Не запускается импульсный блок питания: Ремонт импульсных блоков питания: схемы, описание, неисправности

Содержание

Цыкает импульсный блок питания — Морской флот

полезные устройства из радиохлама

  • Темы без ответов
  • Активные темы
  • Поиск

импульсные БП без нагрузки

импульсные БП без нагрузки

Сообщение БАРС » 14 мар 2012, 12:45

Re: импульсные БП без нагрузки

Сообщение rhf-admin » 14 мар 2012, 22:02

Смотря как управлять. Представь, что ты не можешь гасануть полностью импульсы и у твоего ШИМа есть какая-то минимальная ширина импульса, меньше ты её сделать не можешь, пропустить импульс тоже не можешь. Вот ты накачиваешь на выход энергию, накачиваешь, а её оттуда никто не забирает. Да, ШИМ увидит, что напруга больше заданной и сделает ширину импульсов минимально возможной, но импульсы всё равно будут. Такому БП без нагрузки очень быстро придёт кирдык. Но такое было только у древних микрух.

Следующее поколение – это те же 34063, Она транзистор открывает только когда напруга меньше заданной и потом отрубает, когда начинается разряд времязадающего кондёра (собственно, важно не это, а то, что если напруга меньше заданной не упала – она может транзистор и вообще не открывать – пропускать циклы). Но при старте напруга сразу меньше заданной и первые импульсы, которые кондёр выходной заряжают, получаются максимально возможной ширины (в это время единственное, что может сократить импульс – это схема ограничения тока) и накачать она в этот момент может бо’льшую напругу, чем надо. Регулирование происходит по обратной связи, мы же не можем заранее предсказать, сколько энергии заберут с выхода. Вот это поколение микрух впуливает на выход при старте максимум, а потом смотрит – опа, много, в следующий раз начинает впуливать поменьше.

А современные микросхемы всё умеют и мягкий старт и загасить импульсы, когда они не нужны (то есть минимальная ширина импульсов у них получается ноль). Так что современные БП можно как угодно включать, хоть с нагрузкой, хоть без нагрузки. Мягкий старт – это когда не впуливают на выход сразу максимум, а прибавляют по чуть чуть. Дали чуток, смотрят – мало, дали в следующем цикле побольше, мало – дали ещё побольше и так пока не будет в самый раз или пока не кончится стартовое время (или не отработается стартовое количество импульсов). Они короче плавно напругу на выходе поднимают.

Re: импульсные БП без нагрузки

Сообщение БАРС » 22 июл 2013, 23:09

Причина отказа блока питания, или почему техника перестает работать. С недавних пор, стал все чаще замечать, что люди стали обращаться, да и сам попадаю, на странный и однообразный ремонт техники. Все начинается примерно по одному сценарию – работал себе аппарат год или два и тут вдруг начал включаться медленно, или вообще не запускаться, или же при включение выключается резко, или же пытается включиться но не включается! В общем берем тестер и проверяем блок питания измерением напряжения на нем, точнее на выходных клеммах, оно как правило находится в допустимых рамках, или как вариант отличается на 0.3-0.4 вольт в меньшую сторону, например у 12 вольтовых блоках питания оно как правило 11.4 вольта.

А вот если проверить осциллографом, или простым тестером из динамика, то слышны высокочастотные пульсации, поэтому без сглаживания эта аппаратура с таким питанием не может работать!

Такие конденсаторы, как правило, внешне заметно на крышке вздуваются или взрываются вообще, при проверки могут показать заметное уменьшение ёмкости – вместо 1000 мкф будет 120-150 мкф, или того меньше, или же в тестере конденсатор может определиться вообще как другой элемент.

При таком чуде, когда конденсатор вдруг стал резистором либо диодом, блок питания пытается включиться, но токи становятся высокими и в крупных фирменных телевизорах такие блоки уходят в защиту. При новой попытки включить все повторяется по кругу.

Часто замену фильтрующего конденсатора можно выполнить увеличенной емкостью, например вместо батареи из трех конденсаторов редкой емкости в 1500 мкф, можно поставить в 4000 мкф. Главное проверить потом стабильность работы прибора и уровень пульсаций, чтобы все было в норме, ну и чтоб конденсатор был на нужное напряжение, или лучше с запасом по напряжению, тогда он будет дополнительно защищен от перепадов.

В наше время практически все электроприборы бытового назначения имеют специальные приспособления, именуемые импульсными блоками. Они могут иметь вид как отдельного модуля, так и платы, размещенной в конструкции прибора.

Импульсный блок питания

Поскольку импульсные блоки предназначены для выпрямления и понижения сетевого напряжения, то они могут часто выходить из строя. Поэтому, чтобы не покупать новое дорогостоящее бытовое устройство, знания о том, как его можно починить своими руками будут достаточно востребованными. О том, как выявить неисправности работы данного прибора или платы, а также как самостоятельно провести его ремонт, вам расскажет данная статья.

Описание преобразователя напряжения

Импульсный блок питания может иметь вид платы или самостоятельного выносного модуля. Он предназначен, как уже говорилось, для понижения и выпрямление сетевого напряжения. Его необходимость основывается на том, что в стандартной сети питания имеется напряжение в 220 вольт, а для работы многих бытовых приборов необходимо гораздо меньшее значение этого параметра.
Сегодня, вместо стандартных понижающе-выпрямительных схем, собранных на основе диодного моста и силового трансформатора, используются блоки питания импульсного преобразования напряжения.

Обратите внимание! Несмотря на наличие высокой схемотехнической надежности, импульсные блоки питания часто ломаются. Поэтому в наше время очень актуален ремонт этих элементов электросхем.

Схема импульсного блока питания

Все типы источника питания импульсного вида (встроенного или вынесенного за пределы прибора) имеют два функциональных блока:

  • высоковольтный. В таком блоке питания происходит преобразование сетевого напряжения в постоянное при помощи диодного моста. Причем напряжение сглаживается до уровня 300,0…310,0 вольт на конденсаторе. В результате происходит преобразование высокого напряжения в импульсное с частотой 10,0…100,0 килогерц;

Обратите внимание! Такое устройство высоковольтного блока позволило отказаться от низкочастотных массивных понижающих трансформаторов.

  • низковольтный. Здесь же происходит понижение импульсного напряжения не необходимого уровня. При этом напряжение сглаживается и стабилизируется.

В результате такого строения на выходе из блока питания импульсного типа функционирования наблюдается несколько или одно напряжение, которое нужно для питания бытовой техники.
Стоит отметить низковольтный блок может содержать разнообразные управляющие схемы, повышающие надежность прибора.

Импульсный блок питания (плата). Цвета приведены на схеме

Поскольку блоки питания такого типа имеют сложное устройство, их правильный ремонт, проводимый своими руками, должен опираться на некоторые знания в электронике.
Осуществляя ремонт данного прибора, не стоит забывать, что некоторые его элементы могут находиться под сетевым напряжением. В связи с этим даже проводя первичный осмотр блока необходимо соблюдать предельную осторожность.
Ремонт в большинстве случаев не будет вызывать осложнений, т.к. импульсные блоки питания имеют типовое устройство. Поэтому и неисправности у них тоже будут схожими, а ремонт своими руками выглядит вполне посильной задачей.

Возможные причины поломки

Неисправности, которые приводят импульсный блок питания в нерабочее состояние, могут появляться по самым разнообразным причинам. Наиболее часто поломки происходят из-за:

  • наличия колебания сетевого напряжения. К неисправности могут привести те колебания, на которые не рассчитаны данные понижающе-выпрямительные модули;
  • подключение к блоку питания нагрузок, на которые бытовые приборы не рассчитаны;
  • отсутствие защиты. Не устанавливая защиту, некоторые производители просто экономят. При обнаружении такой неполадки нужно просто установить защиту в конкретное место, где она и должна находиться;
  • несоблюдение правил и рекомендаций эксплуатации, которые указаны производителями для конкретных моделей.

При этом в последнее время частой причиной поломки преобразователей напряжения является заводской брак или использование при сборке некачественных деталей. Поэтому, если вы хотите, чтобы ваш купленный импульсный блок питания проработал как можно дольше, не стоит покупать его в сомнительных местах и не у проверенных людей. Иначе это могут быть просто впустую потраченные деньги.
После диагностики блока зачастую выясняются следующие неисправности:

  • 40% случаев – нарушение работы высоковольтной части. Об этом свидетельствует перегорание диодного моста, а также поломка фильтрующего конденсатора;
  • 30% — пробоем биполярного (формирующего импульсы высокой частоты и располагающегося в высоковольтной части устройства) или силового полевого транзистора;
  • 15% — пробой диодного моста в его низковольтной части;
  • редко встречается выгорание (пробой) обмоток дросселя на выходном фильтре.

Все остальные поломки можно будет определить только специальным оборудованием, которое вряд ли хранится дома у среднестатистического человека. Для более глубокой и точной проверки необходим цифровой вольтметр и осциллограф. Поэтому если поломки не кроются в четырех приведенных выше вариантах, то в домашних условиях блок питания такого типа вы не сможете починить.
Как видим, ремонт, проводимый в данной ситуации своими руками, может иметь самый разнообразный вид. Поэтому, если у вас перестал работать компьютер или телевизор по причине поломки блока питания, то не нужно бежать в ремонтную службы, а можно попутаться решить проблему своими силами. При этом домашний ремонт обойдется значительно в меньшую стоимость. А вот если вы не сможете своими силами справиться с поставленной задачей, тогда можно уже идти на поклон к специалистам из ремонтной службы.

Алгоритм определения поломки

Любой ремонт всегда начинается с выяснения причины неисправности блока питания импульсного.

Обратите внимание! Для ремонта и поиска неисправностей импульсного блока питания вам потребуется вольтметр.

Для того чтобы ее выявить, необходимо придерживаться следующего алгоритма:

  • разбираем блок питания;
  • с помощью вольтметра измеряем напряжение, которое имеется на электролитическом конденсаторе;

Измерение напряжение на электролитическом конденсаторе

  • если вольтметр выдает напряжение в 300 В, то это означает, что предохранитель и все элементы электросети (кабель питания, сетевой фильтр входные дроссели), связанные с ним работают нормально;
  • в моделях с двумя конденсаторами небольших размеров напряжение, свидетельствующее об их исправности, которое выдает вольтметр, должно составить 150 В для каждого прибора;
  • если же напряжение отсутствует, тогда необходимо провести прозвонку диодов выпрямительного моста, предохранителя и конденсатора;

Обратите внимание! Самыми коварными элементами в электросхеме блока питания импульсного типа работы являются предохранители. Об их поломке не свидетельствуют никакие внешние признаки. Только прозвонка поможет вам выявить их неисправность. В случае сгорания они выдадут высокое сопротивление.

Предохранители импульсного блока питания

  • если была обнаружена неисправность предохранителей, то нужно проверять остальные элементы электросхемы, так как они редко когда сгорают в одиночку;
  • внешне достаточно легко выявить испорченный конденсатор. Обычно он вздувается или разрушается. Ремонт в данном случае будет заключаться в его выпаивании и замене на работоспособный.
  • Обязательно необходимо прозвонить на предмет исправности следующие элементы:
  • выпрямительный или силовой мост. Он имеет вид монолитного блока или организован из четырёх диодов;
  • конденсатор фильтра. Может выглядеть как один или несколько блоков, которые соединяются между собой последовательно или параллельно. Обычно конденсатор фильтра расположен высоковольтной части блока;
  • транзисторы, размещенные на радиаторе.

Обратите внимания! Проводя ремонт, нужно найти сразу все неисправные детали импульсного блока питания, так как их выпаивание и замену следует проводить одновременно! В противном случае замена одного элемента будет приводить к выгоранию силовой части.

Особенности ремонтных работ и инструменты для них

Для стандартного типа устройств вышеперечисленные этапы диагностики и проведения ремонтных работ будут идентичными. Это связано с тем, что все они имеют типовое строение.

Припаивание деталей к плате

Также, чтобы провести качественный самостоятельный ремонт импульсного преобразователя напряжения, необходим хороший паяльник, а также умение управляться с ним. При этом вам еще понадобиться припой, спирт, который можно заменить на очищенный бензин, и флюс.
Помимо паяльника в ремонте обязательно понадобятся следующие инструменты:

  • набор отверток;
  • пинцет;
  • бытовой мультиметр или вольтметр;
  • лампа накаливания. Может использовать в качестве балластной нагрузки.

С таким набором инструментов простой ремонт будет по силам любому человеку.

Проведение ремонтных работ

Собираясь своими руками починить испортившийся импульсный преобразователь напряжения, необходимо понимать, что такие манипуляции не проводятся для изделий, предназначенные для комплексной замены. Они не рассчитаны на ремонт и их не возьмется чинить ни один мастер, так как здесь нужен полный демонтаж электронной начинки и замены ее на новую работающую.

Плата блок питания импульсного принципа работы

Во всех остальных случаях ремонт в домашних условиях и своими руками вполне возможен.
Правильно проведенная диагностика является половиной ремонта. Неисправности, связанные с высоковольтной части обнаружатся легко как визуально, так и при помощи вольтметра. А вот неисправность предохранителя можно выявить при отсутствии напряжения на участке после него.
При обнаружении с ее помощью неисправностей остается просто произвести их одновременную замену. Осуществляя ремонтные работы, необходимо обязательно опираться на внешний вид электронной платы. Иногда, чтобы проверить каждую деталь, необходимо ее выпаять и протестировать мультиметром. Желательно проводить проверку всех деталей. Несмотря на затруднительность такого процесса, он позволит выявить все испорченные элементы электросхемы и вовремя их заменить, чтобы предотвратить перегорания прибора в обозримом будущем.

Замена перегоревших деталей

После того, как была проведена замена всех перегоревших деталей, необходимо установить уже новый предохранитель и проверить отремонтированный блок питания, включив его. Обычно, если все было выполнено правильно, а также соблюдены все нормы и предписания ремонтных работ, преобразователь заработает.

Заключение

Ремонт блока питания, работающего по импульсному принципу, можно вполне реализовать своими руками. Но для этого нужно правильно провести диагностику прибора, а также одновременно заменить все сгоревшие детали электросхемы. Выполняя все рекомендации, вы легко сможете провести необходимые ремонтные действия у себя дома.

Импульсный блок питания уходит в защиту

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.

Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания

БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Теоретически, работа датчиков токовой защиты блока питания могла бы со­сто­ять в измерении падения напряжения на ре­зис­то­рах, включенных по­сле­до­ва­тель­но с на­груз­кой. Та­кой пря­мо­ли­ней­ный под­ход в про­ек­ти­ро­ва­нии це­пей, спо­соб­ных обес­пе­чи­вать то­ки в де­сят­ки ам­пер, при­вел бы к боль­шим по­те­рям. Оче­вид­ный трюк, уже мно­го лет ис­поль­зуме­мый раз­ра­бот­чи­ка­ми им­пуль­с­ных бло­ков пи­та­ния для пер­со­наль­ных ком­пью­те­ров, — за­ме­рять па­­де­­ние на­пря­же­ния на ин­дук­тив­но­стях в це­пи LC-филь­тра вы­ход­ных напряжений +12V, +5V, +3.3V.

Давайте рассмотрим, как реализована защита блока питания от превышения потребляемого тока на примере ис­поль­зо­ва­ния одного из лучших управляющих контроллеров WT7527 от Weltrend Semiconuctor. Этот чип с успехом применяется в серии Prime блоков питания Seasonic, пользующихся заслуженным уважением самых взы­с­ка­тель­ных пользователей.


Рис 1. Фрагмент принципиальной схемы подключения управляющего контроллера Weltrend Semiconuctor WT7527

Как следует из заводской документации, контроллер WT7527 обеспечивает четыре линии токовой защиты: две для линий +12V, и по одной для +3.3V и +5V. В связи с тем, что основной отбор мощности современные системные платы и вы­со­ко­у­ров­не­вые ви­део адап­теры вы­пол­ня­ет по двенадцативольтовой шине, остановимся на тонкостях ре­а­ли­за­ции OCP (Over Current Protection) именно для нее.

Ограничения по току

Если вы думаете, что в цепях питания персонального компьютера возможен любой произвол, с этой мыслью мож­но рас­про­щать­ся. Международный стандарт IEC 60950-1, логотип которого вынесен в заголовок статьи, де­кла­ри­ру­ет предел мощности — не более 240VA по каждой шине. Физический смысл такого ограничения — пред­от­вра­тить си­ту­а­цию, при которой аварийная мощность, потребляемая в случае короткого замыкания, может быть вос­при­ня­та схе­мой то­ко­вой защиты как допустимая (потребляемая нагрузкой), что может при­вес­ти к раз­ру­ше­нию эле­мен­тов уст­ройства и да­же возгоранию.

В случае с постоянным током можно говорить о 240 Ваттах, что устанавливает для 12-вольтовой линии лимит в 20 А. Обойти это ограничение очень просто: достаточно развести напряжения по разным шинам, как это де­ла­ет, на­при­мер, Chieftec в блоках питания APS-500C:

Как следует из информации на самом блоке питания по каждой их линий +12V1 и +12V2 подается ток 18А. Обыч­но, од­на из них делегируется для питания процессора, другая используется для накопителей и со­пут­ству­ю­щей пе­ри­фе­рии. Каждая из них обслуживается своей схемой токовой защиты: и овцы целы требования IEC 60950-1 со­блю­де­ны, и пи­та­ние в норме.

В 700-ваттнике от FSP Group также востребован экстенсивный метод: 12-вольтовые линии разнесены на че­ты­ре ка­на­ла, каждый из которых ограничен 18-амперным потреблением тока. При этом общая мощность че­ты­рех­ка­наль­но­го регулятора ограничена величиной 680 Ватт, что формально оз­на­ча­ет — суммарный ток че­ты­рех 12-вольтовых ка­на­лов не должен превышать лимит в 56.6 Ампер. (680W/12V=56.6A). Вни­ма­тель­ный читатель заметит, что согласно дополнительному комментарию на этикетке имеют место более строгие ог­ра­ни­че­ния: суммарный ток по линиям +12V не должен превышать 50 Ампер, а общий выходной ток ог­ра­ни­чен лимитом в 70 Ампер. Очевидно, что умножение 18 ампер на четыре канала не дает сколько-нибудь по­лез­ной информации.

Современные тенденции в архитектуре блоков питания

Разделение нагрузки на примерно равные части является не более, чем трюком, ко­то­рым удачно вос­поль­зо­ва­лись раз­ра­бот­чи­ки — питание неделимой нагрузки, потребляющей более 20 ампер по линии +12 вольт невозможно без нарушения норм безопасности. Очевидно, соблюдение этих норм зависит не только от раз­де­ле­ния каналов в бло­ке питания, но и разводки силовых цепей в нагрузке.

Если мощный потребитель (например, видео адаптер), к которому подключено более одного разъема до­пол­ни­тель­но­го питания, соединяет их 12-вольтовые цепи в одну точку, либо соединяет 12-вольтовые линии разъема PCI Express и дополнительного питания, то результатом будет не только нарушение спецификации, но и риск создания дисбаланса в таких принудительно коммутируемых каналах. Это значит, что грамотная сборка высокоуровневых платформ и май­нин­го­вых ферм невозможна без верификации системы с помощью омметра. Или, перефразируя известного ав­то­ра, «воз­мож­на, если вам не важен результат».

Если требуется питать неразделимую нагрузку большим током, соединение линий из недостатка пре­вра­ща­ет­ся в пре­и­му­ще­ст­во — при раздельных каналах встречаются варианты, когда ток, обеспечиваемый блоком пи­та­ния по ли­нии дополнительного питания видео карты, недостаточен, хотя он и меньше суммарного тока всех ка­на­лов. При одной 100-амперной линии потребитель застрахован от данного типа несовместимости.

Дополнительные минусы единого канала также существуют, ведь потребляемый от линии питания ток яв­ля­ет­ся фун­к­ци­ей времени. Например, для жесткого диска уровень потребления увеличивается при выполнении по­зи­ци­о­ни­ро­ва­ния, для CPU и GPU изменения могут быть обусловлены циклическим выполнением фраг­мен­тов кода, со­зда­ю­ще­го раз­лич­ную вычислительную нагрузку. В результате взаимовлияния компонентов и вслед­ст­вие уве­ли­че­ния по­треб­ле­ния то­ка может возрасти уровень помех по ли­ни­ям питания. Выведя ре­гу­ля­тор громкости на пол­ную мощ­ность и за­пус­тив майнинг, не услы­шим ли мы в динамиках «звон бит­ко­и­нов»?

Проверка и ремонт неисправностей блока питания телевизора

В любом современном телевизоре есть импульсный блок питания.

Блок питания — это целый узел, предназначенный для обеспечения телевизора питающими напряжениями определенной мощности, необходимыми для нормального функционирования электроприбора.

Когда неисправен импульсный блок, наблюдаются всевозможные неполадки телевизионного приемника, в том числе, он совсем не работает или перестает включаться.

Возможные неисправности блока питания

Мастера ВсеРемонт24, приезжая на дом к клиенту, чаще всего сталкиваются именно с неисправностью блока питания. Это самая частая неисправность телевизоров всевозможных моделей, марок и типов.

Блок питания может быть в общей схеме телевизора или в виде отдельного модуля.

Блоки питания уникальны в каждом телевизоре, у каждого своя схема. Но на их работоспособность одинаково негативно влияют:

  • нарушение владельцем правил эксплуатации (особенно температурного режима),
  • относительно простые схемы,
  • непрофессиональный ремонт техники.

Неисправности, характерные для большинства блоков питания:

  1. Перегорание предохранителя.
  2. Блок питания не запускается, напряжение на выпрямителе есть, ключевые элементы исправны.
  3. Блок питания не запускается, так как срабатывает защита.
  4. Сгорает силовой (ключевой) транзистор.
  5. Заниженное или завышенное напряжение в первичных или вторичных цепях.

Очевидно, что разобраться в поломке и отремонтировать телевизор может только опытный телемастер. Самостоятельный ремонт крайне нежелателен, однако, возможен.

Проверка и ремонт блока питания

Если у вас есть некоторый опыт, все необходимые знания и инструменты (в частности, мультиметр и паяльник), попробуйте починить телевизионный приемник.  

Алгоритм действий при проверке блока питания ТВ:

  1. Выключить телевизор (вынуть вилку из розетки).
  2. Разрядить высоковольтный конденсатор.
  3. Вынуть плату из корпуса телевизора.
  4. Осмотреть плату (визуальная диагностика).
  5. Проверить мультиметром резисторы, конденсаторы, диоды, транзисторы и прочее.
  6. Осмотреть обратную сторону платы. Проверить, нет ли трещин, пробоев между дорожками, надежность припайки деталей.

Резисторы могут:

  • потемнеть,
  • потрескаться,
  • ухудшается качество пайки выводов.

Если все это заметно визуально, имеет смысл поменять резисторы на новые с отклонением от оригинала не более плюс-минус 5%.

Если внешне ничего не заметно, следует проверить резисторы мультиметром. Резистор неисправен, если сопротивление = 0 или ?.

Неисправные электролитические конденсаторы внешне вздутые. Проверяется также их емкость. Допустимые отклонения — плюс-минус 5%.

Исправный кремниевый диод имеет сопротивление в прямом направлении 3-6 кОм, а в обратном — ?.

Чтобы измерить сопротивление, нужно выпаять диод. Для проверки мультиметр устанавливают в режим измерения сопротивления с пределом в 20 кОм.

Второй вариант проверки мультиметром без выпаивания диода. В таком случае мультиметр нужно установить на режим измерения падения напряжения (должно быть до 0, 7 V). Если мультиметр показывает 0 или около нуля, диод придется все-таки выпаять и проверить снова. Если показания не меняются, наверняка произошло пробитие. Требуется замена детали.

Биполярные транзисторы проверяются в обоих направлениях (в прямом и обратном) на переходах:

  • база-коллектор,
  • база-эмиттер.

Проверка предполагает измерение падения напряжения в транзисторах. Также важно проверить чтобы не было пробоя в переходе “коллектор-эмиттер”.

Исправные транзисторы ведут себя как диоды, неисправные нужно перепроверять полностью — всю “обвязку”:

  • диоды,
  • резисторы,
  • конденсаторы.

Чтобы проверить питающие напряжения импульсного блока питания, потребуется:

  • его схема,
  • две лампы накаливания ?100W.

Алгоритм действий:

  1. Воспользовавшись схемой, найти выход на каскад строчной развертки.
  2. Отключить выход.
  3. Подключить лампу накаливания.
  4. Блок питания подключить через вторую лампу.

Если лампа загорается и ярко горит, блок питания неисправен. Если же лампочка загорается и гаснет или слабо светит, входные цепи блока питания исправны.

Чтобы определить какой именно элемент пробит (отчего и горит лампочка), нужно обратиться к схеме.

Проверочное измерение напряжения производится с подключенной лампочкой на нагрузке B+. В схеме указано каким должно быть напряжение. Обычно это 110-150V. Если оно соответствующее, блок питания исправен.

Если напряжение повышено (200V), проверяют элементы первичной цепи блока питания. Если понижено — вторичные цепи.

Все неисправные детали выпаиваются, на их место припаивают новые.

Помните! Отремонтировать блок питания телевизора самостоятельно, не имея знаний и опыта, невозможно. Еще важнее то, что кустарный и любительский ремонт — прямая угроза здоровью и даже жизни людей!

Из чего состоит импульсный блок питания часть 3. Инвертор блока питания. Из чего состоит инвертор импульсного блока питания

Что вообще такое — инвертор.
Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.

Инвертор состоит из двух основных узлов.
ШИМ контроллера.

А также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.

Впрочем инвертор может выглядеть заметно проще, например у известного блока питания.

Микросхема, жменька деталей, вот и весь ШИМ контроллер.

В данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.

Еще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.
Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.

Но давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.
Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную «кренку» купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.
На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.

Тогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память 🙂
Правда вышеприведенная схема требовала подбора транзисторов и в моем случае сильно перегревалась.

Схема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.

При всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве «электронного трансформатора» для галогенных ламп.

Правда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.

Уже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.
Вообще некоторые радиолюбители делали и стабилизированные блоки питания на базе этой микросхемы, но работает это не всегда корректно.

По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.
Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов.

Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.

Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.

Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.

Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.

В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.

Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.
Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.

Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.
Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.

Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.

Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.
1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.
2. Вспомогательное питания или цепь запуска.
3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.
4. Собственно ШИМ контроллер, мозги блока питания.
5. Узел основного питания ШИМ контроллера.

Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.
После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера.

Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.
Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.

Затем ШИМ контроллер проверяет, в порядке ли питающее напряжение. Эта цепь есть далеко не у всех инверторов, потому если ее нет, то можно сразу перейти к следующему шагу.

Если с питанием все отлично, то контроллер начинает выдавать управляющие импульсы силовому транзистору. попутно при этом контролируется ток в цепи этого транзистора и если он превышен, то ШИМ контроллер переходит в режим защиты.

Если все нормально, то буквально после нескольких тактов на выходе цепи основного питания появляется рабочее напряжение, которое и питает контроллер. Кстати это один из узлов отказа, если питания нет, то блок питания будет работать в старт-стоп режиме.

Если все этапы запуска прошли корректно, то дальше вступает в дело ШИМ стабилизация. В данном случае я всегда сравниваю ее с бочкой, в которую мы порциями подаем воду и сливая ее через другой кран с разным напором. Задача контроллера поддерживать всегда один и тот же уровень воды в бочке при том, что вводной кран может быть только в двух состояниях, открыто и закрыто.
Кстати, многие видели на выходе блоков питания резистор, подключенный параллельно питанию, он нужен чтобы обеспечить некую минимальную нагрузку, так как блоку питания тяжело работать при очень малой ширине импульса.

Для примера ширина импульсов при небольшой нагрузке.

Если увеличить нагрузку, то ШИМ контроллер увеличит подачу энергии в трансформатор, а через него в нагрузку.

Даже если к примеру нагрузить блок питания на полную, то ширина импульсов не будет полной.

Запас необходим для компенсации снижения входного напряжения.

Если снизить входное напряжение еще больше, то ШИМ контроллер просто выставит максимальную ширину импульса. Кстати, ШИМ контроллеры блоков питания не формируют 100% заполнение, так как всегда необходимо «мертвое» время для защиты выходных транзисторов. В это время выходные транзисторы закрыты.
Для обратноходовых однотактных блоков питания, а именно они используются в качестве блоков питания небольшой мощности, максимальное заполнение составляет 50%.

Самым первым ШИМ контроллером, с которым я познакомился, была легендарная TL494. Микросхема очень старая, но так получилось, что у разработчика дешевый и очень универсальный контроллер и даже спустя много лет и при наличии современных решений он еще весьма широко применяется в блоках питания.
Выпускается она многими фирмами и иногда под разными названиями, например аналог от Самсунга называется КА7500.

На первый взгляд его внутреннее устройство может показаться довольно сложным, но на самом деле таковым не является.

Если немного упростить картинку, то будет примерно так:
1 и 2, стабилизатор питания и источник опорного напряжения.
3. Генератор импульсов, задает частоту работы контроллера.
4. Два компаратора, один обычно используется для стабилизации тока, второй — напряжения.
5. Задатчик мертвого времени, т.е. минимальной паузы между открытым состоянием выходов.
6. Узел сложения всех сигналов.
7. Триггер, который управляет выходными ключами и задает логику работы, двухтактный или однотактный режим. В некоторых аналогах этот триггер сбоил на частотах ниже 100 Гц, чем доставлял немало сюрпризов строителям повышающих инверторов в 220 Вольт.

Микросхема выполнена в корпусе с 16 выводами. Сама по себе надежна, но иногда в блоках питания АТХ, где ее питание идет от источника дежурного напряжения, выходит из строя после его ухода в разнос, когда высыхал конденсатор по выходу 5 Вольт. Пробивало стабилизатор опорного напряжения и на выходе БП запросто могло появиться высокое напряжение. Потому при проверке прежде всего смотреть наличие 5 Вольт на выводе 14.

В блоках питания АТ, а потом в распространенных китайских БП в кожухе она питается от своего же силового трансформатора. Запуск происходит за счет резисторов в базовых цепях силовых ключей. При включении они сначала входят в автогенераторный режим, на выходе трансформатора появляется небольшое напряжение, микросхема начинает работать и перехватывает управление на себя. Потому если БП не запускается, то в первую очередь проверяем резисторы выделенные на схеме резисторы.

Вторым, не менее легендарным ШИМ контроллером является семейство однотактных UC384х.
Думаю что вы могли из встречать раньше в блоках питания и преобразователях напряжения.

Внутреннее устройство весьма похоже на TL494, но немного отличается. Для начала у микросхемы только один выход, а не два.
Кроме того компараторы привязаны к определенному напряжению, заданному внутри микросхемы, а не универсальные.
Ну и конечно ключевая особенность, микротоковый старт. пока микросхема не начнет работать, он потребляет очень маленький ток, потому запустить ее можно прямо от входного напряжения через резистор, TL494 так не умеет.
Чтобы запуск проходил корректно, у микросхемы есть пороговая схема определяющая напряжение включения и выключения микросхемы. Существует два варианта, около 9 и 15 Вольт.
Кроме того микросхема может иметь 50 и 100% рабочий цикл, первая идет в блоки питания, вторая в преобразователи напряжения.
Так получается четыре варианта исполнения этого контроллера.

Микросхема выпускается в разных корпусах, но наиболее распространен корпус с восемью выводами.

Типовая схема блока питания с этой микросхемой выглядит примерно так.

Сейчас на рынке есть много блоков питания с другими микросхемами, но если посмотреть на их схему, то вы увидите очень много общего, все те же узлы и элементы. Отличия если и есть, то они минимальны.

Инверторы блоков питания могут иметь разную топологию, и об этом я обязательно расскажу отдельно, но большинство выполнено по схемотехнике флайбек или полумост, две верхние схемы на чертеже. Собственно все описанные сегодня блоки питания работают именно так.

Но вернемся к ШИМ контроллерам. Перед этим я описывал варианты, когда ШИМ контроллер отдельно, а силовой узел отдельно. но также получили распространение и полностью интегрированные контроллеры, например серии TOP от Power integrations где практически все собрано в одном корпусе.
Не так давно мне даже попалась подделка, причем что интересно, она слева, с лазерной маркировкой, справа оригинал.

Распространение они получили благодаря простейшей схемотехнике, где в простом варианте блок питания состоит буквально из нескольких деталей.

Потом появились более продвинутые контроллеры, где можно задавать напряжение включения и отключения, а также ограничение выходной мощности. Но при желании их можно перевести в трехвыводный режим, соединив выводы как было на фото раньше.
Но в любом случае данные контроллеры гораздо умнее и имеют комплекс защит от разных проблем, например они выдерживали напряжение более 300 Вольт по входу просто блокируя свою работу.

Но секрет их популярности был также и в удобной программе расчета, которую предоставлял производитель. Она позволяла рассчитать все, вплоть до укладки обмоток трансформатора. А при обнаружении проблем в расчетах, выдавала подсказки.

Производитель предоставлял варианты применения своих микросхем в виде примеров. Был даже вариант компьютерного блока питания, но как-то не пошло.

Зато в небольших блоках питания, например мониторов, он встречаются весьма часто.

Кроме того я и сам их очень активно использую уже наверное лет 15.

Китайские производители также не отстают, выпуская свои варианты подобных микросхем.

Которые довольно успешно применяют в небольших блоках питания

Кстати, при желании можно использовать ШИМ контроллеры и без обратной связи от выходного напряжения, используя обмотку питания самого контроллера. Схема упрощается, но стабильность конечно будет немного ниже чем при правильной обратной связи.

В общих чертах на этом все. Вообще мне иногда кажется, что чем больше я рассказываю, тем больше остается за кадром, что еще хотелось бы рассказать более подробно, но не успеваешь. Потому скорее всего будут еще выпуски по отдельным узлам и принципам работы.
Видео получилось слишком длинным, даже сам не ожидал, и это при том, что еще почти ничего не сказал за ключевые транзисторы и часть даже вырезал, наверное болтаю слишком много 🙁

Несколько ссылок, на полезные обзоры, которые упоминались в видео.
Неплохой модуль DC-DC ZXY6005S или лабораторный блок питания своими руками
12 Вольт 6-8 Ампер блок питания, который приятно удивил
12 Вольт 5 Ампер блок питания или как это могло быть сделано
DC-DC преобразователь, как это иногда бывает
S-180-12 180W 12V / 15A блок питания в непривычном формфакторе
36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
48 Вольт, 5 Ампер и 240 Ватт или блок питания который смог удивить
Блоки питания, маленькие и очень маленькие

Принципиальная схема импульсного блока питания ЗУСЦТ, принцип работы

Материал данной статьи предназначен не только для владельцев уже раритетных телевизоров, желающих восстановить их работоспособность, но и для тех, кто хочет разобраться со схемотехникой, устройством и принципом работы импульсных блоков питания. Если усвоить материал данной статьи, то без труда можно будет разобраться с любой схемой и принципом работы импульсных блоков питания для бытовой техники, будь то телевизор, ноутбук или офисная техника. И так приступим…

 

В телевизорах советского производства, третьего поколения ЗУСЦТ применялись импульсные блоки питания — МП (модуль питания).

Импульсные блоки питания в зависимости от модели телевизора, где они использовались, разделялись на три модификации — МП-1, МП-2 и МП-3-3. Модули питания собраны по одинаковой электрической схеме и различаются только типом импульсного трансформатора и номиналом напряжения конденсатора С27 на выходе фильтра выпрямителя (см. принципиальную схему).

Функциональная схема и принцип работы импульсного блока питания телевизора ЗУСЦТ

Рис. 1. Функциональная схема импульсного блока питания телевизора ЗУСЦТ:

1 — сетевой выпрямитель; 2 — формирователь импульсов запуска; 3 — транзистор импульсного генератора, 4 — каскад управления; 5 — устройство стабилизации; 6 — устройство защиты; 7 — импульсный трансформатор блока питания телевизоров 3усцт; 8 — выпрямитель; 9 — нагрузка

Пусть в начальный момент времени в устройстве 2 будет сформирован импульс, который откроет транзистор импульсного генератора 3. При этом через обмотку импульсного трансформатора с выводами 19, 1 начнет протекать линейно нарастающий пилообразный ток. Одновременно в магнитном поле сердечника трансформатора будет накапливаться энергия, значение которой определяется временем открытого состояния транзистора импульсного генератора. Вторичная обмотка (выводы 6, 12) импульсного трансформатора намотана и подключена таким образом, что в период накопления магнитной энергии к аноду диода VD приложен отрицательный потенциал и он закрыт. Спустя некоторое время каскад управления 4 закрывает транзистор импульсного генератора. Так как ток в обмотке трансформатора 7 из-за накопленной магнитной энергии не может мгновенно измениться, возникает ЭДС самоиндукции обратного знака. Диод VD открывается, и ток вторичной обмотки (выводы 6, 12) резко возрастает. Таким образом, если в начальный период времени магнитное поле было связано с током, который протекал через обмотку 1, 19, то теперь оно создается током обмотки 6, 12. Когда вся энергия, накопленная за время замкнутого состояния ключа 3, перейдет в нагрузку, то во вторичной обмотке достигнет нулевого значения.

Из приведенного примера можно сделать вывод, что, регулируя длительность открытого состояния транзистора в импульсном генераторе, можно управлять количеством энергии, которое поступает в нагрузку. Такая регулировка осуществляется с помощью каскада управления 4 по сигналу обратной связи — напряжению на выводах обмотки 7, 13 импульсного трансформатора. Сигнал обратной связи на выводах этой обмотки пропорционален напряжению на нагрузке 9.

Если напряжение на нагрузке по каким-либо причинам уменьшится, то уменьшится и напряжение, которое поступает в устройство стабилизации 5. В свою очередь, устройство стабилизации через каскад управления начнет закрывать транзистор импульсного генератора позже. Это увеличит время, в течение которого через обмотку 1, 19 будет течь ток, и соответственно возрастет количество энергии, передаваемой в нагрузку.

Момент очередного открывания транзистора 3 определяется устройством стабилизации, где анализируется сигнал, поступающий с обмотки 13, 7, что позволяет автоматически поддерживать среднее значение выходного постоянного напряжения.

Применение импульсного трансформатора дает возможность получить различные по амплитуде напряжения в обмотках и устраняет гальваническую связь между цепями вторичных выпрямленных напряжений и питающей электрической сетью. Каскад управления 4 определяет размах импульсов, создаваемых генератором, и при необходимости отключает его. Отключение генератора осуществляется при уменьшении напряжения сети ниже 150 В и понижении потребляемой мощности до 20 Вт, когда каскад стабилизации перестает функционировать. При неработающем каскаде стабилизации, импульсный генератор оказывается неуправляемым, что может привести к возникновению в нем больших импульсов тока и к выходу из строя транзистора импульсного генератора.

Принципиальная схема импульсного блока питания телевизора ЗУСЦТ

Рассмотрим принципиальную схему модуля питания МП-3-3 и принцип ее работы.

Рис. 2 Принципиальная схема импульсного блока питания телевизора ЗУСЦТ, модуль МП-3-3

Открыть схему блока питания телевизора ЗУСЦТ с высоким разрешением >>>.

В ее состав входит низковольтный выпрямитель (диоды VD4 — VD7), формирователь импульсов запуска (VT3), импульсный генератор (VT4), устройство стабилизации (VT1), устройство защиты (VT2), импульсный трансформатор Т1 блока питания 3усцт и выпрямители на диодах VD12 — VD15 со стабилизатором напряжения (VT5 — VT7).

Импульсный генератор собран по схеме блокинг-генератора с коллекторно-базовыми связями на транзисторе VT4. При включении телевизора постоянное напряжение с выхода фильтра низковольтного выпрямителя (конденсаторов С16, С19 и С20) через обмотку 19, 1 трансформатора Т1 поступает на коллектор транзистора VT4. Одновременно сетевое напряжение с диода VD7 через конденсаторы С11, С10 и резистор R11 заряжает конденсатор С7, а также поступает на базу транзистора VT2, где оно используется в устройстве защиты модуля питания от пониженного напряжения сети. Когда напряжение на конденсаторе С7, приложенное между эмиттером и базой 1 однопереходного транзистора VT3, достигнет значения 3 В, транзистор VT3 откроется. Происходит разрядка конденсатора С7 по цепи: переход эмиттер-база 1 транзистора VT3, эмиттерный переход транзистора VT4, параллельно соединенные, резисторы R14 и R16, конденсатор С7.

Ток разрядки конденсатора С7 открывает транзистор VT4 на время 10 — 15 мкс, достаточное, чтобы ток в его коллекторной цепи возрос до 3…4 А. Протекание коллекторного тока транзистора VT4 через обмотку намагничивания 19, 1 сопровождается накоплением энергии в магнитном поле сердечника. После окончания разрядки конденсатора С7 транзистор VT4 закрывается. Прекращение коллекторного тока вызывает в катушках трансформатора Т1 появление ЭДС самоиндукции, которая создает на выводах 6, 8, 10, 5 и 7 трансформатора Т1 положительные напряжения. При этом через диоды одно-полупериодных выпрямителей во вторичных цепях (VD12 — VD15) протекает ток.

При положительном напряжении на выводах 5, 7 трансформатора Т1 происходит зарядка конденсаторов С14 и С6 соответственно в цепях анода и управляющего электрода тиристора VS1 и С2 в эмиттерно-базовой цепи транзистора VT1.

Конденсатор С6 заряжается по цепи: вывод 5 трансформатора Т1, диод VD11, резистор R19, конденсатор С6, диод VD9, вывод 3 трансформатора. Конденсатор С14 заряжается по цепи: вывод 5 трансформатора Т1, диод VD8, конденсатор С14, вывод 3 трансформатора. Конденсатор С2 заряжается по цепи: вывод 7 трансформатора Т1, резистор R13, диод VD2, конденсатор С2, вывод 13 трансформатора.

Аналогично осуществляются последующие включения и выключения транзистора VT4 блокинг-генератора. Причем нескольких таких вынужденных колебаний оказывается достаточным, чтобы зарядить конденсаторы во вторичных цепях. С окончанием зарядки этих конденсаторов между обмотками блокинг-генератора, подсоединенными к коллектору (выводы 1, 19) и к базе (выводы 3, 5) транзистора VT4, начинает действовать положительная обратная связь. При этом блокинг-генератор переходит в режим автоколебаний, при котором транзистор VT4 будет автоматически открываться и закрываться с определенной частотой.

В период открытого состояния транзистора VT4 его коллекторный ток протекает от плюса электролитического конденсатора С16 через обмотку трансформатора Т1 с выводами 19, 1, коллекторный и эмиттерный переходы транзистора VT4, параллельно включенные резисторы R14, R16 к минусу конденсатора С16. Из-за наличия в цепи индуктивности нарастание коллекторного тока происходит по пилообразному закону.

Для исключения возможности выхода из строя транзистора VT4 от перегрузки сопротивление резисторов R14 и R16 подобрано таким образом, что, когда ток коллектора достигает значения 3,5 А, на них создается падение напряжения, достаточное для открывания тиристора VS1. При открывании тиристора конденсатор С14 разряжается через эмиттерный переход транзистора VT4, соединенные параллельно резисторы R14 и R16, открытый тиристор VS1. Ток разрядки конденсатора С14 вычитается из тока базы транзистора VT4, что приводит к его преждевременному закрыванию.

Дальнейшие процессы в работе блокинг-генератора определяются состоянием тиристора VS1, более раннее или более позднее открывание которого позволяет регулировать время нарастания пилообразного тока и тем самым количество энергии, запасаемой в сердечнике трансформатора.

Модуль питания может работать в режиме стабилизации и короткого замыкания.

Режим стабилизации определяется работой УПТ (усилителя постоянного тока) собранного на транзисторе VT1 и тиристоре VS1.

При напряжении сети 220 Вольт, когда выходные напряжения вторичных источников питания достигнут номинальных значений, напряжение на обмотке трансформатора Т1 (выводы 7, 13) возрастает до значения, при котором постоянное напряжение на базе транзистора VT1, куда оно поступает через делитель Rl — R3, становится более отрицательным, чем на эмиттере, куда оно передается полностью. Транзистор VT1 открывается по цепи: вывод 7 трансформатора, R13, VD2, VD1, эмиттерный и коллекторный переходы транзистора VT1, R6, управляющий электрод тиристора VS1, R14, R16, вывод 13 трансформатора. Этот ток, суммируясь с начальным током управляющего электрода тиристора VS1, открывает его в тот момент, когда выходное напряжение модуля достигает номинальных значений, прекращая нарастание коллекторного тока.

Изменяя напряжение на базе транзистора VT1 подстроечным резистором R2, можно регулировать напряжение на резисторе R10 и, следовательно, изменять момент открывания тиристора VS1 и продолжительность открытого состояния транзистора VT4, тем самым устанавливать выходные напряжения блока питания.

При уменьшении нагрузки (либо увеличении напряжения сети) возрастает напряжение на выводах 7, 13 трансформатора Т1. При этом увеличивается отрицательное напряжение на базе по отношению к эмиттеру транзистора VT1, вызывая возрастание коллекторного тока и падение напряжения на резисторе R10. Это приводит к более раннему открыванию тиристора VS1 и закрыванию транзистора VT4. Тем самым уменьшается мощность, отдаваемая в нагрузку.

При понижении напряжения сети соответственно меньше становится напряжение на обмотке трансформатора Т1 и потенциал базы транзистора VT1 по отношению к эмиттеру. Теперь из-за уменьшения напряжения, создаваемого коллекторным током транзистора VT1 на резисторе R10, тиристор VS1 открывается в более позднее время и количество энергии, передаваемой во вторичные цепи, возрастает. Важную роль в защите транзистора VT4 играет каскад на транзисторе VT2. При уменьшении напряжения сети ниже 150 В напряжение на обмотке трансформатора Т1 с выводами 7, 13 оказывается недостаточным для открывания транзистора VT1. При этом устройство стабилизации и защиты не работает, транзистор VT4 становится неуправляемым и создается возможность выхода его из строя из-за превышения предельно допустимых значений напряжения, температуры, тока транзистора. Чтобы предотвратить выход из строя транзистора VT4, необходимо блокировать работу блокинг-генератора. Предназначенный для этой цели транзистор VT2 включен таким образом, что на его базу подается постоянное напряжение с делителя R18, R4, а на эмиттер пульсирующее напряжение частотой 50 Гц, амплитуда которого стабилизируется стабилитроном VD3. При уменьшении напряжения сети уменьшается напряжение на базе транзистора VT2. Так как напряжение на эмиттере стабилизировано, уменьшение напряжения на базе приводит к открыванию транзистора. Через открытый транзистор VT2 импульсы трапецеидальной формы с диода VD7 поступают на управляющий электрод тиристора, открывая его на время, определяемое длительностью трапецеидального импульса. Это приводит к прекращению работы блокинг-генератора.

Режим короткого замыкания возникает при наличии короткого замыкания в нагрузке вторичных источников питания. Запуск блока питания в этом случае производится запускающими импульсами от устройства запуска собранного на транзисторе VT3, а выключение — с помощью тиристора VS1 по максимальному току коллектора транзистора VT4. После окончания запускающего импульса устройство не возбуждается, поскольку вся энергия расходуется в короткозамкнутой цепи.

После снятия короткого замыкания модуль входит в режим стабилизации.

Выпрямители импульсных напряжений, подсоединенные ко вторичной обмотке трансформатора Т1, собраны по однополупериодной схеме.

Выпрямитель на диоде VD12 создает напряжение 130 В для питания схемы строчной развертки. Сглаживание пульсаций этого напряжения производится электролитическим конденсатором С27. Резистор R22 устраняет возможность значительного повышения напряжения на выходе выпрямителя при отключении нагрузки.

На диоде VD13 собран выпрямитель напряжения 28 В, предназначенный для питания кадровой развертки телевизора. Фильтрация напряжения обеспечивается конденсатором С28 и дросселем L2.

Выпрямитель напряжения 15 В для питания усилителя звуковой частоты собран на диоде VD15 и конденсаторе СЗО.

Напряжение 12 В, используемое в модуле цветности (МЦ), модуле радиоканала (МРК) и модуле кадровой развертки (МК), создается выпрямителем на диоде VD14 и конденсаторе С29. На выходе этого выпрямителя включен компенсационный стабилизатор напряжения собранного на транзисторах. В его состав входит регулирующий транзистор VT5, усилитель тока VT6 и управляющий транзистор VT7. Напряжение с выхода стабилизатора через делитель R26, R27 поступает на базу транзистора VT7. Переменный резистор R27 предназначен для установки выходного напряжения. В эмиттерной цепи транзистора VT7 напряжение на выходе стабилизатора сравнивается с опорным напряжением на стабилитроне VD16. Напряжение с коллектора VT7 через усилитель на транзисторе VT6 поступает на базу транзистора VT5, включенного последовательно в цепь выпрямленного тока. Это приводит к изменению его внутреннего сопротивления, которое в зависимости от того, увеличилось или уменьшилось выходное напряжение, либо возрастает, либо понижается. Конденсатор С31 предохраняет стабилизатор от возбуждения. Через резистор R23 поступает напряжение на базу транзистора VT7, необходимое для его открывания при включении и восстановления после короткого замыкания. Дроссель L3 и конденсатор С32 — дополнительный фильтр на выходе стабилизатора.

Конденсаторы С22 — С26, шунтируют выпрямительные диоды для уменьшения помех, излучаемых импульсными выпрямителями в электрическую сеть.

Сетевой фильтр блока питания ЗУСЦТ

Плата фильтра питания ПФП подсоединена к электрической сети через соединитель Х17 (А12), выключатель S1 в блоке управления телевизором и сетевые предохранители FU1 и FU2.

В качестве сетевых предохранителей используются плавкие предохранители типа ВПТ-19, характеристики которых позволяют обеспечить значительно более надежную защиту телевизионных приемников при возникновении неисправностей, чем предохранители типа ПМ.

Назначение заградительного фильтра — воспрепятствовать проникновению в электрическую сеть импульсных помех, создаваемых источником питания для бытовой радиоаппаратуры.

На плате фильтра питания находятся элементы заградительного фильтра (C1, С2, СЗ, дроссель L1) (см. принципиальную схему).

Резистор R3 предназначен для ограничения тока выпрямительных диодов при включении телевизора. Позистор R1 и резистор R2 — элементы устройства размагничивания маски кинескопа.

При ремонте бытовой аппаратуры следует неукоснительно соблюдать правила техники безопасности.

 

cxema.org — Мощный импульсный блок питания до 4кВт

Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности.

Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но…. схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.


В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот.

Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно.

Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке.

Мощность в моем случае 2000 ватт, но схема без проблем позволит снять до 4000 ватт, если заменить ключи, мост и напичкать электролитов на 4000 мкФ. На счет электролитов — емкость подбирается исходя из расчета 1 ватт — 1мкФ.

Диодный мост — 30 Ампер 1000 Вольт — готовая сборка, имеет свой отдельный обдув (кулер)

Сетевой предохранитель 25-30 Ампер.

Транзисторы — IRFP460, старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении.

Реле режима плавного пуска — 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему.

Трансформатор — в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.

Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер — для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер — для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.

Генератор построен на TL494, настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей.

Трансформатор тока намотан на кольце 2000НМ 20х12х6 — вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45 витков.
В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 — с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт — UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки).

Конденсаторы после выпрямителя стоят на 100 Вольт (с запасом), емкость 1000мкФ, но разумеется на самой плате усилителей будут еще.

Устранение неполадок начальной схемы.

Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер.

Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем — при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью.

R42 — заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки.

Минимальная грань стабилизации напряжения 18-25 Вольт, дальше уже пойдет срыв генерации.

Во многих источниках упомянули, что данный блок не включается без нагрузки — но это не так! Он очень даже хорошо запускается и на всех обмотках есть напряжение.

Никогда не выставляйте максимальное выходное напряжения — блок может в нагруженном состоянии издавать свист — на своем опыте понял, что это полностью безопасно, но неприятно.

С уважением — АКА КАСЬЯН

мир электроники — «Трехтранзисторный» блок питания

категория

Секреты телемастера

материалы в категории

Б. КИСЕЛЕВИЧ, п. Хатанга Красноярского края
Радио, 1998 год, №4

Так называемый «трехтранзисторный» БП это довольно распространенный импульсный источник питания который применялся во многих моделях кинескопных телевизоров- PHILIPS — 2021, AKAI — СТ-1407, AKAI — 2107, SHERION, CROWN — СТА/ 5176, ELEKTA — CTR-1498EMK, RECOR и еще многих других.

Схема источника питания

В качестве примера рассмотрим такой источник, используемый в телевизоре CROWN — CTV5176.
Напряжение сети 220 В через фильтр питания поступает на выпрямитель BR601, С601 — С604 и на петлю размагничивания L2001. На коллектор ключевого транзистора Q604 выпрямленное напряжение проходит через обмотку 1—5 импульсного трансформатора Т601.

На транзисторе Q604 выполнен блокинг-генератор — напряжение положительной обратной связи снимается с обмотки 7 — 8 трансформатора. Длительность генерируемых блокинг-генератором импульсов, т. е. время нахождения транзистора Q604 в насыщенном состоянии, определяется функционированием широтно-импульсного модулятора (ШИМ).

К базе транзистора Q604 подключен конденсатор С607, который во время закрытого состояния транзистора заряжается импульсом напряжения обмотки 7 — 8 трансформатора через диод D604. При открывании транзисторов Q602, Q603 ШИМ конденсатор С607 оказывается подключенным к эмиттерному переходу насыщенного транзистора Q604, и ток разрядки конденсатора, протекая через транзисторы и резистор R616, быстро закрывает транзистор Q604. Напряжение смещения на базу транзистора Q604 подано через резисторы R603, R604. Цепь C610R617 ограничивает выбросы импульсов на коллекторе транзистора Q604, защищая этим его от пробоя.

Для питания усилителя постоянного тока на транзисторе Q601 переменное напряжение с обмотки 9 — 10 выпрямляется диодом D603 и заряжает конденсатор С606.Напряжение на эмиттере транзистора Q601 стабилизировано параметрическим стабилизатором на элементах D601, R609, а напряжение на базу транзистора снимается с измерительного резистивного делителя R606VR601R607. Последнее зависит от напряжения на обмотке 9 — 10 трансформатора, т. е. уровней выходных напряжений блока питания + 110 и +12 В. Напряжение на резисторе R608 — коллекторной нагрузке транзистора Q601 служит напряжением ошибки и управляет моментом открывания ШИМ на транзисторах Q602, Q603. Подстроечным резистором VR601 устанавливают выходное напряжение + 110 В.

С резистора R605 через цепь C605R611 снимается пилообразное напряжение на базу транзистора О602 формирователя ШИМ. На нее же приходит напряжение ошибки с коллектора транзистора Q601. В зависимости от последнего ШИМ открывается раньше или позже, считая от момента открывания транзистора Q604. Транзисторы Q602, Q603 представляют собой аналог тринистора. Принцип его действия аналогичен работе тринистора в импульсном модуле питания МПЗ-3.

При увеличении напряжения сети или уменьшении нагрузки возрастает напряжение на обмотке 9 — 10 трансформатора Т601. В результате транзисторы Q602, Q603 открываются раньше, закрывая в более раннее время выходной транзистор Q604. Тем самым уменьшается запасаемая в трансформаторе Т601 энергия, что компенсирует возрастание напряжения сети.

При понижении напряжения сети соответственно будет меньшим напряжение на обмотке 9 — 10 трансформатора Т601. На коллекторе транзистора Q601 напряжение ошибки уменьшается. ШИМ открывается в более позднее время, и количество энергии, передаваемое во вторичную цепь, возрастает, компенсируя уменьшение напряжения сети.

Вторичные выпрямители блока выполнены по однополупериодной схеме. Обмотка 4 — 2 трансформатора и элементы D606, С612, L601 образуют источник напряжения +12 В, используемого для работы системы ДУ и других малоточных цепей. Обмотка 4 — 3 и элементы D607, L602 входят в источник напряжения +110 В, питающего выходной каскад строчной развертки.

На транзисторах Q608, Q606, Q605 собран узел включения и выключения питания выходного каскада строчной развертки. Тем самым телевизор системой ДУ включается или выключается, т. е. переводится в рабочий или дежурный режим. В дежурном режиме транзистор Q606 закрыт и напряжение +110 В не поступает на выходной каскад строчной развертки. В некоторых моделях телевизоров для этой цели применены реле.

Для ремонта плату блока вынимают из корпуса телевизора и размещают ее так, чтобы был свободный доступ к элементам. Параллельно конденсатору С604 подключают резистор сопротивлением 220 кОм и мощностью рассеяния 0,5 Вт. Через него будет разряжаться конденсатор после выключения телевизора. Выпаивают один из выводов каждого из элементов L601, L602, D608, С617. При этом цепи нагрузки телевизора будут полностью отключены от блока питания. Параллельно конденсатору С615 подключают лампу накаливания на 220 В и 25 Вт, которая будет служить эквивалентом нагрузки блока питания.

После ремонта, перед подключением блока питания к цепям телевизора, обязательно нужно проверить выходной транзистор строчной развертки и вторичные цепи строчного трансформатора. Со вторичных обмоток последнего часто берется напряжение, выпрямляется и сглаживается для питания узлов телевизора. Одной из причин выхода из строя блока питания могут быть именно эти цепи.

При подборе транзисторов с целью замены вышедших из строя следует руководствоваться их характеристиками, указанными в табл. 1.

Транзисторы 2SC1815Y можно заменить на КТ3102Б, 2SB774T — на КТ3107Б, a 2SD820, BU11F — на КТ872А. Последний крепят на теплоотводе с изолирующей прокладкой. Диоды допустимо заменять на КД209Б, КД226А, КД226Б.

Самая типовая неисправность данного модуля это «уход в разнос» из-за уменьшения емкости (или увеличения ЭПС) электролитических конденсаторов. Причем причина данной неприятности даже не качество применяемых деталей: главная проблема заключается в том что современные импульсные источники питания работают на высоких частотах (15 кГц а то и выше…), а обычные электролиты просто-напросто не рассчитаны на столь высокие частоты и в процессе работы они начинают нагреваться.
Если конденсатор фильтра (по схеме это С606) еще более-менее справляется со своими обязанностями, то С607 работает в очень тяжелом режиме (ему приходится пропускать через себя высокочастотные импульсы).
Поэтому при ремонте данного ИИП следует в обязательном порядке обратить в первую очередь внимание на данные конденсаторы, а ремонт блока проводить при отключенной строчной развертке, использовав в качестве нагрузки лампу накаливания мощностью 60…100 Вт.

Помимо этого рекомендуется параллельно конденсатору С607 припаять дополнительно еще один конденсатор емкостью 1000 пФ- таким образом получится немного снизить высокочастотную нагрузку.

Примечание: основная часть материала из журнала Радио, 1998 год, №4

[решено] Машина не загружается. Почему приведенный ниже трюк заставляет его загрузиться? — Общий форум оборудования

Так что я всегда считал это уловкой. И это срабатывает каждый раз, и я не могу объяснить почему …

Изначально я изучил это как трюк с ноутбуками, но он работает на настольных компьютерах / серверах, сотовых телефонах, игровых консолях, действительно на всем …

Симптомы:
Машина не загружается!

Отключено, затем подключено.Машина по-прежнему не загружается!

Исправление (трюк):

Отключите машину от сети. Нажмите кнопку питания (я говорю, чтобы убрать всю «грязную» мощность)

Подключите машину снова, нажмите кнопку питания. Вуаля! Он загружается!

Я сделал это снова несколько минут назад. Симптомы были:

Машина загружается после BIOS, но переходит к загрузке PXE и ​​остается при мигающем курсоре. Я отключил, подключил и перезагрузил, то же самое.Пробовал это снова и снова и ничего не получил! Где мои окна ?? !!

-Провел его через метод, описанный выше, чтобы убрать «грязную» мощность

.

Эй, ты меня снова загрузил! Вот и снова моя винда! Спасибо большое!

Теперь вот мой вопрос. Есть ли грязная власть? Если да, то почему это работает, даже если машина подключена к ИБП? И напоследок, почему это работает ?? !!

Было бы неплохо узнать, чтобы я мог вынуть его из своего арсенала трюков и вложить в свой арсенал ноу-хау;)


Pimiento

OP

Стив (LakesideComputers) 1 сентября 2013 г., 06:06 UTC

Как упоминалось ранее, причина, по которой это работает, связана с сигналом «хорошее энергопотребление» от блока питания ATX к материнской плате.

Сигнал хорошего питания — это сигнал +5 В, который сообщает компьютеру, что блок питания работает правильно. Во время нормальной работы, если выходы блока питания неправильные, например, во время скачка напряжения или отключения электроэнергии, процессор перезагружается. Сброс процессора продолжается до тех пор, пока снова не будет получен сигнал о хорошем питании. Если он не обнаруживается при запуске, то возникает описанная вами ситуация «не загружается». При запуске, когда источник питания включен, он выполняет некоторые внутренние самопроверки, которые обычно занимают от 100 мс до 500 мс.Если они проходят, сигнал о хорошем питании затем отправляется на микросхему таймера процессора, которая управляет сбросом процессора. Чип таймера ожидает получить сигнал в интервале от 100 до 600 мс после включения. Если сигнал хорошего питания получен вне ожидаемого времени, слишком рано или слишком поздно, происходит сброс процессора.

Причина, по которой ваш трюк работает, заключается в том, что сигнал + 5 В уже присутствует из-за конденсаторов, упомянутых в других сообщениях, которые находятся внутри источника питания, но не разряжаются.Вытащив вилку кабеля питания из задней части компьютера (или аккумулятора на ноутбуке) и удерживая кнопку питания, вы позволите току течь от конденсаторов через цепь +5 В на материнской плате, к которой подключены таймер и вентиляторы корпуса. Как только вентиляторы разряжают конденсаторы, вы подключаете питание и нажимаете кнопку, отправляется сигнал о хорошем питании и компьютер загружается.

Следует также отметить, что многие более дешевые блоки питания отказываются от самотестирования и подключают линию хорошего питания к своей шине +5 В.В результате сброс процессора никогда не происходит, потому что присутствует постоянный сигнал хорошего питания, независимо от того, что происходит с другими напряжениями в источнике питания. Иногда это может вызвать нестабильность и ошибки четности в процессоре и памяти во время скачков напряжения и сбоев. Многие производители используют эти более дешевые блоки питания в своих настольных системах для экономии средств.

Если принтер не включается, может быть неисправен разъем шнура питания? | Small Business

Неисправные шнуры питания и соединения — редкая, но возможная причина того, что принтер не включается.Прежде чем подозревать сбой кабеля, убедитесь, что в розетке есть напряжение и нет условий, препятствующих включению принтера. Проверка заменой может подтвердить, является ли проблема с подключением шнура.

Проверка отсутствия питания

Кнопка питания на большинстве принтеров представляет собой программный переключатель питания, который подключен к электронике принтера и не подключает и не отключает питание физически. В зависимости от марки и модели принтера программное обеспечение может препятствовать включению переключателя, если он удерживается слишком долго или слишком быстро, или если какие-либо дверцы принтера или панели доступа открыты.Чтобы перезапустить принтер, отключите все шнуры, подождите не менее 30 секунд, а затем подключите только шнур питания. У более крупных принтеров физический выключатель питания может быть расположен под съемной панелью или рядом со шнуром питания.

Конфигурации источников питания

В больших принтерах есть один шнур питания, идущий от розетки к задней части принтера. Адаптер переменного тока встроен в принтер, и шнур может быть съемным или несъемным. Меньшие принтеры имеют внешние адаптеры переменного тока или трансформаторные коробки.Они могут быть встроены в розетку или может быть шнур питания, идущий от розетки к адаптеру, и более тонкий шнур, который соединяет адаптер с принтером. Различные шнуры и адаптеры могут быть постоянно соединены вместе или иметь несколько вилок.

Принтеры со встроенными адаптерами переменного тока

Если в принтере используется один шнур, который нельзя отсоединить, проверить шнур невозможно. Если напряжение в розетке подтверждено и нет условий, препятствующих включению принтера, требуется профессиональное обслуживание.Если шнур съемный, то на конце принтера, скорее всего, используется обычный разъем C13, который также используется мониторами и компьютерами. Используйте еще один из этих шнуров, чтобы определить, неисправен ли оригинал.

Принтеры с внешними адаптерами переменного тока

Если в принтере используется съемный шнур питания между розеткой и адаптером переменного тока, можно использовать другой шнур, чтобы определить, неисправен ли оригинал. Другой адаптер переменного тока и низковольтный шнур можно попробовать только в том случае, если они предназначены для этой марки и модели принтера.В качестве альтернативы можно проверить адаптер и низковольтную проводку, используя их для другого принтера той же марки и модели. Если невозможно проверить адаптер и низковольтную проводку, их можно отнести в специализированный компьютерный магазин. Если в сетевой розетке есть электричество и нет условий, препятствующих включению принтера, скорее всего, адаптер или низковольтная проводка неисправны.

Расширенное тестирование адаптера переменного тока

Электрический счетчик может использоваться для подтверждения работы адаптера переменного тока и проводимости проводов низкого напряжения.Распространенная проблема — обрыв проводов у вилки. Это можно решить, заменив заглушку. Сменные заглушки можно приобрести в специализированных магазинах электроники и в Интернете. Во избежание травм, возгорания и повреждения принтера измерения напряжения и замена вилки должны выполняться только людьми, имеющими навыки и подготовку в области электричества и электроники.

Ссылки

Writer Bio

Тимоти Смитхи (Timothy Smithee) — технический писатель, специализирующийся на внутренних операционных процедурах для ИТ и производственной поддержки.Он писал для различных изданий, включая «RV Lifestyle» и «Everyman». Он имеет степень бакалавра искусств в области английской литературы в Университете Западного Онтарио и степень бакалавра искусств в области кинематографии Карлтонского университета.

[Техническая статья] Как устранить неполадки на недавно построенном ПК, который не выполняет POST / загружается / не включается — Micro Center

В этом руководстве мы рассмотрим общие шаги по устранению неполадок, которые необходимо выполнить, если у вас недавно построенный компьютер, который не включается / boot / POST.Независимо от того, являетесь ли вы начинающим строителем или опытным, нередко можно столкнуться с некоторыми препятствиями или пропустить что-то незначительное в своей сборке. Это руководство должно охватывать все основы.

  1. Всегда начинайте с прочтения и понимания всех руководств производителя, прежде чем пытаться собрать свой компьютер. Если в процессе вы столкнетесь с проблемами, документация производителя — отличный источник информации, относящейся к этому продукту.
  2. Убедитесь, что переключатель источника питания установлен в правильное положение в положение ON.Он должен быть установлен на линию, а не на круг.
  3. Если у вас есть видеокарта, убедитесь, что ваш монитор подключен непосредственно к ней, а не к видеопортам материнской платы. Выделенные порты видеокарты обычно расположены под аудиопортами, в нижней части вертикального корпуса. Убедитесь, что монитор настроен на правильный вход в зависимости от типа подключения: HDMI, VGA и т. Д. Убедитесь, что вы используете только один видеокабель для монитора.
  4. Протестируйте свой монитор с помощью другого устройства или проверьте другой монитор с помощью компьютера, чтобы исключить ваш монитор как источник проблемы.
  5. Убедитесь, что 24-контактный кабель питания материнской платы и 4 + 4-контактный кабель питания ЦП подключены. Питание ЦП находится в верхнем левом углу материнской платы, питание материнской платы — справа. сторона.


  6. Убедитесь, что оперативная память установлена ​​правильно. Если вы используете более одной флешки, убедитесь, что они установлены в правильные слоты в соответствии с руководством пользователя материнской платы.
  7. Попробуйте загрузиться с одной флешкой RAM, чтобы увидеть, имеет ли это значение.Попробуйте установить каждую флешку в разные слоты, чтобы сузить выбор, будь то отдельная флешка или слот на материнской плате.
  8. Убедитесь, что ваша видеокарта установлена ​​правильно и что 6-контактные или 6 + 2-контактные разъемы питания PCIe правильно подключены к источнику питания, если они требуются для видеокарты.

  9. Если ваш ЦП имеет встроенную графику, попробуйте загрузиться без видеокарты, установленной на плате, и использовать видеопорты материнской платы вместо карты, чтобы увидеть, имеет ли это значение.
  10. Убедитесь, что соединительные кабели передней панели правильно подключены к контактам на разъеме передней панели на материнской плате. На разных платах может быть разное расположение выводов, поэтому обязательно сверьтесь с руководством пользователя. Если они кажутся правильными, и он по-прежнему не включается, попробуйте перескочить контакты переключателя питания на материнской плате, осторожно прикоснувшись к двум из них вместе металлическим концом отвертки — это позволит проверить, связана ли проблема с корпусом / кабели передней панели или нет.

  11. Убедитесь, что кабель вентилятора ЦП подключен. Если разъем основного вентилятора ЦП не занят, большинство материнских плат не загружаются. Это применимо даже к материнским платам со специальным подключением водяного насоса.
  12. Убедитесь, что термопаста не стекает по бокам или под ЦП. При установке нового кулера вам понадобится лишь небольшое количество термопасты, чтобы покрыть весь процессор.
  13. Убедитесь, что ваш процессор правильно вставлен в разъем.Найдите вкладки или стрелку, которая соответствует вашей материнской плате, показывая вам, какой угол совпадает с где, чтобы ЦП находился в правильном положении.

  14. Есть ли на вашей материнской плате какие-либо коды ошибок или светодиоды отладки? На некоторых материнских платах есть индикаторы, которые могут указывать на обнаружение ошибки в одном из ваших компонентов. Это потенциально может указывать на проблему с оборудованием. Попробуйте отключить и снова подключить этот компонент и убедитесь, что он плотно вставлен в гнездо.
  15. Очистите CMOS.Это можно сделать либо путем извлечения батарейки кнопочного типа на плате, когда кабель питания отсоединен от задней панели, либо с помощью перемычки очистки CMOS на материнской плате. В руководстве пользователя материнской платы есть инструкции о том, где найти перемычку.
  16. Проверьте, нет ли погнутых контактов на процессоре или в разъеме процессора на материнской плате.
  17. Убедитесь, что упорные винты материнской платы были установлены правильно. Они ввинчиваются прямо в корпус и устанавливаются под платой.В некоторых случаях поставляются с предустановленными стойками материнской платы — если одна из них находится в месте, которое не совпадает с соответствующим отверстием на материнской плате, может произойти короткое замыкание. Если стойки недоступны, ваша материнская плата войдет в контакт с корпусом, чего не должно быть. Также убедитесь, что под материнской платой нет проводов, незатянутых винтов или предметов.
  18. Требуется ли для вашей материнской платы обновление BIOS для вашего процессора? Если ваш процессор новее материнской платы, возможно, сначала потребуется обновить BIOS, чтобы они были совместимы друг с другом.Возможно, потребуется использовать более старый совместимый процессор, чтобы обновить его до правильной версии. На некоторых материнских платах есть функция, позволяющая обновлять BIOS без установки процессора.
  19. Совместима ли ваша оперативная память с материнской платой? Большая часть оперативной памяти совместима с большинством материнских плат, если у нее есть правильный разъем и материнская плата поддерживает емкость установленного модуля, но в редких случаях может возникнуть проблема. Производитель вашей материнской платы будет иметь QVL (список квалифицированных поставщиков) оперативной памяти, совместимость которого они проверили на странице поддержки для вашей материнской платы.Если вашей оперативной памяти нет в списке, попробуйте переключиться на ее набор.
  20. Проверьте, не закорачивает ли ваша материнская плата внутри корпуса. Выньте материнскую плату и положите ее на плоскую изолированную поверхность, например картон или дерево (коробка с материнской платой — хороший вариант). НЕ кладите материнскую плату на антистатический пакет или на что-нибудь еще, что может проводить электричество. — это может испортить ваши компоненты. Установите процессор, оперативную память и видеокарту, если она у вас есть, затем подключите источник питания и попытайтесь заставить его загрузиться, перескакивая контакты переключателя питания на вашей плате.Это называется макетированием. Если он загружается, пока у вас есть макет, ваш корпус может контактировать с платой там, где она не должна быть, и замыкает ее.
  21. Наконец, если поиск неисправностей не позволяет выявить проблему и соответствующее решение, вам может потребоваться помощь, предлагаемая отделом обслуживания Micro Center In Store.

Общие сведения об источниках питания переменного / постоянного тока | Статья

.

СТАТЬЯ ОБРАЗОВАНИЯ


Получайте ценные ресурсы прямо на ваш почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания — это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, такого как сеть, в значения напряжения и тока, необходимые для питания нагрузки, такой как двигатель или электронное устройство.

Назначение источника питания — обеспечить нагрузку надлежащим напряжением и током. Ток должен подаваться контролируемым образом — и с точным напряжением — на широкий диапазон нагрузок, иногда одновременно, и все это без изменения входного напряжения или других подключенных устройств, влияющих на выход.

Источник питания может быть внешним, что часто встречается в таких устройствах, как ноутбуки и зарядные устройства для телефонов, или внутренним, например, в более крупных устройствах, таких как настольные компьютеры.

Источник питания может быть регулируемым или нерегулируемым. В регулируемом источнике питания изменения входного напряжения не влияют на выход. С другой стороны, в нерегулируемом источнике питания выходная мощность зависит от любых изменений на входе.

Все блоки питания объединяет то, что они берут электроэнергию от источника на входе, каким-то образом преобразуют ее и доставляют в нагрузку на выходе.

Питание на входе и выходе может быть переменным (AC) или постоянным (DC) током:

  • Постоянный ток (DC) возникает, когда ток течет в одном постоянном направлении.Обычно он поступает от батарей, солнечных элементов или преобразователей переменного тока в постоянный. Постоянный ток — предпочтительный тип питания для электронных устройств.
  • Переменный ток (AC) возникает, когда электрический ток периодически меняет свое направление. Переменный ток — это метод, используемый для подачи электроэнергии по линиям электропередачи в дома и на предприятия

Следовательно, если переменный ток — это тип питания, подаваемого в ваш дом, а постоянный ток — это тип питания, который вам нужен для зарядки телефона, вам понадобится источник питания переменного / постоянного тока для преобразования переменного напряжения, поступающего из электросети к напряжению постоянного тока, необходимому для зарядки аккумулятора вашего мобильного телефона.

Общие сведения о переменном токе (AC)

Первым шагом в разработке любого источника питания является определение входного тока. И в большинстве случаев источником входного напряжения электросети является переменный ток.

Типичная форма волны переменного тока — синусоидальная (см. Рисунок 1) .`

Рисунок 1: Форма сигнала переменного тока и основные параметры

Есть несколько показателей, которые необходимо учитывать при работе с блоком питания переменного тока:

  • Пиковое напряжение / ток: максимальное значение амплитуды волны
  • Частота: количество циклов, которые волна завершает в секунду.Время, необходимое для завершения одного цикла, называется периодом.
  • Среднее напряжение / ток: Среднее значение всех точек напряжения в течение одного цикла. В чисто переменном токе без наложенного постоянного напряжения это значение будет равно нулю, потому что положительная и отрицательная половины компенсируют друг друга.
  • Среднеквадратичное напряжение / ток: определяется как квадратный корень из среднего значения за один цикл квадрата мгновенного напряжения. В чистой синусоидальной волне переменного тока его значение можно рассчитать с помощью Уравнение (1) :
  • $$ V_ {PEAK} \ over \ sqrt 2 $$
  • Он также может быть определен как эквивалентная мощность постоянного тока, необходимая для достижения такого же теплового эффекта.Несмотря на сложное определение, он широко используется в электротехнике, поскольку позволяет найти эффективное значение переменного напряжения или тока. Из-за этого его иногда обозначают как V AC .
  • Фаза: Угловая разница между двумя волнами. Полный цикл синусоидальной волны делится на 360 °, начиная с 0 °, с пиками на 90 ° (положительный пик) и 270 ° (отрицательный пик) и дважды пересекая начальную точку, на 180 ° и 360 °. Если две волны изображены вместе, и одна волна достигает своего положительного пика в то же самое время, когда другая достигает своего отрицательного пика, то первая волна будет иметь угол 90 °, а вторая волна — 270 °; это означает, что разность фаз составляет 180 °.Считается, что эти волны находятся в противофазе, так как их значения всегда будут иметь противоположные знаки. Если разность фаз равна 0 °, мы говорим, что две волны находятся в фазе.

Переменный ток (AC) — это способ передачи электроэнергии от генерирующих объектов конечным пользователям. Он используется для транспортировки электроэнергии, потому что в процессе транспортировки электричество необходимо преобразовывать несколько раз.

Электрические генераторы вырабатывают напряжение около 40 000 В или 40 кВ.Затем это напряжение повышается до любого значения от 150 кВ до 800 кВ, чтобы снизить потери мощности при транспортировке электрического тока на большие расстояния. Когда он достигает места назначения, напряжение снижается до 4–35 кВ. Наконец, прежде чем ток достигнет отдельных пользователей, он снижается до 120 В или 240 В, в зависимости от местоположения.

Все эти изменения напряжения будут либо сложными, либо очень неэффективными по сравнению с постоянным током (DC), потому что линейные трансформаторы зависят от колебаний напряжения для передачи и преобразования электрической энергии, поэтому они могут работать только с переменным током (AC).

Линейный и импульсный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока имеет простую конструкцию.

При использовании трансформатора входное напряжение переменного тока (AC) снижается до значения, более подходящего для предполагаемого применения. Затем пониженное напряжение переменного тока выпрямляется и превращается в напряжение постоянного тока (DC), которое фильтруется для дальнейшего улучшения качества формы сигнала (Рисунок 2) .

Рисунок 2: Блок-схема линейного источника переменного / постоянного тока

Традиционный линейный источник питания переменного / постоянного тока эволюционировал с годами, улучшая его эффективность, диапазон мощности и размер, но эта конструкция имеет некоторые существенные недостатки, ограничивающие ее интеграцию.

Огромным ограничением линейного источника питания переменного / постоянного тока является размер трансформатора. Поскольку входное напряжение преобразуется на входе, необходимый трансформатор должен быть очень большим и, следовательно, очень тяжелым.

На низких частотах (например, 50 Гц) необходимы большие значения индуктивности для передачи большого количества энергии от первичной обмотки ко вторичной. Это требует больших сердечников трансформатора, что делает практически невозможной миниатюризацию этих источников питания.

Еще одним ограничением линейных источников питания переменного / постоянного тока является регулировка напряжения большой мощности.

Линейный источник питания переменного / постоянного тока использует линейные регуляторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают лишнюю энергию в виде тепла.Для малой мощности особых проблем не представляет. Однако для высокой мощности тепло, которое должен рассеивать регулятор для поддержания постоянного выходного напряжения, очень велико и потребует добавления очень больших радиаторов.

Импульсный источник питания переменного / постоянного тока

Новая методология проектирования была разработана для решения многих проблем, связанных с проектированием линейных или традиционных источников питания переменного / постоянного тока, включая размер трансформатора и регулировку напряжения.

Импульсные источники питания теперь возможны благодаря развитию полупроводниковой технологии, особенно благодаря созданию мощных полевых МОП-транзисторов, которые могут очень быстро и эффективно включаться и выключаться даже при больших напряжениях и токах.

Импульсный источник питания переменного / постоянного тока позволяет создавать более эффективные преобразователи мощности, которые больше не рассеивают избыточную мощность.

Блоки питания

AC / DC, в которых используются импульсные преобразователи мощности, называются импульсными блоками питания. Импульсные источники питания переменного / постоянного тока имеют несколько более сложный метод преобразования переменного тока в постоянный.

В импульсных источниках питания переменного тока входное напряжение больше не снижается; скорее, он выпрямляется и фильтруется на входе.Затем постоянное напряжение проходит через прерыватель, который преобразует напряжение в серию высокочастотных импульсов. Наконец, волна проходит через другой выпрямитель и фильтр, который преобразует ее обратно в постоянный ток (DC) и устраняет любую оставшуюся составляющую переменного тока (AC), которая может присутствовать до достижения выхода (см. Рисунок 3) .

При работе на высоких частотах катушка индуктивности трансформатора может передавать больше мощности, не достигая насыщения, что означает, что сердечник может становиться все меньше и меньше.Следовательно, трансформатор, используемый для переключения источников питания переменного / постоянного тока для уменьшения амплитуды напряжения до заданного значения, может составлять часть размера трансформатора, необходимого для линейного источника питания переменного / постоянного тока.

Рисунок 3: Блок-схема импульсного источника питания переменного / постоянного тока

Как и следовало ожидать, этот новый метод проектирования имеет некоторые недостатки.

Импульсные преобразователи переменного тока в постоянный ток могут создавать в системе значительный уровень шума, который необходимо устранить, чтобы исключить его на выходе.Это создает потребность в более сложных схемах управления, что, в свою очередь, усложняет конструкцию. Тем не менее, эти фильтры состоят из компонентов, которые можно легко интегрировать, поэтому они не оказывают существенного влияния на размер блока питания.

Меньшие трансформаторы и повышенная эффективность регуляторов напряжения в импульсных источниках питания переменного / постоянного тока — вот причина, по которой теперь мы можем преобразовывать напряжение переменного тока 220 В ¬RMS в напряжение 5 В постоянного тока с помощью преобразователя питания, который может поместиться у вас на ладони.

Таблица 1 суммирует различия между линейными и импульсными источниками питания переменного / постоянного тока.

Транзисторы Нерегулируемые источники питания
Линейный источник питания переменного / постоянного тока Импульсный источник питания переменного / постоянного тока
Размер и вес Необходимы большие трансформаторы, что значительно увеличивает размер и вес Более высокие частоты позволяют при необходимости использовать трансформаторы гораздо меньшего размера.
КПД Если не регулировать, потери в трансформаторе являются единственной существенной причиной потери эффективности.В случае регулирования приложения с большой мощностью будут иметь решающее влияние на эффективность. обладают небольшими коммутационными потерями, поскольку они ведут себя как малые сопротивления. Это позволяет использовать эффективных мощных приложений .
Шум могут иметь значительный шум, вызванный пульсациями напряжения, но регулируемые линейные источники питания постоянного тока переменного тока могут иметь чрезвычайно низкий уровень шума. Вот почему они используются в медицинских приложениях. Когда транзисторы переключаются очень быстро, они создают шум в цепи. Однако это может быть либо отфильтровано, либо частота переключения может быть сделана чрезвычайно высокой, превышающей предел человеческого слуха, для аудиоприложений
Сложность Линейный источник питания переменного / постоянного тока, как правило, имеет меньше компонентов и более простые схемы, чем импульсный источник питания переменного / постоянного тока. Дополнительный шум, создаваемый трансформаторами, вынуждает добавлять большие сложные фильтры, а также схемы управления и регулирования для преобразователей.

Таблица 1: Линейные и импульсные источники питания

Сравнение однофазных и трехфазных источников питания

Источник питания переменного тока может быть однофазным или трехфазным:

  • Трехфазный источник питания состоит из трех проводников, называемых линиями, каждая из которых несет переменный ток (AC) той же частоты и амплитуды напряжения, но с относительной разностью фаз 120 °, или одной трети цикл (см. рисунок 4) .Эти системы являются наиболее эффективными при передаче большого количества энергии и поэтому используются для доставки электроэнергии от генерирующих объектов в дома и на предприятия по всему миру.
  • Однофазный источник питания является предпочтительным методом подачи тока в отдельные дома или офисы, чтобы равномерно распределять нагрузку между линиями. В этом случае ток течет от линии питания через нагрузку, а затем обратно через нейтральный провод. Это тип питания, который используется в большинстве установок, за исключением крупных промышленных или коммерческих зданий.Однофазные системы не могут передавать столько энергии на нагрузку и более подвержены сбоям питания, но однофазное питание также позволяет использовать гораздо более простые сети и устройства.

Рисунок 4: Форма кривой переменного тока трехфазного источника питания

Существует две конфигурации для передачи энергии через трехфазный источник питания: конфигурация треугольника $ (\ Delta) $ и конфигурация звезды (Y), также называемые конфигурациями треугольника и звезды, соответственно.

Основное различие между этими двумя конфигурациями заключается в возможности добавления нейтрального провода (см. Рисунок 5) .

Соединения

треугольником обеспечивают большую надежность, но соединения типа Y могут подавать два разных напряжения: фазное напряжение, которое является однофазным напряжением, подаваемым в дома, и линейное напряжение для питания больших нагрузок. Соотношение между фазным напряжением (или фазным током) и линейным напряжением (или линейным током) в конфигурации Y заключается в том, что амплитуда линейного напряжения (или тока) в √3 раз больше, чем амплитуда фазы.

Поскольку стандартная система распределения электроэнергии должна обеспечивать питанием как трехфазные, так и однофазные системы, большинство сетей распределения электроэнергии имеют три линии и нейтраль.Таким образом, и дома, и промышленное оборудование могут быть снабжены одной и той же линией электропередачи. Следовательно, конфигурация Y наиболее часто используется для распределения мощности, тогда как конфигурация треугольника обычно используется для питания трехфазных нагрузок, таких как большие электродвигатели.

Рисунок 5: Трехфазные конфигурации Y и треугольника

Напряжение, при котором электросеть поставляет однофазную электроэнергию своим пользователям, имеет различные значения в зависимости от географического положения.Вот почему очень важно проверять диапазон входного напряжения источника питания перед его покупкой или использованием, чтобы убедиться, что он предназначен для работы в электросети вашей страны. В противном случае вы можете повредить блок питания или подключенное к нему устройство.

В таблице 2 сравниваются напряжения в сетях в разных регионах мира.

RMS (AC) Напряжение Пиковое напряжение Частота Область
230 В 310V 50 Гц Европа, Африка, Азия, Австралия, Новая Зеландия и Южная Америка
120 В 170V 60 Гц Северная Америка
100 В 141V 50 Гц / 60 Гц Япония *

* Япония имеет две частоты в своей национальной сети из-за истоков ее электрификации в конце 19 века.В западном городе Осака поставщики электроэнергии купили генераторы 60 Гц в Соединенных Штатах, а в Токио, который находится на востоке Японии, они купили немецкие генераторы 50 Гц. Обе стороны отказались изменить свою частоту, и по сей день в Японии все еще есть две частоты: 50 Гц на востоке и 60 Гц на западе.

Как упоминалось ранее, трехфазное питание используется не только для транспортировки, но также для питания больших нагрузок, таких как электродвигатели или зарядки больших аккумуляторов. Это связано с тем, что параллельное приложение мощности в трехфазных системах может передавать гораздо больше энергии нагрузке и может делать это более равномерно из-за перекрытия трех фаз (см. Рисунок 6) .

Рисунок 6: Передача энергии в однофазных (слева) и трехфазных (справа) системах

Например, при зарядке электромобиля (EV) количество энергии, которое вы можете передать аккумулятору, определяет, насколько быстро он заряжается.

Однофазные зарядные устройства подключаются к сети переменного тока (AC) и преобразуются в постоянный ток (DC) с помощью внутреннего силового преобразователя переменного / постоянного тока автомобиля (также называемого бортовым зарядным устройством). Мощность этих зарядных устройств ограничена сетью и розеткой переменного тока.

Ограничение варьируется от страны к стране, но обычно составляет менее 7 кВт для розетки на 32 А (в ЕС 220 x 32 А = 7 кВт). С другой стороны, трехфазные источники питания преобразуют мощность из переменного в постоянный внешне и могут передавать более 120 кВт на батарею, обеспечивая сверхбыструю зарядку.

Сводка

Источники питания переменного / постоянного тока есть повсюду. Основная задача источника питания переменного / постоянного тока — преобразовывать переменный ток (AC) в стабильное постоянное напряжение (DC), которое затем может использоваться для питания различных электрических устройств.

Переменный ток используется для транспортировки электроэнергии по всей электрической сети от генераторов до конечных потребителей. Цепь переменного тока (AC) может быть сконфигурирована как однофазная или трехфазная система. Однофазные системы проще и могут обеспечивать мощность, достаточную для питания всего дома, но трехфазные системы могут обеспечивать гораздо больше мощности более стабильным образом, поэтому они часто используются для питания промышленных приложений.

Разработка эффективных источников питания переменного / постоянного тока — непростая задача, поскольку современные рынки требуют мощных, чрезвычайно эффективных и миниатюрных источников питания, способных поддерживать эффективность в широком диапазоне нагрузок.

Способы проектирования источников питания переменного / постоянного тока со временем изменились. Линейные источники питания переменного / постоянного тока ограничены по размеру и эффективности, поскольку они работают на низких частотах и ​​регулируют выходную температуру, рассеивая избыточную энергию в виде тепла. Напротив, импульсные источники питания стали чрезвычайно популярными, потому что в них используются импульсные регуляторы для преобразования переменного тока в постоянный. Импульсные блоки питания работают на более высоких частотах и ​​преобразуют электроэнергию намного эффективнее, чем предыдущие разработки, что позволило создать мощные блоки питания переменного / постоянного тока размером с ладонь.

_________________________

Вы нашли это интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

Статьи по теме

Чему о синхронных выпрямителях не говорят в школе — Избранные темы из реальных проектов

7 важных шагов при проектировании импульсного источника питания

Импульсные источники питания неизбежны в современных конструкциях. Они энергоэффективны и термоэффективны, с различными схемами, доступными для каждого применения.Импульсные регуляторы решают проблему рассеивания мощности и эффективности за счет работы с широтно-импульсной модуляцией (ШИМ). Однако при разработке схемы импульсного источника питания необходимо учитывать множество факторов, и цена не должна быть единственным фактором при выборе компонентов. Полное понимание всех этих элементов поможет вам выбрать наиболее экономичную деталь для вашего дизайна.

Выходная мощность

Напряжение и номинальный ток, требуемые на выходе переключающего каскада постоянного / постоянного тока, являются наиболее очевидными факторами, которые следует учитывать при проектировании.Таблицы данных рассказывают только часть истории. Не принимайте заявленные выходные данные как должное! Фактически, вам может потребоваться рассчитать максимальную выходную мощность, которая может вам потребоваться от импульсной цепи питания, и убедиться, что устройство может обеспечить ее с некоторым запасом безопасности сверх (см. «Выбор правильного импульсного регулятора») .

Один и тот же номер детали в разной упаковке будет иметь разные тепловые характеристики, что приведет к разным выходным характеристикам. Различные пакеты имеют разное тепловое сопротивление, и некоторые пакеты лучше справляются с тепловым расцеплением, чем другие.При выборе корпуса компонентов важно не только пространство, но и простота изготовления, общий воздушный поток и компоновка платы. Компактная конструкция (из-за ограниченного пространства или занимаемой площади) требует хорошей оценки того, что тепловое тепло будет отводиться правильно, не затрагивая другие части оборудования, поскольку этот градиент может вызывать значительные проблемы в схемах со сверхмалым шумом, высокопроизводительных системах, оптических устройствах. схемотехника и многое другое.

LT1170 от Linear Technology поставляется в различных корпусах, от популярного TO-220 до DIP-8 и версий 8-SOIC, 16-SOIC и D2PAK-5 для поверхностного монтажа.SOIC-16 предлагает самые низкие тепловые характеристики — 150 ° C / Вт, а D2PAK — 25 ° C / Вт, когда в пласте используется 2,8 квадратных дюйма меди толщиной 1 унция. Таким образом, мощность, доступная от LT1170 (как и от любого компонента импульсного источника питания), будет зависеть от корпуса, а также от конфигурации, компонентов, компоновки и радиатора.

Получите оценочную плату вашего целевого импульсного регулятора, чтобы оценить его производительность в вашем конкретном приложении. Частота переключения может быть проблемой, и тестирование этого компонента с остальной частью вашей системы покажет вам, нужна ли вам дополнительная фильтрация или радиаторы, или вам нужно использовать другую часть.

Входные условия

Некоторые системы питаются от одного источника питания с определенным входным напряжением. Но в других случаях этот каскад ввода мощности должен выдерживать широкий спектр возможностей, таких как различное напряжение батареи или колебания источника питания. Это становится более строгим в автомобильных приложениях, где компоненты источника питания могут выдерживать холодный запуск и сброс нагрузки.

Некоторые источники питания, такие как батареи, могут со временем выйти из строя.Ваш импульсный источник питания должен выдерживать деградацию, чтобы обеспечить стабильный выходной сигнал в широком диапазоне условий вашей системы. Поэтому при проектировании источника питания важно понимать свой диапазон входного сигнала и условия эксплуатации.

Например, изоляция — это хорошо, но не всегда. Если бы он был интегрирован на предыдущем этапе, внутри той же системы мог бы быть изолированный преобразователь переменного тока в постоянный, поэтому изоляция была реализована в этой схеме.Или система может быть основана на батарее и нет необходимости в изоляции.

Изолированные импульсные блоки питания более сложны и дороги, но если они необходимы, то так тому и быть. Обратите внимание, что напряжение сети переменного тока без изоляции может вызвать проблемы с безопасностью и нормативными требованиями. Даже в случае систем с питанием от постоянного тока контуры заземления доставят серьезные проблемы команде разработчиков, а изоляция — хорошее решение для решения неизвестных проблем.

Проблемы с теплообменом и радиатором

Обычно заявленная выходная мощность основана на лучшем радиаторе, предусмотренном для компонента при наилучших температурных условиях.Но реальность такова, что при мощности, требуемой нагрузкой в ​​целевом приложении, температура, вероятно, будет выше, чем в комнате. Если ваш продукт попадает в какую-то упаковку, поток воздуха будет ограничен. Если ваше приложение развертывается в середине десерта, вам нужно убедиться, что все остается ниже абсолютных максимумов. При необходимости спланируйте адекватные тепловые стратегии и возможные радиаторы.

Если используется внешний радиатор, то лучше оценить тепловой поток вместе с механической бригадой.Это также открывает дискуссию о поиске альтернативных способов теплоотвода, например, непосредственно в корпусе или другой структурной опоре. Некоторые радиаторы требуют дополнительных работ, таких как термопаста, изолятор или винтовая опора, в то время как некоторые радиаторы предназначены для автоматического монтажа. Возможной альтернативой является использование той же печатной платы (PCB) для отвода тепла.

1. Тепловая панель под корпусом 16PSOP помогает отвести тепло к печатной плате. (любезно предоставлено Fairchild Semiconductor)

Затем используйте правильное посадочное место для вашего компонента.Понижающий стабилизатор Fairchild Semiconductor ML6554 поставляется в корпусе 16PSOP, который можно ошибочно принять за SOIC-16, но под ним есть термопрокладка, которая должна быть там, чтобы компонент отводил тепло на печатную плату (рис.1). . Таким образом компонент может справиться с тепловыми требованиями. Если термопрокладка не размещена, компонент преждевременно отключится из-за проблем с температурой. Также обратите внимание, что в зависимости от количества унций меди на слое (0,5, 1, 2 и т. Д.) Теплоотводящая способность плоскости будет отличаться, и для достижения такого же охлаждающего эффекта требуется более широкая площадь для более тонких слоев.

Дальнейшее рассмотрение следует уделить диапазону рабочих температур компонента. Электролитические конденсаторы ограничены в диапазоне низких температур, а емкость значительно изменяется при экстремальных температурах.

Качество компонентов

Качество компонентов играет важную роль в работе импульсного регулятора. Другие параметры должны быть правильными в дополнение к значениям. Например, катушки индуктивности с одинаковым значением индуктивности могут иметь разное насыщение.Насыщение индуктора — это когда магнитные характеристики устройства превышают его возможности, и устройство не ведет себя как требуемый индуктор.

Конденсаторы также изменяют значение своей емкости в зависимости от температуры и частоты, поэтому правильный тип и качество имеют решающее значение для правильной работы. Конденсаторы одинаковой емкости даже от одного производителя могут иметь разные характеристики и цены. United Chemi-Con предлагает множество электролитических конденсаторов. Некоторые из них общего назначения, такие как серия КМГ.Другие, такие как серия MZA, имеют низкий импеданс. Серия MVH предлагает более высокий ток пульсации. Другие поставщики предлагают подобное разнообразие. Следовательно, емкости и типа конденсатора недостаточно.

Импеданс источника чрезвычайно важен. Некоторая индуктивность на входе импульсного регулятора может помочь развязать всплески тока от импульсного источника питания к источнику. Но в некоторых случаях это может вызвать звон и скачки входного напряжения. Каждая микросхема преобразователя постоянного тока предназначена для работы с определенной комбинацией компонентов с диапазоном допустимых значений от минимального до максимального, поэтому необходимо тщательно изучить техническое описание для проверки любых потенциальных ограничений.Всегда полезно выполнять все вычисления в электронных таблицах и иметь диапазон (минимум и максимум) для всех значений компонентов.

С другой стороны, плохой выбор компонентов может поставить под угрозу сертификацию продукта. Импульсные источники питания имеют тенденцию быть очень шумными до такой степени, что могут возникнуть проблемы с электромагнитными помехами (EMI). Использование экранированных катушек индуктивности и высококачественных конденсаторов может минимизировать уровень шума в системе. Эквивалентное последовательное сопротивление конденсатора (ESR) играет роль в стабильности и производительности схемы.Некоторые конфигурации могут требовать определенного значения СОЭ, поэтому вам не всегда нужна низкая СОЭ. Обратите особое внимание на входную и выходную емкость.

Входные конденсаторы уменьшают амплитуду пульсаций напряжения на входе преобразователя, чтобы снизить среднеквадратичный ток пульсаций до уровня, с которым могут справиться конденсаторы большой емкости. Керамические конденсаторы имеют чрезвычайно низкое ESR, необходимое для уменьшения амплитуды пульсаций напряжения. Поэтому важно размещать их рядом со входом переключающего преобразователя.Когда преобразователь переключается, он должен получать импульсы тока от входного источника. Дополнительный электролитический или танталовый конденсатор поможет обеспечить нагрузку достаточным количеством энергии.

Выходной конденсатор фильтрует и сводит к минимуму любые пульсации на выходе. Это функция ESR конденсатора, которая также может повлиять на стабильность контура регулятора. Конденсаторы хорошего качества будут иметь заданное ESR. Электролитические конденсаторы общего назначения указывают только ESR на 120 Гц, но у высокочастотных конденсаторов ESR будет гарантироваться на более высокой частоте, например, от 20 кГц до 100 кГц.ESR будет увеличиваться при низких рабочих температурах, и соответственно увеличится выходное напряжение пульсации. ESR типичного алюминиевого электролита может увеличиваться в 40 раз при –40 ° C, поэтому тщательно оцените использование электролита в низкотемпературных применениях.

Также следует учитывать ток пульсаций, с которым может справиться выходной конденсатор. Этот ток увеличивает внутреннюю температуру внутри конденсатора из-за потерь мощности, поэтому пренебрежение проверкой пульсации тока конденсатора может иметь пиротехнические последствия.Параллельно подключенные конденсаторы могут использоваться для удовлетворения требований к токам ESR и RMS.

Для некоторых источников питания может потребоваться сертификация компонентов. Убедитесь, что вы знаете, какую часть необходимо протестировать и как она будет проверяться, чтобы ваш дизайн соответствовал целевому стандарту. Если для изолированных преобразователей используются оптопары, их конструкция должна учитывать ухудшение характеристик света с течением времени, температурные пределы и синфазные потенциалы.

Наихудший сценарий

2.Моделируя схему переключения, можно изучить конечное напряжение и условия нагрузки. Формы сигналов напряжения и тока можно просматривать для проверки переходных процессов и пульсаций.

Всегда разумно запускать моделирование, чтобы убедиться, что конструкция может выдерживать выходной ток при требуемом выходном напряжении за необходимое время. (Рис. 2) . Важно знать, как колебания компонента работают при изменении частоты, нагрузки и температуры. Из-за динамической природы некоторых импульсных регуляторов наихудшее состояние может быть не при экстремальной нагрузке, а где-то посередине.Важно проверить источник питания на все возможные вариации в целевой цепи.

3. Моделирование наихудшего случая позволяет дизайнерам исследовать, какие компоненты могут более существенно повлиять на конструкцию, и выявлять другие проблемы.

Перед любой реализацией смоделируйте правильную работу во всем диапазоне рабочих температур. Моделирование с помощью Spice позволяет нам выполнять анализ Монте-Карло или анализ наихудшего случая для определения производительности при различных вариациях допусков компонентов (рис.3) . Его также можно использовать для изменения условий нагрузки. LTSpice от Linear Technologies — это бесплатная версия, которая творит чудеса. Texas Instruments (TI) предлагает TINA. А у других поставщиков есть множество инструментов для упрощения моделирования, выбора и оценки компонентов.

4. Используйте WEBENCH-инструмент Texas Instruments, чтобы выбрать и определить размер некоторых из ваших импульсных регуляторов TI.

Дизайнеры также могут использовать инструмент Texas Instruments WEBENCH для выбора и определения размеров компонентов и конфигураций постоянного / переменного тока (рис.4) . Пользователи могут ввести все требования к конструкции, такие как диапазон входного напряжения, выходное напряжение, выходной ток и температура, а программное обеспечение выберет все компоненты и покажет конфигурацию схемы. В большинстве случаев он предлагает ряд вариантов, таких как занимаемая площадь, количество компонентов и стоимость.

Для каждого проекта программное обеспечение покажет графики термического анализа и эффективности. Пользователи могут запускать несколько температурных сценариев, которые программное обеспечение WEBENCH в настоящее время не может запускать одновременно.Например, для Vin_min = 8 В, Vin_max = 48 В, Vout = 5 В и Iout = 7,5 A LM5116 показывает разные данные при разных рабочих температурах (см. Таблицу) .

Так что не воспринимайте первый результат как должное! Кроме того, проверьте все условия вашего контура от минимальной до высокой. Прежде чем выбирать конфигурацию, убедитесь, что она наиболее подходит для целевого приложения и среды. WEBENCH всегда запускается с легкой температуры 30 ° C.Кроме того, WEBENCH не охватывает всех импульсных регуляторов TI, поэтому просмотрите выбор компонентов на веб-сайте TI и подтвердите их индивидуально.

Многие другие производители предлагают отличные линейки импульсных регуляторов, сверхвысокий КПД, очень низкую утечку, более широкий диапазон входных сигналов, низкий уровень шума, несколько выходов и даже комбинированное линейное регулирование с переключаемым регулированием. Затем целесообразно проверить всех потенциальных кандидатов на предмет пригодности, стоимости и производительности.

Как и любой другой компонент, коммутационные силовые компоненты имеют понижающий коэффициент мощности во всем температурном диапазоне.Используйте худшее условие для оценки выходной мощности, необходимой вашему устройству. Характеристики силовых компонентов в частотном диапазоне могут дать некоторые ответы о характеристиках электромагнитных помех.

Запустите моделирование с наихудшими сценариями и проверьте допуски компонентов, чтобы убедиться, что они будут хорошо работать в диапазоне температур и допусков с диапазоном вариаций нагрузки. Моделирование с различными компонентами может предоставить широкий спектр альтернатив, предложить лучшую перспективу для принятия решений о стоимости и открыть возможность проверки размеров компонентов.

Площадь, компоновка и посадочная поверхность печатной платы

Некоторые компоненты могут быть радиаторами для печатной платы. Площадь, используемая для этих компонентов, играет роль в выделяемом тепле. Кроме того, примите во внимание толщину медного слоя и наличие дополнительных тепловых переходов и распределения. Убедитесь, что ваше производственное предприятие может обрабатывать тепловые переходные отверстия на производственной линии, если вы их используете. Некоторые библиотеки не имеют необходимой площади для обработки большей мощности, и им могут потребоваться дополнительные определения меди в компоновке печатной платы.

Используйте короткие и широкие дорожки на печатной плате, чтобы уменьшить падение напряжения и минимизировать индуктивность. Высокочастотное переключение требует хорошей компоновки компонентов. Поместите переключающие элементы первыми и ближе к энергоаккумулирующему элементу. Сведите к минимуму входные и выходные контуры, чтобы уменьшить проблемы излучения и высокочастотного резонанса. Эта стратегия минимизирует токовые петли на печатной плате, которые являются основным виновником электромагнитного излучения. Кроме того, посмотрите на оценочную плату и эталонный дизайн, чтобы разместить компоненты.Твердая земляная поверхность и заливка грунта помогут распределить тепло и улучшить передачу энергии.

Тестирование производительности

Следование руководящим принципам проектирования и формулам для выбора компонентов в некоторой степени подтверждает правильность конструкции. Моделирование схемы может ответить на несколько других вопросов с точки зрения работы в пограничных условиях. Однако важным аспектом является реализация для окончательного тестирования производительности. Окончательная проверка мощности и электромагнитных помех возможна только на реальной плате с вашим целевым приложением.

Федеральная комиссия по связи санкционирует проведение испытаний в США. Поскольку все импульсные блоки питания излучают некоторый уровень электромагнитных помех, они являются потенциальными виновниками отказа. Тщательное размещение компонентов, компоновка, интеграция продукта и упаковка могут снизить общие выбросы, но это необходимо проверить в конечном продукте.

Некоторые новые импульсные регуляторы позволяют изменять частоту коммутации, что следует изучить в случае нарушения электромагнитных помех.Некоторые регуляторы постоянного / постоянного тока предлагают дизеринг, который постоянно меняет частоту переключения на лету. Следовательно, энергия распространяется в более широком диапазоне, и результирующая величина излучаемой энергии на каждой отдельной частоте ниже.

В некоторых случаях может потребоваться дополнительный демпфер на переключающем элементе для уменьшения шума за счет некоторой дополнительной мощности. Наконец, необходимо провести испытания во всем температурном диапазоне и полевые работы, чтобы подтвердить адекватную работу импульсного источника питания и остальной электроники, связанной с продуктом.

Список литературы

Брайан Эрисман и Ричард Редл, «Измените архитектуру импульсного источника питания для улучшения переходной характеристики», www.edn.com/file/24543-46325.pdf

Джим Уильямс, «Переключение регуляторов для поэтов. Нежный путеводитель для беспокойных »,

.

http://cds.linear.com/docs/en/application-note/an25fa.pdf

Таблица данных Fairchild ML6554, http://media.digikey.com/pdf/Data%20Sheets/Fairchild%20PDFs/ML6554.pdf

SMPS — СПОСОБЫ ЗАПУСКА




1 ВВЕДЕНИЕ

Действие плавного пуска сильно отличается от описанного ограничения пускового тока. в разделе 7, хотя эти две функции дополняют друг друга. Оба действия уменьшить пусковой ток питания при первом включении период. Однако, в то время как ограничение пускового тока напрямую ограничивает ток во входные конденсаторы, плавный пуск действует на управление преобразователем цепь, чтобы дать постепенно увеличивающуюся нагрузку, обычно за счет увеличения ширина импульса.Этот прогрессивный пуск не только снижает пусковой ток. нагрузка на выходные конденсаторы и компоненты преобразователя, это также снижает проблемы «удвоения потока» трансформатора в двухтактных и мостовые топологии. Это нормальная практика с импульсные источники питания для передачи линейного входа непосредственно на выпрямитель и большие накопительные и / или фильтрующие конденсаторы через низкоомный шум фильтр. Для предотвращения больших пусковых токов при первоначальном включении, управление пусковым током схемотехника обычно предусмотрена.В больших энергосистемах ограничение пускового тока часто состоит из последовательного резистора, закороченного симистором, SCR, или реле, когда входные конденсаторы полностью заряжены. (Часть 1, Раздел 7 показаны типовые схемы управления пусковым током.) Чтобы позволить входным конденсаторам для полной зарядки при запуске необходимо отложить запуск преобразователя мощности, чтобы он не потреблял ток от входа конденсаторы, пока они не будут полностью заряжены. Если конденсаторов нет полностью заряжен, произойдет скачок тока, когда SCR или симистор работают в обход последовательного резистора, ограничивающего броски тока.Кроме того, если преобразователю было разрешено запускаться с максимальным импульсом ширины, в выходных конденсаторах будет большой скачок тока. и индукторы, что приводит к выбросу выходного напряжения из-за большой ток в выходной катушке индуктивности и, возможно, эффекты насыщения в главном трансформаторе.

Для решения этих проблем с запуском предусмотрена задержка запуска и плавный запуск. Процедура обычно обеспечивается схемой управления.Это задержит первоначальное включение преобразователя и разрешение входных конденсаторов для полной зарядки. После задержки цепь управления плавным пуском должна запустите преобразователь с нуля и медленно увеличивайте выходное напряжение. Это обеспечит рабочие условия трансформатора и выходного индуктора. быть правильно установленным. Это предотвратит «удвоение потока» в двухтактные схемы. Поскольку выходные напряжения равны медленно устанавливается, всплеск тока вторичной катушки индуктивности и тенденция для выбросов выходного напряжения уменьшаются.

2 ЦЕПЬ ПЛАВНОГО ПУСКА

Типичная схема плавного пуска показана на фиг. 9.1. Это работает как следует:


РИС. 9.1 Схема плавного пуска для ИИП с контролем рабочего цикла.

При первом включении питания C1 разряжается. Увеличение напряжение на линии питания 10 В будет принимать инвертирующий вход усилителя A1 положительный, запрещающий выход широтно-импульсного модулятора. Транзистор Q1 будет включен через R2, сохраняя C1 разряженным до 300 В постоянного тока. линия к цепи преобразователя установлена ​​на напряжение, превышающее 200 В.

В этот момент ZD1 начнет проводить, а Q1 выключится. C1 теперь будет заряжаться через R3, принимая напряжение на инвертирующем входе A1 к нулю и позволяя выходу широтно-импульсного модулятора подавать в схему возбуждения все более широкие импульсы до тех пор, пока не потребуется выходное напряжение было развито.

Когда установлено правильное выходное напряжение, усилитель A2 принимает контроль напряжения на инвертирующем входе усилителя А1.C1 продолжит зарядку через R3, диод обратного смещения D2 и снятие влияние С1 от действия модулятора.

При отключении питания C1 быстро разряжается через D3, сброс C1 для следующего действия запуска. D1 предотвращает обратное смещение Q1 более чем на прямое падение напряжения на диоде при высоком входном напряжении.

Эта схема обеспечивает не только задержку включения и плавный пуск, но и дает низковольтное запрещающее действие, предотвращая запуск преобразователя до полного установления напряжения питания.

Возможны многие вариации этого основного принципа. ИНЖИР. 9.2 показывает система плавного пуска, примененная к схеме пуска транзистора по фиг. 8.2. В этом примере вход ZD2 не будет высоким и инициировать мягкий запускайте до тех пор, пока вспомогательный конденсатор C3 не зарядится, а Q1 не выключится. Следовательно, в этой схеме входное и вспомогательное напряжение питания должны должны быть правильно установлены, прежде чем можно будет инициировать действие плавного пуска. Это обеспечит запуск преобразователя при правильном управлении. условия.

3 БЛОКИРОВКА НИЗКОГО НАПРЯЖЕНИЯ

Во многих конструкциях с переключаемым режимом необходимо предотвратить преобразователь мощности. действие, когда входное напряжение питания слишком низкое для обеспечения надлежащей работы.

Для цепей управления преобразователем, привода и переключения мощности требуется правильное напряжение питания для обеспечения четко определенного действия переключения. Во многих случаях попытки работать ниже минимального входного напряжения будут привести к выходу из строя силовых переключателей из-за нечеткого привода условия и ненасыщенное переключение мощности.

Обычно тот же сигнал запрета напряжения, который предотвращает начальное пусковое действие до тех пор, пока напряжение питания не станет достаточно высоким для обеспечения правильного операция также будет использоваться для отключения преобразователя в четко определенном способ, если напряжение упадет ниже второго минимального напряжения.

Схема блокировки низкого напряжения часто связана с плавным пуском. система, чтобы блок не включился при нормальном плавном пуске. до тех пор, пока не будет установлено правильное рабочее напряжение.Это также обеспечивает задержка, необходимая для плавного пуска, предотвращающая гонку при запуске условия.

Типичная схема плавного пуска с блокировкой низкого напряжения показана на ИНЖИР. 9.2. В этой схеме достаточное гистерезисное действие обеспечивается за счет вспомогательная обмотка для предотвращения скрипа на пороге включения. (В этом контексте «скручивание» относится к быстрому «включению-выключению» действие, которое в противном случае произошло бы на пороге низкого напряжения в результате изменения входного напряжения, вызванного нагрузкой.)

4 ВИКТОРИНА

1. При каких условиях может рассматриваться схема пуска импульсного типа подходящая стартовая техника?

2. При каких условиях цепи импульсного пуска не рассматриваются подходящий?

3. Какова функция цепи плавного пуска по сравнению с пусковым током? ограничение?

4. Какова функция блокировки входного низкого напряжения в импульсных приложениях?


РИС.9.2 Комбинированная вспомогательная пусковая цепь транзистора с малым тепловыделением. с регулировкой скважности (широтно-импульсный модулятор) и характеристикой плавного пуска.

См. Также: Другой наш Коммутационная мощность Руководство по расходным материалам

Мой Smart-UPS не включается.

Проблема:

Мой Smart-UPS не включается.

Линия продуктов:

Smart-UPS

Окружающая среда:

Все модели , кроме SURT, все серийные номера

Причина:

1) Батарея отключена
2) Входной выключатель не горит
3) Нет входного питания или низкое качество

Разрешение:
1) Аккумулятор отключен :

  • SC, SU и SUA Smart-UPS требует подключения исправной батареи для включения.Если аккумулятор отсоединен или неисправен и полностью разряжен, ИБП не включится.
  • SMX, SMT, SRT и SMC серии Smart-UPS обычно не имеют этого ограничения, однако глубоко разряженный аккумулятор все еще может быть проблемой. Попробуйте отключить аккумулятор.
  • SURT series Smart-UPS требует, чтобы внутренние батареи были подключены и могли поддерживать нагрузку для включения ИБП. Каждая батарея в ИБП Smart-UPS SURT на 208 В (10 кВА или меньше) должна иметь напряжение более 85 В, а каждая батарея в ИБП Smart-UPS SURT на 120 В должна иметь напряжение более примерно 42 В.Блоки Smart-UPS SURT не заряжаются в режиме байпаса, и оставление блока в режиме байпаса на длительное время может привести к падению заряда батарей ниже этих пороговых значений. Как только батареи опустятся ниже этих значений, их необходимо будет заменить.

2) Входной выключатель выключен. — ИБП Smart-UPS мощностью более 1500 ВА имеют входной выключатель, который для срабатывания должен находиться в положении ВКЛ. Обычно он находится на задней панели рядом со шнуром питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *