процессе работы используют диагностическое оборудование собственного изготовления, т. к. это удобно и эффективно. Кто пользовался различными самодельными приблудами на куске макетной платы и пучка проводов, тот наверняка знает как отламывается какой нибудь провод в самый неподходящий момент. А чтобы ваше устройство служило долго и исправно надо ответственно подойти к его сборке и монтажу. Таким требованиям может удовлетворять только аппарат собранный на печатной плате.Еще в недавние времена платы изготавливали вырезанием, рисованием Цапон лаком, лазерно-утюжным способом .Но технологии не стоят на месте, и в настоящий момент различные САПР помогают быстро и точно разработать трассировку печатной платы, а изготовление произвести с помощью фотолитографии, и даже нанести защитную маску для защиты платы от внешних факторов и придания эстетичности.
Итак, приступим к разработке В этот раз продуктом нашего труда должен стать прибор для проверки бытовых компрессоров, о котором мы поговорим в следующей статье
Трассировку печатной платы производим в программе Sprint layout. Эта программа проста в освоении, имеется множество видеоуроков, имеет достаточное количество макросов (библиотек посадочных мест компонентов), ее возможностей вполне хватает для изготовления плат малой и средней сложности, а большего в большинстве случаев и не надо.
Наша плата оттрассирована и готова к изготовлению. Изготавливать ее будем при помощи пленочного фоторезиста, для этого необходимо сам фольгированный стеклотекстолит, фоторезист и распечатанный на пленке негатив платы.
Текстолит зачищаем мелкозернистой наждачной бумагой, обезжириваем и наклеиваем фоторезист. Во время наклеивания стоит избегать попадания яркого и особенно солнечного света, т. к. под их воздействием происходит его полимеризация. Для лучшей адгезии, после приклеивания пропускаем плату через ламинатор, или просто проглаживаем утюгом на минимуме через бумажную подкладку. Далее кладем на подготовленную к экспонированию плату негатив, накрываем стеклом и ставим под УФ лампу.
Через несколько минут достаем, и видим очертания будущих дорожек. Проявляем в растворе щелочи, промываем водой, и наше творение готово к травлению.
Травление производим классическим способом в растворе хлорного железа, по моему мнению это самый предсказуемый и эффективный раствор для травления, так же его можно подогреть, что ускорит процесс.
По прошествии некоторого времени плата готова, достаем, промываем водой, и смываем фоторезист ацетоном.
На этом можно и закончить, но для лучшей защиты от внешнего воздействия и повышения эстетических качеств, а так же облегчения монтажа SMD компонентов нанесем защитную маску. Для этого применим однокомпонентную паяльную маску с ультрафиолетовым отвердением.
На края платы наклеиваем скотч, который служит как креплением платы к подложке, так и дистанцирующей прокладкой. Далее на край платы выкладываем валик маски, накрываем лавсановой плёнкой и разглаживаем ровным предметом, я например это делаю отрезком алюминиевого уголка.
Далее в программе Sprint layout печатаем на пленке фотошаблон, накладываем на плату, накрываем стеклом, и ставим под ультрафиолет.
По прошествии 40 минут снимаем пленку и изопропиловым спиртом смываем не полемизировавшую маску.
После промывки ставим плату под ультрафиолет еще на 1-2 часа для окончательной полимеризации маски
И вот, наша плата готова! Остаются вполне стандартные процедуры, такие как сверловка, обрезка и окончательная сборка.
Вот таким образом, в условиях мастерской можно изготовить плату довольно высокого качества, или даже небольшую серию плат, которые будут служить Вам верными помощниками в работе, или же клиентам принося вам доход, как разработчику-изготовителю чего то нового и полезного! На этом все, удачи в разработке и ремонтах!
Собираем самодельный Arduino – Shrimp
Вы когда-нибудь хотели программировать микроконтроллеры как плату Arduino, не используя программатор? Или, может быть, просто собрать свою Arduino плату? Тогда в этой статье вы узнаете, как можно собрать Arduino-совместимый микроконтроллер, при этом обойтись без пайки и сделать это на макетной плате.
Я поведаю о самом простом варианте, не содержащем USB-порта, разъёма для питания, светодиодов для индикации, и состоящем лишь из самого микроконтроллера и минимальной необходимой обвязки. Разработчики (shrimping.it) дали этой схеме название “Shrimp”(Креветка). Она полностью копирует Arduino UNO (если использовать контроллер ATMEGA328P-PU).
Следует отметить, что для прошивки загрузчика в микроконтроллер понадобится плата Arduino. Однако, этот пункт можно опустить, если в ваш контроллер уже вшит загрузчик Arduino. Он нужен для того, чтобы прошивать контроллер можно было без использования программатора, применяя только последовательный порт. В платы Arduino его записывают ещё при производстве, а нам придётся делать это самостоятельно.
Итак, для сборки Shrimp нам понадобятся следующие компоненты:
- Микроконтроллер ATMEGA328P-PU. Поддерживаются и другие контроллеры: ATmega8, ATmega168, ATmega168P, ATmega168PB, ATmega328, ATmega328P, ATmega328PB;
- Тактовая (тактильная) кнопка;
- Внешний кварцевый резонатор на 16 мГц;
- Электролитический конденсатор ёмкостью от 10 до 100 мкФ;
- 2 керамических конденсатор на 22 пФ;
- 4 керамических конденсатора на 100 нФ;
- Резистор на 10 кОм;
- Макетная плата. Как вариант – спаять схему;
- Провода для макетной платы;
- USB-UART преобразователь;
Все компоненты вы можете приобрести в нашем магазине, по низким ценам и с быстрой доставкой:
Если у вас микроконтроллер без прошитого загрузчика, придётся это исправить. Для начала скачиваем программу OptiLoader для платы Arduino, которая послужит программатором, с официального репозитория проекта на GitHub. Скачанную папку “OptiLoader-master” переименуем в “OptiLoader”. Загружаем скетч в Arduino, отключаем её от питания.
Теперь собираем на макетной плате приведённую схему:
USB-UART конвертер нужен для программирования, но можно использовать его в качестве источника питания. Обратите внимание на то, что пин TX конвертера подключается к RX микроконтроллера, а RX – к TX. Если не получается загрузить скетч в Shrimp – попробуйте поменять их местами.
Мой опыт изготовления печатных плат в домашних условиях по лазерно-утюжной технологии (ЛУТ)
Не то, чтобы в использовании макетных печатных плат было что-то зазорное. Просто это не очень удобно, так как дорожки приходится соединять проводами. Да и элементы на плате зачастую можно разместить куда компактнее, чем это позволяет макетная плата. Существуют макетные платы без дорожек, которые решают вторую проблему, но не решают, а скорее даже усугубляют, первую. К счастью, существуют проверенные способы изготовления печатных плат в домашних условиях. Один из них, так называемый ЛУТ (в английском языке — TTM, Toner Transfer Method), будет рассмотрен в этой статье.
Примечание: Очень многое из написанного ниже я узнал благодаря господину DI HALT и его потрясающему сайту easyelectronics.ru. Я не претендую тут на изобретение чего-то нового. Мне просто хотелось чисто на память написать рассказ о том, как я изготовил свою самую первую печатную плату. Ну и, возможно, поделиться парой личных наблюдений касательно всего процесса, а также кое-какими специфичными для Linux моментами. Само собой разумеется, все написанное далее актуально и для других ОС.
Список покупок
Для изготовления печатных плат по ЛУТ понадобятся:
- Лазерный принтер. На форумах, посвященных электронике, можно найти треды, где обсуждаются разные подходящие для наших целей модели. Принтер HP LaserJet Pro P1102 является одним из самых дешевых. Он все еще продается во многих интернет-магазинах и к тому же превосходно работает под Linux. Лично я его и использовал. Заметьте, что, судя по отзывам, именно эта модель почему-то часто продается без USB-кабеля. Уточните его наличие у продавца и при необходимости закажите отдельно.
- Фотобумага для лазерной печати. Хорошо зарекомендовала себя глянцевая бумага Lomond в формате A4 130 г/м2 (0310141). Опять же, на форумах вам могут подсказать другую подходящую бумагу. Но эта считается одной из лучших и ее легко найти.
- Фольгированный стеклотекстолит толщиной 1 мм, штук 5, чтобы с запасом. Будьте внимательны — стеклотекстолит бывает разных размеров. В рамках этой заметки подойдет и самый маленький, 5x10 см, но в будущем вы можете захотеть изготовлять и платы побольше.
- Ножницы по металлу, чтобы обрезать стеклотекстолит до нужных размеров. Если размер стеклотекстолита вас устраивает, можно обойтись и без них.
- Микродрель, защитные очки и тиски, для просверливания отверстий в плате.
- Ацетон или что-то вместо него, что можно использовать в качестве растворителя и обезжиривателя. Например, отлично подходит средство под названием Degreaser 65.
- И еще: шкурка с маркировкой К36, или даже еще мельче, хлорное железо, большая банка флюса ЛТИ-120, припой без канифоли ПОС 40, лишняя зубная щетка и ватные диски (можно купить в любой аптеке), а также кисточка, тонкий несмываемый маркер для компакт-дисков и шило (продаются в любом магазине канцтоваров).
- Опционально — лак акриловый в виде спрея или для нанесения кисточкой. Лак в виде спрея более удобен, но его не стоит использовать в доме. Вариант для нанесения кисточкой ложится не так ровно, но его можно использовать в доме. Для него вам придется добавить к списку покупок еще одну, дополнительную кисточку.
Дополнение: Впоследствии микродрель, тиски и ножницы по металлу я заменил на Dremel. Подробности см в разделе «Сверлим отверстия».
Также нужен утюг и лишняя стеклянная или пластиковая посуда, но я полагаю, что они есть в каждом доме. Пинцет тоже не повредит, но я думаю, раз вы решили самостоятельно делать печатные платы, значит он у вас уже давно есть. Работать с мелкими электронными компонентами и проводочками без пинцета очень неудобно.
Подключение принтера
Хочется отдельно рассказать про подключение принтера HP LaserJet Pro P1102 в Linux. Предполагается, что CUPS и HPLIP у вас уже установлены, как это было описано в заметке Пример настройки десктоп-окружения в Arch Linux. Этому принтеру нужны проприетарные дрова, поэтому его установка осуществляется не через веб-интерфейс CUPS, как обычно.
После подключения принтера к компьютеру говорим:
Затем отвечаем на несколько несложных вопросов и соглашаемся распечатать тестовую страницу. У меня все просто заработало.
Часто для изготовления печатных плат по ЛУТ рекомендуют изменить настройки принтера — выставить DPI побольше, отключить toner save mode, и так далее. В моем случае подобные настроек у принтера не оказалось. Как выяснилось позже, все прекрасно получается и с дэфолтами.
Проектирование платы
В мире Linux есть по крайней мере две заслуживающие внимания программы для проектирования печатных плат — это KiCad и EAGLE. KiCad совсем бесплатный, EAGLE бесплатен для некоммерческого использования и имеет адекватную ценовую политику в прочих случаях. В итоге мне больше понравился EAGLE.
Дополнение: Спустя какое-то время я все-таки перешел с EAGLE на KiCad. Подробности можно найти в заметке Как я впервые делал печатную плату при помощи KiCad.
Будущую плату удобно сначала нарисовать в тетради в клеточку, а потом уже переносить в EAGLE. Поскольку это был мой первый опыт создания печатной платы, я хотел сделать что-то знакомое и простое. В итоге решил сделать плату для таймера 555 в автоколебательном режиме. Вот что у меня получилось:
Важно! Здесь предполагается, что элементы размещаются, как на макетной плате, то есть, они опускаются на плату сверху вниз. Этот рисунок печатается, как есть, безо всякого зеркального отражения. В процессе переноса на стеклотекстолит все дорожки окажутся в зеркальном отражении, поэтому текст в EAGLE я ввел в зеркальном отражении. При этом, поскольку элементы крепятся на плату с той стороны, где нет дорожек, все сойдется, в частности все выходы того же таймера 555 попадут именно туда, куда нужно. Легко запомнить — рисуем, как на макетной плате, печатаем как есть, и все сходится.
Кстати, картинка с Гарфилдом нужна не только как своего рода автограф, или там для красоты. С ее помощью в любой момент можно легко понять, где у платы верх и низ, где лево и право, а также в зеркальном ли отражении дорожки.
Перед тем, как переходить к следующему шагу, советую распечатать плату на обычной (не фото-) бумаге, и проверить, что все компоненты попадают ножками, куда должны, что им друг с другом не тесно, и так далее.
Нанесение тонера на стеклотекстолит
Стеклотекстолит заранее обрезаем ножницами по металлу до нужного размера. Печатаем рисунок с дорожками на фотобумаге, на ее глянцевой стороне (напомню — печатаем как есть, без отражения). Распечатанный рисунок не трогаем пальцами и по возможности бережем от пыли. Аккуратно обрезаем по размеру будущей платы. Я лично просто приложил стеклотекстолит к бумаге и обвел его по контуру карандашом, затем обрезал бумагу ножницами:
Теперь берем шкурку и трем медь на стеклотекстолите круговыми движениями. Задача — снять весь окисел. Затем наносим Degreaser 65 на ватный диск и обезжириваем им поверхность. После обезжиривания не трогайте поверхность будущей платы руками.
Катушку с припоем ПОС 40 на фото я поставил специально, чтобы было видно, как после снятия окисла медь начинает отражать все вокруг. Если она неплохо все отражала и до снятия окисла — что ж, значит его почти не было.
Ждем немного, пока поверхность высохнет. Затем кладем распечатанный ранее рисунок на стеклотекстолит, тонером к медной стороне. Разогреваем утюг на максимум. Прижимаем его на пару секунд с одной стороны бумаги, придерживая вторую рукой, затем прижимаем со второй стороны. Важно, чтобы бумажка при этом никуда не сползла. Затем водим утюгом по бумаге то тех пор, пока она не пожелтеет. Водим долго, давим сильно. Результат выглядит примерно так:
Стеклотекстолит сейчас очень горячий, даем ему время остыть. Как остынет, помещаем его под струю воды на 2-3 минуты. Затем берем пинцет или шило и царапаем им поверхность бумаги. Задача — расцарапать поверхность и дать воде проникнуть под нее. Держим еще немного под струей воды, затем пальцами скатываем бумагу от центра к краям. Вот как это выглядит:
Когда бумаги останется совсем тонкий слой, снимаем его при помощи зубной щетки:
Должны снять всю бумагу, поэтому трем тщательно. Давить можно сильно, так как повредить тонер зубной щеткой практически невозможно. Затем вытираем заготовку и даем ей высохнуть. Внимательно изучаем ее в свете лампы под разными ракурсами.
Кусочки бумаги или растекшийся тонер, образующие лишние соединения между дорожками, можно удалить при помощи шила. Если что-то плохо прорисовалось или блестит там, где блестеть не должно, дорисовываем тонким несмываемым маркером. В моем случае тонер перенесся просто прекрасно и ничего дорисовывать не пришлось.
Травим плату
Дополнение: Альтернативный способ травления описан в статье Травим плату перекисью водорода с лимонной кислотой.
Понадобится пластиковая или стеклянная посуда. Я использовал ненужный герметичный контейнер для еды. Наливаем в него воду, желательно кипяченую и теплую, затем в воду добавляем хлорное железо. Хлорного железа все кладут по-разному. В целом, если не доложить — не страшно, можно потом досыпать или просто плата будет дольше травиться. Если переложить, раствор потом можно будет использовать повторно. Я лично положил 2 чайные ложки на одну обычную (не большую) кружку воды. Будьте осторожны! При добавлении хлорного железа в воду выделяется много тепла, поэтому кладите его понемногу и размешивайте.
Раствор можно трогать руками, но руки потом нужно не забыть помыть с мылом. Ни в коем случае не тащите немытые руки в глаза или рот, ну и вообще, лучше пользуйтесь пинцетом. Учтите также, что раствор сильно пачкается и трудно отмывается, поэтому остерегайтесь его попадания на одежду.
Будущую плату помещаем в раствор медью вниз. Притом, опускаем заготовку под углом, чтобы под ней не образовалось пузырьков воздуха. Чтобы заготовка не касалась дна и медь беспрепятственно отсоединялась от нее, можно повесить ее на кусок скотча или изоленты.
Оставляем плату травиться минут на 15. Точное время зависит от температуры воды, размера вашей чайной ложки и ряда других факторов. Над контейнером можно поставить настольную лампу с обычной лампой накаливания. Она будет слегка подогревать раствор, что немного ускорит процесс. Если сильно торопитесь, ванночку можно время от времени слегка покачивать из стороны в сторону, помогая тем самым меди отсоединяться от поверхности будущей платы. Тонкий стеклотекстолит, толщиной всего 1 мм, позволяет видеть прямо сквозь него, протравились ли дорожки на обращенной ко дну стороне заготовки. На следующем фото отчетливо видны протравленные дорожки и отвалившаяся от платы медь в виде осадка:
По истечении 15 минут достаем заготовку, промываем под струей воды, проверяем напросвет, что все вытравилось. Если недотравилось — помещаем обратно в раствор.
Следующим шагом нужно снять тонер (и маркер, если вы его использовали). Для этого я использовал все тот же Degreaser 65 и ватные диски:
На приведенном фото справа тонер уже снят, а слева еще нет. Удивительно, но мелкие подписи типа «555», «LED» и даже «100 nF» превосходно читаются. В середине внизу можно увидеть небольшие артефакты. Если честно, я не до конца уверен, почему они появились. Можете предложить свои версии в комментариях.
Раствор нам больше не понадобится. Разные люди утилизируют его по-разному. Кто-то через воронку переливает в бутылку и выбрасывает в мусорный бак, кто-то выливает в землю у себя на садовом участке, многие просто выливают в унитаз. Насколько я смог выяснить, сильно разбавленный раствор безопасен и для труб и для природы, поэтому можно просто лить в унитаз или включить кран и выливать по чуть-чуть. Каких-либо законодательных ограничений, насколько мне известно, тут не существует.
Лужение платы
В принципе, лудить плату не обязательно, но желательно. Зачем это нужно — проще потом будет припаивать элементы, дорожки не лопнут при сгибании платы, да и выглядеть плата после лужения будет как-то солиднее. Также лужение устраняет всевозможные микроразрывы, если они есть.
Все очень просто и занимает минут 5 времени. Кисточкой наносим на поверхность платы флюс ЛТИ-120, паяльную станцию ставим на 350 градусов, затем наносим на паяльник припой без канифоли ПОС 40 и водим им по дорожкам. В результате припой прилипает к меди и плата из золотистой становится серебристой. Есть видео от DI HALT, очень наглядно показывающее весь процесс.
Наносите на жало паяльника как можно меньше припоя. Если припой ложится ровным слоем и постоянно кончается, значит вы все делаете правильно. Если один шарик припоя раскатался по всей плате и еще остается избыток в виде неровностей на поверхности дорожек, значит взяли слишком много. Горячим паяльникам дорожки теребите не слишком долго — их так можно и оторвать.
Результат выглядит как-то так:
Флюс с платы превосходно смывается обычным мылом, мочалкой и теплой водой из под крана. Кисточку можно не отмывать. В следующий раз просто поболтайте ее немного во флюсе и она снова станет мягкой.
Затем можно проверить отсутствие микротрещин и прочих дефектов с помощью мультиметра, переведя его в режим измерения сопротивления. Между двумя точками, соединенными дорожками, он должен показывать не более 0.5 Ом. Если соединения нет, так и должен показывать. Соответствующая индикация разная у разных мультиметров.
Сверлим отверстия
Чтобы отверстия получались в точности там, где вам нужно, плата должна быть зажата в тисках, а дрель направлена строго перпендикулярно поверхности. Дрель нужно держать двумя руками. Обязательно используйте защитные очки! Очень советую потренироваться на ненужной плате, отметив на ней места, где вы хотите просверлить отверстия, карандашом. Найдите наиболее удобный для вас способ сверленаия.
Лично я остановился на таком. Плата фиксируется в тисках перпендикулярно столу и лицевой стороной ко мне. Сидя я держу микродрель обеими руками и толкаю ее от себя в плату. Отверстия получаются просто идеальными.
Кто-то предпочитает сверлить стоя, зафиксировав плату параллельно столу и подложив что-то под нее (например, кусок дерева), чтобы сверло резко не вылетало из платы. Видел в сети и другие варианты, например, при котором дрель фиксируется, а плата держится в руках. В общем, способов много. Главное — будьте осторожны, включайте голову и постарайтесь не остаться без рук.
Дополнение: Время показало, что это не лучший способ сверления плат. Для сверления отверстий я остановился на инструменте Dremel 3000 вместе со стойкой Dremel 220, которая превращает его в сверлильный станок. В дополнение к ним в ближайшем хозяйственном магазине был куплен набор сверл. Также Dremel’ем можно использовать вместо ножниц по металлу для резки текстолита.
Завершающие шаги
Припаиваем элементы, как обычно. Проверяем, что все работает. Затем плату можно покрыть лаком. Это не обязательно, но продлевает срок службы платы.
Чтобы на поверхности не образовывалось неровностей, плата должна сохнуть в горизонтальном положении. Для защиты сохнущего лака от пыли стоит накрыть плату картонной коробкой. Если вы приобрели лак в виде спрея, учтите, что (1) брызгать им нужно с расстояния около 20 см (2) по инструкции после использования лака его нужно «продуть» вверх ногами (3) лак сильно воняет, долго выветривается и липнет практически ко всему, поэтому для его нанесения необходимо выйти на улицу.
Если вы недовольны тем, как лежит лак — не переживайте, он прекрасно снимается при помощи Degreaser 65. Брызгаете его прямо на лак, ждете секунд 10, пока пропитается, затем снимаете чистой тряпкой. Для снятия лака в труднодоступных местах средство можно нанести на тряпку, а затем намотать ее на пинцет. В общем, для нанесения лака есть больше одной попытки.
Фотография окончательного результата с одной стороны:
… и с другой:
При условии полного отсутствия опыта в ЛУТ изготовление платы вместе с лужением и просверливанием отверстий суммарно заняло у меня часа три. Все зависит от размера платы и других условий, конечно.
Исходники EAGLE-проекта вы найдете в этом репозитории на GitHub.
А как вы изготовляете печатные платы в домашних условиях? Какой принтер и фотобумагу используете, чем обезжириваете, как травите и как утилизируете травящий раствор, в чем проектируете платы, и так далее?
Дополнение: Мой первый опыт изготовления печатных плат при помощи пленочного фоторезиста
Метки: Электроника.
Создайте самодельный макет с помощью скрепок, картона и небольшого количества клея
Инженеры нередко используют MacGyver как часть проекта, когда в затруднительном положении, или, в некоторых случаях, инструменты, используемые для создания этих проектов. В качестве примера можно привести самодельную макетную плату Keystoner, которую он создал из материалов, которые можно найти в доме почти у каждого, — картона и скрепок. Плата является частью платформы Keystoner Papercliptronics, в которой для проектирования схем используется обжим скрепки вместо припоя.
Самодельный макетkeystoner использует скрепки для токопроводящих перил платы, что позволяет пользователям создавать различные схемы. (📷 keystoner)
Как следует из названия, самодельная макетная плата была спроектирована с использованием 10 больших скрепок, которые служат направляющими (верхняя, нижняя и средняя), каждая с концами согнутыми под углом 900 и вставленными в картонную основу и приклеен на место. Слои изоленты и клея на противоположной стороне картона предотвращают движение рельсов и защищают от травм, покрывают загнутые концы.
Скрепки меньшего размера с гофрированными концами используются для подключения источника питания (в данном случае батарей D) как к положительной, так и к отрицательной шинам, в то время как гофрированные зажимы передают эту мощность на центральные рельсы. Эти маленькие скрепки также используются для подключения всей необходимой электроники (резисторы, транзисторы, конденсаторы и т. Д.) Для построения схемы, хотя Keystoner заявляет, что также можно использовать медный провод. Он даже предлагает два различных метода обжима для крепления электроники к плате: в первом используется одинарная петля с крючком, позволяющая быстро разместить, а в другом — двойная для более стабильного решения.
Чтобы продемонстрировать функциональность своего самодельного макета, компания keystoner разработала несколько простых проектов, которые может сделать каждый, включая схему светодиодного освещения, детектор света, детектор воды и несколько других. Keystoner загрузил полное описание своей макетной платы Papercliptronic для тех, кто заинтересован в воспроизведении его конструкции.
Макет своими руками
Макет своими рукамиМакет своими руками
Вот простой проект, который значительно ускорит и упростить схемы тестирования.Идея возникла у RG Keen’s сайт, ГЕО. Проверьте RG’s Макет мгновенных эффектов. Обратите внимание, что аналогичные схемы сверления использовались для крепления горшков и переключатели.
В этом проекте использовался кусок дубовой фанеры размером 10 на 6 1/2 размеры. Края закруглили фрезером и парой Для защиты были применены быстрые слои отделки древесины. 1 1/2 дюйма алюминиевый уголок использовался для крепления кастрюль, домкратов, переключателей и т. д. Входные и выходные гнезда были постоянно установлены с DPDT. тумблер, чтобы можно было быстро обойти цепь.Также есть постоянный выключатель питания, который принимает батарею 9 В или постоянный ток напряжение через разъем питания. Собственно макетная часть состоит из из двух отдельных макетов, которые я купил в Radio Shack. Идентификатор рекомендую использовать даже три из них в качестве прототипа недвижимости быстро исчезает при тестировании более крупных схем.
Если у вас возникнут проблемы с этим, вы можете также соберите два вместе, так как одного макета просто недостаточно!
Примечание — провода, соединяющие горшки с платой, состоят из зажим крокодила, прикрепленный к проводу, с (резистором или конденсатором) к другому концу припаян свинец.Это позволяет мне быстро подключить внешняя часть к остальной части схемы.
Не совсем макет, но вот фото транзистора тестер усиления. Следуйте этим направления Стива Дэниэлса. С помощью этого приспособления вы можете просто закрепить на провода цифрового мультиметра и источник питания. Перекрепления нет. Ты просто вставьте транзистор в гнездо транзистора, измерьте ток на первом цифровом мультиметре, нажмите переключатель на зажимном приспособлении (трудно увидеть но слева от розетки) и измерьте ток на первом и второй цифровой мультиметр.Когда закончите, вы можете поменять транзисторы и повторить. Это ускоряет процесс, особенно если у вас много транзисторы для проверки. Промаркируйте провода на перфорированной плате, чтобы избежать путаница.
Создайте свой собственный Arduino на макете
В течение нескольких минут вы можете получить полнофункциональную платформу Arduino, работающую на макете. Это идеальный проект для тестирования новых идей и добавления собственных функций на плату Arduino.К тому же он выглядит аккуратно, все компоненты выложены на макетной плате.
Arduino — это платформа для создания прототипов электроники с открытым исходным кодом, основанная на гибком, простом в использовании аппаратном и программном обеспечении. Он предназначен для художников, дизайнеров, любителей и всех, кто интересуется созданием интерактивных объектов или сред.
Arduino может определять окружающую среду, получая входные данные от различных датчиков, и может влиять на окружающую среду, управляя освещением, двигателями и другими исполнительными механизмами. Микроконтроллер на плате программируется с использованием языка программирования Arduino (на основе Wiring) и среды разработки Arduino (на основе Processing).Проекты Arduino могут быть автономными или они могут взаимодействовать с программным обеспечением при запуске на компьютере (например, Flash, Processing, MaxMSP. [1] www.arduino.cc
С помощью нескольких недорогих деталей и макетной платы без пайки вы можете быстро и легко Создайте свой собственный Arduino. Эта концепция отлично работает, когда вы хотите создать прототип новой дизайнерской идеи или не хотите разрушать свой дизайн каждый раз, когда вам понадобится Arduino.
Если вы хотите спроектировать и построить свой собственный Arduino PCB, мы предлагаем прочитать наш пост о создании собственного Xduino, поскольку он охватывает большую часть проекта печатной платы и выбора компонентов.
Что вам понадобится для сборки собственного Arduino на макетной плате
Микросхема Atmel Atmega168 — купите здесь
Макетная плата (440 или 840 точек привязки) — купите здесь
Провод 22 AWG (помощь различных цветов) — купите здесь
Регулятор напряжения 7805 — Купить здесь
Светодиоды 2 x 5 мм (любого цвета) — Купить здесь
Резисторы 2 x 220 Ом 1/4 Вт — Купить здесь
Резистор 10 кОм 1/4 Вт — Купить здесь
Конденсаторы 2 x 10 мкФ — Купить здесь
Тактовый кристалл 16 МГц — Купить здесь
Конденсаторы 2 x 22 пФ — Купить здесь
Малый тактовый переключатель мгновенного действия — Купить здесь
1-рядный штырьковый разъем — Купить здесь
TTL-232R-3V3 USB для последовательного Кабель преобразователя — Купить здесь
Как собрать свой собственный Arduino на макетной плате
Прежде чем мы начнем, убедитесь, что у вас есть все необходимые элементы в списке компонентов.
Сборка компонентов
Цепь питания
Первое, что вам нужно сделать, это настроить питание. На этом шаге вы настроите макетную плату Arduino на постоянное питание +5 В с помощью регулятора напряжения 7805.
Для работы регулятора напряжения необходимо обеспечить питание более 5В. Для этого подойдет обычная 9-вольтовая батарея с защелкивающимся разъемом.
Питание входит в макетную плату, где вы видите красный и черный квадраты + и -.Затем добавьте один из конденсаторов емкостью 10 мкФ. Более длинная ветвь — это анод (положительный), а более короткая — катод (отрицательная). Большинство конденсаторов также имеют полосу с отрицательной стороны.
Через пустое пространство на макетной плате (канал) вам нужно будет разместить два соединительных провода: положительный (красный) и заземляющий (черный), чтобы перебросить мощность с одной стороны макета на другую.
Теперь добавьте регулятор напряжения 7805. 7805 имеет три ножки. Если вы смотрите на него спереди, левая ножка предназначена для напряжения (Vin), средняя ножка — для заземления (GND), а третья ножка — для напряжения на выходе (Vout).Убедитесь, что левая нога выровнена с вашей положительной силой, а второй штифт заземлен.
Выйдя из регулятора напряжения и подойдя к шине питания на стороне макета, вам нужно добавить провод GND к шине заземления, а затем провод Vout (3-я ножка регулятора напряжения) к положительной шине. Подключите второй конденсатор 10 мкФ к шине питания. Обратите внимание на положительные и отрицательные стороны.
Рекомендуется включить светодиодный индикатор состояния, который можно использовать для поиска и устранения неисправностей.Для этого вам необходимо соединить правую боковую шину питания с левой шиной питания. Добавьте положительный провод к положительному, а отрицательный — к отрицательному в нижней части макета.
Для светодиодного индикатора состояния подключите резистор 220 & (красного, красного, коричневого цвета) от источника питания к аноду светодиода (положительная сторона, более длинная ножка), а затем провод заземления к катодной стороне.
Поздравляем, теперь ваша макетная плата настроена на питание +5 В. Вы можете перейти к следующему этапу проектирования схем.
Назначение выводов Arduino
Теперь мы хотим подготовить микросхему ATmega168 или 328. Прежде чем мы начнем, давайте посмотрим, что делает каждый вывод на микросхеме по отношению к функциям Arduino. ПРИМЕЧАНИЕ: ATmega328 работает практически с той же скоростью, с той же распиновкой, но имеет более чем в два раза больше флэш-памяти (30 КБ против 14 КБ) и вдвое больше EEPROM (1 КБ против 512 Б).
Микросхема ATmega168 создана Atmel. Если вы посмотрите таблицу, вы не обнаружите, что приведенные выше ссылки совпадают.Это связано с тем, что у Arduino есть свои функции для этих контактов, и я представил их только на этой иллюстрации. Если вы хотите сравнить или узнать действительные ссылки на микросхему, вы можете загрузить копию таблицы данных на www.atmel.com. Теперь, когда вы знаете расположение контактов, мы можем приступить к подключению остальных компонентов.
Вспомогательные компоненты
Для начала мы построим вспомогательную схему для одной стороны микросхемы, а затем перейдем к другой стороне.Пин на большинстве чипов имеет маркер-идентификатор. Взглянув на ATmega168 или 328, вы заметите U-образную выемку вверху, а также небольшую точку. Маленькая точка указывает, что это контакт 1.
Поддерживающие контакты схемы 1-14
Над микросхемой ATmega168 рядом с идентификатором контакта 1 поместите небольшой тактовый переключатель. Этот переключатель используется для сброса Arduino. Непосредственно перед загрузкой нового скетча в чип вам нужно будет нажать на него один раз. Теперь добавьте небольшую перемычку от контакта 1 к нижней ножке переключателя, затем добавьте резистор 10 кОм от источника питания к ряду контактов 1 на макетной плате.Наконец, добавьте перемычку GND к верхней ножке переключателя.
Добавьте перемычки питания и GND к контакту 7 (VCC) и контакту 8 (GND). Подключите тактовый кристалл 16 МГц к контактам 9 и 10, а затем два конденсатора 0,22 пФ от контактов 9 и 10 к GND. (См. Примечание ниже об альтернативном методе).
Ваш базовый макет Arduino готов. Вы могли бы остановиться прямо здесь, если хотите, и заменить уже запрограммированный чип с вашей платы Arduino на макетную плату, но, поскольку вы зашли так далеко, вы также можете закончить, добавив несколько программирующих контактов.Это позволит вам программировать микросхему с макета.
ПРИМЕЧАНИЕ: Вместо использования тактового кристалла на 16 МГц можно использовать керамический резонатор на 16 МГц со встроенными конденсаторами, трехконтактный SIP-корпус. Придется немного иначе оформить макет, у резонатора три ножки. Средняя ножка будет заземлена, а две другие ножки — к контактам 9 и 10 на микросхеме ATmega168.
Ссылаясь на рисунок 1-7, найдите место, где у вас есть 6 столбцов на макетной плате, которые не соприкасаются ни с чем другим.Поместите сюда ряд из шести штырей с вилкой.
Когда макетная плата обращена к вам, соединения следующие:
GND, NC, 5V, TX, RX, NC, я также называю эти контакты 1,2,3,4,5,6. От шины питания добавьте провод GND к контакту 1 и провод от источника питания к контакту 3. NC означает, что он не подключен, но вы можете подключить их к GND, если хотите.
От контакта 2 на микросхеме ATmega168, который является контактом Arduino RX, вы подключите провод к контакту 4 (TX) ваших заголовков программирования. На микросхеме ATmega168 контакт 3 Arduino TX подключается к контакту 5 (RX) на контактах вашего заголовка.
Связь выглядит следующим образом: ATmega168 RX к контакту заголовка TX и ATmega168 TX к контакту заголовка RX.
Поддерживающие контакты схемы 15-28
От шины питания GND добавьте перемычку к контакту 22. Затем от положительной шины питания добавьте перемычки к контакту 20 (AVCC — Напряжение питания для АЦП Преобразователь. Должен быть подключен к источнику питания, если АЦП не используется, и к питанию через фильтр нижних частот, если он есть (фильтр нижних частот — это схема, которая очищает шум от источника питания, мы не используем его )
Затем добавьте перемычку от положительной шины к контакту 21 (аналоговый опорный контакт для АЦП).
На Arduino вывод 13 является выводом светодиода. Обратите внимание, что на самом чипе контакт имеет номер 19. При загрузке кода скетча и для всех проектов вы по-прежнему будете ссылаться на него как на контакт 13.
Чтобы подключить светодиод, добавьте резистор 220 & резистор от GND к катоду светодиода. . Затем от анода светодиода добавьте перемычку к контакту 19.
Макетная плата в сборе
Теперь вы можете запрограммировать свой макет Arduino.
Программирование Arduino
Дважды проверьте соединения, убедитесь, что батарея 9 В не подключена, и подключите опцию программирования.Откройте IDE Arduino и в файлах скетча примеров в разделе Digital загрузите скетч Blink.
Если вы новичок в использовании и программировании Arduino, прочтите наше руководство по программированию Arduino в первый раз.
В разделе «Последовательный порт» выберите COM-порт, который вы используете с USB-кабелем. т.е. COM1, COM9 и т. д.
В разделе «Инструменты / Плата» выберите один из следующих вариантов:
Arduino Duemilanove с ATmega328,
Arduino Decimila, Duemilanove или Nano с ATmega128
(в зависимости от того, какой чип вы используете с макетной платой Arduino)
Теперь нажмите значок загрузки, а затем нажмите кнопку сброса на макете.Если вы используете одну из коммутационных плат SparkFun, вы увидите, как мигают индикаторы RX и TX. Это позволяет узнать, что данные отправляются. Иногда вам нужно подождать несколько секунд после нажатия кнопки загрузки, прежде чем нажимать переключатель сброса. Если у вас возникли проблемы, просто поэкспериментируйте, насколько быстро вы переходите между ними.
Этот скетч, если он загружен правильно, будет мигать светодиодом на контакте 13 на одну секунду, гаснет на одну секунду, горит на одну секунду… пока вы не загрузите новый скетч или не отключите питание.
После того, как вы загрузили код, вы можете отключить плату программирования и использовать батарею 9В для питания.
Поиск и устранение неисправностей
- Нет питания — убедитесь, что напряжение вашего источника превышает 5 В.
- Питание, но ничего не работает — перепроверьте все точки подключения.
- Ошибка загрузки. Посетите сайт www.arduino.cc и выполните поиск по конкретному сообщению об ошибке, которое вы получили. Также проверьте форумы, так как там много отличной помощи.
Создайте свой Arduino на печатной плате
После того, как вы запустите свою плату Arduino на макетной плате, вы можете попробовать превратить ее в печатную плату.Если кто-то заинтересован в травлении собственной печатной платы (печатной платы), я включил файлы компонентов и припаянные стороны печатной платы.
Самодельные файлы печатных плат Arduino
Я добавил zip-файл, который содержит файлы JPG 300dpi со стороны компонентов и со стороны припоя.
Надеюсь, вам понравился этот пост, дайте нам знать, пытались ли вы создать свой собственный Arduino, в разделе комментариев ниже.
Этот пост был адаптирован из книги «Собери свой собственный Arduino», разработанной ArduinoFun, и был изменен и использован в соответствии с лицензией Creative Commons License CC-BY-SA.
Привет, меня зовут Майкл, и я начал этот блог в 2016 году, чтобы поделиться с вами своим приключением в стиле DIY. Я люблю возиться с электроникой, создавать, ремонтировать и строить — я всегда ищу новые проекты и интересные идеи для самостоятельного изготовления. Если вы тоже, возьмите чашку кофе и успокойтесь, я рад, что вы здесь.
Сопутствующие товарыРаспилите большую макетную плату на «мини-макет своими руками» «Adafruit Industries — Создатели, хакеры, художники, дизайнеры и инженеры!
Честно говоря, я не могу сказать, что когда-либо думал об этом раньше — по крайней мере, не с полноразмерной макетной платы.Обычно я сохраняю свои макеты, на которых есть «взорванные» или сгоревшие участки, для демонстрации, но это также хорошее повторное использование неисправного макета, если вы не проводите много семинаров или демонстраций.
Вы можете сделать свои собственные мини-макеты, нарезав более крупный.
Полный набор Flickr находится здесь, подробнее читайте здесь.
FWIW мы продаем полный набор макетов различных размеров, включая плату 2 × 8 точек. Я бы немного нервничал по поводу ленточной пилы до нужного размера!
Прекратите макетирование и пайку — немедленно приступайте к изготовлению! Площадка Circuit Playground от Adafruit забита светодиодами, датчиками, кнопками, зажимами из кожи аллигатора и многим другим.Создавайте проекты с помощью Circuit Playground за несколько минут с помощью сайта программирования MakeCode с перетаскиванием, изучайте информатику с помощью класса CS Discoveries на code.org, переходите в CircuitPython, чтобы изучать Python и оборудование вместе, TinyGO или даже использовать Arduino IDE. Circuit Playground Express — это новейшая и лучшая плата Circuit Playground с поддержкой CircuitPython, MakeCode и Arduino. Он имеет мощный процессор, 10 NeoPixels, мини-динамик, инфракрасный прием и передачу, две кнопки, переключатель, 14 зажимов из кожи аллигатора и множество датчиков: емкостное касание, ИК-приближение, температуру, свет, движение и звук.Вас ждет целый мир электроники и программирования, и он умещается на ладони.
Присоединяйтесь к 27 000+ создателей на каналах Discord Adafruit и станьте частью сообщества! http://adafru.it/discord
Хотите поделиться замечательным проектом? Выставка Electronics Show and Tell проходит каждую среду в 19:00 по восточному времени! Чтобы присоединиться, перейдите на YouTube и посмотрите чат в прямом эфире шоу — мы разместим ссылку там.
Присоединяйтесь к нам каждую среду вечером в 20:00 по восточноевропейскому времени на «Спроси инженера»!
Подпишитесь на Adafruit в Instagram, чтобы узнавать о совершенно секретных новых продуктах, о кулуарах и многом другом https: // www.instagram.com/adafruit/
CircuitPython — Самый простой способ программирования микроконтроллеров — CircuitPython.org
Получайте единственную ежедневную рассылку без спама о носимых устройствах, ведении делопроизводства, электронных советах и многом другом! Подпишитесь на AdafruitDaily.com!Извините, форма комментария в настоящее время закрыта.
Coda Effects — Учебник: как создать прототип с помощью макета
С гитарными педалями не всегда легко создавать прототипы. Одно из решений — сильно модифицировать существующую педаль.Но что, если вы хотите начать с нуля? Как все проверить перед проектированием схемы и все спаять?Что ж, у нас есть простое решение: на макетной плате!
Погнали! В этом сообщении блога мы увидим, почему макетная плата является таким классным инструментом и как вы можете использовать ее для разработки и тестирования собственных схем.
Что такое макетная плата?
И почему мы это так называем?Да, «макетная плата» действительно происходит от слова «макетная плата». 🍞
Раньше люди использовали деревянную доску («макет») с гвоздями, чтобы соединять компоненты и проверять их. Вот так
Не волнуйтесь, мы этого делать не будем.
Мы будем использовать современный вариант макета, который выглядит так:
Как работает макетная плата?
Компоненты можно вставить в маленькие отверстия на плате; которые затем соединяются друг с другом следующим образом:Боковые планки (обозначенные здесь красным и синим) соединены по всей своей длине .Обычно мы используем их для заземления и подключения питания! Именно поэтому их часто называют «силовыми рельсами». На некоторых макетных платах есть даже «+» и «-», чтобы упростить задачу.
Более короткие горизонтальные полосы используются для вставки компонентов и их соединения. Средний овраг разделяет две стороны и позволяет размещать интегральные схемы посередине.
Учебное пособие: сделаем ускорение на макетной плате!
Давайте попрактикуемся и сделаем простое ускорение на макетной плате: LPB1! Вам понадобится
- Макет конечно .Этот комплект просто потрясающий. У вас будут перемычки и печатная плата для легкого подключения источников питания к вашей макетной плате.
- Джемперы. Вы можете использовать одножильный провод и сделать его самостоятельно.
- Два пленочных конденсатора 0,1 мкФ
- Один транзистор 2n5088
- Четыре резистора: 430 кОм, 43 кОм, 10 кОм и 390R
- Логарифмический потенциометр 100 кОм
- Два входа jack
- А 2.Вход блока питания 1 мм
Во-первых, нам нужно взглянуть на схему:
Простая схема, не так ли? Держите его где-нибудь рядом, мы будем следовать по сигнальному пути, чтобы создать нашу схему.
Во-первых, давайте начнем с шин питания. Припаяйте несколько проводов ко входу источника питания постоянного тока и входам jack. Разместим блок питания в шинах питания так:
Это упростит подключение компонента к земле или 9В.
Затем подключите вход jack к земле, а вход подключите к первому конденсатору 0,1 мкФ:
Затем мы можем разместить два резистора 430 кОм и 43 кОм, которые смещают транзистор. Шина 43 кОм подключается к земле, а 430 кОм подключается к шине питания 9 В. Здесь я заменил их резисторами 470 кОм и 47 кОм, но это та же компоновка:
Теперь разместим транзистор (соблюдайте полярность!). Перемычка соединяет сигнал с базой транзистора (центральный контакт).Резистор на 390 Ом подключен к земле.
Как видите, он может довольно быстро заполниться даже на простой трассе. Важно правильно организовать компоненты и кабели , иначе вы быстро получите «спагетти-проводку» …
Подключим последний конденсатор к левому выводу транзистора. Резистор 10 кОм подключается к шине питания 9 В:
Наконец, мы можем добавить потенциометр. Левый контакт заземлен перемычкой:
Выходной разъем:
Итак, у вас есть работающий LPB1! Теперь вы можете протестировать это напрямую с помощью гитары и усилителя! Это может быть немного шумно из-за неплотных соединений, но вы можете услышать, как это звучит, даже не припаяв ничего! 😃
Как видите, это быстро и весело. Более того, тестировать такие моды очень просто! Просто замените компонент на другое значение и убедитесь в этом сами!
Вот простое руководство по схемам для тестирования некоторых модов:
С макетной платой вы также можете легко протестировать модификацию части схемы . Например, вы можете протестировать различные тон-стеки цепи Big Muff, просто заменив значения компонентов!
Надеюсь, это было вам полезно. Оставьте комментарий по любому вопросу!
Если вам понравилась эта статья, поблагодарите меня за то, что понравилась страница Coda Effects в Facebook! Вы также можете следить за Coda Effects в Instagram.
Установка Arduino на макет
Создание Arduino на макетной плате
Обзор
В этом руководстве показано, как создать совместимую с Arduino макетную плату с микроконтроллером AVR Atmel Atmega8 / 168/328 и коммутационной платой FTDI FT232 от SparkFun. Вы также можете использовать Arduino USB Mini.
Первоначально создан Дэвид А. Меллис
Обновлено из версии ITP Карлин Мо
Обновлено 23 октября 2008 г. Рори Ньюджент
Детали
Для этого вам понадобятся:
Принадлежности
Основные детали для подключения Arduino
- Макетная плата
- Провод 22 AWG
- 7805 Регулятор напряжения
- 2 светодиода
- 22 резистора 220 Ом
- 1 резистор 10 кОм
- 2 конденсатора по 10 мкФ
- Тактовый кристалл 16 МГц
- 2 конденсатора 22 пФ
- малая кратковременная нормально разомкнутая («выключенная») кнопка, т.е.е. Omron тип B3F
USB к плате последовательной связи
Вам понадобится плата FT232 USB Breakout от SparkFun. Из них доступны два варианта:
- FT232RL Плата подключения USB к последовательному порту, SKU BOB-0071
- Последовательная USB-плата Arduino, SKU DEV-08165
Если вы планируете использовать верхний вариант и еще не припаяли разъемы к коммутационной плате, сейчас самое подходящее время.
Загрузка ваших чипов Atmega
Существует несколько вариантов загрузки ваших чипов Atmega, некоторые из которых описаны в этом руководстве.Если вы хотите загрузить свои чипы Atmega с помощью макетной платы, дополнительная часть значительно упростит вам жизнь, но в этом нет необходимости. Адаптер программирования AVR от Sparkfun, SKU. BOB-08508
Добавление схемы для блока питания
Если вы уже работали с микроконтроллерами, вполне вероятно, что у вас уже есть предпочтительный способ подключения источника питания к вашей плате, так что сделайте это так. Если вам нужны напоминания, вот несколько изображений, как это сделать.(В этой версии используется регулируемый источник питания 5 В)
Верхние линии электропередач
Добавьте провода питания и заземления там, где будет находиться регулятор напряжения.
Нижние ЛЭП
Добавьте провода питания и заземления внизу платы, соединяющие каждую рейку.
Добавьте 7805 и развязывающие конденсаторы
Добавьте регулятор мощности 7805 и линии для питания платы. Регулятор представляет собой корпус TO-220, в котором вход от внешнего источника питания идет на вход слева, земля находится в середине, а выход 5 В находится справа (если смотреть на переднюю часть регулятора).Добавьте провода питания OUT и заземления, которые подключаются к правой и левой направляющим на макетной плате.
Также добавьте конденсатор 10 мкФ между входом стабилизатора и землей, а также конденсатор 10 мкФ на правой шине между питанием и землей. Серебряная полоска на конденсаторе обозначает землю.
светодиод
Добавьте светодиод и резистор 220 Ом на левой стороне вашей платы напротив регулятора напряжения. Такой светодиод, подключенный к источнику питания, — отличный способ устранения неполадок.Вы всегда будете знать, когда на вашу плату подается питание, а также быстро узнаете, закорочена ли ваша плата.
Вход источника питания
Красный и черный провода слева от регулятора напряжения — это место, где будет подключаться ваш источник питания. Красный провод предназначен для ПИТАНИЯ, а черный провод — для ЗАЗЕМЛЕНИЯ. Убедитесь, что вы подключаете только источник питания с напряжением от 7 до 16 В. Немного ниже, и вы не получите 5В из регулятора. Если установить более высокое значение, регулятор может быть поврежден. Подходит аккумулятор 9 В, источник питания 9 В постоянного тока или источник питания 12 В постоянного тока.
Пустой холст
Теперь, когда основные настройки питания выполнены, можно загружать чип!
Основы ATMEGA8 / 168/328
Карта контактов Arduino
Прежде чем двигаться дальше, посмотрите на это изображение. Это отличный ресурс для изучения того, что делает каждый из контактов вашего чипа Atmega по отношению к функциям Arduino. Это прояснит большую путаницу, связанную с тем, почему вы подключаете определенные контакты именно так, как вы это делаете. Для получения более подробной информации взгляните на таблицу данных Atmega 168 (короткая версия) (длинная версия).Вот лист для atmega328 (короткая версия) (длинная версия)
Добавить вспомогательную схему
Начните с подключения подтягивающего резистора 10 кОм к + 5 В от вывода RESET, чтобы предотвратить самопроизвольный сброс микросхемы во время нормальной работы. Контакт RESET перезагружает микросхему при опускании на землю. На следующих этапах мы покажем вам, как добавить переключатель сброса, который использует это преимущество.
- Контакт 7 — Vcc — Напряжение цифрового питания
- Контакт 8 — GND
- Контакт 22 — GND
- Pin 21 — AREF — Аналоговый опорный штырь для АЦП
- Контакт 20 — AVcc — Подача напряжения для преобразователя АЦП.Должен быть подключен к источнику питания, если АЦП не используется, и к питанию через фильтр нижних частот, если он равен (фильтр нижних частот — это схема, которая снижает шум от источника питания. В этом примере он не используется)
Добавьте часы и крышки
Добавьте внешнюю синхронизацию 16 МГц между контактами 9 и 10 и добавьте два конденсатора 22 пФ, идущих на землю от каждого из этих контактов.
Добавить переключатель сброса
Добавьте небольшой тактильный переключатель, чтобы вы могли перезагрузить Arduino, когда захотите, и подготовить чип для загрузки новой программы.Кратковременное нажатие этого переключателя приведет к сбросу микросхемы при необходимости. Добавьте переключатель чуть выше верхней части микросхемы Atmega, пересекая щель в макетной плате. Затем подключите провод от левой нижней ножки переключателя к контакту RESET микросхемы Atmega и провод от верхней левой ножки коммутатора к земле.
вывода светодиодов на вывод 13 Arduino
Чип, используемый на этой плате, фактически уже запрограммирован с помощью программы blink_led, которая поставляется с программным обеспечением Arduino. Если у вас уже работает печатная плата Arduino, неплохо было бы проверить макетную версию, которую вы собираете, с чипом, который, как вы знаете, работает.Вытащите чип из своего рабочего Arduino и попробуйте его на этой плате. Программа blink_led мигает контактом 13. Контакт 13 на Arduino НЕ является контактом 13 AVR ATMEGA8-16PU / ATMEGA168-16PU. На самом деле это контакт 19 на микросхеме Atmega.
Обратитесь к схеме контактов выше, чтобы убедиться, что вы подключаете его правильно.
Светодиодна выводе 13 Arduino
Наконец, добавьте светодиод. Длинная ножка или анод подключается к красному проводу, а короткая ножка или катод подключается к резистору 220 Ом, идущему на землю.
Готово к Arduino!
На этом этапе, если вы уже программировали свой чип в другом месте и не нуждались в этой макетной плате для перепрограммирования чипа, вы можете остановиться на этом. Но часть удовольствия — это внутрисхемное программирование, так что продолжайте создавать полноценную схему USB-Arduino на макетной плате!
Готовность к Arduino
Добавить FT232 USB к последовательной плате
Теперь мы добавим USB к последовательной коммутационной плате в нашу макетную схему Arduino. Если вы не добавляли мужские заголовки на коммутационную доску, вам нужно будет сделать это сейчас.
Подключите VCCIO коммутационной платы к источнику питания, а GND к земле.
Распиновка прорыва Sparkfun FT232
Любопытно, какие контакты у коммутационной платы SparkFun FT232, просто переверните ее! В этой ситуации мы будем использовать VCC (для подачи 5 В от порта USB на вашу плату), GND, TXD и RXD.
Подключение TX и RX
Теперь пришло время подключить коммутационную плату USB к последовательному порту с вашей новой установкой Arduino. Подключите RX (контакт 2) вашего чипа Atmega к TX платы USB с последовательным интерфейсом и подключите TX (контакт 3) вашего чипа Atmega к RX USB на плате последовательного интерфейса.
И вот он … готов к подключению, включению и программированию!
Но подождите, есть еще один шаг, верно? Если вы вытащили свой чип Atmega из своего Arduino, он, скорее всего, был запрограммирован вами несколько раз, поэтому он определенно был загружен, поэтому вам не нужно продвигаться дальше в этом руководстве.
Однако, если вы приобрели дополнительные чипы Atmega328 или Atmega168 в интернет-магазине, они НЕ были загружены с загрузчиком Arduino (за исключением Adafruit Industries).Что это значит? Вы не сможете запрограммировать свои чипы, используя плату USB для последовательного подключения и программное обеспечение Arduino. Итак, чтобы ваши новые чипы были полезны для Arduino, вы ДОЛЖНЫ загрузить их и ДОЛЖНЫ проверить шаг 4.
Другие варианты макетов
Установка uDuino от Tymn Twillman
Эта конфигурация аналогична приведенной выше, но хитрость заключается в том, что на чип Atmega загружается загрузчик Arduino Lilypad. Lilypad работает с использованием внутренних часов вместо внешних, что устраняет необходимость в большей части вспомогательных схем.
Boarduino от Ladyada
Boarduino — это комплект, который вы покупаете и собираете для создания красивой, небольшой макетной платы, совместимой с Arduino. Все стандартные компоненты размещены на небольшой печатной плате, поэтому Boarduino можно легко добавить на макетную плату и даже удалить.
Загрузка микросхем
ДОПОЛНИТЕЛЬНОПараметры загрузки
Есть два варианта загрузки ваших чипов. Первое довольно просто, а второе немного сложнее.Мы рассмотрим и то, и другое.
- Загрузка вашего чипа Atmega с помощью платы Arduino и программатора AVR
- Загрузка микросхемы Atmega на свежеприготовленную макетную плату с помощью программатора AVR
Существует также много различных типов программаторов AVR, но чаще всего используются два:
AVRISP mkII
USBtinyISP
ArduinoISP
AVRISP mkII можно приобрести в Digikey (номер по каталогу ATAVRISP2-ND), в то время как USBtinyISP необходимо собрать, и его можно найти в Adafruit Industries.Документацию и ссылки на магазин Arduino и список дистрибьюторов можно найти на странице продукта ArduinoISP.
Использование платы Arduino
Загрузочная загрузка на плате Arduino
Поместите микросхему Atmega в плату Arduino так, чтобы выемка микросхемы была обращена наружу. Установите перемычку на внешний источник питания и подключите блок питания 12 В (ваша плата должна иметь внешнее питание при использовании AVR ISP mkII, но не требуется с AVRtinyISP). Затем прикрепите 6-контактный гнездовой штекер программатора AVR к 6-ти штыревым контактам ICSP так, чтобы пластиковый выступ головки ленточного кабеля был направлен внутрь.
ПРИМЕЧАНИЕ: AVR ISP mkII загорается зеленым светом, когда они правильно подключены и готовы к программированию. Светодиод становится красным, если он подключен неправильно.
Использование макета
Адаптер для программирования AVR
При загрузке микросхемы Atmega на макетную плату адаптер программирования AVR (SKU BOB-08508) от Sparkfun невероятно удобен. Этот адаптер заменяет 6 контактов программатора на 6 линейных контактов для легкого прикрепления к макетной плате. Все контакты также промаркированы, что упрощает подключение к микросхеме.
6-контактный кабель программатора AVR
Не волнуйтесь, если у вас нет адаптера программирования AVR, вы все равно можете загрузиться без него. Однако это будет больше головной болью для настройки. Два изображения слева — отличные ссылки при подключении программатора к микросхеме Atmega без платы адаптера. На изображениях будет показано, какие отверстия в 6-контактном штекере AVR, и вам просто нужно будет вставить провода в конце и провести их к микросхеме Atmega.
6-контактная кабельная головка программатора AVR
Это изображение представляет собой вид снизу и подписывает каждое из отверстий.Обратите внимание на квадрат, указывающий на ориентацию вашего кабеля.
Добавьте мощность и землю
Начнем!
С макетной платой, которую вы подготовили выше, добавьте два провода для питания и заземления для вашего программатора AVR.
Подключите адаптер AVR
Теперь подключите адаптер программирования AVR к макетной плате так, чтобы контакт GND совпадал с проводом заземления, который вы только что проложили, а контакт 5V — с проводом питания, который вы только что проложили.
Добавьте провода MISO, SCK, RESET и MOSI
На этом этапе вам нужно будет добавить последние четыре провода, необходимые программисту AVR для правильной загрузки.Обязательно обратитесь к схеме контактов Arduino, чтобы получить помощь в подключении.
- Контакт MISO вашего адаптера будет подключаться к контакту 18 или цифровому контакту 12 Arduino вашего чипа Atmega.
- Контакт SCK вашего адаптера будет подключаться к контакту 19 или цифровому контакту Arduino 13 вашего чипа Atmega.
- Контакт RESET адаптера перейдет к контакту 1 микросхемы Atmega.
- Контакт MOSI вашего адаптера будет подключаться к контакту 17 или цифровому контакту 11 Arduino вашего чипа Atmega.
Подключите кабель USB и кабель программирования AVR
Почти готово! Просто подключите кабель USB к коммутационной плате USB и подключите 6-контактный штекер программатора AVR к адаптеру программирования AVR.Черный выступ 6-контактной головки должен быть направлен вверх в сторону микросхемы Atmega. На следующем шаге мы покажем, что вам нужно использовать программное обеспечение Arduino для записи загрузчика!
Пора гореть!
Выберите тип платы
Запустите Arduino, затем перейдите в «Инструменты» и «Плата». Выбор типа платы, которую вы хотите использовать, повлияет на то, какой загрузчик вы поместите на свой чип. Чаще всего вы будете использовать Diecimilia или самую последнюю версию Arduino для Atmega PDIP, однако, если вы хотите загрузить Arduino Lilypad, Arduino Mini, Arduino Nano или любую из более старых версий Arduino, выберите подходящую плату. .
Выберите своего программиста. Гореть!
Затем перейдите в «Инструменты» и «Записать загрузчик» и выберите программатор, который вы будете использовать.
Горение
После того, как вы выберете свой программатор, программатор AVR начнет загрузку вашего чипа Atmega, и в строке состояния появится сообщение «Запись загрузчика на плату ввода-вывода (это может занять минуту) …» Индикаторы будут мигать. ваш программист.
Запись завершена!
По окончании загрузки в строке состояния появится сообщение «Готово записать загрузчик.«Теперь ваш чип готов к программированию с помощью программного обеспечения Arduino! Поздравляем! Выключите и снова включите ваш Arduino, и ваш новый чип Atmega будет запускать простую программу мигания светодиода с выводом 13 (если это не так, попробуйте запрограммировать его с помощью одного) Если это сработает, значит, это был успех.
ПРИМЕЧАНИЕ: Иногда процесс загрузки микросхемы Atmega с помощью AVR ISP mkII занимает чрезвычайно длительный период времени. Обычно это занимает всего пару минут, и на самом деле AVRtinyISP завершает работу намного быстрее.Однако бывают случаи, когда через 5-10 минут он все еще загружается. Я обнаружил, что это странный сбой (возможно, это тройная проверка потока данных), и, дав ему достаточно времени, 10 минут или около того, я обычно отключаю программатор только для того, чтобы обнаружить, что процесс записи прошел успешно и давно закончился . Я ни в коем случае не поддерживаю этот метод, и вы берете на себя всю ответственность за все, что может случиться с вашим чипом, но, по моему опыту, он был довольно безвредным, хотя вам следует действовать с осторожностью.Вполне возможно, что в процессе вы можете повредить свой чип.
Беспаечные макеты для создания проектов электроники DIY
Создавать электронные схемы легко с помощью беспаечных макетов
BB830 Без пайки
Вставная доска для выпечки хлеба,
830 стяжек,
4 шины питания
Когда я начинал заниматься электроникой, я создавал прототипы схем, забивая гвозди в деревянный брусок, а затем паяя провода и компоненты между гвоздями.Я начал делать это вскоре после того, как вырос из инженерного набора, который родители подарили мне на Рождество. Никто не мог быть более удивлен, чем я, когда я получил свою первую работу на фабрике по производству телевизоров и обнаружил, что создание схем на основе гвоздевых макетов было обычной отраслевой практикой.
По сей день моя мама постоянно рассказывает всем, как пол в моей спальне был постоянно покрыт ковром из кусочков проволоки и капель припоя с моего стола электроники для хобби.Насколько это обидно, когда ты подросток? Если бы в то время были доступны беспаечные макеты, можно было бы избежать многих созданных мною беспорядков. Особенно капли припоя на ковре, которые нелегко убрать пылесосом, и они не приносят ковру особой пользы.
Очиститель электроники для хобби
Сегодня все намного проще. Макетные платы без пайки означают, что вам нужно меньше обрезать выводы компонентов и, конечно же, вообще не паять. Вам не нужно сразу вкладывать деньги в паяльник, и вы даже можете повторно использовать свои компоненты для создания других схем, если хотите.Но какой беспаечный макет выбрать? Они бывают разных форм и размеров, и если вы никогда раньше не использовали их, может быть сложно определить, какой из них лучше.
Какую плату выбрать
Верите или нет, недавно у меня была такая же проблема. Несмотря на то, что всю свою жизнь я работал с электронными схемами и строил их, я никогда не использовал одну из этих беспаечных плат. Когда я только начинал, я паял схемы на ложе из гвоздей, а позже, когда эти беспаечные платы стали доступны, схемы, которые я построил, были либо настолько простыми, что я мог просто припаять их на платах с медными полосками, либо они были настолько сложными, что Единственным практическим способом создания прототипа было создание печатной платы.Поэтому я решил, что побалую себя одним. Я исследовал все доски на Amazon и остановился на 830 соединительная точка, беспаечный макет с 4 шинами питания . Он кажется достаточно большим, чтобы построить приличную схему, и достаточно маленьким, чтобы не слишком мешать кухонному столу. Щелкните здесь, чтобы заказать себе прямо сейчас.
Не беспокойтесь, если вы перерастете эту конкретную плату, потому что вы всегда можете расширить свои схемы, просто купив больше макетов позже.
Как спланировать сборку схемы
Моя беспаечная макетная плата Макетная плата без пайки, которую я купил, разложена в виде сетки отверстий, в которую вы можете вставить свои компоненты.Он имеет два горизонтальных ряда соединенных штырей вдоль каждой из длинных сторон, предназначенных для подключения батареи или источника питания. Между шинами питания находятся два набора вертикально соединенных штырей. Чтобы помочь вам спланировать компоновку компонентов, вы можете скачать и распечатать шаблон сетки макета здесь.
Строить схемы таким способом легко. Как только вы выяснили, куда должны идти компоненты, просто вставьте провода в отверстия. Совершенно никаких проблем.
Щелкните здесь, чтобы заказать себе макетную плату без пайки.
.