Переменный и постоянный ток разница: Отличие переменного тока от постоянного: преобразование, разница, принцип действия

Содержание

Отличие постоянного и переменного тока, преобразование тока

Электрическим током называют направленное, упорядоченное движение заряженных частиц.

Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения.

Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.

Разница переменного тока от постоянного

Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени.

Важнейшими параметрами переменного тока считаются его частота и напряжение. В современных электрических сетях на разных объектах используется именно переменный ток, имеющий определенное напряжение и частоту. В России в бытовых электросетях ток имеет напряжение 220 В и частоту равную 50 Гц. Частота электрического переменного тока – это число изменений направления движения заряженных частиц за 1 секунду, то есть, при частоте в 50 Гц он меняет направление 50 раз в секунду. Таким образом, отличие переменного тока от постоянного заключается в том, что в переменном заряженные частицы могут менять направление движения.

Источниками переменного тока на объектах различного назначения являются розетки. К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.

Передача переменного тока потребителям

Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.

Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.

Преобразование переменного тока в постоянный

Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном.

Преобразование переменного тока в постоянный осуществляется с помощью специальных выпрямителей. Весь процесс преобразования включает в себя три этапа:

  1. Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
  2. Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
  3. Подключение стабилизаторов напряжения для снижения пульсаций.

Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.

Постоянный и переменный токи

Мы завершаем изучение темы «Постоянный электрический ток». Тем не менее, в этом параграфе мы рассмотрим и переменный ток. С чем это связано? Причина в самих терминах «постоянный ток» и «переменный ток», названия которых не вполне удачны, поскольку могут трактоваться по-разному в физике и электротехнике: так сложилось исторически. Обратимся к определениям.

В физике постоянным током называют электрический ток, не изменяющийся по силе и направлению с течением времени. Графиком такого «истинно постоянного» тока должна быть прямая, параллельная оси времени (см. рис. «а»). Тем не менее, в электротехнике постоянным током считают ток, который постоянен только по направлению, но может меняться по силе. Такой ток можно получить «выпрямлением» синусоидального переменного тока, например, того, который существует в домашней осветительной сети (см. рис. «б»). В результате получается пульсирующий однонаправленный ток (см. рис. «в»).

В физике переменным током называют электрический ток, изменяющийся с течением времени: по силе и/или направлению. С точки зрения физики, «пульсирующий» ток на рисунке «в» является переменным, поскольку меняется по силе (оставаясь постоянным по направлению). Такой однонаправленный ток в электротехнике считают «постоянным», так как по своим действиям он похож на настоящий постоянный ток. Например, он будет пригоден для зарядки аккумуляторов, работы электродвигателей, проведения электролиза. Переменный по направлению ток для этих целей непригоден.

Примечание. Почему ток в электрических сетях является именно синусоидальным и меняет своё направление 100 раз в секунду, мы расскажем позднее (см. § 10-ж). А пока рассмотрим, как из него можно получить однонаправленный пульсирующий ток – «постоянный» с точки зрения электротехники. Другими словами, как «перебросить» нижние части синусоиды вверх, то есть преобразовать форму тока без потери мощности этого тока? Для этого служат различные приборы, один из которых – полупроводниковый диод, пропускающий через себя ток лишь в одном направлении (см. § 09-и).

Ниже на левой схеме показано включение двух диодов в цепь переменного тока. При этом верхние части синусоиды проходят через верхний диод (по направлению его «стрелочки»), а нижние части синусоиды не проходят через нижний диод (против его «стрелочки»). Таким образом получается пульсирующий однонаправленный ток, и ровно половина исходной мощности не попадает к потребителю, так как образуются «равнины» с нулевым значением силы тока. Для особо интересующихся физикой заметим, что точно такой же результат будет, если оставить только один диод, причём, любой.

На правой схеме показано включение четырёх диодов по так называемой мостовой схеме. Она более выигрышна по сравнению с предыдущей: диоды попарно пропускают как верхние, так и нижние части синусоиды соответственно к клеммам «+» и «–». В результате из исходного переменного тока, на графике кторого можно условно выделить «холмы и овраги», на графике получающегося однонаправленного тока образуются «не холмы и равнины», а «удвоенные холмы». Это означает, что теперь к потребителю попадает вся мощность исходного тока.

И в заключение рассмотрим, как к непостоянному току можно применить закон Джоуля-Ленца Q=I²Rt, описывающий тепловое действие тока. Как быть, если сила тока постоянно меняется? Нужно её заменить на условно-постоянную силу тока, которая производит такое же тепловое действие. Такое условно-постоянное значение силы тока в физике называют эквивалентным (эффективным, действующим) значением силы непостоянного тока.

Определение: эквивалентное значение непостоянного тока равно значению такого постоянного тока, который, проходя через то же сопротивление, выделяет в нём то же количество теплоты за то же время. Именно эквивалентное значение тока показывают нам все амперметры. Аналогично и по отношению к напряжению и вольтметрам. Итак, определить эквивалентные значения непостоянных токов позволяют калориметрические измерения (см. § 06-в).

 

Какой ток в розетке – постоянный или переменный

Люди, мало-мальски знакомые с электротехникой, без труда ответят на вопрос о том, какой ток в розетке. Конечно же переменный. Этот вид электричества гораздо проще производить и передавать на большие расстояния, а потому выбор в пользу переменного тока очевиден.

Виды тока

Существует два вида тока — постоянный и переменный. Чтобы понять разницу и определить, постоянный или переменный ток находится розетке, следует вникнуть в некоторые технические особенности. Переменный ток имеет свойство изменяться по направлению и величине. Постоянный же ток обладает устойчивыми качествами и направлением передвижения заряженных частиц.

Переменный ток выходит из генераторов электростанции с напряжением, составляющим 220–440 тысяч вольт.

При подходе к многоквартирному зданию ток уменьшается до 12 тысяч вольт, а на трансформаторной станции преобразуется в 380 вольт. Напряжение между фазами именуют линейным. Низковольтный участок понижающей подстанции выдает три фазы и нулевой (нейтральный) провод. Подключение энергопотребителей осуществляется от одной из фаз и нулевого провода. Таким образом, в здание заходит переменный однофазный ток с напряжением 220 вольт.

Схема распределения электроэнергии между домами представлена ниже:

В жилище электричество поступает на счетчик, а далее — через автоматы на коробки каждого помещения. В коробках имеется разводка по комнате на пару цепей — розеточную и осветительной техники. Автоматы могут предусматриваться по одному для каждого помещения или по одному для каждой цепи. С учетом того, на сколько ампер рассчитана розетка, она может быть включена в группу или быть подключенной к выделенному автомату.

Переменный ток составляется примерно 90% всей потребляемой электроэнергии. Столь высокий удельный вес вызван особенностями этого вида тока — его можно транспортировать на значительные расстояния, изменяя на подстанциях напряжение до нужных параметров.

Источниками постоянного тока чаще всего являются аккумуляторные батареи, гальванические элементы, солнечные панели, термопары. Постоянный ток широко используется в локальных сетях автомобильного и воздушного транспорта, в компьютерных электросхемах, автоматических системах, радио- и телевизионной аппаратуре. Постоянный ток применяется в контактных сетях железнодорожного транспорта, а также на корабельных установках.

Обратите внимание! Постоянный ток используется во всех электронных приборах.

На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами.

к содержанию ↑

Параметры домашней электрической сети

Основными параметрами электричества являются его напряжение и частота. Стандартное напряжение для домашних электросетей — 220 вольт. Общепринятая частота — 50 герц. Однако в США используется другое значение частоты — 60 герц. Параметр частоты задается генерирующим оборудованием и является неизменным.

Напряжение в сети конкретного дома или квартиры может быть отличным от номинала (220 вольт). На данный показатель влияет техническое состояние оборудования, сетевые нагрузки, загруженность подстанции. В результате напряжение может отклоняться от заданного параметра в ту или другую сторону на 20–25 вольт.

Скачки напряжения отрицательно сказываются на работоспособности электробытовой техники, поэтому подключения в домашней сети рекомендуется осуществлять через стабилизаторы напряжения.

к содержанию ↑

Токовая нагрузка

Все розетки имеют определенную маркировку, по которой можно судить о допустимой токовой нагрузке. Например, обозначение «5A» указывает на максимальную силу тока в 5 ампер. Допустимые показатели следует соблюдать, поскольку в противном случае возможен выход оборудования из строя, в том числе его возгорание.

Маркировка на розетках показана на рисунке внизу:

Ко всем легально продаваемым электроприборам прилагается паспорт, где указана потребляемая мощность или номинал токовой нагрузки. Крупнейшими потребителями электроэнергии являются такие электробытовые приборы, как кондиционеры, микроволновые печи, стиральные машины, кухонные электроплиты и духовки.

Таким приборам для нормальной работы понадобится розетка с нагрузкой не меньше 16 ампер.

Если же в документации к электробытовой технике отсутствуют сведения о потребляемых амперах (сила тока в розетке), определение нужных величин осуществляется по формуле электрической мощности:

Показатель мощности имеется в паспорте, напряжение сети известно. Чтобы определить потребление электричества, нужно показатель мощности (указывается только в ваттах) разделить на величину напряжения.

к содержанию ↑

Разновидности розеток

Розетки предназначены для создания контакта между электрической сетью и бытовой техникой. Они изготовлены так, чтобы обеспечить надежную защиту от случайных прикосновений к токоведущим элементам. Современные модели чаще всего оснащены защитным заземлением, представленным в виде отдельного контакта.

По способу монтажа существует два вида розеток — открытые и скрытые. Выбор разновидности розетки во многом определяется типом монтажа. К примеру, при организации наружной проводки используют накладные открытые розетки. Такая фурнитура проста в монтаже и не нуждается в нишах для подрозетников. Встроенные же модели более привлекательны с эстетической точки зрения и более безопасны, поскольку токоведущие элементы находятся внутри стены.

Розетки отличаются по токовой величине. Большая часть устройств предназначена для работы с 6, 10 или 16 амперами. Старые образцы советского производства рассчитаны только на 6,3 ампера.

Обратите внимание! Максимально возможный для розетки ток должен находиться в соответствии с мощностью потребителя, подключаемого к электросети.

к содержанию ↑

Методы измерения напряжения и тока

Чтобы измерить показатели напряжения и тока применяются следующие способы:

  1. Наиболее простой метод — подключение к розетке электрического прибора соответствующего напряжения. Если в розетке есть ток, электроприбор будет функционировать.
  2. Индикатор напряжения. Это приспособление может быть однополюсным и представлять собой специальную отвертку. Также выпускаются двухполюсные индикаторы с парой контакторов. Однополюсное устройство определяет фазу в розеточном контакте, но не обнаруживает наличие или отсутствие нуля. Двухполюсный же индикатор показывает ток между фазами, а также между нулем и фазой.
  3. Мультиметр (му

Есть ли отличия закона Ома для цепей переменного и постоянного напряжения?

Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.

Закон Ома для цепи постоянного тока

Классическая схема закона Ома выглядит так:

А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:

Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности ХL и емкости XC. А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:

Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления  ХL и XC, которые выражены формулами:

Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.

Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для цепи переменного тока

Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):

Соответственно и формула для такого контура останется прежней:

Но если мы усложним схему и добавим к ней реактивных элементов:

Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и приводить к резонансу. Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:

Соответственно немного изменится и формула для закона Ома:

Почему это важно?

Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: fном = 50 Гц, Uном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен:

Где:

В случае, если подать на эту же катушку постоянное напряжение с таким же значением, получим:

Мы видим, что ток катушки возрастает в разы, что приводит к выходу из строя элементов контура.

В чем разница между ЕС электродвигателями и обычными машинами переменного и постоянного тока?

Инженеры в своих системах могут применять различные типы электродвигателей на выбор. Как правило, выбор происходит между машиной переменного или постоянного тока. Но последнее время на рынке начали появляться электрические машины способные контролировать выходную скорость и мощность, позволяя тем самым повысить энергоэффективность.

Это электродвигатели с электронным управлением (англ. electronically communicated (EC)), которые последнее время начали очень активно вытеснять с рынка традиционные машины переменного и постоянного напряжения, и особенно в области энергоэффективности.

Основные отличия между электрическими машинами постоянного и переменного тока

Электродвигатели постоянного тока используют графитовые щетки и коллекторный узел для смены направления тока и, соответственно, полярности магнитного поля во вращающемся роторе. Именно это взаимодействие между вращающимся ротором и неподвижным постоянным магнитным полем статора и приводит машину в движение.

По данным от maxon motors, электрические машины постоянного тока имеют ограничения по времени эксплуатации коллекторно-щеточного, срок службы которого составляет в среднем 1000 – 1500 часов. При перегрузке срок службы составляет менее 100 часов, а при нормальных (номинальных) условиях эксплуатации может достигать и 15 000 часов. Скорость вращения таких машин ограничена процессами коммутации в коллекторно-щеточном узле и не превышает 10 000 об/мин.

Электрические машины постоянного напряжения имеют хорошую надежность и легкую управляемость, но страдают довольно приличными потерями. КПД снижается из-за сопротивления в обмотках, вихревых токов, потерь в щеточно-коллекторном узле.

Асинхронные электродвигатели используют другой принцип – на катушки статора подается переменное напряжение, которое создает вращающееся магнитное поле, а магнитное поле ротора индуцируется магнитным полем статора. Таким образом получается, что ротор как – бы пытается «догнать статор» . Еще одним видом машин переменного напряжения являются синхронные электродвигатели. Они используют немного другой принцип работы – катушки статора все так же запитываются переменным напряжением, а в ротор через контактные кольца подается постоянный ток (или используют постоянные магниты). Таким образом, магнитные поля статора и ротора сцепляются и машина вращается. Синхронный электродвигатель имеет жесткую механическую характеристику и скорость вращения ротора соответствующую скорости вращения магнитного поля статора в отличии от асинхронных машин, в которых присутствует скольжение (разница между скоростью вращения магнитного поля статора и реальной скоростью ротора).

Электродвигатели переменного тока предназначены для работы с определенной точкой на механической характеристике. Эта точка соответствует максимальной производительности двигателя. При работе в другой точке механической характеристики КПД машины резко снизится. Асинхронные электродвигатели переменного тока потребляют дополнительную энергию для создания магнитного поля путем индукции тока в роторе. Следовательно, двигатели переменного тока менее эффективны, чем двигатели постоянного тока. Фактически, машина постоянного тока на 30% эффективнее машины переменного тока из-за того.

Эффективность электронных коммутируемых электродвигателей

Электродвигатели с электронным управлением ЕС — бесщеточные двигатели постоянного тока, управляемые внешней электроникой — либо электронная плата, либо преобразователь частоты. Ротор содержит постоянные магниты, а статор имеет набор неподвижных обмоток. Коммутация выполняется с помощью электронных схем. «Плата» переключает фазы в неподвижных обмотках, чтобы поддерживать вращение двигателя. Это позволяет поддерживать тока якоря. Когда подключается напряжение правильной полярности и в нужное время возрастает  точность электрической машины. Поскольку скорость двигателя контролируется внешней электроникой, двигатели EC не имеют ограниченной синхронной скорости.

Двигатели EC имеют несколько преимуществ. Поскольку они не имеют щеток, они не искрят и срок их службы больше из-за отсутствия щеток, имеют меньше потери из-за «смарт управления» статором. Они обеспечивают лучшую производительность и управляемость,  чем асинхронные двигатели. С точки зрения размеров — небольшие электродвигатели могут достигать таких же габаритов, что и традиционные электрические машины постоянного или переменного тока.

Распределение мощности намного лучше у машин с электронным управлением. Бесщеточные электродвигатели постоянного тока (BLDC) зависят от источника питания постоянного напряжения. При использовании машин переменного тока появляются дополнительные затраты и сложность системы в случае необходимости регулирования. ЕС электродвигатели могут напрямую подключаться к источникам переменного тока благодаря наличию электронной системы управления. Более того, они слабо подвержены влиянию изменений частоты и напряжения сети, из чего можно сделать вывод что небольшие просадки напряжения сети не окажут существенного влияния на мощность машины, в отличии от асинхронных электродвигателей.

Если сравнить эффективность ЕС машины с машиной переменного тока с расщепленным полюсом или с конденсаторным электродвигателем, то можно увидеть, что машина с расщепленным полюсом имеет КПД порядка 15% — 25%, конденсаторные электродвигатели 30% — 50%, а ЕС машины имеют КПД в пределах 60% — 75% и являются наиболее эффективными и энергосберегающими.

Диапазон изменения КПД для конденсаторных асинхронных машин довольно велик и лежит в пределах 30% — 50%, что особенно сильно ощутимо при неполной их загрузке, например при работе в системах вентиляции и кондиционирования. ЕС электродвигатели имеют меньший диапазон изменения КПД при работе на различных скоростях и с различной нагрузкой. Как правило, у таких машин КПД не ниже 70%, а в машинах, работающих с номинальными параметрами, он может превышать 80%.

Машины с электронным управлением имеют регулятор скорости в качестве встроенной опции. Электродвигатели переменного тока могут иметь данную опцию только с внешним контролером (преобразователь частоты). Преобразователь частоты изменяют амплитуду и частоту напряжения, поступающего на электродвигатель, генерируя тем самым высшие гармоники, которые отрицательно сказываются на электрической машине, способствуя ее перегреву, и, как следствие, снижению срока службы.

Коммутационные схемы принимают входы с широтно-импульсной модуляцией от 4 до 20 мА и от 0 до 10 В. Это позволяет управлять скоростью в диапазоне от 10% до 100%. Мониторинг двигателей EC с помощью интегральной схемы прост, и может быть легко доступен разработчику для обеспечения обратной связи. Наконец, двигатели EC обеспечивают плавный пуск, снижение шума и более низкую температуру двигателя.

Электрические машины с электронным управлением обычно используются для приложений малой мощности, таких как небольшие вентиляторы, сервомоторы и системы управления движением. Однако, благодаря последним достижениям в области электроники и химии, двигатели EC находят свой путь в более крупные производственных приложениях, до 12 кВт и выше.

Постоянный ток — Direct current

Однонаправленный поток электрического заряда

Постоянный ток (DC) (красная линия). Вертикальная ось показывает ток или напряжение, а горизонтальная ось «t» измеряет время и показывает нулевое значение.

Постоянный ток ( DC ) — это однонаправленный или однонаправленный поток электрического заряда . Электрохимическая ячейка является ярким примером постоянного напряжения. Постоянный ток может течь через проводник, такой как провод, но также может течь через полупроводники , изоляторы или даже через вакуум, как в электронных или ионных пучках . Электрический ток течет в постоянном направлении, что отличает его от переменного тока. Термин , ранее используемый для этого типа тока был гальванический ток .

Аббревиатуры AC и DC часто используются для обозначения просто переменного и постоянного тока , когда они изменяют ток или напряжение .

Постоянный ток может быть преобразован из источника переменного тока с помощью выпрямителя , который содержит электронные элементы (обычно) или электромеханические элементы (исторически), которые позволяют току течь только в одном направлении. Постоянный ток можно преобразовать в переменный с помощью инвертора .

Постоянный ток имеет множество применений, от зарядки аккумуляторов до больших источников питания для электронных систем, двигателей и многого другого. Очень большие количества электроэнергии, получаемой от постоянного тока, используются при выплавке алюминия и других электрохимических процессах. Он также используется на некоторых железных дорогах , особенно в городских районах . Постоянный ток высокого напряжения используется для передачи большого количества энергии от удаленных объектов генерации или для соединения электрических сетей переменного тока.

История

Центральная электростанция Brush Electric Company с динамо-машинами, вырабатывающими постоянный ток для питания дуговых ламп для общественного освещения в Нью-Йорке. Начав работу в декабре 1880 года по адресу 133 West Twenty-Fifth Street, он работал под высоким напряжением, что позволило ему запитать цепь длиной 2 мили (3,2 км).

Постоянный ток был произведен в 1800 году итальянский физик Алессандро Вольта батарея «s, его Вольтова кучу . Природа того, как течет ток, еще не была понята. Французский физик Андре-Мари Ампер предположил, что ток движется в одном направлении от положительного к отрицательному. Когда французский производитель инструментов Ипполит Пиксии построил первый динамо-электрический генератор в 1832 году, он обнаружил, что, когда используемый магнит проходил петли проволоки каждые пол-оборота, он заставлял электрический ток реверсировать, создавая переменный ток . По предложению Ампера, Pixii позже добавила коммутатор , тип «переключателя», в котором контакты на валу работают вместе с «щеточными» контактами для получения постоянного тока.

В конце 1870-х — начале 1880-х годов электричество начали вырабатывать на электростанциях . Первоначально они были предназначены для электрического дугового освещения (популярный тип уличного освещения), работающего от постоянного или переменного тока очень высокого напряжения (обычно выше 3000 вольт). За этим последовало широкое распространение низковольтного постоянного тока для внутреннего электрического освещения в офисах и домах после того, как изобретатель Томас Эдисон в 1882 году выпустил свою электрическую « утилиту » на основе лампы накаливания . Из-за значительных преимуществ переменного тока над постоянным в использовании трансформаторы для повышения и понижения напряжения, чтобы обеспечить гораздо большие расстояния передачи, постоянный ток был заменен в течение следующих нескольких десятилетий переменным током в подаче энергии. В середине 1950-х годов была разработана высоковольтная передача постоянного тока , которая теперь является опцией вместо высоковольтных систем переменного тока на большие расстояния. Для протяженных подводных кабелей (например, между странами, такими как NorNed ), этот вариант постоянного тока является единственным технически осуществимым вариантом. Для приложений, требующих постоянного тока, таких как энергосистемы третьего рельса , переменный ток распределяется на подстанцию, которая использует выпрямитель для преобразования мощности в постоянный ток.

Различные определения

Виды постоянного тока

Термин « постоянный ток» используется для обозначения энергосистем, в которых используется только одна полярность напряжения или тока, и для обозначения постоянного, нулевого или медленно меняющегося местного среднего значения напряжения или тока. Например, напряжение на источнике постоянного напряжения постоянно, как и ток через источник постоянного тока . Решение для электрической цепи постоянного тока — это решение, в котором все напряжения и токи постоянны. Можно показать, что любую стационарную форму волны напряжения или тока можно разложить на сумму составляющей постоянного тока и изменяющейся во времени составляющей с нулевым средним значением; составляющая постоянного тока определяется как ожидаемое значение или среднее значение напряжения или тока за все время.

Хотя DC означает «постоянный ток», DC часто означает «постоянная полярность». Согласно этому определению, напряжения постоянного тока могут меняться во времени, что видно по необработанному выходному сигналу выпрямителя или колебаниям голосового сигнала на телефонной линии.

Некоторые формы постоянного тока (например, вырабатываемые регулятором напряжения ) почти не имеют изменений напряжения , но могут все же иметь изменения выходной мощности и тока.

Схемы

Цепь постоянного тока — это электрическая цепь , состоящая из любой комбинации источников постоянного напряжения, источников постоянного тока и резисторов . В этом случае напряжения и токи в цепи не зависят от времени. Конкретное напряжение или ток цепи не зависит от прошлых значений напряжения или тока в цепи. Это означает, что система уравнений, представляющая цепь постоянного тока, не включает интегралы или производные по времени.

Если к цепи постоянного тока добавляется конденсатор или катушка индуктивности , полученная цепь, строго говоря, не является цепью постоянного тока. Однако большинство таких схем имеют решение постоянного тока. Это решение выдает напряжения и токи в цепи, когда цепь находится в установившемся режиме постоянного тока . Такая схема представлена ​​системой дифференциальных уравнений . Решение этих уравнений обычно содержит изменяющуюся во времени или переходную часть, а также постоянную или установившуюся часть. Именно эта часть установившегося состояния и является решением постоянного тока. Есть некоторые схемы, которые не имеют решения постоянного тока. Двумя простыми примерами являются источник постоянного тока, подключенный к конденсатору, и источник постоянного напряжения, подключенный к катушке индуктивности.

В электронике цепь, которая питается от источника постоянного напряжения, такого как аккумулятор, или выход источника постоянного тока, обычно называют цепью постоянного тока, даже если имеется в виду, что эта схема питается постоянным током.

Приложения

Бытовые и коммерческие здания

Этот символ , который может быть представлен Unicode , символ U + 2393 (⎓) находится на многих электронных устройствах , которые либо требуют или производят постоянный ток.

Постоянный ток обычно используется во многих приложениях со сверхнизким напряжением и некоторых приложениях с низким напряжением , особенно там, где они питаются от батарей или солнечных энергетических систем (поскольку оба они могут производить только постоянный ток).

Для большинства электронных схем требуется источник питания постоянного тока .

В бытовых установках постоянного тока обычно используются розетки , разъемы , выключатели и приспособления , отличные от тех, которые подходят для переменного тока. В основном это связано с более низким используемым напряжением, что приводит к более высоким токам для получения того же количества энергии .

Обычно важно соблюдать полярность при работе с устройствами постоянного тока, если только устройство не оснащено диодным мостом, позволяющим это исправить.

EMerge Alliance — открытая отраслевая ассоциация, разрабатывающая стандарты распределения электроэнергии постоянного тока в гибридных домах и коммерческих зданиях .

Автомобильная промышленность

В большинстве автомобильных приложений используется постоянный ток. Автомобильная батарея обеспечивает питание для запуска двигателя, освещения и системы зажигания. Генератор представляет собой устройство переменного тока , который использует выпрямитель для создания постоянного тока для зарядки аккумулятора. Большинство шоссе легковых автомобилей используют номинально 12  V систем. Во многих тяжелых грузовиках, сельскохозяйственной технике или землеройной технике с дизельными двигателями используются системы на 24 В. В некоторых старых автомобилях использовалось напряжение 6 В, например, в оригинальном классическом Volkswagen Beetle . В какой-то момент электрическая система на 42 В рассматривалась для автомобилей, но это не нашло применения. Для экономии веса и уменьшения количества проводов металлический каркас автомобиля часто подключается к одному полюсу батареи и используется в качестве обратного проводника в цепи. Часто отрицательный полюс является заземлением шасси, но положительный полюс может использоваться в некоторых колесных или морских транспортных средствах.

Телекоммуникации

В аппаратуре связи телефонной станции используется стандартный источник питания -48 В постоянного тока. Отрицательная полярность достигается заземлением положительной клеммы системы питания и аккумуляторной батареи . Это сделано для предотвращения отложения электролиза . В телефонных установках используется система батарей, обеспечивающая поддержание питания абонентских линий во время перебоев в подаче электроэнергии.

Другие устройства могут получать питание от телекоммуникационной системы постоянного тока с помощью преобразователя постоянного тока в постоянный для обеспечения любого удобного напряжения.

Многие телефоны подключаются к витой паре проводов и используют тройник смещения, чтобы внутренне отделить переменную составляющую напряжения между двумя проводами (аудиосигнал) от составляющей постоянного напряжения между двумя проводами (используется для питания телефона. ).

Передача электроэнергии высокого напряжения

В системах передачи электроэнергии постоянного тока высокого напряжения (HVDC) постоянный ток используется для основной передачи электроэнергии, в отличие от более распространенных систем переменного тока. Для передачи на большие расстояния системы HVDC могут быть менее дорогими и иметь более низкие электрические потери.

Другие

Приложения, использующие топливные элементы (смешивание водорода и кислорода вместе с катализатором для производства электроэнергии и воды в качестве побочных продуктов), также производят только постоянный ток.

Электрические системы легких самолетов обычно имеют напряжение 12 В или 24 В постоянного тока, аналогичные автомобильным.

Смотрите также

Ссылки

внешние ссылки

20.5 Сравнение переменного и постоянного тока — College Physics

20.5 Сравнение переменного и постоянного тока — College Physics | OpenStaxSkip к контенту
  1. Предисловие
  2. 1 Введение: Природа науки и физики
    1. Введение в науку и область физики, физических величин и единиц измерения
    2. 1.1 Физика: введение
    3. 1.2 Физические величины и единицы измерения
    4. 1.3 Точность, прецизионность и значащие цифры
    5. 1.4 Приближение
    6. Глоссарий
    7. Краткое содержание раздела
    8. Концептуальные вопросы
    9. Задачи и упражнения
    1. Введение в одномерную кинематику
    2. 2.1 Смещение
    3. 2.2 Векторы, скаляры, системы координат
    4. и скорости и скорость
    5. 2.4 Ускорение
    6. 2.5 Уравнения движения для постоянного ускорения в одном измерении
    7. 2.6 Основы решения проблем для одномерной кинематики
    8. 2.7 падающих объектов
    9. 2.8 Графический анализ одномерного движения
    10. Глоссарий
    11. Сводка раздела
    12. Концептуальные вопросы
    13. Задачи и упражнения
  3. 3 Двумерная кинематика
    1. Введение в двумерную кинематику
    2. в двух измерениях: введение
    3. 3.2 Сложение и вычитание векторов: графические методы
    4. 3.3 Сложение и вычитание векторов: аналитические методы
    5. 3.4 Движение снаряда
    6. 3.5 Добавление скоростей
    7. Глоссарий
    8. Сводка раздела
    9. Концептуальные вопросы
    10. Задачи и упражнения
  4. 4 Динамика: сила и законы движения Ньютона
    1. Введение в динамику
    2. : законы движения Ньютона 4 4.1 Развитие концепции силы
    3. 4.2 Первый закон движения Ньютона: инерция
    4. 4.3 Второй закон движения Ньютона: концепция системы
    5. 4.4 Третий закон движения Ньютона: симметрия сил
    6. 4.5 Нормальные, растягивающие и другие примеры сил
    7. 4.6 Стратегии решения проблем
    8. 4.7 Дальнейшие применения законов движения Ньютона
    9. 4.8 Расширенная тема: Четыре основных силы — Введение
    10. Глоссарий
    11. Краткое содержание раздела
    12. Концептуальные вопросы
    13. Задачи и упражнения
  5. 5 Дальнейшее применение законов Ньютона: трение, сопротивление и эластичность
    1. Введение: дальнейшее применение законов Ньютона
    2. 5.1 Трение
    3. 5.2 Силы сопротивления
    4. 5.3 Упругость: напряжение и деформация
    5. Глоссарий
    6. Резюме раздела
    7. Концептуальные вопросы
    8. Задачи и упражнения
  6. 6 Равномерное круговое движение и гравитация Введение в гравитацию
    1. 6.1 Угол вращения и угловая скорость
    2. 6.2 Центростремительное ускорение
    3. 6.3 Центростремительная сила
    4. 6.4 Фиктивные силы и неинерциальные системы координат: сила Кориолиса
    5. 6.5 Универсальный закон тяготения Ньютона
    6. 6.6 Спутники и законы Кеплера: аргумент в пользу простоты
    7. Глоссарий
    8. Резюме раздела
    9. Концептуальные вопросы
    10. Задачи и упражнения
  7. 7 Работа, энергия и энергетические ресурсы
      — Введение в
        Работа, энергия и энергетические ресурсы
      1. 7.1 Работа: научное определение
      2. 7.2 Кинетическая энергия и теорема об энергии работы
      3. 7.3 Гравитационная потенциальная энергия
      4. 7.4 Консервативные силы и потенциальная энергия
      5. 7,5 Неконсервативные силы
      6. 7.6 Сохранение энергии
      7. 7,7 Энергия
      8. 7,8 Работа, энергия и мощность у людей
      9. 7.9 Мировое использование энергии
      10. Глоссарий
      11. Краткое содержание раздела
      12. Задачи и упражнения
    1. 8 Линейный импульс и столкновения
      1. Введение в линейный импульс и столкновения
      2. 8.1 Линейный импульс и сила
      3. 8.2 Impulse
      4. 8.3 Сохранение импульса
      5. 8.4 Упругие столкновения в одном измерении
      6. 8.5 Неупругие столкновения в одном измерении
      7. 8.6 Столкновения точечных масс в двух измерениях
      8. 8.7 Введение в ракетное движение
      9. Глоссарий
      10. 000 Краткое содержание раздела Концептуальные вопросы
      11. Задачи и упражнения
      1. Введение в статику и крутящий момент
      2. 9.1 Первое условие равновесия
      3. 9.2 Второе условие равновесия
      4. 9.3 Стабильность
      5. 9.4 Приложения статики, включая стратегии решения проблем
      6. 9.5 Простые механизмы
      7. 9.6 Силы и моменты в мышцах и суставах
      8. Глоссарий
      9. Резюме раздела
      10. Концептуальные вопросы Задачи и упражнения
    2. 10 Вращательное движение и угловой момент
      1. Введение в вращательное движение и угловой момент
      2. 10.1 Угловое ускорение
      3. 10.2 Кинематика вращательного движения
      4. 10.3 Динамика вращательного движения: вращательная инерция
      5. 10.4 Кинетическая энергия вращения: новый взгляд на работу и энергию
      6. 10,5 Угловой момент и его сохранение
      7. Два
      8. 10,6 Столкновения 9000 протяженных тел 4
      9. 10.7 Гироскопические эффекты: векторные аспекты углового момента
      10. Глоссарий
      11. Краткое содержание раздела
      12. Концептуальные вопросы
      13. Задачи и упражнения
      1. Введение в статику жидкостей
      2. 11.1 Что такое жидкость?
      3. 11.2 Плотность
      4. 11.3 Давление
      5. 11.4 Изменение давления по глубине в жидкости
      6. 11,5 Принцип Паскаля
      7. 11,6 Измерение манометрического давления, абсолютного давления и давления
      8. 11,7 Принцип Архимеда
      9. 11,8 : Поверхностное натяжение и капиллярное действие
      10. 11.9 Давления в теле
      11. Глоссарий
      12. Резюме раздела
      13. Концептуальные вопросы
      14. Задачи и упражнения
    3. 12 Динамика жидкости и ее биологические и медицинские приложения
      1. Введение в динамику жидкости и ее использование Биологические и медицинские приложения
      2. 12.1 Расход и его связь со скоростью
      3. 12.2 Уравнение Бернулли
      4. 12.3 Наиболее общие приложения уравнения Бернулли
      5. 12.4 Вязкость и ламинарный поток; Закон Пуазейля
      6. 12.5 Начало турбулентности
      7. 12.6 Движение объекта в вязкой жидкости
      8. 12.7 Явления молекулярного переноса: диффузия, осмос и связанные процессы
      9. Глоссарий
      10. Краткое содержание раздела
      11. Концептуальные вопросы
      12. Концептуальные вопросы
    4. 13 Температура, кинетическая теория и законы газа

    Переменный и постоянный ток

    Основы моторики.Двигатель постоянного тока

    Основные принципы работы двигателя Прежде чем мы сможем исследовать функцию привода, мы должны понять основные принципы работы двигателя. Он используется для преобразования электрической энергии, подаваемой контроллером, в механическую

    Дополнительная информация

    См. Horenstein 4.3 и 4.4.

    EE 462: Лаборатория № 4 «Схемы источника питания постоянного тока с использованием диодов». Автор: Drs.СРЕДНИЙ. Радун и К. Донохью (14 февраля 2007 г.), факультет электротехники и вычислительной техники, Университет Кентукки, Лексингтон, штат Кентукки, 40506 Обновлено:

    Дополнительная информация

    ЭЛЕКТРОДИНАМИКА 05 АВГУСТА 2014

    ЭЛЕКТРОДИНАМИКА 05 АВГУСТА 2014 В этом уроке мы: Описание урока Обсудим моторный эффект Обсудим, как работают генераторы и моторы. Резюме Моторный эффект Чтобы реализовать моторный эффект,

    Дополнительная информация

    Электрический резонанс

    Электрический резонанс (последовательная цепь R-L-C) УСТРОЙСТВО 1.R-L-C Печатная плата 2. Генератор сигналов 3. Осциллограф Tektronix TDS1002 с двумя наборами проводов (см. Введение в осциллограф) ВВЕДЕНИЕ

    Дополнительная информация

    = V пик 2 = 0,707 В пик

    ОСНОВНАЯ ЭЛЕКТРОНИКА — НАЗНАЧЕНИЕ РЕКТИФИКАЦИИ И ФИЛЬТРАЦИИ Предположим, вы хотите создать простой электронный блок питания постоянного тока, который работал бы от входа переменного тока (например, что-то, что вы можете подключить к стандартному

    Дополнительная информация

    Индукторы в цепях переменного тока

    Катушки индуктивности в цепях переменного тока Название Раздел Резисторы, катушки индуктивности и конденсаторы влияют на изменение величины тока в цепи переменного тока и времени, в которое ток достигает своего максимума

    Дополнительная информация

    Напряжение, ток и сопротивление

    Напряжение, ток и сопротивление. Этот рабочий лист и все связанные файлы находятся под лицензией Creative Commons Attribution License, версия 1.0. Чтобы просмотреть копию этой лицензии, посетите http://creativecommons.org/licenses/by/1.0/,

    . Дополнительная информация

    Свойства электрических сигналов

    Компонент напряжения постоянного тока (Среднее напряжение) Свойства электрических сигналов v (t) = В постоянного тока + v переменного тока (t) В постоянного тока — значение напряжения, отображаемое на вольтметре постоянного тока Треугольная форма сигнала Компонент постоянного тока Полупериодный выпрямитель

    Дополнительная информация

    Моделирование линий передачи

    Моделирование линий электропередачи. Передача электроэнергии. Электроэнергия, произведенная на генерирующих станциях, транспортируется по высоковольтным линиям электропередачи к пунктам использования.Тенденция к

    Дополнительная информация

    Бюллетень с данными о продукте

    Бюллетень с данными о продукте Причины и последствия гармоник в энергосистеме частотно-регулируемых приводов по сравнению со стандартом IEEE 519-1992 Роли, Северная Каролина, США ВВЕДЕНИЕ В этом документе описывается энергосистема

    Дополнительная информация

    ГЕНЕРАТОРЫ ПРЯМОГО ТОКА

    ГЕНЕРАТОРЫ ПРЯМОГО ТОКА Редакция 12:50 14 ноя 2005 г. ВВЕДЕНИЕ Генератор — это машина, которая преобразует механическую энергию в электрическую, используя принцип магнитной индукции.Этот принцип

    Дополнительная информация

    Последовательные и параллельные схемы

    Постоянный ток (DC) Постоянный ток (DC) — это однонаправленный поток электрического заряда. Термин DC используется для обозначения энергосистем, которые используют постоянное (не меняющееся во времени) среднее (среднее)

    Дополнительная информация

    Резонансные схемы RLC

    Конденсаторы и индуктивности Эндрю МакХатчон, 20 апреля 203 г. Когда дело доходит до реактивных сопротивлений сложных компонентов, существует множество противоречий.Формат, используемый в этом документе

    Дополнительная информация

    Основы радиосвязи

    Основы радиосвязи Этот рабочий лист и все связанные файлы находятся под лицензией Creative Commons Attribution License, версия 1.0. Чтобы просмотреть копию этой лицензии, посетите http://creativecommons.org/licenses/by/1.0/,

    Дополнительная информация

    Гармоники в вашей электрической системе

    Гармоники в вашей электрической системе Что они такое, чем они могут быть вредны и что с ними делать Абстракция Гармонические токи, генерируемые нелинейными электронными нагрузками, увеличивают тепловые потери в энергосистеме

    Дополнительная информация

    Последовательные и параллельные схемы

    Последовательные и параллельные цепи Последовательные цепи постоянного тока Последовательная цепь — это цепь, в которой компоненты соединены в линию, один за другим, как железнодорожные вагоны на одной дороге.Есть

    Дополнительная информация

    Цели. Электрический ток

    Цели Определить электрический ток как скорость. Опишите, что измеряется амперметрами и вольтметрами. Объясните, как подключить амперметр и вольтметр в электрическую цепь. Объясните, почему электроны перемещаются

    Дополнительная информация

    Сетевые реакторы и приводы переменного тока

    Сетевые реакторы и приводы переменного тока Rockwell Automation Mequon Wisconsin Довольно часто линейные и нагрузочные реакторы устанавливаются на приводы переменного тока без четкого понимания того, почему и каковы положительные и отрицательные последствия

    Дополнительная информация

    Двигатели и генераторы

    Двигатели и генераторы Электромеханические устройства: преобразуют электрическую энергию в механическое движение / работу и наоборот. Работают на связи между токонесущими проводниками и магнитными полями. Регулируется

    . Дополнительная информация

    Расчет схемы трансформатора

    Расчеты схемы трансформатора. Эта таблица и все связанные файлы находятся под лицензией Creative Commons Attribution License, версия 1.0. Чтобы просмотреть копию этой лицензии, посетите http://creativecommons.org/licenses/by/1.0/,

    . Дополнительная информация

    Вход, процесс и выход

    Средний 1 Физика Электроника Вход, процесс и выход Цифровые логические ворота Промежуточный 1 Физика Электроника Вход, процесс и выход 1 2 Вход, процесс и выход Электронные системы Когда что-то

    Дополнительная информация

    Студенческое исследование: схемы

    Имя: Дата: Изучение учащимися: Схемы Словарь: амперметр, цепь, ток, омметр, закон Ома, параллельная цепь, сопротивление, резистор, последовательная цепь, напряжение Вопросы предварительных знаний (выполните

    Дополнительная информация

    Раздел B: Электричество

    Раздел B: Электричество Мы используем электрическую сеть, поставляемую электростанциями, для всех видов бытовой техники в наших домах, поэтому очень важно знать, как ее использовать безопасно.В этой главе вы узнаете

    Дополнительная информация

    Электроника

    Готовность к работе План тестирования электронных технологий Код: 4035 / Версия: 01 Авторские права 2010. Все права защищены. Общая информация об оценке Содержание плана Общая информация об оценке

    Дополнительная информация

    Транзисторные усилители

    Physics 3330 Эксперимент № 7, осень 1999 г. Транзисторные усилители Цель. Цель этого эксперимента — разработать биполярный транзисторный усилитель с коэффициентом усиления по напряжению минус 25.Усилитель должен принимать вход

    Дополнительная информация

    Биполярные транзисторные усилители

    Physics 3330 Эксперимент № 7 Осень 2005 г. Усилители на биполярных транзисторах Назначение Целью этого эксперимента является создание усилителя на биполярных транзисторах с коэффициентом усиления минус 25 по напряжению. Усилитель должен

    Дополнительная информация

    Цепи трехфазного переменного тока

    Электричество и новая энергия Трехфазные цепи переменного тока Пособие для учащихся 86360-F0 Номер заказа.: 86360-00 Уровень редакции: 10/2014 Персоналом Festo Didactic Festo Didactic Ltée / Ltd, Квебек, Канада 2010

    Дополнительная информация

    Понимание генератора переменного тока

    http://www.autoshop101.com ЭТА АВТОМОБИЛЬНАЯ СЕРИЯ ГЕНЕРАТОРОВ РАЗРАБОТАНА КЕВИНОМ Р. СУЛЛИВАНОМ ПРОФЕССОРОМ АВТОМОБИЛЬНЫХ ТЕХНОЛОГИЙ SKYLINE COLLEGE SAN BRUNO, КАЛИФОРНИЯ ВСЕ ПРАВА ЗАЩИЩЕНЫ

    Дополнительная информация

    Основы RS485 и RS422

    RUA ALVARO CHAVES, 155 PORTO ALEGRE RS BRASIL

  8. -040 ТЕЛ: +55 (51) 3323 3600 ФАКС: +55 (51) 3323 3644 info @ novus.com.br Основы RS485 и RS422 ВВЕДЕНИЕ Стандарты 422 и 485, как они известны

    Дополнительная информация

    ПОСТРОЕНИЕ БАЗОВОЙ ЦЕПИ

    Информация для учителя ПОСТРОЕНИЕ БАЗОВОЙ ЦЕПИ NSES9-12.2 Физические науки: Взаимодействие энергии и материи. Адаптации. Некоторые адаптации и модификации, которые могут помочь ученику с визуальными и / или другими аспектами. Дополнительная информация

    Лаборатория 5 Операционные усилители

    Лаборатория 5 Операционные усилители Автор: Гэри А.Ибарра Кристофер Э. Крамер Факультет электротехники и вычислительной техники Университета Дьюка Дарем, Северная Каролина. Цель Цель этой лабораторной работы — изучить свойства

    Дополнительная информация

    Бумага по качеству электроэнергии № 3

    Влияние провалов напряжения на асинхронные двигатели Автор: М. Д. МакКаллох 1. ВВЕДЕНИЕ Понижения напряжения, вызванные неисправностями в системе, влияют на производительность асинхронных двигателей с точки зрения производства

    Дополнительная информация

    Добавление сердца к вашим технологиям

    Компонент приемника сердечного ритма RMCM-01 Код продукта #: 374 КЛЮЧЕВЫЕ ХАРАКТЕРИСТИКИ Блок высокой фильтрации Разработан для работы с постоянными шумовыми полями. Компонент SMD: Устанавливается в качестве стандартного компонента на

    . Дополнительная информация

    Энергия, работа и сила

    Энергия, работа и мощность. Этот рабочий лист и все связанные файлы находятся под лицензией Creative Commons Attribution License, версия 1.0. Чтобы просмотреть копию этой лицензии, посетите http://creativecommons.org/licenses/by/1.0/,

    . Дополнительная информация

    Разница между генератором и генератором с таблицей сравнения

    Основное различие между генератором переменного тока и генератором заключается в том, что в генераторе якорь неподвижен, а система возбуждения вращается, тогда как в генераторе якорь вращается, а поле остается неподвижным. Якорь генератора установлен на неподвижном элементе, называемом статором, а обмотка возбуждения — на вращающемся элементе.А подключение генератора — как раз наоборот. Остальные различия между ними показаны ниже в сравнительной таблице.

    Генератор и генератор работают по принципу закона электромагнитной индукции Фарадея. Генератор индуцирует как переменный, так и постоянный ток, а генератор вырабатывает только переменный ток. Ротор генератора находится внутри стационарного магнитного поля. Стационарное магнитное поле создается магнитными полюсами.Ротор движется внутри магнитного поля, пересекает магнитную силовую линию, которая индуцирует ток в проводе.

    Каждая половина оборота ротора изменяет направление тока, который вызывает переменный ток. Для получения переменного тока концы цепи напрямую подключаются к нагрузке. Но для выработки постоянного тока концы провода подключаются к коммутатору. Коммутатор преобразует переменный ток в постоянный.

    Содержание: Генератор против генератора

    1. Сравнительная таблица
    2. Определение
    3. Ключевые отличия

    Сравнительная таблица

    Основа для сравнения Генератор Генератор
    Определение Машина, преобразующая механическую энергию в электрическую энергию переменного тока. Машина, преобразующая механическую энергию в электрическую (переменного или постоянного тока).
    Ток Индуцирует переменный ток Генерирует как переменный, так и постоянный ток.
    Магнитное поле Вращающееся Неподвижное
    Вход питания Отводится от статора. Взятие с ротора.
    Якорь Стационарный Поворотный
    Выходная ЭДС Переменная Постоянная
    об / мин (число оборотов в минуту) широкий диапазон узкий диапазон
    Разряженная батарея Не заряжать заряжать
    Выход Высшее Нижнее

    Определение генератора

    Синхронный генератор или генератор переменного тока — это машина для преобразования механической энергии от первичного двигателя в электрическую мощность переменного тока с определенным напряжением и частотой.Трехфазные генераторы используются потому, что они имеют несколько преимуществ: распределение, генерация и передача. Для массового производства электроэнергии большой генератор переменного тока используется на тепловых, гидро- и атомных электростанциях.

    Магнитный полюс ротора возбуждается постоянным током поля. Когда ротор вращается, магнитный поток разрезает проводник статора, и, следовательно, в них индуцируется ЭДС. Как магнитный полюс, попеременно вращающий N и S, они индуцируют ЭДС и ток в проводнике якоря, которые сначала вращаются по часовой стрелке, а затем против часовой стрелки.Таким образом, генерируется переменный ток.

    Определение генератора

    Генератор преобразует механическую энергию в электрическую энергию или мощность. Работа генератора основана на принципе закона электромагнитной индукции Фарадея, то есть всякий раз, когда проводники сокращают магнитный поток, индуцируется ЭДС. Эта ЭДС заставляет ток течь, если проводник закрыт. Магнитное поле и проводники — две основные части генераторов.

    Генератор имеет прямоугольную вращающуюся катушку, которая вращается в магнитном поле вокруг своей оси.Магнитное поле создается либо постоянным магнитом, либо электромагнитом. Концы змеевика соединены двумя контактными кольцами. Контактное кольцо собирает ток, индуцированный в катушке, и передает его на внешнее нагрузочное сопротивление R. Вращающаяся катушка называется медным якорем.

    Ключевые различия между генератором и генератором

    1. Генератор переменного тока — это машина, которая преобразует механическую энергию первичного двигателя в переменный ток, тогда как генератор преобразует механическую энергию первичного двигателя в переменный или постоянный ток.
    2. Генератор индуцирует переменный ток, тогда как генератор вырабатывает как переменный, так и постоянный ток. Генератор вырабатывает переменный ток, который преобразуется в постоянный с помощью коммутатора.
    3. Генератор имеет вращающееся магнитное поле, в то время как генератор имеет вращающееся магнитное поле для генерации высокого напряжения, а стационарное магнитное поле низкого напряжения используется.
    4. Генератор получает питание от статора, а генератор получает питание от ротора.
    5. Якорь генератора переменного тока неподвижен, а в случае генератора — вращается.
    6. Выходная ЭДС генератора переменного тока переменная, а выходное напряжение генератора постоянное.
    7. Генератор имеет широкий диапазон оборотов в минуту, тогда как генератор имеет узкий диапазон оборотов (оборотов в минуту).
    8. Генератор не заряжает полностью разряженную батарею, тогда как генератор заряжает разряженную батарею.
    9. Мощность генератора выше, чем у генератора.

    Генератор меньше по размеру и занимает меньше места, тогда как генератор требует большого пространства.

    Постоянный и переменный ток


    Переменный ток Постоянный ток
    Направление потока зарядов
    Подача тока (Что генерирует ток?)
    Количество энергии, которое может быть перенесено
    Преобразование (Какое устройство используется для преобразования этого типа тока в другой?)
    Использование и применение
    Схема

    Упражнение 26.Подчеркните правильное слово (слова) в скобках, чтобы завершить предложения об инверторах и различных этапах генерации и подачи переменного тока.

    1. Инверторы преобразуют (постоянный ток / переменный ток) в (постоянный ток / переменный ток).

    2. Если инвертор используется для питания электроприборов в доме, он должен копировать подачу основного электричества, произведенного (батареи / генераторы) на электростанциях.

    3.Большинство инверторов могут производить ток, который (течет / чередуется) точно с требуемым (частота / напряжение) , например, 50 (герц / вольт) (50 циклов в секунду).

    4. После повышающего трансформатора ток поступает в линию (распределение / передача) .

    5. Ток идет от последнего понижающего трансформатора к линии (распределение / передача) .

    6. Ток покидает мощность (сеть / станция) и входит в дом.

    7. Сила тока уменьшается, а напряжение увеличивается с помощью трансформатора (повышающий / понижающий) .

    Упражнение 27. Материалы классифицировать по способности электронов перемещаться через материал удобно. Сопоставьте материалы с их описанием и соответствующими примерами.

    Материалы Описание Примеры
    Электропроводники Третий класс материалов, и их электрические свойства находятся где-то между изоляторами и проводниками.Электрические свойства этих материалов могут быть изменены на многие порядки путем добавления к материалам контролируемых количеств определенных атомов. Стекло, резинка, дерево
    Изоляторы электрические Материалы, в которых некоторые электроны являются свободными электронами, которые не связаны с атомами и могут относительно свободно перемещаться через материал. Когда такие материалы заряжаются в небольшой области, заряд легко распределяется по всей поверхности материала. Кремний и германий (используется в электронных чипах)
    Полупроводники Материалы, в которых все электроны связаны с атомами и не могут свободно перемещаться через материал. Когда такие материалы заряжаются в результате трения, заряжается только натираемая область, и заряженные частицы не могут перемещаться в другие области материала. медь, алюминий, серебро



    :

    Переменный и постоянный ток | Электричество переменного и постоянного тока

    Переменный ток, переменный ток и постоянный ток, постоянный ток — это две формы электрического тока, каждая из которых имеет свои преимущества и недостатки.Выбор переменного или постоянного тока зависит от применения и свойств переменного и постоянного тока.


    Учебное пособие по электрическому току Включает:
    Что такое электрический ток Единица измерения тока — Ампер ПЕРЕМЕННЫЙ ТОК


    Одно из основных различий в типе протекания тока в цепи заключается в том, является ли ток переменным током, переменным или постоянным, постоянным.

    Электричество переменного и постоянного тока широко используются в электрических и электронных схемах, каждая из которых используется для разных целей.

    И переменный, и постоянный ток имеют свои особенности и дают разные преимущества, которые можно использовать в разных ситуациях.

    Что такое постоянный ток, DC

    Поскольку название подразумевает постоянный ток, постоянный ток — это форма электричества, которая течет в одном направлении — прямое, и это дало ему название.

    Постоянный ток в базовой цепи

    Характеристика постоянного тока, DC может быть отображена на графике. Здесь видно, что ток может быть либо положительным, либо отрицательным.

    График, показывающий атрибуты постоянного тока

    Применения постоянного тока, постоянного тока

    Постоянный ток, DC используется во многих сферах:

    • Батареи: Батареи, как неперезаряжаемые, так и перезаряжаемые, могут питать только постоянный ток. Аккумуляторные батареи также нуждаются в подзарядке постоянным током.
    • Электронное оборудование: Все оборудование, такое как компьютеры, радио, мобильные телефоны, и фактически все электронное оборудование использует постоянный ток для питания электронных схем.Биполярные транзисторы, полевые транзисторы и интегральные схемы, которые используют эти компоненты, нуждаются в постоянном токе для питания их и будут повреждены, если будет установлена ​​обратная полярность. Хотя многие из этих элементов питаются от сети переменного тока, в этом устройстве есть блок, называемый источником питания, который преобразует входящий переменный ток в постоянный ток с правильным напряжением (-ями) внутри электронного элемента.
    • Некоторое электрическое оборудование: Хотя во многих электрооборудовании используется переменный ток, в некоторых используется постоянный ток.
    • Солнечные панели: Солнечные панели, используемые для выработки электроэнергии, вырабатывают постоянный ток непосредственно от самих солнечных батарей. При использовании с сетью переменного тока для подачи в сеть или подачи местного питания переменного тока для источников переменного тока требуется блок, известный как инвертор, для обеспечения постоянного тока, постоянного тока от солнечных панелей для преобразования в переменный ток.

    Что такое переменный ток, AC

    Переменный ток, переменный ток отличается от постоянного тока.Как следует из названия, он течет сначала в одном направлении, а затем в другом.

    График, поясняющий переменный ток

    На приведенном выше графике показано изменение формы волны тока в виде синусоидальной волны, при этом ток сначала движется в одном направлении, а затем в другом.

    Чаще всего наблюдаются колебания напряжения. Опять же, для переменного сигнала напряжение будет изменяться в положительную и отрицательную сторону.

    Как для тока, так и для напряжения видно, что форма сигнала меняется, становясь в этом примере сначала положительной, а затем отрицательной.

    Напряжение для синусоидальной волны переменного тока

    Синусоидальную волну легко представить и понять, но большое количество других форм волны также могут представлять собой переменную форму волны с переменным током.

    Есть несколько важных моментов относительно чередования сигналов. Первый — это период времени для сигнала. Это время от точки на одном цикле формы волны до идентичной пинты в следующем цикле. Часто пик легче всего увидеть, как показано, но можно взять любую точку — например, когда определенное напряжение достигается в заданном направлении — это может быть точка срабатывания напряжения и т. Д.Нулевые переходы — еще одна возможность, которую легко определить.

    Еще одна особенность переменного сигнала — его частота. Это количество раз, когда заданная точка формы сигнала видна в течение секунды, и измеряется в герцах, Гц, где 1 Гц — это один цикл в секунду. Показанный пример имеет частоту 3 Гц, так как в течение секунды наблюдаются три цикла.

    В качестве других примеров частота электросети составляет 50 или 60 Гц в зависимости от страны. Европа и многие другие страны используют 50 Гц, тогда как Северная Америка, Карибский бассейн и некоторые страны Южной Америки используют 60 Гц.

    Приложения переменного тока

    Переменный ток обычно используется для распределения энергии. Его преимущество состоит в том, что его можно легко преобразовать в другие напряжения с помощью простого трансформатора — трансформаторы не работают с постоянным током.

    Если мощность распределяется при высоком напряжении, потери намного ниже. Возьмем, к примеру, источник питания 250 В с током 4 А и сопротивлением провода 1 Ом. В качестве мощности, Вт = вольт x ампер, передаваемая мощность составляет 1000 Вт.Потери мощности составляют I 2 x R = 16 Вт.

    При передаче электроэнергии высокого напряжения используется переменный ток

    Если линия напряжения передает 4 А, но имеет напряжение 250 000 вольт, т. Е. 250 кВ, и линия передает 4 А, тогда потери мощности остаются такими же, но в целом Система передачи несет 1 МВт, а 16 Вт — это почти незначительные потери.

    Именно по этой причине для передачи энергии используются высокие напряжения, которые затем снижаются до относительно безопасного уровня для использования в жилых и коммерческих помещениях.

    Ввиду того, что в системе питания используется переменный ток, он также используется в двигателях, для отопления и во многих других изделиях без необходимости его преобразования в постоянный ток.

    переменного тока и постоянного тока

    Во многих областях может быть принято решение о выборе переменного или постоянного тока и о том, какая форма питания лучше всего подходит для данного приложения.

    Переменный ток, переменный и постоянный ток, постоянный ток имеют свои преимущества и недостатки, но это означает, что есть возможность выбрать лучший вариант для любого конкретного использования или применения.Переменный ток, переменный ток, как правило, используется для распределения электроэнергии, поэтому сетевые розетки в наших домах и на работе обеспечивают переменный ток для питания всего, что необходимо, но постоянный ток более широко используется для самих плат электроники и для многих другие приложения.

    Источники как переменного, так и постоянного тока широко используются в электротехнической и электронной промышленности, каждый в своей области.

    И переменный, и постоянный ток могут обеспечивать передачу электроэнергии, но с немного разными преимуществами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *