Пайка алюминия оловом: Пайка алюминия в домашних условиях газовой горелкой и паяльником с использованием оловянно-свинцовых припоев

Содержание

Пайка алюминия в домашних условиях газовой горелкой и паяльником с использованием оловянно-свинцовых припоев

Алюминий относится к металлам, плохо поддающимся пайке. Это обусловлено его склонностью к образованию на поверхности изделий прочной плёнки окисла, препятствующей смачиванию детали расплавленным припоем.

Одна только механическая зачистка поверхности не помогает, так как новый окисел образуется мгновенно после снятия старого. По этой причине, для пайки алюминия применяют специальные флюсы и соблюдают особую технологию.

Соединение проводов

Обычно пайка алюминия применяется в тех случаях, когда соединяемые детали достаточно малы и применение аргоновой сварки невозможно, либо она отсутствует. Один из примеров применения пайки – соединение электрических проводов из разных материалов.

Нередко на практике приходится производить соединение медных и алюминиевых проводов. Выполнять такие соединения скруткой нельзя, так как эта пара металлов образует очаг электрохимической коррозии.

В этом случае, отличным вариантом соединения может служить пайка алюминия с медью.

Такую операцию можно выполнить обыкновенным мягким свинцово-оловянным припоем, но при этом следует использовать специальный флюс для пайки алюминия. Процедура должна выполняться в следующей последовательности:

  • сначала необходимо зачистить медный провод и залудить его с применением канифоли;
  • для лужения алюминиевого провода следует, после механической зачистки от окисной плёнки, покрыть его слоем флюса для пайки алюминия;
  • для лучшей механической прочности соединения залуженные провода можно скрутить;
  • нагревая паяльником соединение с добавлением флюса добиться расплавления припоя и образования спайки.

Полученное таким образом соединение можно смело заделывать в стену, прослужит оно очень долго.

Снятие оксидной пленки

Обычно при наличии хорошего флюса, специально предназначенного для пайки алюминия, применение каких-либо особых ухищрений не требуется, достаточно произвести механическую зачистку и смочить паяемую поверхность флюсом.

Также возможно применение кислоты для пайки алюминия. Используют соляную кислоту, в которой растворен цинк (паяльная кислота), применяют также флюсы на основе ортофосфорной кислоты.

Но если такой флюс отсутствует или в силу плохого качества не обеспечивает пайку, можно пойти другим путём. Есть несколько способов удаления окисной плёнки для успешного лужения заготовки.

В канифоли

Алюминиевый провод или другую деталь можно освободить от окисной плёнки, погрузив её в жидкую канифоль. Для этого можно либо расплавить её, либо приготовить спиртовой раствор.

Погрузив деталь в канифоль, острым ножом нужно соскоблить плёнку окисла. Слой канифоли препятствует доступу воздуха и образованию нового окисла. После этого деталь можно залудить, используя разогретый паяльник с припоем.

Абразивным порошком

При отсутствии флюса и канифоли пайку алюминия можно произвести следующим образом. Готовится паста, состоящая из порошка абразива и трансформаторного масла.

В качестве абразива можно также использовать мелкие металлические опилки. Заготовка покрывается данным составом, после чего натирается горячим паяльником с припоем.

В результате этого зёрна абразива или металлической стружки снимают плёнку, а поверхность тут же, без доступа воздуха смачивается припоем. После лужения изделие можно легко запаять.

Химический способ очистки

По сути, этот способ является не чем иным, как обмеднением алюминиевой поверхности. Выполняется он следующим образом.

Ту часть алюминиевой заготовки, которую предстоит покрыть слоем меди, смачивают раствором медного купороса. Затем берут источник постоянного тока, напряжением 4,5 вольта.

Это может быть батарейка или аккумулятор. Алюминиевую деталь соединяют с минусовым выводом источника питания. К плюсовой клемме присоединяют медный провод, конец которого запутывают в щетине зубной щётки.

Далее щётку смачивают раствором медного купороса. Провод, находящийся в щетине, должен быть хорошо увлажнён. После этого щёткой натирают место детали, предварительно смоченное раствором.

В результате гальванической реакции поверхность алюминия покрывается тонким слоем меди, что позволяет её паять, как если бы это была медная деталь.

Разогрев детали

При пайке достаточно массивных деталей, мощности обычного электрического паяльника может не хватить, чтобы нагерть заготовку до нужной температуры.

Можно воспользоваться для разогрева алюминия в домашних условиях газовой горелкой. Для этой цели лучше использовать портативную горелку, питающуюся от маленького газового баллончика. При этом работать нужно очень аккуратно. Недопустимо перегреть основной металл до состояния, когда он начнёт плавиться.

Можно также применить комбинированный метод нагрева. Например, массивную алюминиевую деталь поместить на конфорку кухонной газовой плиты и зажечь малый огонь. В месте пайки можно орудовать электрическим паяльником.

Всё сказанное о способах пайки алюминия относится к различным сплавам на основе этого металла. Несколько обособлена только тема пайки силумина. Этот материал является сплавом алюминия, содержащим кремний (грубо говоря, песок).

Пайка этого сплава доставляет особые трудности. Попытки спаять силумин часто терпят неудачи.

Даже после, казалось бы, удачной пайки, оказывается, что соединение не обладает нужной прочностью и может разрушиться. Специалисты не советуют паять этот материал. Лучший способ соединения этого сплава – аргонодуговая сварка.

Высокотемпературный процесс

Промышленные способы алюминиевой пайки отличаются применением более твёрдых припоев, содержащих алюминий. Для применения такой технологии требуется заводское оборудование и наличие специальных флюсов.

Так, нагрев и пайка заготовок производится в специальных печах туннельного типа. Процесс пайки осуществляется в среде инертных газов при температуре, достигающей 600 ℃. Эта технология применяется при изготовлении алюминиевых радиаторов и теплообменников современных автомобилей.

Алюминий, пайка припои — Справочник химика 21

    Полное абразивно-кавитационное облуживание образца алюминия в припое 5п—50 % 2п при 300 °С происходит за 10 с при интенсивности колебаний / = 2 Вт/см и малой глубине эрозии (0,007 мм), т. е. значение глубины эрозии того же порядка, что и при абразивном лужении. Способ успешно использован, например, при пайке многожильных проводов с медными наконечниками. 
[c.270]

    Пайка алюминия. Алюминий паяют теми же способами, которые описаны в 3—6. Однако, безусловно, перед пайкой необходимо прежде всего удалить окислы (скобля ножом). При пайке следует пользоваться следующим припоем олово (30%) и цинк (70%), так как оловянно-свинцовый припой непригоден ( 2). При пайке электрических проводов в качестве флюса необходима канифоль (гл. 3, 2). [c.185]


    Существует еще и другой метод пайки алюминия, заключающийся в соскабливании, удалении окисной иленки шабером или стальной щеткой непосредственно под споем расплавленного и растекающегося но поверхности припоя. При этом пленка удаляется лишь в отдельных местах поверхности, и поэтому пайка получается лишь частичной. Качество и эффективность такой пайки зависят от количества сделанных царапин. Недостатком этого метода является его большая трудоемкость, небольшая прочность ввиду наличия в шве пор в тех точках, где припой не пристал к металлу, а также невозможность его применения для пайки проволоки, фольги и мелких деталей. 
[c.210]

    В качестве припоев нри пайке алюминия и его сплавов чаще всего используются оловянно-цинковый (90% олова и 10% цинка), или оловянно-кадмиевый припой. Оловянно-цинковый припой вызывает наименьшую электролитическую коррозию основного металла [163].

[c.210]

    При пайке тонких алюминиевых проводов, диаметром 2-f-8 мм последние лудят и затем паяют на нагретом до 200- 300° листе алюминия. На этот. лист предварительно наносится припой, который тут же плавится. Конец стержня паяльника погружают в припой вместе с проволокой и лудят ее. Затем производят спаивание проводов. [c.217]

    Припой для пайки алюминия и его сплавов [c.234]

    При пайке с механическим удалением окисной пленки деталь нагревают до температуры расплавления припоя, на зону шва наносят расплавленный припой и под ним инструментом (шабером, абразивом, стальной щеткой) соскабливают окислы. По мере удаления окисной пленки припой смачивает поверхность алюминия и после охлаждения образует прочный и плотный шов. Пайку с- механическим удалением окисной пленки выполняют без флюса. Ее используют обычно для уплотнения мелких пор и заделки свищей, например в испарителях домашних холодильников. 

[c.240]

    Часто бывает удобно при соединении алюминия с нержавеющей сталью использовать медный переход для того, чтобы избежать всегда возможного окисления нержавеющей стали, очень затрудняющего пайку. К наружной или внутренней поверхности нержавеющей трубки на серебряном припое присоединяется медный патрубок, другой конец которого лудится мягким припоем. Последующее соединение с алюминиевой трубкой производится одним из трех указанных способов. Произведенные [c.418]


    Припаем для твердой пайки алюминия служит сплав алюминия с медью и кремнием, носящий название 34-Л. [c.124]

    Припой 34-А имеет температуру плавления 525—530° С. Применяется для вакуумной пайки алюминия и алюминия с никелем или серебром. [c.134]

    Одним из путей решения вопроса о низкотемпературной пайке алюминиевых сплавов является предварительное нанесение на детали никелевого слоя, электродный потенциал которого находится между потенциалами алюминия и основных компонентов легкоплавких припоев. Кроме того, по никелевому подслою хорошо растекается припой, [c.193]

    Исключение представляет пайка алюминия, при которой расплавленный припой следует перемещать по нагретой поверхности деталей с помощью пламени горелки.[c.223]

    В качестве припоя применяют алюминий с присадкой кремния (например, 7,5% Si) для снижения температуры плавления алюминия. Припой на основной металл наносят с двух сторон плакировкой. Обычная толщина плакированного слоя — 5—10% толщины основного листа. В последнее время для повышения качества пайки в ряде случаев применяется пайка алюминиевых конструкций в соляных ваннах под флюсом. [c.94]

    Большой практический интерес представляет использование определенных примесей в припоях для улучшения технологии пайки. Например, при ультразвуковом лужении алюминия легкоплавкими припоями полное смачивание достигается лишь при нагревании до достаточно высокой температуры. Введение в припой металлов, активно взаимодействующих с алюминием, позволяет значительно снизить температуру лужения [326]. [c.197]

    Этот специальный припой служит для твердой пайки алюминия, которая производится с большим трудом. Трудность заключается в том, что температура плавления указанного припоя близка к температуре плавления самого алюминия и соединяемые детали легко размягчаются и деформируются. В графитовом тигле расплавить  [c.108]

    Во всех известных установках для пайки алюминия с помощью ультразвука кавитация в расплавленном припое возбуждается с помощью магнитострикционных излучателей, для питания которых применяются ламповые генераторы. Схема устройства для пайки с помощью ультразвука приведена на рис. 7-29. В некоторых конструкциях паяльников нагревательная обмотка отсутствует. Нагрев места пайки и расплавление припоя в этом случае осуществляются с помощью постороннего источника тепла (электроплитки, горелки и т. п.), и функция паяльника сводится к удалению оксидной пленки. Ниже приводятся описания некоторых промышленных образцов паяльников и установок для пайки и лужения. [c.148]

    Припой твердый для пайки алюминия и его сплавов [c.48]

    При пайке соединений из алюминия, меди и стали, работающих при температуре 100—150 °С, Танака Уру и другие предложили припой, содержащий 2—7 % Ag, 1—2,5 % Си 1—7 % А1, 0,5— 1 % Сг, Zn — остальное. Температура плавления такого припоя 380—415°С. При низкотемпературной пайке тонкостенных изделий небольшого размера из алюминия, стали или меди может быть [c.100]

    По Дж. А. Тейлору, в цинковые припои, предназначенные для пайки оцинкованного железа и содержащие 2п—(10—50) % Сё, для упрочнения можно вводить 0,5—2 % Мп, 0,01—0,5 % Ы и 0,01 — 1 % Ыа. Эти элементы образуют с цинком тонкодисперсные интерметаллиды, входящие в эвтектику, и упрочняют припой. Припой Тп—5 % А1—4,9 % Си—0,1Ме с температурой плавления 370—454 °С может быть применен для бесфлюсовой пайки алюминия, например телескопических соединений трубчатых деталей после их предварительного лужения рекомендуемый зазор 25— 190 мкм. Есть сведения, что в припоях такого типа для дальнейшего повышения их коррозионной стойкости может быть введен хром (0,05 —0,5 %) и повышено содержание магния. Припой, содержащий 0,5—4,5 % А1, 0,4—4% Си и 0,1 % Ме, а также 0,05— [c.101]

    Силумин, содержащий магний, оказался вполне пригодным для пайки стеклянных отражателей с алюминиевой подложкой в дорожных знаках и сигналах. Для этой цели использован припой А1—(4—13 %)51— (4—6%)Mg в виде плакированного слоя (5—10 % его толщины) на алюминии (паяемом металле). Пайку выполняют после нагрева алюминиевого сплава в интервале температур 566—635 °С с укладкой на него при покачивании стеклянного отражателя (например, в виде шариков), подогретого до температуры 427—538 °С. [c.103]

    При содержании в серебрянных припоях более 0,01 % А1 (алюминий может попадать в жидкий припой, в частности, из алюминиевой бронзы или сплавов А1—N1—Со при пайке их со сталью) образуются малопрочные соединения из-за повышенной хрупкости, обусловленной образованием на границе шва со сталью хрупких интерметаллидных прослоек. [c.109]

    Припои № 4 и 5 предназначены для пайки изделий, работающих при повышенных температурах. Припои хорошо смачивают хромосодержащие теплостойкие сплавы на основе кобальта, обеспечивают хорошую пластичность паяных соединений и растекаются при температуре ниже 1036 °С. Примеси в таких припоях строго ограничены при содержании в припое более 0,5 % алюминия, титана или кремния резко ухудшается растекаемость припоев. Содержание в них Al + Ti + Si должно быть меньше 0,1 %, лучше 0,02 %. [c.132]

    Большое разнообразие свойств палладиевых сплавов создается при сочетании его со следующими элементами серебром, медью, золотом, хромом, марганцем, никелем, бором, бериллием, кремнием (табл. 26). Хром вводится в припой главным образом для повышения жаростойкости. Хорошей смачиваемостью, жаростойкостью, малой химической эрозией и небольшой способностью к проникновению по границам зерен, а также неспособностью образовывать интерметаллиды при пайке коррозионно-стойких сталей и никелевых жаропрочных сплавов, упрочненных алюминием и титаном, обладает эвтектический припой, содержащий 60 % Рё и 40 % Он имеет минимальную температуру плавления 1237 °С в системе сплавов Рс1 —N1. Хорошая смачиваемость палладиевыми сплавами многих металлов позволяет изменять зазоры при пайке в широких пределах (0,05—0,50 мм).[c.134]

    Для активирования заполнения зазора припоем при бесфлюсовой пайке иногда используют его подвод через металлическую губку. По данным Г. А. Яковлева, низкотемпературная пайка металлов меди, никеля, молибдена, алюминия и других, а также полупроводников (кремния,германия) припоями на основе свинца и олова в водороде возможна с применением никелевой ленты (губки) толщиной 140 мкм, катаной и спеченной из карбонильных порошков с пористостью 75 % и линейным размером капилляров 3 — 10 мкм. Ленту предварительно укладывают в зазор, а на ее свободный выступ припой. Паяемые материалы обезжиривают и травят (химически) пайку проводят в пружинных кассетах, обеспечивающих прижим соединяемых деталей под давлением от 0,5 до [c.249]

    С изложенной точки зрения, положительное влияние на коррозионную стойкость цинка в припоях с оловом и свинцом обусловлено повышением при этом растворимо,сти в припое алюминия и, как следствие, более активным развитием процесса диспергации оксидной пленки на поверхности алюминия при низкотемпературной пайке. Процессу диспергации способствуют также повышение температуры и длительности выдержки при пайке, а также введение в припои других элементов, обладающих достаточно высоким химическим сродством к алюминию, в том числе образующих с ним химические соединения, особенно выше температуры пайки. К таким элементам с высоким химическим сродством к алюминию относятся серебро, сурьма, никель, а также медь, титан, магний, литий и др. [c.264]

    Для пайки алюминия и его сплавов используют припои системы РЬ—2п, 2п—Сё, 5п—РЬ—2п. Припои типа 63 % РЬ—34 % 5п —3 %2п обеспечивают лишь низкую коррозионную стойкость паяных соединений припои 60 % 2п—40 %Сс1 и 70 %2п—30 % 5п — среднюю их коррозионную стойкость, а припои 2п—5 %А1 и 100 % 2п — высокую коррозионную стойкость паяных соединений. Цинковый припой 1п—5 %А1 имеет соответственно температуру плавления 381 °С и температуру пайки 421—427 °С. [c.265]

    Оловянноцинковые припои. Припой ОЦ-90 (90% олова и 10% цинка) применяется для пайки бронз, лужения меди, алюминия, чугуна. Припой ОЦ-70 (70% олова и 30% цинка) используется для спайки алюминия с гальванизированным железом, цинком, медью, латунью, бронзой или указанных металлов между собой. Припой ОЦ-60 (60% олова и 40% цинка) служит для пайки алюминия, алюминиевых сплавов и фольги. Предел прочности швов 7—8 кГ/ м . [c.89]

    Среди проводников высокой проводимости практическое применение имеют чистые металлы Си, А1, Ре сплавы латунь, бронзы, алюминиевые сплавы. Сплавы меди, содержащие около 1% Сс1 (кадмиевая бронза), служат для изготовления телеграфных, телефонных, троллейбусных проводов, так как эти сплавы обладают большей прочностью и износостойкостью, чем медь. Для проводов линий электропередач используется сплав А1—Mg—31, который более прочен, чем чистый а.люминий. Алюминий покрыт оксидной пленкой, защищающей его от коррозии. Но в контакте с медью (что часто бывает при соединении проводников) во в.лажной атмосфере алюминий быстро электрохимически корродирует. Поэтому для защиты от коррозии места такого контакта покрывают лаком. Для пайки алюминиевых проводов используют специальный припой или ультразвуковые палльники. [c.637]

    Припоями называют сплавы, используемые при пайке металлов высокой проводимости. Для получения хорошего соединения припой должен иметь температуру плавления ниже, чем у металла, хорошо смачивать поверхность в расплавленном состоянии, иметь небольшое сопротивление контакта. Температурные коэффициенты линейного расширения металла и припоя должны быть близки друг к другу. Применяют припои оловянно-свинцовые (например ПОС-61, содержащий 61% олова, а остальное— свинец), оловяно-цинковые (ПОЦ-90 имеет температуру плавления 199 °С и используется для пайки алюминия и его сплавов), сплавы висмута со свинцом, оловом, кадмием (для температур нагрева меньше, чем 100 °С) и др. [c.637]

    Паять алюминий много труднее, чем медь, латунь и железо. Припой сцепляется плохо как при залуживании им паяльника, так и при самой пайке. Кроме того, припой не растекается, а скорее размазывается. Нагревать паяльник следует сильнее, чем при обычной пайке. [c.185]

    Процесс пайки алюминия следующий. На разогретый вибрирующий конец стерлшя паяльника набирается припой и наносится на стык соединяемых деталей. Колебания стержня паяльника передаются расплавленному припою, вызывают в нем кавитацию и разрушают окпсную пленку, позволяя тем самым припою спаиваться с чистой новерхностью металла. Перемещая паяльник вдоль стыка, осуществляют пайку по всей его длине. [c.212]

    Несколько необычный, но удобный способ мягкой пайки алюминия, нержавеющей стали, а также стекла и керамики основан на нанесении припоя с помощью абразивного камня (бормащиной). Вначале пропитывают абразив, прижимая камень к палочке припоя. Теплота, выделяющаяся за счет трения, плавит металл, и последний ровным слоем растекается по абразиву. Луженый камень приводят в контакт с обрабатываемыми деталями. От трения припой вновь плавится и приходит в тесный контакт с поверхностью материала (там, где внешний слой удаляется за счет шлифовки).[c.184]

    В вакууме при нагреве в интервале 500—600° С возможна пайка титана цинковыми припоями, но швы получаются весьма хрупкими. Оловяняосвинцовыми припоями можно паять титан только по покрытиям (медным, никелевым) по технологии, применяемой при пайке легкоплавкими припоями меди и Никеля. Медное покрытие может растворяться в припое и поэтому толщина его должна быть не менее 10 мк. При пайке алюминием или припоями для алюминия на титановые детали предварительно наносят покрытие путем быстрого погружения их в нагретый до 850—900° С алюминий. Покрытие и пайку титана алюминием производят с флюсами для пайки алюминия. [c.284]

    Для пайки алюминия с помощью ультразвука применяются чистое олово, оловянноцинковые и оловянно-кадмиевые припои и др. Одним из лучших припоев является припой, содержащий 80 весовых частей олова и 20 весовых частей цинка. [c.185]

    Пайка алюминия. Обыкновенные припои, применяемые для тяжелых металлов и катодные по отношению к алюминию, не пристают к последнему вследствие наличия на алюминии оксидной пленки. Специальные припои применимы, но многие из них анодны по отношению к алюминию, и опыты, произведенные в 1927 г., показали, что они легко корродируют, если спай помещали в раствор соли или в кембриджскую воду . Никакого особого разрушения не наблюдается в случае обыкновенного свинцовооловянного припоя, однако количественное определение интенсивности коррозии показало, что коррозия алюминия до некоторой степени увеличивается и в этом случае, в особенности если поверхность спая велика. Во вся-КО.М случае, прихменение обыкновенного припоя для а-тюминия не практично. Небольшое количество свинца в цинковооловянном припое, повидимому, несколько увеличивает стойкость спая в атмосфере. Для спайки алюминия прн высокой температуре Силмэн рекомендует сплав — 50% цинка, 46,5% олова, 2,5% меди и 1,0% свинца. Имеется много различных припоев для алюминия, дающих удовлетворительные результаты, но плавящихся при сравнительно высоких те.ипературах (они большей частью содержат много алюминия). Широко приме- [c. 656]

    Пайка алюминия. В обычных условиях алюминий с трудом поддается пайке, так как на его поверхности после очистки мгновенно снова образуется оксидная пленка. Поэтому после зачистки место будущего спая на алю минии или его сплавах немедленно заливают заранее расплавленной канифолью. Пайку ведут, мощным (не менее 100 Вт) паяльником, используя припой, состоящий из 80% олова и 20% цинка или 95% олова и 5% висмута, и флюс из парафина или стеарина. Припой набирают на паяльник и переносят на защищенную канифолью поверхность спая. Залуженный таким образом адюминий сравнительно легко поддается спаиванию к его луженой поверх- [c.217]

    Высакотемпературную пайку алюминия выполняют следующим образом. Вначале соединение в месте пайки очищают металлической щеткой и промывают бензином или 10%-ным раствором едкого натра и травят раствором азотной кислоты. Затем на место спая наносят кисточкой флюс и газовоздушным пламенем нагревают соединение до температуры плавления флюса. Подводят припой, который, расплавляясь, заполняет зазоры соединения и обеспечивает требуемые механические показатели паяного соединения. [c.93]

    Несмотря на то, что поверхность паяного шва мала, его влияние на коррозию основного металла может быть в некоторых случаях существенным коррозия хромистой нержавеющей стали с 14 /о хрома может иногда увеличиваться при контакте с серебряным припоем. Когда паяное соединение не смачивается водой, полярность припоя не играет роли, однако сам припой должен быть устойчивым против атмосферной коррозии. Если необходимо производить пайку алюминия в электрических приборах, где коррозионноактивные жидкости отсутствуют, добавка цинка к оловянносвинцовому сплаву увеличивает коррозионную стойкость соединения в сухих условиях хорошие результаты дает сплав, состоящий в основном из олова и цинка [49]. [c.200]

    Качество изделий из труднопаяемых металлов, изготовленных способом ультразвуковой пайки с применением припоев системы 5п—РЬ, повышается при легировании их металлами группы лан-танидов, 5Ь, А1, 81, Т1, Ве. Такое легирование обеспечивает хорошую смачиваемость окисленной поверхности цинк улучшает прочность сцепления припоя с паяемым металлом сурьма повышает коррозионную стойкость паяных соединений в воде и атмосферных условиях алюминий предотвращает образование шлака на поверхности жидкого припоя в процессе пайки кремний, титан, бериллий предотвращают потускнение паяных швов. Легирующие элементы в припое должны иметь следующее содержание лантаниды 0,1 —15% цинк до 0,3% сурьма О—0,3% алюминий до 0,1 % кремний, титан или бериллий до 0,5 % медь ДО 3 %. [c.87]

    Для пайки узлов электроприборов и аппаратуры средств связи Иванага Синьитиро предложил припой системы Ад —А1 —Ое с температурой плавления 500 °С. Припой малопластичен, трехслойная лента из этого припоя может быть получена путем прокатки наружные слои ленты состоят из серебра, а между ними находится лист из сплава алюминия с германием, в котором соотношение этих компонентов припоя составляют соответственно от 7 3 до 4 6. В зависимости от соотношения алюминия и германия во внутреннем листе и толшины наружных листов содержание серебра в припое может изменяться от 5 до 50 %. Такой припой хорошо растекается по паяемому металлу. Коррозионная стойкость паяных соединений высокая. [c.114]

    Есть данные о применении для пайки алюминиевых сплавов легкоплавкого припоя 8п— (8—15)% 2п — (2—5)% РЬ с температурой плавления 190 °С с флюсом в виде раствора борнофтористого и фтористого аммония в моноэтаноламине. Во флюсах для низкотемпературной пайки алюминия и его сплавов вместо канифоли предложено использовать пентаэритрит бензоата, который более термостоек, чем канифоль, а остатки его некорро-зионно-активны и в виде эластичной пленки предохраняют паяные швы от окисления. В качестве активатора флюса используют карбоновые кислоты. Паяные соединения (припой П250) не разрушаются в солевом растворе в течение 200 суток. Припой из проволоки (8п—РЬ—Ag) с сердцевиной из указанного флюса пригоден для пайки всех алюминиевых материалов, в которых содержится менее 3 % Mg и 3 % 81.[c.154]

    Бораты имеют хорошие раскисляющее и защитные свойства и длительно защищают паяемый металл и припой от окисления. Большинство боратов плавятся и эффективны при температурах вблизи 760 °С. Для них характерна относительно высокая вязкость в расплавленном состоянии, и поэтому их обычно смешивают с другими солями. Бораты малорастворимы в В2О3 и при избытке образуют два жидких слоя, что снижает активность таких флюсов. Борный ангидрид В2О3 — компонент флюсов для пайки при температуре от 900 °С и выше. Однако в нем мало растворимы оксиды хрома, цинка, кремния и алюминия, и поэтому он не пригоден в качестве компонента флюсов для пайки сталей и сплавов, na гто ерхности которых образуются оксиды этих металлов. [c.155]

    Абразивно-кавитационная пайка. С. В. Лашко, Е. Г. Вирозу-бом и п. И. Панченко показано, что наиболее качественное лужение алюминия оловом и оловянно-цинковыми припоями с минимальной глубиной эрозии возможно в присутствии в жидком припое твердых частиц, способствующих развитию пристеночной кавитации. В качестве абразивных частиц в олово может быть введен порошок ферротитана (1—4 %). В сплавах 5п—2п роль твердых частиц в интервале жидкотвердого состояния выполняют первичные кристаллы цинка. В припое П250А (20 % 2п, остальное олово) кавитационно-абразивное лужение происходит при интенсивности ультразвуковых колебаний 2 ВТ/см и амплитуде колебаний 2 мкм. При этом равномерность лужения в 3 раза выше, чем при абразивном лужении, а массовый коэффициент эрозии не превышает 0,03. В припое 5п—50 % 2п за 10 с при температуре 300 °С полное облуживание обеспечивается при интенсивности ультразвуковых колебании 2 Вт/см . Массовый коэффициент эрозии при этом не превышает 0,04, а глубина эрозии составляет 0,007 мм, т. е. имеет такой же порядок, что и при абразивной пайке. Рабочая частота колебаний в рассмотренных примерах 19,8 кГц. Используя энергию абразивных частиц в ультразвуковом поле, можно понизить интенсивность ультразвука и процесс лужения вести при допороговых его значениях. При этом эрозия паяемого металла снижается примерно на два порядка.[c.177]

    Применение дуговой пайки алюминия и его сплавов с изменением полярности электрического тока и подачей в зону пайки инертного газа позволяет осуществить бесфлюсовую пайку преимущественно стыкового соединения. Припой применяют в виде проволоки. Дуговая пайка в вакууме была успешно использована для пайки рабочих лопаток газотурбинных двигателей из жаропрочных сплавов. При этом нагрев осуществляется разрядом с созданием в зоне пайки почти стационарного температурного поля (на режимах разряда с величиной анодного падения потенциала, близкого к нулю). При этом при пайке деталей из сплава ВЖЛ2 был увеличен их ресурс в 2—4 раза [30]. 236 [c.236]


Припой для низкотемпературной пайки алюминия.

Повышение коррозионной паяного шва

Пайку нагревом до температуры 450°С проводят обычно оловянно-цинковыми, кадмиево-цинковыми и цинковыми припоями. Соединения из алюминия и его сплавов, паянные легкоплавкими припоями на основе олова или олова со свинцом, имеют низкую коррозионную стойкость как в условиях хранения, так и во всеклиматических условиях испытаний и в морской воде.

В 50—60-х годах было установлено, что склонность к коррозии может быть снижена при введении в легкоплавкие припои цинка. Однако существенного повышения коррозионной стойкости паяных соединений удается достичь лишь при введении в эти припои не менее 50% Zn. Вместе с тем подобное содержание цинка в оловянных и оловянно-свинцовых припоях приводит к существенному повышению температуры их полного расплавления (более 370°С). При ограничении температуры пайки 300°С содержание цинка в припоях Sn—Zn не превышает 20 %. При содержании в припоях 30 — 40 % Zn частичная замена олова кадмием или кадмием и свинцом мало влияет на их температуру начала и конца кристаллизации. Положительное влияние цинка на коррозионную стойкость соединений из алюминия и его сплавов, паянных оловянными или оловянно-свинцовыми припоями, по мнению Дж. Д. Дауда, обусловлено улучшением соотношения потенциалов паяемого металла и шва. Однако при этом важную роль играют процессы пассивирования, т. е. образования оксидной пленки на контактирую щих поверхностях металлов, тормозящие развитие коррозии. При развитии пассивирования соотношение потенциалов контактирующих металлов может и не оказывать существенного влияния на развитие коррозии. Развитие процессов пассивирования тормозится в узких зазорах между контактирующими металлами из-за затрудненного доступа в эти места кислорода, в результате чего в зазорах развивается щелевая коррозия.

Щелевая коррозия

Н. Ф. Лашко и С. В. Лашко высказали предположение, что развитие щелевой коррозии в соединениях из алюминия и его сплавов, паянных легкоплавкими припоями на основе олова или олово — свинец (отслоение шва от паяемого материала без видимых следов коррозии), связано с характером физико-химического взаимодействия олова и свинца с алюминием. Из двойных диаграмм состояния Al—Sn и Аl—Рb следует, что при низкотемпературной пайке растворимость алюминия в олове и свинце весьма мала; при пайке алюминия такими припоями слабо развивается диспергация оксидной пленки от мест ее разрушения. Это особенно проявляется при бесфлюсовой пайке с применением ультразвука или абразивной пайки. В результате этого паяный материало и шов связаны по отдельным «мостикам», между которыми располагаются невидимые для невооруженного глаза щели между паяным швом и основным материалом, по которым и протекает щелевая коррозия. При погружении паяного соединения в подсоленную воду образуются продукты коррозии (гидрооксиды), которые изменяют состав электролита и снижают его рН, что способствует более интенсивному развитию коррозии.

Положительное влияние на коррозионную стойкость цинка в припоях с оловом и свинцом обусловлено повышением при этом растворимости в припое алюминия и, как следствие, более активным развитием процесса диспергации оксидной пленки на поверхности алюминия при низкотемпературной пайке. Процессу диспергации способствуют также повышение температуры и длительности выдержки при пайке, а также введение в припои других элементов, обладающих достаточно высоким химическим сродством к алюминию, в том числе образующих с ним химические соединения, особенно выше температуры пайки. К таким элементам с высоким химическим сродством к алюминию относятся серебро, сурьма, никель, а также медь, титан, магний, литий и др.

Оценка стойкости припоев алюминия в промышленной и тропической атмосферах

Слабо взаимодействуют с алюминием не только олово и свинец, но и кадмий. Введение цинка в состав припоя для алюминия повышает коррозионную стойкость паяного соединения; припой П300А (60% Zn—40% Cd) образует с алюминиевым сплавом АМц коррозионностойкие паяные соединения, которые не снижают механических свойств после пребывания их в камере тропической атмосферы в течение четырех месяцев и в условиях полупромышленной атмосферы в течение девяти месяцев. Наиболее коррозионностойкими в этих условиях являются соединения из алюминиевого сплава АМц, паянные припоями Zn—20%Аl и Zn—15%Cu (П425А и П480А).

Исследования показали, что при ускоренных коррозионных испытаниях в растворе дистиллированной воды с 3% NaCl и 0,1 % Н2О2при 20°С время до разрушения образцов из алюминиевого сплава АМц, паянного припоями Sn— Pb, Sn—10%Zn: Sn—15%Pb —7 %Cd, измеряется десятками часов, а паянных наиболее коррозионностойким припоем Zn—5 %Al—тысячами часов. Введение в цинково-алюминиевый припой добавок олова, кадмия, свинца ухудшает коррозионную стойкость паяных соединений из алюминия: добавки хрома, меди, никеля, сурьмы, серебра способствуют ее повышению.

Для пайки алюминия и его сплавов используют припои системы Pb—Zn, Zn—Cd, Sn—Pb—Zn. Припои типа 63 % Pb—34 % Sn —3 %Zn обеспечивают лишь низкую коррозионную стойкость паяных соединений: припои 60 % Zn—40 %Cd и 70 %Zn—30 % Sn — среднюю их коррозионную стойкость, а припои Zn—5 %Al и 100 % Zn — высокую коррозионную стойкость паяных соединений. Цинковый припой Zn—5 %Al имеет соответственно температуру плавления 381 °С и температуру пайки 421—427°С.

Наилучшими припоями, обеспечивающими наиболее высокую коррозионную стойкость и прочность, являются сплавы с 70—95%Zn с добавками серебра, меди, алюминия. К недостаткам таких припоев относится относительно высокая температура пайки (370—510 °С), при которой наклепанный или нагартованный алюминий может отжигаться. При пайке этими припоями пригоден нагрев как газопламенный и погружением, так и в печи. Важнейшими технологическими особенностями пайки с этими припоями является необходимость кратковременного их нагрева (<1 с) и небольшого перегрева (не выше 25 °С).

Соединения из алюминия и его сплавов, паянные припоями на основе олова или олово — свинец, могут использоваться только после нанесения на них специальных лакокрасочных покрытий или в вакууме, инертных газовых средах. Соединения, паянные цинковыми припоями, изготовленными из цинка с повышенным содержанием примесей олова, свинца, сурьмы, кадмия, склонны к развитию в паяных швах межкристаллитной коррозии, и поэтому такие припои для пайки алюминиевых сплавов, особенно для пайки изделий, работающих в кипящей воде, изготовляют из цинка чистоты 99,99%.

Кроме того, цинковые припои склонны к межзеренной химической эрозии паяемых алюминиевых сплавов: введение в цинковые припои алюминия (> 4 %) снижает межзеренное проникновение припоя в паяемый материал при условии строгого соблюдения термического режима пайки. Введение хрома способствует измельчению зерна цинковых припоев.

Повышениие смачиваемости

Для улучшения смачивающей способности и упрочнения цинковых припоев для пайки алюминиевых сплавов А. Г. Спасским и Г. К. Смирновым предложено легировать их галлием. Исследования показали, что введение в припой Sn—40 % Zn галлия в количестве 1,5 % повышает его временное сопротивление разрыву от 68,6 до 98 МПа, не влияет на его удельное электросопротивление и не снижает коррозионную стойкость паяного соединения. Однако увеличение содержания галлия в припое выше 1,5 % резко снижает прочность припоя и его коррозионные свойства. Показано, что соединения из сплавов Д16 и АМгб, паянные припоем с 1,5 % Ge, выдерживают вибрационную нагрузку при ускорении 5—10 g, частоте 2000 Гц и циклическом нагреве от —60 до 60 °С, а также вакуум-плотны при давлении до 1,33 ·10-1Па, но должны быть защищены лакокрасочными покрытиями.

В табл. приведены составы легкоплавких припоев для пайки алюминия и его сплавов, предложенные в последние годы за рубежом. Необходимо при этом отметить, что припой Sn—(18— 20)% Cd — (0,5—1)% Ag — (0,5—1,5) % Ga образует паяные соединения из алюминиевого сплава АМц, выдерживают частоту 20—2000 Гц, перегрузки в 35 g длительностью 1 —10 мкс, а также термоциклирование от —60 до +60 °С; паяные соединения вакуум-плотны при давлении от 1,33 ·10-3 до 1,33·10-2 Па.

Легкоплавкие зарубежные припои для пайки алюминия и его сплавов
ОсноваСодержание легирующих элементов, %Температура плавления,°CПримечание

* Температура пайки.
** Может содержать 0,01—0,1 Ti.
*** Соотношение Be и мишметалла от 1 : 1 до 1 : 10.

Sn

0,3—3 Bi; 0,5—2 Сu; 0,5—2 Ni; 0,3—2 Mg; 37,4—63,0Zn

160—250

Повышенная прочность паяного соединения

Sn

7—9 Zn; 6—8 Bi; 2,4—4 Sb

Повышенная коррозионная стойкость паяных соединений

3—5 Zn; 2 Mg; 2 Ag; 2 Cu

Sn

18—20 Cd; 0,5—1 Ag; 0,5—1 Ga

Повышенная коррозионная стойкость паяных соединений. Для паяных соединений σв = 78—98 МПа

Sn

1,5—2 Zn; ≤1,5 Ag; 0,1—5 Cu; 0,5—7 Mg

350

Повышенная коррозионная стойкость паяных соединений

Sn

35—48 Zn; 0,5—1,5 Al; 0,1—0,8 Si; 0,5—1,1 Cu; 0,02—2,2 P3M

<350

Средняя коррозионная стойкость паяных соединений. Для абразивной пайки с газопламенным нагревом

Pb

1 — 10 Sn; ≤5 Ag; ≤0,1 Sb

 

Повышенная коррозионная стойкость паяных соединений

Pb

3—15 Sb; 0,115 Zn; 0,1—5 Ag; примеси <0,05 %

250—360

Для ультразвуковой, вакуумной и флюсовой пайки; нагрев — погружением или в печи

Pb

5—30 Sn; 1 — 10 Bi; 0,5—5 Ag

Повышенная коррозионная стойкость паяных соединений

Sn

20—40 Zn; 10—57 Cd

300

Для флюсовой пайки

Zn

40—50 Cd;   1—8 Cu;  2—10 Sn;  0,5—1,5 Ga; 0,5—1 Ag; 0,5—1,5Al

350

Повышенная коррозионная стойкость паяных соединений.   На  алюминий  предварительно наносят цинк, никель, медь химическим, гальваническим или термовакуумным способами. Нагрев при пайке газо-пламенный или паяльником

Zn

7,5—11,5 Al; 3,5—4,5 Cu; 0,005—0,2 Be; примеси <0,3

440 *

Высокая коррозионная стойкость паяных соединений. Соединения не корродируют в кипящей воде в течение 100 ч

Zn (99, 99)

3—7 Al; 0,2—3 Cr

Zn

5—7 Al; 0,5—1 Cu; 0,005—0,5 Mg; 0,05—0,1 Mn; 0,1—0,4 Ni; 0,05—0,2 Cr**

440

Высокая коррозионная стойкость паяных соединений. Припой технологичен и не изменяет цвета

Zn

7,5—11,5 Al; 3,5—4,5 Cu; 0,005—0,2 Be; примеси <0,3; 4,3

440

Высокая коррозионная стойкость паяных соединений. Швы не корродируют в кипящей воде в течение 100 ч. Для паяного соединения σв = 171 МПа

Zn

3—6 Al; 1,5—3,5 Cd; 1—2 Mg

<450     

Высокая коррозионная стойкость в промышленной атмосфере

Zn

3—7 Al; 0,5—1 Ag; 0,005—0,015 Mg; 0,005—0,1 Ni; 0,05—0,2 Сг; 0,005—0,2 Si; 0,001—0,05 Be; мишметалл***

440

Высокая коррозионная стойкость паяных соединений для ультразвуковой пайки, прочны

Zn

7,5—11,5 Al; 3,5—4,5 Cu; 0,005—0,2 Be; примеси <0,3

440 *      

Соединения не корродируют в кипящей воде. Для печной пайки

Zn

3—4,5 Al; 1—3 Ag; 0,1—0,8 Mg

330—420

Паяные швы не склонны к межкристаллитной коррозии

Zn

3—7 Al; 0,3—2 Сг

Для флюсовой пайки. Склонны к усадке

Zn

0,5—1,5 Al; 0,1—0,8 Si; 0,02—2,2 РЗМ; 0,5—1,1 Cu; 27,9—44,6 Sn

Для абразивной пайки с газопламенным нагревом     

Zn

17,2—40 Al; 4—15 Cu; 0,2—2,2Ag

<450 
Zn

34Cd

265—305

Для ультразвуковой пайки труб погружением

Для цинковых припоев характерна не только интенсивная межзеренная, но и общая химическая эрозия алюминия и его сплавов.
Считают, что введение в оловянные припои меди, никеля, магния, цинка, сурьмы также повышает их прочность и легкоплавкость. Добавки магния, образующего соединение Mg2Si, упрочняют паяное соединение.

Пайка алюминия и его сплавов


Пайка алюминия и его сплавов

Категория:

Пайка



Пайка алюминия и его сплавов

Алюминий и его сплавы очень быстро окисляются в процессе нагревания, образуя весьма стойкие окислы, затрудняющие ведение пайки. Поэтому процесс пайки алюминия и его сплавов во многом отличается от процессов пайки других металлов. Здесь применимы лишь те методы, при которых пленка окислов, покрывающая поверхность спаиваемых частей, разрушается непосредственно в момент пайки.

Известны три метода пайки алюминия и алюминиевых сплавов:
1) пайка с механическим разрушением окисной пленки;
2) пайка с разрушением пленки окислов при помощи ультразвуковых колебаний;
3) пайка с химическим разрушением окисной пленки.

Для получения доброкачественного соединения паяемых частей необходимо прежде всего произвести подготовку поверхности: очистку от грязи, обезжиривание и травление.

Метод пайки алюминия с механическим разрушением окисной пленки. Этот метод нельзя считать прогрессивным, тем не менее он все же часто встречается в практике работы слесаря.

Подготовленные для пайки поверхности нагревают до температуры плавления припоя, затем в зоне шва наносят слой расплавленного припоя и под ним шабером^ паяльником или стальной щеткой удаляют поверхностную пленку (производят облуживание). По мере удаления окисной пленки припой смачивает алюминий и после охлаждения дает прочную связь.

В ряде случаев окисную пленку соскабливают непосредственно палочкой припоя, в которую иногда вводят абразив. Такой способ паяния часто называют шабер-ным, или абразивным.

Метод пайки с механическим удалением окисной пленки наиболее удобен для запайки поверхностных дефектов в алюминиевых изделиях. В качестве припоя для этой цели применяют цинк, олово и их сплавы.

Для ускорения процесса пайки по этому методу используют электрический паяльник, при помощи которого окисная пленка удаляется -механически — вибрирующей металлической щеткой.

Метод пайки алюминия с применением ультразвуковых паяльников. Окисную пленку с поверхности алюминия можно успешно удалять с помощью ультразвука. Вызываемые тем или иным способом в расплавленном припое колебания ультразвуковой частоты приводят к нарушению сплошности в слое припоя и периодическому возникновению и исчезновению огромного количества мелких пузырьков. В тот момент, когда пузырек, возникающий непосредственно на поверхности алюминия, исчезнет, расплавленный припой с силой ударяется об эту поверхность и разрушает окисную пленку; освободившаяся от окислов “поверхность алюминия немедленно смачивается расплавленным припоем, что и обеспечивает доброкачественную пайку. При этом способе пайки не обязательно применять флюсы. При использовании ультразвуковых паяльников (см. рис. 180, а) отпадает необходимость в предварительной зачистке поверхности алюминия перед пайкой. Обезжиривать поверхности необходимо.

При пайке алюминия с применением ультразвука обычно используют л«гкоплавкие припои на цинковой или оловянной основе с цинком, кадмием и алюминием. В процессе пайки необходимо держать конец рабочего стержня паяльника как можно ближе к поверхности алюминия, но по возможности не касаться ее. При залу-живании поверхности алюминия на поверхности припоя скапливаются мелкораздробленные частицы разрушенной окисной пленки. Для получения в этом случае доброкачественного паяного соединения желательно зашлакованный слой припоя удалить с поверхности чистой тканью, а затем произвести пайку свежим припоем.

Применение ультразвуковых колебаний при пайке алюминия особенно целесообразно в электро- и радиотехнической промышленности, где нежелательно пользоваться коррозийноактивными флюсами.

Метод пайки алюминия с химическим разрушением окисной пленки. Этот метод пайки осуществляется при нагреве с помощью горелок, в печах и другими способами. При пайке изделий из алюминия припоями на алюминиевой основе вначале горелкой подогревают место спая и пруток припоя до температуры 300—400 °С. Затем конец прутка припоя окунают в сухой порошкообразный флюс типа 34А, а место спая дополнительно подогревают так, чтобы температура его была примерно на 50° выше температуры плавления припоя. Быстро и с нажимом проводят припоем по непрерывно подогреваемому месту спая. При этом имеющийся на прутке припоя флюс растекается по поверхности алюминия и растворяет окисную пленку, а припой, расплавляясь при соприкосновении с изделием, заполняет очищенный флюсом паяемый шов. После пайки изделие должно быть тщательно промыто для удаления остатка флюса, чтобы предохранить спаянную поверхность от коррозии.

—-

Пайка алюминия и его сплавов представляет большие затруднения вследствие легкой окисляемости алюминия с образованием прочной окисной пленки, а также вследствие часто наблюдающейся слабой сопротивляемости коррозии мест пайки.

Самый простой способ пайки алюминия — пайка трением. Металл подогревают до температуры плавления припоя; на поверхность металла наносят припой, который растирают проволочной щеткой или шабером. При натирании соскабливается пленка окисла и припой прочно соединяется с зачищенной поверхностью металла. Слой припоя предохраняет зачищенную поверхность от соприкосновения с воздухом. Облуженные поверхности сжимают и паяют при нагревании. Разновидностями пайки натиранием являются абразивная и ультразвуковая пайка. Абразивную пайку производят стержнем из измельченного асбеста с порошком припоя. При натирании нагретого металла асбест зачищает поверхность металла, а припой облуживает ее. Паяльный абразивный стержень закреплен в специальном паяльнике с электрическим нагревом.

Ультразвуковую пайку осуществляют ультразвуковым паяльником, в котором встроен магнитострикционный вибратор, сообщающий ультразвуковые колебания рабочей части паяльника. Паяльник наносит припой на поверхность металла, разрушает колебаниями слой окисла, и припой облуживает металл. Паяльник питается током от высокочастотного лампового генератора. Припоями для пайки трением служат технически чистый цинк или сплавы цинка, например 15—20% Sn, остальное цинк. Иногда при пайке трением применяют покровные флюсы из органических веществ — канифоль, стеарин и т. п. Пайка трением может дать удовлетворительную прочность, около 9 кГ/мм2, но соединение подвержено коррозии и под влиянием атмосферы, особенно влажной, быстро разрушается. Это объясняется большой разницей электрохимических потенциалов алюминия и цинка. Получить действительно прочные соединения можно лишь пользуясь припоями на основе алюминия; некоторые составы их приведены в табл. 19.

Лучшим из этих припоев считают 34А, представляющий собой сплав алюминия с медью и кремнием. Пайку ведут с нагревом газовой горелкой или в соляных ванных. Для пайки этими припоями нужны специальные флюсы (табл. 20).

Для пайки алюминия лучшим считается флюс 34А, применяемый совместно с припоем 34А. Флюс наносят на металл вместе с припоем, он быстро очищает металл, растворяя окислы, и припой легко растекается по очищенной поверхности, образуя прочное соединение с пределом прочности 15—18 кГ/мм2, стойкое против коррозии.


Реклама:

Читать далее:
Контроль качества паяных соединений

Статьи по теме:

Флюс для пайки алюминия и нержавейки: своими руками

Флюс – вещество, необходимое для аккуратного удаления окисей металлов, образующихся при пайке.

Кроме того, нанесение флюса позволяет защитить обрабатываемый металл от окисления и обеспечить оптимальное растекание припоя.

Какой же использовать флюс для пайки алюминия, нержавеющей стали, серебра, микросхем BGA, а также других материалов, и как сделать его своими руками?

Выбор флюса зависит от особенностей соединяемых поверхностей, а также используемых материалов, ведь при пайке оловом и твердыми припоями применяются разные составы.

Разновидности, типы флюса

Важно учитывать, что температура плавления припоя обязательно должна быть выше, чем плавления флюса. При этом важно учитывать, что только флюсы для реактивно-флюсовой пайки могут взаимодействовать с припоем – для других материалов это недопустимо.

Вещество может поставляться в различных формах:

  • Жидкость.
  • Паста (часто применяется для микросхем BGA).
  • Порошок.

Наиболее распространенные средства, используемые для спайки деталей – ортофосфорная кислота, канифоль, нашатырь, бура. Выбор зависит от используемого материала – для латуни и нержавейки актуальны разные составы.

На какие параметры ориентироваться в выборе?

Существует классификация флюсов, что позволяет определить подходящий вариант, подобрав состав для BGA микросхем, латуни, нержавейки и других материалов.

Вещества различаются в зависимости от:

  • Температурного интервала (низко и высокотемпературные).
  • Используемого растворителя (водные и неводные).
  • Механизма действия (защитные, реактивные, химические).
  • Состоянию (жидкие, твердые, пастообразные).

Важно учитывать, что работа с каждым типом припоя (свинцом или оловом) обладает определенными особенностями, а потому приступая к соединению материалов, необходимо в точности следовать установленной технологии, используемой для нержавейки или же латуни.

Жидкие флюсы

Ассортимент подобной продукции достаточно широк и разнообразен – можно подобрать оптимальный вариант для латуни, микросхем BGA или нержавеющей стали.

Выбирая жидкий флюс для пайки меди, стоит учитывать, что в этом случае лучше пользоваться не феном, а паяльником.

Удобнее всего купить уже готовые варианты, которые можно использовать сразу после открытия – это значительно экономит время.

Для удобства использования жидкого средства, стоит воспользоваться шприцом, что позволяет выверить требующееся количество вещества.

Как правило, подобные товары поставляются в различной расфасовке, а потому не составит подобрать подходящий объем для пайки латуни или нержавейки.

Если оценивать с финансовой точки зрения, то жидкие флюсы более выгодны. Такое средство позволяет обеспечить отличное качество пайки, и является оптимальным решением для хрупких BGA микросхем.

Вот только стоит учитывать, что работать с таким материалом не всегда удобно, так как он очень быстро растекается по плате – чтобы освоить эту науку потребуется практика. Кроме того, приступая к процессу, стоит надеть старую одежду – брызги моментально испортят вещь.

Для пайки алюминия

Существует распространенное заблуждение о том, что сделать в домашних условиях качественную пайку алюминия практически невозможно.

На самом деле этот металл действительно плохо поддается подобной обработке, в отличие от нержавейки и латуни, но правильно выбрав флюс и мягкий припой на основе олова, удастся достичь желаемой цели. Одним из самых распространенных вариантов — Ф-64, а также ФТБф.

При желании, средство для работы с алюминием можно сделать и самостоятельно, воспользовавшись уже имеющимися веществами, а также используя припой на основе олова. Но важно учитывать, что это несколько осложнит процесс и сделает выполнение поставленной задачи более трудоемким.

Экономить на материалах не следует, ведь качество пайки непосредственно зависит от используемого вещества. Работать лучше феном, что значительно ускорит процесс.

Для пайки алюминия применяются следующие рецепты:

  • Хлористый натрий+Криолит+Хлористый Калий+Сернокислый натрий+Хлористый литий.
  • Олеиновая Кислота+Йодистый литий.
  • Натрий Фтористый+Хлористый цинк, калий и литий.

Как показывает практика, чем больше компонентов, тем выше качество пайки алюминия. Также для этого металла очень часто применяются вещества, созданные на основе ортофосфорной кислоты (как и для нержавейки).

Для пайки нержавеющей стали

Работа с нержавейкой не представляет особых сложностей – важно лишь соблюдать технику безопасности. С учетом того, что этот материал обладает низкой теплопроводностью, не требуется использование оборудования повышенной мощности – процедура пайки легко выполняется даже без интенсивного нагрева.

Для нержавейки чаще всего используются следующие вещества:

  • Хлорид Цинка.
  • Ортофосфорная кислота.

Нужно нанести флюс на поверхность, после чего сразу приступить к работе. В противном случае всего за несколько секунд образуется плотная пленка, что значительно осложнит процесс соединения деталей. Работая с пищевым оборудованием, изготовленным из нержавеющей стали, ни в коем случае нельзя использовать свинцовый припой.

Также для обработки нержавейки не используется канифоль – необходимо подобрать активный флюс.

При отсутствии подходящего средства можно использовать и буру – паста или порошок аккуратно наносятся на место будущего шва. Пайка нержавейки без флюса довольно сложна, очень часто в процессе обработки деталей и вовсе потребуется повторное нанесение защитного вещества. В противном случае распределение припоя по поверхности значительно осложнит образование оксидной пленки.

Использование твердых припоев

Если необходимо аккуратно соединить проблемные места, подвергающиеся воздействию негативных внешний факторов, то в данном случае будет актуально использование твердых припоев.

Это составы, которые используются при температуре выше 450 градусов.

Среди них:

  1. Чистая медь.
  2. Медь+цинк.
  3. Медь+фосфор.

Для пайки серебром используется специальное безотмывочное вещество. Важно учитывать, что твердые припои в зависимости от используемого температурного режима: тугоплавкие и легкоплавкие. Что немаловажно, в качестве альтернативы дорогостоящим серебряным флюсам, применяется сочетание меди и фосфора. Это лучший вариант для латуни или же бронзы.

А вот для железа, низкоуглеродистых сталей и черных металлов подобный вариант неактуален – готовый шов будет недолговечным. Безусловно, самый удобный в работе вариант – серебряные припои, которые представляют собой сочетание меди, цинка и серебра. Но они не получили широкое распространение из-за высокой цены – чаще всего подобный вариант используется для спайки проводов или плат, содержащих серебряные компоненты.

Работа с латунью и медными трубами

Если говорить о пайке латуни, то чаще всего речь идет о работе с оловом, а также оловянно- свинцовыми припоями. В данном случае удобно работать не феном, а паяльником. Кроме того, использовать стандартную канифольно-спиртовую смесь недопустимо – важно правильно подобрать подходящий для латуни состав, который позволит качественно удалить оксидную пленку.

Оптимальный вариант – сочетания на основе хлористого цинка. Можно и вовсе приготовить смесь своими руками, используя для этой цели буру. Это позволит сделать вещество, которое способствует лучшему растеканию связывающего компонента.

Важно также учитывать, что необходимо не только правильно подобрать флюс для пайки медных труб, но и определиться с выбором подходящего припоя. Для этой цели прекрасно подходят компоненты из серебра, а также соединения меди и фосфора.

Если же предстоит работать с материалом, содержание меди в котором невелико, стоит использовать в качестве припоя латунь. Для радиаторов и других элементов отопительной системы используют твердые припои, чтобы обеспечить максимально возможную прочность соединения.

Как самостоятельно приготовить флюс?

Существует целый ряд требований, предъявляемых к используемым флюсам. Знание этой информации поможет подобрать подходящее вещество для серебра, нержавеющей стали или любых других материалов.

При желании подходящий флюс можно создать и своими руками, тем более что в домашних условиях наверняка найдутся подходящие компоненты.

Один из самых простых рецептов представляет собой соединение следующих веществ:

  • Медицинский спирт.
  • Размельченная канифоль.

Засыпать канифоль в небольшую емкость, залить спиртом и плотно закрыть – настаивать несколько дней, после чего можно приступать к работе.

Правильный выбор флюса и припоя для микросхем BGA или других материалов позволяет обеспечить высокое качество пайки и сделать процесс менее трудоемким. При желании нужный состав можно и вовсе приготовить в домашних условиях.

Методы пайки алюминия — Сварка, пайка, металлообработка

Как паять алюминий в домашний условиях: припой для пайки, способы, особенности — ООО ДелоПро

Процедура пайки алюминиевых элементов в домашних условиях является весьма проблематичным процессом, который облегчается использованием специальных материалов. Работа осложняется моментальным появлением на месте зачистки тонкой оксидной пленки, мешающей спайке. Дополнительную трудность создает сам материал, имеющий низкий температурный порог плавления (+660 °С). Применяя припой для пайки алюминия, особые сильнодействующие флюсы и соблюдая технологию, можно самостоятельно паять практически любые предметы из алюминия.

Особенности и принципы пайки

Низкая температурная величина плавки металла затрудняет технологический процесс спаивания, а также ремонта изделий своими руками. Детали очень быстро теряют при нагреве прочность, а конструкции снижают устойчивость при достижении температурой 300 градусов. Легкоплавкие припои, состоящие из висмута, кадмия, индия, олова тяжело вступают в контакт с алюминием и не обеспечивают достаточную прочность. Отличная растворимость наблюдается у металла в сочетании с цинком, что придает спаянным местам высокую надежность.

Перед началом спаивания элементы из алюминия хорошо зачищаются от окислов, грязи. Для этого можно применять механическое воздействие при помощи щеток или же использовать специальные флюсы из сильнодействующего состава. Перед самой процедурой следует обязательно залудить обрабатываемые участки.

Оловянное покрытие защитит деталь от возникновения окислов. Чтобы надежно припаять алюминиевые изделия необходимо правильно подобрать нагревательный инструмент, учитывая объем обрабатываемого металла.

Помимо этого, надежность соединения зависит от того, какой выбран сплав, а также флюс для пайки алюминия.

Методы пайки

Спаивание алюминиевых изделий производится паяльником электрического типа, паяльной лампой или же газовой горелкой. Существую три способа спаивания разнообразных предметов из алюминия:

  • с канифолью,
  • с применением припоев,
  • электрохимический метод.

С канифолью

Этот вариант пайки алюминиевых предметов, проводов, кабелей применяется для деталей небольшого размера. Для этого зачищенный участок электропровода покрывается канифолью и помещается на кусочек шлифовальной шкурки, имеющей среднюю зернистость. Сверху провод прижимается залуженным жалом нагретого паяльника. Это действие проводится несколько раз, после чего выполняется сама процедура спаивания электропроводов. Можно применять канифольный раствор в диэтиловом эфире.

В таком случае конец паяльника не отнимается от залуживаемого конца, а сверху добавляется канифоль. Для соединения скруткой тонких алюминиевых проводов подойдет электропаяльник с мощностью порядка 50 Вт. При толщине алюминия около 1 мм необходим паяльник 100 Вт, а детали более 2 мм требуют предварительного прогрева места соединения.

С применением припоев

Данный метод наиболее распространен и применяется в электротехнике, при ремонте автомобильных деталей, а также прочих изделий. Перед тем как паять алюминий, проводится предварительное покрытие запаиваемого места сплавом и последующее соединение облуженных элементов. Детали, предварительно залуженные, соединяются между собой, а также с прочими сплавами и металлами.

Паяние элементов можно проводить с помощью легкосплавных припоев, имеющих в составе олово, цинк, а также кадмий. Помимо этого, активно используются тугоплавкие материалы на основе алюминия.

Почему применяются легкосплавные составы? Потому что они позволяют спаять алюминиевое изделие при температуре до 400 градусов. Это не производит качественных изменений свойств металла и сохраняет его прочность.

Составы с кадмием и оловом не создают достаточную надежность контакта, подвержены коррозионным воздействиям. Этих недостатков лишены тугоплавкие материалы с цинком, медью, а также кремнием на основе алюминия.

Электрохимический метод

Эта процедура требует наличия установки для выполнения гальванического покрытия. С ее помощью проводится омеднение поверхности изделия или провода. При ее отсутствии используется самостоятельная обработка детали. Для этого, на зачищенное шлифовальной шкуркой место, наносится несколько капель насыщенного раствора медного купороса. После этого к обрабатываемому изделию подключается отрицательный полюс независимого источника электропитания.

Им может послужить батарейка, аккумулятор или же любой электрический выпрямитель. К положительному выводу подсоединяется очищенный медный провод диаметром порядка 1 мм, расположенный в изолированной подставке. В процессе электролиза на деталь будет постепенно оседать медь, после чего проводится лужение участка, сушка при помощи электропаяльника. После этого можно легко запаять залуженное место.

Припои, материалы, флюсы

Пайка алюминия оловом выполняется при условии применения высокоактивных флюсов, а также хорошей зачистки участков деталей. Такие оловянные соединения требуют дополнительного покрытия специальными составами, так как имеют невысокую прочность и слабую защиту от коррозионных процессов.

Чем паять алюминиевые элементы? Качественные паяные соединения получаются при использовании припоев с кремнием, алюминием, цинком, а также медью. Эти материалы выпускаются как отечественными, так и многими зарубежными фирмами-производителями.

Отечественные марки прутков представлены наиболее использующимися припоями ЦОП40, которые по гост имеют в составе 60 % олова и 40 % цинка, а также 34А (алюминий – 66 %, кремний – 6 %, медь – 28 %). Используемый цинк придает высокую прочность месту контакта и обеспечивает хорошую коррозионную устойчивость.

К импортным низкотемпературным сплавам с отличными характеристиками относится HTS-2000, который обеспечивает максимальное удобство в применении.

Эти сплавы применяются для работы с крупногабаритными деталями (радиаторы, трубы) с высоким теплоотводом при помощи грелки или же предметов из алюминиевых сплавов, имеющих довольно высокотемпературное плавление. Начинающие ремонтники могут ознакомиться с процессом спаивания, просмотрев обучающее видео. Это поможет избежать многих неприятных нюансов в процессе работы.

Помимо припоев, алюминиевая пайка требует применения специальных флюсов, имеющих в составе фторборат аммония, цинка, а также триэтаноламин и прочие элементы. К наиболее популярным относится отечественный Ф64, имеющий повышенную химическую активность. Его можно применять даже без предварительной зачистки изделий от оксидной пленки. Кроме него, используется 34А, содержащий хлориды лития, калия и цинка, а также фторид натрия.

Подготовка изделий

Надежность, а также отменное качество соединений обеспечивается не только использованием правильной технологии, но и от подготовительных работ. К ним относится обработка запаиваемых поверхностей. Она необходима для удаления загрязнений и тонкой оксидной пленки.

Механическую обработку выполняют с помощью шлифовальной шкурки, металлической щетки, проволочной нержавеющей сетки или шлифовальной машинки. Помимо этого, используются для очистки разнообразные кислотные растворы.

Обезжиривание поверхности выполняется с использованием растворителей, а также бензина или же ацетона. На зачищенном алюминиевом участке оксидная пленка появляется практически сразу, однако ее толщина значительно ниже первоначальной, что облегчает паяльный процесс.

Нагревательные инструменты

Чем паять алюминий в домашних условиях? Для припаивания алюминиевых изделий небольшого размера дома применяются электропаяльники. Они являются универсальным инструментом, вполне удобным для припаивания проводов, ремонта маленьких трубок и прочих элементов.

Для них требуется минимум рабочего пространства, а также наличие электросети. Ремонт крупногабаритных изделий и сварка выполняется газовой горелкой, которая использует аргон, бутан, пропан.

Для пайки алюминиевых предметов в домашних условиях можно применять стандартную паяльную лампу.

При использовании газовых горелок необходимо постоянно следить за их пламенем, которое характеризует сбалансированную подачу кислорода и газов. При правильной газовой смеси огненный язычок имеет ярко-синий цвет. Неяркий оттенок, а также небольшое пламя свидетельствуют о переизбытке кислорода.

Технологический процесс

Технология пайки алюминиевых предметов похожа на процесс соединения деталей их прочих металлических материалов. Первым делом проводится зачистка и обезжиривание мест будущей спайки. Затем соединяемые элементы устанавливаются в рабочее положение для удобства обработки.

На подготовленный участок наносится флюс, и, изначально холодное, изделие начинает нагреваться при помощи электропаяльника или же горелки. При повышении температуры начинает плавиться пруток припоя, которым требуется постоянно касаться поверхности элементов, контролируя нагревательный процесс.

Пайка алюминиевых элементов в домашних условиях электрическим паяльником выполняется в комнате с хорошим проветриванием, так как при работе выделяются опасные соединения.

Использование безфлюсового припоя требует соблюдения некоторых нюансов. Чтобы оксидная пленка не мешала попаданию сплава на детали, концом прутка выполняются царапающие движения по участку спаивания элементов. Этим нарушается оксидная целостность и припой входит в контакт с обрабатываемым металлом.~

Разрушение оксидного слоя при пайке можно выполнять и другим методом. Для этого обрабатываемый участок процарапывается металлической щеткой или же прутком из стали нержавеющего типа.

Для обеспечения максимальной прочности алюминиевых деталей в спаиваемом месте, обрабатываемые участки подвергаются предварительному лужению. Соблюдение технологии пайки элементов из алюминия гарантирует отличное качество соединения, а также его защиту от коррозии.

Источник: http://shop.deloproltd.ru/kak-payat-alyuminij-v-domashnij-usloviyah-pripoj-dlya-pajki-sposoby-osobennosti/

Как паять алюминий паяльником

Существует распространенное убеждение, согласно которому невозможно паять или лудить алюминий (а также сплавы на его основе) не имея для этого спецоборудования.

В качестве аргумента приводится два фактора:

  1. при контакте с воздухом на поверхности алюминиевой детали образуется химически стойкая и тугоплавкая оксидная пленка (AL2O3), в результате чего создается препятствие для процесса лужения;
  2. процесс пайки существенно осложняется тем, что алюминий расплавляется при температуре 660°С (для сплавов это диапазон в пределах от 500 до 640°С). Помимо этого металл теряет прочность, когда в процессе нагрева его температура поднимается до 300°С (у сплавов до 250°С), что может вызвать нарушение устойчивости алюминиевых конструкций.

Учитывая приведенные выше факторы, осуществить пайку алюминия обычными средствами действительно невозможно. Решить проблему поможет применение сильнодействующих флюсов, в сочетании с использованием специальных припоев. Рассмотрим подробно эти материалы.

Припой

Обычно в качестве основы легкоплавкого припоя используются:  олово (Sn), свинец (Pb), кадмий (Cd), висмут (Bi) и цинк (Zn). Проблема в том, что алюминий в этих металлах практически не растворяется (за исключением цинка), что делает соединение ненадежным.

Применив флюс с высокой активностью и проведя должным образом обработку мест соединения, можно использовать припой на оловянно-свинцовой основе, но лучше отказаться о такого решения. Тем более, что паянное соединение на основе системы Sn-Pb обладает низкой устойчивостью к коррозии. Нанесение лакокрасочного покрытия на место пайки позволяет избавится от этого недостатка.

Для пайки алюминиевых деталей желательно использовать припой на основе кремния, меди, алюминия, серебра или цинка. Например 34A, который состоит из алюминия (66%), меди (28%) и кремния (6%), или более распространенный ЦОП-40 (Sn – 60%, Zn – 40%).

Припой отечественного производства – ЦОП-40

Заметим, что чем больше процентное содержание цинка  в составе припоя, тем прочнее будет соединение и выше его устойчивость к коррозии.

Высокотемпературным считается припой, состоящий из таких металлов, как медь, кремний и алюминий. Например, как упомянутый выше отечественный припой 34A, или его зарубежный аналог «Aluminium-13» , в котором содержится 87% алюминия и 13% кремния, что позволяет осуществлять пайку при температуре от 590 до 600°С.

«Aluminium-13» производства компании Chemet

Флюс

При выборе флюса необходимо учитывать, что не каждый из них может быть активным к алюминию. Мы можем порекомендовать использовать в таких целях продукцию отечественного производителя – Ф-59А, Ф-61А, Ф-64, они состоят из фторборатов аммония с добавлением триэтаноламина. Как правило, на пузырьке есть пометка – «для алюминия» или «для пайки алюминия».

Флюс отечественного производства

Для высокотемпературной пайки следует приобрести флюс, выпускаемы под маркой 34А. Он состоит из хлористого калия (50%), хлорида лития (32%), фторида натрия (10%) и хлористого цинка (8%). Такой состав наиболее оптимален, если производится высокотемпературная пайка.

Рекомендуемый флюс для паки при высокой температуре

Подготовка поверхности

Прежде чем начинать лужение, необходимо выполнить следующие действия:

  • обезжирить поверхность при помощи ацетона, бензина или любого другого растворителя;
  • удалить оксидную пленку с места, где будет производится пайка. Для зачистки используется наждачная бумага, абразивный круг или щетка с щетиной из стальной проволоки. В качестве альтернативы можно применить травление, но эта процедура не так сильно распространена в силу своей специфичности.

Следует учитывать, что полностью оксидную пленку удалить не получится, поскольку на очищенном месте моментально появляется новое образование. Поэтому зачистка производится не с целью полного удаления пленки, а для уменьшения ее толщины, чтобы упростить флюсу задачу.

Нагрев места пайки

Для пайки небольших деталей можно воспользоваться паяльником мощностью не менее 100Вт. Массивные предметы потребуют более мощного нагревательного инструмента.

https://www.youtube.com/watch?v=nu8TgMU5I2k

Паяльник мощностью 300 Вт

Наиболее оптимальный вариант для нагрева – использование газовой горелки или паяльной лампы.

Простая газовая горелка

При использования горелки в качестве нагревательного инструмента следует учесть следующие нюансы:

  • нельзя перегревать основной металл, поскольку он может расплавиться. Поэтому в процессе необходимо регулярно контролировать температуру. Делать это можно, касаясь припоем нагреваемого элемента. Расплавление припоя даст знать, что достигнута необходимая температура;
  • не следует использовать кислород для обогащения газовой смеси, поскольку он способствует сильному окислению металлической поверхности.

Инструкция по пайке

Процесс пайки алюминиевых деталей не имеет  своих отличительных особенностей, он осуществляется также как со сталью или медью.

Алгоритм действий следующий:

  • обезжиривается и зачищается место пайки;
  • производится фиксация деталей в нужном положении;
  • нагревается место соединения;
  • прикасаются стержнем припоя (содержащим активный флюс) к месту соединения. Если используется безфлюсовый припой, то для разрушения пленки оксида наносится флюс, после чего трут твердым куском припоя по месту пайки.

Для разрушения пленки оксида алюминия также используется щетка со щетиной из стальной проволоки. При помощи этого простого инструмента производят растирание расплавленного припоя по алюминиевой поверхности.

Пайка алюминия – полная видео инструкция
https://www..com/watch?v=ESFInizLE9U

Что делать при отсутствии нужных материалов?

Когда нет возможности подготовить все необходимые для пайки материалы, можно использовать альтернативный способ, при котором применяется припой на оловянной  или оловянно-свинцовой основе. Что касается флюса, то он заменяется канифолью. Чтобы не образовывалась новая пленка оксида алюминия на месте старой, зачистка производится под слоем расплавленной канифоли.

Паяльник, помимо своего прямого назначения, будет использоваться как инструмент, разрушающий оксидную пленку. Для этого на его жало надевается специальный скребок. Увеличить результативность процесса можно, добавив в канифоль металлических опилок.

Процесс производится следующим образом:

  • нагретым луженым паяльником расплавляют канифоль в месте пайки;
  • когда канифоль полностью покрывает поверхность, начинают тереть об нее жалом паяльника. В результате этого металлические опилки и жало разрушают пленку оксида алюминия. Поскольку слой расплавленной канифоли не позволяет проникать воздуху к алюминиевой поверхности, на ней не образовывается оксидная пленка. По мере того, как производится разрушение пленки, будет происходить лужение детали;
  • когда процесс лужения завершен, детали соединяют и прогревают, пока не будет достигнута температура плавления припоя.

Необходимо предупредить, что процесс пайки алюминия без специальных материалов – довольно хлопотный процесс без гарантии успешного завершения. Поэтому лучше не тратить на такую работу свои силы и время, тем более, что качество и надежность такого соединения будут сомнительными.

Гораздо проще купить активный флюс и высокотемпературный припой, при помощи которых пайка алюминия даже в домашних условиях не вызовет затруднений.

Источник: https://www.asutpp.ru/pajka-alyuminiya.html

Пайка алюминия в домашних условиях – чем и как паять, флюсы, припои

Пайка алюминия, как справедливо считают многие специалисты, является достаточно сложным в выполнении технологическим процессом.

Между тем такое мнение можно считать верным лишь в отношении тех ситуаций, когда спаять изделия из алюминия пытаются, используя для этого припои и флюсы, которые применяются для соединения деталей из других металлов: меди, стали и др.

Если же используется специальный флюс для пайки алюминия, а также соответствующий припой, то данный технологический процесс не представляет особых сложностей.

Пайка алюминия с использованием пропановой горелки

Особенности процесса

Сложности, которые вызывает пайка алюминия при помощи традиционных припоев и флюсов, объясняются рядом факторов, преимущественно связанных с характеристиками данного металла. Основным из таких факторов является наличие на поверхности деталей из алюминия оксидной пленки, которая отличается высокой температурой плавления и исключительной химической стойкостью. Такая пленка при выполнении пайки препятствует соединению основного металла и материала припоя.

Перед осуществлением пайки изделий из алюминия их поверхности необходимо тщательно очистить от оксидной пленки, для чего можно использовать механическую обработку или применять флюсы, в состав которых входят сильнодействующие компоненты.

Подготовленные к пайке дюралевые детали

Сам алюминий, в отличие от оксидной пленки на его поверхности, обладает достаточно низкой температурой плавления: 660 градусов, что также осложняет технологический процесс выполнения пайки.

Такая характеристика алюминия приводит к тому, что при нагреве детали из него быстро теряют прочность, а при определенной температуре, находящейся в интервале 250–300 градусов, конструкции из данного металла начинают терять устойчивость.

Самый легкоплавкий компонент, который входит в состав наиболее распространенных алюминиевых сплавов, начинает плавиться уже в интервале температур 500–640 градусов, что может привести к перегреву и даже к расплавлению самих соединяемых деталей.

Основу большей части легкоплавких припоев, использующихся для пайки, составляют олово, кадмий, висмут и индий. С этими элементами алюминий плохо вступает в соединения, что делает паяные соединения, полученные с их использованием, очень непрочными и ненадежными. Хорошей взаимной растворимостью обладают алюминий и цинк, поэтому данный элемент при его использовании в припоях обеспечивает полученному соединению высокую прочность.

Характеристики флюсов для пайки мягкими припоями

Состав флюсов, применяемых для пайки алюминия

Используемые материалы

При выполнении пайки изделий из алюминия можно использовать припои оловянно-свинцовой группы, если тщательно очистить поверхность деталей и применять высокоактивные флюсы. Соединения, полученные с их помощью, по причине плохой взаимной растворимости алюминия, олова и свинца отличаются невысокой надежностью, также они склонны к развитию коррозионных процессов. Чтобы сделать подобные соединения более устойчивыми к коррозии, их необходимо покрывать специальными составами.

Источник: http://ooo-asteko.ru/kak-payat-alyuminiy-payalnikom/

Принципы пайки алюминия

Пайка алюминия — сложный процесс, поскольку на поверхности образуется оксидная плёнка, которая мешает проведению работ. Поэтому нужно использовать специальные методики, позволяющие упростить рабочий процесс. Специальные флюсы позволят избавиться от негативных факторов оксидного слоя.

Сфера применения процесса

Паяные изделия из алюминия применяются в следующих сферах:

  • автомобилестроении;
  • радиоэлектронике;
  • изготовлении оконных рам;
  • производстве деталей для велосипедов;
  • создании каркасов теплиц, корпусов техники.

Подготовка деталей

В ходе подготовки к проведению работ необходимо использовать следующие способы обработки поверхностей:

  • при помощи растворителя выполняется обезжиривание, применяется ацетон, уайт-спирит, бензин;
  • удаляется оксидная плёнка при помощи абразивных инструментов либо применяется паяльник или газовая горелка для нанесения флюса.

Общие принципы пайки алюминия в домашних условиях

Основные принципы пайки алюминия в домашних условиях:

  • необходимо выполнить качественную очистку поверхности металла от загрязнений, покрытий, оксидной плёнки;
  • временной интервал между очисткой и пайкой должен быть минимальным;
  • для удаления оксидной плёнки лучше использовать щётки по металлу или паяльники со специальными насадками;
  • выбор нагревательного инструмента выполняется в зависимости от площади пайки, так как из-за высокой теплопроводности алюминий быстро остывает;
  • если нет подходящего припоя, то допускается использование любого, в составе которого есть олово, свинец;
  • при прогреве деталей для нанесения припоя важно не перегреть алюминий, так как он отличается меньшей температурой плавления, по сравнению с оксидной плёнкой;
  • залуживание поверхности алюминия сплошным слоем позволит избавиться от появления окислов, что упростит его паяние;
  • при использовании горелки важно соблюдать правила противопожарной безопасности, особенно при нанесении растворителей для обезжиривания;
  • пайка может выполняться в несколько слоёв, перед нанесением каждого нужно выжидать пока застынет предыдущий;
  • использование флюса потребует применения защитных средств, так как в его составе могут содержаться едкие вещества;
  • пламя горелки всегда должно быть направлено в противоположную от себя сторону;
  • для пайки рекомендуется использовать паяльники мощностью более 100 Вт;
  • флюс применяется в основном для элементов с толщиной от 4 мм или поверхностей со сложными формами;
  • состав припоя выбирается на основе вида пайки, но температура плавления всегда ниже, чем у алюминия;
  • чтобы паять заготовки с толщиной более 4 мм, по краю стыковочного шва нужно срезать кромку под углом 450 для увеличения поверхности контакта;
  • после проведения работ необходимо обязательно убедиться в целостности, прочности, равномерности шва.

При выборе припоя необходимо учитывать тип инструмента, используемого для расплавления. Для паяльника подойдут сплавы с низкой температурой плавления: оловянные сплавы с медью, цинком, висмутом. Чтобы создать тугоплавкое соединение, потребуется сложный сплав алюминия, меди, кремния.

Принципы пайки алюминия Ссылка на основную публикацию

Источник: https://metalloy.ru/obrabotka/pajka/alyuminievyh-izdelij

Припой для пайки алюминия Castolin 192FBK — пыль в глаза или страшный кошмар аргонщиков?

Существует распространенное убеждение, согласно которому невозможно паять или лудить алюминий (а также сплавы на его основе) не имея для этого спецоборудования.

В качестве аргумента приводится два фактора:

  1. при контакте с воздухом на поверхности алюминиевой детали образуется химически стойкая и тугоплавкая оксидная пленка (AL2O3), в результате чего создается препятствие для процесса лужения;
  2. процесс пайки существенно осложняется тем, что алюминий расплавляется при температуре 660°С (для сплавов это диапазон в пределах от 500 до 640°С). Помимо этого металл теряет прочность, когда в процессе нагрева его температура поднимается до 300°С (у сплавов до 250°С), что может вызвать нарушение устойчивости алюминиевых конструкций.

Учитывая приведенные выше факторы, осуществить пайку алюминия обычными средствами действительно невозможно. Решить проблему поможет применение сильнодействующих флюсов, в сочетании с использованием специальных припоев. Рассмотрим подробно эти материалы.

Припой

Обычно в качестве основы легкоплавкого припоя используются: олово (Sn), свинец (Pb), кадмий (Cd), висмут (Bi) и цинк (Zn). Проблема в том, что алюминий в этих металлах практически не растворяется (за исключением цинка), что делает соединение ненадежным.

Применив флюс с высокой активностью и проведя должным образом обработку мест соединения, можно использовать припой на оловянно-свинцовой основе, но лучше отказаться о такого решения. Тем более, что паянное соединение на основе системы Sn-Pb обладает низкой устойчивостью к коррозии. Нанесение лакокрасочного покрытия на место пайки позволяет избавится от этого недостатка.

Для пайки алюминиевых деталей желательно использовать припой на основе кремния, меди, алюминия, серебра или цинка. Например 34A, который состоит из алюминия (66%), меди (28%) и кремния (6%), или более распространенный ЦОП-40 (Sn – 60%, Zn – 40%).


Припой отечественного производства – ЦОП-40

Заметим, что чем больше процентное содержание цинка в составе припоя, тем прочнее будет соединение и выше его устойчивость к коррозии.

Высокотемпературным считается припой, состоящий из таких металлов, как медь, кремний и алюминий. Например, как упомянутый выше отечественный припой 34A, или его зарубежный аналог «Aluminium-13» , в котором содержится 87% алюминия и 13% кремния, что позволяет осуществлять пайку при температуре от 590 до 600°С.


«Aluminium-13» производства компании Chemet

Пайка алюминия в домашних условиях: инструкция

Существует распространенное убеждение, согласно которому невозможно паять или лудить алюминий (а также сплавы на его основе) не имея для этого спецоборудования.

В качестве аргумента приводится два фактора:

  1. при контакте с воздухом на поверхности алюминиевой детали образуется химически стойкая и тугоплавкая оксидная пленка (AL2O3), в результате чего создается препятствие для процесса лужения;
  2. процесс пайки существенно осложняется тем, что алюминий расплавляется при температуре 660°С (для сплавов это диапазон в пределах от 500 до 640°С). Помимо этого металл теряет прочность, когда в процессе нагрева его температура поднимается до 300°С (у сплавов до 250°С), что может вызвать нарушение устойчивости алюминиевых конструкций.

Учитывая приведенные выше факторы, осуществить пайку алюминия обычными средствами действительно невозможно. Решить проблему поможет применение сильнодействующих флюсов, в сочетании с использованием специальных припоев. Рассмотрим подробно эти материалы.

Инструкция по пайке

Процесс пайки алюминиевых деталей не имеет своих отличительных особенностей, он осуществляется также как со сталью или медью.

Алгоритм действий следующий:

  • обезжиривается и зачищается место пайки;
  • производится фиксация деталей в нужном положении;
  • нагревается место соединения;
  • прикасаются стержнем припоя (содержащим активный флюс) к месту соединения. Если используется безфлюсовый припой, то для разрушения пленки оксида наносится флюс, после чего трут твердым куском припоя по месту пайки.

Для разрушения пленки оксида алюминия также используется щетка со щетиной из стальной проволоки. При помощи этого простого инструмента производят растирание расплавленного припоя по алюминиевой поверхности.

Пайка алюминия — полная видео инструкция https://www..com/watch?v=ESFInizLE9U

Что делать при отсутствии нужных материалов?

Когда нет возможности подготовить все необходимые для пайки материалы, можно использовать альтернативный способ, при котором применяется припой на оловянной или оловянно-свинцовой основе. Что касается флюса, то он заменяется канифолью. Чтобы не образовывалась новая пленка оксида алюминия на месте старой, зачистка производится под слоем расплавленной канифоли.

Паяльник, помимо своего прямого назначения, будет использоваться как инструмент, разрушающий оксидную пленку. Для этого на его жало надевается специальный скребок. Увеличить результативность процесса можно, добавив в канифоль металлических опилок.

Процесс производится следующим образом:

  • нагретым луженым паяльником расплавляют канифоль в месте пайки;
  • когда канифоль полностью покрывает поверхность, начинают тереть об нее жалом паяльника. В результате этого металлические опилки и жало разрушают пленку оксида алюминия. Поскольку слой расплавленной канифоли не позволяет проникать воздуху к алюминиевой поверхности, на ней не образовывается оксидная пленка. По мере того, как производится разрушение пленки, будет происходить лужение детали;
  • когда процесс лужения завершен, детали соединяют и прогревают, пока не будет достигнута температура плавления припоя.

Необходимо предупредить, что процесс пайки алюминия без специальных материалов — довольно хлопотный процесс без гарантии успешного завершения. Поэтому лучше не тратить на такую работу свои силы и время, тем более, что качество и надежность такого соединения будут сомнительными.

Гораздо проще купить активный флюс и высокотемпературный припой, при помощи которых пайка алюминия даже в домашних условиях не вызовет затруднений.

Флюс

При выборе флюса необходимо учитывать, что не каждый из них может быть активным к алюминию. Мы можем порекомендовать использовать в таких целях продукцию отечественного производителя – Ф-59А, Ф-61А, Ф-64, они состоят из фторборатов аммония с добавлением триэтаноламина. Как правило, на пузырьке есть пометка – «для алюминия» или «для пайки алюминия».


Флюс отечественного производства

Для высокотемпературной пайки следует приобрести флюс, выпускаемы под маркой 34А. Он состоит из хлористого калия (50%), хлорида лития (32%), фторида натрия (10%) и хлористого цинка (8%). Такой состав наиболее оптимален, если производится высокотемпературная пайка.


Рекомендуемый флюс для паки при высокой температуре

Способы пайки алюминиевых проводов

Несмотря на то, что в современном строительстве при производстве электротехнических работ алюминиевые кабели все чаще вытесняются медными, алюминий остается незаменимым материалом при изготовлении проводов и кабелей большого сечения.

Причины этого лежат на поверхности – удельное электрическое сопротивление алюминия больше, чем у меди примерно в полтора раза, а объемный вес меньше в три раза.

При большом сечении проводника, когда вес важнее прочности, выбор в пользу алюминия очевиден. Площадь сечения алюминиевого проводника будет больше, чем у медного в полтора раза, и при этом алюминиевый все равно будет в два раза легче медного. Для соединения проводов среди прочих методов применяют пайку.

Методы спаивания

Проблемой при использовании алюминиевых проводников является их быстрое окисление. Пленка оксида оказывает значительное препятствие прохождению электрического тока при соединениях. Для этого скрутки алюминиевых проводов пропаивают.

Паять алюминиевые провода в распределительной коробке можно, пользуясь паяльником или газовой горелкой. Применять паяльник сложнее из-за невозможности точно осуществить нагрев до необходимой температуры. А для алюминия перегрев так же неприемлем, как и недогрев.

Металл обладает большой теплопроводностью, и изоляция на большом участке от места пайки может просто оплавиться.

Газовой горелкой регулировать температуру нагрева проще, но ею долго осуществлять подготовку поверхности. Тем не менее, именно горелку нужно будет применять, если необходимо припаять какие-либо массивные детали друг к другу. В любом случае, при пайке алюминиевых проводов нужна их подготовка.

Предварительная обработка

Сложность при пайке заключается в том, что сам алюминий является очень легкоплавким материалом (660 ℃) и при неосторожном нагреве он может расплавиться.

Еще одним фактором, затрудняющим пайку алюминиевых проводов, является быстрое окисление на воздухе.

Окисная пленка на поверхности материала надежно защищает алюминий от воздействия всевозможных внешних факторов, но она же препятствует адгезии припоя с материалом, и ее нужно обязательно удалять.

Механически снять пленку оксида в обычных условиях практически невозможно. Материал моментально окисляется и покрывается новой пленкой. Можно механически удалить окисную пленку под слоем масла.

Но масло перед этим нужно прокалить до 200 ℃, чтобы удалить из него активный кислород, который может там присутствовать. Этот способ очень неудобен в домашних условиях и трудоемок.

Поэтому концы алюминиевых проводников необходимо облудить перед пайкой. Использование канифоли или большинства других флюсов не даст результата из-за высокой химической стойкости оксидной пленки. Она не растворяется даже органическими кислотами.

Чтобы облудить провода, необходимо использовать одновременно специальный флюс и механический способ.

Конечно же, делать это надо до того, как провода скручены, иначе механически очистить всю поверхность провода не удастся. Только облуженные концы можно скрутить друг с другом и спаять.

Работа паяльником

Для того чтобы запаять алюминий паяльником, существует несколько способов, суть которых заключается в том, чтобы производить очистку сразу под слоем флюса при непосредственном контакте с расплавленным припоем.

Первый способ заключается в том, что алюминиевые проводники, перед тем как припаивать, зачищают горячим облуженным паяльником, используя смесь канифоли и стальных опилок.

Опилки оказывают абразивное действие, канифоль удаляет все примеси и сразу же очищенные участки покрываются припоем, который должен быть на жале паяльника.

Второй способ предполагает зачистку алюминиевого провода об наждачную бумагу средней зернистости непосредственно под воздействием горячего паяльника с припоем и флюсом.

Газовой горелкой

Обработка газовой горелкой производится, когда детали находятся в таком положении относительно друг друга, при котором они будут эксплуатироваться. Обработка плавно переходит в сам процесс пайки.

Происходит это следующим образом:

  • горелкой нагреваются поверхности алюминиевых деталей;
  • по достижению температуры, при которой металл восстанавливается из оксида, пленка механически счищается;
  • под воздействием пламени детали покрываются флюсом, и в зону пайки вносится припой.

Если детали толстые, то кромки их необходимо разделать под углом 45°. Обычно разогрев происходит до температуры плавления олова, когда припой растекается и заполняет желобок скрутки.

Отличия технологии при использовании флюса

Благодаря достижениям современной науки и техники, получены составы флюсов для алюминия, которые активно растворяют оксидную пленку и защищают материал от дальнейшего окисления.

Примерами таких препаратов могут служить составы с маркировкой Ф-59А и Ф-61А. Буква А означает, что эти составы предназначены для пайки алюминия.

При использовании этих флюсов пайка алюминиевых проводов значительно облегчается. Достаточно просто обработать флюсом уже готовую скрутку, даже не нагревая ее, а потом, прогрев паяльником или горелкой, наложить припой.

Он растечется по всей поверхности проводов и хорошо прилипнет, обеспечивая прочное и электропроводное паяное соединение.

Особенности пайки многожильных проводов

Многожильные провода необходимо паять только с применением специального флюса, так как механическая обработка их практически невозможна. Технология пайки отличается тем, что каждый проводок нужно сначала хорошо обработать флюсом.

Для этого пучок придется раскрутить и распушить. После обработки каждый тонкий проводок жилы покрывают припоем и скручивают жгут. После этого делают скрутку двух концов и пропаивают ее.

Можно ли соединять с медью

Нередко возникают ситуации, когда необходимо соединить алюминиевый провод с медным. Это, пожалуй, единственный случай, когда пайка не может использоваться.

Все дело в самом алюминии. Он вообще не может припаиваться к другим металлам из-за своих физических и химических свойств. При соединении с медью напрямую, между этими двумя активными металлами возникает электрохимическая коррозия, которая быстро уничтожит соединение.

А если их спаять, используя нейтральный к обоим материалам припой, то разный коэффициент температурного расширения металлов быстро разрушит спаянный контакт. Ведь при прохождении тока через проводник, он непременно будет нагреваться, а после отключения – остывать.

Техника безопасности

Техника безопасности при пайке алюминиевых проводов сводится к соблюдению общих мер предосторожности при работе с электрическими нагревательными приборами, с открытым пламенем и с агрессивными жидкостями, примером которых могут стать флюсы.

Недопустимо использование неисправных паяльников с нарушенной изоляцией, с мощностью более необходимой.

Запрещается использование горелок вблизи легковозгораемых предметов. При работе в помещениях должна быть правильно организована принудительная вентиляция.

Сложности при спаивании проводов из алюминия

Основной сложностью при спайке проводов из алюминия, как указано выше, является наличие оксидной пленки на поверхности металла. Борьба с ней сильно замедляет процесс пайки.

А если учесть, что провода из алюминия сейчас используются в основном для прокладки наружной силовой проводки, становится очевидным, что обычным паяльником и наждачной бумагой в этом случае не обойтись. Для соединения таких проводов все чаще применяется сварка.

Подготовка поверхности

Прежде чем начинать лужение, необходимо выполнить следующие действия:

  • обезжирить поверхность при помощи ацетона, бензина или любого другого растворителя;
  • удалить оксидную пленку с места, где будет производится пайка. Для зачистки используется наждачная бумага, абразивный круг или щетка с щетиной из стальной проволоки. В качестве альтернативы можно применить травление, но эта процедура не так сильно распространена в силу своей специфичности.

Следует учитывать, что полностью оксидную пленку удалить не получится, поскольку на очищенном месте моментально появляется новое образование. Поэтому зачистка производится не с целью полного удаления пленки, а для уменьшения ее толщины, чтобы упростить флюсу задачу.

Нагрев места пайки

Для пайки небольших деталей можно воспользоваться паяльником мощностью не менее 100Вт. Массивные предметы потребуют более мощного нагревательного инструмента.


Паяльник мощностью 300 Вт

Наиболее оптимальный вариант для нагрева — использование газовой горелки или паяльной лампы.


Простая газовая горелка

При использования горелки в качестве нагревательного инструмента следует учесть следующие нюансы:

  • нельзя перегревать основной металл, поскольку он может расплавиться. Поэтому в процессе необходимо регулярно контролировать температуру. Делать это можно, касаясь припоем нагреваемого элемента. Расплавление припоя даст знать, что достигнута необходимая температура;
  • не следует использовать кислород для обогащения газовой смеси, поскольку он способствует сильному окислению металлической поверхности.

Как паять алюминий оловом своими руками

Пайка соединений проводов с припоем считается самым надежным методом соединения проводов и жил кабелей. Хорошо, если нужно паять только медные провода, которые легко облуживаются припоем. Не зря в электронике все вывода элементов медные, луженые.

Пайка алюминия в домашних условиях

После того как цельные провода и многожильные жилы кабелей облудят, их довольно легко соединять пайкой. А как паять алюминий оловом, если припой отторгается окисью алюминия. Как известно алюминий покрыт тонким слоем окиси, которая мгновенно образуется на алюминии при контакте с кислородом. Чтобы припой хорошо держался на алюминиевом проводе нужно снять окись алюминия, а затем лудить.

Для этой цели в качестве флюса существуют: паяльная кислота, специальные флюсы для алюминия, смесь канифоли с ацетоном. Все эти плюсы разрушают или затрудняют образование пленки окиси на алюминии. После применения данного типа флюса процесс лужение алюминия упрощается.

Необходимые инструменты для пайки алюминия оловом являются: электрический паяльник, острый нож, плоскогубцы для скрутки проводов, мелкий напильник для подготовки жала паяльника. Из материалов потребуется: припой ПОС 61 или ПОС 50, флюс для пайки алюминия Ф-64 или аналогичный, губка.

Пайка алюминия оловом и флюсом Ф 64

Флюс Ф 64 предназначен для пайки алюминия. Методика пайки не сложна. В первую очередь нужно снять изоляцию с проводов на 5 см. Изоляция снимается острым ножом под углом к проводу, чтобы не надрезать его. Надрезанный алюминий легко обламывается.

Инструменты и материалы для пайки алюминиевого провода

Далее нужно хорошо зачистить провод мелкой наждачной бумагой или острым ножом. Зачистив провод, его смачивают кисточкой с плюсом и острым ножом продолжают зачищать провод, но уже под флюсом. Таким образом снимают пленку окиси алюминиевого провода, не давая вновь окисляться на воздухе. Далее разогретым паяльником с припоем начинают лужение провода с его конца.

Если начать облуживать провод около изоляции, тогда можно ее подпалить. В этом случае потеряются изоляционные свойства провода.

Провод облуживают паяльником, движениями вперед-назад, одновременно снимается окисная пленка с алюминия. Облудить провод ровно сразу не получится.

Поэтому на не облуженные участки провода снова наносят флюс и горячим паяльником с припоем и движениями вперед-назад снимают участки оставшейся окисной пленки и обслуживают.

Таким образом покрывают припоем алюминиевый провод полностью. После лужения алюминиевый провод окунают в раствор соды (5 ст. л. на 200 гр. воды) и зубной щеткой смывают остатки флюса.

В состав флюса входят активные кислоты, которые не только разъедают пленку, но и сам провод. Поэтому остатки флюса нужно смыть.

Смыть его полностью не получится, так как он частично остаётся под припоем и въедается в провод.

Но хоть частично его нужно смывать. Медный провод не обслуживают флюсом Ф 64, лучше использовать раствор канифоли и спирта (50% на 50%). Кисточкой наносят жидкую канифоль на медный провод (предварительно зачистив его) и горячим паяльником обслуживают провод, начиная с конца. Жало паяльника должно быть ровным и чистым. Раковины на конце жала паяльника убирают мелким напильником.

А остатки сгоревшего припоя (шлака) вытирают губкой или тряпкой. Как только алюминиевый и медный провода облуженны, их скручивают пассатижами, кисточкой наносят жидкую канифоль и спаивают соединение, начиная также с конца.

Если соединить алюминий без лужения припоем, то это соединение может нарушиться со временем. Соединение алюминия с медью представляет собой гальваническую пару, и при прохождении через него тока нагревает и разрушает соединение.

Таблица температурных режимов марок припоя

В результате место скрутки сильно нагревается и обугливается, что повышает пожароопасность. Оловянный припой нейтрален к алюминию, поэтому алюминиевые провода перед соединением с медью нужно лудить. Для пайки алюминиевых проводов хорошо подходят припой ПОС 61 и ПОС 50 с низкой температурой плавления 190 — 210С.

Пайка алюминия с медью оловом и канифолью

Пайка электрических проводов с помощью паяльной кислоты запрещена в ПУЭ. Это связано с тем, что эта кислота полностью не сгорает при пайке.

В результате место соединения проводов со временем разъедается кислотой, образуются окиси, которые нагреваются при прохождении тока и могут вызвать возгорание изоляции.

К таким кислотно содержащим флюсам относятся специальные флюсы для пайки алюминия, в том числе и Ф 64.

Так как же паять алюминий с медью, чтобы соединение было качественным и долговечным. По сложности метод лужения алюминия оловом и канифолью даже легче, чем лужение алюминия флюсом Ф 64. Но качество и надежность при лужении в канифоли будет высоким. При лужении алюминия в канифоли нужно сделать или подобрать низкую ванночку для жидкой канифоли (канифоль 60% и спирт 40%).

Флюсы для пайки алюминия

Заполняют ванночку жидкой канифолью так, чтобы провод утопал в ней с изоляцией на 5-10 мм.

Очищенный от изоляции провод кладут в канифоль и острым ножом (удобно скальпелем) снимают плёнку окиси с алюминиевого провода, не вынимая его из ванночки.

То есть под канифолью защищают провод по всей его длине со всех сторон. Под канифолью пленка на очищенных местах алюминиевого провода не образуется, так как нет соприкосновении с кислородом.

Теперь берут разогретой паяльник с припоем мощностью не менее 60 Вт и опустив его на оголенный и очищенный от окиси провод, у самой поверхности канифоли, понемногу прокручивают и вытаскивают уже облуженные участки провода. Суть метода заключается в том, чтобы провод облуживался у самой поверхности жидкой канифоли. Чтобы зачищенные участки провода от окиси не могли соприкасаться с воздухом.

Паяльник может быть временами погружен на 2-3 мм в канифоль. Немного облудив провод поднимите паяльник, чтобы он вновь нагрелся. Да в начале, будет много дыма, поэтому лучше учиться паять на улице или в помещении с хорошей вентиляцией. После нескольких попыток у вас выработается своя техника лужения и появится небольшой опыт.

Вы определитесь с положением паяльника, скорость лужения провода увеличится, то есть появится навык, и уменьшится количество дыма. Зато провод будет облужен идеально. Далее, как обычно, скручивают провода и так же паяют их небольшим количеством припоя.

Остатки канифоли на пропаянной скрутке проводов смывают кисточкой со спиртом. Недостаток такого метода — это невозможность пайки в труднодоступных местах. Для таких случаев, лучше использовать другие методы безопасных соединений алюминия с медью.

Пайка алюминия с медью

Пайка алюминия всегда являлась достаточно сложным технологическим процессом, так как температура его плавления считается относительно низкой, а свойства соединения находятся на не самом высоком уровне.

Пайка алюминия с медью становится еще более сложным и проблематичным процессом, так как медь туго плавится, хотя и нормально поддается пайке. Несмотря на сложность процесса, в нем периодически возникает потребность в различных производственных сферах и даже в домашней обстановке.

В нормальных условиях, без каких-либо дополнительных средств и со стандартными материалами, получить качественное соединение и не повредить при этом металл заготовки будет практически невозможно.

Пайка алюминия с медью своими руками

Пайка меди с алюминием требует особого подхода, так как тут даже стандартный припой для пайки алюминия окажется неэффективным. Стоит сразу отметить, что у алюминия именно с медью получается большая конфликтность, так как со сталью процесс спаивания лучше.

Этим пользуются многие мастера при создании сложных соединений.

Необходимость в такой пайке возникает как при соединении труб или других крупных деталей, так и при контактах проводов, что с технической стороны происходит легче, проще и быстрее, так как нет больших нагрузок на конечное изделие.

Пайка алюминия с медью своими руками в домашних условиях

Преимущества

  • Позволяет сделать сложное соединение, которое требует технология эксплуатации;
  • Существует несколько различных способов, как произвести процесс, которые заметно отличаются друг от друга;
  • Дает мастеру большой опыт и возможность работы с любыми видами металла.

Недостатки

  • Высокий процент брака после завершения процесса;
  • Пайка алюминий-медь требует большого количества различных дополнительных материалов, многие из которых являются узкоспециализированными, без которых невозможно получить качественное соединение;
  • Иногда необходимо подбирать стальные муфты того же диаметра, что и свариваемые трубы;
  • Процесс пайки оказывается весьма дорогостоящим благодаря использованию флюсов, специальных припоев и других дополнительных средств;
  • Многие из дополнительных расходных материалов находятся в трудном доступе, так как не относятся к распространенным и часто употребляемым;
  • Далеко не каждый метод пайки из существующих оказывается подходящим для конкретного случая;
  • Справиться с работой может только мастер с большим опытом и в домашних условиях это трудноосуществимый процесс.

Трудности пайки

Основная трудность пайки заключается в том, что металлические изделия из этих материалов не могут нормально соединиться, так как даже при схватывании припоя шов может треснуть даже при относительно небольшом механическом воздействии.

Положение усложняется оксидной пленкой алюминия, которая обволакивает материал припоя, мешая нормальному соединению, а также не плавится от температурного воздействия.

С этим может помочь в борьбе хорошая очистка и обработка растворителем с последующим нанесением специализированного флюса.

Пайка алюминия с медью

Работа с медью также получается не простой в данном случае. Ведь даже припой для пайки медных труб оказывается не совсем подходящим для такого процесса. Он является тугоплавким, что и требуется для такого металла.

В то же время алюминий может иметь более низкую температуру плавления, что приведет к его прогоранию прежде, чем расплавится сам припой. Таким образом, пайка алюминия с медью твердым припоем оказывается достаточно проблематичной.

Припой для плавки алюминия может не подойти для меди, так как оказывается слишком легкоплавким, но это уже более подходящий вариант, так как многие мастера, особенно при работе в домашних условиях, используют серебряные припои.

Возможные способы пайки алюминия с медью

Пайка алюминия с медью в домашних условиях и на производстве может проводиться следующими способами:

  • Пайка с помощью муфты. В данном случае между металлами вставляется стальная часть, так что и медь и алюминий припаиваются с различных сторон стали более удобными способами, что помогает получить надежное соединение, так как со сталью и другими сплавами они взаимодействуют намного лучше, чем между собой.
  • При использовании специальных припоев. Современные разработки, к примеру, как присадочный материал марки Castolin и специально разработанные флюсы к нему, помогают решать многие сложные вопросы. Большим недостатком такого способа является высокая стоимость расходных материалов и слабая распространенность.

Припой для сварки алюминия с медью

  • Поверхностная пайка. В данном случае из алюминия делают раструб, чтобы в него могла войти медная трубка. Края этого раструба запаивают легкоплавкими припоями, захватывая большую часть поверхности медной трубы, чтобы увеличит площадь соединения.

Материалы и инструмент

Вне зависимости от того, необходима вам пайка алюминия с медью провода, трубы или листов, для этого понадобятся:

  • Горелка (газовая или бензиновая) или паяльник, в зависимости от условий, в которых это все проводится;
  • Припой, который будет подходить для выбранного способа, так как для пайки через стальную муфту требуются расходные материалы, которые будут рассчитаны на пайку со сталью;
  • Флюс, подобранный под припой, чтобы улучшить взаимодействие с разными металлами;
  • Стальная, или из какого-либо другого сплава, муфта, если выбран именно этот метод;
  • Инструменты для фиксации заготовок и разделки раструба.

Пошаговая инструкция

  1. Осуществляется полная подготовка всех металлических изделий, которые будут принимать участие в пайке. Это включает разделку кромок, подготовку раструба, механическая обработка щеткой и растворителями, чтобы снять все имеющиеся налеты и образовавшиеся пленки.
  2. Затем детали надежно фиксируются, чтобы во время процесса не было ни какого движения и смещения.
  3. На следующем этапе следует обработать концы деталей флюсом.
  4. Далее уже можно приступать к непосредственному спаиванию.
    Если выбран метод через муфту, то сначала она припаивается к одной заготовке, к примеру, медной трубе. Потом нужно выделить время на остывание и проверку качества, чтобы не было трещин и щелей. Только после этого следует приступать к соединению со второй частью, которое осуществляется точно также, но с помощью других расходных материалов.
  5. После окончания процедур дать шву остыть и проверить полностью готовое изделие на отсутствие брака, прежде чем пускать его в эксплуатацию.

«Важно!

При выборе расходных материалов нужно обращать внимание на прочность получаемого соединения, что особенно важно при работе с трубами, которые эксплуатируются под давлением.»

Как паять олово и жестяные банки


Образование, Алоха и самое интересное
можно в отделке металлом

Добро пожаловать на сайт №1 в мире по отделке металлов

тема 23652

2003

В. Как спаять олово из жестяных банок? Могу ли я использовать паяльник или мне нужен мини-фонарик?

Какой припой и флюс мне следует использовать? Я хочу спаять швы маленькой лодки (длиной 6 дюймов), которую вырезал из старой жестяной банки.

Спасибо за внимание.

С уважением,

Уолт Лизак
— Виннипег, Манитоба, Канада

Q. Hi:

Я хотел бы знать, как спаять жестяные банки вместе. Может кто-нибудь дайте мне знать! Спасибо!
Фил Смит
— Атланта, Джорджия


В. Я хотел бы узнать больше о пайке олова.
Ауриэль Раубенхаймер
хобби — Восточный Лондон, Южная Африка


В. Я хочу спаять жестяные банки вместе. Какие материалы и источник тепла для этого лучше всего.Я новичок в работе с металлом.
Len White Bear
White Bear Gallery — Анкоридж, Аляска


2006 г.

А. Искал какой припой можно использовать для олова и нашел вот это. Я просто хотел передать это всем присутствующим.

Возьмите 4 части олова, 1 часть олова и 1 часть висмута, расплавьте их вместе и намажьте тонкими пластинами. При использовании этого припоя также используется смола.

Надеюсь, это поможет.

Мэри Маккалоу, художник
, Кутцтаун, Пенсильвания,
, 2006 г.

А.Хорошо, во-первых, в мире осталось не так много консервных банок. Большинство «жестяных» банок сегодня изготовлено из алюминия. Если вы выполните поиск в Интернете по запросу «Алюминиевый припой», то найдете множество сайтов. Алюминий довольно сложно паять, но есть новые продукты, которые делают это немного проще. Новые припои и флюсы, которые позволят новичку добиться хороших результатов.

Удачи

Пол Каро
— Гилберт, Аризона
2007

A. Оловянную пластину паять проще всего, потому что металл уже «лужен», просто используйте пасту из хлорида цинка или смолу для флюса и припой с припоем 50/50.Эти банки до сих пор широко используются для супов и овощей.
При пайке любого листового металла используйте паяльные котлы (утюг), а не горелку. Просто поищите в Интернете дополнительную информацию.

Барри Блэр
— Оттава, Онтарио, Канада
13 марта 2009 г.

A. Привет!
Я прошел недавний семинар по этому поводу и вот ответ: во-первых, как уже говорилось, настоящих консервных банок уже не так много. большинство из алюминия или стали. Чтобы проверить, является ли металл, который вы хотите припаять, сталью или алюминием, используйте магнит.

Используйте эти инструкции только для пайки стали —

использование:
бессвинцовый припой (можно найти в разделе сантехники в хозяйственном магазине)
паяльный пистолет (также можно найти в строительном магазине)
флюс (используйте тот тип припоя, который вы покупаете; спросите, какой использовать)
эти расходные материалы могут также можно найти в магазинах витражей, и эти люди, вероятно, могут помочь вам больше, чем люди из хозяйственного магазина.

для пайки:
очистите всю краску от швов, которые вы хотите соединить, напильником или наждачной бумагой [affil.ссылка на информацию / продукт в Rockler].

убедитесь, что соединяемые кромки хорошо прилегают друг к другу … этот тип припоя ЗАПОЛНЯЕТ небольшие зазоры, но это не компенсирует плохое качество изготовления.

хорошо разглаживает суставы. попробуйте обработать флюсом как внешнюю, так и внутреннюю части шва.

отрежьте припой и расположите по швам

воспользуйтесь пистолетом для горячей пайки, чтобы направить тепло на обе части металла, так как припой будет течь навстречу теплу.

* Поскольку многие паяльные пистолеты не имеют индикаторов «ВКЛ», подключите лампу (и включите ее) к тому же удлинителю, что и паяльный пистолет.Используйте выключатель удлинителя только для подачи питания, чтобы вы и другие знали, что когда лампа горит, пистолет горячий.

Это основные инструкции … практика ведет к совершенству, и вот хорошая книга, к которой можно обратиться:

ИСКУССТВО КОНДИЦИОНЕРА Бобби Ханссона =>

получайте удовольствие! Мэри Слотер
— Нагс-Хед, Северная Каролина


6 февраля 2010 г.

A. Тщательно очистите оба края, нагрейте флюсом от паяльной лампы и добавьте припой, протрите тряпкой.Обе части теперь луженые; Теперь вы можете спаять две части вместе.

Мос Шоу
— британец, Великобритания
15 февраля 2011 г.

A. В этой книге 1919 года содержится много информации о пайке, полностью представленной здесь в Интернете. Это делает современную пайку похожей на мечту: www.lostcrafts.com/Tin-Toys/Tin-Toys-Main.html

Кроме того, я считаю, что многие «жестяные» банки на самом деле являются лужеными легкими стальными банками.

Элейн Хардман
Керамика из каменных цветов — Уэллсвилл, Нью-Йорк
24 апреля 2011 г. — эта запись добавлена ​​к этой теме редактором вместо создания дублирующейся темы

В.Я недавно купил паяльники большой мощности. Они имеют мощность 175 Вт или больше и пару фунтов за штуку. Хочу попробовать свои силы в пайке неоцинкованного листового металла. Я не хочу, чтобы паяные соединения корродировали, поэтому какой флюс и припой мне следует использовать?

Том

Tom Metal
Hobbyist — Бостон, Массачусетс

finish.com стало возможным благодаря … этот текст заменяется на bannerText

Заявление об ограничении ответственности: с помощью этих страниц невозможно полностью диагностировать проблему отделки или опасности операции.Вся представленная информация предназначена для общего ознакомления и не отражает профессионального мнения или политики работодателя автора. Интернет в основном анонимный и непроверенный; некоторые имена могут быть вымышленными, а некоторые рекомендации могут быть вредными.

Если вы ищете продукт или услугу, связанную с отделкой металлов, посетите эти каталоги:

О нас / Контакты — Политика конфиденциальности — © 1995-2021 finish.com, Pine Beach, New Jersey, USA

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Припои — NEY Metals & Alloys

380 Бесфлюсовый припой для алюминия 8934N32 Стержни 3/32 «x 18» Наш припой Ney 380 — это запатентованная формула.

не требует флюса. Связь металл-металл. 100% металлический сплав. Сильнее основного металла — до 45 900 фунтов на квадратный дюйм. Низкая температура. Между 717 F и 737 F градусов рабочая температура. Более чем на 500 градусов ниже точки плавления алюминия. Используйте любой источник тепла, например пропан, бутан, мапп или кислородно-ацетиленовую горелку. Хранит безопасно и бессрочно. Простой — универсальный — портативный. Паяет все алюминиевые сплавы, включая цинк, магний, металлический корпус и литье.

380 Бесфлюсовый алюминиевый припой 8934N32MM200 Диаметр 3/32 дюйма x 200 мм Стержни Наш припой Ney 380 — это запатентованная формула.
380 Бесфлюсовый алюминиевый припой 8934N380 1/8 «X 18» Наш припой Ney 380 — это запатентованная формула.
380 Бесфлюсовый алюминиевый припой 8934N380CM45 Диаметр 1/8 дюйма x длина 45 см Наш припой Ney 380 — это запатентованная формула.
380 Бесфлюсовый алюминиевый припой 8934N380MM250 Диаметр 1/8 дюйма x длина 250 мм Наш припой Ney 380 — это запатентованная формула.
380 Бесфлюсовый алюминиевый припой 8934N380MM400 1/8 дюйма Диаметр x 400 мм Длина Наш припой Ney 380 — это запатентованная формула.
60/40 оловянный свинцовый припой 760NCAP Закрывающие стержни площадью 1/4 « Олово 58-60%, Свинец 40-42%

Самый популярный из имеющихся припоев на основе олова / свинца.Имеет низкий диапазон плавления.

60/40 оловянный свинцовый припой 760NREG Обычный бар Олово 58-60%, Свинец 40-42%
Припой для сплошной проволоки с оловянным свинцом 60/40 760NS062, ТОЛЩИНА X 0,062 дюйма (минимум 100 фунтов) Олово 58-60%, Свинец 40-42%
Припой для сплошной проволоки с оловянным свинцом 60/40 760NS095.Проволока диаметром 095 дюймов — катушки 5 фунтов (минимум 100 фунтов) Олово 58-60%, Свинец 40-42%
Припой для сплошной проволоки с оловянным свинцом 60/40 760N125 Трос диаметром 0,125 дюйма — катушки 5 фунтов (минимум 100 фунтов) Олово 58-60%, Свинец 40-42%
50/50 оловянно-свинцовый припой, сплав 75012CN Проволочная форма Олово: 49-50%, свинец 49-50%

Дешевле, чем припой 60/40.Подходит для пайки сплавов на основе меди без цинка

50/50 оловянно-свинцовый припой, сплав 750NB 1 # Пустая полоса Олово: 49-50%, Свинец 49-50%
50/50 оловянный свинцовый припой 750NCAP Закрывающие стержни площадью 1/4 « Олово: 49-50%, Свинец 49-50%
МАГАЗИН ОЛОВЯННЫЙ ПРИПЕЙ ДЛЯ ТВЕРДОГО ПРОВОЛОКА 100 SN -.032 7000НС32Н Проволока диаметром 1/32 дюйма Олово: 99,85

A Бессвинцовый припой для ювелирных изделий и пищевых продуктов.

Олово-цинковый припой 70/30 7702BN Олово 70%, цинк 30%

Разработано для низкотемпературной пайки цинка и алюминиевых сплавов, чтобы предотвратить плавление основного металла.

Легкоплавкий сплав 136 градусов F 2491DS1CN Проволочная форма Висмут: 49%, индий: 21%, свинец: 18%, олово: 12%

Низкоплавкая проволока с температурой плавления 136 ° F

Легкоплавкий сплав 158-165 градусов F 2502DS1CN Проволока диаметром 1/8 дюйма Висмут: 50%, Свинец: 25%, Олово: 12.5%, кадмий: 12,5%

Низкоплавкая проволока с температурой плавления 158 ° F

Свинец, серебряный припой, припой 5951DS1CN 0,063 Диаметр проволоки на катушках 5 фунтов

Процессы пайки | Конструкция машин

Кратко:

  • Металлические ремни прочные. Многослойные металлические ремни прочнее.
  • Металл устойчив к царапинам и царапинам, не позволяя бактериям спрятаться и размножаться.
  • Металлические ленты не образуют пыли и мусора.

Однослойные металлические ремни прочнее пластмассовых или резиновых ремней. Но им все еще может не хватать прочности и долговечности для работы в приложениях, связанных с поднятием тяжестей и повторяющимися движениями, такими как робототехника. В таких случаях лучше использовать многослойные металлические ремни.

Но являются ли многослойные металлические ремни хорошим выбором для вашей конструкции или применения?

Рассмотрим преимущества и недостатки многослойных металлических ремней по сравнению с их однослойными аналогами и неметаллическими ремнями.

Основные сведения о металлических лентах

Многослойные ленты на конвейерах обладают всеми преимуществами однослойных металлических лент, одновременно повышая прочность и долговечность.

Многослойные ремни по конструкции аналогичны однослойным, и оба могут использоваться в бесконечных или открытых конфигурациях.

Бесконечная металлическая лента — это цельный непрерывный металлический лист, сваренный в петлю. Такой ремень долговечен и обеспечивает стабильную, воспроизводимую работу, что делает его полезным для автоматизированной сборки, пищевой промышленности и медицинских устройств.

Приводные ленты похожи на конвейерные ленты, но используются со специальными синхронизирующими шкивами, что делает их полезными для повторяемого и точного движения.

Металлические приводные ленты, с другой стороны, имеют открытую конфигурацию. Они имеют металлическую конструкцию с ремнями, но закреплены на каждом конце. Они обычно используются для чрезвычайно точного и воспроизводимого движения, которое необходимо при создании 3D-принтеров и роботов.

Металлические ремни могут быть изготовлены из различных нержавеющих сталей и титановых сплавов, а также из никелевых сплавов, таких как инконель и инвар.Некоторые из этих материалов устойчивы к низким температурам, другие — к коррозии, а некоторые имеют высокие пределы прочности и текучести. Выбор материала зависит от предполагаемого применения.

Как и их однослойные аналоги, многослойные приводные ленты имеют нулевой люфт, который возникает в результате слишком большого зазора между отверстиями ремня ГРМ и штифтом синхронизирующего шкива. Как правило, требуется некоторый зазор, чтобы избежать столкновения и позволить штифтам войти в отверстия, но это может вызвать люфт при переворачивании ремня.

Когда шкив поворачивается, чтобы переместить ремень назад, штифты должны сначала переместиться с одной стороны своих отверстий на другую, прежде чем толкать ремень. Этот небольшой люфт может привести к неточности позиционирования в профиле движения. Для устранения этого могут быть разработаны прецизионные металлические ремни.

Металлические ремни работают со шкивами без зубцов или канавок, что исключает точность и повреждение от люфта.

Различия в многослойных ремнях

Многослойные ремни состоят из 2-7 уложенных друг на друга лент толщиной от 0.003–0,005 дюйма. Это сводит к минимуму общее напряжение, прикладываемое к ремню, и позволяет ремню выдерживать большую растягивающую нагрузку на увеличенной площади поперечного сечения. Дополнительная прочность также продлевает срок службы ремней.

Многослойная конструкция также добавляет жесткости, что увеличивает его модуль упругости, так что ремень может противостоять люфту из-за любых оставшихся зазоров между отверстиями ГРМ и штифтами, которые невозможно спроектировать. Это может быть полезно во многих приложениях. Например, у некоторых роботов-манипуляторов есть два стальных ремня, работающих в тандеме, причем один ремень обеспечивает реверсивное движение.Благодаря неэластичности стального ремня эта конструкция может выдерживать быстрое ускорение и движение задним ходом, не вызывая люфта. Многослойные ремни обычно используются таким образом, чтобы выдерживать высокие нагрузки и ускорения.

Многослойные ремни изготовить сложнее из-за того, что все слои должны быть точно изготовлены, а затем свариваться вместе на концевом выступе ремня. Каждый поясной слой имеет немного разную длину и должен быть прикреплен так, чтобы он мог подходить к другим слоям при намотке на шкив.Концевой язычок — еще один ключевой элемент для обеспечения длительного срока службы ремня, поскольку он подвергается высоким нагрузкам. Из-за этого дизайн вкладки так же важен, как и качественная прецизионная сварка, использованная для ее создания.

Непористые поверхности ремней из нержавеющей стали устойчивы к повреждениям, что снижает их уязвимость для бактерий или микробов в следах и царапинах.

Многослойные ремни обладают множеством преимуществ, включая их прочность и гибкость, но у них есть несколько других.

Толщина ремня и размер шкива определяют срок службы ремня. Шкив большего размера обычно означает, что ремень может выдерживать большую нагрузку. Но многослойные ремни могут выдерживать большую нагрузку без увеличения диаметра шкива. Несколько уровней обеспечивают прочность более толстой ленты, но работают вместе, чтобы получить гибкость меньшей ленты. Приложения, в которых полностью используются преимущества многослойных металлических ремней, включают перемещение тяжелых грузов без места для шкива подходящего размера, необходимого для однослойного, но более толстого ремня.Такая конструкция может работать с шкивами диаметром от 1,5 дюйма.

Как указывалось ранее, производство многослойных металлических ремней сложнее, что приводит к более высокой начальной стоимости. Это изначально недостаток, но эти ремни более рентабельны в течение всего срока службы из-за их повышенной прочности.

По сравнению с традиционными ремнями без питания, более длительный срок службы многослойных металлических ремней и более низкие требования к очистке и техническому обслуживанию помогают компенсировать первоначальные затраты и делают их лучшим вариантом в долгосрочной перспективе.

Металлические ремни могут деформироваться и не подлежат ремонту при неправильном использовании или сильных ударах. Защита металлических лент, одно- или многослойных, от повреждений такого типа является ключом к обеспечению длительного срока службы ремня.

Многослойные металлические ремни в действии

Фирма пыталась получить апробированные и коммерциализированные новые технологии для робототехники. Проекты включали новые способы подъема и поворота тяжелых грузов в области складирования, логистики, медицины и пищевой промышленности.

Фирма работала над одной машиной, на которой использовалась однослойная металлическая лента, изготовленная из металла местного производства. Ремень имел ширину 6 мм и толщину 0,2 мм, но он выходил из строя, когда крутящий момент на ремне превышал 25 Нм. Затем клиент работал с командой инженеров Belt Technologies.

Одна из проблем заключалась в том, что они не могли изменить диаметр шкива. Итак, команда разработала и изготовила ленту из нержавеющей стали с шестью слоями, каждый толщиной 0,125 мм. Это позволяет машине выдерживать требуемый крутящий момент 150 Нм без увеличения напряжения изгиба.Следовательно, общие нагрузки на ремень уменьшаются, что увеличивает срок его службы.

Фирма увидела успех прототипа ремня, который в основном использовалась для демонстрации, и заказала версии новых металлических ремней с немного измененной длиной для использования в устройствах здравоохранения.

Говоря о применении в здравоохранении, металлические ремни позволяют производителям медицинского оборудования соблюдать правила безопасности для конвейерных лент с приводом от двигателя в фармацевтических и медицинских целях. Металлические ремни, в отличие от пластиковых или резиновых версий, противостоят бактериям, которые могут повредить фармацевтические препараты.Они также более гигиеничны в силу того, что их легче чистить и они устойчивы к воздействию воды и моющих средств.

Многослойные металлические ремни, занимающие нишу в робототехнике. Металлические приводные ленты открытой конфигурации, тип многослойной ленты, могут выполнять множество задач с практически нулевым люфтом, в том числе:

  • Позиционирующие каретки
  • Подвижные роботизированные манипуляторы
  • Изготовление ЖК-дисплеев
  • Приводы оптических элементов
Они Правильно для вас?

Помимо большей прочности и гибкости, чем однослойные ремни, многослойные ремни обладают всеми характеристиками и преимуществами других цельнометаллических ремней, в том числе:

  • Высокое соотношение прочности и веса
  • Прочность и более длинная лента срок службы по сравнению с альтернативами
  • Жесткий (не растягивающийся) для повышения точности
  • Устойчивость к колебаниям температур
  • Устойчивость к коррозии, ржавчине и перегреву

Многослойные ленты на конвейерах обладают всеми преимуществами однослойных металлических лент, одновременно добавляя дополнительную прочность и долговечность.

Кроме того, они:

  • Не требуют смазки
  • Соответствуют самым строгим требованиям Министерства сельского хозяйства США для производства продуктов питания
  • Обеспечивают высокую точность и повторяемость
  • Непористые и устойчивы к повреждению поверхности
  • Имеют широкие возможности настройки для различных отраслей промышленности и приложения
  • Не образуют такие частицы, как HTD или плоские неопреновые ленты, поэтому они хорошо подходят для чистых помещений.

Денис Ганьон — генеральный директор, а Алан Воски — президент Belt Technologies Inc.в Агаваме, Массачусетс. Свяжитесь с ними здесь.

Пайка против литого алюминия

66 Пайка против литого алюминия

Литой алюминий — это прочный и прочный сплав, полученный путем плавления как минимум 50% алюминия с другими металлами, такими как олово и сталь. Полученный сплав затем разливают в формы и отливают в такие детали, как кухонная утварь, садовая мебель и автомобильные детали, такие как выпускные коллекторы и коробки передач.

Хотя и Super Alloy 1, и Super Alloy 5 могут использоваться для ремонта чистого алюминия, только Super Alloy 5 специально разработан для соединения с литым алюминием. (для пайки литого алюминия требуется кислородно-ацетиленовая горелка)

Так в чем разница между пайкой и пайкой? По сути, они очень похожи: оба соединяют металлы, связываясь с исходным металлом на молекулярном уровне. Однако пайка может быть разбита на пайку мягким припоем и пайку твердым припоем в зависимости от состава и температуры плавления сплава, а пайка выполняется при более высокой температуре с более высокой скоростью соединения, чем мягкий припой.Super Alloy 1 будет считаться мягким припоем, Super Alloy 5 будет считаться припоем (который также можно использовать для сварки с помощью аппарата TIG), а SSF-6 будет считаться твердым припоем. Хорошее практическое правило: чем выше температура плавления, тем прочнее соединение.

Помимо правильного выбора стержня из сплава для вашего применения, важно также выбрать правильный диаметр. Super Alloy 1 доступен в диаметрах 1/8 ″ и 3/32 ″, Super Alloy 5 доступен в диаметрах 1/16 ″ и 3/32 ″.1/16 дюйма — стержень наименьшего диаметра, 3/32 дюйма — стержень среднего диаметра и 1/8 дюйма — стержень самого толстого диаметра. Чем тоньше или меньше основной металл, тем меньше размер стержня, который вам следует использовать, чтобы избежать перегрева основного металла. Для более толстого основного металла важно выбирать стержень большего диаметра, чтобы избежать прожигания большого количества сплава.

Успешная пайка литых алюминиевых деталей зависит от выбора правильной горелки и правильного диаметра: Super Alloy 5 диаметром 3/32 и горелка на кислородном топливе — наша рекомендация для этого применения.

Примечание : При использовании продуктов Muggy Weld соблюдайте все рекомендации AWS по безопасности и охране здоровья.

Узнайте, как припаять алюминиевый провод | by Ildiko

Припой — это плавкий металл, расплавленный с помощью паяльника или даже горелки для соединения металлических стыков друг с другом. Обычно это сплав олово-свинец, но он также может быть из других металлов, таких как серебро, сурьма или алюминий, которые производятся специально для различных целей.Алюминиевые провода обычно припаяны для электронных целей, поэтому для сплавления металлов друг с другом требуется паяльник.

Очистите место пайки тряпкой, а также щеткой, чтобы удалить жир, грязь и мусор. Используйте спирт вместе с металлической щеткой, чтобы избавиться от стойких пятен.

Отрежьте алюминиевую ленточную проволоку 5052 необходимой длины с помощью ножниц или, возможно, кусачки. Используйте пинцет или плоскогубцы для обработки проволоки, чтобы предотвратить притягивание жира.

Нанесите флюс кистью на место пайки. Флюс избавит от окислов на металлических поверхностях. Вы найдете 3 вида флюсов, включая органическую кислоту или хлорид, органику и смолу. Смоляной флюс часто используется для электронной пайки; органические кислоты и хлориды притягивают влагу и обладают высокой коррозионной активностью.

Очистите жало паяльника, протерев жало влажной тканью. Слегка покройте наконечник припоем. Этот метод известен как «лужение» и защищает паяльник от повреждений, вызванных окислением, а также способствует передаче тепла на протяжении всего процесса пайки.

Подожгите или нагрейте паяльник или горелку, чтобы убедиться, что они достигли температуры, необходимой для плавления алюминиевого провода катушки 3003. При использовании паяльника убедитесь, что он нагревается до температуры не менее 400 ° C для соответствующей пайки.

Оберните провод вокруг места пайки. Затем аккуратно проведите паяльником по проводу. Убедитесь, что паяльник касается как алюминиевой проволоки, так и стыка. Нагрейте припой так, чтобы он равномерно расплавился вдоль паяемого соединения.Также убедитесь, что флюс пузырится, но не горит. Не применяйте также существенный припой, поскольку он может заполнить другие зазоры и вызвать короткое замыкание.

Удалите припой, затем наконечник. Будьте осторожны, чтобы не сдвинуть паяное соединение.

Дайте стыку остыть. Не дуй на это. Обрежьте излишки свинца, выступающие на поверхности, но не проверяйте заранее прочность паяного соединения, поскольку это может ослабить соединение. После охлаждения паяное соединение будет выглядеть гладким и плотным.

Припой для сердечника и стержневой припой

Припой с кислотным сердечником

Припой с кислотным сердечником — это высокоактивный флюс на основе неорганической кислоты (без хлорида цинка) для пайки общего назначения, где желателен припой с флюсовой проволокой. Быстрая пайка может быть выполнена на всех распространенных металлах, кроме алюминия и марганца. Припой с кислотным сердечником особенно полезен для пайки чрезмерно окисленных металлов. Canfield использует уникальный процесс вакуумной экструзии в производстве сердечника проволоки, который практически исключает пустоты, что сокращает время производства.

Имейте в виду, что кислотный припой с сердечником НЕ рекомендуется для пайки электрических или электронных устройств из-за коррозионной природы остатков.

Проволока с кислотным сердечником

доступна из большинства сплавов олова / свинца, а также из бессвинцовых сплавов.

Используется в OEM / промышленных приложениях, а также для ремонта радиаторов и кровли.

Остаток флюса гигроскопичен и вызывает коррозию. Изделие нужно дать спокойно остыть, пока припой не затвердеет. Затем остатки флюса удаляют промывкой горячей водой.Для более тщательной очистки промойте 2-10% раствором нейтрализатора, а затем ополосните горячей водой.

50% олово / 50% свинец

Припой общего назначения, используемый при пайке меди и медных сплавов и / или сплавов на основе железа. Этот сплав обладает удовлетворительной стойкостью к коррозии и обычно используется там, где критические требования к температуре.

Физические свойства:

  • Цвет: серый / серебристый
  • Диапазон плавления: 361 ° — 421 ° F (от твердого до жидкого)
  • Твердость по Бринеллю: 14HV
  • Прочность на сдвиг: 5200 фунтов на кв. Дюйм
  • Прочность на растяжение: 6000 фунтов на квадратный дюйм

60% олово / 40% свинец

60% олова / 40% свинца — это припой общего назначения, используемый при пайке меди и медных сплавов и / или сплавов на основе железа.

Физические свойства:

  • Цвет: серый / серебристый
  • Диапазон плавления: 361 ° — 376 ° F (от твердого до жидкого)
  • Прочность на разрыв: 6400 фунтов на кв. Дюйм
  • Удельный вес: 8,51%
  • Плотность: 0,3068

Чистое олово

Олово нелегко окисляется на воздухе и используется для покрытия других металлов для предотвращения коррозии. Используется там, где требуются бессвинцовые припои.

Физические свойства:

  • Состав припоя: 100 Sn (мас.%)
  • Температура плавления: 231.9 ° С / 449,4 ° С
  • Плотность: 729 Мг м³
  • Твердость по Бринеллю: 51 МПа
  • Регистрационный номер CAS: 7440-31-5

Прутковые припои доступны в прутках 1 #, прутках ½ # и прутках ¼ # для заглушек на метр.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *